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Preface

In the 1960s, there were a number of classic books written on quantum field theory.
Because of the phenomenal experimental success of quantum electrodynamics
(QED), quantum field theory became a rigorous body of physical knowledge, as
established as nonrelativistic quantum mechanics.

In the 1970s and 1980s, because of the growing success of gauge theories,
it was clear that a typical 1-year course in quantum field theory was rapidly
becoming obsolete. A number of advanced books appeared on various aspects of
gauge theories, so often a 1-year course on quantum field theory became disjoint,
with one book on QED being the basis of the first semester and one of several
books on various aspects of gauge theories being the basis of the second semester.

Today, because of the success of the Standard Model, it is necessary to con-
solidate and expand the typical 1-year quantum field theory course. There is
obviously a need for a book for the 1990s, one that presents this material in a
coherent fashion and uses the Standard Model as its foundation in the same way
that earlier books used QED as their foundation. Because the Standard Model
is rapidly becoming as established as QED, there is a need for a textbook whose
focus is the Standard Model.

As a consequence, we have divided the book into three parts, which can be
used in either a two- or a three-semester format:

I: Quantum Fields and Renormalization

H: Gauge Theory and the Standard Model

III: Non preturbative Methods and Unification

Part I of this book summarizes the development of QED. It provides the foun-
dation for a first-semester course on quantum field theory, laying the basis for
perturbation theory and renormalization theory. (However, one may also use it
in the last semester of a three-semester course on quantum mechanics, treating
it as the relativistic continuation of a course on nonrelativistic quantum mechanics.
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In this fashion, students who are not specializing in high-energy physics will find
Part I particularly useful, since perturbation theory and Feynman diagrams have
now penetrated into all branches of quantum physics.)

In Part II, the Standard Model is the primary focus. This can be used as the
basis of a second semester course on quantum field theory. Particular attention
is given to the method of path integrals and the phenomenology of the Standard
Model. This chapter is especially geared to students wanting an understanding
of high-energy physics, where a working knowledge of the Standard Model is a
necessity. It is hoped that the student will finish this section with an appreciation
of the overwhelming body of experimental evidence pointing to the correctness
of the Standard Model.

Because the experiments necessary to go beyond the Standard Model are
rapidly becoming prohibitively expensive and time consuming, we are also aware
that the development of physics into the next decade may become increasingly
theoretical, and therefore we feel that an attempt should be made to explore the
various theories that take us beyond the Standard Model.

Part HI of this book, therefore, is geared to the students who wish to pursue
more advanced material and can be used in one of two ways. A lecturer may want
to treat a few of the chapters in Part III at the end of a typical two semester course
on quantum field theory. Or, Part III can be used as the basis of a third semester
course. We are providing a variety of topics so that the lecturer may pick and
choose the chapters that are most topical and are of interest. We have written Part
HI to leave as much discretion as possible for the lecturer in using this material.

The approach that we have taken in our book differs from that taken in other
books in several ways:

First, we have tried to consolidate and streamline, as much as possible in a
coherent fashion, a large body of information in one book, beginning with QED,
leading to the Standard Model, and ending on supersymmetry.

Second, we have emphasized the role of group theory, treating many of the
features of quantum field theory as the byproduct of the Lorentz, Poincard, and
internal symmetry groups. Viewed in this way, many of the rather arbitrary and
seemingly contrived conventions of quantum field theory are seen as a conse-
quence of group theory. Group theory, especially in Part III, plays an essential
role in understanding unification.

Third, we have presented three distinct proofs of renormalization theory. Most
books, if they treat renormalization theory at all, only present one proof. However,
because of the importance of renormalization theory to today's research, the
serious student may find that a single proof of renormalization is not enough.
The student may be ill prepared to handle research when renormalization theory
is developed from an entirely different approach. As a consequence, we have
presented three different proofs of renormalization theory so that the student can
become fluent in at least two different methods. We have presented the original
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Dyson/Ward proof in Chapter 7. In Part H, we also present two different proofs
based on the BPHZ method and the renormalization group.

Fourth, we should caution the reader that experimental proof of nonperturba-
tive quark confinement or of supersymmetry is absolutely nonexistent. However,
since the bulk of current research in theoretical high-energy physics is focused
on the material covered in Part III, this section should give the student a brief
overview of the main currents in high-energy physics. Moreover, our attitude
is to treat nonperturbative field theory and supersymmetries as useful theoretical
"laboratories" in which to test many of our notions about quantum field theory. We
feel that these techniques in Part III, if viewed as a rich, productive laboratory in
which to probe the limits of field theory, will yield great dividends for the serious
student.

We have structured the chapters so that they can be adapted in many different
ways to suit different needs. In Part I, for example, the heart of the canonical
quantization method is presented in Chapters 3-6. These chapters are essential
for building a strong foundation to quantum field theory and Feynman diagrams.
Although path integral methods today have proven more flexible for gauge theo-
ries, a student will have a much better appreciation for the rigor of quantum field
theory by reading these chapters. Chapters 2 and 7, however, can be skipped
by the student who either already understands the basics of group theory and
renormalization, or who does not want to delve that deeply into the intricacies of
quantum field theory.

In Part H, the essential material is contained in Chapters 8-11. In these chap-
ters, we develop the necessary material to understand the Standard Model, that is,
path integrals, gauge theory, spontaneous symmetry breaking, and phenomenol-
ogy. This forms the heart of this section, and cannot be omitted. However,
Chapters 12-14 should only be read by the student who wants a much more de-
tailed presentation of the subtleties of quantum field theory (BRST, anomalies,
renormalization group, etc.).

In Part III, there is great freedom to choose which material to study, depending
on the person's interests. We have written Part III to give the greatest flexibility
to different approaches in quantum field theory. For those want an understanding
of quark confinement and nonperturbative methods, Chapters 15-17 are essential.
The student wishing to investigate Grand Unified Theories should study Chapter
18. However, the student who wishes to understand some of the most exciting
theoretical developments of the past decade should read Chapters 19-21.

Because of the wide and often confusing range of notations and conventions
found in the literature, we have tried to conform, at least in the early chapters, to
those appearing in Bjorken and Drell, Itzykson and Zuber, and Cheng and Li. We
also choose our metric to be g,,,, = (+, -, -, -).

We have also included 311 exercises in this book, which appear after each
chapter. We consider solving these exercises essential to an understanding of the
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material. Often, students complain that they understand the material but cannot
do the problems. We feel that this is a contradiction in terms. If one cannot do the
exercises, then one does not really fully understand the material.

In writing this book, we have tried to avoid two extremes. We have tried to
avoid giving an overly tedious treatise of renormalization theory and the obscure
intricacies of Feynman graphs. One is reminded of being an apprentice during the
Middle Ages, where the emphasis was on mastering highly specialized, arcane
techniques and tricks, rather than getting a comprehensive understanding of the
field.

The other extreme is a shallow approach to theoretical physics, where many
vital concepts are deleted because they are considered too difficult for the student.
Then the student receives a superficial introduction to the field, creating confusion
rather than understanding. Although students may prefer an easier introduction to
quantum field theory, ultimately it is the student who suffers. The student will be
totally helpless when confronted with research. Even the titles of the high-energy
preprints will be incomprehensible.

By taking this intermediate approach, we hope to provide the student with a
firm foundation in many of the current areas of research, without overwhelming
the student in an avalanche of facts. We will consider the book a success if we
have been able to avoid these extremes.

New York M. K.
July 1992
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Part I

Quantum Fields
and Renormalization





Chapter 1

Why Quantum Field Theory?

Anyone who is not shocked by the quantum theory does not understand
it.

-N. Bohr

1.1 Historical Perspective

Quantum field theory has emerged as the most successful physical framework
describing the subatomic world. Both its computational power and its conceptual
scope are remarkable. Its predictions for the interactions between electrons and
photons have proved to be correct to within one part in 108. Furthermore, it can
adequately explain the interactions of three of the four known fundamental forces
in the universe. The success of quantum field theory as a theory of subatomic
forces is today embodied in what is called the Standard Model. In fact, at present,
there is no known experimental deviation from the Standard Model (excluding
gravity).

This impressive list of successes, of course, has not been without its problems.
In fact, it has taken several generations of the world's physicists working over
many decades to iron out most of quantum field theory's seemingly intractable
problems. Even today, there are still several subtle unresolved problems about the
nature of quantum field theory.

The undeniable successes of quantum field theory, however, were certainly not
apparent in 1927 when P.A.M. Dirac' wrote the first pioneering paper combining
quantum mechanics with the classical theory of radiation. Dirac's union of non-
relativistic quantum mechanics, which was itself only 2 years old, with the special
theory of relativity and electrodynamics would eventually lay the foundation of
modem high-energy physics.

Breakthroughs in physics usually emerge when there is a glaring conflict be-
tween experiment and theory. Nonrelativistic quantum mechanics grew out of the
inability of classical mechanics to explain atomic phenomena, such as black body
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radiation and atomic spectra. Similarly, Dirac, in creating quantum field theory,
realized that there were large, unresolved problems in classical electrodynamics
that might be solved using a relativistic form of quantum mechanics.

In his 1927 paper, Dirac wrote: ". . . hardly anything has been done up to the
present on quantum electrodynamics. The questions of the correct treatment of
a system in which the forces are propagated with the velocity of light instead of
instantaneously, of the production of an electromagnetic field by a moving electron,
and of the reaction of this field on the electron have not yet been touched."

Dirac's keen physical intuition and bold mathematical insight led him in 1928
to postulate the celebrated Dirac electron theory. Developments came rapidly
after Dirac coupled the theory of radiation with his relativistic theory of the
electron, creating Quantum Electrodynamics (QED). His theory was so elegant
and powerful that, when conceptual difficulties appeared, he was not hesitant to
postulate seemingly absurd concepts, such as "holes" in an infinite sea of negative
energy. As he stated on a number of occasions, it is sometimes more important to
have beauty in your equations than to have them fit experiment.

However, as Dirac also firmly realized, the most beautiful theory in the world
is useless unless it eventually agrees with experiment. That is why he was gratified
when his theory successfully reproduced a series of experimental results: the spin
and magnetic moment of the electron and also the correct relativistic corrections
to the hydrogen atom's spectra. His revolutionary insight into the structure of
matter was vindicated in 1932 with the experimental discovery of antimatter.
This graphic confirmation of his prediction helped to erase doubts concerning the
correctness of Dirac's theory of the electron.

However, the heady days of the early 1930s, when it seemed like child's play
to make major discoveries in quantum field theory with little effort, quickly came
to a halt. In some sense, the early successes of the 1930s only masked the deeper
problems that plagued the theory. Detailed studies of the higher-order corrections
to QED raised more problems than they solved. In fact, a full resolution of
these question would have to wait several decades. From the work of Weisskopf,
Pauli, Oppenheimer, and many others, it was quickly noticed that QED was
horribly plagued by infinities. The early successes of QED were premature: they
only represented the lowest-order corrections to classical physics. Higher-order
corrections in QED necessarily led to divergent integrals.

The origin of these divergences lay deep within the conceptual foundation of
physics. These divergences reflected our ignorance concerning the small-scale
structure of space-time. QED contained integrals which diverged as x --> 0, or,
in momentum space, as k --* oo. Quantum field theory thus inevitably faced
divergences emerging from regions of space-time and matter-energy beyond
its regime of applicability, that is, infinitely small distances and infinitely large
energies.
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These divergences had their counterpart in the classical "self-energy" of the
electron. Classically, it was known to Lorentz and others near the turn of the
century that a complete description of the electron's self-energy was necessarily
plagued with infinities. An accelerating electron, for example, would produce a
radiation field that would act back on itself, creating absurd physical effects such
as the breakdown of causality. Also, other paradoxes abounded; for example it
would take an infinite amount of energy to assemble an electron.

Over the decades, many of the world's finest physicists literally brushed these
divergent quantities under the rug by manipulating infinite quantities as if they were
small. This clever sleight-of-hand was called renormalization theory, because
these divergent integrals were absorbed into an infinite rescaling of the coupling
constants and masses of the theory. Finally, in 1949, Tomonaga, Schwinger, and
Feynman2-4 penetrated this thicket of infinities and demonstrated how to extract
meaningful physical information from QED, for which they received the Nobel
Prize in 1965.

Ironically, Dirac hated the solution to this problem. To him, the techniques
of renormalization seemed so abstruse, so artificial, that he could never reconcile
himself with renormalization theory. To the very end, he insisted that one must
propose newer, more radical theories that required no renormalization whatsoever.

Nevertheless, the experimental success of renormalization theory could not be
denied. Its predictions for the anomalous magnetic moment of the electron, the
Lamb shift, etc. have been tested experimentally to one part in 108, which is a
remarkable degree of confirmation for the theory.

Although renormalized QED enjoyed great success in the 1950s, attempts at
generalizing quantum field theory to describe the other forces of nature met with
disappointment. Without major modifications, quantum field theory appeared to
be incapable of describing all four fundamental forces of nature.' These forces
are:

1. The electromagnetic force, which was successfully described by QED.

2. The strong force, which held the nucleus together.

3. The weak force, which governed the properties of certain decaying particles,
such as the beta decay of the neutron.

4. The gravitational force, which was described classically by Einstein's general
theory of relativity.

In the 1950s, it became clear that quantum field theory could only give us a
description of one of the four forces. It failed to describe the other interactions
for very fundamental reasons.
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Historically, most of the problems facing the quantum description of these
forces can be summarized rather succinctly by the following:

aem

astrong

Gweak

GNewton

1/137.0359895(61)

14

1.02 x 10-5/M2

1.16639(2) x 10-5GeV-2

5.9 x 10-39/M2

6.67259(85) x 10-1m3kg-1s-2

where Mp is the mass of the proton and the parentheses represent the uncertainties.
Several crucial features of the various forces can be seen immediately from this

chart. The fact that the coupling constant for QED, the "fine structure constant,"
is approximately 1/137 meant that physicists could successfully power expand
the theory in powers of aem. The power expansion in the fine structure constant,
called "perturbation theory," remains the predominant tool in quantum field theory.
The smallness of the coupling constant in QED gave physicists confidence that
perturbation theory was a reliable approximation to the theory. However, this
fortuitous circumstance did not persist for the other interactions.

1.2 Strong Interactions

In contrast to QED, the strongly interacting particles, the "hadrons" (from the
Greek word hadros, meaning "strong"), have a large coupling constant, meaning
that perturbation theory was relatively useless in predicting the spectrum of the
strongly interacting particles. Unfortunately, nonperturbative methods were noto-
riously crude and unreliable. As a consequence, progress in the strong interactions
was painfully slow.

In the 1940s, the first seminal breakthrough in the strong interactions was the
realization that the force binding the nucleus together could be mediated by the
exchange of 7r mesons:

7r+p <--> n

jr++n 4--* p (1.2)

Theoretical predictions by Yukawab of the mass and range of the 7r meson, based
on the energy scale of the strong interactions, led experimentalists to find the 7r
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meson in their cosmic ray experiments. The 7r meson was therefore deduced to
be the carrier of the nuclear force that bound the nucleus together.

This breakthrough, however, was tempered with the fact that, as we noted, the
pion-nucleon coupling constant was much greater than one. Although the Yukawa
meson theory as a quantum field theory was known to be renormalizable, pertur-
bation theory was unreliable when applied to the Yukawa theory. Nonperturbative
effects, which were exceedingly difficult to calculate, become dominant.

Furthermore, the experimental situation became confusing when so many
"resonances" began to be discovered in particle accelerator experiments. This
indicated again that the coupling constant of some unknown underlying theory
was large, beyond the reach of conventional perturbation theory. Not surpris-
ingly, progress in the strong interactions was slow for many decades for these
reasons. With each newly discovered resonance, physicists were reminded of the
inadequacy of quantum field theory.

Given the failure of conventional quantum field theory, a number of alterna-
tive approaches were investigated in the 1950s and 1960s. Instead of focusing
on the "field" of some unknown constituent as the fundamental object (which
is in principle unmeasurable), these new approaches centered on the S matrix
itself. Borrowing from classical optics, Goldberger and his colleagues' assumed
the S matrix was an analytic function that satisfied certain dispersion relations.
Alternatively, Chew' assumed a type of "nuclear democracy"; that is, there were
no fundamental particles at all. In this approach, one hoped to calculate the S
matrix directly, without using field theory, because of the many stringent physical
conditions that it satisfied.

The most successful approach, however, was the SU(3) "quark" theory of the
strongly interacting particles (the hadrons). Gell-Mann, Ne'eman, and Zweig,9-"
building on earlier work of Sakata and his collaborators, 12,13 tried to explain the
hadron spectrum with the symmetry group SU(3).

Since quantum field theory was unreliable, physicists focused on the quark
model as a strictly phenomenological tool to make sense out of the hundreds of
known resonances. Composite combinations of the "up," "down," and "strange"
quarks could, in fact, explain all the hadrons discovered up to that time. Together,
these three quarks formed a representation of the Lie group SU(3):

qi = I (1.3)

The quark model could predict with relative ease the masses and properties of
particles that were not yet discovered. A simple picture of the strong interactions
was beginning to emerge: Three quarks were necessary to construct a baryon,
such as a proton or neutron (or the higher resonances, such as the A, SZ, etc.),
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while a quark and an antiquark were necessary to assemble a meson, such as the
7r meson or the K meson:

Hadrons J Baryons=
Mesons

= gigjqk

= 4igi

(1.4)

Ironically, one problem of the quark model was that it was too successful. The
theory was able to make qualitative (and often quantitative) predictions far beyond
the range of its applicability. Yet the fractionally charged quarks themselves
were never discovered in any scattering experiment. Perhaps they were just a
mathematical artifice, reflecting a deeper physical reality that was still unknown.
Furthermore, since there was no quantum field theory of quarks, it was unknown
what dynamical force held them together. As a consequence, the model was
unable to explain why certain bound states of quarks (called "exotics") were not
found experimentally.

1.3 Weak Interactions

Equation (1.1), which describes the coupling constants of the four fundamental
forces, also reveals why quantum field theory failed to describe the weak inter-
actions. The coupling constant for the weak interactions has the dimensions of
inverse mass squared. Later, we will show that theories of this type are nonrenor-
malizable; that is, theories with coupling constants of negative dimension predict
infinite amplitudes for particle scattering.

Historically, the weak interactions were first experimentally observed when
strongly interacting particles decayed into lighter particles via a much weaker
force, such as the decay of the neutron into a proton, electron, and antineutrino:

n-->p+e-+v (1.5)

These light particles, such as the electron, its neutrino, the muon µ, etc., were
called leptons:

Leptons = e±, v, µ±, etc. (1.6)

Fermi, back in the 1930s, postulated the form of the action that could give
a reasonably adequate description of the lowest-order behavior of the weak
interactions. However, any attempt to calculate quantum corrections to the
Fermi theory floundered because the higher-order terms diverged. The theory
was nonrenormalizable because the coupling constant had negative dimension.
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Furthermore, it could be shown that the naive Fermi theory violated unitarity at
sufficiently large energies.

The mystery of the weak interactions deepened in 1956, when Lee and Yang14
theorized that. parity conservation, long thought to be one of the fundamental
principles of physics, was violated in the weak interactions. Their conjecture
was soon proved to be correct by the careful experimental work of Wu and also
Lederman and Garwin and their colleagues.'5.'6

Furthermore, more and more weakly interacting leptons were discovered over
the next few decades. The simple picture of the electron, neutrino, and muon was
shattered as the muon neutrino and the tau lepton were found experimentally. Thus,
there was the unexplained embarrassment of three exact copies or "generations"
of leptons, each generation acting like a Xerox copy of the previous one. (The
solution of this problem is still unknown.)

There were some modest proposals that went beyond the Fermi action, which
postulated the existence of a massive vector meson or W boson that mediated
the weak forces. Buoyed by the success of the Yukawa meson theory, physicists
postulated that a massive spin-one vector meson might be the carrier of the weak
force. However, the massive vector meson theory, although it was on the right
track, had problems because it was also nonrenormalizable. As a result, the mas-
sive vector meson theory was considered to be one of several phenomenological
possibilities, not a fundamental theory.

1.4 Gravitational Interaction

Ironically, although the gravitational interaction was the first of the four forces to
be investigated classically, it was the most difficult one to be quantized.

Using some general physical arguments, one could calculate the mass and spin
of the gravitational interaction. Since gravity was a long-range force, it should
be massless. Since gravity was always attractive, this meant that its spin must be
even. (Spin-one theories, such as electromagnetism, can be both attractive and
repulsive.) Since a spin-0 theory was not compatible with the known bending of
starlight around the sun, we were left with a spin-two theory. A spin-two theory
could also be coupled equally to all matter fields, which was consistent with the
equivalence principle. These heuristic arguments indicated that Einstein's theory
of general relativity should be the classical approximation to a quantum theory of
gravity.

The problem, however, was that quantum gravity, as seen from Eq. (1.1),

had a dimensionful coupling constant and hence was nonrenormalizable. This
coupling constant, in fact, was Newton's gravitational constant, the first important
universal physical constant to be isolated in physics. Ironically, the very success
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of Newton's early theory of gravitation, based on the constancy of Newton's
constant, proved to be fatal for a quantum theory of gravity.

Another fundamental problem with quantum gravity was that, according to
Eq. (1.1), the strength of the interaction was exceedingly weak, and hence very
difficult to measure. For example, it takes the entire planet earth to keep pieces
of paper resting on a tabletop, but it only takes a charged comb to negate gravity
and pick them up. Similarly, if an electron and proton were bound in a hydrogen
atom by the gravitational force, the radius of the atom would be roughly the size
of the known universe. Although gravitational forces were weaker by comparison
to the electromagnetic force by a factor of about 10-40, making it exceedingly
difficult to study, one could also show that a quantum theory of gravity had the
reverse problem, that its natural energy scale was 1019 Gev. Once gravity was
quantized, the energy scale at which the gravitational interaction became dominant
was set by Newton's constant GN. To see this, let r be the distance at which the
gravitational potential energy of a particle of mass M equals its rest energy, so
that GNM2/r = Mc2. Let r also be the Compton wavelength of this particle, so
that r =h/Mc. Eliminating M and solving for r, we find that r equals the Planck
length, 10-33 cm, or 1019 GeV:

[hGNC-3]12 = 1.61605(10) x 10-33 Cm

[hcGN'11/2 = 1.221047(79) x 1019GeV/C2 (1.7)

This is, of course, beyond the range of our instruments for the foreseeable future.
So physicists were faced with the double problem: The classical theory of gravity
was so weak that macroscopic experiments were difficult to perform in the lab-
oratory, but the quantum theory of gravity dominated subatomic reactions at the
incredible energy scale of 1019 GeV, which was far beyond the range of our largest
particle accelerators.

Yet another problem arose when one tried to push the theory of gravity to
its limits. Phenomenologically, Einstein's general relativity has proved to be
an exceptionally reliable tool over cosmological distances. However, when one
investigated the singularity at the center of a black hole or the instant of the Big
Bang, then the gravitational fields became singular, and the theory broke down.
One expected quantum corrections to dominate in those important regions of
space-time. However, without a quantum theory of gravity, it was impossible to
make any theoretical calculation in those interesting regions of space and time.

In summary, an enormous amount of information is summarized in Eq. (1.1).
Some of the fundamental reasons why the development of quantum field theory
was stalled in the 1950s are summarized in this chart.
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1.5 Gauge Revolution

In the 1950s and 1960s, there was a large mass of experimental data for the
strong and weak interactions that was patiently accumulated by many experimental
groups. However, most of it could not be explained theoretically. There were
significant strides taken experimentally, but progress in theory was, by contrast,
painfully slow.

In 1971, however, a dramatic discovery was made by G. 't Hooft,'7 then a
graduate student. He reinvestigated an old theory of Yang and Mills, which was
a generalization of the Maxwell theory of light, except that the symmetry group
was much larger. Building on earlier pioneering work by Veltman, Faddeev,
Higgs, and others, 't Hooft showed that Yang-Mills gauge theory, even when
its symmetry group was "spontaneously broken," was renormalizable. With this
important breakthrough, it now became possible to write down renormalizable
theories of the weak interactions, where the W bosons were represented as gauge
fields.

Within a matter of months, a flood of important papers came pouring out. An
earlier theory of Weinberg and Salam18,'9 of the weak interactions, which was a
gauge theory based on the symmetry group SU(2) ® U(1), was resurrected and
given serious analysis. The essential point, however, was that because gauge
theories were now known to be renormalizable, concrete numerical predictions
could be made from various gauge theories and then checked to see if they
reproduced the experimental data. If the predictions of gauge theory disagreed
with the experimental data, then one would have to abandon them, no matter how
elegant or aesthetically satisfying they were. Gauge theorists realized that the
ultimate judge of any theory was experiment.

Within several years, the agreement between experiment and the Weinberg-
Salam theory proved to be overwhelming. The data were sufficiently accurate to
rule out several competing models and verify the correctness of the Weinberg-
Salam model. The weak interactions went from a state of theoretical confusion to
one of relative clarity within a brief period of time. The experimental discovery
of the gauge bosons W and Z in 1983 predicted by Weinberg and Salam was
another important vindication of the theory.

The Weinberg-Salam model arranged the leptons in a simple manner. It
postulated that the (left-handed) leptons could be arranged according to SU(2)
doublets in three separate generations:

(1.8)
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The interactions between these leptons were generated by the intermediate
vector bosons:

Vector mesons : Wµ , Zµ (1.9)

(The remaining problem with the model is to find the Higgs bosons experimen-
tally, which are responsible for spontaneous symmetry breaking, or to determine
if they are composite particles.)

In the realm of the strong interactions, progress was also fairly rapid. The
gauge revolution made possible Quantum Chromodynamics (QCD), which quickly
became the leading candidate for a theory of the strong interactions. By postulat-
ing a new "color" SU(3) symmetry, the Yang-Mills theory now provided a glue
by which the quarks could be held together. [The SU(3) color symmetry should
not be confused with the earlier SU(3) symmetry of Gell-Mann, Ne'eman, and
Zweig, which is now called the "flavor" symmetry. Quarks thus have two indices
on them; one index a = u, d, s, c, t, b labels the flavor symmetry, while the other
index labels the color symmetry.]

The quarks in QCD are represented by:

U1 U2 U3

d1 d2 d3

S1 S2 S3 (1.10)

C1 C2 C3

where the 1, 2, 3 index labels the color symmetry. QCD gave a plausible explana-
tion for the mysterious experimental absence of the quarks. One could calculate
that the effective SU(3) color coupling constant became large at low energy, and
hence "confined" the quarks permanently into the known hadrons. If this picture
was correct, then the gluons condensed into a taffy-like substance that bound the
quarks together, creating a string-like object with quarks at either end. If one tried
to pull the quarks apart, the condensed gluons would resist their being separated.
If one pulled hard enough, then the string might break and another bound quark-
antiquark pair would be formed, so that a single quark cannot be isolated (similar
to the way that a magnet, when broken, simply forms two smaller magnets, and
not single monopoles).

The flip side of this was that one could also prove that the SU(3) color
coupling constant became small at large energies. This was called "asymptotic
freedom," which was discovered in gauge theories by Gross, Wilczek, Politzer,
and 't Hooft.20-22 At high energies, it could explain the curious fact that the quarks

acted as if they were described by a free theory. This was because the effective
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coupling constants decreased in size with rising energy, giving the appearance of
a free theory. This explained the fact that the quark model worked much better
than it was supposed to.

Gradually, a small industry developed around finding nonperturbative solu-
tions to QCD that could explain the confinement of quarks. On one hand, physicists
showed that two-dimensional "toy models" could reproduce many of the features
that were required of a quantum field theory of quarks, such as confinement and
asymptotic freedom. Many of these features followed from the exact solution of
these toy models. On the other hand, a compelling description of the four dimen-
sional theory could be achieved through Wilson's lattice gauge theory,23 which
gave qualitative nonperturbative information concerning QCD. In the absence of
analytic solutions to QCD, lattice gauge theories today provide the most promising
approach to the still-unsolved problem of quark confinement.

Soon, both the electro-weak and QCD models were spliced together to be-
come the Standard Model based on the gauge group SU(3) ® SU(2) ® U(1).
The Standard Model was more than just the sum of its parts. The leptons in
the Weinberg-Salam model were shown to possess "anomalies" that threatened
renormalizability. Fortunately, these potentially fatal anomalies precisely can-
celled against the anomalies coming from the quarks. In other words, the lepton
and quark sectors of the Standard Model cured each other's diseases, which was
a gratifying theoretical success for the Standard Model. As a result of this and
other theoretical and experimental successes, the Standard Model was rapidly
recognized to be a first-order approximation to the ultimate theory of particle
interactions.

The spectrum of the Standard Model for the left-handed fermions is schemati-
cally listed here, consisting of the neutrino v, the electron e, the "up" and "down"
quarks, which come in three "colors," labeled by the index i . This pattern is then
repeated for the other two generations (although the top quark has not yet been
discovered):

i

C V,Ce/ \d`/' \A \s` /' t / \b`/VA )
(1.11)

In the Standard Model, the forces between the leptons and quarks were me-
diated by the massive vector mesons for the weak interactions and the massless
gluons for the strong interactions:

Massive vector mesons : W±, Z

Massless gluons : Aµ
(1,12)

The weaknesses of the Standard Model, however, were also readily apparent.
No one saw the theory as a fundamental theory of matter and energy. Containing at
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least 19 arbitrary parameters in the theory, it was a far cry from the original dream
of physicists: a single unified theory with at most one undetermined coupling
constant.

1.6 Unification

In contrast to the 1950s, when physicists were flooded with experimental data
without a theoretical framework to understand them, the situation in the 1990s may
be the reverse; that is, the experimental data are all consistent with the Standard
Model. As a consequence, without important clues coming from experiment,
physicists have proposed theories beyond the Standard Model that cannot be
tested with the current level of technology. In fact, even the next generation
of particle accelerators may not be powerful enough to rule out many of the
theoretical models currently being studied. In other words, while experiment led
theory in the 1950s, in the 1990s theory may lead experiment.

At present, attempts to use quantum field theory to push beyond the Standard
Model have met with modest successes. Unfortunately, the experimental data at
very large energies are still absent, and this situation may persist into the near
future. However, enormous theoretical strides have been made that give us some
confidence that we are on the right track.

The next plausible step beyond the Standard Model may be the GUTs (Grand
Unified Theories), which are based on gauging a single Lie group, such as SU(5)
or SO(10) (Fig. 1.1).

Electricity

U(1)

Magnetism

Weak Force

Strong Force

Gravity

SU(2)®U(1)

SU(5), 0(10) ?

Superstrings?

Figure 1.1. This chart shows how the various forces of nature, once thought to be fun-
damentally distinct, have been unified over the past century, giving us the possibility of
unifying all known forces via quantum field theory.
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According to GUT theory, the energy scale at which the unification of all
three particle forces takes place is enormously large, about 1015 GeV, just below
the Planck energy. Near the instant of the Big Bang, where such energies were
found, the theory predicts that all three particle forces were unified by one GUT
symmetry. In this picture, as the universe rapidly cooled down, the original GUT
symmetry was broken down successively into the present-day symmetries of the
Standard Model. A typical breakdown scheme might be:

0(10) , SU(5) , SU(3) ® SU(2) ® U(1) , SU(3) ® U(1) (1.13)

Because quarks and electrons are now placed in the same multiplet, it also
means that quarks can decay into leptons, giving us the violation of baryon number
and the decay of the proton. So far, elaborate experimental searches for proton
decay have been disappointing. The experimental data, however, are good enough
to rule out minimal SU(5); there are, however, more complicated GUT theories
that can accomodate longer proton lifetimes.

Although GUT theories are a vast improvement over the Standard Model, they
are also beset with problems. First, they cannot explain the three generations of
particles that have been discovered. Instead, we must have three identical GUT
theories, one for each generation. Second, it still has many arbitrary parameters
(e.g., Higgs parameters) that cannot be explained from any simpler principle.
Third, the unification scale takes place at energies near the Planck scale, where
we expect gravitational effects to become large, yet gravity is not included in the
theory. Fourth, it postulates that there is a barren "desert" that extends for twelve
orders of magnitude, from the GUT scale down to the electro-weak scale. (The
critics claim that there is no precedent in physics for such an extrapolation over
such a large range of energy.) Fifth, there is the "hierarchy problem," meaning that
radiative corrections will mix the two energy scales together, ruining the entire
program.

To solve the last problem, physicists have studied quantum field theories that
can incorporate "supersymmetry," a new symmetry that puts fermions and bosons
into the same multiplet. Although not a single shred of experimental data supports
the existence of supersymmetry, it has opened the door to an entirely new kind of
quantum field theory that has remarkable renormalization properties and is still
fully compatible with its basic principles.

In a supersymmetric theory, once we set the energy scale of unification and
the energy scale of the low-energy interactions, we never have to "retune" the
parameters again. Renormalization effects do not mix the two energy scales.
However, one of the most intriguing properties of supersymmetry is that, once it
is made into a local symmetry, it necessarily incorporates quantum gravity into the
spectrum. Quantum gravity, instead of being an unpleasant, undesirable feature
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of quantum field theory, is necessarily an integral part of any theory with local
supersymmetry.

Historically, it was once thought that all successful quantum field theories
required renormalization. However, today supersymmetry gives us theories, like
the SO (4) super Yang-Mills theory and the superstring theory, which are finite to
all orders in perturbation theory, a truly remarkable achievement. For the first
time since its inception, it is now possible to write down quantum field theories
that require no renormalization whatsoever. This answers, in some sense, Dirac's
original criticism of his own creation.

Only time will tell if GUTS, supersymmetry, and the superstring theory can
give us a faithful description of the universe. In this book, our attitude is that they
are an exciting theoretical laboratory in which to probe the limits of quantum field
theory. And the fact that supersymmetric theories can improve and in some cases
solve the problem of ultraviolet divergences without renormalization is, by itself,
a feature of quantum field theory worthy of study.

Let us, therefore, now leave the historical setting of quantum field theory and
begin a discussion of how quantum field theory gives us a quantum description of
point particle systems with an infinite number of degrees of freedom. Although
the student may already be familiar with the foundations of classical mechanics
and the transition to the quantum theory, it will prove beneficial to review this
material from a slightly different point of view, that is, systems with an infinite
number of degrees of freedom. This will then set the stage for quantum field
theory.

1.7 Action Principle

Before we begin our discussion of field theory, for notational purposes it is cus-
tomary to choose units so that:

(1.14)

(We can always do this because the definition of c and h = h 127r depends on certain
conventions that grew historically in our understanding of nature. Imposing c = 1,
for example, means that seconds and centimeters are to be treated on the same
footing, such that exactly 299,792,458 meters is equivalent to 1 sec. Thus, the
second and the centimeter are to be treated as if they were expressions of the same
unit. Likewise, setting/I = 1 means that the erg x sec. is now dimensionless, so
the erg and the second are inverses of each other. This also means that the gram
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is inversely related to the centimeter. With these conventions, the only unit that
survives is the centimeter, or equivalently, the gram.)

In classical mechanics, there are two equivalent formulations, one based on
Newton's equations of motion, and the other based on the action principle, At
first, these two formalisms seem to have little in common. The first depends on
iterating infinitesimal changes sequentially along a particle's path. The second
depends on evaluating all possible paths between two points and selecting out
the one with the minimum action, One of the great achievements of classical
mechanics was the demonstration that the Newtonian equations of motion were
equivalent to minimizing the action over the set of all paths:

Equation of motion H Action principle (1.15)

However, when we generalize our results to the quantum realm, this equiva-
lence breaks down. The Heisenberg Uncertainty Principle forces us to introduce
probabilities and consider all possible paths taken by the particle, with the classical
path simply being the most likely. Quantum mechanically, we know that there
is a finite probability for a particle to deviate from its classical equation of mo-
tion. This deviation from the classical path is very small, on the scale determined
by Planck's constant. However, on the subatomic scale, this deviation becomes
the dominant aspect of a particle's motion. In the microcosm, motions that are
in fact forbidden classically determine the primary characteristics of the atom.
The stability of the atom, the emission and absorption spectrum, radioactive de-
cay, tunneling, etc. are all manifestations of quantum behavior that deviate from
Newton's classical equations of motion.

However, even though Newtonian mechanics fails within the subatomic realm,
it is possible to generalize the action principle to incorporate these quantum
probabilities. The action principle then becomes the only framework to calculate
the probability that a particle will deviate from its classical path. In other words,
the action principle is elevated into one of the foundations of the new mechanics.

To see how this takes place, let us first begin by describing the simplest of all
possible classical systems, the nonrelativistic point particle. In three dimensions,
we say that this particle has three degrees of freedom, each labeled by coordinates
q ` (t ). The motion of the particle is determined by the Lagrangian L (q ` , 4'), which

is a function of both the position and the velocity of the particle:

L = 2m(4`)2 - V(q) (1.16)

where V(q) is some potential in which the particle moves. Classically, the motion
of the particle is determined by minimizing the action, which is the integral of the
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Lagrangian:

rZ

S = J L(R`, ) dt (1.17)

We can derive the classical equations of motion by minimizing the action; that
is, the classical Newtonian path taken by the particle is the one in which the action
is a minimum:

SS = 0 (1.18)

To calculate the classical equations of motion, we make a small variation in the
path of the particle 8q`(t), keeping the endpoints fixed; that is, Sq` (ti) = Sq` (t2) =
0. To calculate SS, we must vary the Lagrangian with respect to both changes in
the position and the velocity:

SS=JrZdt (IL Sq`+sq 34) =0 (1.19)
bqi

We can integrate the last expression by parts:

SS = dt i SRf [Sq dt 34i ] + dt
d (qi)} =0

(1.20)

Since the variation vanishes at the endpoints of the integration, we can drop the
last term. Then the action is minimized if we demand that:

SL _ d SL
Sq' dt Sq'

(1.21)

which are called the Euler-Lagrange equations.
If we now insert the value of the Lagrangian into the Euler-Lagrange equations,

we find the classical equation of motion:

d2q` 8V(R)M

dt2
=- 8Ri (1.22)

which forms the basis of Newtonian mechanics.
Classically, we also know that there are two different formulations of Newto-

nian mechanics, the Lagrangian formulation, where the position q` and velocity
q` of a point particle are the fundamental variables, and the Hamiltonian formula-
tion, where we choose the position q` and the momentum p' to be the independent
variables.
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To make the transition from the Lagrangian to the Hamiltonian formulation of
classical mechanics, we first define the momentum as follows:

(1.23)

For our choice of the Lagrangian, we find that p` = m4`. The definition of the
Hamiltonian is then given by:

H(R`, p`) = p' 4' - L(q`, q`) (1.24)

With our choice of Lagrangian, we find that the Hamiltonian is given by:

H(R`, p') =
Zm

+ V (q) (1.25)

In the transition from the Lagrangian to the Hamiltonian system, we have
exchanged independent variables from q`, q` to q`, p`. To prove that H(q', p`) is
not a function of q', we can make the following variation:

pz8gz +Spiq, _
fiq Sq` - fiq

Sqr

q`Sp` -
SL
SLSq`
Sq'

Sp;SH
+

Sq;SH
Bpi 8q1

(1.26)

where we have used the definition of p` to eliminate the dependence of the
Hamiltonian on q' and have used the chain rule for the last step. By equating the
coefficients of the variations, we can make the following identification:

SH ; SH
q = Bp, -P = sq; (1.27)

where we have used the equations of motion.
In the Hamiltonian formalism, we can also calculate the time variation of any

field F in terms of the Hamiltonian:

8F SF SF
F =

at +Sq'R +Sp,P

8F SF SH SF SH
at + Sq' Sp' w Sq' (1.28)
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If we define the Poisson bracket as:

aA 8B 8A 8B
{A, B}PB =

8p 8q 8q 8p

then we can write the time variation of the field F as:

F = ai + {H, F}PB

(1.29)

(1.30)

At this point, we have derived the Newtonian equations of motion by mini-
mizing the action, reproducing the classical result. This is not new. However,
we will now make the transition to the quantum theory, which treats the action
as the fundamental object, incorporating both allowed and forbidden paths. The
Newtonian equations of motion then specify the most likely path, but certainly
not the only path. In the subatomic realm, in fact, the classically forbidden paths
may dominate over the classical one.

There are many ways in which to make the transition from classical mechanics
to quantum mechanics. (Perhaps the most profound and powerful is the path
integral method, which we present in Chapter 8.) Historically, however, it was
Dirac who noticed that the transition from classical to quantum mechanics can be
achieved by replacing the classical Poisson brackets with commutators:

{A, B}PB - [A, B] (1.31)

With this replacement, the Poisson brackets between canonical coordinates are
replaced by:

[p`, qk] = -ihSik

Quantum mechanics makes the replacement:

p` = -ih 88 i' E = ihR at

(1.32)

(1.33)

Because pi is now an operator, the Hamiltonian also becomes an operator, and we
can now satisfy Hamilton's equations by demanding that they vanish when acting
on some function ,(qi, t):

2 2h 8 +V(R) i=ip8/r

(1.34)
2m agi2 at

This is the Schrodinger wave equation, which is the starting point for calculating
the spectral lines of the hydrogen atom.
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1.8 From First to Second Quantization

This process, treating the coordinates q' and p' as quantized variables, is called
first quantization. However, the object of this book is to make the transition
to second quantization, where we quantize fields which have an infinite number
of degrees of freedom. The transition from quantum mechanics to quantum
field theory arises when we make the transition from three degrees of freedom,
described by x', to an infinite number of degrees of freedom, described by a field
O(x') and then apply quantization relations directly onto the fields.

Before we made the transition to quantum field theory in Chapter 3, let us
discuss how we describe classical field theory, that is, classical systems with an
infinite number of degrees of freedom. Let us consider a classical system, a series
of masses arranged in a line, each connected to the next via springs (Fig. 1.2).

The Lagrangian of the system then contains two terms, the potential energy
of each spring as well as the kinetic energy of the masses. The Lagrangian is
therefore given by:

N r l1

L = L2mr (±r)2 - 2k (Xr - xr+1 )2] (1.35)

Now let us assume that we have an infinite number of masses, each separated
by a distance E. In the limit c --> 0, the Lagrangian becomes:

L =
E (Mk2 (xr -

)2
r-IL

_1 2 E E

r

f dx 2 i. (x)2 - Y
())2]

(1.36)

Figure 1.2. The action describing a finite chain of springs, in the limit of an infinite number
of springs, becomes a theory with an infinite number of degrees of freedom.
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where we have taken the limit via:

E --> d x

m
µ

E

kE Y

X, --> /(x, t) (1.37)

where O(x, t) is the displacement of the particle located at position x and time t,
where µ is the mass density along the springs, and Y is the Young's modulus.

If we use the Euler-Lagrange equations to find the equations of motion, we
arrive at:

a20 k 820 O

ax2 Y at2
(1.38)

which is just the familiar wave equation for a one-dimensional system traveling
with velocity Yl µ.

On one hand, we have proved the rather intuitively obvious statement that
waves can propagate down a long, massive spring. On the other hand, we have
made the highly nontrivial transition from a system with a finite number of degrees
of freedom to one with an infinite number of degrees of freedom.

Now let us generalize our previous discussion of the Euler-Lagrange equations
to include classical field theories with an infinite number of degrees of freedom.
We begin with a Lagrangian that is a function of both the field O(x) as well as its
space-time derivatives 8 (x):

L (O(x), a,L0(x))

where:

a
Ca a )

µ at'ax'

(1.39)

(1.40)

The action is given by a four dimensional integral over a Lagrangian density Y:

L = fd3x(aQ)

S = f d4x y= f dt L (1.41)

integrated between i itial and final times.
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As before, we can retrieve the classical equations of motion by minimizing
the action:

We can integrate by parts, reversing the direction of the derivative:

SS = f d4x K W - aµSa 0) 30 + aµ
(1.43)

The last term vanishes at the endpoint of the integration; so we arrive at the
Euler-Lagrange equations of motion:

BY &
a'`Saµo = 30

The simplest example is given by the scalar field O(x) of a point particle:

= 2 (a'0aA0 - m202)

(1.44)

(1.45)

Inserting this into the equation of motion, we find the standard Klein-Gordon
equation:

aµaµo+m20 = 0 (1.46)

where:

aµ=(a -a)
at' ax'

(1.47)

One of the purposes of this book is to generalize the Klein-Gordon equation
by introducing higher spins and higher interactions. To do this, however, we must
first begin with a discussion of special relativity. It will turn out that invariance
under the Lorentz and Poincare group will provide the most important guide in
constructing higher and more sophisticated versions of quantum field theory.

1.9 Noether's Theorem

One of the achievements of this formalism is that we can use the symmetries of
the action to derive conservation principles. For example, in classical mechanics,
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if the Hamiltonian is time independent, then energy is conserved. Likewise, if
the Hamiltonian is translation invariant in three dimensions, then momentum is
conserved:

Time independence

Translation independence

Rotational independence

Energy conservation

Momentum conservation

Angular momentum conservation (1.48)

The precise mathematical formulation of this correspondence is given by
Noether's theorem, In general, an action may be invariant under either an in-
ternal, isospin symmetry transformation of the fields, or under some space-time
symmetry. We will first discuss the isospin symmetry, where the fields 0' vary
according to some small parameter SE'.

The action varies as:

B'zSS = fd4x (so 3001 + Sa

oaSaµoa

fd4x (aµ 300'+ aµsoa
Sago SaN,dJ

= fd4xa (8C8)(1.49)
where we have used the equations of motion and have converted the variation of
the action into the integral of a total derivative. This defines the current JµOI:

Jµ _ By sop
saµos 360,

(1.50)

If the action is invariant under this transformation, then we have established that
the current is conserved:

8JA, =0 (1.51)

From this conserved current, we can also establish a conserved charge, given by
the integral over the fourth component of the current:

d3xJ° (1.52)
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Now let us integrate the conservation equation:

i'0= fd3xaJ=fd3xaoJ+fd3xaiJ

fd3xJ°+fdSiJL.=-Qc+surfaceterm (1.53)

Let us assume that the fields appearing in the surface term vanish sufficiently
rapidly at infinity so that the last term can be neglected. Then:

__8Ju =0
i`

a dt
(1.54)

In summary, the symmetry of the action implies the conservation of a current
J,", which in turn implies a conservation principle:

Symmetry --> Current conservation --> Conservation principle (1.55)

Now let us investigate the second case, when the action is invariant under
the space-time symmetry of the Lorentz and Poincare groups. Lorentz symmetry
implies that we can combine familiar three-vectors, such as momentum and space,
into four-vectors. We introduce the space-time coordinate xµ as follows:

xµ = (x°, xi) = (t, x) (1.56)

where the time coordinate is defined as x° = t.
Similarly, the momentum three-vector p can be combined with energy to form

the four-vector:

pi` _ (p°, p`) = (E, p) (1.57)

We will henceforth use Greek symbols from the middle of the alphabet µ, v to
represent four-vectors, and Roman indices from the middle of the alphabet i, j, k
to represent space coordinates.

We will raise and lower indices by using the following metric gN,,, as follows:

Aµ = 9,,,,A° (1.58)

where:

1 0 0 0

0 -1 0 0

g'`° 0 0 -1 0

0 0 0 -1

(1.59)
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Now let us use this formalism to construct the current associated with making a
translation:

xµ --> xµ+aµ (1.60)

where aµ is a constant. a° represents time displacements, and a` represents space
displacements. We will now rederive the result from classical mechanics that
displacement in time (space) leads to the conservation of energy (momentum).

Under this displacement, a field O(x) transforms as O(x) --> O(x + a). For
small aµ, we can power expand the field in a power series in aµ. Then the change
in the field after a displacement is given by:

30 _ O(x +a) - 0(x) - O(x) +aµ8 (x) - O(x) = aµ8 (x) (1.61)

Therefore, if we make a translation sxµ = aµ, then the fields transform, after
making a Taylor expansion, as follows:

30 = a'`aµo

baN,o = au8u8 o (1.62)

The calculation of the current associated with translations proceeds a bit dif-
ferently from the isospin case. There is an additional term that one must take
into account, which is the variation of the Lagrangian itself under the space-time
symmetry. The variation of our Lagrangian is given by:

BY = aµ82' =
s3-9

9
30+

sa

3-9
baµO (1.63)

l"O

Substituting in the variation of the fields and using the equations of motion, we
find:

BY = a'`aAY

=
BYavavo+ BY

avavaOso sa'O

a v
8µ

s _-
8vo

+ BY
aµavo

saAO saµ

s` avo)avaµ GaAo
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Combining both terms under one derivative, we find:

aµ
LYSv

- S av0] av =0 (1.65)
L saµ

This then defines the energy-momentum tensor T:

Tµv
BY

= avo -Sv2'
SaµO

(1.66)

al TN v = 0 (1.67)

If we substitute the Klein-Gordon action into this expression, we find the energy-
momentum tensor for the scalar particle:

Tµv = aµoavo - gµv5' (1.68)

Using the equations of motion, we can explicitly check that this energy-momentum
tensor is conserved.

By integrating the energy-momentum tensor, we can generate conserved cur-
rents, as we saw earlier. As the name implies, the conserved charges corresponding
to the energy-momentum tensor give us energy and momentum conservation. Let
us define:

P'` = (E, P`) (1.69)

which combines the energy P° = E and the momentum P` into a single four-
vector. We can show that energy and momentum are both conserved by making
the following definition:

P/" = fdx(Tc)

dt
P'` = 0 (1.70)

The conservation of energy-momentum is therefore a consequence of the invari-
ance of the action under translations, which in turn corresponds to invariance
under time and space displacements. Thus, we now have derived the result from
classical Newtonian mechanics mentioned earlier in Eq. (1.48).

Next, let us generalize this discussion. We know from classical mechanics
that invariance of the action under rotations generates the conservation of angular
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momentum. Now, we would like to derive the Lorentz generalization of this result
from classical mechanics.

Rotations in three dimensions are described by:

8x` = a`Jx` (1.71)

where a`j is an anti-symmetric matrix describing the rotation (i.e., a`j = -a3`).
Let us now construct the generalization of this rotation, the current associated

with Lorentz transformations. We define how a four-vector xµ changes under a
Lorentz transformation:

Lorentz transformation : J 8xµ = Eµvxµ
(1.72)

BOW = EµvxvaAO(x)

where Eµv is an infinitesimal, antisymmetric constant matrix (i.e., e = -Ev'`).
Repeating the same steps with this new variation, we have:

BY =
BY 30+ BY

sagoso sago

aP

aP
(BY

Eµvxvaµ- (1.73)
sap

If we extract the coefficient of Eµv and put everything within the partial
derivative a p, we find:

e 8
sY

(aµ(pxv - avoxµ) - SPN'xv2+ 3PvxµY) = 0 (1.74)
Gapp

This gives us the conserved current:

,&P,/,'V =
TPvxµ - TPµxv

aPlgP,µv = 0 (1.75)

and the conserved charge:

M'`v = f d'x e,F`v

dt
M'`v = 0 (1.76)
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If we restrict our discussion to rotations in three dimensional space, then k ii =
0 corresponds to the conservation of angular momentum. If we take all the
components of this matrix, however, we find that Lorentz transformations are an
invariant of the action.

There is, however, a certain ambiguity in the definition of the energy-momen-
tum tensor. The energy-momentum tensor is not a measurable quantity, but the
integrated charges correspond to the physical energy and momentum, and hence
are measurable.

We can exploit this ambiguity and add to the energy-momentum tensor a term:

8xE''Av

where Ex° is antisymmetric in the first two indices:

Exµ° = -Eµxv

Because of this antisymmetry, this tensor satisfies trivially:

8,'8µE)'µ° = 0

So we can make the replacement:

(1.77)

(1.78)

(1.79)

Tµ° , Tµ° +BxExµ° (1.80)

This new energy-momentum tensor is conserved, like the previous one. We can
choose this tensor such that the new energy-momentum tensor is symmetric in µ
and v.

The addition of this extra tensor to the energy-momentum tensor does not
affect the energy and the momentum, which are measurable quantities. If we take
the integrated charge, we find that the contribution from E'µ° vanishes:

Pµ Pµ +
J

d3x8xEXOji

Pµ +
J

8; EiOµd3x

Pµ+J Ei LdS;
S

= Pµ (1.81)

Thus, the physical energy and momentum are not affected as long as this tensor
vanishes sufficiently rapidly at infinity.
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The purpose of adding this new term to the energy-momentum tensor is
that the original one was not necessarily symmetric. This is a problem, since
the conservation of angular momentum requires a symmetric energy-momentum
tensor. For example, if we take the divergence of -API", we find that it does not
vanish in general, but equals Tµ° - T. However, we can always choose EX
such that the energy-momentum tensor is symmetric, so angular momentum is
conserved.

Yet another reason for requiring a symmetric energy-momentum tensor is that
in general relativity, the gravitational field tensor, which is symmetric, couples to
the energy-momentum tensor. By the equivalence principle, the gravitational field
couples equally to all forms of matter via its energy-momentum content. Hence,
when we discuss general relativity in Chapter 19, we will need a symmetric
energy-momentum tensor.

In summary, in this chapter we have made the transition from a classical
system with a finite number of degrees of freedom to a classical field theory with
an infinite number of degrees of freedom. Instead of a one-particle, classical
description of a point particle in terms of coordinates, we now have a classical
formalism defined in terms of fields O(x).

In constructing field theories, we clearly see that the study of symmetries
plays a crucial role. In fact, over the past two decades, physicists have come to
the realization that symmetries are perhaps the most powerful tool that we have
in describing the physical universe. As a consequence, it will prove beneficial to
begin a more systematic discussion of symmetries and group theory. With this
foundation, many of the rather strange and seemingly arbitrary conventions of
quantum field theory begin to take on an elegant and powerful form.

Therefore, in the next chapter we will discuss various symmetries that have
been shown experimentally to describe the fundamental particles of nature. Then
in Chapter 3 we will begin a formal introduction to the quantum theory of systems
with an infinite number of degrees of freedom.

1.10 Exercises

1. Show that the Poisson brackets obey the Jacobi identity:

{A, {B, C}} + {B, {C, All + {C, {A, B}} = 0 (1.82)

2. A transformation from the coordinates p and q to the new set P = P(q, p, t)
and Q = Q(q, p, t) is called canonical if Hamilton's equations in Eq. (1.27)
are satisifed with the new variables when we introduce a new Hamiltonian
H(Q, P, t). Show that the Poisson brackets between P and Q are the same
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as those between p and q. Thus, the Poisson brackets of the coordinates are
preserved under a canonical transformation.

3. Show that Poisson's brackets of two arbitrary functions A and B are invariant
under a canonical transformation.

4. Since the action principle must be satisfied in the new coordinates, then
pq - H must be equal to P Q - H up to a total derivative, that is, up to some
arbitrary function F. Show that, without losing any generality, we can take
F to be one of four functions, given by: F1(q, Q, t), F2(q, P, t), F3(p, Q, t)
or F4(p, P, t).

5. If we choose F = F1(q, Q, t), then prove that p = 8F1/8q, P = -8F/8Q,
and if =H+F1.

6. What are the analogous relations for the other three F; functions?





Chapter 2

Symmetries and Group Theory

... although the symmetries are hidden from us, we can sense that
they are latent in nature, governing everything about us. That's the
most exciting idea I know: that nature is much simpler than it looks.
Nothing makes me more hopeful that our generation of human beings
may actually hold the key to the universe in our hands-that perhaps
in our lifetimes we may be able to tell why all of what we see in
this immense universe of galaxies and particles is logically inevitable.

-S. Weinberg

2.1 Elements of Group Theory

So far, we have only described the broad, general principles behind classical field
theory. In this chapter, we will study the physics behind specific models. We
must therefore impose extra constraints on our Lagrangian that come from group
theory. These groups, in turn, are extremely important because they describe the
symmetries of the subatomic particles found experimentally in nature. Then in
the next chapter, we will make the transition from classical field theory to the
quantum theory of fields.

The importance of symmetries is seen when we write down the theory of
radiation. When we analyze Maxwell fields, we find that they are necessarily
relativistic. Therefore, we can also say that that quantum field theory arises out of
the marriage of group theory (in particular the Lorentz and Poincare groups) and
quantum mechanics. Roughly speaking, we have:

I

Quantum field theory
Group theory

= jl

Quantum mechanics
(2.1)

In fact, once the group structure of a theory (including the specific represen-
tations) are fixed, we find that the S matrix is essentially unique, up to certain
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parameters specifying the interactions. More precisely, we will impose the fol-
lowing constraints in constructing a quantum field theory:

1. We demand that all fields transform as irreducible representations of the
Lorentz and Poincare groups and some isospin group.

2. We demand that the theory be unitary and the action be causal, renormalizable,
and an invariant under these groups.

As simple as these postulates are, they impose enormous constraints on the theory.
The first assumption will restrict the fields to be massive or massless fields of
spin 0, 1/2, 1, etc. and will fix their isotopic representations. However, this
constraint alone cannot determine the action, since there are invariant theories that
are noncausal or nonunitary. (For example, there are theories with three or higher
derivatives that satisfy the first condition. However, higher derivative theories
have "ghosts," or particles of negative norm that violate unitarity, and hence
must be ruled out.) The second condition, that the action obeys certain physical
properties, then fixes the action up to certain parameters and representations, such
as the various coupling constants found in the interaction.

Because of the power of group theory, we have chosen to begin our discussion
of field theory with a short introduction to representation theory. We will find
this detour to be immensely important; many of the curious "accidents" and
conventions that occur in field theory, which often seem contrived and artificial,
are actually byproducts of group theory.

There are three types of symmetries that will appear in this book.

1. Space-time symmetries include the Lorentz and Poincare groups. These
symmetries are noncompact, that is, the range of their parameters does not
contain the endpoints. For example, the velocity of a massive particle can
range from 0 to c, but cannot reach c.

2. Internal symmetries are ones that mix particles among each other, for example,
symmetries like SU(N) that mix N quarks among themselves. These internal
symmetries rotate fields and particles in an abstract, "isotopic space," in
contrast to real space-time. These groups are compact, that is, the range
of their parameters is finite and contains their endpoints. For example, the
rotation group is parametrized by angles that range between 0 and r or 27r.
These internal symmetries can be either global (i.e., independent of space-
time) or local, as in gauge theory, where the internal symmetry group varies
at each point in space and time.

3. Supersymmetry nontrivially combines both space-time and internal symme-
tries. Historically, it was thought that space-time and isotopic symmetries
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were distinct and could never be unified. "No-go theorems," in fact, were
given to prove the incompatibility of compact and noncompact groups. At-
tempts to write down a nontrivial union of these groups with finite-dimensional
unitary representations inevitably met with failure. Only recently has it be-
come possible to unify them nontrivially and incorporate them into quantum
field theories with supersymmetry, which manifest remarkable properties that
were previously thought impossible. For example, certain supersymmetric
theories are finite to all orders in perturbation theory, without the need for any
renormalization. (However, since elementary particles with supersymmetry
have yet to be discovered, we will only discuss this third class of symmetry
later in the book in Chapters 20 and 21.)

2.2 SO(2)

We say that a collection of elements gi form a group if they either obey or possess
the following:

1. Closure under a multiplication operation; that is, if gi and gj are members of
the group, then gi gj is also a member of the group.

2. Associativity under multiplication; that is,

gk)_(gi (2.2)

3. An identity element 1; that is, there exists an element 1 such that gi 1 = 1 gi =
gi.

4. An inverse; that is, every element gi has an element gi 1 such that gi gi-1 = 1.

There are many kinds of groups. A discrete group has a finite number of
elements, such as the group of rotations that leave a crystal invariant. An important
class of discrete groups are the parity inversion P, charge conjugation C, and
time-reversal symmetries T. At this point, however, we are more interested in the
continuous groups, such as the rotation and Lorentz group, which depend on a set
of continuous angles.

To illustrate some of these abstract concepts, it will prove useful to take the
simplest possible nontrivial example, O (2), or rotations in two dimensions. Even
the simplest example is surprisingly rich in content. Our goal is to construct the
irreducible representations of 0(2), but first we have to make a few definitions.
We know that if we rotate a sheet of paper, the length of any straight line on the
paper is constant. If (x, y) describe the coordinates of a point on a plane, then
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this means that, by the Pythagorean theorem, the following length is an invariant
under a rotation about the origin:

Invariant : x2 + y2 (2.3)

If we rotate the plane through angle 9, then the coordinates (x', y') of the same
point in the new system are given by:

coin0 cos0) (y

We will abbreviate this by:

`x = O`j(O)xj

(2.4)

(2.5)

where x 1 = x and x2 = y. (For the rotation group, it makes no difference whether
we place the index as a superscript, as in xi, or as a subscript, as in xi.)

For small angles, this can be reduced to:

8x = 9y; By = -Ox (2.6)

or simply:

8x` = OCijXj (2.7)

where Eij is antisymmetric and 612 = _621 = 1. These matrices form a group;
for example, we can write down the inverse of any rotation, given by 0 1(0)
O(-O):

O(O)O(-O) = 1 = (2.8)

We can also prove associativity, since matrix multiplication is associative.
The fact that these matrices preserve the invariant length places restrictions

on them. To find the nature of these restrictions, let us make a rotation on the
invariant distance:

x11x'1 = Oijxj Oikxk

= xj
1
IOijOiklxk

= xix' J

(2.9)
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that is, this is invariant if the 0 matrix is orthogonal;

Oij Oik = Sjk (2.10)

or, more symbolically:

OT10=1 (2.11)

To take the inverse of an orthogonal matrix, we simply take its transpose. The
unit matrix 1 is called the metric of the group.

The rotation group 0(2) is called the orthogonal group in two dimensions.
The orthogonal group 0(2), in fact, can be defined as the set of all real, two-
dimensional orthogonal matrices. Any orthogonal matrix can be written as the
exponential of a single antisymmetric matrix r:

l1 (9r)n0(9) = eet = E
00
n=0 .

where:

To see this, we note that the transpose of eat is a-et:

(2.12)

(2.13)

OT = (eet)T = e-o' = 0-1 (2.14)

Another way to prove this identity is simply to power expand the right-hand
side and sum the series. We then see that the Taylor expansion of the cosine and
sine functions re-emerge. After summing the series, we arrive at:

e0t=cos01+rsin9=
cos 0 sin 0

- sin0 cos0
(2.15)

All elements of 0(2) are parametrized by one angle B. We say that 0(2) is a
one-parameter group; that is, it has dimension 1.

Let us now take the determinant of both sides of the defining equation:

det (OOT) = det 0 det OT = (det 0)2 = 1 (2.16)

This means that the determinant of 0 is equal to f 1. If we take det O = 1, then
the resulting subgroup is called SO (2), or the special orthogonal matrices in two
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dimensions. The rotations that we have been studying up to now are members of
S O (2). However, there is also the curious subset where det 0 = -1. This subset
consists of elements of SO (2) times the matrix:

This last transformation corresponds to a parity transformation:

y -' -y

(2.17)

(2.18)

A parity transformation P takes a plane and maps it into its mirror image, and
hence it is a discrete, not continuous, transformation, such that P2 = 1.

An important property of groups is that they are uniquely specified by their
multiplication law. It is easy to show that these two dimensional matrices O'j can
be multiplied in succession as follows:

O`'(9)O'k(9F) = Oik(9 + 9') (2.19)

which simply corresponds to the intuitively obvious notion that if we rotate a
coordinate system by an angle 9 and then by an additional angle 9', then the net
effect is a rotation of 9 + 9'. In fact, any matrix D(9) (not necessarily orthogonal
or even 2 x 2 in size) that has this multiplication rule:

D(9)D(9') = D(9 + 9'); D(9) = D(9 + 27r) (2.20)

forms a representation of 0(2), because it has the same multiplication table.
For our purposes, we are primarily interested in the transformation properties

of fields. For example, we can calculate how a field ¢(x) transforms under
rotations. Let us introduce the operator:

L - ie`'x` ' = i(x182 - x281)- 21)(2
a Xj

Let us define:

U(9) - eie1

.

(2.22)

Then we define a scalar field as one that transforms under SO (2) as:

Scalar : U(9)¢(x)U-1(9) _ ¢(x') (2.23)
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(To prove this equation, we use the fact that:

eA B e-A = B + [A, B] + 2! [A, [A, B]] + 3! [A, [A, [A, B]]] + (2.24)

Then we reassemble these terms via a Taylor expansion to prove the transformation
law.)

We can also define a vector field ¢i(x), where the additional i index also
transforms under rotations:

Vector : U(9)0'(x)U-1(0) = Oli(-9)¢'(x') (2.25)

[For this relation to hold, Eq. (2.21) must contain an additional term that
rotates the vector index of the field.] Not surprisingly, we can now generalize
this formula to include the transformation property of the most arbitrary field.
Let OA (x) be an arbitrary field transforming under some representation of SO(2)
labeled by some index A. Then this field transforms as:

U(9)lpA(x)U-1(e) = JAB(_9)1pB(x1) (2.26)

where _-AB is some representation, either reducible or irreducible, of the group.

2.3 Representations of SO(2) and U (l)

One of the chief goals of this chapter is to find the irreducible representations of
these groups, so let us be more precise. If gi is a member of a group G, then the
object D(gi) is called a representation of G if it obeys:

D(g1)D(gi)= D(gigi) (2.27)

for all the elements in the group. In other words, D(gi) has the same multiplication
rules as the original group.

A representation is called reducible if D(gi) can be brought into block diagonal
form; for example, the following matrix is a reducible representation:

f D1(gi) 0 0

D(gi) = 0 Dz(gi) 0

0 0 D3 (gi )

(2.28)

where Di are smaller representations of the group. Intuitively, this means D(gi)
can be split up into smaller pieces, with each piece transforming under a smaller
representation of the same group.
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The principal goal of our approach is to find all irreducible representations
of the group in question. This is because the basic fields of physics transform
as irreducible representations of the Lorentz and Poincare groups. The complete
set of finite-dimensional representations of the orthogonal group comes in two
classes, the tensors and spinors. (For a special exception to this, see Exercise 10.)

One simple way of generating higher representations of 0(2) is simply to
multiply several vectors together. The product A` Bi, for example, transforms as
follows:

(A" BJ') = [OIII(9)O' i(9)] (A`B)) (2.29)

This matrix OIIi(9)Oi'i(9) forms a representation of SO(2). It has the same
multiplication rule as 0(2), but the space upon which it acts is 2 x 2 dimensional.
We call any object that transforms like the product of several vectors a tensor.

In general, a tensor Tiik under O(2) is nothing but an object that transforms
like the product of a series of ordinary vectors:

Tensor : (1')h1,l2, = Oi1,i1 Ol2, i2 ... Til,i2, (2.30)

The transformation of Tijk is identical to the transformation of the product
xixjxk . This product forms a representation of 0(2) because the following
matrix:

OII,i2...iN;J1,J2,...fN(e) = OI1,)!(9)QZ2,J2(9)... OIN,JN(9) (2.31)

has the same multiplication rule as SO (2).
The tensors that we can generate by taking products of vectors are, in general,

reducible; that is, within the collection of elements that compose the tensor, we
can find subsets that by themselves form representations of the group. By taking
appropriate symmetric and antisymmetric combinations of the indices, we can
extract irreducible representations (see Appendix).

A convenient method that we will use to create irreducible representations is
to use two tensors under 0(2) that are actually constants: 8' and Eii, where the
latter is the antisymmetric constant tensor and c 12 = -e21 = +1.

Although they do not appear to be genuine tensors, it is easy to prove that they
are. Let us hit them with the orthogonal matrix 0':

81 ] = O" O> > gii

Ei'i' = O''iOi'ie' (2.32)
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We instantly recognize the first equation: it is just the definition of an orthogonal
matrix, and so 8ij is an invariant tensor. The second equation, however, is more
difficult to see. Upon closer inspection, it is just the definition of the determinant of
the 0 matrix, which is equal to one for SO (2). Thus, both equations are satisfied
by construction. Because the Eij transforms like a tensor only if the determinant
of 0 is +1, we sometimes call it a pseudotensor. The pseudotensors pick up an
extra minus one when they are transformed under parity transformations.

Using these two constant tensors, for example, we can immediately contract the
tensor A1 B to form two scalar combinations: A`B1 and AZEiJBJ = A'B2-A2B1.

This process of symmetrizing and antisymmetrizing all possible tensor indices
to find the irreducible representations is also aided by the simple identities:

Eijekf = 8ikSji - S'lSik

Eijejk = -Sik (2.33)

Finally, we can show the equivalence between 0(2) and yet another formulation.
We can take a complex object u = a + ib, and say that it transforms as follows:

u' = U(B)u = e`Bu (2.34)

The matrix U(9) is called a unitary matrix, because:

Unitary matrix : U x Ut = 1 (2.35)

The set of all one-dimensional unitary matrices U(9) = eie defines a group called
U(1). Obviously, if we make two such transformations, we find:

eieeie' = eie+ie' (2.36)

We have the same multiplication law as 0(2), even though this construction is
based on a new space, the space of complex one-dimensional numbers. We thus
say that:

SO(2) ti U(1) (2.37)

This means that there is a correspondence between the two, even though they are
defined in two different spaces:

et(B) " eie (2.38)
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To see the correspondence between O(2) and U(1), let us consider two scalar
fields (P' and (p2 that transform infinitesimally under SO (2) as in Eq. (2.6):

S¢` = BE`J¢i (2.39)

which is just the usual transformation rule for small 9. Because SO (2) - U(1),
these two scalar fields can be combined into a single complex scalar field:

(p = ((p'+i(pz)

Then the infinitesimal variation of this field under U(l) is given by:

S¢ _ -i00

for small 9. Invariants under 0(2) or U(l) can be written as:

2.4 Representations of SO(3) and SU(2)

(2.40)

(2.41)

(2.42)

The previous group 0(2) was surprisingly rich in its representations. It was also
easy to analyze because all its elements commuted with each other. We call such
a group an Abelian group. Now, we will study non-Abelian groups, where the
elements do not necessarily commute with each other. We define 0(3) as the
group that leaves distances in three dimensions invariant:

Invariant : x2 + y2 + Z2 (2.43)

where x'l = O`jx1. Generalizing the previous steps for SO(2), we know that the
set of 3 x 3, real, and orthogonal matrices 0(3) leaves this quantity invariant. The
condition of orthogonality reduces the number of independent numbers down to
9 - 6 = 3 elements. Any member of O(3) can be written as the exponential of an
antisymmetric matrix:

3

O=exp iE91r` (2.44)

where r' has purely imaginary elements. There are only three independent anti-
symmetric 3 x 3 matrices, so we have the correct counting of independent degrees
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of freedom. Therefore O (3) is a three-parameter Lie group, parametrized by three
angles.

These three antisymmetric matrices r' can be explicitly written as:

0 0 0 0 0 -1

r1 = rx= -i 0 0 1 rz=ry= -i 0 0 0 (2.45)

0 -1 0 1 0 0

0 1 0

r3=rZ=-i -1 0 0 (2.46)

0 0 0

By inspection, this set of matrices can be succinctly represented by the fully
antisymmetric Eijk tensor as:

(rl)Jk = -iElJk (2.47)

where E123 = +1. These antisymmetric matrices, in turn, obey the following
properties:

fir`, ri] = ie`jkrk (2.48)

This is an example of a Lie algebra (not to be confused with the Lie group).
The constants Eiik appearing in the algebra are called the structure constants of
the algebra. A complete determination of the structure constants of any algebra
specifies the Lie algebra, and also the group itself.

For small angles 91, we can write the transformation law as:

8x' = eujk&kxj (2.49)

As before, we will introduce the operators:

L` = iCijkxj ak (2.50)

We can show that the commutation relations of L` satisfy those of SO (3). Let us
construct the operator:

U(0) = ete"t' (2.51)
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Then a scalar and a vector field, as before, transform as follows:

U(ek)/(x)U-1(ek) _ O(x')

U(ek)/'(x)U-1(ek) _ (O-1)ii(Bk)Oi(x') (2.52)

For higher tensor fields, we must be careful to select out only the irreducible
fields. The easiest way to decompose a reducible a tensor is to take various
symmetric and anti-symmetric combinations of the indices. Irreducible represen-
tations can be extracted by using the two constant tensors, BU and Eijk. In carrying
out complicated reductions, it is helpful to know:

Ei jkElmn

EijkEklm

= 8ilsjmskn - silsjnskm +8imsjnskl

_8im8jlskn +stn8flskm - 5in5jmskl

= silsjm - simsjl (2.53)

More generally, we can use the method of Young Tableaux described in the
Appendix to find more irreducible representations.

As in the case of 0(2), we can also find a relationship between 0(3) and a
unitary group. Consider the set of all unitary, 2 x 2 matrices with unit determinant.
These matrices form a group, called SU(2), which is called the special unitary
group in two dimensions. This matrix has 8 - 4 - 1 = 3 independent elements in
it. Any unitary matrix, in turn, can be written as the exponential of a Hermitian
matrix H, where H = Ht:

U = e`n (2.54)

Again, to prove this relation, simply take the Hermitian conjugate of both sides:
Ut = e-iHt = e-iH = U-1

Since an element of SU(2) can be parametrized by three numbers, the most
convenient set is to use the Hermitian Pauli spin matrices. Any element of SU(2)
can be written as:

U = e`B'Q' j2

where:

(2-55)

(2.56)
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where Qi satisfy the relationship:

U1 0'1
lEllk0' k

C2' 2]
_

2
(2.57)

We now have exactly the same algebra as SO (3) as in Eq. (2.48). Therefore, we
can say:

SO(3) ti SU(2) (2.58)

To make this correspondence more precise, we will expand the exponential and
then recollect terms, giving us:

e`o'0'/2 = cos(9/2) + i(vknk) sin(9/2) (2.59)

where Bi = n' O and (ni )2 = 1. The correspondence is then given by:

eir,01 H eiaJBJ/2
(2.60)

where the left-hand side is a real, 3 x 3 orthogonal matrix, while the right-hand
size is a complex, 2 x 2 unitary matrix. (The isomorphism is only local, i.e.,
within a small neighborhood of each of the parameters. In general, the mapping is
actually one-to-two, and not one-to-one.) Even though these two elements exist
in different spaces, they have the same multiplication law. This means that there
should also be a direct way in which vectors (x, y, z) can be represented in terms
of these spinors. To see the precise relationship, let us define:

h(x) = Q.x
z x - iy

= )
x+iy z J

Then the SU(2) transformation:

h'=UhU-'

is equivalent to the SO(3) transformation:

X =0-X

(2.61)

(2.62)

(2.63)
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2.5 Representations of SO (N)

By now, the generalization to O(N) should be straightforward. (The represen-
tations of SU(N), which are important when we discuss the quark model, are
discussed in the Appendix.)

The essential feature of a rotation in N dimensions is that it preserves distances.
Specifically, the distance from the origin to the point x' , by the Pythagorean
Theorem, is given by (7)2, Therefore, x`x' is an invariant, where an N-
dimensional rotation is defined by: x' = O`ixi.

The number of independent elements in each member of O(N) is N2 minus
the number of constraints arising from the orthogonality condition:

-1 N(N-1) (2.64)N2- 1N(N+1)=2

This is exactly the number of independent antisymmetric, N x N matrices, that is,
we can parametrize the independent components within O (N) by either orthogonal
matrices or by exponentiating antisymmetric ones, (i.e., 0 = eA).

Any orthogonal matrix can thereby be parametrized as follows:

N(N-1)/2

O = exp i o'r`
i=1

(2.65)

where r` are linearly independent, antisymmetric matrices with purely imaginary
elements. They are called the generators of the group, and B` are the rotation
angles or the parameters of the group.

Finding representations of O (N) is complicated by the fact that the multiplica-
tion table for the parameters of O(N) are quite complicated. However, we know
from the Baker-Campbell-Hausdorff theorem that:

eAeB = eA+B+(1/2)[A,B7+... (2.66)

where the ellipsis represent multiple commutators of A and B. If eA and eB are
close together, then these elements form a group as long as the commutators of A
and B form an algebra.

If we take the commutator of two antisymmetric matrices, then it is easy to
see that we get another antisymmetric matrix. This means that the algebra created
by commuting all antisymmetric matrices is a closed one, We will represent the
algebra as follows:

[r`, r f] = if ifkrk (2.67)
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As before, we say that the f'jk are the structure constants of the group. (It
is customary to insert an i in the definition of r, so that an i appears in the
commutator.)

For arbitrary N, it is possible to find an exact form for the structure constants.
Let us define the generator of 0 (N) as:

(M")ab = -i(SaSb - Sa8,) (2.68)

Since the matrix is antisymmetric in i, j, there are N(N - 1)/2 such matrices,
which is the correct number of parameters for O(N). The indices a, b denote
the various matrix entries of the generator. If we commute these matrices, the
calculation is rather easy because it reduces to contracting over a series of delta
functions:

[M1j Ml'I = i /_Si1 Mom + S'1 M1m + SimM)1 - Smj Mu)l (2,69)

O(N) on the fields, let us define the operator.To define the action of S

L`i - i(x'aj -xia') (2.70)

It is easy to check that L'j satisfies the commutation relations of SO(N). Now
construct the operator:

U(9'j) = e'e"t" (2,71)

where B'j is antisymmetric. The structure constants of the theory f'jk can also be
thought of as a representation of the algebra If we define:

(ti)jk _ fijk (2,72)

then r' as written as a function of the structure constants also forms a representation
of the generators of O (N). We call this the adjoint representation. This also means
that the structure constant f'jk is a constant tensor, just like 81j,

For our purposes, we will often be interested in how fields transform under
some representation of O(N). Without specifying the exact representation, we
can always write:

S¢` = Wa (ra)ij 0i (2.73)

This simply means that we are letting 0' transform under some unspecified repre-
sentation of the generators of 0 (N), labeled by the indices i, j.
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Finally, one might wonder whether we can find more identities such as O (2) ti
U(1) and O(3) ti SU(2), With a little work, we can show:

S O(4) ti SU(2) ®SU(2); S O(6) - SU(4) (2,74)

One may then wonder whether there are higher sequences of identities between
O (N) and SU(M). Surprisingly, the answer is no. To see that any correspondence
would be nontrivial can be checked by simply calculating the number of parameters
in O(N) and SU(M), which are quite different. These "accidents" between Lie
groups only occur at low dimensionality and are the exception, rather than the
rule.

2.6 Spinors

In general, there are two major types of representations that occur repeatedly
throughout physics. The first, of course, are tensors, which transform like the
product of vectors. Irreducible representations are then found by taking their
symmetric and antisymmetric combinations.

However, one of the most important representations of O(N) are the spinor
representations. To explain the spinor representations, let us introduce N objects
r', which obey:

{r', ri} = 28'i

{A, B} = AB + BA (2.75)

where the brackets represent an anticommutator rather than a commutator. This
is called a Clifford algebra. Then we can construct the spinor representation of
the generators of SO (N) as follows:

Spinor representation : M`J =
4

[P, P ] (2.76)

By inserting this value of M'' into the definition of the algebra of O (N), it satisfies
the commutation relations of Eq. (2.69) and hence gives us a new representation
of the group.

In general, we can find a spinorial matrix representation of O (N) (for N even)
that is 2N12 dimensional and complex. The simplest spinor representation of O (4),
we will see, gives us the compact version of the celebrated Dirac matrices. For the
odd orthogonal groups 0(N + 1) (where N is even), we can construct the spinors
V from the spinors for the group 0 (N). We simply add a new element to the old
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set:

rN+1 = r1r2 rN (2.77)

rN+1 has the same anti-commutation relations as the other spinors, and hence we
can form the generators of O(N + 1) out of the spinors of O(N). As before, we
can construct the transformation properties of the V. Let us define:

U(9') = exp (i9'M`') (2.78)

where M'i is constructed out of the spinors V.
Then it is easy to show that r` satisfies the following identity:

U(9`J)rkU-1(e`') = (O-1)kl(9ii)rl (2.79)

which proves that r` transforms as a vector.
Finally, we should also mention that this spinorial representation of the group

O(N) is reducible. For example, we could have constructed two projection
operators:

PR
1 + rN+1

2

1-rN 1
PL = 2 + (2.80)

which satisfy the usual properties of projection operators:

PLz =

Pz
R =

PR PL =

PL

PR

0

PL + PR = 1 (2.81)

With these two projection operators, the group splits into two self-contained pieces.
(When we generalize this construction to the Lorentz group, these will be called
the "left-handed" and "right-handed" Weyl representations. They will allow us to
describe neutrino fields.)
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2.7 Lorentz Group

Now that we have completed our brief, warm-up discussion of some compact Lie
groups, let us tackle the main problem of this chapter, finding the representations
of the noncompact Lorentz and Poincare groups.

We define the Lorentz group as the set of all 4 x 4 real matrices that leave the
following invariant:

Invariant : sz = c2t2 - xix` _ (x°)2 - (42 = xµg,,vxv (2.82)

The minus signs, of course, distinguish this from the group 0 (4).
A Lorentz transformation can be parametrized by:

x'µ = Aµvxv (2.83)

Inserting this transformation into the invariant, we find that the A matrices must
satisfy:

gµv = ApµgPaAav

(2.84)

which can be written symbolically as g = ATgA. Comparing this with Eq. (2.11),
we say that gN,,, is the metric of the Lorentz group. If the signs within the metric
gN,,, were all the same sign, then the group would be 0(4). To remind ourselves
that the signs alternate, we call the Lorentz group 0(3, 1):

Lorentz group : 0(3, 1) (2.85)

where the comma separates the positive from the negative signs within the metric.
In general, an orthogonal group that preserves a metric with M indices of one sign
and N indices of another sign is denoted 0(M, N).

The minus signs in the metric create an important difference between 0(4)
and the Lorentz group: The invariant distance s2 can be negative or positive,
while the invariant distance for 0(4) was always positive. This means that the
xN, plane splits up into distinct regions that cannot be connected by a Lorentz
transformation. If x and y are two position vectors, then these regions can be
labeled by the value of the invariant distance s2:

(x - y)2 > 0 : time-like

(x - y)2 = 0 : light-like

(x - y)2 < 0 : space-like (2.86)
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Excluding this crucial difference, the representations of the Lorentz group, for the
most part, bear a striking resemblance with those of O (4). For example, as before,
we can introduce the operator Lv in order to define the action of the Lorentz
group on fields:

Lµv = xµpv - xvpv = i(xN'av - xvaµ) (2.87)

where pµ = i aN,. As before, we can show that this generates the algebra of the
Lorentz group:

[Lµv LP"] = igVPLµ° - igLPLva - igvoLLP + igµ°LvP (2.88)

Let us also define:

U(A) = exp (ieµvLµ) (2.89)

where, infinitesimally, we have:

Aµv = gµv + El"v + .. . (2.90)

Then the action of the Lorentz group on a vector field lpµ can be expressed as:

Vector : U(A)¢1(x)U-1(A) = (A-1)µv¢v(x') (2.91)

(where U(A) contains an additional piece which rotates the vector index of lpµ).
Let us parametrize the Av of a Lorentz transformation as follows:

x+vt
1 - v2/c2

t +Vx/C2
Y'=Y; z'=z; t'= (2.92)

1 v2/c2

We can make several observations about this transformation from a group
point of view. First, the velocity v is a parameter of this group. Since the velocity
vanes as 0 < v < c, where v is strictly less than the speed of light c, we say
the Lorentz group is noncompact; that is, the range of the parameter v does not
include the endpoint c. This stands in contrast to the group O(N), where the
parameters have finite range, include the endpoints, and are hence compact.

We say that the three components of velocity vx, vy, vZ are the parameters of
Lorentz boosts. If we make the standard replacement:

_ 1

1 -
V2/C2 = cosh0, ,ay = sinho; fi = v/c (2.93)
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then this transformation can be written as:

x'0 cosh 0 sinh 0 0 0 xo

x1 _ sink o cosh o 0 0 x l

x'2 0 0 1 0 x2

x'3 0 0 0 1 x3

(2.94)

Let us rewrite this in terms of Mµ°. Let us define:

J` _

K` _

1 Cijk Mjk2

Moi (2.95)

Written out explicitly, this becomes:

0 1 0 0

Kx - K'= -i 1 0 0 0

0 0 0 0

0 0 0 0

Then this Lorentz transformation can be written as:

(2.96)

e`Ks"s =cosh 0+isinhOKx (2.97)

Similarly, Lorentz boosts in the y and z direction are generated by exponenti-
ating KY and Kz:

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0Ky=K2=-i
1 0 0 0

KZ=K3=-i

0 0 0 0
(2.98)

0 0 0 0 1 0 0 0

Unfortunately, it is easily checked that a boost in the x direction, followed
by a boost in the y direction, does not generate another Lorentz boost. Thus, the
three K matrices by themselves do not generate a closed algebra. To complete the
algebra, we must introduce the generators of the ordinary rotation group 0(3) as
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well:

53

0 0 0 0\ / 0 0 0 0

Jx=J1=-i 0 0 0 0 =-iJy = J2
0 0 0 -1

0 0 0 1 0 0 0 0

0 0 -1 0 0 1 0 0

00 0 0

JZ=J3=-i 0 0 1 0

0 -1 0 0

0 0 0 0

The K and J matrices have the following commutation relations:

[K`,K']

[J`, J']

[J`, K']

-IEijk Jk

= IEijk Jk

= IEijkKk

(2.99)

(2.100)

(2.101)

Two pure Lorentz boosts generated by Ki taken in succession do not generate
a third boost, but must generate a rotation generated by P as well. (Physically,
this rotation, which arises after several Lorentz boosts, gives rise to the Thomas
precession effect.)

By taking linear combinations of these generators, we can show that the
Lorentz group can be split up into two pieces. We will exploit the fact that
SO (4) = SU(2) 0 SU(2), and that the algebra of the Lorentz group is similar to
the algebra of SO(4) (modulo minus signs coming from the metric). By taking
linear combinations of these generators, one can show that the algebra actually
splits into two pieces:

A' =
21 (J' +iK')

B' = 2 (J' - i K`) (2.102)

We then have [A1, Bj ] = 0, so the algebra has now split up into two distinct pieces,
each piece generating a separate SU(2).

If we change the sign of the metric so that we only have compact groups,
then we have just proved that the Lorentz group, for our purposes, can be written
as SU(2) ®SU(2). This means that irreducible representations (j) of SU(2),
where j = 0, 1/2, 1, 3/2, etc., can be used to construct representations of the
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Lorentz group, labeled by (j, j') (see Appendix). By simply pairing off two
representations of SU(2), we can construct all the representations of the Lorentz
group. (The representation is spinorial when j + j' is half-integral.) In this fashion,
we can construct both the tensor and spinor representations of the Lorentz group.

We should also remark that not all groups have spinorial representations.
For example, GL(N), the group of all real N x N matrices, does not have any
finite-dimensional spinorial representation. (This will have a great impact on the
description of electrons in general relativity in Chapter 19.)

2.8 Representations of the Poincare Group

Physically, we can generalize the Lorentz group by adding translations:

x'µ = aµ (2.103)

The Lorentz group with translations now becomes the Poincar group. Because
the Poincar group includes four translations in addition to three rotations and
three boosts, it is a 10-parameter group. In addition to the usual generator of the
Lorentz group, we must add the translation generator pN, = i 8N,.

The Poincar algebra is given by the usual Lorentz algebra, plus some new
relations:

[L""' PP] = -ig"'PPv +Ig"PN

[Pµ, P»] = 0 (2.104)

These relations mean that two translations commute, and that translations trans-
form as a genuine vector under the Lorentz group.

To find the irreducible representations of a Lie group, we will often use the
technique of simultaneously diagonalizing a subset of its generators. Let the rank
of a Lie group be the number of generators that simultaneously commute among
themselves. The rank and dimension of O(N) and SU(N) are given by:

Group Dimension Rank

SO(N) (N even) (1/2)N(N - 1) N/2

SO(N) (N odd) (1/2)N(N - 1) (N - 1)/2

SU(N) N2 - 1 N - 1

(2.105)
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For example, the group SO (3) has rank 1, so we can choose L3 to be the generator
to diagonalize. The group S O (4), as we saw, can be re-expressed in terms of
two SU(2) subgroups, so that there are two generators that commute among
themselves.

In addition, we have the Casimir operators of the group, that is, those operators
that commute with all the generators of the algebra. For the group O(3), we know,
for example, that the Casimir operator is the sum of the squares of the generators:
L. Therefore, we can simultaneously diagonalize L? and L3. The representations
of S 0 (3) then correspond to the eigenvalues of these two operators.

For the Poincare group, we first know that p2 = m2, or the mass squared, is
a Casimir operator. Under Lorentz transformations, it transforms as a genuine
scalar, and is hence invariant. Also, it is invariant under translations because all
translations commute.

To find the other Casimir operator, we introduce:

Wµ= 1Eµvp°PvLpQ

2
(2.106)

which is called the Pauli-Lubanski tensor (where c0123 = +1). Then the square of
this tensor is a Casimir operator as well:

Casimir operators = {P µ, Wµ} (2.107)

All physical states in quantum field theory can be labeled according to the eigen-
value of these two Casimir operators (since the Casimir commutes with all gen-
erators of the algebra). However, the physical significance of this new Casimir
operator is not immediately obvious. It cannot correspond to spin, since our intu-
itive notion of angular momentum, which we obtain from nonrelativistic quantum
mechanics, is, strictly speaking, lost once we boost all particles by a Lorentz
transformation. The usual spin operator is no longer a Casimir operator of the
Lorentz group.

To find the physical significance of Wµ, let us therefore to go the rest frame
of a massive particle: Pµ = (m, 0). Inserting this into the equation for the
Pauli-Lubanski tensor, we find:

Wi
= - 1

MEijkoJJk

_ -mL;

Wo = 0 (2.108)

where L; is just the usual rotation matrix in three dimensions. Thus, in the rest
frame of a massive particle, the Pauli-Lubanski tensor is just the spin generator.
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Its square is therefore the Casimir of S O (3), which we know yields the spin of the
particle:

W,2=m2s(s+1) (2.109)

where s is the spin eigenstate of the particle.
In the rest frame of the massive particle, we have 2s + 1 components for a

spin-s particle. This corresponds to a generalization of our intuitive understanding
of spin coming from nonrelativistic quantum mechanics.

However, this analysis is incomplete because we have not discussed massless
particles, where p2 = 0. In general, the counting rule for massive spinning states
breaks down for massless ones. For these particles, we have:

W, I P) = WAP LIP) = PPPN'I P) = 0 (2.110)

The only way to satisfy these three conditions is to have WN, and Pµ be proportional
to each other; that is, WN, I p) = h PN, I p) = 0 on a massless state Ip). This number
h is called the helicity, and describes the number of independent components of a
massless state.

Using the definition of WN, for a massless state, we can show that h can be
written as:

Because of the presence of cµ"P' in the definition of WN,, the Pauli-Lubanski
vector is actually a pseudovector. Under a parity transformation, the helicity h
therefore transforms into -h. This means that massless states have two helicity
states, corresponding to a state where W. is alignearallel to the momentum
vector and also aligned antiparallel to the momentum vector. Regardless of the
spin of a massless particle, the helicity can have only two values, h and -h. There
is thus an essential difference between massless and massive states in quantum
field theory.

It is quite remarkable that we can label all irreducible representations of the
Poincar group (and hence all the known fields in the universe) according to the
eigenvalues of these Casimir operators. A complete list is given as follows in
terms of the mass m, spins, and helicity h:

jm, s), s = 0, 1/2, 1, 3/2,

jh), h = ±s

s continuous

tachyon

(2.112)
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In nature, the physical spectrum of states seems to be realized only for the first
two categories with P° > 0. The other states, which have continuous spins or
tachyons, have not been seen in nature.

2.9 Master Groups and Supersymmetry

Although we have studied the representations of 0(3, 1) by following our dis-
cussion of the representations of 0(4), the two groups are actually profoundly
different. One nontrivial consequence of the difference between O(4) and O(3, 1)
is summarized by the following:

No-Go Theorem: There are no finite-dimensional unitary representations of non-
compact Lie groups. Any nontrivial union of the Poincare and an internal group
yields an S matrix which is equal to 1.

This theorem has caused a certain amount of confusion in the literature. In the
1960s, after the success of the SU(3) description of quarks, attempts were made to
construct Master Groups that could nontrivially combine both the Poincar group
and the "internal" group SU(3):

Master group D P 0 SU(3) (2.113)

In this way, it was hoped to give a unified description of particle physics in terms
of group theory. There was intense interest in groups like SU(6, 6) or U(12)
that combined both the internal and space-time groups. Only later was the no-go
theorem discovered, which seemed to doom all these ambitious efforts. Because
of the no-go theorem, unitary representations of the particles were necessarily
infinite dimensional: These groups possessed nonphysical properties, such as an
infinite number of particles in each irreducible representation, or a continuous
spectrum of masses for each irreducible representation. As a consequence, after
a period of brief enthusiasm, the no-go theorem doomed all these naive efforts to
build a Master Group for all particle interactions.

Years later, however, it was discovered that there was a loophole in the no-go
theorem. It was possible to evade this no-go theorem (the most comprehen-
sive version being the Coleman-Mandula theorem) because it made an implicit
assumption: that the parameters Bi of the Master Group were all c numbers.
However, if the Bi could be anticommuting, then the no-go theorem could be
evaded.

This leads us to the super groups, and eventually to the superstring, which
have revived efforts to build Master Groups containing all known particle inter-
actions, including gravity. Although supersymmetry holds the promise of being a
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fundamental symmetry of physics, we will study these theories not because they
have any immediate application to particle physics, but because they provide a
fascinating laboratory in which one can probe the limits of quantum field theory.

In summary, the essential point is that quantum field theory grew out of the
marriage between quantum mechanics and group theory, in particular the Lorentz
and Poincard group. In fact, it is one of the axioms of quantum field theory that
the fundamental fields of physics transform as irreducible representations of these
groups. Thus, a study of group theory goes to the heart of quantum field theory.
We will find that the results of this chapter will be used throughout this book.

2.10 Exercises

1. By a direct calculation, show that M`j given in Eq. (2.68) and the spinor
representation given in Eq. (2.76) do, in fact, satisfy the commutation relations
of the Lorentz algebra in Eq. (2.88) if we use the Lorentz metric instead of
Kronecker delta functions.

2. Prove that, under a proper orthochronous Lorentz transformation (see Ap-
pendix for a definition), the sign of the time t variable (if we are in the
forward light cone) does not change. Thus, the sign oft is an invariant in the
forward light cone, and we cannot gourds in time by using rotations
and proper orthochronous Lorentz boosts.

3. Show that the proper orthochronous Lorentz group is, in fact, a group. Do the
other branches of the Lorentz group also form a group?

4. For 0(3), show that the dimensions of the irreducible tensor representations
are all positive odd integers.

5. For 0(3), show that:

30303=7®5®5®3®3®3®1 (2.114)

(see Appendix).

6. Prove that:

eAF(B)e-A = F (eABe-A) (2.115)

where A and B are operators, and F is an arbitrary function. (Hint: use a
Taylor expansion of F.)

7. Prove Eq. (2.24).
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8. Prove that the Pauli-Lubanski vector is a genuine Casimir operator.

9. Prove that an element of a Clifford algebra 1'µ transforms as a vector under
the Lorentz group; that is, verify Eq. (2.79).

10. For SO (2), show that the spin eigenvalue can be continuous. (Hint: examine
exp(ia9) under a complete rotation in 9 if a is fractional.)

11. Prove that the Lorentz group can be written as SL(2, C), the set of complex,
2 x 2 matrices with unit determinant. Show that this representation (as well as
the other representations we have discussed in this chapter) is not unitary, and
hence satisfies the no-go theorem. Unitarity, however, is required to satisfy
the conservation of probability. Does the nonunitarity of these representations
violate this important principle?

12. In three dimensions, using the contraction of two E`jk constant tensors into
Kronecker deltas in Eq. (2.53), prove that the curl of the curl of a vector A is
given by V2A - V(V A).

13. Prove that SU(4) is locally isomorphic to S O (6). (Hint: show the equivalence
of their Lie algebras.)

14. Prove that there are two constants, S`j and Eijklm , which transform as genuine
tensors under SO (N). To prove these constants are genuine tensors, act upon
them with O`j. Show that the tensor equation for S`j reduces to the definition
of an orthogonal group. Prove that Eijklm" satisfies:

Oitjt Oi2j2 ... OiNJNEJlj2...JN = A 1112... 1N

What is the constant A?

15. Prove that:

(2.116)

LA,; EµvpaLJ VLpa (2.117)

are Casimir operators for the Lorentz group (but are not Casimir operators for
the full Poincard group).

16. Re-express:

(2.118)

entirely in terms of delta functions for N = 4 and 5. (Hint: check that the
antisymmetry properties of the Eµ°"' tensor are satisfied for the product of
delta functions.)





Chapter 3

Spin-O and 2 Fields

It is more important to have beauty in one's equations than to have them
fit experiment... because the discrepancy may be due to minor features
that are not properly taken into account and that will get cleared up with
further developments of the theory .... It seems that if one is working
from the point of view of getting beauty in one's equations, and if one has
really a sound insight, one is on a sure line of progress.

-P.A.M. Dirac

3.1 Quantization Schemes

In the previous chapters, we presented the classical theory of fields and also the
symmetries they obey. In this chapter, we now make the transition to the quantum
theory of fields.

Symbolically, we may write:

lim Quantum mechanics = Quantum field theory (3.1)
N-.oo

where N is the number of degrees of freedom of the system. We will see that one
important consequence of-this transition is that quantum field theory describes
multiparticle states, while ordinary quantum mechanics is based on a single-
particle interpretation. We will find that second quantized systems are ideally
suited to describing relativistic physics, since relativity introduces pair creation
and annihilation and hence inevitably introduces multiparticle states.

In this chapter, we will develop the second quantization program for the
irreducible representations of the Lorentz group for fields with spin 0 and 2. We
stress, however, that a number of different types of quantization schemes have
been proposed over the decades, each with their own merits and drawbacks:
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1. The most direct method is the canonical quantization program, which we
will develop in this chapter. Canonical quantization closely mimics the de-
velopment of quantum mechanics; that is, time is singled out as a special
coordinate and manifest Lorentz invariance is sacrificed. The advantage of
canonical quantization is that it quantizes only physical modes. Unitarity of
the system is thus manifest. At the level of QED, the canonical quantization
method is not too difficult, but the canonical quantization of more complicated
theories, such as non-Abelian gauge theories, is often prohibitively tedious.

2. The Gupta-Bleuler or covariant quantization method will also be mentioned
in this chapter. Contrary to canonical quantization, it maintains full Lorentz
symmetry, which is a great advantage. The disadvantage of this approach is
that ghosts or unphysical states of negative norm are allowed to propagate
in the theory, and are eliminated only when we apply constraints to the state
vectors.

3. The path integral method is perhaps the most elegant and powerful of all
quantization programs. One advantage is that one can easily go back and
forth between many of the other quantization programs to see the relation-
ships between them. Although some of the conventions found in various
quantization programs may seem a bit bizarre or contrived, the path integral
approach is based on simple, intuitive principles that go to the very heart of
the assumptions of quantum theory. The disadvantage of the path integral
approach is that functional integration is a mathematically delicate operation
that may not even exist in Minkowski space.

4. The Becchi-Rouet-Stora-Tyupin (BRST) approach is one of the most con-
venient and practical covariant approaches used for gauge theories. Like the
Gupta-Bleuler quantization program, negative norm states or ghosts are al-
lowed to propagate and are eliminated by applying the BRST condition onto
the state vectors. All the information is contained in a single operator, making
this a very attractive formalism. The BRST approach can be easily expressed
in terms of path integrals.

5. Closely related to the BRST method is the Batalin-Vilkovisky (BV) quan-
tization program, which has proved powerful enough to quantize the most
complicated actions so far proposed, such as those found in string and mem-
brane theories. The formalism is rather cumbersome, but it remains the only
program that can quantize certain complex actions.

6. Stochastic quantization is yet another quantization program that preserves
gauge invariance. One postulates a fictitious fifth coordinate, such that the
physical system eventually settles down to the physical solution as the fifth
coordinate evolves.
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3.2 Klein-Gordon Scalar Field

Let us begin our discussion by quantizing the simplest possible relativistic field
theory, the free scalar field. The theory was proposed independently by six
different physicists. I-' The Lagrangian is given by:

2(aµ02 - 1m2q52
(3.2)

Historically, the quantization of the Klein-Gordon equation caused much
confusion. Schrodinger, even before he postulated his celebrated nonrelativistic
equation, considered this relativistic scalar equation but ultimately discarded it
because of problems with negative probability and negative energy states. In
any fully relativistic equation, we must obey the "mass-shell condition" pµ =
E2 - p2 = m2. This means that the energy is given by:

E=f,fp2+m2 (3.3)

The energy can be negative, which is quite disturbing. Even if we banish the
negative energy states by fiat, we find that interactions with other particles will
reduce the energy and create negative energy states. This means that all positive
energy states will eventually collapse into negative energy states, destabilizing
the entire theory. One can show that even if we prepare a wave packet with only
states of positive energy, interactions will inevitably introduce negative energy
states. We will see, however, that the solution of these problems with negative
probability and negative energy can be resolved once one quantizes the theory.

The canonical quantization program begins with fields 0 and their conju-
gate momentum fields 7r, which satisfy equal time commutation relations among
themselves. Then the time evolution of these quantized fields is governed by a
Hamiltonian. Thus, we closely mimic the dynamics found in ordinary quantum
mechanics. We begin by singling out time as a special coordinate and then defining
the canonical conjugate field to 0:

7r (X, t) c(X, t)

We can introduce the Hamiltonian as:

= 7r - Y = 2 [7L2 + (V(p)2 +m2(c2]

(3.4)

(3.5)
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Then the transition from classical mechanics to quantum field theory begins when
we postulate the commutation relations between the field and its conjugate mo-
mentum:

[c(x, t), r(Y, t)] = is3(x - Y) (3.6)

(The right-hand side is proportional to h, which we omit. This is the point
where the quantum principle begins to emerge from the classical theory.) All
other commutators (i.e., between Jr and itself, and 0 and itself) are set equal to
zero. [Although this expression looks non-relativistic, notice that xµ and yµ are
separated by a space-like distance, (x - y)2 < 0, which is preserved under a
Lorentz transformation.]

Much of what follows is a direct consequence of this commutation relation.
There are an infinite number of ways in which to satisfy this relationship, but
our strategy will be to find a specific Fourier representation of this commutation
relation in terms of plane waves. When these plane-wave solutions are quantized
in terms of harmonic oscillators, we will be able to construct the multiparticle
Hilbert space and also find a specific operator representation of the Lorentz group
in terms of oscillators.

We first define the quantity:

(3.7)

We want a decomposition of the scalar field where the energy k° is positive, and
where the Klein-Gordon equation is explicitly obeyed. In momentum space, the
operator 8µ + m2 becomes k2 - m2. Therefore, we choose:

q(x) _ (23/2 f d4 k S(k2 - m2)9(ko) (3.8)

where 9 is a step function [9(ko) _ +1 if ko > 0 and 9(ko) = 0 otherwise], and
where A(k) are operator-valued Fourier coefficients. It is now obvious that this
field satisfies the Klein-Gordon equation. If we hit this expression with (2+m2),
then this pulls down a factor of k2 - m2, which then cancels against the delta
function.

We can simplify this expression by integrating out dk° (which also breaks
manifest Lorentz covariance). To perform the integration, we need to re-express
the delta function. We note that a function f (x), which satisfies f (a) = 0, obeys
the relation:

S(f (x)) =
S(x - a)

(3.9)
If'(a)I
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for x near a. (To prove this relation, simply integrate both sides over x, and then
change variables. This generates a Jacobian, which explains the origin of f'.)

Since k2 = m2 has two roots, we find:

8(k2 - m2) =
8(k° - k2 + m2) + 8(k° + k2 + m2)

(3.10)
21k° 1 )

Putting this back into the integral, and using only the positive value of k°, we find:

dko
f d4k 8(k2 - m2)B(ko) = J d3k f 2ko 8 (ko - 'Vfk2 ++m2)

/'d3k
J 2wk' wk = k2 + m2 (3.11)

Now let us insert this expression back into the Fourier decomposition of O(x). We
now find:

q(x) _
d k [a(k)e-ikx +at(k)eikx] (3.12)f

3

(2,r)32wk

= fd3k [a(k)ek(x) + at(k)ekl (3.13)

7r(x) = fd3kiwk[_a(k)ek+at(k)efl (3.14)

where:

ek(x) = (3.15)

(27r)32wk

where A(k) = 2wka(k) and where k° appearing in k x is now equal to wk. We
can also invert these relations, solving for the Fourier modes a(k) in terms of the
original scalar field:

a(k) = i f d3 x ek(x) 8o c(x)

at(k) = -i f d3x ek(x) 8o O(x)

where:

(3.16)

A 8 B - AMB - (8A)B (3.17)
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Because the fields satisfy equal-time canonical commutation relations, the Fourier
modes must also satisfy commutation relations:

[a(k),at(k')] = 83(k - k') (3.18)

and all other commutators are zero. To prove that this commutation relation is
consistent with the original commutator, let us insert the Fourier expansion into
the equal-time commutator:

[.O(X, t), 7r (X', t)]
d3k iwk'd3k' a(k)e-ik]x

(27r)32wk (2,z)32wk
[

+

r d3k r d3k'

J
)3

J
)3 IO)k'

(27r 20)k (27r 2wk,

x 83(k - k')

d3k 3 1 eik (x x'> +
J 2(2,r)

= i83 (X - X') (3.19)

Thus, this is a consistent choice for the commutators. Now we can calculate the
Hamiltonian in terms of these Fourier modes:

H = 2 f d3x [,r2+aicaio +m2c2]

f d3k wk [a (k)a t (k) + a t (k)a (k)]2fd3kwk[at(k)a(k)+]

(3.20)

Similarly, we can calculate the momentum P:

P = -J 7rvcd3x

= 1 fd3kk[at(k)a(k)-1-a(k)at(k)]
2
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fd3kk[at(k)a(k)+] (3.21)

(We caution that both the energy and momentum are actually divergent because
of the factor 1 appearing in the infinite sum. We will clarify this important point
shortly.)

With these expressions, it is now easy to check that the operators P111 and Mµ°
generate translations and Lorentz rotations, as they should:

t[Pµ, 0] = aµO

i[Mµ O] _ (xµ8° - x°8µ)O (3.22)

If we exponentiate the generators of translations and Lorentz rotations, we can
calculate how the field ((x) transforms under the Poincar group. Let us define:

U(A, a) = exp (- iaµPA)

where Aµ = gµ + µ + . Then it is straightforward to show:

(3.23)

U(A, a)o(x)U-'(A, a) = O(Ax +a) (3.24)

This demonstrates that ((x) transforms as a scalar field under the Poincard group.
Now that we have successfully shown how to quantize the Klein-Gordon field,

we must now calculate the eigenstates of the Hamiltonian to find the spectrum of
states. Let us now define the "vacuum" state as follows:

a(k)I0) = 0 (3.25)

By convention, we call a(k) an "annihilation" operator. We define a one-particle
state via the "creation" operator as a Fock space:

at(k)I0) = 1k) (3.26)

The problem with this construction, however, is that the energy associated
with the vacuum state is formally infinite because of the presence of 1/2 in the
sum in Eq. (3.20). We will simply drop this infinite term, since infinite shifts
in the Hamiltonian cannot be measured. Dropping the zero point energy in the
expression for harmonic oscillators has a simple counterpart in x space. The zero-
point energy emerged when we commuted creation and annihilation operators past
each other. Dropping the zero-point energy is therefore equivalent to moving all
creation operators to the left and annihilation operators to the right This operation,
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in x space, can be accomplished by "normal ordering." Since the product of two or
more fields at the same point is formally divergent, we can remove this divergence
by the normal ordering operation, which corresponds to moving the part containing
the creation operators to the left and the annihilation operators to the right. If we
decompose 0 _ 0++0-, where - (+) represent the creation (annihilation) part of
an operator with negative (positive) frequency, then we define:

(3.27)

Then, by applying the normal ordering to the definition of the Hamiltonian, we can
simply drop the 1 appearing in Eq. (3.20). From now on, we assume that when
two fields are multiplied at the same point in space-time, they are automatically
normal ordered.

Once we have normal ordered the operators, we now have an explicitly positive
Hamiltonian. In this fashion, we have been able to handle the question of negative
energy states for the Klein-Gordon theory. (More subtleties concerning negative
energy states will be discussed when we analyze the Dirac equation.)

One essential point in introducing these creation and annihilation operators is
that we can write down the N-particle Fock space:

I ki, k2, ... , kv) = at(ki)at(k2) ... at(kv)IO) (3.28)

This is the chief distinguishing feature between first and second quantization. In
first quantization, we quantized the x, corresponding to a single particle. First
quantized systems were hence inherently based on single-particle dynamics. In
the second quantized formalism, by contrast, we quantize multiparticle states.
To count how many particles we have of a certain momentum, we introduce the
"number" operator:

N = fd3kat(k)a(k) (3.29)

The advantage of this number operator is that we can now calculate how many
particles there are of a certain momentum. For example, let In(k)) equal a state
consisting of n(k) identical particles with momentum k:

In(k)) =

at(k)n(k) 10)

n(k)!
(3.30)

It is easy to show [by commuting a(k) to the right, until they annihilate on the
vacuum] that:

NIn(k)) =n(k)In(k)) (3.31)
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that is, N simply counts the number of states there are at momentum k. Not sur-
prisingly, a multiparticle state, consisting of many particles of different momenta,
can be represented as a Fock space:

(at(ki))n(kr)

In(kl)n(k2) ... n(km)) _
n(ki)!

Io) (3.32)
i=

Then the number operator N acting on this multiparticle state just counts the
number of particles present:

(n(k)) In(kl)n(k2) n(km)) (3.33)

Finally, it is essential to notice that the norm of these multiparticle states is
positive. If we define (kJ - (0ja(k) and set (010) = 1, then the norm is given by
(klk') = +83(k - k'). The norm is positive because the appropriate sign appears
in the commutation relation, Eq. (3.18). If the sign of the commutator had been
reversed and the norm were negative, then we would have a negative norm state,
or "ghost" state, which would give us negative probabilities and would violate
unitarity. (For example, we would not be able to write the completeness statement
1 = En In) (n I which is used in unitarity arguments.) To preserve unitarity, it is
essential that a physical theory be totally free of ghost states (or that they cancel
completely). We will encounter this important question of ghosts repeatedly
throughout this book.

3.3 Charged Scalar Field

We can generalize our discussion of the Klein-Gordon field by postulating the
existence of several scalar fields. In particular, we can arrange two independent
scalar fields into a single complex field:

1

0= ;(01+ic2)

The action then becomes:

Y = a'O'a'`O - m2010

(3.34)

(3.35)

If we insert this decomposition into the action, then we find the sum of two
independent actions for 01 and 02.
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The quantization of this action proceeds as before by calculating the conjugate
field and postulating the canonical commutation relations. The conjugate field is
given by:

7r= ss =0t (3.36)

The commutation relations now read:

[O(X, t), 7r(Y, t)} = i83(X - y) (3.37)

We can always decompose this field in terms of its Fourier components:

3

-Pi(X) =
d k

(3.38)
(27r)32mk \ J

Then the canonical commutation relations can be satisfied if the Fourier compo-
nents obey the following commutation relations:

[a, (k), at (k')] = 83(k - k')Sij (3.39)

All other commutators vanish. We could also choose the decomposition:

1
a(k) _ [al(k) + ia2(k)] ; at(k) = l [ai (k) - ia2(k)]

b(k) = f [al(k) - ia2(k)l; bt(k) _ [at(k) + ia2(k)] (3.40)

v/2- 1

[a(k), at(k')l = [b(k), bt(k')l = 83(k - k') (3.41)

All other commutators are zero. Now let us construct the symmetries of the
action and the corresponding Noether currents. The action is symmetric under the
following transformation:

0 -+ e`a(p; (Pt . e-'e(Pt (3.42)

which generates a U(1) symmetry. Written out in components, we find, as in the
previous chapter, the following SO(2) transformation:

sin0 cos0 )(& (3.43)
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This symmetry generates a Noether current, which equals:

JL = i(f taµ(t, - iaµctc (3.44)

Now let us calculate the charge Q corresponding to this current in terms of
the quantized operators:

Q = fd3xi(t_tc)

= J d3k [at(k)a(k) - bt(k)b(k)]

= Na-Nb

where the number operator for the a and b oscillator is given by:

(3.45)

Na = fd3kat(k)a(k); Nb = fd3kbt(k)b(k) (3.46)

Historically, this conserved current caused a certain amount of confusion.
If J° is considered to be the probability density of the wave function, then it
can be negative, and hence negative probabilities creep into the theory. In fact,
Schrbdinger originally studied this equation as a candidate for the theory of the
electron but abandoned it because of these negative probabilities. As a conse-
quence, he later went on to write another equation that did not suffer from this
problem, the celebrated nonrelativistic Schrodinger equation.

However, in 1934 Pauli and Weisskopf' finally gave the correct quantum
interpretation of these negative probabilities.

First, because of the crucial minus sign appearing in front of the b oscillators.
we will find it convenient to redefine the current J, as the current corresponding
to the electric charge, rather than probability density, so that the a oscillators
correspond to a positively charged particle and the b oscillators correspond to
a negatively charged one. In this way, we can construct the quantum theory
of charged scalar particles, where the minus sign appearing in the current is a
desirable feature, rather than a fatal illness of the theory. In the next chapter, we
will show how to couple this theory to the Maxwell field and hence rigorously
show how this identification works.

Second, we will interpret the bt oscillator as the creation operator for a new
state of matter, antimatter. It was Dirac who originally grappled with these new
states found in any relativistic theory and deduced the fact that a new form of
matter, with opposite charge, must be given serious physical consideration. The
discovery of the antielectron gave graphic experimental proof of this conjecture.
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Third, we no longer have a simple, single-particle interpretation of the O(x),
which now contains both the matter and antimatter fields. Thus, we must abandon
the strict single-particle interpretation for 0 and reinterpret it as a field. We will
see this unusual feature emerging again when we discuss the Dirac equation.

3.4 Propagator Theory

Now that we have defined the canonical commutation relations among the particle
fields, we are interested in how these particles actually move in space-time. To
define a propagator, and also anticipate interactions, let us modify the Klein-
Gordon equation to include a source term J(x):

(8µ +m2)0(x) = J(x); a2 = 8µ8µ (3.47)

To solve this equation, we use the standard theory of Green's functions. We first
define a propagator that satisfies:

(aµ + m2)LF(X - Y) _ -84(X - Y) (3.48)

Then the solution of the interacting 0 field is given by:

OW = Oo(X) - f d4X /F(X - Y)J(Y) (3.49)

where 00(x) is any function that satisfies the Klein-Gordon equation without any
source term. If we hit both sides of this expression with (8µ + m2), then we find
that it satisfies the original Klein-Gordon equation in the presence of a source
term. As we know from the theory of Green's functions, the way to solve this
equation is to take the Fourier transform:

d4k -ik(s-Y)AF(x - Y)
= f (27r)4e

AF(k) (3.50)

If we hit both sides of this equation with (8µ + m2), then we can solve for A(k):

AF(k) = 1

k2 - m2
(3.51)

At this point, however, we realize that there is an ambiguity in this equation. The
integral over d4k cannot be performed on the real axis, because the denominator
diverges at kµ = m2. This same ambiguity, of course, occurs even in the classical
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Re k o

Figure 3.1. Contour integration for the Green's function. The contour on the left gives us
the nonrelativistic retarded Green's functions, while the contour on the right gives us the
Feynman prescription for a relativistic Green's function.

theory of wave equations, and is not specific to the Lorentz covariant theory. The
origin of this ambiguity lies not in the mathematics, but in the physics, in the fact
that we have yet to fix our boundary conditions.

For example, consider the Green's function for the Schrodinger equation:

(i at - Ho) Go(x - x) = 84(x - x) (3.52)

If we take the Fourier transform of this equation and solve for the Green's function,
we find:

Go(x - x') = f
d4p

1 e-`p.(x-X') (3.53)
(2)x)4 w - p2/2m

where pµ = (w, p). This expression also suffers from an ambiguity, because the
integration over w is divergent.

Let us take the convention that we integrate over the real w axis as in Figure 3.1,
so that we integrate above the singularity. This can be accomplished by inserting
a factor of ie into the denominator, replacing w - p2/2m with w - p2/2m + ie.
Then the w integration can be performed.

We simply convert the integration over the real axis into a contour integration
over a complex variable w. We are going to add the contour integral over the
upper half plane (which vanishes) such that:

Go(x-x) _ f d3p do) e-iw(r-r'>

(27r)3 j. (27t)w- p2/2m+ie

_ d3Pi erp cX x > rcnZl>ct-`'>B(t - t') (3.54)(27r)3
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where the 9 function has been written as:

1 00 e-tact-t'> do)
limB(t - t') -
E--o 27ri f 0)+ie

(3.55)

which equals 1 for t > t', and vanishes otherwise. (To prove this last relation,
extend the contour integral into a semicircle in the complex w plane, closing the
contour in the lower half plane when t > t'. Then the contour integral picks up
the pole at w = -iE.)

To see this a bit more explicitly, let us define:

e-iP'x

P(x) _ (203/2

Then the Green's function can be written as:

(3.56)

Go(x - x) = -i9(t - t')
J

d3 p OP(x)OP(x') (3.57)

In this way, the +ie insertion has selected out the retarded Green's function,
which obeys the usual concept of causality. Taking the -ie prescription would
have given us the advanced Green's function, which would violate causality.

Finally, taking the d3 p integration (which is simply a Gaussian integral), we
find the final result for the Green's function:

Go(x - x) = -i m
3/2

ex p
- x1I2

B(t - t') (3.58)(2i(_ t') p
l

2(t - t')

which is just the Green's function found in ordinary quantum mechanics.
Now that we have seen how various prescriptions for iE give us various

boundary conditions, let us apply this knowledge to the relativistic case and
choose the following, unorthodox prescription:

1AF(k) _
k2 - m2 + iE

(3.59)

To see how this i E prescription modifies the boundary conditions, we will find it
useful to decompose this as:

1 _ 1 1 1

G O

(3.60)



3.4. Propagator Theory 75

The integral over k° now picks up contributions from both terms. Performing the
integration as before, we find:

LF(X - X) = -i9(t - t)
d3k

e-ik-(s-X')

(2t )32wk

-i9(t' - t) d3kf (2t)32wk
3k

-i9(t - t) J (2
d

32wk
OP(X)OP(Xl)

3k
_001 - t)

(27r)

d
32tDkOp(X)*Op(X) (3.61)

We see the rather unusual feature of this prescription: positive energy solutions
are carried forward in time, but negative energy solutions are carried backwards
in time.

In classical physics, the usual solutions of the Maxwell theory give us retarded
and advanced waves, and we eliminate the advanced waves by a choice of bound-
ary conditions. However, in the quantum theory we are encountering a new type of
propagator that, classically, makes no sense, with negative energy solutions going
backwards in time. This propagator never appears in classical physics because it
is complex and is hence forbidden.

Quantum mechanically, negative energy solutions are an inherent problem
with any relativistic theory. Even if we ban them at the beginning, quantum
interactions will inevitably re-create them later. However, as we saw in the
previous section, these negative energy states can be reinterpreted. Feynman's
approach to this problem was to assume that these negative energy states, because
they are going backwards in time, appear as a new form of matter with positive
energy going forwards in time, antimatter. Although matter going backwards
in time seems to contradict causality, this poses no problem because one can
show that, experimentally, a system where matter is going backwards in time is
indistinguishable (if we reverse certain quantum numbers such as charge) from
antimatter going forwards in time. For example, an electron placed in an electric
field may move to the right; however, if it is moving backwards in time, it appears
to move to the left. However, this is indistinguishable experimentally from a
positively charged electron moving forwards in time to the left. In this way,
we can interpret this theory as one in which everything (matter plus antimatter)
has positive energy. (We will discuss this new reinterpretation further when we
analyze the Dirac theory.)

The previous expression for the Green's function was written in terms of plane
waves OP. However, we can replace the plane wave OP by the quantum field
O(X) if we take the vacuum expectation value of the product of fields. From the
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previous equation Eq. (3.61), we easily find:

iAF(x - x') = (OIT0(x)0(x')I0) (3.62)

where T is called the time-ordered operator, defined as:

TO(x)c(x') _
O(x)O(x') if t > t'
0(x')0(x) if t' > t

(3.63)

T makes sure that the operator with the latest time component always appears to
the left. This equation for LF is our most important result for propagators. It gives
us a bridge between the theory of propagators, in which scattering amplitudes are
written in terms of LF(x - x'), and the theory of operators, where everything is
written in terms of quantum field O(x). The previous expression will be crucial to
our discussion when we calculate the S matrix for QED.

Finally, we remark that our theory must obey the laws of causality. For our
purposes, we will define microscopic causality as the statement that information
cannot travel faster than the speed of light. For field theory, this means that
O(x) and 0(y) cannot interact with each other if they are separated by space-like
distances. Mathematically, this means that the commutator between these two
fields must vanish for space-like separations.

Repeating the earlier steps, we can show that this commutator equals:

[O(x), O(Y)} = W X - Y)
4

J (d )3
8(k2 - m2)E(ko)e-ik(=-y)

Jo(m t2 - r2) t > r
i 8

0 -r < t< r (3.64)
47rr 8r

- Jo(mt2-r2) t <-r

where 4E (k) equals +1(-1) for positive (negative) k, t = x° - y°, r = Ix - yl, and
J0 is the Bessel function. (To prove this, convert the integral to radial coordinates,
and then perform the k° and IkI integrations.)

With this explicit form for the commutator, we can easily show that, for
space-like separations, we have:

L(x - y) = 0 if (x - y)2 < 0 (3.65)

This shows that our construction obeys microscopic causality.
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3.5 Dirac Spinor Field

After Dirac considered the relativistic theory of radiation in 1927, he set out the
next year to construct the relativistic theory of electrons. One severe limitation
was the problem of negative probabilities. He started with the observation that the
nonrelativistic Schrodinger equation did not have negative probabilities because
it was linear in time, while the Klein-Gordon equation, being quadratic in time,
did have negative probabilities.

Therefore Dirac tried to find a wave equation that was linear in time but still
satisfied the relativistic mass-shell constraint:

PLPµ=E2_p2=m2 (3.66)

Dirac's original idea was to take the "square root" of the energy equation. In this
way, he stumbled onto the spinorial representation of the Lorentz group discussed
in Chapter 2. He began with a first-order equation:

i a* = (-iajV +, m) (3.67)

where a; and P are now constant matrices, not ordinary c numbers, which act on
a column matrix.
By squaring the operator in front of the * field, we want to recover the

mass-shell condition:

8z

8t2 =

(-V2
+ m2)Vi

This is only possible if we demand that the matrices satisfy:

(3.68)

{a;, ak} = 28ik

jai, P} = 0

a2
= p2 = (3.69)

To make the equations more symmetrical, we can then define y° = P and y` = 9a` .

Multiplying the wave equation by P, we then have the celebrated Dirac equation:

(i y"a,, - m)* = 0 (3.70)
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where the yµ matrices satisfy:

{y', yv} = 2g'`° (3.71)

It is no accident that such a relativistic construction is possible. After all, in
the previous chapter we studied spinor representations of O(N) in Section 2.6
by defining a Clifford algebra, which is precisely the algebra formed by the yµ.
Thus, what we are really constructing is the spin 1 representation of the Lorentz
group, that is, the spinors.

To calculate the behavior of this equation under the Lorentz group, let us define
how spinors transform under some representation S(A) of the Lorentz group:

*'(x') = S(A)+/i(x)

Then the Dirac equation transforms as follows:

[iS-1(A)y1LS(A)aµ -m}i/i = [iy'`(A)µav -m]* = 0

(3.72)

(3.73)

where we have multiplied the transformed Dirac equation by S-1(A) on the left,
and we have taken into account the transformed aµ = (A)µav. In order for the
equation to be Lorentz covariant, we must therefore have the following relation:

S(A)y'`S-1(A) _ (A-1)v yv (3.74)

which we first encountered in Section 2.6. To find an explicit representation for
S(A), let us introduce the following matrix:

i
Qµv = 2[Yµ, Yv] (3.75)

In Chapter 2, we saw that (i/4)[rN,, rv] are the generators of O(N) in the
spinor representation. Thus, the aN,v/2 are the generators of the Lorentz group in
this representation.

Thus, we can write a new Lorentz group generator that is the sum of the old
generator LN,v (which acts on the space-time coordinate) plus a new piece that
also generates the Lorentz group but in the spinor representation:

1
Mµv = Lµv + 2Qµv

The o,,v also obey the following relation:

(3.76)

[Yµ, or.a] = 2i(8' yf - S y.) (3.77)
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which shows that the Dirac matrices transform as vectors under the spinor repre-
sentation of the Lorentz group.

In terms of this new matrix, we can find an explicit representation of the S(A)
matrix:

S(A) = e-(tl4)Qµ (3.78)

Now that we know how spinors transform under the Lorentz group, we would like
next to construct invariants under the group. Let us take the Hermitian conjugate
of the Dirac equation:

*t (i y t" 4

a +M)=0 (3.79)

We will show shortly that there exists a representation of the Dirac matrices that
satisfies:

(Y°)t = y°

(Y`)t = -Y` (3.80)

where y` is anti-Hermitianand y° is Hermitian. This can also be written as
yµt = yy,. (It may be puzzling that we did not take a representation that was
completely Hermitian. However, as we mentioned earlier, there are no finite-
dimensional unitary representations of the Lorentz group. If a purely Hermitian
representation of the Dirac matrices could be found, then we could construct the
generators of the Lorentz group out of them that would be unitary, violating this
theorem. Thus, we are forced to take non-Hermitian representations.)

Now let us define:

*tYO (3.81)

If we hit the conjugated equation of motion with y°, we can replace the yt with
y matrices, leaving us with:

1i(iyµ 8 µ +m) = 0 (3.82)

Under a Lorentz transformation, this new field i obeys:

(x)Y°S(A)ty°

= >/i(X)S-1(X) (3.83)
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This is just what we need to form invariants and covariant tensors. For example,
notice that 1i * is an invariant under the Lorentz group:

'VWWW) _ (X)S-'(A)S(A)P = 1r(x)*(x) (3.84)

Similarly, 1 rY'L * is a genuine vector under the Lorentz group. We find:

iV (x')Y`*'(x') =
(x)S-'Y'S*

= (x)AF`vy r(x) (3.85)

where we have used the fact that:

S-ly'`S=Aµvyv (3.86)

which is nothing but the statement that the yµ transform as vectors under the
spinor representation of the Lorentz group, as we saw in Chapter 2. (To prove this
formula, take an infinitesimal Lorentz transformation. Then S-1y'`S becomes
proportional to the commutator between ax,, and yµ, which is gives just another
gamma matrix. If we then exponentiate this process for finite transformations, we
find the previous equation, as desired.)

In the same manner, it is also straightforward to show that 1//aµ"1// transforms
as a genuine antisymmetric second-rank tensor under the Lorentz group. To find
other Lorentz tensors that can be represented as bilinears in the spinors, let us
follow our discussion of Chapter 2 and introduce the matrix:

t
Y5 = Y5 = tY°Y'Y2y3 = _ 1 Eµvap.AYvYQyp (3.87)

where Eµvap = -Eµvap and E0123 = +1. Because y5 transforms like Eµvpa, it is a
pseudoscalar; that is, it changes sign under a parity transformation. Thus, y5

is a pseudoscalar.
In fact, the complete set of bilinears, their transformation properties, and the

number of elements within each tensor are given by:

Scalar : [1]

Vector : 'yµ,' [4]

Tensor : ijiaµv,/, [6] (3.88)

Pseudovector : fy5yµ,fr [4]

Pseudoscalar : 'y5,' [1]
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There is a total of 16 independent components in this table. We can show that the
following 16 matrices are linearly independent;

rA
t

=
ff
LI> yµ, Qµv, YSYµ> YS} (3.89)

where (rA)2 = ± 1. To show that this set of 16 matrices forms a complete set, let
us assume, for the moment, that a relation exists among them, so that:

TCArA =0
A

(3.90)

where CA are numbers. Then multiply this by re and take the trace. If rB = I,
we find that ci = 0. If rB I, then we use the fact that that there exists rc not
equal to unity such that rArB = rc if A B. Taking the trace, we find that
CB = 0. Since B was arbitrary, this means that all coefficients are zero; so these
16 matrices must be linearly independent

Because yµ transforms as a vector under the Lorentz group, the following
Lagrangian is invariant under the Lorentz group:

Y= i(iyµ8µ-m)* (3.91)

This, in turn, is the Lagrangian corresponding to the Dirac equation. Variations of
this equation by * or by 1i will generate the two versions of the Dirac equation.

Up to now, we have not said anything specific about the representation of the
Dirac matrices themselves. In fact, a considerable number of identities can be
derived for these matrices in four dimensions without ever mentioning a specific
representation, such as:

Yµ Yµ = 4

YPYAy, =

J' y y V
YP =

-2yµ

4gµv

YPYAyvYaYP =
-2yayvyµ (3.92)

Some trace operations can also be defined:

Tr(Y5Yµ) =

Tr(y yv) =

Tr(y yvy"Yf) =

Tr(Y5Yµjvybja) =

Trvµv =Tryµyvy5 =0

4gµv

4(gµvgpa - gµpgvo +gµagvP)

4iEµvpa 3.93)
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In particular, this means:

Tr (ci i ci) = 4 [(a b) (c d) - (a c) (b d) + (a - d) (b c)] (3.94)

where yf = a, y".
It is often convenient to find an explicit representation of the Dirac matrices.

The most common representation of these matrices is the Dirac representation:

° _
00 OI

I ; Y` _ of 0

)
(3.95)

0 oI I '

a'

v` 0

where v` are the familiar Pauli spin matrices. Then the spinor * is a complex-
valued field with four components describing a massive, spin 1 field.

Now let us try to decompose * (x) into plane waves in order to begin canonical
quantization. To do this, we need to find a set of independent basis spinors for , r .
We will make the obvious choice:

1 0 0 0

U1(0) = 0 u2(0) = 0 VIM = 1 V2(0) = 0

0 0 0 1

(3.96)
The trick is to act upon these spinors with S(A) in order to boost them up to
momentum p. The momentum-dependent spinors are given by:

ua(p) = S(A)ua(0)

va(p) = S(A)va(0) (3.97)

which can be shown to obey:

(Y p - m)u(p)

(y p+m)v(p)

u(p)(Y p - m)

v(p)(y p+m)

= 0
= 0
= 0

= 0 (3.98)

The Lorentz transformation matrix S(A) is not difficult to construct if we set
all rotations to zero, leaving us with only Lorentz boosts. Then the only generators
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we have are the K generators, which in turn are proportional to v`. Specifically,
we have:

/ cosh(0/2) a n sinh(0/2)
S(A)

6. n sinh(0/2) cosh(0/2) )

E+ mm 1

a
E

ff-P
E+m

1

where cosh(0/2) = [(E +m)/2m]1/2 and sinh((P/2) = [(E - m)/2m]1/2.

Applying S(A) to the independent spinor basis, we easily find:

1 0

+m
( r 0 E +m 1

993

I

P) _
u1 2m

u2(P) = 2m
).P- (

E+m

E+m

A

E+m

P-
E+m E+m

E E+m E+m +m E+m
v1(P) = 2m 1

v2(P) = 22mm
(3.100)

0

0 1

where p± = PX ± iPy
Because of the particular decomposition we have chosen, the u spinors corre-

spond to electrons with positive energy particles (moving forwards in time), while
the v spinors correspond to electrons with negative energy (moving backwards in
time).

Next, we would like to describe spinors of definite spin. In many experi-
ments, we can produce polarized beams of electrons; so it becomes important to
understand how to incorporate projection operators that can select definite spin.

This is not as simple as one might suspect, since the intuitive concept of spin is
rooted in our notion of the rotation group, which is only a subgroup of the Lorentz
group. Hence, the naive concept of spin and its eigenfunctions no longer applies
for boosted systems.

In the rest frame, however, we know that the spin of a system can be described
by a three-vector s that points in a certain direction; so we may introduce the
four-vector s ,, which, in its rest frame, reduces to sµ = (0, s). Then, by demanding
that this transform as a four-vector, we can boost this spin vector by a Lorentz
transformation. Since we define s2 = 1, this means that sµ = -1. In the rest frame,
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we have p, = (m, 0); so we also have p,,sµ = 0, which must also hold in any
boosted frame by Lorentz invariance. Thus, we now have two Lorentz-invariant
conditions on the spin four-vector:

sµ = -1
pµsµ = 0 (3.101)

Next, we would like to define a projection operator that selects out states of
definite spin. Again, we will define the Lorentz-invariant projection operator by
first examining the rest frame. At rest, we know that the operator a s serves as
an operator that determines the spin of a system:

a sv.(0) = -va(0) (3.102)

For a spin 1 system, the projection operator at rest can be written as:

P(S) - 1 ± 0 S
2

(3.103)

where the + refers to the u spinor, and the - refers to the v spinor. Our goal is to
write a boosted version of this expression. Let us define the projection operator:

P(s) _ 1+Y5
2

It is easy to show that, in the rest frame, this projection reduces to:

P(s)
0

0 1-a s

(3.104)

(3.105)

Therefore, this operator reduces to the previous one, so this is the desired expres-
sion. The new eigenfunctions now have a spin s associated with them: u(k, s).
They satisfy:

P(s)u(k,s) = u(k,s)

P(s)v(k,s) = v(k,s)

P(-s)u(k, s) = P(-s)v(k, s) = 0 (3.106)

These spinors are quite useful for practical calculations because they satisfy cer-
tain completeness relations. Any four-spinor can be written in terms of linear
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combinations of the four ua(0) and vfi(0) because they span the space of four-
spinors. If we boost these spinors with S(A), then ua(p) and vfi(p) span the space
of all four-spinors satisfying the Dirac equation.

Likewise, u,', (0)vfi(0), etc. have 16 independent elements, which in turn span
the entire space of 4 x 4 matrices. Thus, ua(p)vfi(p), etc. span the space of all
4 x 4 matrices that also satisfy the Dirac equation.

We first normalize our spinors with the following conventions:

u(p,s)u(p,s) = 1

v(p, s)v(p, s) = -1 (3.107)

With these normalizations, we can show that these spinors obey certain complete-
ness relations:

Eu.(p, s)ufi(p, s) - v.(p, s)Df(p, s) = So (3.108)
S

For the particular representation we have chosen, we find:

u.(P, s)uf(P> s)
(P(+m 1 +Y5

(3.109)_ (\
2m 2 J

and:

v.(P, s)vP(P, s) _ -
2m 2(m_p'1+y5

,il
up

If we sum over the helicity s, we have two projection operators:

[A+(P)]afi
+m

E u.(P, s)ufi(P, s) =
2m

is ).,

(3.110)

[A-(P)],,fi = - E va(P, s)vfi(P, s) = (_+m2m ) (3.111)
is UP

These projection operators satisfy:

At = At; A+A_ = 0; A++A_ = 1 (3.112)

Because of the completeness relations, A± has a simple interpretation: It projects
out the positive or negative energy solution.
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3.6 Quantizing the Spinor Field

So far, we have only discussed the classical theory. To second quantize the Dirac
field, we first calculate the momentum canonically conjugate to the spinor field:

7r(x)
8

) = i./it

Let us decompose the spinor field into its Fourier moments:

(3.113)

3

fi(x) = f s
d k [ba(k)ux(k)e-1kx +dt, (k)v«(k)eikx]

Y ko (2)31z
3

fi(x) = f d
k [bt,(k)ua(k)eikx+d.(k)v.(k)e-'kx]

4M- z

(3,114)

In terms of particles and antiparticles, this particular decomposition gives the
following physical interpretation:

b(p)u(p)e-`p'X Annihilates positive energy electron

dt(p)v(p)e+tpX Creates positive energy positron
(3.115)

(Having dt create a positive energy positron can be viewed as annihilating a
negative energy electron.)

Repeating the steps we took for the scalar particle, we invert these equations
and solve for the Fourier moments in terms of the fields themselves:

ba(k) = fd3xUi(x)Y0v/(x)

bt (k) = fd3xr(x)Y0U(x)

da(k) = fd3xiii(x)°v(x)

d.t (k) = fd3xV(x)°ifr(x) (3.116)

where:

Uk(X) =
m

Jko(2r)3''
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Vk(x) - k(2jr)3
v(k)e'k x (3.117)

Now let us insert the Fourier deco Ymposition back into the expression for the
Hamiltonian:

H = Jd3x(riii_2')

= f d3x (iy°aoV)

_ d3k ko [b,', (k)ba(k) - da(k)d,', (k)] (3.118)

Here we encounter a serious problem. We find that the energy of the Hamiltonian
can be negative. There is, however, an important way in which this minus sign
can be banished. Let us define the canonical equal-time commutation relations of
the fields and conjugate fields with anticonunutators, instead of commutators:

(x, t), * (y, t)} = 83(x - y)Sij (3.119)

In order to satisfy the canonical anticommutation relations, the Fourier moments
must themselves obey anticommutation relations given by:

{ba(k), bt,(k')} = Sa 83(k - k')

{da(k), dd,(k')} = Sa a 83(k - k') (3.120)

Now, if we normal order the Hamiltonian, we must also drop the infinite zero
point energy, and hence:

H = Jd3kko [bt(k)ba(k) + dt(k)da(k)]

P = fd3kk[b(k)ba(k)+dat(k)da(k)} (3.121)

Thus, the use of anticommutation relations and normal ordering nicely solves the
problem of the Hamiltonian with negative energy eigenvalues.

Furthermore, the dt operators can be interpreted as creation operators for
antimatter (or annihilation operators for negative energy electrons). In fact, this
was Dirac's original motivation for postulating antimatter in the first place. To see
how this interpretation of these new states emerges, we first notice that the Dirac
Lagrangian is invariant under:

* e`n*; r - e-`n (3.122)
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Therefore, there should be a conserved current associated with this symmetry. A
direct application of Noether's theorem yields:

J"=>/iy fr, 8µJ"=O (3.123)

which is conserved, if we use the Dirac equation.
Classically, the conserved charge is positive definite since it is proportional

to *t*. This was, in fact, an improvement over the classical Klein-Gordon
equation, where the charge could be negative. However, once we quantize the
system, the Dirac charge can also be negative. The quantized charge associated
with this current is given by:

Q = fd3xJ0=Jd3x : V,tV, :

= f d3k [bt(k)ba(k) - dd(k)da(k)] (3.124)

This quantity can be negative, and hence cannot be associated with the probability
density. However, we can, as in the Klein-Gordon case, interpret this as the
current associated with the coupling to electromagnetism; so Q corresponds to the
electric charge. In this case, the minus sign in Q is a desirable feature, because
it means that dt is the creation operator of antimatter, that is, a positron with
opposite charge to the electron.

Again, this also means that we have to abandon the simple-minded interpre-
tation of Jr ,as a single-electron wave function, since it now describes both the
electron and the antielectron. The anticommutation relations also reproduce the
Pauli Exclusion Principle found in quantum mechanics. Because dd(k)dd(k) = 0,
only one particle can occupy a distinct energy state with definite spin. Thus, a
multiparticle state is given by:

N M

1 1dt,.(ki)1 1bt;(kj)I0) (3.125)
i=1 j=1

with only one particle in any given quantum state. This is the first example of the
spin-statistics theorem, that field theories defined with integer spin are quantized
with commutators and are called bosons, while theories with half-integral spins
are quantized with anticommutators and are called fermions. The existence of
two types of statistics, one based on commutators (i.e., Bose-Einstein statistics)
and one based on anticommutators (i.e., Fermi-Dirac), has been experimentally
observed in a wide variety of physical situations and has been applied to explain
the behavior of low-temperature systems and even white dwarf stars. Repeating
the same steps that we used for the Klein-Gordon field, we can also compute
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the energy-momentum tensor and the angular momentum tensor from Noether's
theorem. It is easy to show:

TI'v = iily"`a"*

.µv =
t1j, A

(XM8V -xvaµ -
Y'

(3.126)

(The Lagrangian term in the energy-momentum tensor can be dropped since the
Dirac Lagrangian is zero if the equations of motion are obeyed.)

The conserved angular momentum tensor is therefore:

MI'LV f OM" d3x

µa" - X"aµ
2

(3.127)

The crucial difference between these equations and the Klein-Gordon case is that
the angular momentum tensor contains an extra piece, proportional to Qµ", which
represents the fact that the theory has nontrivial spin 2.

It is then easy to complete this discussion by calculad how a quantized
spinor field transforms under the Poincar6 group:

i[PM, } = aµ*

[Mµ", (X8U_x8M_
2

(3.128)

With these operator identities, we can confirm that the quantized spinor field
transforms as a spin 2 field under the Poincare group:

U(A, a)*a(x)U-1(A, a) = S-1(A)afVf#(Ax +a) (3.129)

As we mentioned earlier, one of our fundamental assumptions about quantum
field theory is that it must be causal. Not surprisingly, the spin-statistics theorem
is also intimately tied to the question of microcausality, that is, that no signals
can propagate faster than the speed of light. From our field theory perspective,
microcausality can be interpreted to mean that the commutator (anticommutator)
of two boson (fermion) fields vanishes for spacelike separations:

[4(x),4(y)]=0 for(x-y)2 <0
(3.130)

Wx), i/r(y)} = 0 for (x - y)2 < 0
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To demonstrate the spin-statistics theorem, let us quantize bosons with anticom-
mutators and arrive at a contradiction. Repeating earlier steps, we find, for large
separations:

(OI {4(x), 4(y)} IO) = J
d3k

(2 r)32Wk

exp[-m Ix - y12 - (x° - y°)21
Ix - y12 - (x° - y°)2 (3.131)

which clearly violates our original assumption of microcausality. (Likewise, one
can prove that fermions quantized with commutators violates microcausality)

Historically, anticommutators and antimatter were introduced by Dirac, who
was troubled that his theory seemed riddled with negative energy states. Since
physical systems prefer the state of lowest energy, there is a finite probability
that all the electrons in nature would decay into these negative energy states,
thereby creating a catastrophe. To solve the problem of negative energy states,
Dirac was led to postulate a radically new interpretation of the vacuum (which is
consistent with Feynman's interpretation, which we have chosen in this chapter).
He poctu1attd that the vacuum consisted of an infinite sea of filled negative energy
states. Ordinary matter did not suddenly radiate an infinite amount of energy and
cascade down to negative energy because the negative energy sea was completely
filled. By the anticommutation relations, only one electron can occupy a negative
energy state at a time; so an electron could not decay into the negative energy sea
if it was already filled. In this way, electrons of positive energy could not cascade
in energy down to negative energy states,

However, once in a while an electron may be knocked out of the negative
energy sea, creating a "hole." This hole would act as if it were a particle. Dirac
noticed that the absence of an electron of charge -IeI and negative energy - E is
equivalent to the presence of a particle of positive charge +1e I and positive energy
+E. This hole then had positive charge and the same mass as the electron. All
particles therefore had positive energy: Both the original positive energy electron
as well as the absence of a negative energy electron possessed positive charge E
(Fig. 3.2).

Dirac postulated that this hole would correspond to a new state of matter,
an antielectron (although he initially considered the possibility that the hole was
a proton). The vacuum was now elevated to an infinite storehouse of negative
energy matter.

Dirac's hole theory meant that a new physical process was possible, pair
production, where matter appeared out of the empty vacuum. Photons could
knock an electron out of its negative energy sea, leaving us with an electron and
its hole, that is, an electron and an antielectron.
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Figure 3.2. Dirac's "hole" picture. When a photon kicks an electron out of the infinite
negative energy sea, it leaves a "hole" that behaves as if it had positive energy and positive

charge (i.e., an anti-electron). This is pair production.

At first, Dirac's theory of an infinite sea of filled negative energy states was
met with extreme skepticism. In the Handbuch der Physik, Pauli wrote: "Thus
y ray photons (at least two in order to satisfy the laws of conservation of energy
and momentum) must be able to transform, by themselves, into an electron and
an antielectron. We do not believe, therefore, that this explanation can be se-
riously considered." When Pauli's discouraging article appeared, Anderson had
already observed the antielectron in cloud chamber photographs, verifying Dirac's
conjecture. When confronted with the undeniable experimental verification of an-
timatter, Pauli later revised his opinion of Dirac's theory and made his famous
remark, "... with his fine instinct for physical realities, he started his argument
without knowing the end of it."

The interpretation that we have chosen in this chapter (that negative energy
electrons going backwards in time are equivalent to positive energy antielectrons
going forwards in time) is equivalent to Dirac's infinite negative energy sea. In
fact, when we subtracted off an infinite constant in the Hamiltonian, this can be
interpreted as subtracting off the energy of Dirac's infinite sea of negative energy
states.

To see how these positive and negative energy states move in time, let us
define the evolution of a wave function via a source as follows:

(iyMaM, - mWx) = J(x) (3.132)

To solve this equation, we introduce the Dirac propagator by:

(iyM8M - m)SF(x - y) = 84(x - y) (3.133)

Then the solution to the wave equation is given by:

V/(x) = V/o(x) + J d4Y SF(x - Y)J(Y) (3.134)

where ,/!0 solves the homogeneous Dirac equation.
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An explicit representation of the Dirac propagator can be obtained by using
the Fourier transform:

µpµmSF(X-Y) (3.135)
(27r)4 p2m2

+ ieJ

which satisfies:

SF(x - y) = (iyµaµ +m)AF(x - y)

where AF(x - y) is the Klein-Gordon propagator.

(3.136)

As before, we can solve for the propagator by integrating over k°. The
integration is identical to the one found earlier for the Klein-Gordon equation,
except now we have additional factors of ji + m in the numerator.

Integrating out the energy, we can write the Green's function in terms of plane
waves. The result is almost identical to the expression found for the Klein-Gordon
propagator, except for the insertion of gamma matrices:

3p
SF(X - X') _ -1 J (2 )3

E
)9(t - t')

+A-(p)e`p*(X-X )9(t' - t)]
2

*Pr ' I,

d3p
[_iO(t - t')1 (X)Y p(XI)

r=1

4

+i9(t' - t) E (3.137)
r=3

where:

*p(X) ° ( (3.138)

where er=(1,1,-1,-1)andwl=u1,w2=u2,w3=v1,andw4=v2. Written
in this fashion, the states with positive energy propagate forward in time, while
the states with negative energy propagate backwards in time.

As in the Klein-Gordon case, we can now replace the plane waves *p with the
quantized spinor field *(x) by taking the vacuum expectation value of the spinor
fields:

iSF(X - Y)ap = (O T'/ia(x)tfi(Y)jti) (3.139)

which is one of the most important results of this section. We will use this
expression repeatedly in our discussion of scattering matrices.
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3.7 Weyl Neutrinos

In the previous chapter, we saw that the spinorial representation of the Lorentz
group is actually reducible if we introduce projection operators PL and PR. Nor-
mally, we are not concerned with this because this spinorial representation is
irreducible under the full Poincar6 group for massive states.

However, there is a situation when the spinorial representation becomes re-
ducible even under the Poincar6 group, and that is when the fermion is massless.
For example, we can take an imaginary representation of the y matrices, which
gives us Majorana spinors9 (see Appendix). For our purposes, what is more
interesting is taking the Weyl representation, 10 which gives us a representation of
neutrinos.

If we take the representation:

Y` a;
0

I; Ys=( 0 ) (3.140)

then in this representation, we can write down two chiral operators:

1+Y5 I 0
PR =

2 0 0

1-y5 0 0
PL

2 0 I

To see how these projection operators affect the electron field, let us split * as
follows:

Then we have:

*R

*L )

Because PL and PR commute with the Lorentz generators:

(3.141)

[PL,R, Qµ°l = 0 (3.142)
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it means that the four-component spinor * actually spans a reducible represen-
tation of the Lorentz group. Contained within the complex Dirac representation
are two distinct chiral representations of the Lorentz group. Although *L and
1/iR separately form an irreducible representation of the Lorentz group, they do
not form a representation of the Poincar6 group for massive particles. To find an
irreducible representation of the Poincar6 group, we must impose m = 0.

The reason that these chiral fermions must be massless is because the mass
term mi/n/i in the Lagrangian is not invariant under these two separate Lorentz
transformations. Because:

* = 1//LVIR+ R*L (3.143)

mass terms in the action necessarily mix these two distinct representations of the
Lorentz group. Thus, this representation forces us to have massless fermions; that
is, this is a theory of massless neutrinos.

The theory of massless neutrinos is therefore invariant under the following
chiral transformation:

eiYsA*

e` y5A (3.144)

This symmetry is violated by mass terms. In other words, the spinor representa-
tion of the Poincar6 group (for zero-mass particles) is reducible, and we have the
freedom to choose two-component rather than four-component spinor representa-
tions.

This will have important phenomenological implications later on when we
consider the quark model in the limit of small quark masses. Then we can use
the power of chiral symmetry in this limit to extract a large number of nontrivial
relations among S matrix elements, called sum rules. In addition, the actual values
of the masses of the quarks then give us a handle as to size of the violation of
these chiral sum rules.

In summary, canonical quantization gives a rigorous formulation of a second
quantized field theory capable of describing multiparticle states. There are other,
more elegant quantization programs, but the canonical one is perhaps the most
rigorous. We also saw that the Dirac equation emerged from a spinorial rep-
resentation of the Lorentz group, which was developed in the previous chapter.
One of the successes of the second quantized approach is that we have a physical
interpretation for the negative energy states that inevitably occur in any relativistic
formulation. In the next chapter, we will quantize a spin-one field and couple it
to the Dirac electron theory, giving us quantum electrodynamics.
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3.8 Exercises

1. Prove that the anticommutation relation of the Dirac spinors in Eq. (3.119) is
satisfied if the harmonic oscillator states obey the anticommutation relation
in Eq. (3.120).

2. Prove that:

Tr(4142...42n) = al a2Tr(¢3... 42.)-al a3Tr(42 44... 42n)

+. +a, a2 Tr(fi2 ... (3.145)

3. Consider the 16 matrices IPA, where A = S, T, V, P, A. Show that (IF A)2 =
±1. Show that each is traceless except for the scalar. Given IPA and I'B
(A B), show that there exists ]PC (not equal to unity) such that:

rArB = rC (3.146)

4. By inserting the Fourier decomposition of the fields in Eq. (3.64), prove
explicitly that:

[4(x), 4(Y)] = iL.(x - Y)
4

= J (2 )3 8(k2 - m2)E(ko)e-ik(X-y) (3.147)

Then perform the integration over k, leaving us with a Bessel function. Then
show that the commutator vanishes outside the light cone, thereby establishing
the causality of the system.

5. Prove Eq. (3.22) by explicitly performing the commutation relations.

6. Prove that Eqs. (3.108) and (3.109) are obeyed by explicit computation.

7. Prove the following formula, due to Fierz:

L: CD(rD)afi(rD)y8 = L: CB(rB)a8(rB)Yfi
D=S, V, T, A, P B=S, V, T, A, P

where:

CV

CT

CA

Cp

1 4 12 -4 CS

-2 0 -2 -1 CV

1
4

0 -2 0
2 2 CT

1 -2 0 -2 CA

-4 12 4 Cp

(3.148)

(3.149)
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(Hint: use the fact that the I'A matrices form a complete set of 16 matrices.
Then treat the above expression as a matrix equation in order to power expand
it in terms of the IF A-)

8. Use the Fierz identity to re-express (i1A*2)(1 r3B*4) in terms of Dirac bi-
linears (1k1C*4)(ik3D*2). Express the matrices C and D in terms of the
matrices A and B.

9. The appearance of y° within 1% * _ ,/ity°,/i seems to violate Lorentz in-
variance, since y° is manifestly non-invariant and transforms as the zeroth
component of a vector. So why is , * still a Lorentz invariant? Furthermore,
,%i & (r clearly forms a finite dimensional representation of the Lorentz group.
But this seems to be a contradiction of our no-go theorem. Is this so? If not,
then why not?

10. Let ui (p) be spinors which satisfy the Dirac equation. Then prove the Gordon
formula:

A

u(P2)YAU(P1) = u(P2)
(P'

2m 1 + r 2m V) u(Pl) (3.150)

where qN, is the momentum transfer.

11. We define brackets to mean summing over all antisymmetric combinations of
indices (see (A. 12)):

yiL L2...MMN _ 1 y[Al yµ2 ... VAN (3.151)
N!

In an arbitrary number of space-time dimensions, prove that:

N
yAA1A2...AN + j:(_1)i+1gAAi yA1...ui...AN

(3.152)
1=1

where µi means that the µi index is to be deleted in the sum. Prove:

yAVyAI...AN = yAVA1...AN +E(-1)i+lgµJAyv1AI...ui...AN

where gA°;Pa = gAPgva - gµagvp

12. Based on the previous problem, derive a formula for:

y 01 V2... ON
Y

A I µ2...µM
(3.154)
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Prove it by induction.

13. Prove, by direct computation, that the Hamiltonian and the charge can be
written in terms of Dirac harmonic oscillators as in Eqs. (3.118) and (3.124).

14. The Feynman propagator in x space can actually be computed analytically.
Set m = 0, use radial coordinates, and show that the Feynman propagator in
x space can be written in terms of Bessel functions.

15. Consider a unitary transformation U, with H' = UHUt and ,/i' = Ui/i, which
changes the Dirac equation to:

i
at

= H1 *1

Let U be given by:

_ m+IEI
U

2IEI + 2IEI(m+IEI)

(3.155)

(3.156)

Show that U removes all coupling between the positive and negative energy
parts of the Dirac equation. This is an example of the Foldy-Wouthuysen
transformation.

16. Prove that the asymptotic behavior of the anticommutator appearing in Eq.
(3.131) is correct. Repeat the same calculation to show that spinors quantized
with commutators also violate the spin-statistics theorem.

17. Prove that the derivative of a theta function gives us a Dirac delta function:

8r6(r-t')=8(r- t')

From this, prove that:

(3.157)

(8µ + m2)T4(x)4(x') = -i 84(x - x') (3.158)

Show that this equation is compatible with the expression for 1F in terms of
the time-ordered product of two scalar fields.

18. The Feynman propagator L.F(x - y) can be expressed as the vacuum ex-
pectation value of the time-ordered product of two fields. The time-ordering
operator T appears to violate Lorentz invariance, since x° is singled out. Why
is the expression still Lorentz invariant?





Chapter 4

Quantum Electrodynamics

It was found that this equation gave the particle a spin of half a quantum.
And also gave it a magnetic moment. It gave us the properties that one
needed for an electron. That was really an unexpected bonus for me,
completely unexpected.

-P.A.M. Dirac

4.1 Maxwell's Equations

Now that we have successfully quantized the free Dirac electron, we would like
to discuss the question of coupling the Dirac electron to a spin-one Maxwell
field Aµ. The resulting theory will be called quantum electrodynamics, which
is perhaps the most successful physical theory ever proposed. After several
decades of confusion, false starts, and frustration, QED has emerged as one of the
cornerstones of the quantum theory.

Our discussion of the massless, spin-one field begins with the classical equa-
tions of Maxwell:

div E = p

curl B - aE =
J

div B = 0

curl E +
8B

= 0 4.1)
8t

The source, in turn, obeys a conservation equation:

ap+divj=0 (4.2)

Because the divergence of a curl is equal to zero, and because the curl of
the gradient is equal to zero, we can replace the magnetic and electric field with
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potentials A° and A as follows:

E= -VA° - aA; B=cur1A (4.3)

The fact that these equations did not transform according to the standard
Galilean transformation led to the discovery of special relativity. To see this
relativistic invariance more clearly, let us define:

A/' = (A°, A)

1"` _ (P, j) (4.4)

Then the current conservation equation can be written:

8M,JM' = 0

and Maxwell's equations can be summarized as:

where:

or:

(4.5)

(4.6)

FN,,, = 8M,A - (4.7)

0 -E1 -E2 -E3
1 E1 0 -B3 B2Fµv _

and:

E2 B3 0 -B1
E3 -B2 B1 0

FO' = -E'; F'j = -EijkBk (4.9)

We can now derive Maxwell's equations by writing down the following action:

1(E2-B2) (4.10)



4.1. Maxwell's Equations 101

If we insert this into the Euler-Lagrange equations of motion, we find that the
equations of motion are given by:

8/Fu' =0 (4.11)

which is just the classical Maxwell's equation with zero source.
A key consequence of this construction is that the Maxwell theory is invariant

under a local symmetry, that is, one whose parameters are dependent on space-
time:

SAu = BN,A(x) (4.12)

(A transformation whose parameters are constants is called a global transforma-
tion, like the isospin and Lorentz transformations discussed earlier.) If we apply
successive gauge transformations, we find that they form a group with the simple
addition law:

A3 = Al + A2 (4.13)

This is the same group law we found for U(1); so we see that Maxwell's equations
are locally invariant under U(1).

Under this transformation, the Maxwell tensor is an invariant:

SF,, = 0 (4.14)

so the Lagrangian is also invariant.
This also means that there is a large redundancy associated with the theory.

The equations for Au, are identical to the equations for Au = Au, + 8,A.
We also note that the naive energy-momentum tensor associated with

Maxwell's theory has the wrong properties. It is neither symmetric, nor is it
gauge invariant. A naive application of Noether's theorem gives us an energy-
momentum tensor that equals:

Tu° = -Fux8"Ax+ 1gu»FpaFPa (4.15)

which is not symmetric. This means that there is no conserved angular momentum
tensor. Worse, it is not even gauge invariant, since it is not written entirely in
terms of the Maxwell tensor Fu,,.

However, since the energy-momentum tensor is not a directly measurable
quantity, we are free to add another tensor to it:

Tu° -> Tu° + 8x(FuxA") (4.16)
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The resulting energy-momentum tensor is conserved, symmetric, and gauge in-
variant:

Tu» = FIPFP° + 4g9"FpaFPa (4.17)

It is important to note that the addition of this extra term does not affect the
integrated charges, which are directly measurable. To see what conserved charges
are associated with this energy-momentum tensor, we find:

T00 = 1(E2 +B2)

TiO = (E x B)' (4.18)

which we recognize as the energy density and the Poynting vector. Thus, this new
energy-momentum tensor is a physically acceptable quantity and compatible with
gauge invariance.

Gauge invariance is thus a guide to calculating the physical properties of field
theory. As we shall see throughout this book, it is also absolutely important to
maintain gauge invariance for QED, for several reasons:

1. The proof of renormalization, that we can extract a finite S matrix order by
order from the quantum theory, is crucially dependent on gauge invariance.

2. The proof of unitarity, that there are no ghost states with negative norm in the
theory, also depends on gauge invariance. (The longitudinal vibration modes
of the Maxwell field are negative norm states, which can be eliminated by
choosing a gauge, such as the Coulomb gauge.)

3. The proof that the theory is Lorentz invariant after we have fixed the gauge
in a nonrelativistic fashion requires the use of gauge symmetry.

4.2 Relativistic Quantum Mechanics

The problem facing us now is to write down the action for the Dirac theory coupled
to the Maxwell theory, creating the quantum theory of electrodynamics. The most
convenient way is to use the electron current as the source for the Maxwell field.
The electron current is given by yu>f, and hence we propose the coupling:
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We saw earlier that this current emerged because of the invariance of the Dirac
action under the symmetry ,/r -> exp(i A)*. Let us promote A into a local gauge
parameter, so that A is a function of space-time. We want an action invariant
under:

*(x) - eieA(x) Y' (x)

Au -> AA - 8uA(x) (4.20)

The problem with this transformation is that A(x) is a function of space-time;
therefore, the derivative of a spinor 8, tr is not a covariant object. It picks up an
extraneous term 8A(x) in its transformation. To eliminate this extraneous term,
we introduce the covariant derivative:

Du - 8u + ieA, (4.21)

The advantage of introducing the covariant derivative is that it transforms covari-
antly under a gauge transformation:

DN,,/i -> eieA(x)D,,>/r + (ie8,A - ie8N,A)>/r

- eieA(x)Du*

This means that the following action is gauge invariant:

(4.22)

_ r(iyIDu - m)i/r - 1F1,»Fu° (4.23)4

which we obtain by simply replacing 8, by D,.
The coupling of the electron to the Maxwell field reproduces the coupling

proposed earlier. In the limit of velocities small compared to the speed of light,
the Dirac equation should reduce to a modified version of the Schrodinger equation.
We are hence interested in checking the correctness of the Dirac equation to lowest
order, to see if we can reproduce the nonrelativistic results and corrections to them.
The Dirac equation of motion, in the presence of an electromagnetic potential,
now becomes:

i
at = [a (-iV - eA) + fim + eA°] (4.24)

To find solutions of this equation, let us decompose this four-spinor into two
smaller two-spinors:

*= 1 X I= (e_imtW) (4.25)
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Then the Dirac equation can be decomposed as the sum of two two-spinor equa-
tions:

.a
at

aX

at

6- JrX +eA°O+mo

0+eA°X-mX (4.26)

where iv= p - eA. Next, we will eliminate X. For small fields, we can make the
approximation that eA° << 2m. Then we can solve the second equation as:

a. Jr
X 2m

(4.27)

In this approximation, the Dirac equation can be expressed as a SchrOdinger-like
equation, but with crucial spin-dependent corrections:

l
t

at

4D
= L(

.102
+ eA°J 4D

_ z l
C(p

eA) 2m
o. B + eA°J ID (4.28)

where we have used the fact that :

(6. 7 6 ) 2 = 1 i - e6 B (4.29)

The previous equation gives the first corrections to the Schrddinger equation in
the presence of a magnetic and electric field. Classically, we know that the energy
of a magnetic dipole in a magnetic field is given by the dot product of the magnetic
moment with the field:

E -µ B eh
eh aB2mc

Since S =Rio/2, the magnetic moment of the electron is therefore:

e ha=2 (
\

e \Sµmc 2 2mci

(4.30)

(4.31)

Thus, the Dirac theory predicted that the electron should have a magnetic moment
twice what one might normally expect, that is, twice the Bohr magneton. This was
perhaps the first major success of the Dirac theory of the electron. Historically, it
gave confidence to physicists that the Dirac theory was correct, even if it seemed
to have problems with negative energy states.
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Yet another classic result that gave credibility to this relativistic formulation
was the splitting of the spectral lines of the hydrogen atom. To solve for corrections
to the Schrddinger atom, we set B to zero, and take A° to be the Coulomb potential.
The Dirac equation is now written as:

E>/r = \-i a V + i m -
Za

I >/r = HVi (4.32)
r

where: a = e2/4ir

and:
m - La

H=
6'P

6 p
-m - z-- (4.33)

In hindsight, it turns out to be convenient to introduce a judicious ansatz for
the solution of the Dirac equation. First, as in the Schrodinger case, we want to
separate variables, so that we take i r - f (r)Y(6, 0), where the radial function is
explicitly separated off. Second, because V2 contains the Casimir operator L? in
the usual Schrodinger formalism, we choose Y(6, 0) to be the standard spherical
harmonics, that is, eigenfunctions of the angular momentum operators. For the
spinning case, however, what appears is:

J=L+S=L+6/2 (4.34)

that is, we have a combination of orbital spin L and intrinsic spin S. Thus, our
eigenfunctions for the Dirac case must be labeled by eigenvalues j, 1, m.

Based on these arguments, we choose as our ansatz:

i [Gij (r)I rlY'jm
jm = l[Flj (r)l rl ( /Q

- r) Oj
(4.35)

Inserting this ansatz into Eq. (4.32) and factoring out the angular part, we find
that the radial part of our eigenfunctions obey:

E-m+ Za ) G1j(r)r\

(E+m+)FU(r)r

dF1j(r) T (j
+

1 Flj (r)dr2 r
dG1y 1 G13(r)

=
dr

i+ r (4.36)

where we use the +(-) sign for j = 1+ l/ 2 (j =1-l/ 2). By power expanding this
equation in r, this series of equations can be solved in terms of hypergeometric
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functions. These equations, when power expanded, give us the energy eigenstates
of the hydrogen

E,y = m 1+
Za

(4.37)
(n - (j + 1/2) + (j +-1/2)2 - Z 2a2

Experimentally, this formula correctly gave spin-dependent corrections to the
Bohr formula to lowest order. In contrast to the usual Bohr formula, the energy is
now a function of both the principal quantum number n as well as the total spin
j. By power expanding, we can recover the usual nonrelativistic result to lowest
order:

rr Z2a2 (Z2a2)2 n \ l
E,y=m11- 2n2 - 2n4 G

+1/2-3/41+...J (4.38)

So far, we have only considered the Dirac electron interacting with a classical
Coulomb potential. Therefore, it is not surprising that this formula neglects smaller
quantum corrections in the hydrogen energy levels. In particular, the 251/2 and
2P1/2 levels have the same n and j values, so they should be degenerate according
to the Dirac formula. However, experimentally these two levels are found to be
split by a small amount, called the Lamb shift.

It was not until 1949, with the correct formulation of QED, that one could
successfully calculate these small quantum corrections to the Dirac energy lev-
els. The calculation of these quantum corrections in QED was one of the finest
achievements of quantum field theory.

4.3 Quantizing the Maxwell Field

Because of gauge invariance, there are also complications when we quantize the
theory. A naive quantization of the Maxwell theory fails for a simple reason: The
propagator does not exist. To see this, let us write down the action in the following
form:

2o= 1AuPuva2A»

where:

(4.39)

Puv = 8,.v - 8'.8»/(8)2 (4.40)

The problem with this operator is that it is not invertible, and hence we cannot
construct a propagator for the theory. In fact, this is typical of any gauge theory,
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not just Maxwell's theory. This also occurs in general relativity and in superstring
theory. The origin of the noninvertibility of this operator is because PN,,, is a
projection operator, that is, its square is equal to itself:

PI. PV1 = PI (4.41)

and it projects out longitudinal states:

8N PN = 0 (4.42)

The fact that PN is a projection operator, of course, goes to the heart of why
Maxwell's theory is a gauge theory. This projection operator projects out any
states with the form a,A, which is just the statement of gauge invariance.

The solution to this problem is that we must break this invariance by choosing
a gauge. Because we have the freedom to add 8NA to Au,, we will choose a
specific value of A which will break gauge invariance. We are guaranteed this
degree of freedom if the variation SAN, = 8u,A can be inverted. There are several
ways in which we can fix the gauge and remove this infinite redundancy. We can,
for example, place constraints directly on the gauge field AN, or we may add the
following term to the action:

2a

(3,AN)2

where a is arbitrary. We list some common gauges:

Coulomb gauge : ViAi = 0

Axial gauge : A3 =0

Temporal gauge : Ao = 0

Landau gauge : aAAN = 0

Landau gauge : a = 0

Feynman gauge : a = 1

Unitary gauge : a = 00

(4.43)

(4.44)

(Notice that there are two equivalent ways to represent the Landau gauge.)
Each time we fix the constraint by restricting the gauge field AN, we must check
that there exists a choice of A such that this gauge condition is possible. For
example, if we set A3 = 0, then we must show that:

A3 = 0 = A3 + 83A (4.45)
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so that:

A= - Jx dx3A3 (4.46)

In the Coulomb gauge, one extracts out the longitudinal modes of the field
from the very start. To show that the gauge degree of freedom allows us to make
this choice, we write down:

(4.47)

Solving for A, we find:

A=-1V A=- r d3x' (4.48)p2 l 4alx - x'l

Likewise, the Landau gauge choice means that we can find a A such that:

A=- a2 auAu
(4.49)

To begin the process of canonical quantization, we will take the Coulomb
gauge in which only the physical states are allowed to propagate. Let us first
calculate the canonical conjugate to the various fields. Since AO does not occur in
the Lagrangian, this means that AO does not appear to propagate, which is a sign
that there are redundant modes in the action.

The other modes, however, have canonical conjugates:

7r ° = s-`' =0
SAO

7r' _ =E'a A=-A' 4 50

We write the Lagrangian as:

; O-
S A;

( . )

4Fuv 2F0i Fif (4.51)

We now introduce the independent Ei field via a trick. We rewrite the action as:

2=-2E?-EiFOi-1Fi (4.52)

By eliminating Ei by its equation of motion, we find E; = -FOi. By inserting this
value back into the Lagrangian, we find the original Lagrangian back again.
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Then we can write the Lagrangian for QED as:

_ -E (i p-m)>/r

_ -E-A- 2 (E2 +B2) +H(>/r, A) - Ao (V E - ej y°,/r) (4.53)

A0 is a Lagrange multiplier. If we solve for the equation of motion of this field,
we find that there is the additional constraint:

Gauss's Law : V E = p = eiry0>f (4.54)

Thus, Gauss's Law emerges only after solving for the equation of motion of A0.
If we now count the independent degrees of freedom, we find we have only two
degrees left, which correspond to the two independent transverse helicity states.
Of the original four components of Au,, we see that A0 can be eliminated by its
equation of motion, and that we can gauge away the longitudinal mode, therefore
leaving us with 4 - 2 degrees of freedom, which is precisely the two helicity states
predicted in Section 2.8 from group-theoretical arguments alone for massless
representations of the Poincar6 group.

Intuitively, this means that a photon moving in the z direction can vibrate
in the x and y direction, but not the z direction or the timelike direction. This
corresponds to the intuitive understanding of transverse photons. In the Coulomb
gauge, we can reduce all fields to their transverse components by eliminating their
longitudinal components. Let us separate out the transverse and longitudinal parts
as follows: E = ET + EL, where V ET = 0 and V EL = p. Let us now solve
for EL in terms of p. Then we have:

EL=Vv2P (4.55)

If we insert this back into the Lagrangian, then we find that all longitudinal
contributions cancel, leaving only the transverse parts, except for the piece:

1 2 1 1E _2 L _ P Z2VP

= e2 d3 d3
t(X, t)i(x, t)rt(Y, t)i(Y, t)

56)4xf
7r

y xy, ( .

This last term is called the "instantaneous four-fermion Coulomb term," which
seems to violate special relativity since this interaction travels instantly across
space. However, we shall show at the end of this section that this term precisely
cancels against another term in the propagator, so Lorentz symmetry is restored.
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If we impose canonical commutation relations, we find a further complication.
Naively, we might want to impose:

(Ai(x, t), 7r '(y, t)] = -iS11 3(x - y) (4.57)

However, this cannot be correct because we can take the divergence of both sides
of the equation. The divergence of Ai is zero, so the left-hand side is zero, but the
right-hand side is not. As a result, we must modify the canonical commutation
relations as follows:

(Ai(x, t), 7r 3 (y, t)] = -iL3 (x - y) (4.58)

where the right-hand side must be transverse; that is:

3

SU __ 1 (27r)3 eik
_L_J (4.59)

As before, our next job is to decompose the Maxwell field in terms of its Fourier
modes, and then show that they satisfy the commutation relations. However, we
must be careful to maintain the transversality condition, which imposes a constraint
on the polarization vector. The decomposition is given by:

d3k
2

A(x) = EX(k) {ax(k)e-'k x +axt(k)e`k'x, (4.60)
(2n)32k0 x=i

In order to preserve the condition that A is transverse, we take the divergence of
this equation and set it to zero. This means that we must impose:

C' -k = 0

C' (k) E" (k) = (4.61)

(The simplest way of satisfying these transversality conditions is to take the
momentum along the z direction, and keep the polarization vector totally in the
transverse directions, i.e., in the x and y directions. However, we will keep our
discussion as general as possible.) By inverting these relations, we can solve for
the Fourier moments in terms of the fields:

f 3 -
ax(k) = i

J
d x a o Ex(k) A(x)

(2a )32ko

3

atx(k) = -i d x e-'I x ao Ex(k) . A(x) (4.62)
J (2n)32ko
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In order to satisfy the canonical commutation relations among the fields, we must
impose the following commutation relations among the Fourier moments:

[ax(k), atx (k/)l = Sx.x'S3(k - k') (4.63)

(An essential point is that the sign of the commutation relations gives us positive
norm states. There are no negative norm states, or ghosts, in this construction
in the Coulomb gauge.) Let us now insert this Fourier decomposition into the
expression for the energy and momentum:

H =
2

fd3x(E2+B2)

2

_ f d3k w[atx(k)ax(k)l
x=i

P = fd3x(:ExB:)

2

f d3k k E at(k)a(k) (4.64)
x=1

After normal ordering, once again the energy is positive definite. Finally, we wish
to calculate the propagator for the theory. Again, there is a complication because
the field is transverse. The simplest way to construct the propagator is to write
down the time-ordered vacuum expectation value of two fields. The calculation
is almost identical to the one for scalar and spinor fields, except we have the
polarization tensor to insert:

i DF(x - x')uv = (OITAI,(x)Av(x')lO)

dtd4k
2

(2a)4 k2 + iE u Eu(k)Ev (k)
x=i

(4.65)

The previous expression is not Lorentz invariant since we are dealing with trans-
verse states. This is a bit troubling, until we realize that Green's functions are
off-shell objects and are not measurable. However, these Lorentz violating terms
should vanish in the full S matrix. To see this explicitly, let us choose a new
orthogonal basis of four vectors, given by eu(k), 4E2 (k), kA, and a new vector
rl" = (1, 0, 0, 0). Any tensor can be power expanded in terms of this new ba-
sis. Therefore, the sum over polarization vectors appearing in the propagator can
always be expanded in terms of the tensors gu,v, rlu.rly, kukv, and kurly. We can
calculate the coefficients of this expansion by demanding that both sides of the
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equation be transverse. Then it is easy to show:

2 kk
Eu(k)Ev(k) _ -8/v -

(k 71)2

v

k2
x=1

Quantum Electrodynamics

+(k - 71)(k/71v k271171v (4.66)

Fortunately, the noninvariant terms involving q can all be dropped. The terms
proportional to k/ vanish when inserted into a scattering amplitude. This is
because the propagator couples to two currents, which in turn are conserved by
gauge invariance. (To see this, notice that the theory is invariant under SA/ = 8,A.
In a scattering amplitude, this means that adding k/ to the polarization vector e/
cannot change the amplitude. Thus, k/ terms in the propagator do not couple to
the rest of the diagram. This will be discussed more in detail when we study the
Ward identities.)

If we drop terms proportional to k/ in the propagator, we are left with:

-
DF(x - x')/v = -8/vLF(x - x';m = 0) - 71/71»

S(t t')
4alx-x'l (4.67)

The first term is what we want since it is covariant. The second term proportional
to 71.T1v is called the instantaneous Coulomb term. In any Feynman diagram,
it occurs between two currents, creating (>/rt>/r)V-2(,f t>f ). This term precisely
cancels the Coulomb term found in the Hamiltonian when we solved for EL in
Eq. (4.56).

As expected, we therefore find that although the Green's function is gauge
dependent (and possesses terms that travel instantly across space), the S matrix is
Lorentz invariant and causal.

4.4 Gupta-Bleuler Quantization

The advantage of the canonical quantization method in the Coulomb gauge is that
we always work with transverse states. Thus, all states have positive norm:

(OI ax(k)ax t(k/)l0) = Sxx,S3(k - k) (4.68)

However, the canonical quantization method, although it is guaranteed to yield
a unitary theory, is cumbersome because Lorentz invariance is explicitly broken.
For higher spin theories, the loss of Lorentz invariance multiplies the difficulty of
any calculation by several times.



4.4. Gupta-Bleuler Quantization 113

There is another method of quantization, called the Gupta-Bleuler3.4 quanti-
zation method or covariant method, which keeps manifest Lorentz invariance and
simplifies any calculation. There is, however, a price that must be paid, and that
is the theory allows negative norm states, or ghosts, to propagate. The resulting
theory is manifestly Lorentz invariant with the presence of these ghosts, but the
theory is still self-consistent because we remove these ghost states by hand from
the physical states of the theory. We begin by explicitly breaking gauge invariance
by adding a noninvariant term into the action:

.9= -4Fu» - Za(a,Au)2

for arbitrary a.
Then the action now reads:

2AuPu"a2Av

where:

(4.69)

(4.70)

Pu» = 8uv - (1 - a-1) a,tav/a2 (4.71)

Now that we have explicitly broken the gauge invariance, this operator is no longer
a projection operator and hence can be inverted to find the propagator:

D'.» = -(P-1)uv/a2 = - [8uv - (1 - a) 3,av/a2] /a2 (4.72)

This propagator explicitly propagates ghost states that violate unitarity. The DOO
component of the propagator occurs with the wrong sign, and hence represents a
ghost state. For our purposes, we will take the gauge a = 1, so that the equation
of motion now reads:

a2Au =0 (4.73)

In this gauge, we find that Ao is no longer a redundant Lagrange multiplier, but a
dynamical field and hence has a canonical conjugate to it. The conjugate field of
A. is now a four-vector:

u = SAu = Au

Then the covariant canonical commutation relations read:

(4.74)

[A,(x), 7r°(x')] = iSuS3(x - x) (4.75)
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As usual, we can decompose the field in terms of the Fourier moments:

The difference now is that the Eu vector is a genuine four-vector. In order for
the canonical commutation relations to be satisfied, we necessarily choose the
following commutation relations among the oscillators:

(aX (k), at"(k/)l = -gl"S3(k - k') (4.77)

The presence of the metric tensor in the commutation relation signals that the
norm of the states may be negative; that is, a nonphysical, negative norm ghost is
present in the theory. The norm of the state atx(k)l0) can now be negative. This
is the price we pay for having a Lorentz covariant quantization scheme.

It is straightforward to prove that the propagator is now given by:

-ig,,,,AF(x - y) (4.78)

This can be proved by explicitly inserting the operator expression for AN,(x).
The important aspect of this propagator is that it contains the metric g,,, which
alternates in sign. Hence, it propagates ghost states. Since ghosts now propagate
in the theory, we must be careful how we remove them. If we take the condition
8IAAIIQ) = 0, we find that this condition is too stringent; it has no solutions at all.
The Gupta-Bleuler formalism is based on the observation that a weaker condition
is required:

(3,,A")(+> IT) = 0 (4.79)

where we only allow the destruction part of the constraint to act on physical states.
In momentum space, this is equivalent to the condition that kua/,(k)IW) = 0. This
guarantees that, although ghosts are allowed to circulate in the system, they are
explicitly removed from all physical states of the theory.

(We can also quantize the massive vector field in much the same way. The
quantization is almost identical to the one presented before, but now the counting
of physical states is different. We recall from our discussion of the Poincare group
that a massless field only has two helicity components. However, the massive
vector field has 3 components.)
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4.5 C, P, and T Invariance

Although we have analyzed the behavior of quantum fields under continuous
isospin and Lorentz symmetry, we must also investigate their behavior under
discrete symmetries, such as that generated by parity, charge conjugation, and
time-reversal symmetry:

P: x-*-x
C: e-e
T: t-t (4.80)

Classically, we know that the laws of physics are invariant under these transfor-
mations. For example, we find that both Newton's and Maxwell's equations are
invariant under these transformations.

The easiest way in which to calculate how the AN, field transforms is to examine
Maxwell's equation, especially the source term j". Under a parity transformation,
the electric charge distribution p does not change, but j --+ -j because we are
reversing the direction of the electric current. Thus:

gj "may-1 =1" (4.81)

Under a charge conjugation, a positive electric current turns into a negative one,
so that:

g2j"g-1 = -j" (4.82)

Then under a time reversal, once again p remains the same, but j reverses sign
(because the current reverses direction), so:

= 1" (4.83)

Then the transformation of A. can be found immediately. One way is to ob-
serve that j"A" appears in the action and is an invariant. Then we can read
off the transformation properties of A". Another way in which to derive the
transformation properties of A. is to use Maxwell's equations, 8"F"°(A) = j°
Knowing the transformation properties of 8" and j", then it is easy to solve for
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the transformation properties of A. We summarize our results as follows:

P

C

T

8" j" Au

8" 1" A"

8u - j" -AN,

- 8" j" A"

(4.84)

Similarly, we can read off the transformation properties of ,Jr, using the Dirac
equation and also the fact that j" = e*y"'fi, although the calculation is consid-
erably longer. With a bit of work, we can summarize how Dirac bilinear scalars,
vectors, axial vectors, etc. transform under these discrete transformations, includ-
ing CPT = ®:

C

P

T

0

Y5' *Y"'r 'rY4Y5' ' 0 "v'

S P -V" A" -T"°

S -P V" -A" T"

S -P V" A" -T"

S P -V" -Alt TJuv

To prove this, let us examine each transformation separately.

(4.85)

4.5.1 Parity

When the Dirac field couples to the Maxwell field, we want the combination j"A"
appearing in the action to be parity conserving.

To find an explicit form for the operator 9 for the Dirac field, we will find it
convenient to recall that any element of 0(3, 1) (which includes parity operations
with det 0 = -1) has the following effect on the Dirac matrix:

S(A)-1Y"S(A) = AvY" (4.86)
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For our case, we can set the matrix A to be our parity operator if we specify that
it reverses the sign of x:

1 0 0 0

0 -1 0 0
A" (4 87)

0 0 -1 0
.

0 0 0 -1

which is equal to the metric tensor g,,,. Thus, we want a solution of the following
equation:

-'y°9' = gvvyv = -(-1)S,oyv (4.88)

An explicit solution of this equation is simply given by:

9 = e'Oy° (4.89)

where e'4' is an irrelevant phase factor.
Thus, the action of the parity transformation on a spinor field is given by:

Parity : *'(-x, t) = S(A)i = e'Oy°i(x, t) (4.90)

This also means that the transformation of the j field is given by:

Vii'(-x, t) = i(x, t)y°e-'o (4.91)

From this, we can calculate how the various bilinear combinations transform under
the parity operation in Eq. (4.85).

4.5.2 Charge Conjugation

Charge conjugation is easily studied by taking the Dirac equation and then revers-
ing the sign of the electric charge. If we let i/i, represent the Dirac field that has
the opposite charge as *, then we have:

(i O-e %-m)i/i = 0

(i 0 + e - m)ifr = 0 (4.92)

In order to find the relationship between * with charge e and *, with charge
-e, let us take the complex conjugate and then the transpose of the first equation.
Then we find:

yuT(-i8u - eAN,) (YOT**) = 0 (4.93)
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It can be shown that for any representation of the Dirac algebra, there exists a
matrix C that satisfies:

(4.94)

Now let us compare the previous equation with the equation for the i/i, field. We
have an exact correspondence (up to a phase) if we set:

*c = e'OC(YOT' *) = e"' C, T (4.95)

So far, we have not specified the representation of the Dirac matrices. There
is more than one solution of the equation for C. In the Dirac representation, we
find the following solution for the C matrix as:

C=iYz
Y

0 = 0 -io2

io2 0

which satisfies the following additional constraints:

(4.96)

- C = C-1 = CT = Ct (4.97)

For us, however, the important feature of the C matrix is that it allows us to
identify the particle-antiparticle structure of the Dirac field.

Applying the C matrix to the particle field, we obtain the antiparticle field:

0 1

0*=
O

; *c=e`O
0

1 0

(4.98)

which justifies our earlier statement that the Dirac equation contains both the
particle and antiparticle fields, with the charges as well as spins reversed.

Now let us compute how the current j" transforms under the charge conjuga-
tion operation:

Jc
=1/cY"*c=, TCY"C T =1TY" T (4.99)

The last minus sign is important: Because * is an anticommuting field, we pick
up an extra minus sign when we move one spinor past another.

Now let us try to determine how the combined Dirac and Maxwell system
transforms under charge conjugation. The Dirac equation is left invariant if we
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make the simultaneous change:

,7,Ti0C

1u -*

We = e W

1r =_ju

Au, -* -Au (4.100)

(We have changed the sign of the Maxwell field, which simulates the change of
the charge e that we made earlier.)

Thus, the combination juAu is invariant undercharge conjugation, as desired.

4.5.3 Time Reversal

Finally, we analyze the effect of making the transformation t -* -t. We wish to
find an explicit representation of the operator -07 in terms of harmonic oscillators.
This can be done in several ways. We can represent the time-reversal operator
as S(A) acting on a spinor where A,,,, = -gu ,. Or, we can write down the Dirac
equation with a time reversal and try to retransform the equation back into the
usual Dirac form.

Either way, we find the same result:

Tif (x, t),7-1 = ei4T i/i(x, -t) (4.101)

where:

Ty T-1=Yu =y (4.102)

An explicit representation of the T matrix is given by:

T=iy1y3
(4.103)

where:

T=Tt=T-1=-T* (4.104)

We should also mention that the operator is unusual because it is antiunitary.
For example, consider the time evolution equation:

[H, 0(x)] _ -i ao (4.105)
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Let us make a time-reversal transformation on this equation. If we reverse the
sign oft in this equation, we find:

[H, 0(x')] = +i a (4.106)

However, this has the net effect of transforming H -* -H, which is illegal
(because then we would have negative energy states). This difficulty did not
happen for parity or charge conjugation because 8/8t did not change for those
symmetries.

Correspondingly we wish that would reverse the exponent appearing in the

time evolution operator:

.00
!H(t'-h) o7-1 = e+iH(tz-ti)e

However, this is impossible if the Hamiltonian commutes with Y.
This means that the operator must be antiunitary:

V-0I-7-0 = (*10)

(4.107)

4.108)

Or this operator contains yet another operator that can take the complex conjugate
of any c number. If we postulate an operator that can reverse i -* -i, then can
commute with the Hamiltonian yet still reverse the sign oft.

4.6 C P T Theorem

In nature, these discrete symmetries are violated. Parity is maximally violated by
the weak interactions, and the combination CP is violated in K meson decays.
However, there is a remarkable theorem that states that any quantum field theory is
invariant under the combined operation of C P T5-7 under very general conditions.

The theorem states that the Hamiltonian .' is invariant under CPT:

(CPT).5(x)(CPT)-1 =.5(x') (4.109)

if the following two conditions are met:

1. The theory must be local, possess a Hermitian Lagrangian, and be invariant
under proper Lorentz transformations.
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2. The theory must be quantized with commutators for integral spin fields and
quantized with anticommutators for half-integral spin fields (i.e., the usual
spin-statistics connection).

Thus, although quantum field theories are easily written down that violate these
discrete symmetries separately, any quantum theory obeying these very general
features must be invariant under CPT.

Various proofs of this powerful theorem have been proposed over the years.
We will not review the results from axiomatic field theory, which are the most
rigorous. Rather than give a detailed proof, we will show that the CPT theorem
is satisfied for the spin 0, 1/2, and 1 fields that we have so far investigated.

We first note that it is easy to show that the CPT operation changes any
quantum field theory obeying these two assumptions in the following way:

1. The coordinates change as follows:

xu -*

8u -*

-xu

- 8u (4.110)

2. The Maxwell field transforms as follows:

9AN,(xV-1 = Au(x')

WAu(x)F-1 = -Au(x)

TAu(x)T-1 = Au(x') (4.111)

where x' refers to the 9 or the .1, transformed variable. Thus, under the
combined CPT, we have:

Au(x) -* -Au(-x)

3. A Dirac spinor transforms under C P T as:

*. - -i*(-x)fl(YsYO)fl.

4. A Dirac bilinear changes as follows:

i/i(x)Oi(x) -* (-1N(x')O'(x)

(4.112)

(4.113)

(4.114)

where k denotes the number of Lorentz indices appearing in the matrix 0.
(This assumed the spin-statistics connection, since we had to push one spinor
past another.)
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5. Any even-rank tensor transforms into its Hermitian conjugate, and all odd-
rank tensors transform into the negative of their Hermitian conjugates.

6. All c numbers appearing in the theory are complex conjugated.

The sketch of the proof now proceeds as follows. First, we observe that the
Lagrangian is invariant under C P T:

(CPT)'(x)(CPT)-1 =H(-x) (4.115)

This is because the Lagrangian is a contraction of many tensors of different rank,
but the sum of all the ranks must be even since 2' is a Lorentz scalar. By (5),
this means that the Lagrangian is transformed into its Hermitian conjugate. But
since the Lagrangian is Hermitian by the first assumption, we find that 2' must be
CPT invariant.

One possible loophole in this construction is if the Lagrangian contains an
infinite number of derivatives. Then condition (1) would be difficult to obey.
This loophole is closed by the assumption that 5' is local. [Nonlocal theories
containing terms like O(x)O(y) can be power expanded as follows:

O(x)O(y) = O(x)e(Y-x)'0' O(x) (4.116)

Nonlocal theories therefore contain an infinite number of derivatives, which are
excluded from our discussion by the first assumption.]

Now that the Lagrangian is invariant, let us analyze the transformation property
of the Hamiltonian, which is defined as:

E : 7rr(x)Wr(x)
r

(4.117)

where the sum r is over both bosons and fermions.
To calculate the transformation of the Hamiltonian under C PT , we recall the

transformation properties of the boson and fermion fields under CPT:

(CPT)Or(x)(CPT) = e'B'cbr(-x)

-e'B'Or(-x)

(CPT)7rr(x)(CPT) = -e-ier7rr(-x) (4.118)

To show that the Hamiltonian is invariant, we observe that the equal-time
commutation relations for the bosons and fermions are preserved if the spin-
statistics relation holds:

Boson : [nr(x, t), O (X , t)] = -i83(x - x')Srs
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Fermion : {a.(x, t), O (x', t)} = i83(x - x')S.s (4.119)

Then we have all the identities necessary to show that:

(CPT).5(x)(CPT)-1 =.5(-x) (4.120)

which completes the proof.
In summary, we have seen how to quantize the Maxwell spin-one field via the

canonical method. The formulation is a bit clumsy because we must quantize the
theory in the Coulomb gauge to eliminate the ghost states with negative norm.
The Gupta-Bleuler formulation is more convenient because it is Lorentz covariant,
but we must apply the ghost-killing constraint on the states. The reason for this
complication is that the Maxwell theory is a gauge theory with the group U(1).

In Chapter 5, we will analyze how to calculate scattering cross sections for
QED with quantum field theory.

4.7 Exercises

1. Prove that the radial functions Gj and Fly obey Eq. (4.36) starting with the
Dirac equation for an electron in a Coulomb field.

2. There are no finite-dimensional unitary representations of the Lorentz group,
but what about a vector field Au, which forms a finite-dimensional represen-
tation space for the Lorentz group. Does this violate the no-go theorem? Why
not?

3. There are very few exactly solvable problems involving the classical Dirac
equation. One of them is the electron in a Coulomb potential. Another is the
electron in a constant magnetic field. Solve the Dirac equation in this case,
and show that:

E = m2 + pz +2nIeBI (4.121)

where n = 0, 1, 2, ....

4. Prove that:

9'b(p, sV-1 = b(-p, s); 9)dt(p, sV-1 = -dt(-p, s) (4.122)

Prove that an explicit operator representation for 9 is given by:

is9' = exp (-
2

fd3p[bt(p,s)b(p,s)_bt(p,s)b(_p,s)
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+dt(p, s)d(p, s) + dt(p, s)d(-p, s)])

5. Prove that:

(4.123)

'b(p, s)'-1 = d(p, s)e`O

'dt(p, s)'-1 = bt(p, s)e`' (4.124)

Prove that this operation, in turn, can be generated by the operator expression:

= exp (12 J dap E [bt(p, s) - dt(p, s)] [b(p, s) - d(p, s)] )
S

(for q=0).

6. Prove Eq. (4.66).

7. Show that:

(4.125)

(CPT)U(t, to)(CPT)-1 = U(-t, -t0) (4.126)

where U is the operator a-`H` for constant H, so therefore:

(C P T)S(C P T)- 1 = St (4.127)

where S is the S matrix.

8. Consider the magnetic field created by electrons both moving in a straight
wire and circulating in a solenoid. Also consider the electric field created by
a stationary electron. Draw the diagrams for these system when a C, P, and
T transformation is applied to them. Show that we reproduce the results in
Eq. (4.84).

9. Choose the Ao = 0 gauge. Since AO is no longer a Lagrange multiplier,
this means that Gauss's Law can no longer be applied; therefore, we cannot
impose V E = 0. This means we cannot reduce the system to the Coulomb
gauge. Resolve this paradox. [Hint: show that Gauss's Law commutes with
the Hamiltonian, and then use Eqs. (1.30) and (1.31).]

10. Given a Lagrangian:

H B F4, FaPEI"P (4.128)

what symmetries among C, P, T are broken?
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11. Consider the coupling: ja., /i Fu°. Take the nonrelativistic limit of this
expression, and show how this relates to the magnetic moment of the electron.

12. Prove that the inversion of the operator in Eq. (4.71) gives us the propagator
in Eq. (4.72).

13. Prove that the canonical commutation relation in Eq. (4.58) is satisfied if
we take the commutation relations Eq. (4.63) among the harmonic oscillator
states. Show that transversality is preserved.

14. It is often convenient to describe gauge theory in the mathematical language of
forms (especially when working in higher dimensions). Let the infinitesimal
dxu be antisymmetric under an operation we call A; that is, dxu A dx° =
-dx° A dxu. Define the operator d = dxu8N,. Prove that d is nilpotent,
that is, d2 = 0. Define the one-form A = AN,dxu. Define a p-form as
w = A dxu2 A A dxup. Show that dA = F, where F =
FN,vdxu A dx°, where A is the vector potential and F is the Maxwell tensor.

15. In n dimensions, define the Hodge operator *, which generates a duality
transformation:

* (dxu' Adx42 A... Adxun) = I Adx"P+2 A... Adxu"
(n - p)!

(4.129)
for p < n. Show that Maxwell's equations can now be summarized as:

dF=O; d*F=J (4.130)

Show that the Bianchi identity is a consequence of d2 = 0.

16. Define the operator S as:

8 = (-l)np+n+l *d*

Then show that 82 = 0 and that the Laplacian is given by:

0=(d+8)2=dS+Sd

(4.131)

(4.132)

17. Prove that Tµ° in Eq. (4.17) is conserved. (Hint: use the Bianchi identity.)





Chapter 5

Feynman Rules
and LSZ Reduction

The reason Dick's physics was so hard for ordinary people to grasp was
that he did not use equations. The usual way theoretical physics was done
since the time of Newton was to begin by writing down some equations
and then to work hard calculating solutions of the equations .... He had
a physical picture of the way things happen, and the picture gave him the
solution directly with a minimum of calculation. It was no wonder that
people who had spent their lives solving equations were baffled by him.
Their minds were analytical; his was pictorial.

-F. Dyson on R. Feynman

5.1 Cross Sections

So far, our discussion has been rather formal, with no connection to experiment.
This is because we have been concentrating on Green's functions, which are
unphysical; that is, they describe the motion of "off-shell" particles where pu
m2. However, the physical world that we measure in our laboratories is on-shell.
To make the connection to experiment, we need to rewrite our previous results in
terms of numbers that can be measured in the laboratory, such as decay rates of
unstable particles and scattering cross sections. There are many ways in which
to define the cross section, but perhaps the simplest and most intuitive way is to
define it as the effective "size" of each particle in the target:

Cross section = Effective size of target particle (5.1)

The cross section is thus the effective area of each target particle as seen by an
incoming beam. Cross sections are often measured in terms of "barns." (One barn
is 10-24 cm2.) A nucleon is about one fermi, or 10-13 cm across. Its area is
therefore about 10-26 cm2, or about 0.01 barns. Thus, by giving the cross section
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NB

i
-i

i

NT

Figure 5.1. A target with NT nuclei is bombarded with a beam with NB particles. The
cross section or is the effective size in cm2 of each nuclei as seen by the beam.

of a particle in a certain reaction, we can immediately calculate the effective size
of that particle in relationship to a nucleon.

To calculate the cross section in terms of the rate of collisions in a scattering
experiment, let us imagine a thin target with NT particles in it, each particle with
effective area o or cross section. As seen from an incoming beam, the total amount
of area taken up by these particles is therefore NTo. If we aim a beam of particles
at the target with area A, then the chance of hitting one of these particles is equal
to the total area that these target particles occupy (NT a) divided by the area A:

Chance of hitting a particle =
NTo
A

(5.2)

Let us say we fire a beam containing NB particles at the target. Then the
number of particles in the beam that are absorbed or deflected is NB times the
chance of being hit. Thus, the number of scattering events is given by:

Number of events = NB

or simply:

NTo

A

number of eventso- NBNT lA

(5.3)

(5.4)

This reconfirms that the cross section has dimensions of area (Fig. 5.1).
In actual practice, a more convenient way of expressing the cross section is

via the flux of the incoming beam, which is equal to pv. If the beam is moving
at velocity v toward a stationary target, then the number of particles in the beam
NB is equal to the density of the beam p times the volume. If the beam is a pulse
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that is turned on for t seconds, then the volume of the beam is vtA. Therefore,
NB = pvtA. The cross section can therefore be written as:

or =
number of events/t A

(pvtA)NT/t

number of events/t
pv

transition rate
=

flux
(5.5)

where we have normalized NT to be 1 and the transition rate is the number of
scattering events per second. The cross section is therefore equal to the transition
rate divided by the flux of the beam. (More precisely, the cross section is equal
to the transition probability per scatterer in the target and per unit incident flux.)
This is usually taken as the starting point in discussions of the cross section, but
unfortunately it is rather obscure and does not reveal its intuitive meaning as the
effective size of the target particle.

(We will be calculating the cross section in collinear Lorentz frames, i.e.,
where the incoming beam and target move along the same axis. Two common
collinear frames are the laboratory frame and the center-of-mass frame. If we
make a Lorentz transformation to any other collinear frame, the cross section is art
invariant, since a Lorentz contraction does not affect the cross section if we make
a boost along this axis. However, the cross section is not a true Lorentz invariant.
In fact, it transforms like an area under arbitrary Lorentz transformations.)

The next problem is to write the transition rate appearing in the cross section in
terms of the S matrix. We must therefore calculate the probability that a collection
of particles in some initial state i will decay or scatter into another collection of
particles in some final state j. From ordinary nonrelativistic quantum mechanics,
we know that the cross section a can be calculated by analyzing the properties
of the scattered wave. Using classical wave function techniques dating back to
Rayleigh, we know that a plane wave eikz scattering off a stationary, hard target is
given by:

eikz + L (-O) eikr
r

where the term with eikr represents the scattered wave, which is expanding radially
from the target. Therefore If(O)12 is proportional to the probability that a particle
scatters into an angle 0.

More precisely, the differential cross section is given by the square of f (B):

do
= If(0)I2 (5.7)

asp
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where the solid angle differential is given by:

2n 1f do = f do f1 dcosO (5.8)
0

and the total cross section is given by:

f d1 If(e)I2 = fdc = or (5.9)

For our purposes, however, this formulation is not suitable because it is inherently
nonrelativistic. To give a relativistic formulation, let us start at the beginning. We
wish to describe the scattering process that takes us from an initial state consisting
of a collection of free, asymptotic states at t -* -oo to a final state If) at t -* oo.
To calculate the probability of taking us from the initial state to the final state, we
introduce the S matrix:

Sfi = (fISIi)

= Sfi - i(2a)4S4(Pf - Pii (5.10)

where Sfi; symbolically represents the particles not interacting at all, and -qf i is
called the transition matrix, which describes non-trivial scattering.

One of the fundamental constraints coming from quantum mechanics is that
the S matrix is unitary:

1: S;jSfk=Sik
f

(5.11)

By taking the square of the S matrix, we can calculate the transition probabilities.
The probability that the collection of states i will make the transition to the final
states f is given by:

PP = Sf iSfi (5.12)

Likewise, the total probability that the initial states i will scatter into all possible
final states f is given by:

Ptot = E S; j S fi (5.13)
f

Now we must calculate precisely what we mean by E f. We begin by defining
our states within a box of volume V:

IP) = (2 r)32Ey/Vat(P)IO) (bosons)
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ip) = (23r)3(Ep/mV)at(p)i0) (fermions) (5.14)

Our states are therefore normalized as follows:

(pip') =

(PIP) =

(2 r)32Ep83(p - p')/ V

O3Erip

s3(P - PI)/ V

(bosons)

(fermions) (5.15)

With this normalization, the unit operator (on single paricle states) can be
expressed as:

Vd3p
(23r)32Ep

1p) (PI

(bosons)

3

1 f (27r)3 EP IP)(PI (fermions) (5.16)

To check our normalizations, we can let the number one act on an arbitrary state
iq), and we see that it leaves the state invariant. This means, however, that we
have an awkward definition of the number of states at a momentum p. With this
normalization, we find that:

(PIP) = (2jr)32Ep83(0)/ V (5.17)

which makes no sense. However, we will interpret this to mean that we are
actually calculating particle densities inside a large but finite box of size L and
volume V; that is, we define:

L/Z

s3(P) L-
1

3(fff_L/2
This implies that we take the definition:

83(o) =
( ) 3

We will let the volume of the box V tend to infinity only at the end of the
calculation. The origin of this problem is that we have been dealing with plane
waves, rather than wave packets that are confined to a specific region of space
and time. The price we pay for these nonlocalized plane waves is that we must
carefully divide out infinite quantities proportional to the volume of space and
time. (A more careful analysis would use wave packets that are completely
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localized in space and time; i.e., they have an envelope that restricts most of the
wave packet to a definite region of space and time. This analysis with wave
packets is somewhat more complicated, but yields precisely the same results.)

Our task is now to calculate the scattering cross section 1 + 2 --* 3 + 4 +
and the rate of decay of a single particle 1 --* 2 + 3 .

We must now define how we normalize the sum over final states. We will
integrate over all momenta of the various final states, and sum over all possible
final states. For each final state, we will integrate over the final momentum in a
Lorentz covariant fashion. We will use:

( I)4S4(p2 - m2)9(po) = f (2r)32EP

(5.19)

The density of states d N f, that is, the number of states within p and p + Sp, is:

dNf = Vd3p
(5.20)

,=1
(27r)

As before, the differential cross section do is the number of transitions per
unit time per unit volume divided by the flux J of incident particles:

do =
transitions per second per cm3

incident flux

ISf,I2dNf 1

( VT ) J (5.21)

We also know that the transition rate per unit volume (within a momentum-
space interval) is given by:

Transition rate per cm3

(2n)4S4(Pf - IZdNf

ISf,12dNf

VT

(2,,r)8 I-qf-, I254(Pf - P1)S4(0)
d N

VT f
(5.22)

where (27r)4S4(0) = VT.
To calculate the incident flux, we will first take a collinear frame, such as the

laboratory frame or center-of-mass frame. The incident flux J equals the product
of the density of the initial state (1 / V) and the relative velocity v = v 1 - v2
where v1 = lpil/E1:

J = Iv1 - V21/ V (5.23)
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In the center-of-mass frame, where p1 = -p2, we have:

V(2E1)(2E2)J = (2E1)(2E2)Ivl - V21 = 2E12E2 E - Pz

= 4Ip1E2 - p2EiI

= 4Ip1I(E1 + E2) = 4[(p1 P2)2 - mim2]1/2 (5.24)

(The last step is a bit deceiving, since it appears as if the flux is a Lorentz invariant
in all frames. The last equality only holds if the two particles are collinear. The last
step is not necessarily true for arbitrary Lorentz frames in which the two particles
are not collinear. To see this, we can also write the flux for a beam moving in the
z direction as:

N /L VJ EXyuvP1 P2 (5.25)

The flux now transforms as the x, y component of an antisymmetric second-rank
tensor; that is, as an inverse area. Since the cross section is an area as seen by a
particle in the beam, we expect it should transform as an area under an arbitrary
Lorentz transformation. From now on, we assume that all Lorentz frames are
collinear, so we can drop this distinction.)

The final formula for bosons for the differential cross section for 1 + 2 -->
3+4 . . . is therefore given by:

do _ (2Jr)4I.Af,I2S4(Pf - P;) -N7 dap;
(5.26)

4 [(pi p2)2 - mim2] 1/2 1_3 (27r)32Ep,

in a collinear frame where -67f; = ]-jN1(2Ep
V in the S matrix have precisely cancelled against other factors coming from

d N f and the flux.
[We should note that other normalization conventions are possible. For ex-

ample, we can always change the fermion normalization such that the 2m factor
appearing in Eqs. (3.109) and (3.110) disappears. Then, with this new normal-
ization, Eq. (5.26) works for both fermions and bosons. The advantage of this is
that we can then use Eq. (5.26) without having to make the distinction between
boson and fermion normalizations.]

Finally, we will use this formalism to compute the probability of the decay of
a single particle. The decay probability is given by:

P031 = fdNfISf1I2
f

E f - P,)]2 (5.27)
f
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where we have taken 5f i = 0 for a decay process. The last expression, unfor-
tunately, is singular because of the delta function squared. As before, however,
we assume that all our calculations are being performed in a large but finite box
of volume V over a large time interval T. We thus reinterpret one of the delta
functions as:

s4(0) _ ()4 (5.28)

We now define the decay rate r of an unstable particle as the transition probability
per unit volume of space and time:

r =
transition probability

sec x volume

=
Pt.(5.29)

VT(2E;)

The final result for the decay rate is given by:

r = (2jr)4

J
l f d3Pi

2E; 11 1l (27r)32Ej ,1254(Pf - P,) (5.30)

The lifetime of the particle r is then defined as the inverse of the decay rate:

(5.31)

5.2 Propagator Theory and Rutherford Scattering

Historically, calculations in QED were performed using two seemingly indepen-
dent formulations. One formulation was developed by Schwinger' and Tomonaga2
using a covariant generalization of operator methods developed in quantum me-
chanics. However, the formulation was exceedingly difficult to calculate with
and was physically opaque. The second formulation was developed by Feynman3
using the propagator approach. Feynman postulated a list of simple "rules" from
which one could pictorially setup the calculation for scattering matrices of arbi-
trary complexity. The weakness of Feynman's graphical methods, however, was
that they were not rigorously justified. Later, Dyson demonstrated the equiva-
lence of these two formulations by deriving Feynman's rules from the interaction
picture.

In this chapter, we first follow Feynman to show how the propagator method
gives us a rapid, convenient method of calculating the lowest order terms in the
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scattering matrix. Then we will develop the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formalism, in which one can develop the Feynman rules for
diagrams of arbitrary complexity.

At this point, we should emphasize that the Green's functions that appear in
the propagator approach are "off-shell"; that is, they do not satisfy the mass-shell
condition p2A = m2. Neither do they obey the usual equations of motion. The
Green's functions describe virtual particles, not physical ones. As we saw in the
previous chapter, the Green's function develops a pole in momentum space at
p2 = m2. However, there is no violation of cherished physical principles because
the Green's functions are not measurable quantities. The only measurable quantity
is the S matrix, where the external particles obey the mass-shell condition.

To begin calculating cross sections, let us review the propagator method in
ordinary quantum mechanics, where we wish to solve the equation:

ai at - H =0 (5.32)

We assume that the true Hamiltonian is split into two pieces: H = Ho + HI,
where the interaction piece H, is small. We wish to solve for the propagator
G(x, t; x', t'):

(i at - Ho - HI) G(x, t; x', t') = 83(x - x')S(t - t') (5.33)

If we could solve for the Green's function for the interacting case, then we can
use Huygen's principle to solve for the time evolution of the wave. We recall
that Huygen's principle says that the future evolution of a wave front can be
determined by assuming that every point along a wave front is an independent
source of an infinitesimal wave. By adding up the contribution of all these small
waves, we can determine the future location of the wave front. Mathematically,
this is expressed by the equation:

1/r(x, t) =
J

d3x'G(x, t; x', t')1/r(x', t'); t > t' (5.34)

Our next goal, therefore, is to solve for the complete Green's function G, which we
do not know, in terms of the free Green's function Go, which is well understood.
To find the propagator for the interacting case, we have to power expand in HI.
We will use the following formula for operators A and B:

1 _ 1

A+B A(1+A-1B)

_ 1 1

1+A-1B A
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_ (1 - A-1B +A-1BA-1B +...)A-1

= A-1 - A-1BA-1 +A-1BA-1BA-1 +.

Another way of writing this is:

_
A+B

Now let:

A+B
( . )

A =

B =
G =

Go =

a-Ho+iat

- HI

1/(A+B)

1/A 5.37)

Then we have the symbolic identities:

G =
G =

Go+GHIG0

Go+GoHIGo+GoHIGoHIGo+ (5.38)

More explicitly, we can recursively write this as:

G(x, t; x', t') = Go(x, t; x', t') +
J

dt1
J

d3x1 G(x, t;xl, t1)

x HI(xl, tl)Go(xl, t1;x', t') (5.39)

If we power expand this expression, we find:

G(x, t; x', t') = Go(x, t; x', t') +
J

dt1
J

d3x1

x Go(x, t;xl, tl)HI(x1, tl)Go(xl, tl;x', t')

1 _ A1 1 -1BA

+
J dt1 dt2 d3x1 d3x2Go(x, t;xl, tl)HI(xi, t1)

x Go(xl, tl;x2, t2)HI(x2, t2)Go(x2, t2;x', t')+.. (5.40)

Using Huygen's principle, we can power expand for the time evolution of the
wave function:

(5.35)

5 36

1i(x, t) = 1io(x, 0 + f d4x1 Go(x, t;xl, tl)1Fo(xl, t1)
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Figure 5.2. In the propagator approach, perturbation theory can be pictorially represented
as a particle interacting with a background potential at various points along its trajectory.

+
J

d4x1 d4x2 Go(x, t;xi, t1)H/(x1, t1)Go(x1, tl;x2, t2)*o(x2, t2)

+. .+ f d4xl ...d4xn Go(x, t; x1, t1)H/(x1, t1)...

x Go(xn-1, to-1;xn, tn)Y'o(xn, tn)+... (5.41)

In Figure 5.2, we have a pictorial representation of this diagram.
Let us now solve for the S matrix in lowest order. We postulate that at infinity,

there are free plane waves given by 0 = We want to calculate
the transition probability that a wave packet starts out in a certain initial state i,
scatters off the potential, and then re-emerges as another free plane wave, but in a
different final state f . To lowest order, the transition probability can be calculated
by examining Huygen's principle:

rf(x, t) = Oi(x, t)+J d4x' Go(x, t; x', t')HI(x', t')ci(x', t')+ (5.42)

To extract the S matrix, multiply this equation on the left by O j* and integrate.
The first term on the right then becomes Sid. Using the power expansion of the
Green's function, we can express the Green's function Go in terms of these free
fields. After integration, we find:

Sfi = Sfi +i J
d4x cf(x')HI(x').O;(x')+ (5.43)

Therefore, the transition matrix is proportional to the matrix element of the po-
tential HI. We will now generalize this exercise to the problem in question: the
calculation in QED of the scattering of an electron due to a stationary Coulomb
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Figure 5.3. An electron scatters off a stationary Coulomb field in lowest order perturbation
theory. This reproduces the Rutherford scattering cross section in the nonrelativistic limit.

potential. Our calculation should be able to reproduce the old Rutherford scat-
tering amplitude to lowest order in the nonrelativistic limit and give higher-order
quantum corrections to it. Our starting point is the Dirac electron in the presence
of an external, classical Coulomb potential (Fig. 5.3).

The interacting Dirac equation reads:

(i yA8A, - m)r(x) = eA(x)*(x) (5.44)

Since we are only working to lowest order and are treaty the potential A. as
a classical potential, we can solve this equation using only propagator methods.
The solution of this equation, as we have seen, is given by:

*(x) = ' i (x) + e f d4Y SF(X - Y) AYMY) (5.45)

where *o is a solution of the free, homogeneous Dirac equation. To calculate
the scattering matrix, it is convenient to insert the expansion of the Feynman
propagator SF(X - x') in terms of the time-ordered function 9(t - t'), as in Eq.
(3.137). Then we find:

2

*(x) = *i(x) - ie f d4y iO(t - t') f d3P j:j'(x)*,(y).$(y)*(y) (5.46)
=1

for t --* oo. We now wish to extract from this expression the amplitude that the
outgoing wave * (x) will be scattered in the final state, given by *f(x). This is
easily done by multiplying both sides of the equation and integrating over
all space-time. The result gives us the S matrix to lowest order:

Sfi = Sfi - ie f 91(x)*,(x) (5.47)
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Now we insert the expression for the vector potential, which corresponds to an
electric potential Ao given by the standard 1/r Coulomb potential:

Ze
A (x) = - (5 48)o 4nIxl

whose Fourier transform is given by:

.

f d'x iq.x = 47r
a (5.49)

Ig12IxI

Inserting the plane-wave expression for the fermion fields into the expression for
the scattering matrix in Eq. (5.47) and performing the integration over x, we have:

2iZe
Sfi = 4 rV

fd 4X
T;

u(pf, sf)epf x LY° IxI J E. u(pi, si)e-`ni X+

iZe2 / m2 u(pf,sf)Y°u(pi,s1)
V EfE, IgI2

We recall that Vd3pf/(27r)3 is the number of final states contained in the
momentum interval d3 p f. Multiply this by lS f,12 and we have the probability_
of transition per particle into these states. [We recall that squaring the S matrix
give us divergent quantities like S(0), which is due to the fact that we have not
rigorously localized the wave packets. We set 27r8(O) = T, where we localize the
scattering process in a box of size V and duration T j

If we divide by T, this give us the rate R of transitions per unit time into this
momentum interval. Finally, if we divide the rate of transitions by the flux of
incident particles Iv, I/ V, this gives us the differential cross section:

Vd3pf 1do =
Isf,I2

T2 3
V

( n) Iv,I/V
(5.51)

To calculate the differential cross section per unit of solid angle, we must
decompose the momentum volume element:

dap = dflp2 dp (5.52)

Using the fact that p f d p f= E f d E f, we have the result:

do 4Z2a2m2 1 _

° Z

_
To

=

u(pi, si)I
IgI4

r 2Iu(pfs sf)Y

sp

m

Ig14 ` J
.

- E2JrS(E ) (5 50)f , .
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In the last step, we have used the fact that the summation of spins can be
written as:

1ufrUi12 = (ufru,) (uIrtuf

(ufrui) (ujyortyouf)

uf,ara,pui,pui,y (yortyo)y,s uf,s

(iIi+m)
F"" (2:) (yortyo)y,s

l 2m 2m
y0rt y0 } (5.54)

where we have use the fact that the sum over spins in Eq. (3.109) gives us:

j!; +m
E ufl(p, S)ua(p, s) = 2m (5.55)
spins )fl.,

The last trace can be performed, since only the trace of even numbers of Dirac
matrices survives:

Tr y° p' y° lff = 4(2E; E f - pi pf) (5.56)

Finally, we need some kinematical information. If 9 is the angle between p f and
pi, then:

Pi Pf = m2 + 2p2E2 sm2(9/2)

1g12 = 41P12 sin2(9/2)

We then obtain the Mott cross section':

do Z2a2 1 _ p2 sin2 8

To 41p12 sin4(9/2) (2)

(5.57)

(5.58)

In the nonrelativistic limit, as -- 0, we obtain the celebrated Rutherford
scattering formula.
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5.3 LSZ Reduction Formulas

Up to now, we have made the approximation that certain fields, such as the
electromagnetic field, were classical. The development of scattering theory in this
approximation was rather intuitive.

In this chapter, we would like to introduce a more convenient method, the
LSZ reduction formalism,' from which we can derive scattering amplitudes to all
orders in perturbation theory. The LSZ method gives us a simple derivation of
Feynman's rules, which were originally derived from a more intuitive approach
using propagator theory.

The LSZ approach begins with the physical S matrix, making as few assump-
tions as possible. We start by defining the "in" and "out" states, which are free
particle states at asymptotic times; that is, t = -oo and oo, respectively. We
choose to distinguish them from the intermediate states, which are defined off-
shell and are interacting. Our goal is to express the interacting S matrix, defined
in terms of the unknown interacting field O(x), in terms of these free asymptotic
states. (We caution that in certain theories, such as QCD, the asymptotic states
are bound and do not correspond to free states.)

The S matrix is defined as the matrix element of the transition from one
asymptotic set of states to another. Let f denote a collection of free asymptotic
states at t = oo, while i refers to another collection of asymptotic states at t = -oo.
Then the S matrix describes the scattering of the i states into the f states:

Sfi = out (f 10in (5.59)

We postulate the existence of an operator S that converts asymptotic states at
t = oo to states at t = -oo:

If)in = Slf)out

Sfi = out(f ISII)out = in(f ISIi)in (5.60)

For these asymptotic states, we also have asymptotic fields oin and bout that are
free fields. Thus, we can use the machinery developed in Chapter 4 to describe
these asymptotic free states. In particular, we can use Eqs. (3.15) and (3.16) to
define the state vector as the vacuum state multiplied by creation operators:

Iq)in = al(q)10 )in

_ -i
J

d3x eq(x) a0 Oin(x)IO)in (5.61)
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The goal of the LSZ method is to reduce all expressions involving the full,
interacting field O(x) (which has matrix elements that cannot be easily computed)
into simpler expressions involving the free, asymptotic fields Oin and out. The
S matrix, written as a transition matrix, is useless to us at this moment. The
goal of the LSZ approach, therefore, is to continue this process until we have
gradually extracted out of the S matrix the entire set of fields contained within
the asymptotic states. Then we can use the machinery developed in the previous
chapter to manipulate and reduce these fields.

There is, however, a subtle point we should mention. Naively, one might
expect that the interacting field O(x), taken at infinitely negative or positive times,
should smoothly approach the value of the free asymptotic fields, so that:

x0 __+ -00; O(x) _ Z112O(x)in
(5.62)

where the factor Z1/2 arises because of renormalization effects (which will be
eliminated in Chapter 7). However, this naive assumption is actually incorrect.
If we take this "strong" assumption, then it can be shown that the S matrix
becomes trivial and no scattering takes place. We must therefore take the "weak"
assumption, that the matrix elements of the two fields O(x) and Oin approach each
other at infinitely negative times; that is:

x0 - * - oo; (f IO(x)I1) --*
Z1"2(f

IOin(x)Ii) (5.63)

For the moment, however, we will simply ignore the complications that arise due
to this. We will return to the question of evaluating Z later.

Let us now take an arbitrary S matrix element for the scattering of m particles
with momenta qj into n particles with momenta pi. We first extract the field
Ojn(g1) from the asymptotic "in" state:

out(p1, p2 "' pn I ql, q2, gm)in = out(pl, p2, pn laitn(g1)Ig2, q3, "' gm )in

= -i lim
J

d3x eq,(x) a0 out(Pl, p2, pnI (x)in Ig2, q3, gm)int--oo
(5.64)

Next, we wish to convert the three-dimensional integral f d3x into a four dimen-
sional one. We use the identity:

dtt
J

d 3x A(x, t) (5.65)(lim - lim )fd3xA(xt)=f°°too 00

Since we already have a term at t --+ -oo, we add and subtract the same term as
t --* oo. This therefore gives us an integral over four dimensional space-time,
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plus a term at t - oo:

out(p1, p2, ", pn Iql, q2, "' , gm)in =

+ iZ-1/2 fd4x 80 [eq,(x) 80 out(P1, p2, I.0(x)Ig2, )in]

- iZ-112 lim
r-oo f d3x [eq,(x) 80 out(p1, p2, IO(x)Ig2, )in]

(5.66)

This last term, in turn, can be written as the creation operator of an "out" state:

-iZ_1/2 lim f d3x [eq,(x) 80 out (P1, p2, I0(x)Ig2, )in]roo

= out(Pi, p2, laout(g1)Ig2, .)in (5.67)

The price of converting a three-dimensional integral to a four-dimensional one
is that we have now generated a new term at t --* oo, which is the matrix element of
an "out" operator at (q1). Because this "out' 'operator is an annihilation operator
if it acts to the left, in general it gives us zero. The only exception is if there
is, within the collection of "out" states, precisely the same state with momentum
q1. Thus, the matrix element vanishes unless, for example, the ith state with
momentum pi has exactly the same momentum as q1:

n

out(p1, p2 laout(g1)Ig2, q3, ')in = 2p°( )383(pi - 91)
t=1

X (5.68)

where the caret over a variable means that we delete that particular variable. This
term is called a "disconnected graph," because one particle emerges unaffected by
the scattering process, and is hence disconnected from the rest of the particles.

Now, we come to a key step in the calculation. So far, the expressions are
noncovariant because of the presence of two time derivatives. We will now
convert the time derivatives in the reduced matrix element into a fully covariant
object, thus restoring Lorentz invariance. This is possible because the operator
80 - 8? +m2 annihilates the plane wave exp(-iq1 x). By integrating by parts,
we will be able to convert the various time derivatives into a fully covariant 82:

d x a0 [eq,(x) a0 out(p1, ... I.0(x)Ig2, ...)in]f a
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- f d4x [aoeq,(x)] out(pl, ... I.0(x)Ig2, ...)in

+ fd4xeqI(x)aout(p1,...I(x)Iq2,)
in

f d4x [(-a2 + m2)eq, (x)] out(pl, ... I.0(x)Ig2, ...)in

+ fd4xeqI(x)aout(p1,...Icb(x)Iq2,.)in

= f d4x eq,(x)(a +m2) ..,(Pi ... I0(x)Ig2, )in (5.69)

Collecting our results, we find:

out(P1, P2, , pn Iqi, q2, ... , gm)in = disconnected graph

+ iZ-1/2 f d4x eq, (x) (a2 +m2) out(P1, p2, I-0(x)Ig2, )in

(5.70)

We have now completed the first step of the LSZ program. By extracting the
state with momentum ql from the "in" states, we now have reduced an abstract
S matrix element into the matrix element of a field 0. Our goal, obviously,
is to continue this process until all the asymptotic fields are extracted from the
asymptotic states.

A small complication emerges when we extract out a second field from the
"out" state with momentum pi. We find that we must adopt the time-ordered
product of two fields (otherwise, we cannot make the transition from time deriva-
tives to the Lorentz covariant derivatives). Repeating the identical steps as before,
and including this important feature of time ordering, we find:

out(pi, "' I0(x1)Ig2, out(P2, .. I0(xi)ain(pi)Ig2, "')in

+ iZ-1/2 f d4Y1 ep,(Yi) (au +m2)y, out(P29 ... ...)in

(5.71)

As before, the ain operator now acts to the right, where it is an annihilation operator
that destroys a state with exactly momentum pi, generating a disconnected graph.
Completing all steps, we now have the twice-reduced matrix element:

out(pi, I ql .. .)in = disconnected graphs
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+ (iZ-1/2)2 f d4xi d4y1 eP, (yl)eq, (Xl) (au + m)Yi (au +m)x,

X out(P2, ITcb(yl)cb(xi)Ig2, )in (5.72)

It is now straightforward to apply this reduction process to all fields contained
within the asymptotic state vectors. After each reduction, the only complication is
that we generate disconnected graphs and we must be careful with time ordering.
The final result is:

out(P1, P2, , pn Iql, q2, .. , gm)in = disconnected graphs

+ (iZ-112)n+m f d4y1...d4Xm
11 1 l en1(yi)eq;(Xj)/
i=1 j=1

x (a2 + m)Y, ... (a2 + M2).,.
(oI Tc(yl) ... cb(Xm)Io) (5.73)

(In general, we can choose momenta so that the disconnected graphs are zero.
For values of the momenta where the disconnected graphs are non-zero, we can
use this formalism to reduce them out as well.)

5.4 Reduction of Dirac Spinors

It is now straightforward to apply this formalism to the reduction of fermionic
S matrices. Following the steps of the bosonic case, we write the creation and
annihilation operators in terms of the original Dirac field. Then we write the
asymptotic condition as:

XO --+ -oo; (f I'(X)Ii) -4 Z2-1"2(f
Iiin(X)Ii) (5.74)

Next, we write the S matrix and reduce out one creation operator using Eq. (3.116):

out(f 1k, i)in = out(f E)I1)in

`_ -i llm fd3x out(f I Y'(X)YOII)inUk(X, E)too
= out(f Iboout(k, E)Ii)in

- iZ2-1/2 fd3x [OUt(fI t (X)I1)in(-1) a OYOUk(X, E)



146 Feynman Rules and LSZ Reduction

+ out(f *x)Ii)in(-l) a oy°Uk(X, 01 (5.75)

As before, we must convert the y° 8o into the covariant y u 8,,,. This is accomplished
because we can replace the time derivative with a space derivative (because the
spinor u(k, E)e-`k'X satisfies the Dirac equation). In this way, we can now write
down four different types of reduction formulas, depending on which creation or
annihilation process we are analyzing.

The reduction formulas after a single reduction now read as follows:

out(f Ibi(k, E)I1)in = -iZ2 1/2

J
d4x out(f IY' (x)I i)i (-i j -m)Uk(x, E)

out(f Idi,(k, E)I i)in = +iZ2-1/2 f d4xVk(x, E)(i 0 -m) out(f Ii(x)Ii)in

out(f Ibout(k, E)Ii)in = -iZ2-1/2 f d4XUk(x, E)(i 0 -m) out(f I / (x)I i)in

out(f Idout(k, E)Ii)in = +iZ2-1/2 f d4x out(f I(x)I i)in(-i j -m)Vk(x, E)

(5.76)

where we have dropped the disconnected graph.
Making successive reductions, until all creation and annihilation operators

are reduced out, is also straightforward. As before, we find that we must take
time-ordered matrix elements of the various fields. Let us take the matrix element
between incoming particles and outgoing particles. The incoming particles are
labeled by p1, p2, ... , while the incoming antiparticles are labeled by pi, p21 ....
The outgoing particles are labeled by q1, q2, ..., while the outgoing antiparticles
are labeled by qi, q2, ....

The matrix element, after reduction, yields the following:

out(°Ibout(gl) ... dout(gi) ... b1(Pi) ... dj,(p) ... I°)in

(-iZ2 1/2)"12(iZ2 1/2)-"'/2 f d4x1... d4xi ... d4Y1... d4y1 .. .

X Uqi (YOU 0 - m)y, ... VP;(xi)(iy - m)X'.. .

x(°IT (y )... * I°)

x(-i -m), -m)31,Vg1(Yi)... (5.77)
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where we have discarded the disconnected graphs. In this way, we can reduce out
even the most complex scattering processes in terms of the reduction formulas.

5.5 Time Evolution Operator

The LSZ reduction formulas have been able to convert the abstract S matrix
element into the product of vacuum expectation values of the fully interacting
fields. No approximations have been made. However, we still do not know how
to take matrix elements of the interacting fields. Hence, we cannot yet extract out
numbers out of these matrix elements. The problem is that everything is written
in terms of the fully interacting fields, of which we know almost nothing. The
key is now to make an approximation to the theory by power expanding in the
coupling constant, which is of the order of 1/137 for QED. We begin by splitting
the Hamiltonian into two distinct pieces:

H = Ho + H1 (5.78)

where Ho is the free Hamiltonian and H1 is the interacting part. For the 04 theory,
for example, the interacting part would be:

H, _ fd3xstei

A P4

4!
(5.79)

At this point, it is useful to remind ourselves from ordinary quantum mechanics
that there are several "pictures" in which to describe this time evolution. In the
Schrodinger picture, we recall, the wave function >/r(x, t) and state vector are
functions of time t, but the operators of the theory are constants in time. In
the Heisenberg picture, the reverse is true; that is, the wave function and state
vectors are constants in time, but the time evolution of the operators and dynamical
variables of the theory are governed by the Hamiltonian:

4(x, t) = etHt0(x 0)e-iHt (5.80)

In the LSZ formalism, we will find it convenient to define yet another picture,
which resembles the interaction picture. In this new picture, we need to find a
unitary operator U(t) that takes us from the fully interacting field O(x) to the free,
asymptotic "in" states:

0(t, x) = U-1(t)o;,,(t, x)U(t) (5.81)
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where U(t) - U(t, -oo) is a time evolution operator, which obeys:

U(t1, t2)U(t2, t3) = U(t1, t3)

U-1(t1, t2) = U(t2, t1)

U(t, t) = 1 (5.82)

Because we now have two totally different types of scalar fields, one free
and the other interacting, we must also be careful to distinguish the Hamiltonian
written in terms of the free or the interacting fields. Let H(t) be the fully interacting
Hamiltonian written in terms of the interacting field, and let H0(Oin) represent the
free Hamiltonian written in terms of the free asymptotic states. Then the free field
Oi,, and the interacting field satisfy two different equations of motion:

at
0(t, x) = i [H(t), O(t, x)]

at" (t, x) = i [Ho , 4jA(t, x)] (5.83)

To solve for U(t), we need to extract a few more identities. If we differentiate the
expression UU-1 = 1, we find:

[u(t)] U-1(t) + U(t)dt U-1(t) = 0 (5.84)

Now let us take the derivative of 0'. and use the identities that we have written
down:

a
O'(t,
x) = at [U(t)O(t, x)U-1]

U(t)O(t, x)U-1 + U(t)5(t, x)U-1(t) + U(t)O(t, x)U-1(t)

U(t) (U-10inU) U-1 + U(t) [i H(O, 7r), 0] U-1

+UU-1'inUU-1

UU-1 '+iU[H(lb,7r), O]U-1 +I i UU-1

= [&U-1 + i H(4", 7rin), Ou,] (5.85)

The last expression, in turn, must equal i [HO n, 0,,]. This means that the following
expression commutes with every "in" operator, and hence must be a c number:

U U-1 + i [H (4i 7rj) - HO n] = c number (5.86)
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(This c number, one can show, does not contribute to the S matrix.) Thus, the
U(t) operator satisfies the following:

i at U(t, to) = H1(t)U(t, to)

where:

(5.87)

HI(t) = H(Qiin, nin) - Hoin (5.88)

that is, H1(t) is defined to be the interaction Hamiltonian defined only with free,
asymptotic fields. Since H1(t) does not necessarily commute with H1(t') at
different times, the integration of the previous equation is a bit delicate. However,
one can show that:

U(t) =

=

U(t, -oo)

rT exp (-i f
00

dt1HJ(ti))

= T exp (-i
J

r dt1 f d3xi .ei(xi, ti)) (5.89)
o0

where the operator T means that, as we integrate over t1, we place the exponentials
sequentially in time order. To prove this expression, we simply insert it into Eq.
(5.87). Written in this form, however, this expression is not very useful. We will
find it much more convenient to power expand the exponential in a Taylor series,
so we have:

t '1 t

U(t) = 1+ ( )" f
dax1

d4x2 ...
n=1 n !

f
J oo J o0

X f d4xn T [-°i(xl)-Wl(x2)...M, (xn)] (5.90)r
00

(See Exercise 10 concerning the change in the upper limits of integration.) Now
that we have an explicit solution for U(t), let us decompose the interacting Green's
function. If we take the matrix element of a series of interacting 0 fields, we will
use the U(t) operator to convert the entire expression to free, asymptotic fields.
To do this, let us first choose a sequence of space-time points xµ, time ordered
such that x1 > x2 > x°, so we can drop the time ordering operator T.

Then we can replace all interacting fields with free fields by making the
conversion 0 = U-14inU everywhere:

(OI T (0(x1)0(x2) ... 4(Xn))10) = (0I0(xl) ...'(Xn)I0)
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= (OIU-1(tl)Oin(Xl)U(tl)U-l(t2)0in(X2)U(t2)

o)

(5.91)

where t is an arbitrarily long time, much greater than t1, and -t is much less than
tn. We will later set t = oo. In the last line, since we have restored the time
ordering operator T, we are allowed to move all U's around inside the matrix
element. We can thus combine them all into one large U(t, -t), which in turn can
be expanded as a function of the interacting Lagrangian (defined strictly in terms
of free, asymptotic fields).

There is now one last step that must be performed. We still have the term
U(-t)I0) and (01U-1(t) to eliminate in the limit as t --+ oo. In general, since we
assume that the vacuum is stable for this theory, we know that the vacuum is an
eigenstate of the U operator, up to some phase.

Since U(t) _- U(t, -oo), we can set:

lim U(-t)10) = 10)too (5.92)

where we have taken the limit so that U(-oo, -oo) = 1. However, for the
other state (01U-1(t), we must be a bit more careful, since the limit gives us
U-l(oo) = U(-oo, +oo). Since the vacuum is stable, this means that the vacuum
at t = -oo remains the vacuum at t = +oo, modulo a possible phase X. We thus
find:

lim (01U-1(t) =.1(01 (5.93)too

By hitting the equation with 10), the phase A is equal to:

A = 1im (01U-1(t)IO)too

... U(tn-1)U-1(tn)Oin(Xn)U(tn)10)

(OIU-1(t1)Oin(X1)U, (t1, t2)0in(X2)... U(tn-1, tnMn(Xn)U(tn)I0)

(01U-1(t)U(t, t1)Y'in(X1) ...Oin(Xn)U(tn, -t)U(-t)10)

(OI
U-1(t)T

[(x1)ifl(x2)... Oin(Xn)U(t, -t)] U(-t)l0)

U-1(t)T [ in(xl) ... Oin(xn) exp (-i ft dt'Hi(t')) I U(-t)

= lim (OIU(t)I0)-1
tcc
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T exp (i
J d4x2'i(0,.)) (5.94)

The phase A thus gives us the contribution of vacuum-to-vacuum graphs (i.e.,
graphs without any external legs). Putting everything together, we now have an
expression for the Green's function defined with interacting fields:

G(xi, x2, ... , xR) = (OI T [0(x1)0(x2) ... 0(xR)] 10) (5.95)

This interacting Green's function, written in terms of free fields, becomes:

G(xi,x2,...,x.)

(0IT0n(xi)...O(xR)exp{if d4x&i( )110)

(OI T exp { i f d4x&i [0(x)] } 10)
(5.96)

Using the formalism that we have constructed, we can rewrite the previous
matrix element entirely in terms of the asymptotic "in" fields by a power expansion
of the exponential:

G(xi,x2,...,xR) =
m

...O(X.).W,(YOA(yz)..., ,(ym)]10),

t f
( ) d4y1... d4ym (OI T [0(X1)0(X2)

m!

f

(5.97)

where the subscript c refers to connected diagrams only. (From now on, we will
drop the "in" subscript on all fields. However, we must remind the reader that we
have made the transition from the Heisenberg picture to this new picture where
all fields are free.)

The next step is to actually evaluate the time ordered product of an arbitrary
number of free fields. To do this, we appeal to Wick's theorem.

5.6 Wick's Theorem

We begin our discussion by defining the "normal ordering" of operators. In

general, unlike the classical situation, the product of two quantum fields taken at
the same point is singular:

lim 0(x)O(y) = 00 (5.98)
X'-.y
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(In fact, in Chapter 14, we will investigate precisely how divergent this expression
is.) Unfortunately, our action consists of fields multiplied at the same point; so
the transition to the quantum theory is actually slightly ambiguous. To render our
expressions rigorous, we recall the normal ordered product of two fields introduced
in Eq. (3.27). Let us decompose the scalar field into its creation operators [labeled
by a - sign, and annihilation operators, labeled by a + sign: O(x) = +(x)+0(x)-].
Then the normal ordered product of these fields simply rearranges the creation and
annihilation parts such that the creation operators always appear on the left, and
annihilation operators always appear on the right. The normal ordered product is
defined as:

O(x)O(y) : = O(x)+O+(y) + O(x)-4+(y) + O(y)-4+(x)

+ OW-h-(y) (5.99)

(The normal ordered product of two fields is no longer a local object, since we
have split up the components within the fields and reshuffled them.)

One consequence of normal ordering is that the vacuum expectation value of
any normal ordered product vanishes, since annihilation operators always appear
on the right. It vanishes because:

0+IO) = (0I0- = 0 (5.100)

Similarly, one can define normal ordered products for more complicated products
of fields. Now we can proceed to find the relationship between normal ordered
products and time ordered products. It is easy to prove the following identity, or
Wick's theorem for two fields:

T [0(x1)0(x2)] =: 0(x1)0(x2) : + c number (5.101)

The only difference between the time ordered and normal ordered products is
that we have reshuffled the various annihilation and creation parts of the fields.
Each time we commute parts of the fields past each other, we pick up c-number
expressions. To find what this c-number expression is, we now simply take the
vacuum expectation value of both sides. Since the vacuum expectation value of
normal ordered products is zero, we find:

T [0(x1)0(x2)] =: 0(x1)0(x2) : +(OI T [0(x1)0(x2)] 10) (5.102)

If we have three fields, then Wick's theoremb reads:

T (0(x1)0(x2)0(x3)) = : 0(x1)0(x2)0(x3)
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+ (OI T [0(x1)0(x2)] IOWx3)

+ (OI T [O(x2)0(x3)] IO*xi)

+ (OI T [O(x3)0(xl)] IO*x2) (5.103)

The last three terms can be succinctly summarized by the sum Ype., which
means summing over all permutations of x1, x2, x3. To prove this expression with
three scalar fields, we take the original identity with just two scalar fields, and
multiply both sides of the equation on the right by O(x3), which has the earliest
time. Then we merge QJ(x3) into the normal ordered product. Merging 0+(x3)
into the normal ordered product is easy, since the annihilation operators are on the
right, anyway. However, merging 0-(x3) into the normal ordered product is more
difficult, since 0-(x3) must move past 0+(xl) and 0+(x2). Each time it moves
past one of these terms, we pick up a c-number expression, which is equal to the
time ordered product; that is:

(010+(X2)0 -(X3)10) = (O10(X2)0(X3)JO)

= (OI T [O(x2)0(x3)] 10) (5.104)

In this way, we pick up all the terms in the Wick identity. Likewise, for four field
we have:

(OIT [4(xi) ...O(x4)] 10) O(xi) ...O(x4)

+E(0IT [0(x1)0(x2)] 10) :O(x3)0(x4)
perm

+ E(0IT [0(x1)0(x2)]I0)(OIT [O(x3)0(x4)] 10) (5.105)
perm

By now, it should be obvious that the time ordered product of n fields can be
written in terms of sum of normal ordered products. For the general n-point case
(n even), Wick's theorem reads:

T [O(xi)O(x2) ... 0(xR)] =: O(xi)O(x2) ... O(X.)

+ J:(OIT [0(xi)0(x2)] IO) : O(x3) ...O(xR)
perm

+ E(OIT [0(x1)0(x2)]I0)(OIT [O(x3)0(x4)]10) :

O(x5)...4(xR)

perm

+ E(0IT (0(x1)4(x2))I0)...(OIT (4(x.-1)4(x.))10) (5.106)

perm
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For n odd, the last line reads:

E(OIT [0(x1)0(x2)] 10) ... (OIT [0(xf-2)0(xn-1)] I0)0(xn) (5.107)
perm

These formulas are proved by induction on n. If we assume that they hold for
n - 1, then we multiply the entire formula on the right by which has the
earliest time. Then, by merging with the rest of the products, we find that the
formula now holds for n. The proof is straightforward, and runs the same as for
the case described earlier. Merging poses no problem, since annihilation
operators are on the right anyway. However, each time moves past 0+(x3 ),
we pick up a commutator, which is equal to the vacuum expectation of the time
ordered product of the two fields. In this way, it is easy to show that we pick up
the nth Wick's theorem.

If we take the vacuum expectation value of both sides of the equation, then
Wick's theorem for vacuum expectation values reads:

(0IT[0(xi)0(x2) ...O(x.)]I0) = E(0IT [0(x00(x2)] 10)
perm

... (OIT [0(xn-1)0(xn)J1O) (5.108)

The generalization to fermionic fields is also straightforward. [The only com-
plication is that we pick up extra minus signs because of the anti-commutation
properties of fermionic fields. For more complicated products, we must always
insert (-1) whenever fermion fields move past each other.] We find:

T [i/,(x)i ,(Y)] =: i/,(x),G (Y) : +(OIT ['G'(x)i r(Y)] 10) (5.109)

Now insert Eqs. (5.97) and (5.108) into Eq. (5.73). This gives us a complete
reduction of the S matrix (written as a function of interacting fields) in terms of
Green's functions of free fields, as desired. In the last step, we can eliminate the
(aµ + m2) factors appearing in Eq. (5.73), because they act on two-point Green's
functions and become delta functions:

(aµ + m2)X(OIT0(x)0(Y)IO) = -i84(x - Y)

(i 0 - m). (0I T>/r(x)>/r(Y)I0) = i84(x - y) (5.110)

In this fashion, we have how completely reduced the S matrix element into sums
of products of two-point Green's functions and certain vertex elements. Although
Wick's theorem seems a bit tedious, in actual practice the decomposition proceeds
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rapidly. To see this, we will analyze the four-point function taken to first order in
with an interaction given by -X4/4!. We want to expand:

i ...G(xl, ...x4) = -4J d4y(OJT [O(xl)...4'(x4)IP(Y)4] 10)+

a

(-iA) f d4y f (OAT [0(xi)0(Y)] 10) + .. .
i=1

a

(-iA) f d4y f j [i0F(xi - y)] +... (5.111)
i=1

where we have used Wick's theorem. The 4! term has disappeared, because there
are 4! ways in which four external legs at xi can be connected to the four fields
contained within 04.

Another example of this decomposition is given by the four-point function
taken to second order:

2

G(x1, ... , x4) =
4 x/ 2!

f d4Y1 f d4Y2(oIT {O(x1) ... O(x4)

x {0(Y1)4]{0(Y2)4]}fO) (5.112)

The expansion, via Wick's theorem, is straightforward:

G(x1, ...X4)

where:

(1 .
_

21)
f d4Y1 f d4Y2{[i0F(Y1 - Y2)]2

AA

+ [i0F(Y1 -Y1)][i0F(Y1 -Y2)]OB} (5.113)

OF(X1 - Yl)OF(x2 - Y1)OF(x3 - Y2)OF(X4 - Y2)

+ OF(X1 - Y1)OF(x3 - Y1)OF(x2 - Y2)OF(X4 - Y2)

+ OF(X1 - Y1)OF(x4 - Y1)OF(X2 - Y2)OF(X3 - Y2) (5.114)

DA

AB = OF(X1 - Yl)OF(x2 - Y2)OF(X3 - Y2)OF(X4 Y2)

+OF(Xl - Y2)OF(X2 - Y1)OF(x3 - Y2)OF(X4 - Y2)

+ OF(X1 - Y2)OF(X2 - Y2)OF(X3 - Y1)OF(x4 - Y2)

+ OF(X1 - Y2)OF(X2 - Y2)OF(X3 - Yl)OF(x4 - Y2) (5.115)

These are shown graphically in Figure 5.4.
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1 2

::( X
4 3

XXX
Figure 5.4. The Feynman diagrams corresponding to the Wick decomposition of O4 theory
to second order.

Finally, we will convert from x-space to p-space by using Eqs. (3.50) and
(3.135). When we perform the x integrations, we obtain a delta function at
each vertex, which represents the conservation of momentum When all x-space
-integrations--are, performed, we are left with one 1elta function representing overall
momentum conservation. We are also left with a momentum integration for each
internal loop. Then all Feynman's rules can be represented entirely in momentum
space.

5.7 Feynman's Rules

From this, we can extract graphical rules by Feynman rules, by which we can
almost by inspection construct Green's functions of arbitrary complexity. With an
interaction Lagrangian given by -X4/4!, .Ofi appearing in Eq. (5.26) can be
calculated as follows:

1. Draw all possible connected, topologically distinct diagrams, including loops,
with n external legs. Ignore vacuum-to-vacuum graphs.

2. For each internal line, associate a propagator given by:

P

ii0F(P) _ p2-m2+iE (5.116)

3. For each vertex, associate the factor -iA.
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4. For each internal momentum corresponding to an internal loop, associate an
integration factor:

d4p

(27r)4

5. Divide each graph by an overall symmetry factor S corresponding to the
number of ways one can permute the internal lines and vertices, leaving the
external lines fixed.

6. Momentum is conserved at each vertex.

The symmetry factor S is easily calculated. For the four-point function given
above, the 1/4! coming from the interaction Lagrangian cancels the 4! ways in
which the four external lines can be paired off with the four scalar fields appearing
in 04, so S = 1. Now consider the connected two-point diagram at second order,
which is a double-loop diagram (which has the topology of the symbol 0). There
are 4 ways in which each external leg can be connected to each vertex. There are
3 x 2 ways in which the internal vertices can be paired off. So this gives us a
factor of 1/S = (1/4!)(1/4!) x (4 x 4) x (3 x 2) = 1/3!, so S = 6.

ForQED, the Feynman's-rules areonly abitmore
Hamiltonian becomes:

MI = i/iAN,

As before, the power expansion of the interacting Lagrangian will pull down
various factors of .°I. Then we use Wick's theorem to pair off the various
fermion and vector meson lines to form propagators and vertices.

There are only a few differences that we must note. First, when contracting
over an internal fermion loop, we must flip one spinor past the others to perform
the trace and Wick decomposition. This means that there must be an extra -1
factor inserted into all fermion loop integrations.

Second, various vector meson propagators in different gauges may be used,
but all the terms proportional to p, or p vanish because of gauge invariance
(which will be discussed more in detail later).

Thus, the Feynman's rules for QED become:

oniuticaiv

(5.117)

(5.118)

1. For each internal fermion line, associate a propagator given by:

iSF(p)=
i _ i(1(+m)

1!-m+ie p2-m2+ie P
(5.119)
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2. For each internal photon line, associate a propagator:

19µv
iDF(p)µv = p2+iE µ p v

(5.120)

3. At each vertex, place a factor of-

- ieyN,

4. Insert an additional factor of -1 for each closed fermion loop.

5. For each internal loop, integrate over:

d44
(27r)4

(5.121)

(5.122)

6. A relative factor -1 appears between graphs that differ from each other by an
interchange of two identical external fermion lines.

7. Internal fermion lines appear with arrows in both clockwise and counter-
clockwise directions. However, diagrams that are topologically equivalent
are counted only once.

8. External electron and positron lines entering a graph appear with factors
u(p, s) and v(p, s), respectively. External electron and positron lines leaving
a graph appear with factors u(p, s) and v(p, s), respectively. The direction of
the positron lines is taken to be opposite of the electron lines, so that incoming
positrons have momenta leaving the diagram.

Likewise, we can calculate Feynman's rules for any of the actions that we
have investigated earlier.

For example, for charged scalar electrodynamics, with the additional term in
the Lagrangian:

2' = D 1cbt D"O _ M2cbtcb
(5.123)

one has the following interaction Hamiltonian:

M, = -ieot (a µ - a 4A1` - e2A2Ot4 (5.124)

The Feynman rules are as follows:
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1. For each scalar-scalar-vector vertex, insert the factor:
µ

-ie(p+p')N
p;Ir ap

where p and p' are the momenta for the scalar line. \

159

(5.125)

2. Insert a factor of.

tie
2gµ (5.126)

for each "seagull" graph.
P.;1(

mar'

3. Insert an additional factor of 1/2 for each closed loop with only two photon
lines.

In summary, we have seen that, historically, there were two ways in which
to quantize QED. The first method, pioneered by Feynman, was the propagator
approach, which was simple, pictorial, but not very rigorous. The second was the
more conventional operator approach of Schwinger and Tomonaga. In this chapter,
we have presented the LSZ approach, which is perhaps the most convenient method
for deriving the Feynman rules for any quantum field theory.

With Feynman rules, one can almost, by inspection, write down the perturba-
tion expansion for any quantum field theory. In the next chapter, we will use these

rules to calculate higher-order interactions in QED.

5.8 Exercises

1. Set up the reduction formulas for a massless and massive vector meson.
Derive the counterpart of Eqs. (5.73) and (5.77).

2. Write down the Feynman rules for a massive pseudoscalar field interacting
with a Dirac electron via the interaction ,1ry5 ,1r4.

3. Write down the Feynman rules for a massive pseudovector field interacting
with the Dirac field via the term ,/ry5yµ>/iAN,.

4. In the "old-fashioned" noncovariant canonical approach to QED in the
Coulomb gauge, one derived the scattering matrix by solving the Schrddinger
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equation with a second-quantized Hamiltonian, in which the interactions were
ordered in time. Draw the complete set of noncovariant diagrams that are nec-
essary to describe electron-electron scattering in QED to the one-loop level.
Sketch how several noncovariant diagrams can be summed to produce a single
covariant Feynman diagram.

5. Prove:

(N - M)!6
111112-11 Cla2-CX M A1112-11M

M

where:

Ey1V2...yM01p2...pN-M = 6V11y2...VM

5111 3/ 12 ...311Mµ1...µM
[111 112 VM)

(5.127)

(5.128)

6. Show the equivalence of the two expressions for the flux J in Eqs. (5.24) and
(5.25) and show the equality only holds in collinear frames. [Hint: square
Eq. (5.25), and then expand the product of two Eµ°°fl tensors in terms of delta
functions.]

7. In Compton scattering, a photon scatters off an electron. Show -that the- relative
velocity I v 1- V21 appearing in the cross-section formula can exceed the speed
of light. Is this a violation of relativity? Why or why not?

8. Prove Furry's theorem9, which states that a Feynman loop diagram containing
an odd number of external photon lines vanishes. (Hint: Show that a fermion
loop with an odd number of legs cancels against another fermion loop with
the arrows reversed, or use the fact that QED is invariant under charge con-
jugation. The fields transform as: C>/,T and AN, --+ -Au. Show
that these diagrams are odd under C and hence not allowed.)

9. The factor A in Eq. (5.94) contains Feynman graphs with no external legs.
For QED, draw all such diagrams up to the second-loop level. Do not solve.

10. If we power expand Eq. (5.89) in a Taylor series, we find:

00 t

fU(t, t') = 1 + (-in
J

dt1 dt2 ... f dtN

x T (°i(t1).. .i(tn)) (5.129)

Prove this, and then show that it equals Eq. (5.90). (Hint: take the lowest
order, and on a graph, draw the integration regions for t1 and t2. Show that
the identity holds for this case, and then generalize to the arbitrary case.)
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11. Prove that the time-ordered product in Eq. (5.73) always emerges when we
make the LSZ reduction of more than one field from the asymptotic states.

12. Let us define the following Green's function:

0'(x, x) _ -i (0I[O(x), O(x')]10) (5.130)

Insert a complete set of intermediate states within the commutator:

1 = E In)(nI = f d4g84(pn - q) (5.131)
n

Prove that the commutator becomes:

0'(x - x) = f 00 da 2 P(Q2)A(x - x', a) (5.132)
0

where:

P(q) = P(g2)6(go)

= (2 r)3 E 84(Pn - q)1(010(0)jn)__ (5.133)
n

This is the Kallen-Lehmann spectral representation8.9. [Since a appears in
this formula as a mass, this formula states that the complete, interacting value
of A' is equal to the integral over all possible free A' with arbitrary mass o,,
weighted by the unknown function p(U2).]

13. Let us separate out the one-particle contribution to the smeared average. Then
we find:

0'(x - x) = ZA(x - x'; m) + f dal p(Q2)A(x - x'; Q) (5.134)
2

Also, m2 is the lowest mass squared that contributes to the continuum above
the one-particle contribution. For example, for pions, m2 = 4mn. Take the
time derivative of both sides, reducing the Green's functions to delta functions.
Then show:

1 = Z + P(Q2) dalL
which implies:

(5.135)

0<Z<1 (5.136)
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When Z = 1, this means that the p function is zero, so the theory has collapsed
into a free theory. For an interacting theory, we must have Z < 1.

14. Renormalization constants are usually thought to be infinite quantities, yet we
have just shown that Z is less than one. Is there a contradiction?

15. For 04 theory, prove that the symmetry factor S equals:

S=C 1 1 26(n!)°^ (5.137)

where a equals the number of pairs of vertices that are connected by n
identical lines, b is the number of lines that connect a vertex with itself, and
c is the number of permutations of vertices that leave the diagram invariant
when the external lines are fixed. What is S for QED?



Chapter 6

Scattering Processes
and the S Matrix

I was sort of half-dreaming, like a kid would ... that it would be funny if
these funny pictures turned out to be useful, because the damned Physical
Review would be full of these odd-looking things. And that turned out to
be true.

-R. Feynman

6.1 Compton Effect

Now that we have derived die Feynman rules for various quantum field theories,
the next step is to calculate cross sections for elementary processes involving
photons, electrons, and antielectrons. At the lowest order, these cross sections
reproduce classical results found with earlier methods. However, the full power of
the quantum field theory will be seen at higher orders, where we calculate radiative
corrections to the hydrogen atom that have been verified to great accuracy. In the
process, we will solve the problem of the electron self-energy, which completely
eluded earlier, classical attempts by Lorentz and others.

At the end of this chapter, we will also investigate the S matrix itself. Rather
than appeal to perturbation theory and summing Feynman diagrams, we will
impose mathematical constraints directly on the S matrix, like unitarity and an-
alyticity, to obtain nontrivial constraints on n -nucleon scattering. These results
hold without ever appealing to any perturbative power expansion.

The material covered in this chapter is fairly standard, and the reader is urged to
consult other excellent texts for other details, such as Bjorken and Drell, Itzykson
and Zuber, and Mandl and Shaw.

To begin our discussion, we will divide Feynman diagrams into two types,
"trees" and "loops," on the basis of their topology. Loop diagrams, as their name
suggests, have closed loops in them. Tree diagrams have no loops; that is, they
only have branches. In a scattering process, we will see that the sum over tree
diagrams is finite and reproduces the classical result. The loop diagrams, by
contrast, are usually divergent and are purely quantum-mechanical effects.
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We start by analyzing the lowest-order terms in the scattering matrix for four
particles or fields. To this order, we find only tree diagrams and no loops. Thus,
we should be able to reproduce generalizations of classical and nonrelativistic
physics. (Interestingly enough, we will find that negative energy states cannot
be omitted in these calculations, even in the nonrelativistic limit. Although these
negative energy states are purely a byproduct of relativity, if we drop them, then
we will fail to reproduce the classical and nonrelativistic results.)

In this chart, we will summarize the scattering processes that we will analyze
in the first part of this chapter:

Compton scattering:

Pair annihilation:

Maer scattering:

Bhabha scattering:

Bremsstrahlung:

Pair creation:

e +e -)y+y

y + y -- e- +e+

There is a reason for writing these scattering processes in this particular order.
If we take the Feynman diagrams for Compton scattering and rotate them by 90
degrees, we find that they turn into the Feynman diagrams for pair annihilation.
This is called the substitution rule, where we take the process:

and convert it into:
1+2-*3+4

1+3 , 2+4

Using the substitution rule, we can group these scattering processes into pairs:

Compton effect

Maer scattering

Bremsstrahlung

Pair annihilation

Bhabha scattering

Pair creation

There are several advantages to using this symmetry. At the superficial level,
this means that we can, almost by inspection, convert the scattering amplitude
of one process into that of the other, thereby saving a considerable amount of
time. At a deeper level, it signals the fact that the S matrix obeys a new kind
of symmetry, called crossing symmetry. If we treat the S matrix as an analytic
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Pr, sf

k,E k, E

Figure 6.1. Compton scattering: a photon of momentum k scatters elastically off an
electron of momentum p;.

function of the energy variables, then crossing symmetry relates different analytic
regions of the S matrix to each other in a non-trivial way.

To begin, the first process we will examine is Compton scattering, which occurs
when an electron and a photon collide and scatter elastically. Historically, this
process was crucial in confirming that electromagnetic radiation had particlelike
properties, that is, that the photon was acting like a particle in colliding with the
electron. (We will then, using the substitution rule, derive the Feynman amplitude
for pair annihilation.)

We will assume that the electron has momentum pi before the collision and p f
afterwards. The photon has momentum k before and k' afterwards. The reaction
can be represented symbolically as:

Y(k)+e(pi) y(k')+e(pf)

By energy-momentum conservation, we also have:

(6.3)

k+pi =k'+pf (6.4)

Compton scattering, to lowest order, is shown in Figure 6.1.
We normalize the wave function of the photon by:

1

2kV

To lowest order, the S matrix is:

z

Sfi = V2(27r)43 (pf+k'-pi-k)
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x
m

u(Pf sf) ((-i
VI') i (-i D

Ef 2k' p'+jt -m

(-i o i (-i D m
+ 2k 11i - V' - m 2k') E, u (Pj, si) (6.6)

The differential cross section ;, found in several steps. First, we square the
S matrix, which gives us a divergent result. We divide by the singular quantity
(2n)43(0) and obtain the rate of transitions. We divide by the flux IvI/ V, divide
by the number of particles per unit volume 1/ V, multiply by the phase factor
for outgoing particles [V2/(2n)6] d3pf d3k'. This give us the differential cross
section:

ISf,12 1 V2d3Pfdsk'
(2n)43(0) wI (2n)6

ea m 1_ 2

(2n)2lvl E; 2k
f i: iufI'ui

spins

a m d3pf d3k'xS (p,+k-pf-k)
Ef 2k'

where:

r = ' 'K+ 0' II'

(6.7)

(6.8)

To reduce out the spins, we will once again use the convenient formula given
in Eq. (5.54):

lE ju(Pf, sf)ru(P+, s,)12 = Tr (r
+

yort yo
P(f +m

2m 1
spins

2m

m
(6.9)

Although this calculation looks formidable, we can perform the trace of up to eight
Dirac matrices by reducing it to the trace of six, and then four Dirac matrices, etc.
We will use the formula:

Tr(i 112 j13... jl2n) = j14 ...Y2n)

j13... j11n-1) (6.10)

The problem simplifies enormously because we can eliminate entire groups of
terms every time certain dot products appear, since:

k2 = ki2 = e k = c' - k' = 0 (6.11)
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We can also simplify the calculation by using:

E2=E'2p?=pf=m2 (6.12)

In short, each trace consists of collecting the complete set of all possible pairs of
dot products of vectors, most of which vanish. Dividing the factors into smaller
pieces, we now find:

4

where:

and:

T2

lufru;12 T,
spins i=1

Tr[ s' Y(P(j+m) V '(If+m)]

jl '11f)

'I(f)
8 pi k[2(E' k)2 +k' pi l

(6.13)

(6.14)

Tr ( ' Jt(di +m) JI' $( "f +m))

2k piTr (it' pi k'

8k p; k' p f[2(E' . E)2 - 1] + 8(k' . E)2k pi - 8(k ..G)2 k' pi

(6.15)

We also have T3 equal to T2, and T4 can be obtained from T3 if we make the
substitution: (E, k) -+ (E', -k'). Since the calculation is Lorentz invariant, we
can always take a specific Lorentz frame. We lose no generality by letting the
electron be at rest, and let the incoming photon lie along the z axis. Let the
outgoing photon scatter within the y - z plane, making an angle 0 with the z axis
(Fig. 6.2).

Then the specific parametrization is given by:

Pi", _ (m, 0, 0, 0)

k,,, = k(1, 0, 0, 1)

k' =

pt;,, =

k'(1, 0, sinO, cosO)

(E, 0, -k' sin O, k - k' cos O) (6.16)
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Figure 6.2. Compton scattering in the laboratory frame, where the electron is at rest.

It is important to notice that the only independent variables in this scattering are
k and 0. All other variables can be expressed in terms of these two variables. For
example, we can solve for k' and E in terms of the independent variables k and 0:

k' =
k

1 + (k/m)(1 - cos0)

E = m+k-k' (6.17)

Adding all four contributions, we now have:

E I u(pf, Sf)ru(pi, Si)12 =
spins

2MI2
k + k' + 4(E' E)2 - 2 (6.18)

We now must integrate over the momenta of the outgoing photon k' and electron
p f. Since the only independent variables in the problem are given by k and 0,
all integrations are easy, except for the Jacobian, which arises when we change
variables and integrate over Dirac delta functions. Thus, the integration over d3 p f
is trivial because of momentum conservation; it simply sets the momenta to be the
values given above. That leaves one complication, the integration over the time
components dp fo. However, this integration can be rewritten in a simple fashion:

1
=

2Ef
dpfo S(pf -m2)e(pf,o) (6.19)

The integration over p f,o in the integral just sets its value to be the on-shell value.
Finally, this last delta function can be removed because of the integration over k'.
The only tricky part is to extract from this last integration the measure when we
integrate over k'.
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This last delta function can be written as:

3 ([k + pi - k']2 - m2) = S (2m(k - k') - 2kk'(1 - cos B))

3(k' - k'(k))
(2mk/k')

(6.20)

where k'(k) is the value given in Eq. (6.17). Putting all integration factors together,
we now have:

3

i2

84( +k-k'- p)f d3k'
21)(6pfpi 2E

f 2mk/ k( ')
.

Inserting all expressions into the cross section, we obtain the Klein-Nishina
formula' :

d 52 4m (k) 2 (k + k + 4(E E')2 -2 ) (6.22)

If we take the low-energy limit k -+ 0, then the Klein-Nishina formula reduces
to the Thompson scattering formula:

dQ a2_ _(E ')2
dSt m2

(6.23)

If the initial and final photon are unpolarized, we can average over the initial
and final polarizations c and c'. In the particular parametrization that we have
chosen for our momenta, we can choose our polarizations c and c', such that they
are purely transverse and perpendicular to the momenta pi and p f, respectively:

E(1) _ (0, 1, 0, 0)

(2)E _ (0, 0, 1, 0)

/(1)E _ (0, 1, 0, 0)

E/(2) _ (0, 0, cos 0, - sin 0) (6.24)

It is easy to check that these polarization vectors satisfy all the required properties.
Then the sum over these polarization vectors is easy to perform:

E(E E)2 = E(E(t) . E'(J))2 = 1 +COS20 (6.25)
spins i,j
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The averaged cross section is given by:

da

dQ = 2m2 (k' )2 (k' +
k - sin20 ) (6.26)

av /

The integral over 0 is straightforward. Let us define z = cos 0. The integration
yields:

2 1

Q
m2

dz
\[1+a(1-z)]3

1 1-z2
+ 1 + all - z) [1 + all - z)]2)

87ra2) [1+a (2a(l+a) )- log(1 + 2a)
3m2

(3/4)
a3 1 +2a

+ log(1 + 2a) - 1 + 3a
(6.27)

2a (1 +2a)2

where a = k/m. For small energies, this reduces to the usual Thompson total
cross section:

8na2 = 0 665 x 10-24 2r = (6 28)cm.= QThompson 3m2

k
0 o

For high energies, the logarithm starts to dominate the cross section:

.

lim Q= + +O[lo ) (6 29).0
k-oo km

gM

2 \k m J
.

6.2 Pair Annihilation

The Feynman graphs for pair annihilation of an electron and position into two
gamma rays is shown in Figure 6.3. Pair annihilation is represented by the
process:

e (Pi)+e+(P2)- Y(ki)+Y(k2) (6.30)

However, notice that we can obtain this diagram if we simply rotate the diagram
for Compton scattering in Figure 6.1. Thus, by a subtle redefinition of the various
momenta, we should be able to convert the Compton scattering amplitude, which
we have just calculated, into the amplitude for pair annihilation. This is the
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P
i P2 P,

P2

Figure 6.3. Pair annihilation: an electron of momentum p, annihilates with a positron of
momentum P2 into two photons.

substitution rule to which we referred earlier. For example, the S matrix now
yields, to lowest order:

S fi _ -e2(2n)434(kr + k2 - pi - P2)
1

2kr2k2

X T-D(P2,s2) P(r- jlr - m i+ IA _ 2-m 2f Eru(Pr,s

(6.3

where we have made the substitutions:

(k, e)

(k', e')

u(p;, s,)

u(Pf, sf)

(-k1, El)

(k2, e2)

u(pl, s1)

-' v(P2, s2) (6.32)

We will, as usual, take the Lorentz frame where the electron is at rest. Then our
momenta become, as in Figure 6.4:

Prµ = (m,0,0,0)

P24 = (E, 0, 0, IPI)

kr,,, =

k2µ =

kr(1, 0, sing, cosO)

(k2, 0, -kr sinO, Cpl - kr cosO) (6.33)

There are only two independent variables in this process, IpI and 0. All other
variables can be expressed in terms of them. For example, we can easily show
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kI

P2

Figure 6.4. Pair annihilation in the laboratory frame, where the electron is at rest.

that:

kt =

k2

We also have:

m(m + E)
m + E - IpI cos B

(m + E)(E - IpI cos B)
m + E - IpI cos B

(6.34)

m+E = kt+k2
kt k2 = m(m+E)=kt(m+E-lplcosO) (6.35)

When we contract over the Dirac matrices, the calculation proceeds just as
before, except that we want to evaluate l ru 12. We have to use Eq. (3.111):

E v(p, S)v(p, S) - Zmm (6.36)
spins

The trace becomes:

Trace = - 2m2 (L2 +L' - 4(Et '62)2+ 2 (6.37)
t /

The integration over d3kt and d3k, also proceeds as before. The integrations
over the delta functions are straightforward, except that we must be careful when
picking up a measure term when we make a transformation on a Dirac delta
function. When this additional measure term is inserted, the differential cross
section becomes:

dQ ot 2(m + E) (k2
+

kj
- 4(E1 E2)2 +2 (6.38)

dS2 81p1(m + E - IpI cos 0)2 (k, k2
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The total cross section is obtained by summing over photon polarizations. As
before, we can take a specific set of polarizations which are transverse to pl and

P2:

E(1 1)

(2)
E 1

E(1)2

0,1,0,0)

_ (0,0,cosO,-sin0)

(0, 1, 0, 0)

(0, 0, IpI - kl cos0, kl sin 0)E22)
=

Then we can sum over all polarizations. The only difficult sum involves:

(2) (2)
E1 2

= kl.k2

1 - (k1 + k2)2

2k1k2

1 - 2m(m + E)
2k1k2

1 1)1-m k1+k

Then the sum over spins can be written as:

DE1W E2W)2 + I 1 - I kl + k2 112
i,i LLL \ /// 11

(6.39)

(6.40)

(6.41)

The only integration left is the one over the solid angle, which leaves us with
(y = E2/m):

which is a result first obtained by Dirac.2

6.3 Moller Scattering

Next, we investigate electron-electron scattering. To lowest order, this scattering
amplitude contains two graphs, as in Figure 6.5. This scattering is represented by:

e(Pl) + e(P2) - e(Pi) + e(Pz) (6.43)
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p
i

p2

Figure 6.5. Moller scattering of two electrons with momenta pi and p2.

e4m4

[(P1 P2)2 - m4]1/2 (2n)434(Pi + Pz - Pt - P2)

By a straightforward application of the formulas for differential cross sections,
we find:

da =

d3 p1 d3 p2
12

X

J (27r)3 E' (27r)3 Ez
f, (6.44)

where, using a straightforward application of Feynman's rules for these two dia-
grams, we can compute 1^; I2:

Idf, I2 =
1 A+m 1111 +m1

E,ft( Y. 2m YQ 2m /f

p1 p2

x T ( vy2+m ,112 +m 1

)r
\Y 2m Y 2m [(pi - P1)2]2

- Tr
112+m 112+m +m)

Ya Y Y2m 2m 2m 2m

1

x (Pi - P1)2(Pz - p2)2
+ (P1 ' P2 (6.45)

Since the trace is over only four Dirac matrices, taking the trace is not hard to do:

1 (P1 P2)2 + (P1
P2l)2 + 2m2(P1 Pz - Pt P2)

2m4
(

[(Pi - P1)2]2

+ (P1 p2)2 + (P1 p'1)2 + 2m2(p1 Pi - P1 P2)

[(P'2 - P1)2]2

+ 2(P1 P2)2 - 2m2P1 P2
(6.46)

(Pi - P1)2(P2 l - P1)2
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Figure 6.6. Moller scattering in the center-of-mass frame.

The kinematics is illustrated in Figure 6.6. Without any loss of generality, we can
choose the center-of-mass frame, where the electron momenta p1 and P2 lie along
the z axis:

P1,µ = (E, 0, 0, IPI)

P2,4 = (E, 0, 0, -IPI)

P1

P2,µ

= (E, 0, IpI sing, IpI cos0)

= (E,0, -IPI sin g, -IpI cos 0) (6.47)

The only independent variables are 0 and IpI. In terms of this parametrization, we
easily find:

P1 'P2

P1 Pi

P1 P2'

= 2E2 - m2

= E2(1 -cos0)+m2cos0

= E2(1 + cos 0) - m2 cos 0 (6.48)

Then the entire cross section can be written in terms of these independent variables.
We finally obtain the Moller formula3 in the center-of-mass frame:

dQ _ a2(2E2 - m2)2 4 3 (E2 - m2)2 4

d52 4E2(E2 - m2)2 [sin4 0 sine 0 + (2E2 - m2)2 (1 + sine 0 ), (6.49)

In the relativistic limit, as E -+ oc, this formula reduces to:

da _ a2 ( 4 - 2 1)
dQ EZ sin4 B sine 0 +-4

For the low-energy, nonrelativistic result, we find:

da _ a2 1 ( 4 3 )
dQ m2 4v2 sin4 0 sine 0

(6.50)

(6.51)
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6.4 Bhabha Scattering

To calculate the cross section for electron-positron scattering (Fig. 6.7), we can
use the substitution rule. By rotating the diagram for Moller scattering, we find
the Feynman diagrams for Bhabha scattering? The only substitutions we must
make are:

U(pi) -4 u(Pi)

u(Pi) - u(Pi)

U(P2) -; v(-P2)

u(P,2) - v(-P2,)

for the process:

(6.52)

e -(pi) + e'(-P2) -+ e (Pi) + e+(-Pz) (6.53)

The calculation and the traces are performed exactly as before with these
simple substitutions. We merely quote the final result, due to Bhabha (1935):

da _
- a (5 8E4 - m4 (2E2 -M 2)2

+dQ 2E2 E2(E2 - m2)(1 - cos9) 2(E2 - m2)2(1 - cos9)2

+ [16E4]-'[2E4(-1+2cos0+cos20)

+ 4E2m2(1 - cos 9)(2 + cos 0) + 2m4 cost 91) (6.54)

PZ

p1 P2

p1
p2

Figure 6.7. Bhabha scattering of an electron off a positron.



6.5. Bremsstrahlung 177

In the relativistic limit, we have:

do = a2 (1+cos40/2
dQ 8E2 \ sing 0/2

a
+ 2(1+cos29)-2sCOS in29/21

In the nonrelativistic limit, we find:

doa2 1

d1 = m2 16v4 sin4 0/2

6.5 Bremsstrahlung

(6.55)

(6.56)

Bremsstrahlung is the process by which radiation is emitted from an electron as it
moves past a nucleus (Fig. 6.8). Momentum conservation gives us:

p;+q=k+pf (6.57)

Classically, one can calculate the radiation emitted by a moving charge as it
accelerates past a proton. (Bremsstrahlung means "braking radiation.") However,
unlike the previous scattering processes, which agree to first order with the exper-
imental data, we find a severe problem with this amplitude, which is the infrared
divergence. The quantum field theory calculation, to lowest order, reproduces the
classical result, including the unwanted infrared divergence, which has its roots
in the classical theory.

Although the infrared divergence first arose (in another form) in the classical
theory, the final resolution of this problem comes when we take into account higher

k

p p

Figure 6.8. Bremsstrahlung, or the radiation emitted by an electron scattering in the
presence of a nucleus.
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quantum loop corrections to the scattering amplitude. The scattering matrix, using
Feynman's rules, is:

Ze 3 m2 (-i ) i (-iYo)
Sf+ _ EfE`u(Pf,sf)(

2k Ig12

+ (-iyo) i (-l 0 )UPiSi)
Ig 12 Il,- V - m 2k

The differential cross section now becomes:

2 6

do = mZ e f 2,r8(Ef+w-E,)1ufru112
E; v, I J

1 m d3pf d3k

X kiJ4 Ef 2cw(27r)6

where co = ko and where:

0 0

+Y A-V-m

The trace we wish to calculate is:

T = (2-Sm-2)(T1 +T2+T3)

_ 1 Iff+ V+m 0 oiJ;- V+m2Tr
2Pf'k Y -Y 2P; k / (2m

Il; +m/

(6.58)

(6.59)

(6.60)

X YoJff+ V+m J(;- V+rYol 11ff +mll (6.61)2m J J

The traces involved in the calculation yield:

T, = (pf - k)-2 Tr [ "f + V + m)Y0(l(f+ V + m)'(df + m)]

= 8(pf k) -2 E[2(e . Pf)2(m2 + 2P?Pf + 2P?w - P; Pf - p; . k)
E

k] (6.62)

and:

T2 = Ti(P; H -pf) (6.63)
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Figure 6.9. Bremsstrahlung, where the emitted photon is in the z direction and the emitted
electron is in the y - z plane. The incoming electron is in a plane rotated by angle 0 from
the y - z plane.

and lastly:

T3 = -(pf . k)-1(P; k)-1Tr {Y°(pj- V+m) (lfi +m)Y°

X (l(f+ Jt + m) (Iff + m) + (P; +-+ -Pf )
1

= 16(Pf - k)-'(pi k)-1 E [E PEE, Pf(pi k - pf k
f

+2pi pf - 4p9 p o - 2m2)

-(E

+co(cop; (6.64)

The parametrization of the momenta is a bit complicated, since the reaction
does not take place in a plane. In Figure 6.9, we place the emitted photon momenta
in the z direction, the emitted electron momenta p f in the y - z plane, and the
incoming electron momenta p; in a plane that is rotated by an angle 0 from the
y - z plane.

The specific parametrization is equal to:

ku = 0o(1, 0, 0, 1)

Pf,u = (Ef, 0, pf sinOf, pf cosOf)

pi, = (E;, p; sing; sin4), p; sing; cosh, p; cos9,) (6.65)
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where p; = Ipi I and pf = IPf I. Now we must calculate the sum over transverse
photon polarizations. Since kN, points in the z direction, we can choose:

Ell) _ (0, 1, 0, 0)

E(2) _ (0, 0, 1, 0) (6.66)

which satisfies all the desired properties of the polarization tensor. With this
choice of parametrization for the momenta and polarizations, we easily find:

Y'
(e Pf)2

i

E(C(0 Pf)(e . Pi) _
i

2 2 (i) z zpf sin 8f; (E
P,)2 P; sin 8;

pi p f sin Of sin 9; cos 0 (6.67)

It is now a simple matter to collect everything together, and we now have the
Bethe-Heitler formulas (1934), which was first computed without using Feyn-
man's rules:

Z2a3 pf do)
do - (2n)2 Pig4 w

dStydSte

x
Psm29f

2(4E?- q
P?sin9;f

2)+ 2(4E2 - 2

((Ef - pf cos 9f) (Ei - pr cos0,)
4 )

+ 2X02
p? sine 0, + pf sine of

(Ef - pf cosOf)(Ei - pi sing,)

pfp; sin 0. sin0fcos&- 2
(Ef - pfcos9f)(E, -picos9;)

x (4E;Ef-q2+2X02)) (6.68)

Now let us make the approximation that co - 0. In the soft bremsstrahlung
limit, we find a great simplification, and the differential cross section becomes the
one found by classical methods:

da da e2 d3k e Pf _ e - Pi 2

dSt (TQ)elasac 2(0(27r)3
a

(k - P-f k . pi ) (6.69)

Here the infrared divergence6-8 appears for the first time. This problem was
first correctly analyzed by Bloch and Nordsieck 8 The integral d3k/co is divergent
for small co, and therefore the amplitude for soft photon emission makes no
sense. This is rather discouraging, and revealed the necessity of properly adding
all quantum corrections. The resolution of this question only comes when the
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one-loop vertex corrections are added in properly, which we will discuss later in
this chapter. For now, it is important to understand where the divergence comes
from and its general form.

The infrared divergence always emerges whenever we have massless particles
in a theory that can be emitted from an initial or final leg that is on the mass shell.
For example, whenever we emit a soft photon of momentum k from an on-shell
electron with momentum p, we find that the propagator just before the emission
is given by:

1 1

(p-k)2-m2
N

-2p .k
-00 (6.70)

Because p2 = m2 and k is small, we find that an integration over momentum
k inevitably produces an infrared divergence. In order to quantify this infrared
divergence, let us perform the integration over the momentum k, separating out
the angular part dSl from d3k. To parametrize the divergence, we will regulate
the integral by allowing the photon to have a small but finite mass µ. (This is, of
course, a bit delicate since we are breaking gauge invariance by having massive
photons, but one can show that, at this order of approximation, there are no
problems.) We will integrate k from µ to some energy E given by the sensitivity
of the detector. Expanding out the expression in the square, the amplitude now
becomes:

do do E 2pf p; m2 m2 l
dSt - (dQ)0

4a

n2
k dk J dSt 1

\

(k . Pf)(k P;) k Pf)2 (k

(6.71)

In our approximation, we can perform the angular integral over the last three terms
in the large parentheses.

Let us calculate the last two terms appearing on the right-hand side of the
equation. We use the fact that:

k Pf N E(1 - cos9f) (6.72)

Because do = 27rd(cos 0), we can trivially integrate the last two terms:

f dQ m 2 2 +1
1

4n (k p1)2 2E2 1

d(cos 9) (1
- # cos 9)2

1 (6.73)

The integral over the first term is also easy to perform. We have to use the fact
that:

2pf pi 2E2(1 - #2 cos9)
(k pf)(k p;) E(1 - Pcos9;)E(1 - PcosOf)

(6.74)
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We will now introduce the Feynman parameter trick, which is often used to
evaluate Feynman integrals:

1 1

ab - Jo [ax +
dx

b(1 - x)]2
(6.75)

By introducing a new variable x, we are able to perform the angular integration.
We find:

dSl 2pf pf
_ 2(1 -#2COS2O) dx

Jo

x f d(cosO)(1/2) 1

J [1 - cos Bfx - # cos 9; (1 - x)]2

r1 dx
2(1 - #2 cos O)

J 1 - #2 + 4#2 sin2(O/2)x(1 - x)

2[1 + 1#2 sin2(O/2] + O(#4) if # < 1
_ (6.76)

2log(-q2/m2)+O(m2/q2) if m2/q2 << 1

Inserting this value back into the previous expression, we find that the final soft
bremsstrahlung cross section is then given by:

do do a E2
1#2 sm2

i + O(#4) 0«1_
dSt

IniV -
(6.77)

7ro n µ log(-q2/m2) - 1 + O(m2/q2) 0-1

Although this formula agrees well with experiment at large photon momenta, this
amplitude is clearly divergent if we let the fictitious mass of the photon µ go to
zero. Thus, the infrared divergence occurs because we have massless photons
present in the theory.

We should mention that the infrared problem arose (in another form) in classi-
cal physics, before the advent of quantum mechanics. The essential point is that,
even at the classical level, we have the effects due to the long-range Coulomb
field. If one were to calculate the radiation field created by a particle being ac-
celerated by a stationary charge, one would find a similar divergence using only
classical equations. If one tries to divide the energy by ko to calculate the number
of photons emitted by bremsstrahlung, it turns out to be proportional to the result
presented above. Thus, as the momentum of the emitted photon goes to zero, the
number of emitted photons becomes infinite. (Classically, the infrared divergence
appears in the number of emitted photons, not the emitted energy.)

Quantum field theory gives us a novel, but rigorous, solution to the infrared
problem, which goes to the heart of the measurement process and the quantum
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Figure 6.10. The infrared divergence cancels if we add the contributions of two different
physical processes. These diagrams can be added together because the resolution of any
detector is not sensitive enough to select out just one process.

theory. To this order of approximation, we have to add the contribution of two
different physical processes to find the cross section of electrons scattering off
protons or other charged particles (Fig. 6.10).

The first diagram describes the bremsstrahlung amplitude for the emission of
an electron and a photon. The divergence of this amplitude is classical. Second,
we have to sum over a purely quantum-mechanical effect, the radiative one-loop
corrections of the electron elastically colliding off the charged proton. This may
seem strange, because we are adding the cross sections of two different physical
processes together, one elastic and one inelastic, to cancel the infrared divergence.
However, this makes perfect sense from the point of view of the measuring process.

The essential point is to observe that our detectors cannot differentiate the pres-
ence of pure electrons from the presence of electrons accompanied by sufficiently
soft photons. This is not just a problem of having crude measuring devices. No
matter how precise our measuring apparatus may become, it can never be perfect;
there will always be photons with momenta sufficiently close to zero that will
sneak past them. Therefore, from an experimental point of view, our measuring
apparatus cannot distinguish between these two types of processes and we must
necessarily add these two diagrams together. Fortunately, we get an exact cancel-
lation of the infrared divergences when these two scattering amplitudes are added
together.

A full discussion of this cancellation, however, cannot be described until we
discuss one-loop corrections to scattering amplitudes. Therefore, in section 6.7,
we will prove that the bremsstrahlung amplitude, given by:

do do a E2 -q2

TQ (dT1)o r
log

1 2
log m2 (6.78)

must be added to the one-loop vertex correction in order to yield a convergent
integral. We will return to this problem at that time.
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Finally, we note that, by the substitution rule, we can show the relationship
between bremsstrahlung and pair annihilation. Once again, by rotating the diagram
around, we can convert bremsstrahlung into pair creation.

This ends our discussion of the tree-level, lowest-order scattering matrix.
Although we have had great success in reproducing and extending known classical
results, there are immense difficulties involved in extending quantum field theory
beyond the tree level. When loop corrections are calculated, we find that the
integrals diverge in the ultraviolet region of momentum space. In fact, it has
taken over a half century, involving the combined efforts of several generations
of physicists, to resolve many of the difficulties of renormalization theory.

We now turn to a detailed calculation of single-loop radiative corrections.
Although the calculations are often long and tedious, involving formally divergent
quantities, the final conclusions are simple and show that the various infinities can
be consistently absorbed into a redefinition of the physical constants of the theory,
such as the electric charge and electron mass. Most important, the agreement with
experiment is astonishing.

We will begin our discussion of radiative corrections by first examining the
self-energy correction to the photon propagator, called the vacuum polarization
graph. We will show that the divergence of this graph can be absorbed into a
renormalization of the electric charge.

Then, we will calculate the single-loop correction to the electron-photon vertex
and show that this leads to corrections to the magnetic moment of the electron. The
theoretical value of the anomalous magnetic moment will agree with experiment
to one part in 108. After that, we will show that the radiative correction to the
vertex function is also infrared divergent. Fortunately, the sign of this infrared
divergence is opposite the sign found in the bremsstrahlung amplitude. When
added together, we will find that the two cancel exactly, giving us a quantum
mechanical resolution of the infrared problem.

And finally, we will close this chapter by analyzing the Lamb shift between
the energy levels of the 2512 and 2P1/2 orbitals of the hydrogen atom. The
calculation is rather intricate, because the hydrogen atom is a bound state, and also
there are various contributions coming from the vertex correction, the anomalous
magnetic moment, the self-energy of the electron, the vacuum polarization graph,
etc. However, when all these contributions are added, we find agreement with
experiment to within one part in 106.

6.6 Radiative Corrections

The simplest higher-order radiative correction is the vacuum polarization graph,
shown in Figure 6.11. This graph is clearly divergent. For large momenta,
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k

k-q

Figure 6.11. First-loop correction to the photon propagator, the vacuum polarization graph,
which gives us a correction to the coupling constant and contributes to the Lamb shift.

the Feynman propagators of the two electrons give us two powers of p in the
denominator, while the overall integration over d4p gives us four powers of p in
the numerator. So this graph diverges quadratically in the ultraviolet region of
momentum space:

2 / dk 1 1

lIuv,m = -e Tr J (27r)4YAV-m+iEY" jl- y[-m+ie (6.79)

We will perform this integration via the Pauli-Villars method,9 although the
dimensional regularization method, which we will present in the next chapter, is
significantly simpler. The Pauli-Villars method replaces this divergent integral
with a convergent one by assuming that there are fictitious fermions with mass
M in the theory with ghost couplings. At the end of the calculation, these
fictitious particles will decouple if we take the limit as their masses tend to
infinity. Therefore, M gives us a convenient way of cutting off the divergences of
the self-energy correction.

The graph then becomes modified as follows:

Lµv L= rluv m - rluv,M (6.80)

The most convenient way in which to perform the integration is to add additional
auxiliary variables. This allows us to reverse the order of integration. We can
then perform the integration over the momenta, and save the integration over the
auxiliary variables to the very end. We will use:

f
t

=
da Qia(k2-m2+ie)

k2-m2+iE o
(6.81)

Inserting this expression for the electron propagators and performing the trace, we
find:

/' /'
II"'M = 4e2 dal da2

fd4k
27r)4(

x exp {ial(k2 - m2 + iE) + ia2[(k - q)2 - m2 + ie]}
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x [k,,(k - q) + k (k - q)N, - g,,,,(k2 - k q - m2)] (6.82)

With the insertion of these auxiliary variables, we can now perform the integration
over dak. First, we shift momenta and complete the square:

qa2p=k-a1+a2

Then we use the fact that:

f
ap

f deiP2(a'2) = 1

l (2n)4 16nn2i(al +a2)2

I
dap 2 igu

a PµPve'P (a1+a2) =
2 3(2n) 327r 1(al + a2)

Putting everything back into IIF,,,,, we have:

(6.83)

(6.84)

nuv,m = (guv42 - 4u4v)nl + guvn2 (6.85)

where:

II J -i 2a 00 a1a2 dal da2 ef(a,,a2)
1

a7r o (a1 +a2)

00
001I2

J
i (aa+aa)3 Lf(a1, a2) -1] (6.86)- i

7c
- 1

and where:

a2Pal, a2)=iq2 ala2 -ie)(al+a2)
al +a2

(6.87)

There is a similar expression for 1IN,,,,M. We notice that 112 diverges quadratically,
which is bad. However, since we have carefully regularized this integral using
the Pauli-Villars method, the integral is finite for fixed M, and we are free to
manipulate this expression. We can then show that 112 vanishes. This rather
remarkable fact can be proved using simple scaling arguments. Consider integrals
of the following type:

f °° dx f(x)ef(X) = 8

J00
dx efI

x p X p=1
(6.88)

Assume that f (x/p) = f (x)/p. After this simple rescaling, this integral equals:

a f'dxef(X)I =0 (6.89)
ap X p=1
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since all dependence on p has vanished. With a few modifications, this argument
can be used to show that 112 = 0. Thus, the vacuum polarization graph is only
logarithmically divergent.

To perform the integrations in 111, we use one last identity:

1=
f°°dd

8 1-a1 +a2
Jo P P

Inserting this into the expression for Ill and rescaling a;, we find:

=
2a °O °° ala2 dal dal °° dp

11 -1
n
f

Jo (al +a2)4 Jo P

"
X8 1 -

a1 +a2ef(aQa2)

p

= - 2i a / OO / OO

J J
dal dal ala2 S(1 - al - a2)

n 0 0

x dp exp [ip(g2ala2 - m2 + ie)] (6.91)
1 P

As expected, this integral is logarithmically divergent. At this point, we now use
the Pauli-Villars regulator, which lowers the divergence of the theory. To perform
the tricky p integration, we use the fact that m2 - ala2q 2 is positive, so we can
rotate the contour integral of p in the complex plane by -90 degrees. Using
integration by parts and rescaling, we have the following identity:

JE

- dp
a-a' = log pe-ap I

_f
log ae dp + fa " Olog pe-aP dp (6.92)

P E E

where a(m) = m2 - ala2Q2. The dangerous divergence comes from the last term.
However, since the last term is independent of a, it cancels against the same term,
with a minus sign, coming from the Pauli-Villars contribution. Thus, we have the
identity:

lim , LP (e -a(m)p - e-a(M)P) = -loga(m)+loga(M)
E P

l

2 2

_ -log (1 - a 1n 24
+ log

MZ
(6.93)

for large but finite M. We can now take the limit at e - 0 and M becomes large.
Then:

2

111
3a

logMZ +2

J
dala1(1-al)log(1-al(1-al)m2) (6.94)

0
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If we perform the last and final integration over al, we arrive at:

-1)I,2

II1 = 3r I -log m2+3+2(1+2q 22l/
[(4m2

x arrrnt (4m27 -1)1/2 - ']I (6.95)

This is our final result. After a long calculation, we find a surprisingly simple
result that has a physical interpretation. We claim that the logarithmic divergence
can be cancelled against another logarithmic divergence coming from the bare
electric charge eo. In fact, we will simply define the divergence of the electric
charge so that it precisely cancels against the logarithmic divergence of III.

To lowest order, we find that we can add the usual photon propagator Du to
the one-loop correction, leaving us with a revised propagator:

/ a 2

g °

q2

l-i2 I1-3r
log m2 15nm2/

(6.96)

in the limit as q2 - 0. This leaves us with the usual theory, except that the photon
propagator is multiplied by a factor:

- l Zv -4 Z3(-l) qz

where:

2

(6.97)

(6.98)

Now let us absorb this divergence into the coupling constant eo. We are
then left with the usual theory with an extra (infinite) factor Z3 multiplying each
propagator. Since the photon propagator is connected to two electron vertices,
with coupling eo, we can absorb Z3 into the coupling constant, so we have, to
lowest order:

e = Z3e0 (6.99)

where e is called the renormalized electric charge. Since the infinity coming
from Z3 cancels (by construction) against the infinity coming from the bare elec-
tric charge, the renormalized electric charge e is finite. (Other renormalization
constants will be discussed in Chapter 7.)

Although this works at the lowest level, it remains to be seen whether we can
extend this procedure to all orders in perturbation theory. This will be further
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discussed in the next chapter. Next, we turn to the calculation of the single-loop
correction to the vertex function, which gives us the anomalous magnetic moment
of the electron.

6.7 Anomalous Magnetic Moment

We recall that in Chapter 4 we derived the magnetic moment of the electron
by analyzing the coupling of the electron to the vector potential. At the tree
level, we know that the coupling of an electron to the photon is given by A"uyuu,
which in turn gives us a gyromagnetic ratio of g = 2. However, the experimentally
observed value differed from this predicted value by a small but important amount.
Schwinger's original calculation10 of the anomalous magnetic moment of the
electron helped to establish QED as the correct theory of electrons and photons.

To calculate the higher-order corrections to the magnetic moment of the elec-
tron, we will use the Gordon identity:

u(P)Yuu(P) =
2m

ii(p) [(p + p'), + ic,,vgv] u(p) (6.100)

(To prove this, we simply use the Dirac equation repeatedly on the left and right
spinors, which are on-shell.) The magnetic moment of the electron comes from
the second term ua,,vgvuA". To see this, we take the Fourier transform, so
qv becomes 8v, and the coupling becomes ua,LVF"vu. The magnetic field Bi
is proportional to EjikFik, so this coupling term in the rest frame now becomes
ua; Bi u, where we use the Dirac representation of the Dirac matrices. Since aj
is proportional to the spin of the electron, which in turn is proportional to the
magnetic moment of the electron, the coupling becomes µ B. This is the energy
of a magnet with moment µ in a magnetic field B.

In this section, we will calculate the one-loop vertex correction, which gives
us a correction to the electron-photon coupling given by (to lowest order in a):

alia
a(p) [(p+p') (1 +2n / 2m u(P) (6.101)

for the process given in Figure 6.12.
Notice that the ua,,vgvu term is modified by the one-loop correction, so that

the g of the electron becomes:

g =1+2n (6.102)
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P

Figure 6.12. First-loop correction to the electron vertex function, which contributes to the
anomalous electron magnetic moment.

Thus, QED predicts a correction to the moment of the electron. To show this, we
will begin our calculation with the one-loop vertex correction:

d4k i i
A (p',p) = (-ie)2 f

(27r)4 k2 (µ2)+iEy°''- K-m+ie

XyuPI- f -m+ie
(6.103)

Anticipating that the integral is infrared divergent, we have added µ, the fictitious
mass of the photon. The integral is also divergent in the ultraviolet region, so we
will use the Pauli Villars cutoff method later to isolate the divergence.

Throughout this calculation, we tacitly assume that we have sandwiched this
vertex between two on-shell spinors, so we can use the Gordon decomposition
and the mass-shell condition. Our goal is to write this expression in the form:

Au ,,, yyF1(42) + 1
2mgv

F2(42) (6.104)

sandwiched between u(p') and u(p), where Ft and F2 are the form factors that
measure the deviation from the simple yN, vertex. We will calculate explicit forms
for these two form factors. (We will find that F1 cancels against the infrared
divergence found in the bremsstrahlung calculation, giving us a finite result. We
will show that F2 gives us a correction to the magnetic moment of the electron.)

We begin with the Feynman parameter trick, generalizing Eq. (6.75). The
following can be proved by induction:

. 1 Q f
oo

f j n Q z)_ (n - 1)! dz(6.105)
0 1=1
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where: 0 = F_i aizi. For our purposes, we want:

Therefore:

al = k2-µ2+iE

a2 = (p'-k)2-m2+iE
a3 = (p - k)2 - m2 + iE (6.106)

A,(p', p) = 2ie2 I
a

(27r)a Jo
dzl dz2 dz3 S (1 - zl - z2 - z3) (NA3II(k))

where: (6.107)

NN(k)=y (JJ'- K+m)Yu(If- K+m)y° (6.108)

Next, we would like to perform the integration by completing the square:

3

0 = Qjzi = (k - p'z2 - pz3)2 - AO

Do

=1

m2(1 - z1)2 + µ2z1 - q2 Z2Z3 - iE

-[(p')2 - m2]2z2(1 - z2) - (p2 - m2)z3(1 - z3)

This allows us to make the shift in integration:

k-*k+p'z2+pz3

Therefore, after the shift, we have:

AA(p', p) =
2ie2 c1

27r)4 Jo
dzl dz2 dz3 S(1 - Z1 - Z2 - Z3)

X

dak
Nu(k + p'z2 + pz3)

00 (k2 - Do+iE)3

(6.109)

(6.110)

By power counting, the integral diverges. This is why we must subtract off the
contribution of the Pauli-Villars field, which has mass A. Let us expand:

Nu(k + p'z2 + pz3) = -k2Yu + 2ku k + Au(k) + Nu(p'z2 + pz3) (6.112)

where AN,(k) is linear in the kN, variable. (This term can be dropped, since its
integral over dak vanishes.)
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Therefore, the leading divergence behaves like:

f (6.113)
J

dak (k2
kuk

Do)3 - (k2
kuk

A,)3

where AA represents the Pauli-Villars contribution, where µ is replaced by A.
With this insertion, the integral converges for finite but large A. To perform this
integration, we must do an analytic continuation of the previous equation. We
know that (see Appendix):

2dak k,,k
a

= i7r
r(a - 3)Suvf (k2 - A) C'

Now let us take the limit at a -* 3. This expression, of course, diverges, but
the Pauli-Villars term subtracts off the divergence. If we let a - 3 = E, then we
have:

k2

-
k2

lim da k (k2 - o)a (k2 - ©A)a

lim i7r2r(E)
1 - 1

E-.0 (-AO)E (-AA)E

lim i7r2 1 (eE log(-L1o) - eE log(-DA)
E-.0 E

= -i7r2log (AA)

_ -i7r (6.115)2log (LO

where we drop terms like A-". Because this expression is sandwiched between
two on-shell spinors, we can also reduce the term:

Nu(p'z2 + pz3) -Yu [2m2(1 - 4z, + zi) + 2g2(1 - z2)(1 - z3)]

-2mz,(1 - zl)14, Yy] (6.116)

At this point, all integrals can be evaluated. Putting everything together, and
dropping all terms of order A-1 or less, we now have:

f00
2\

AL(p',p)=21 dz1dz2dz38(1-zl-z2-z3)[log(zoo IYu
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+
Yu

m2(1 - 4z1 +zi)+q2(1 - z2)(1 - z3) + ima,,,,gvzl(1 -
zl)](6 117)

Do Do J

Now let us compare this expression with the form factors F1 and F2 appearing
in Eq. (6.104). It is easy to read off-

F1 (q2) -> 1 + 2n
0

dzl dz2 dz3 S (1 - zl - z2 - z3)

x (
log AO +m2(1-4z1+z2)+

D0

q2(1-z2)(1-z3)_(42=0)J
g

o /
(6.118)

[We have deliberately subtracted off the integrand defined at q2 = 0 in order to
maintain the constraint Fl(g2 = 0) = 1, which preserves the correct normalization
of the vertex function. This extra subtraction term comes from the fact that we
have separated out the divergent logarithmic part, which is absorbed in an infinite
constant called Z1 which renormalizes the vertex function. This point will be
discussed in more detail in Chapter 7.]

The value of F2 can similarly be read off:

F2(4
2)
_

2n fooc
ZZ,(-zl)dZl

dZ2 dz3 S(1 - zl - z2 - Z3) (6.114)
0

The calculation for F2(q 2) is a bit easier, since there are no ultraviolet or
infrared divergences. Because of this, we can set µ = 0. Let us choose new
variables:

p p' = m2 cosh6; q2 = -4m2 sinh2(0/2) = 2m2(1 - cosh6) (6.120)

where q2 = (p - p')2. Then we have:

F2(q2)
3-(Z2+Z3)2

1dZ2dz3B(1-Z2-Z3) 21+Z2
7r 0 Z2 + Z3 + 2Z2Z3 cosh 0

a 1 1

2n Jo
dd

#2 + (1 - #)2 + 28(1 - P) cosh 0

This leaves us with the exact result:

F2(42) = 2n sinh0
C' 0

We are especially interested in taking the limit as Ig21 -> 0 and 6 -* 0:

F2(0) = 2n

(6.121)

(6.122)

(6.123)
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This gives us the correction to the magnetic moment of the electron, as in Eq.
(6.101):

g - 2 a
- 0.0011614

2 2n
(6.124)

This is only a first-order calculation, yet already we are very close to the ex-
perimental value. Since the calculation was originally performed by Schwinger,
the calculation since has been taken to a3 order (where there are 72 Feynman
diagrams). The theoretical value to this order is given by:

1

ath. - 2(g-2)

= 0.5(-)-0.328480)2+1.49()3+ (6.125)

The final results for both the theoretical and experimental values are ":

ath = 0.001159652411(166)

amt = 0.001159652209(31) (6.126)

where the estimated errors are in parentheses.
The calculation agrees to within one part in 108 for a and to one part in 109

for g, which is graphic vindication of QED. (To push the calculation to the fourth
order involves calculating 891 diagrams and 12,672 diagrams at the fifth order.)

6.8 Infrared Divergence

The calculation for F, is much more difficult. However, it will be very important
in resolving the question of the infrared divergence, which we found in the earlier
discussion of bremsstrahlung. We will find that the infrared divergence coming
from the bremsstrahlung graph and F, cancel exactly. Although the calculation of
F, is difficult, one can can extract useful information from the integral by taking
the limit as µ becomes small. Then F, integration in Eq. (6.118) splits up into
four pieces:

4

F, (6.127)

where the ellipsis represents constant terms.
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After changing variables, each of the P1 pieces can be exactly evaluated:

a pl f1-z2 coshB
Pl = -fJo dZ2 o dZ3 Z2 + Z3 + 2Z2Z3 cosh O + (µ2/m2)(1 - Z2 - Z3)

where:

f0/2
n 6 coth 6 log µ- n« coth 6 J do 0 tank 0 (6.128)

0

tanh 0
1 - 2z2 =

tanh(0/2)

The others are given by:

P2

P3 =

P4

1 1-z2

n cosh B 1 dz2 f dz3
z2 + z3 +

Z2 + Z3

2z2z3 cosh 6

a0coth0
n

fo1 fo

1-az2a (1
- cosh 6) dz2 dz3 2 2

Z2Z3

n Z2 + Z3 + 2Z2Z3 cosh 0

a B
1

2JC sinh 0

f 1 1-Z2

a J dz2 [ dz3 log [(z2 + z3)2 + 4z2z3 sinh2(0/2)]
2n 0 0

_ a 0/2

2n tanh(0/2)
+ const.

Thus, adding the pieces together, we find:

F1(g2) = _ [ (log µ + 1) (0 coth0 - 1)
m

(6.129)

(6.130)

coth 0
a/2

do 0 tank 0- 4 tank 2(6.131)
fo

- 2

For 21 < m2, we find using Eqs. (6.104), (6.120), (6.122), and (6.131):

2

C,
q m

Yu +Au(P', p) ^ Yu I 1 +
m2 (log N 8)) + 87tm [, Yu] (6.132)
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For Ig21 >> m2, we find:

z

Yu + P) ^ Yu { 1 - log [log
(

4 I - 1 + O (m2/42)I I (6.133)
7r A M2

Plugging all this into the cross-section formula, w//e now find our final result:

A 0dor

= (dor) [1 -
2a

log -X(q2)J I (6.134)

where:

-q/m2 if -q2 «m2
X(q2) = S

log-q2/m2-1 if -g2>>m2
(6.135)

Now we come to the final step, the comparison of the bremsstrahlung amplitude
in Eq. (6.77) and the vertex correction for electron scattering. Although they
represent different physical scattering processes, they must be added because there
is always an uncertainty in our measuring equipment in measuring soft photons.
Comparing the two amplitudes, we recall that the bremsstrahlung amplitude in
Eq. (6.78) was given by:

dv _ dor - q2 E2

dQ - (dQ)o n
a log m2 log µ2

while the vertex correction graph yields:

(6.136)

log 42 log
22)

(6.137)
_ 7r(1 - C' AdQ 4TQ)0

Clearly, when these two amplitudes are added together, we find a finite, conver-
gent result independent of µ2, as desired. The cancellation of infrared divergences
to all orders in perturbation theory is a much more involved process. However,
there are surprising simplifications that give a very simple result for this calculation
(see Appendix).

6.9 Lamb Shift

Two of the great accomplishments of QED were the determination of the anoma-
lous magnetic moment of the electron, which we discussed earlier, and the Lamb
shift.12 The fact that these two effects could not be explained by ordinary quantum
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Figure 6.13. The various higher-order graphs that contribute to the Lamb shift: (a) and
(b) the electron self-energy graphs; (c) the vertex correction; (d) and (e) the electron mass
counterterm; (f) the photon self-energy correction.

mechanics, and the fact that the QED result was so accurate, helped to convince
the skeptics that QED was the correct theory of the electron-photon system.

In 1947, Lamb and Retherford demonstrated that the 2S1 /2 and the 2Pt/2 energy
levels of the hydrogen atom were split; the 2P1/2 energy level was depressed more
than 1000 MHz below the 251/2 energy level. (The original Dirac electron in a
classical Coulomb potential, as we saw earlier in Section 4.2, predicted that the
energy levels of the hydrogen atom should depend only on the principal quantum
number n and the total spin j, so these two levels should be degenerate.)

The calculation of the Lamb shift is rather intricate, because we are dealing with
the hydrogen atom as a bound-state problem, and also because we must sum over
all radiative corrections to the electron interacting with a Coulomb potential that
modify the naive uy0uA° vertex. These corrections include the vertex correction,
the anomalous magnetic moment, the self-energy of the electron, the vacuum
polarization graph, and even infrared divergences (Fig. 6.13).

The original nonrelativistic bound-state calculation of Bethe,13 which ignored
many of these subtle higher-order corrections, could account for about 1000 MHz
of the Lamb shift, but only a fully relativistic quantum treatment could calculate
the rest of the difference. Because of the intricate nature of the calculation, we
will only sketch the highlights of the calculation. To begin the discussion, we
first see that the vacuum polarization graph can be attached to the photon line,
changing the photon propagator to:

9AV

D"° - - k2 (1 607x2 m2
+ O(k4) I (6.138)
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This, of course, translates into a shift in the effective coupling of an electron to the
Coulomb potential. 14, 15 Analyzing the zeroth component of this propagator, we
see that the coupling of the electron to the Coulomb potential changes as follows:

ie2UYOU
-> ie2"YOU 1_ aqz +O(a2) (6.139)g2 q2 ( 157rm2

To convert this back into x space, let us take the Fourier transform. We know
that the Fourier transform of 1/q2 is proportional to 1/r. This means that the
static Coulomb potential that the electron sees is given by:

\1 15
rm2v21

4nr 4nr +
607r2m2S3(x) (6.140)

meaning that there is a correction to Coulomb's law given by QED. This cor-
rection, in turn, shifts the energy levels of the hydrogen atom. We know from
ordinary nonrelativistic quantum mechanics that, by taking matrix elements of
this modified potential between hydrogen wave functions, we can calculate the
first-order correction to the energy levels of the hydrogen atom due to the vacuum
polarization graph.

Now let us generalize this discussion to include the other corrections to the
calculation of the Lamb shift. Our method is the same: calculate the corrections to
the vertex function ii y u, take the zeroth component, and then take the low-energy
limit. In Eqs. (6.104), (6.132), and (6.133), we saw how radiative corrections
modified the vertex function with additional form factors Fl(g2) and F2(q 2). If
we add the various contributions to the vertex correction, we find:

2

ay4u -> u Yu [1 - 3n
2

(log
µm 8 5/]

to
+ u

47rm
(6.141)

(For example, the vacuum polarization graph contributes the factor - 1/5 to the
vertex correction. The logarithm term comes from the vertex correction, and the µ
term is eventually cancelled by the infrared correction.) Now take the low-energy
limit of this expression. The a spin-orbit correction,
and we find the effective potential given by:

By taking the matrix element of this potential between two hydrogen wave
functions, we can calculate the energy split due to this modified potential. The
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vertex correction, for example, gives us a correction of 1010 MHz. The anomalous
magnetic moment of the electron contributes 68 MHz. And the vacuum polariza-
tion graph, calculated earlier, contributes -27.1 MHz. Adding these corrections
together, we find, to the lowest loop level, that we arrive at the Lamb shift to
within 6 MHz accuracy.

Since then, higher-order corrections have been calculated, so the difference
between experiment and theory has been reduced to 0.01 MHz. Theoretically,
the 2S1/2 level is above the 2P1/2 energy level by 1057.864 ± 0.014 MHz. The
experimental result is 1057.862 ± 0.020 MHz. This is an excellent indicator of
the basic correctness of QED.

6.10 Dispersion Relations

So far, we have been discussing the scattering matrix from the point of view of per-
turbation and renormalization theory, that is, as a sum of increasingly complicated
divergent Feynman diagrams. However, the calculations and the renormalization
procedures rapidly become extraordinarily tedious and complicated, involving
hundreds of Feynman diagrams at the fourth order.

There is another approach one may take to the scattering matrix that completely
avoids the complicated and often counterintuitive operations used in renormaliza-
tion theory. Following Heisenberg and Chew,16 one may also take the approach
that the S matrix by itself satisfies so many stringent physical requirements that
perhaps the S matrix is uniquely determined. This approach avoids the formidable
apparatus that one must introduce in order to renormalize even the simplest quan-
tum field theory. Although this approach does not give a systematic method to
construct the S matrix for various physical processes, it does give us rigid con-
straints that are sometimes strong enough to solve for certain properties of the S
matrix, such as sum rules and dispersion relations.

The S matrix, for example, should satisfy the following properties:

1. Unitarity or conservation of probability.

2. Analyticity in the various energy variables.

3. Lorentz invariance.

4. Crossing symmetry.

These, in turn, impose an enormous number of constraints on the S matrix,
independent of perturbation theory, that may give clues to the final answer. One
of the great successes of this approach was the use of dispersion relations17
to calculate constraints on the pion-nucleon cross sections. It gave dramatic
verification of the power of analyticity in deriving nontrivial relations among
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the cross sections. These relations were used extensively in strong interaction
physics where a successful, renormalizable field theory eluded physicists for
many decades.

In classical optics, we know that the imposition of causality on the propagation
of a wave front is sufficient for us to write down a dispersion relation. Classically,
we find that causality implies that the S matrix found in optics is analytic. Follow-
ing this analogy to classical optics, we can show that the microscopic causality of
the Green's functions is sufficient to prove that the S matrix is analytic and hence
satisfies certain dispersion relations.

We know that functions f (z) analytic in the upper half plane obey very strin-
gent constraints; they can be written as Cauchy contour integrals:

ff (z) = 1 !-(u) du = 1
f f (u) dz (6.143)

27ri u-z 2,7ri f c u-z

where the contour C is a large closed semicircle sitting on the real axis in the upper
half complex plane. In the limit that f vanishes sufficiently rapidly at infinity,
we can drop the integral around the outer semicircle. Notice that z sits in the
upper half plane. If we slowly let z approach the real axis, then we must take the
principal part of the integral:

l f Z-E
fz+,5

°°l f(u) 1 1 f f (u)
f(z) = 2,7ti

001 P
J

f (u) du (6.144)
7ri 00 u -Z

where C' is a circular contour integral taken infinitesimally around the point z.
Taking the real part of both sides, we then have:

1 O° Im f (u)Ref(z)=PJ du
T oo u - z

We can therefore convert this formula to an integral from 0 to oo:

Ref(z) = 1P Jo duImf(u)+
1

fo

00 duIm f(u)
n 00 u- z n u- z

1 P I P fo du''f(u)
n o u+ z n z - u

1 f2udulrnf(u)=
T

P u2-z2

(6.145)

(6.146)

where we assume Im f (z) _ -Im f (z).
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In ordinary nonrelativistic quantum mechanics, we know that the scattering
amplitude of a wave scattering off a stationary, hard sphere is given by a function
f (p), which in turn is given as a function of the cross section via the optical
theorem:

IM f (p) = 4n atot(p)

Then we have the forward dispersion relation:

(6.147)

Ref (p) = 21 P f dq2ot t((2) (6.148)

If often turns out that f does not vanish fast enough to make the above relation
valid. For example, for photon-proton scattering (see Section 6.1), we have, for
zero frequency:

f(0)=-M (6.149)

which is the Thompson amplitude. Inserting this into the dispersion relation, we
have:

a f Qtt(q)dq
M n 2

But this is obviously incorrect, because the right-hand side is positive, while
the left-hand side is not. The error we have made is assuming that f vanishes at
infinity. Instead, we will write a dispersion relation for f (p)/ p, which does vanish
at infinity. Repeating the same steps as before, we find the following dispersion
relation:

f(p) =
a 1 f(q)+ lim fdq (6.151)

p pM 27ri -.o q(q - p - ie)

Taking the real part, we obtain our final result:

Re f (p) M + n
2

P 2q dq Im f (q)

fo g2(g2 - p2)
p2

M + 2 r2
P d4 g2tot

p2

(6.152)

Now that we have shown how to use the power of analyticity to write dispersion
relations, let us combine this with the added condition of unitarity to obtain
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conditions on the S matrix. We know that the scattering matrix satisfies:

SnfSni =sfi
n

(6.153)

By subtracting off the delta function that describes when the particles do not
interact with each other, the S matrix can be written in terms of a.T matrix:

Sfi = 8fi - i(2ir)84(L,pf - L, Pi)-177 i (6.154)

Inserting the expression for S in terms of ,T, and taking the case of forward
scattering, f = i, we have:

57i(27r)4 84(Pi - Pn (6.155)1 - -
n

Earlier, in Eqs. (5.21) to (5.26) we derived:

2n )6
Qtot = ( E(27r)484(Pi - Pn)I I2

Vlab n

(6.156)

where the sum over n includes integrating over final states. Inserting this into the
unitarity condition, we find:

1 a t(w)Im 2 v>ab (2,7r)6 (6:157)

We now wish to apply this formalism to calculate dispersion relations for pion-
nucleon scattering." We first need to define the kinematics of the collision. We
begin with the scattering of a pion of momentum ql off a proton of momentum
pi, producing a pion of momentum q2 and a proton of momentum P2.

Let us define the following Mandelstam variables:

s = (ql+p1)2

t = (q2 - q,
)2

u = (qi - P2)2 (6.158)

For the case of forward scattering, the most convenient variable is the laboratory
energy w of the pion:

P1' q1 =s-M2-mn
M 2M

(6.159)
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By Lorentz invariance, the matrix -0 appearing in the transition matrix is given
by:

-A(q;, Pi) = u(P2) (A(s, t) + 2(41+ q'2)B(s, t)) u(Pi) (6.160)

where nothing is known about the form factors A and B.
In the limit of forward scattering, these two form factors A and B merge into

one unknown function:

16 A(41, P i )(" ( 2 7 ) 2 &

47rT (w)

(27r)62&)
47ru(pi)T(w)u(pi)

A(s, 0) + wB(s, 0) (6.161)

It can be shown that T (w) is an analytic function of w. Then we can use cross-
ing relations to relate the 7r*'-nucleon scattering amplitude to the 7r--nucleon
scattering amplitude:

T(w) = T"P(w) = T'-P(-o))

Written in this fashion, we can write the unitarity condition as:

Im T"+p(-w)
2i

[T".p(-w + ie) - T"'p(-w - ie)]

k
v`°`

"-p(w)
47r

where k = w2 - mn.
Let us introduce the functions T±:

(6.162)

(6.163)

T ± = 2 [T (w) ± T(-o))] = 2 [T-.p(w) ± T" p(w)] (6.164)

The point of this discussion is to use dispersion relations to write down non-
trivial constraints for T that can then be compared with experiment. To write
down the dispersion relations, we must deduce the analytic structure of T, which
can be done by an analysis of Feynman diagrams. First, if we analyze four-point
Feynman diagrams, there is a pole corresponding to the exchange of a single
particle. This pole occurs at WB = mn/2M, which is due to the propagator.
The intermediate particle corresponding to this pole is off-shell, and the value
of w is below the energy at which physical scattering takes place. Second, the
intermediate states become on-shell in the region [m", oo] or [-oo, -m"]. For
these values of the energy, real scattering takes place with real intermediate states.
Analytically, this means that there is a Riemann cut in the real w axis.
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Putting these two facts together, we can now write down the dispersion relation

for T, consisting of the contour integral and also the pole term:

-mn Im T(d) 2f2
T (w) _

1
do)

Im T(o)') + 1

fm

/' dcv
+ 2 (6.165)

7C f OC CA1-CA-1E 7C 0) -0) B

where the f term comes from the pole contribution, and:

g2
M2

f-\47r)4M2 (6.166)

Inserting the unitarity condition, we can rewrite the dispersion relation as:

Re T -(w)/w
1 °O /w2 - m2 - l

47x2
P

m,
dw w2 - wen

[atoc p(w) - arc p(cv)]

2f2
w2 - we

(6.167)

This is our final result, which agrees well with experiment.
In summary, we have seen that a straightforward application of Feynman's

rules allows us to calculate, to lowest order, the interactions of electrons and pho-
tons. In this approximation, we find good agreement with earlier, classical results
and also experimental data. At higher orders, we find disastrous divergences
that require careful renormalizations of the coupling constant and the masses.
However, at the one-loop level, QED predicts results for the Lamb shift and the
anomalous magnetic moment of the electron that are in excellent agreement with
experimental data. This success, in fact, convinced the scientific community of
the correctness of QED.

We will now turn to the conclusion of Part I, which is a proof that QED is
finite to any order in perturbation theory.

6.11 Exercises

1. Prove the Feynman parameter formula in Eqs. (6.75) and (6.105). (Hint: use
induction.)

2. Assume that electrons interact with massless neutrinos via the interaction
Lagrangian gAµfeyµ(1 - y5)',,, where A. is a massive vector field and
*v is the neutrino field. To second order in the coupling constant, draw all
Feynman diagrams for the four-point function e- + v -> e- + v and write
down the corresponding expression for the scattering formula. Do not solve.
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3. Draw all the Feynman diagrams that appear in the electron-photon vertex
function as well as the photon propagator to the third-loop order. Do not
solve.

4. Explicitly reduce out the traces in Eq. (6.45).

5. Fill in the missing steps necessary to prove Eqs. (6.49) and (6.68).

6. Consider the scattering of an electron off a stationary spin-0 particle, using
the Yukawa interaction j*0 to lowest order. Compute the matrix element
for this scattering. How will the formula differ from the standard Coulomb
formula?

7. Compute the scattering matrix to lowest order of an electron with a stationary
neutron if the interaction is given by g jw' IIF, . Reduce out all gamma
matrices. How does this result compare with the Coulomb formula?

8. Show by symmetry arguments that the most general coupling between the
proton and the electromagnetic current is given by:

UP' (y,LFl(q2)
+ i aµvq°F2(g2)) U(6.168)

P

where K is the anomalous magnetic moment of the proton in units of a/2m p,
and Fl(g2) and F2(g2) are form factors and functions of the momentum
transferred squared.

9. From this, derive the Rosenbluth formula for electrons scattering off a sta-
tionary proton target:

dv a2 cos2(6/2) 2 i
[1 + 2E i 2)/B ]-s n ( / mp

dQ)ub 4E2 sin4(0/2)

z

x {IFi(g2)I2+4m2
P

+K2IF2(g2)I211 (6 169).

where:

q2 _ 4E2 sin2(9/2)
(6.170)

1 + (2E/mp) sin2(6/2)

and where we have assumed that the laboratory energy of the electrons E is
much larger than me.

10. Prove that II2 = 0 using the identities in Eqs. (6.88) and (6.89).
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11. Prove Eqs. (6.62) and (6.64). Fill in the missing steps.

12. Prove Eqs. (6.17) and (6.34).

13. Show that the Mandelstam variables obey the following relationship:

4

s+t+um? (6.171)

where m; are the masses of the external particles. Show that a four-point
scattering amplitude has poles for various values of s, t, and u. Show how
the scattering amplitude changes under crossing symmetry as a function of
the Mandelstam variables. For example, prove Eq. (6.162).

14. Consider a higher derivative theory with a Lagrangian given by [ej -
(a2)2/m2]0. Calculate its propagator and show that it corresponds to a
Pauli-Villars-type propagator; that is, it propagates a negative norm ghost.
Analyze its ultraviolet divergences, if it has any, if we add the interaction
term 04. Show that the Lagrangian can be written in canonical form; that
is, ' = pq - W. (Hint: add in auxiliary fields in order to absorb the large
number of time derivatives in the action.)

15. Take an arbitrary Feynman graph. Using the Feynman parameter formula,
prove'9.2o:

d4gi...d4gk

n
j!=1(P? - m?)

d
Il

4Q1 ..d4gk f
\1 - «i/Jo j=1

x ((k - ma1 + . qs + aj1js1jrqs . q)-n
i i,s i,s,r

where:

(6.172)

k

Pi = ki + ?Jisgs (6.173)
S=1

and qis equals ±1 or zero, depending on the placement of the jth and sth
lines. If the j line lies in the sth loop, then q = +1 (-1) if pi and qs are
parallel (antiparallel). Otherwise, q equals zero.
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16. Prove that the previous integral can be written as:

fo

where:

CO S (1 -T i=1 CO
dal ... dan

n 2k

02 [rJ=1(kJ - m j)aj]

n

0 = det E qisqirai
i=1

sr

(Hint: choose the k; in order to set the cross-terms to zero:

L,kiaiqis =0
i=l

(6.174)

(6.175)

(6.176)

Then diagonalize the integration over q,.)

17. In the previous problem, we can make an analogy between a Feynman integral
and Kirchhoff's laws found in electrical circuits. Show that we can make the
analogy:

k -> current

a -> resistance

ka -> voltage

k2a -> power

Show that the statement:

(6.177)

T kiai = 0 (6.178)
loop

for momenta taken around a closed loop corresponds to the statement that the
voltage around a closed loop is zero. Second, we also have the equation:

ki = 0 (6.179)

Vertex

which is the statement of current conservation. Because the Feynman param-
eters a are strictly real numbers, show that capacitors and inductors are not
allowed in the circuit. In this way, we can intuitively analyze the analytic
structure of a Feynman graph.





Chapter 7

Renormalization of QED

The war against infinities was ended. There was no longer any reason
to fear the higher approximations. The renormalization took care of all
infinities and provided an unambiguous way to calculate with any desired
accuracy any phenomenon resulting from the coupling of electrons with
the electromagnetic field .... It is like Hercules' fight against Hydra, the
many-headed sea monster that grows a new head for every one cut off.
But Hercules won the fight, and so did the physicists.

-V. Weisskopf

7.1 The Renormalization Program

One of the serious complications found in quantum field theory is the fact that
the theory is naively divergent. When higher-order corrections are calculated for
QED or 04 theory, one finds that the integrals diverge in the ultraviolet region, for
large momentum p.

Since the birth of quantum field theory, several generations of physicists
have struggled to renormalize it. Some physicists, despairing of ever extracting
meaningful information from quantum field theory, even speculated that the theory
was fundamentally sick and must be discarded. In hindsight, we can see that the
divergences found in quantum field theory were, in some sense, inevitable. In the
transition from quantum mechanics to quantum field theory, we made the transition
from a finite number of degrees of freedom to an infinite number. Because of
this, we must continually sum over an infinite number of internal modes in loop
integrations, leading to divergences. The divergent nature of quantum field theory
then reflects the fact that the ultraviolet region is sensitive to the infinite number
of degrees of freedom of the theory. Another way to see this is that the divergent
graphs probe the extremely small distance region of space-time, or, equivalently,
the high-momentum region. Because almost nothing is known about the nature of
physics at extremely small distances or momenta, we are disguising our ignorance
of this region by cutting off the integrals at small distances.
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Since that time, there have been two important developments in renormaliza-
tion theory. First was the renormalization of QED via the covariant formulation
developed by Schwinger and Tomonaga and by Feynman (which were shown to
be equivalent by Dyson'). This finally showed that, at least for the electromag-
netic interactions, quantum field theory was the correct formalism. Subsequently,
physicists attacked the problem of the strong and weak interactions via quantum
field theory, only to face even more formidable problems with renormalization
that stalled progress for several decades.

The second revolution was the proof by 't Hooft that spontaneously broken
Yang-Mills theory was renormalizable, which led to the successful application of
quantum field theory to the weak interactions and opened the door to the gauge
revolution.

There have been many renormalization proposals made in the literature, but all
of them share the same basic physical features. Although details vary from scheme
to scheme, the essential idea is that there is a set of "bare" physical parameters that
are divergent, such as the coupling constants and masses. However, these bare
parameters are unmeasurable. The divergences of these parameters are chosen so
that they cancel against the ultraviolet infinities coming from infinite classes of
Feynman diagrams, which probe the small-distance behavior of the theory. After
these divergences have been absorbed by the bare parameters, we are left with the
physical, renormalized, or "dressed" parameters that are indeed measurable.

Since there are a finite number of such physical parameters, we are only
allowed to make a finite number of such redefinitions. Renormalization theory,
then, is a set of rules or prescriptions where, after a finite number of redefinitions,
we can render the theory finite to any order.

(If, however, an infinite number of redefinitions were required to render all
orders finite, then any quantum field theory could be "renormalized." We could,
say, find a different rule or prescription to cancel the divergences for each of
the infinite classes of divergent graphs. Unless there is a well-defined rule that
determines how this subtraction is to be carried out to all orders, the theory is not
well defined; it is infinitely ambiguous.)

We should stress that, although the broad features of the renormalization
program are easy to grasp, the details may be quite complicated. For example,
solving the problem of "overlapping divergences" requires detailed graphical
and combinatorial analysis and is perhaps the most important complication of
renormalization theory. Due to these tedious details, there have been several
errors made in the literature concerning renormalization theory. (For example,
the original Dyson/Ward proof of the renormalization of QED actually breaks
down at the 14th order2.3 because of overlapping diagrams. The original claims

of renormalization were thus incomplete. However, the proof can presumably be
patched up.)
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Mindful of these obscure complications, which tend to conceal the relatively
simple essence of renormalization theory, in this chapter we will first try to
approach the problem of renormalization from a schematic point of view, and
then present the details later. Instead of presenting the complications first, which
may be quite involved, we will discuss the basic components of renormalization
theory, which occur in four essential steps:

1. Power counting
By simply counting the powers of p in any Feynman graph, we can, for large
p, tell whether the integral diverges by calculating the degree of divergence of
that graph: each boson propagator contributes p-2, each fermion propagator
contributes p-1, each loop contributes a loop integration with p4, and each
vertex with n derivatives contributes at most n powers of p. If the overall
power of p; that is, the degree of divergence D, is 0 or positive, then the
graph diverges. By simple power counting arguments, we can then calculate
rather quickly whether certain theories are hopelessly nonrenormalizable, or
whether they can be potentially renormalized.

2. Regularization
Manipulating divergent integrals is not well defined, so we need to cutoff
the integration over d4p. This formally renders each graph finite, order by
order, and allows us to reshuffle the perturbation theory. At the end of the
calculation, after we have rearranged the graphs to put all divergent terms into
the physical parameters, we let the cutoff tend to infinity. We must also show
that the resulting theory is independent of the regularization method.

3. Counterterms or multiplicative renormalization
Given a divergent theory that has been regularized, we can perform formal
manipulations on the Feynman graphs to any order. Then there are at least
two equivalent ways in which to renormalize the theory:

First, there is the method of multiplicative renormalization, pioneered by
Dyson and Ward for QED, where we formally sum over an infinite series of
Feynman graphs with a fixed number of external lines. The divergent sum is
then absorbed into a redefinition of the coupling constants and masses in the
theory. Since the bare masses and bare coupling constants are unmeasurable,
we can assume they are divergent and that they cancel against the divergences

of corresponding Feynman graphs, and hence the theory has absorbed all
divergences at that level.

Second, there is the method of counterterms, pioneered by Bogoliubov,
Parasiuk, Hepp, and Zimmerman (BPHZ), where we add new terms directly
to the action to subtract off the divergent graphs. The coefficients of these
counterterms are chosen so that they precisely kill the divergent graphs. In a
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renormalizable theory, there are only a finite number of counterterms needed
to render the theory finite to any order. Furthermore, these counterterms are
proportional to terms in the original action. Adding the original action with the
counterterms gives us a renormalization of the masses and coupling constants
in the action. These two methods are therefore equivalent; that is, by adding
counterterms to the action, they sum up, at the end of the calculation, to give
a multiplicative rescaling of the physical parameters appearing in the action.

These methods then give us simple criteria that are necessary (but not
sufficient) to prove that a theory is renormalizable:

a. The degree of divergence D of any graph must be a function only of the
number of external legs; that is, it must remain constant if we add more
internal loops. This allows us to collect all N-point loop graphs into
one term. (For super-renormalizable theories, the degree of divergence
actually decreases if we add more internal loops).

b. The number of classes of divergent N-point graphs must be finite. These
divergences must cancel against the divergences contained within the bare
parameters.

4. Induction
The last step in the proof of renormalizability is to use an induction argu-
ment. We assume the theory is renormalizable at the nth order in perturbation
theory. Then we write down a recursion relation that allows us to generate
the n + 1st-order graphs in terms of the nth-order graphs. By proving the
n + 1st-order graphs are all finite, we can prove, using either multiplicative
or counterterm renormalization, that the entire perturbation theory, order by
order, is finite. Since there are various recursion relations satisfied by field
theory (e.g., Schwinger-Dyson equations, renormalization group equations,
etc.), there are also a variety of renormalization programs. However, all
induction proofs ultimately rely on Weinberg's theorem (which states that a
Feynman graph converges if the degree of divergence of the graph and all its
subgraphs is negative).

7.2 Renormalization Types

Based on simple power counting of graphs, we can begin to catalog a wide variety
of different field theories on the basis of their renormalizability. We will group
quantum field theories into four distinct categories:

1. Nonrenormalizable theories.
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2. Renormalizable theories.

3. Super-renormalizable theories.

4. Finite theories.

7.2.1 Nonrenormalizable Theories

To determine the degree of divergence of any graph, we need to know the dimen-
sion of the various fields and coupling constants. We can determine the dimension
of a field by analyzing the behavior of the propagator at large momenta, or by
analyzing the free action. We demand that the action has the dimension of Ii,
(i.e., has zero dimension). Since the volume element d4x has dimension cm4, this
means that the Lagrangian must have dimension cm-4.

For example, the Klein-Gordon action contains the term (a,,0)2. Since the
derivative has dimension cm 1, it means that 0 also has dimension cm-1. The
mass m has dimensions cm -1 in our units, so that m202 has the required dimension

(cm)-4. By the same reasoning, the massless Maxwell field also has dimension
(cm)-1. The Dirac field, however, has dimension cm 312, so that the term iii
has dimension cm-4.

It is customary to define the dimension of a field in terms of inverse centimeters
(or, equivalently, grams). If [0] represents the dimension of the field in inverse
centimeters, then the dimensions of the fields in d space-time dimensions can be
easily computed by analyzing the free action, which must be dimensionless:

[0] =
d-2

2

d
1 (7.1)[*] = 2

The simplest example of a nonrenormalizable theory is one that has a coupling
constant with negative dimension, like 05 theory in four dimensions. To keep
the action dimensionless, the coupling constant g must have dimension -1. Now
let us analyze the behavior of an N-point function. If we insert a g05 vertex
into the N-point function, this increases the number of g's by one, decreasing
the dimension of the graph. This must be compensated by an increase in the
overall power of k by 1, which increases the dimension of the graph, such that
the total dimension of the graph remains the same. Inserting a vertex into the
N-point graph has thus made it more divergent by one factor of k. By inserting an
arbitrary number of vertices into the N point function, we can arbitrarily increase
the overall power of k and hence make the graph arbitrarily divergent. The same
remarks apply for 4' for n > 4 in four dimensions.
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(Since the presence or absence of dimensional coupling constants depends so
crucially on the dimension of space-time, we will find that in different space-times
the set of renormalizable and nonrenormalizable theories are quite different.)

Some examples of non-renormalizable theories include:

1. Nonpolynomial actions
These actions have an infinite number of terms in them, and typically look like
Ln=3". They necessarily have coupling constants with negative dimension,
and hence are not renormalizable.

2. Gravity
Quantum gravity has a coupling constant K with negative dimension. (K2
GN, where GN is Newton's constant, which has dimension -2.) This means
that we cannot perform the standard renormalization program. Also, a power
expansion in the coupling constant yields a nonpolynomial theory. Thus,
quantum gravity is not renormalizable and is infinitely ambiguous.

3. Supergravity
By the same arguments, supergravity is also nonrenormalizable. Even though
it possesses highly nontrivial Ward identities that kill large classes of diver-
gences, the gauge group is not large enough to kill all the divergences.

4. Four-fermion interactions
These actions, like the original Fermi action or the Nambu-Jona-Lasinio
action, contain terms like (if k)2. By power counting, we know that , has
dimensions cm-3/2, so the four-fermion action has dimension 6. This requires
a coupling constant with dimension -2, so the theory is nonrenormalizable.

5. 'ko,"' F,,»
This coupling, which seems to be perfectly well defined and gauge invariant,
is not renormalizable because it has dimension 5, so its coupling constant has
dimension -1.

6. Massive vector theory with non-Abelian group
A propagator like:

kk
gµv - M2

S°bk2-M2+ie (7.2)

goes like 0(1) for large k, and hence does not damp fast enough to give us
a renormalizable theory. So the theory fails to be renormalizable by power
counting arguments.
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7. Theories with anomalies
Ward-Takahashi identities are required to prove the renormalizability of gauge
theories. However, sometimes a classical symmetry of an action does not
survive the rigorous process of quantization, and the symmetry is broken.
We say that there are anomalies in the theory that destroy renormalizability.
Anomalies will be studied in greater length in Chapter 12.

7.2.2 Renormalizable Theories

The renormalizable theories only form a tiny subset of possible quantum field
theories. They have only a finite number of counterterms. They also have no
dimensional coupling constants; so the dimension of each term in the Lagrangian
is cm-4.

Some well-known renormalizable theories include:

1. 0
This is the simplest renormalizable theory one can write in four dimensions.
Because 0 has dimension 1, this interaction has dimension 4, and hence the
coupling constant is dimensionless. This theory is a prototype of much more
complicated actions. (However, it should be pointed out that this theory, when
summed to all orders, is probably a free theory.)

2- Yukawa theory
The Yukawa theory has a coupling between fermions and scalars given by:

H = get°1u° (7.3)

where t° is the generator of some Lie group and g is dimensionless.

3. Massive vector Abelian theory
Although this theory has a propagator similar to the massive vector non-
Abelian gauge theory, the troublesome k,,k term drops out of any Feynman
graph by U(1) gauge invariance. (This term cannot be dropped in a gauge
theory with a non-Abelian group.)

4. QED
There are no dimensional coupling constants, and, by power counting argu-
ments, we need only a finite number of counterterms.

5. Massless non-Abelian gauge theory
By power counting, this theory is renormalizable. A more detailed proof of
the renormalizability of this theory will be shown in Chapter 13.
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6. Spontaneously broken non-Abelian gauge theory
Although massive non-Abelian gauge theories are, in general, nonrenormal-
izable, there is one important exception. If the gauge symmetry of a massless
non-Abelian theory is spontaneously broken, then renormalizability is not
destroyed. The fact that renormalizability persists even after the gauge group
is spontaneously broken helped to spark the gauge revolution.
Since the renormalizability of a theory is dependent on the dimension of
space-time, we also have the following renormalizable theories:

7. ,,02
This is renormalizable in three dimensions.

8.

9.

o3

This is renormalizable in six dimensions.

o5 0

These are renormalizable in three dimensions.

10. ( ,)2
This is renormalizable in two dimensions. Although this interaction is non-
renormalizable in four dimensions, in two dimensions it requires no dimen-
sional coupling constant.
Finally, we can write down the complete set of interactions for spin 0, 2, and
1 fields that are potentially renormalizable. In four dimensions, they are given
symbolically by (if we omit isospin and Lorentz indices):

04, `Y `YO, (A2)2, `Y T Y, (pta, AI, OIOA2 (7.4)

(The Yang-Mills theory has an additional 8A3 interaction, which we will
discuss separately.)

7.2.3 Super-renormalizable Theories

Super-renormalizable theories converge so rapidly that there are only a finite
number of graphs that diverge in the entire perturbation theory. The degree of
divergence actually goes down as we add more internal loops. The simplest
super-renormalizable theories have coupling constants with positive dimension,
such as 03 in four dimensions. Repeating the argument used earlier, this means
that increasing the order g of an N-point function must necessarily decrease the
number of momenta k appearing in the integrand, such that the overall dimension
of the graph remains the same. Thus, as the order of the graph increases, sooner
or later the graph becomes convergent. Thus, there are only a finite number of
divergent graphs in the theory.

Some examples of super-renormalizable theories include:
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1. 03

This is super-renormalizable in four dimensions (but the theory is sick because
it is not bounded from below and the vacuum is not stable).

2. 0
This is super-renormalizable in three dimensions because it has three superfi-
cially divergent graphs, which contribute to the two-point function.

3. P(0)
0 has zero dimension in two dimensions; so we can have an arbitrary poly-
nomial in the action yet still maintain renormalizability. The interaction
P(0) produces only a finite number of divergences, all of them due to self-
contractions of the lines within the various vertices.

4. P(O)jr
This is also super-renormalizable in two dimensions.

7.2.4 Finite Theories

Although Dirac was one of the creators of quantum field theory, he was dissatisfied
with the renormalization approach, considering it artificial and contrived. Dirac,
in his later years, sought a theory in which renormalization was not necessary at
all. Dirac's verdict about renormalization theory was, "This is just not sensible
mathematics. Sensible mathematics involves neglecting a quantity when it turns
out to be small-not neglecting it because it is infinitely great and you do not want
it!"

Instead, Dirac believed that a new theory was needed in which renormaliza-
tions were inherently unnecessary. Until recently, it was thought that Dirac's
program was a dead end, that renormalization was inherent within any quantum
field theory. However, because of the introduction of supersymmetry, we have
two possible types of theories that are finite to any order in perturbation theory:

1. Super Yang Mills theory
Supersymmetry gives us new constraints among the renormalization constants
Z that are not found in ordinary quantum theories. In fact, for the S O (4) super
Yang-Mills theory, one can show that these constraints are enough to guar-
antee that Z = 1 for all renormalization constants to all orders in perturbation
theory. In addition, the SO (2) super Yang-Mills theory, coupled to certain
classes of supersymmetric matter, is also finite to all orders in perturbation
theory. Although these super Yang-Mills theories are uninteresting from the
point of view of phenomenology, the fact that supersymmetry is powerful
enough to render certain classes of quantum field theories finite to all orders
is reason enough to study them.
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2. Superstrings
Supersymmetry also allows us to construct actions much more powerful than
the super Yang-Mills theory, such as the superstring theory. Superstring theory
has two important properties. First, it is finite to all orders in perturbation
theory and is free of all anomalies. Second, it contains quantum gravity,
as well as all known forces found in nature, as a subset. The fact that
superstring theory is the only candidate for a finite theory of quantum gravity
is remarkable. (Because there is no experimental evidence at all to support the
existence of supersymmetry, we will discuss these supersymmetric theories
later in Chapters 20 and 21.)

7.3 Overview of Renormalization in 04 Theory

Since renormalization theory is rather intricate, we will begin our discussion by
giving a broad overview of the renormalization program for the simplest quantum
field theory in four dimensions, the 04 theory, and then for QED. We will stress
only the highlights of how renormalization is carried out. After sketching the
overall renormalization program for these two theories, we will then present the
details, such as the regularization program and the induction argument.

Our goal is to present the arguments that show that (1) the degree of divergence
D of any Feynman graph in 04 theory is dependent only on the number of
external lines, and that (2) these divergent classes can be absorbed into the physical
parameters.

Given any graph for 04, we can analyze its divergent structure by power
counting as follows:

E = number of external legs

I = number of internal lines

V = number of vertices

L = number of loops (7.5)

The degree of divergence of an arbitrary Feynman graph is easily computed.
Each internal propagator contributes 1/p2, while each loop contributes d4p, so
the degree of divergence is given by:

D=4L-2I (7.6)

Now we use some simple counting arguments about graphs to reduce this
expression. Each vertex has four lines connecting to it. Each of these lines, in
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turn, either ends on an external leg, or on one end of an internal leg, which has
two ends. Thus, we must have:

4V = 21 + E (7.7)

Also, the loop number L can be calculated by analyzing the independent momenta
in any Feynman graph. The number of independent momenta is equal to the
number of internal lines I minus the constraints coming from momentum conser-
vation. There are V such momentum constraints, minus the overall momentum
conservation from the entire graph. Since the number of independent momenta in
a Feynman graph is also equal to the number of loop momenta, we have, therefore:

L=I-V+1 (7.8)

Inserting these graphical rules into our expression for the divergence of a Feynman

graph, we now have:

D=4-E (7.9)

This means that the degree of divergence of any graph in four dimensions is
strictly dependent on the number of external lines, which is a necessary condition
for renormalizability. The degree of divergence is hence independent of the
number of internal loops in the graph.

This also a gratifying result because it means that only the two-point and the
four-point graphs are divergent. This, in turn, gives us the renormalization of the
two physical quantities in the theory: the mass and the coupling constant. Thus, by
using only power counting arguments, in principle we can renormalize the entire
theory with only two redefinitions corresponding to two physical parameters. [In
d dimensions, however, the degree of divergence is D = d+(1-d/2)E+(d -4)V.
Because D increases with the number of internal vertices, there are problems with
renormalizing the theory in higher dimensions.]

Next, we want to sketch the two methods by which renormalization is carried
out: multiplicative renormalization and counterterms. For 04 theory, we first
begin with an elementary discussion of multiplicative renonnalization.

We start with an action defined with "unrenormalized" or "bare" coupling
constants and masses:

-°o = 2aµooa'`oo -
2mo.0o - ! (7.10)

(We remind the reader that mo and a.o are formally infinite, but are not measurable.)
We define E(p2) to be the sum of all proper (or one-particle irreducible) two-point
graphs. (A graph is called improper or one-particle reducible if we can, by cutting
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Figure 7.1. The complete propagator A' is the sum of an infinite chain of one-particle
irreducible graphs E. A' itself is improper.

just one line, break the graph into two distinct parts. A proper diagram cannot be
split into two parts by cutting one line.) For example, the first-loop contribution
to E(p2) is given by the following:

a

- i E(PZ) _ -i 2 f (27r)
P4

p2 - mo + i e
(7.11)

which is obtained by taking a four-point vertex and joining two legs together into
a loop. It is a proper graph because if we cut the loop, it becomes a four-point
vertex and hence does not split apart into two distinct pieces.

Now let 0'(p) represent the sum over all possible two-point graphs. We call it
the complete or full propagator. 0'(p) is obviously the sum of two parts, a proper
and improper part. By definition, the proper part cannot be split any further by
cutting an intermediate line, but the improper part can. If we split the improper
part in half, then each piece, in turn, is the sum of a proper and improper part.
Then the smaller improper part can be further split into a proper and improper part.
By successively cutting all improper pieces into smaller pieces, we can eliminate
all improper parts and write the complete propagator entirely in terms of proper
parts. This successive cutting process obviously creates a sequence of proper parts
strung together along a string, as in Figure 7.1. 0'(p) itself is improper, since it
can be split into two pieces by cutting one line.

We can iterate the complete self-energy graph A'(p2) an infinite number of
times with respect to E, so that we can formally sum the series, using the fact that:

00T xn
n=O

1

1-x
(7.12)

The sum equals:

iL'(P) = iLF(P)+iAF(P)[-iE(P2)]iLF(P)...

tOF(P) I l
1 +iE(p2)i0F(P))
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_ i

p2 - mo - E(p2) +iE
(7.13)

Now power expand this self-energy correction E(p2) around p2 = m2, where m
is, at this point, finite but arbitrary:

E(PZ) = E(m2) + (p2 - m2)E'(m2) + E(P2) (7.14)

where E(p2) _ O(p2 - m2)2, and where E(m2) and E'(m2) are divergent. The
net effect of summing this infinite series of graphs is that the complete propagator
is now modified to:

f A'(P) =
i

p2 - mo - E(m2) - (p2 - m2)E'(m2) - E(p2) + iE

[1 - E'(m2)](P2 - m2) - E(p2) + iE

p2 - [mo + E(m2)] - (p2 - m2)E'(m2) - E(p2) + iE

(7.15)

At this point, mo is infinite but arbitrary. Since E(m2) is also divergent, we will
define mo and m such that mo cancels against the divergent part coming from
E(m2), giving us the finite piece m. We will choose:

mo + E(m2) = m2 (7.16)

[There is a certain arbitrariness in how two infinite terms cancel, because an
infinite term plus a finite term is still infinite. E(m2) may have a finite piece in
addition to an infinite piece, so the value of m2 is, at this point, arbitrary. We will
comment on this important ambiguity later.]

With this choice, we have:

iZo

p2 - m2 - E(p2) + j E

where we have made the following redefinitions:

(7.17)

m2 = mo + E(m2) = mo + Sm2

1

ZO =
1 - E'(m2)

E(P2) = E(P)[1 - E(m2)]-1 = ZpE(p) (7.18)
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Since the divergence of the propagator is contained within Z0, we can extract
this divergent piece. From the unrenormalized propagator A', we will remove
this divergence and hence obtain the renormalized propagator 0'(p):

0'(P) = ZOO'(P) (7.19)

This simple example demonstrates some of the main features of renormal-
ization theory. First, the pole structure of the bare propagator has changed by
summing up all graphs. Although we started with a bare propagator AF(p) with
a simple pole at the (infinite) bare mass mo, the effect of summing all possible
graphs is to shift the bare mass to the renormalized or "dressed" mass m. The p
dependence of the complete propagator A' has changed in a nontrivial fashion. It
no longer consists of just a simple pole. However, the complete propagator A'
still has a pole at the shifted mass squared p2 = m2 because E(m2) = 0,

Second, the divergent unrenormalized propagator 0'(p) has been converted
to the convergent, renormalized propagator 0'(p) by a multiplicative rescaling by
Zo. This is crucial in our discussion of renormalization, because it means that we
can extract the divergence of self-energy graphs by a simple rescaling (which will
eventually be absorbed by redefining the physical coupling constants and wave
functions of the theory).

We could also have written this in the language of proper vertices. Let
I'(") represent the one-particle irreducible n-point vertex function, with the n
propagators on the external lines removed. (The proper vertex will be defined
more rigorously in Chapter 8.) In the free theory, the proper vertex for the
two-point function is defined as the inverse of the propagator:

iro2)(P) = p2 - mo (7.20)

Once we sum to all orders in perturbation theory, then the proper vertex function
becomes infinite. If we divide out by this infinite factor Z0, then we can write the
renormalized vertex as:

ir(2)(0) = -m2 (7.21)

where we have taken p = 0.
Now consider the effect of renormalization on the coupling constant ).o. Let

r(4) represent the four point proper vertex, summed over all possible graphs, with
propagators on the external lines removed. To lowest order, this four-point graph
equals:

iro4)(Pi) = xo (7.22)
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The one-loop correction to this is given by:

ir141_Xo-!Xz f d4P
(7.23)

o

° 2 J [(p-q)2-mo+ie][P2-mo+ie]

Although we cannot evaluate r(4) to all orders in perturbation theory, we know that
it is Lorentz invariant and hence can be written in terms of the three Mandelstam
variables:

S = (P1 + P2)2; t = (Pi + P3)2; u = (p1 + P4)2 (7.24)

Therefore:

i ro4) (P1) = xo + f (s) + .f (t) + .f (u) (7.25)

for some divergent function f . For the value p = 0, let Z. 1 be this overall infinite
factor contained within f. If we divide out the infinite factor from the vertex
function, then we have:

ir(4)(0) = x (7.26)

where X is the physical, renormalized coupling constant. In fact, we can take Eqs.
(7.21) and (7.26) to be the definition of the mass and coupling constant, measured
at the point p = 0. Because of the ambiguity in manipulating finite and infinite
quantities, this definition is not unique. We could have defined the physical mass
and coupling constant at some arbitrary momentum scale it as well as p = 0. In
other words, these quantities are actually functions of it. (Of course, when we
perform an experiment and actually measure the physical masses and coupling
constants, we do so at a fixed momentum, so there is no ambiguity. However,
if these experiments could be performed at different momenta, then the effective
physical constants may change.)

For example, we could have defined the vertex function at the point p2 = m2
and s = u = t = 4m2/3. In general, we can define the masses and coupling
constants at a different momentum p = µ via:

iP(21(µ) = P2 - m2(µ)

ir(4)(µ) = x(µ) (7.27)

This point it is called the renormalization point or the subtraction point. The
ambiguity introduced by this subtraction point it will appear repeatedly throughout
this book, and will be studied in more detail in Chapter 14.



224 Renormalization of QED

Now that we have isolated the divergent multiplicative quantities, we can
easily pull them out of any divergent Feynman diagram by redefining the coupling
constants and masses. To see how this is done, let us split the ZO factor occurring
with every renormalized propagator in a Feynman diagram into two pieces ( ZO)2.

In this diagram, move each factor of Z0 into the nearest vertex function. Since
each vertex function has four legs, it means that the renormalized vertex function

will receive the contribution of four of these factors, or ZO = Z2. Since the
renormalization of the vertex function contributes an additional factor of Z.
then the ).o sitting in front of the vertex function picks up a factor of Z2/Zx. But
this means that the original bare coupling constant ).o is now modified by this
multiplicative renormalization as follows:

Xo -> X = ).oZj 1Z2 (7.28)

which we define to be renormalized coupling constant.
In this way, we can move all factors of Zp into the various vertex functions,

renormalizing the coupling constant, except for the propagators that are connected
to the external legs. We have a left over factor of Z0 for each external leg. This
last factor can be eliminated by wave function renormalization. (As we saw in
Chapter 5, it was necessary to include a wave function renormalization factor
Z-1/2 in the definition of "in" and "out" states.) Since the wave function is
not a measurable quantity, we can always eliminate the last factors of ZO by
renormalizing the wave function.

In summary, we first began with the 04 theory defined totally in terms of
the unrenormalized, bare coupling constants and masses, mo and X0, which are
formally infinite. Then, by summing over infinite classes of diagrams, we found
that the modified propagator had a pole at the shifted renormalized mass: p2 = m2.
Furthermore, the propagator and vertex function were multiplied in front by infinite
renormalization constants ZO and Z. 1, respectively. By splitting up the ZO at
each propagator into two pieces, we could redistribute these constants such that
the new coupling constant became a.oZ2/Zx. The reshuffling of renormalization
constants can be summarized as follows:

0 = ZO 1/200

X = Zx 1Z2Xo

m2 = mo+Sm2 (7.29)

where Sm2 = E(m2).
This can also be generalized to the n-point function as well. If we take an

unrenormalized vertex Po")(pi, ).o, mo), we can begin summing the graphs within
the unrenormalized vertex to convert it to the renormalized one. In doing so, we
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pick up extra multiplicative factors of Zo and Zx, which allow us to renormalize
the coupling constant and shift the bare mass. There are n external legs within
ro") that have no propagators, and hence do not contribute their share of the Z 112

factors. This leaves us with an overall factor of Z0-,12 Then we are left with:

I
0(n) (Pi,

)0, m0) = Z; n'2r(n)(Pi, ., m, µ) (7.30)

Although renormalization of 04 seems straightforward, unfortunately, there
are two technical questions that remain unanswered.

First, as we mentioned earlier, a more rigorous proof must grapple with the
problem of overlapping divergences, which is the primary source of complication
in any renormalization program. Salam4 was perhaps the first to fully appreciate
the importance of these overlapping divergences. Because of these divergences,
the final steps needed to renormalize 04 are, in some sense, more difficult than
the renormalization of QED. As a result, the problem of overlapping divergences
for 04 theory will be discussed at length later in this chapter. We will then solve
the problem of overlapping divergences in Chapter 13, when we study the BPHZ
renormalization method. We will then complete the renormalizability of 04 theory
in Chapter 14, where we develop the theory of the renormalization group.

Besides the multiplicative renormalization method, there is yet another way to
perform renormalization, and this is to proceed backwards, that is, start with the
usual 04 action defined with the physical coupling constants and masses, which,
of course, are finite. Then, as we calculate Feynman diagrams to each order, we
find the usual divergences. The key point is that we can cancel these divergences
by adding counterterms to the original action (which are proportional to terms in
the original action). This second method is called the counterterm method.

These counterterms contribute new terms to the Feynman series that cancel the
original divergences to that order. At the next order, we then find new divergences,
so we add new counterterms (again, proportional to terms in the original action),
which cancel the divergences to that order. The final action is then the original
renormalized action plus an infinite sequence of counterterms, to all orders. Be-
cause all the counterterms are proportional to terms in the original action, we wind
up with the unrenormalized action defined in terms of unrenormalized parameters
(which was the starting point of the previous procedure).

To see the close link between the multiplicative renormalization approach and
the counterterm approach, let us start with the renormalized action:

s7 =
2

[(8 )2 - m202] - 4! P4 (7.31)

where X and m are the renormalized, finite quantities. We then find divergences
with this action, so we add counterterms to the action, such that these counterterms
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cancel the divergences that appear to that order. Since the infinities that arise are
similar to the infinities we encountered with the multiplicative renormalization
program, we find that the coefficients of the counterterms can be summed to yield
the quantities ZO, Zx, and Sm2 found earlier.

To see this, let us add the counterterm &° to the Lagrangian:

H --+ H + Aff (7.32)

where the counterterm 3° must cancel the divergences coming from the two-point
and four-point graphs, which are contained within E(p2) and ir(4) (p2). Using the
subtraction point it = 0, we find that the counterterm that cancels these divergences
can be written as (to lowest loop order):

= E20) 02 + E 20) (aµ0)2 +
t r 4'(0) O4

(7.33)

Now make the definitions:

E'(0) = ZO-1
E(0) = -(ZO - 1)m2 +8m2

r(4'(0) = -i),.(1 - zx)

which are equivalent (to lowest loop order) to the definitions in Eq. (7.18).
With these definitions, we now have:

(7.34)

= 1 [Z 1] [(8 o)2 - m202] +
Sm2 Z 02 - (Zx - 004 (7.35)

2 µ 2 4!

If we add 3° and AH together, we find that we retrieve the original unrenormalized

action HO:

&O = H + A& (7.36)

This intuitively shows the equivalence of the multiplicative renormalization and
the counterterm methods. Thus, it is a matter of taste which method we use. In
practice, however, this second method of adding counterterms is perhaps more
widely used. The point is, however, that both the multiplicative approach and
the counterterm approach are equivalent. The fact that the counterterms were
proportional to terms in the original action made this equivalence possible.
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7.4 Overview of Renormalization in QED

Let us now begin an overview of the renormalization of QED. As in any quantum
field theory, the first step involves power counting. Once again, our goal is to
show that the degree of divergence of any graph is independent of the number of
internal loops.

Let us count the superficial degree of divergence of each graph in QED. We
define:

L = number of loops

V = number of vertices

E,1, = number of external electron legs

I* = number of internal electron legs

EA = number of external photon legs

IA = number of internal photon legs (7.37)

Then the superficial degree of divergence is.

D=4L-2IA-I* (7.38)

We can rewrite this equation so that it is only a function of the external legs of
the graph, no matter how many internal legs or loops it may have. Each vertex,
for example, connects to one end of an internal electron leg. For external electron
legs, only one end connects onto a vertex. Thus:

V = I* + 2E,,, (7.39)

Likewise, each vertex connects to one end of an internal photon line, unless it is
external. Thus-

V =2IA+EA (7.40)

Also, we know that the total number of independent momenta is equal to L, which
in turn equals the total number of internal lines in the graph minus the number of
vertices (since we have momentum conservation at each vertex) plus one (since
we also have overall momentum conservation). Thus:

L=I*+IA-V+1 (7.41)
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D=1 D=O D=2

D=1 D=1 D=O

Figure 7.2. The list of divergent classes of graphs in QED. Only the first three graphs,
however, are truly divergent if we use gauge invariance and Furry's theorem.

Putting everything together, we find the final formula:

D=4- 3E*
2

- EA (7.42)

This is very fortunate, because once again it shows that the total divergence of any
Feynman graph, no matter how complicated, is only dependent on the number of
external electron and photon legs. In fact, we find that the only graphs that diverge
are the following (Fig. 7.2)-

1 . Electron self-energy graph (D = 1).

2. Electron-photon vertex graph (D = 0).

3. Photon vacuum polarization graph (D = 2) (by gauge invariance, one can
reduce the divergence of this graph by two).

4. Three-photon graph (D = 1)-these graphs cancel because the internal elec-
tron line travels in both clockwise and counterclockwise direction. (If the
internal fermion line is reversed, then this can be viewed as reversing the
charge of the electron at the vertex. Since there are an odd number of vertices,
the overall sign of the graph flips.) Then the two graphs cancel against each
other by Furry's theorem.

5. Four-photon graph (D = 0)-this graph is actually convergent if we use gauge
invariance.
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s,
F

E E

Figure 73. The complete propagator S'F is the sum over one-particle irreducible graphs
E arranged along a chain.

Only the first three classes of graphs are actually divergent. Fortunately, this
is also the set of divergent graphs that can be absorbed into the redefinition of
physical parameters, the coupling constant, and the electron mass. (The photon
mass, we shall see, is not renormalized because of gauge invariance.) The one-loop
graphs that we want particularly to analyze are therefore the electron self-energy
correction E(), the photon propagator DN,,,, and the vertex correction r :

dak i i

(-ie)2 J (2n)4 Y /A

p(-fit - m
k21Av

Y v
(7.43)

M'`°(k) =

i

ieAN,(p, q)

a
to Tr

i i

-( )Z J
r

(2n)a

(YA

If-mY IfY-m

-i k2° +
k2"`"

/ tIIOfl(k) 02
A°

)

to 3
dak -ig,pa v i

(- ) f (27r)4 (k + p)2 Y Y-j -
i

-
mYor

(7.44)

To begin renormalization theory, we will, as in 04 theory, sum all possible
graphs appearing in the complete propagator (Fig. 7.3):

1SF(Y) = lSF(Y)+iSF(P)[-iE(P)]iSF(P)+...

IJ- mo -
1

E(p) + ie
(7.45)
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Then we make a Taylor expansion of the mass correction E(j) around IS = m,
where m is the finite renormalized mass, which is arbitrary:

E(p) = E(m) + (ji - m)E'(m) + E(p) (7.46)

where E(jf) O(pi - m)2 and vanishes for IS = m. Since mo is divergent and
arbitrary, we will choose mo and m so that mo cancels the divergence coming from
E(m). We will choose:

MO + E(m) = m (7.47)

(Again, there is a certain ambiguity in how this cancellation takes place.)
Inserting the value of E(p) into the renormalized electron propagator, we now

can rearrange terms, just as in the 04 case, to find:

1SF'(jf) = 1P(- mo - E(m) - (p(- m)E'(m) - E(p)

[1 - E'(m)](pr - m) - E(p) + ie

iZ2

I!-m+ic
where we have defined:

M

Z2 =

MO + E(m)

1

(7.48)

E( = E(P%1 - E'(m)]-1 = Z2E(j!) (7.49)

Since the divergence of the complete propagator S' is contained within Z2,
we can remove this term and define the renormalized propagator SF :

SF(Ii) = Z2SF(If) (7.50)

(Throughout this chapter, we will label the divergent, complete propagators like
SF. with the prime, and the finite, renonnalized propagators like SF with a tilde
and a prime.) As before, by summing this subclass of diagrams for the electron
self-energy, we have been able to redefine the mass of the electron, such that the
physical mass m is actually finite, and also show that the electron propagator is
multiplicatively renormalized by the factor Z2:

= Z2*o (7.51)
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Next, we analyze the photon propagator DN,v in the same way, summing over
infinite classes of one-particle irreducible graphs:

D'µv = DN,v - D II°`ADAv + (7.52)

However, a naive application of the previous methods would generate a renor-
malized mass for the photon, which would be disastrous, as we insist that the
physical photon be massless. This is the first example of how gauge invariance
helps preserve certain properties of the theory to all orders in perturbation the-
ory. The photon propagator must be gauge invariant, meaning that kfµv = 0.
This constraint, in turn, allows us to make the following decomposition of the
second-rank tensor into a scalar quantity 1(k2):

11µ°(k2) = (kµkv - 8µvk2)lI(k2) (7.53)

As before, we now make the infinite summation of corrections to the photon
propagator:

D'
1

k2[1 +II(k2)] (-8µv - kkvH(k2)/

We then power expand II(k2) around k2 = 0.

II(k2) = 11(0) + fl(k2)

Inserting this back into the propagator, we find:

(7.54)

(7.55)

D'µv = - 8µ°Z3 + gauge terms (7.56)

where the last term is proportional to kµkv and hence will be dropped. We have
also defined:

Z3 =
1

1 + 11(0)

n(k2) = fi(k2)[1 +II(0)]-1 = Z3n(k2) (7.57)

Then the finite, renormalized propagator b' can be defined by extracting out
Z3:

Dµv = Z3D'µv (7.58)
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As before, this allows us to make the following wave function renormalization:

A, _ vfZ3Aµo (7.59)

Finally, we wish to study the effect of renormalization on the electron-photon
vertex function. We first define the vertex function:

rµ(P, p') = y, +AA(P, p') (7.60)

After summing all graphs, we find that the vertex graph is infinite, and that we
can parametrize this divergence by introducing a third infinite quantity, Z1, such
that:

F, (P, P) = Z rµ(P, P)

or:

(7.61)

Y, +A,(P, p') = Z1 [Yµ +A,(P, P')] (7.62)

As in the case of the electron mass, which was renormalized by the infinite
quantity Sm, we will also use Z 1 to renormalize the coupling constant. The renor-
malized coupling constant e, as shown above, receives a multiplicative correction
1/Z1 from the divergent part of the vertex graph. However, we also know that we
have to renormalize the fermion and photon lines. Since there are two fermion
lines and one photon line attached to each vertex function, we must multiply the
coupling constant by another factor

Z22
Z3

The renormalized coupling constant is therefore:

Z2 Z3
e = Z eo

1

(7.63)

(Later, using what are called Ward-Takahashi identities, we will show that some
of these renormalization constants are equal, i.e. Z1 = Z2; so that the condition
on the renormalized coupling constant reduces to: e =

As we mentioned earlier, instead of using multiplicative renormalization, we
could have alternatively used the counterterm approach. This means starting with
the theory defined with the physical parameters and then computing divergent self-
energy and vertex corrections. Then we add counterterms to the action which,
order by order, cancel these divergences. If we then add the renormalized action
to the counterterms, we will reproduce the bare action.
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If we start with the action defined with renormalized parameters:

-m) -e li (7.64)

then the theory produces divergent amplitudes, which can be cancelled order by
order by adding counterterms to the action. Since the infinities that we encounter
are identical to the ones we found with the multiplicative renormalization program,
it is not surprising that the coefficients of these counterterms can be written in
terms of the same Z's. A careful analysis yields:

-9 --- Y + 0-9 (7.65)

where:

'-m)*+Z2Sm r*-e(Z1-1)><r4*
(7.66)

Adding these two terms together, we find:

-90=-1Z3(Fµ»)2+Z2i/r(4 -m)*-Ziei/r4* (7.67)

If we change variables to the unrenormalized quantities:

*0 = Z2*

Aµ0 = Z3Aµ

e0 = Z1Z2 1Z3 1/2e

m0 = m - Sm

then our action becomes the unrenormalized one:

(7.68)

H + A& _ Ho (7.69)

Finally, we would like to clarify the arbitrariness introduced into the theory
by the subtraction point it, the point at which we define the masses and coupling
constants in Eq. (7.27). This ambiguity arose because of the way that finite parts
were handled when canceling infinities. For example, we recall that the one-loop
calculation of the photon vacuum polarization graph in Section 6.6, using a cutoff
A, yielded:

2

II(k) = 3 log k2 (7.70)
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In order to extract out the renormalization constant Z3, we must split 1I(k2) into two
parts, a constant part and a momentum-dependent part, as in Eq. (7.55). However,
there are an infinite number of ways that we can perform this split. We could
equally well have split the momentum-dependent and momentum-independent
parts as:

11(k2) = 3 (log µ2 + log k2
)

= II(A, µ) + n(k2, A, µ) (7.71)

where it is arbitrary. Of course, we have done nothing. We have added and
subtracted the same term, log µ2. However, by adding finite terms to infinite
quantities, we have conceptually made a significant change by altering the nature
of the split. With this new split, the photon propagator in Eq. (7.56) can now be
rewritten as:

__ -gµ»Z3(A, µ)
D/ IV

k2 [1 + H(k2, A, µ)]
(7.72)

It is essential to notice that Z3 now has an explicit dependence on µ:

Z (A ) _µ
1

3 1+ nlogµ

n(k2, A, µ) = Z3(A, µ)fI(k2, A, µ) (7.73)

However, since the renormalized coupling constant a is a function of Z3, we
can isolate the dependence of a on it. To do this, we note that the unrenormalized
ao is, by definition, independent of it. Now choose two different renormalization
points, it, and µ2. Since a can be written in terms of µ1 or µ2, we have:

a(µ1) a(µ2)
ao

Z3(A, µl) Z3(A, 92)
(7.74)

where we have set Z 1 = Z2. Substituting in the value of Z3(A, µ), we have:

1 _ 1 2

a(91) a(µ2) 37r log 92
(7.75)

To lowest order, we have therefore derived a nontrivial relation, following
from the renormalization group analysis,'.' which expresses how the effective
coupling constants depend on the point µ, where we define the masses and coupling
constants via Eq. (7.27). These renormalization group equations will prove crucial
in our discussion of the asymptotic behavior of gauge theory in Chapter 14, where
we give a more precise derivation of these relations. They will prove essential in
demonstrating that QCD is the leading theory of the strong interactions.
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7.5 Types of Regularization

This completes a brief sketch of how the renormalization program works for 04 and
QED. Now comes the difficult part of filling in the essential details of the renormal-
ization program. We will now concentrate on the regularization schemes, certain
complications such as the Ward-Takahashi identity and overlapping graphs, and
then we will present the proof that QED is renormalizable.

Over the decades, a wide variety of regularization schemes have been devel-
oped, each with their own distinct advantages and disadvantages. Each regular-
ization scheme necessarily breaks some feature of the original action:

1. Pauli-Villars regularization
Until recently, this was one of the most widely used regularization scheme.
We cutoff the integrals by assuming the existence of a fictitious particle of
mass M. The propagator becomes modified by:

1 1 m2 - M2
p2 - m2 p2 - M2 (p2 - m2)(p2 - M2)

(7.76)

The relative minus sign in the propagator means that the new particle is a ghost;
that is, it has negative norm. This means that we have explicitly broken the
unitarity of the theory. The propagator now behaves as 1 /p4, which is usually
enough to render all graphs finite. Then, we take the limit as M2 --+ 00
so that the unphysical fermion decouples from the theory. The advantage
of the Pauli-Villars technique is that it preserves local gauge invariance in
QED; hence the Ward identities are preserved (although they are broken for
higher groups). There have been a large number of variations proposed to the
Pauli-Villars technique, such as higher covariant derivatives in gauge theory
and higher R2 terms in quantum gravity.

2. Dimensional regularization
This is perhaps the most versatile and simplest of the recent regularizations.
Dimensional regularization involves generalizing the action to arbitrary di-
mension d, where there are regions in complex d space in which the Feynman
integrals are all finite. Then, as we analytically continued to four, the Feyn-
man graphs pick up poles in d space, allowing us to absorb the divergences of
the theory into the physical parameters. Dimensional regularization obviously
preserves all properties of the theory that are independent of the dimension of
space-time, such as the Ward-Takahashi identities.
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3. Lattice regularization
This is the most widely used regularization scheme in QCD for nonpertur-
bative calculations. Here, we assume that space-time is actually a set of
discrete points arranged in some form of hypercubical array. The lattice
spacing then serves as the cutoff for the space-time integrals. For QCD, the
lattice is gauge invariant, but Lorentz invariance is manifestly broken. The
great advantage of this approach is that, with Monte Carlo techniques, one
can extract qualitative and some even some quantitative information from
QCD. One disadvantage with this approach is that it is defined in Euclidean
space; so we are at present limited to calculating only the static properties of
QCD; the lattice has difficulty describing Minkowski space quantities, such
as scattering amplitudes.

In this chapter, we will mainly stress the dimensional regularization method 7-"
We will now show explicitly, to lowest order only, how dimensional regularization
can regulate the divergences of the theory so that we are only manipulating finite
quantities (albeit in an unphysical dimension). Then later we will show how to put
this all together and renormalize field theory to all orders in perturbation theory.

Our starting point is the action for scalar mesons and for QED in d dimensions:

m2 4-d
= 2(aµ0)2 -

2
o -

4,
a.0?0

io(i' - mo)'fo - eoµ2-d/2Ao,joy, io -
4

Foµ (7.77)

where it is an arbitrary parameter with the dimension of mass. It is necessary to
insert this dimensional parameter because the dimension of the fermion field is
[,/r] = (d - 1)/2 while the dimension of the boson field is [AN,] = (d/2) - 1. (Our
final result must be independent of the choice of it. In this formalism, it takes
the place of the subtraction point introduced earlier in the renormalization-group
equations.)

Generalizing space-time to d dimensions, we are interested in evaluating the
integral in Eq. (7.11):

2
X0N4-d r d dp

2 (27r)d

1

p2-mo+iE (7.78)

Our goal is to find a region in complex d space where this integral is finite, and
then analytically continue to d = 4, where we expect to pick up poles in divergent
quantities. Then the renormalization scheme consists of absorbing all these poles
into the coupling constants and masses of the theory.

To begin the dimensional regularization process, we first must express the
integration over dd p for arbitrary dimension. To calculate the volume integral over
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d space, we remind ourselves that the change from Cartesian to polar coordinates
in two dimensions is given by:

x1 = r cos B1

x2 = r sin 01 (7.79)

by:

In three dimensions, we use the transformation to spherical coordinates given

x1 = rcosO1

X2 = r sin O1 cos 92

X3 = r sin O1 sin 92 (7.80)

Given these two examples, it is not hard to write down the transformation from
Cartesian to d-dimensional spherical coordinates, which spans all of d space. (We
will make a change of variables in the time parameter, converting real time to
imaginary time. This is called a Wick rotation, which takes us from Minkowski
space to Euclidean space, where we can perform all d-dimensional integrals all
at once. We then Wick rotate back to Minkowski coordinates at the end of the
calculation. Alternatively, we could have done the calculation completely in
Minkowski space, where the dx° integration is handled differently from the other
integrations.) The d-dimensional transformation is given by:

x1 = rcosB1

X2 = r sin O1 cos 92

x3 = r sin O1 sin 92 cos 03

x4 = r sin Oi sin 92 sin 03 cos 04

k-1
Xk = r H sin Oi COS Ok

i=1

d-1

Xd = r 1 1 sinO (7.81)
i=1
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By induction, one can prove that the Jacobian from Cartesian to spherical
coordinates is given by:

J = det

a(x1,x2,... xd)

a(r, 01, 02, ... ed-1)

d-1

rd-1 fl
sini_10i

(7.82)
;=1

The volume element in d space is therefore given by:

d d-1

dx; = Jdr fl dB;
=1 ;=1

= rd-1drdIld_1

d-1

= rd-1dr fl sini-1 B;d0i (7.83)
;=1

To evaluate this integral, we use the fact that:

fo

X

(7.84)sin OdO =
P(2(m+2))

Then in d dimensions, we have:

f
rrddp

= rd1drJ dOiJ sin 02dOJ sin203dO3.J

0 0 0

X

fn
Smd_2Od-1

dOd_1

_ 23rd/2_ rd-1 dr
F(d/2) o

(7.85)

The integration that we want to perform can therefore be written in the form:

r dd r r rn-1I= J
P = J dfi_1 J dr (7.86)

(p2 +2p q - m2)° (r2 - q2 - m2)a

(In the last expression, we have changed coordinates p --+ p + q in order to
eliminate the cross term between p and q. We are also working in Euclidean
space and will Wick rotate back to Minkowski space later.) The integral over the
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solid angle is given by:

27rd/2fdi (7 87)
J d-1 F(d/2)

.

We are left, therefore, with an integral over r. This integral over r is of the form
of an Euler Beta function:

B(x, y) =
,(X)F()

2
J

Oodt t2r-1(1 + t2)-x-y

With this formula, we can prove:

[00 rsdr F(2(1+$))F(a- 2(1+$))

Jo (r-2+ C2)° 2(C2)°-(1+f)/2jF(a)

We are left with the integral:

(7.88)

(7.89)

I = \(
27rd/2 F(d/2)F(a - d/2) l (7.90)
F(d/2)/ \2(-q2 - m2)a-d/2IF(a)/

The final result is therefore:

f dd p _ i7rd/2F(a - d/2)
J (p2 + 2p q - m2)° F(a)(-q2 - m2p-d/2

(7.91)

(The extra i appears when we rotate back from Euclidean space to Minkowski
space.)

Given these formulas, let us first analyze the one-loop correction to the 04
theory, which is given by E, and then generalize this discussion for the Dirac
theory. The one-loop correction in 04 theory in Eq. (7.78) is given by:

-iE(p) _
-iXomoF(l - (d/2)) 47rµ2

2-d/2

327r2 (-mo )

-+
iX m 1 + (7.92)

02

167r2 (4-d)
where we have extracted the pole term in the F function as d --> 4. These poles in
d space, as we pointed out earlier, can all be absorbed into the renormalization of
physical coupling constants and masses. This is our final result for the one-loop,
two-point divergence to this order.

To generalize this discussion to the Dirac propagator, we must perform the
dimensional integral with two Feynman propagators, so there are two terms in the
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denominator. It is easier if we combine the two factors in the denominator together;
so we will once again use Feynman's parameter trick. First, let us calculate the
electron self-energy correction, which can be written in d-dimensional space as:

E(p)
2 a-d ddk

Yµ
Yf )-i eoµ

J (27r)d C [(p - k)2 - mo]k2

2 E 1
ddk j(-fit+mo µ

-i eoµ
J

dx
J (2)d)'1[(p - k)2x - mox + k2(1 -X)]2'

-i eopE J dx y, (lf-I(x- yl + mo)y
0

x f ddq 1

,l (27r)d [q2 - mox + p2x(1 - x)]2

2 F(2 - d/2) i

µ eo (Zr)d/2
dxYµ[d(1-x)+molYµ

-- fo

x [mox - p2x(1- x)]d/2-2 (7.93)

where we have made a sequence of steps: (1) we used the Feynman parameter
trick; (2) we made the substitution q = k - px; (3) integrated over q, dropping
terms linear in q. Finally, we look for the pole in F(2 - d/2) as d --> 4. Let us
perform the integration over x:

e2 1

E(p)
16o 2

F(e/2)
J

dx {211(1 - x) - 4mo - e[d(1 - x) + mo]}
0

x Cmox - p2x(1 - x)
)-E/2

4gµ2

2 2

8
°2E(-1J+4mo)+ 162

11(1 +y) - 2mo(l +2y)

+ 2
J

1 dx [d(1 - x) - 2mo] log
Cmox - p2x(1 - x))1

0 4'rµ2 J

e2

o
(-p(+ 4mo) + finite (7.94)

(where y is the Euler-Mascheroni constant).
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Comparing this with the expansion for E(O) in Eq. (7.49), we now have a
result for:

Z =1- e2
0

2
83r2e

(7.95)

Next, we evaluate the vacuum polarization contribution to the photon propa-
gator. Once again, we will use the Feynman parameter trick:

2 4-d f
dd p (Tr [µ(ii+ mo)v(ii-f + mo)l l

i eµ (27r)d (p2 - mo)[(p2 - k2)2 - mol J

x

(
J J0

dxieoµE

Tr 1Y.4+0 +mo)yv[44(1 -x)+mo]}
[q2 - mo +k2x(1 - x)]2

ie2jE.f(d) [ldx ddq 2gµgv
° Jo (27r)d [q2 - mo + k2x(1 - x)]2

2x(1 - x)(kµkv - Sµvk2) _ Sµv

[q2 - mo + k2x(1 - x)]2 [q2 - mo + k2x(1 - x)]

(7.96)

where q --> q - kx and f (d) = Tr I. The first and third terms on the right-
hand side of the equation cancel, leaving us with only a logarithmic divergence.
(Gauge invariance has thus reduced a quadratically divergent graph to only a
logarithmically divergent one.) Extracting the pole as d --+ 4, we find:

2

27r2(kµkv - Sµvk2)

1 2

x 3- -( dxx(1 -x)log
(m_k2x(l_x)\

0
47rN2 /

+...
o

2

= 6er2e (kµkv - gµvk2)+...

Using Eq. (7.57), this means that we can write:

1 r ddq_

(7.97)

e2

Z3=1-6 0 (7.98)
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Finally, we must write down the dimensionally regularized vertex correction:

A,(P,q,P) -i(eµ2-d/2)2 f ddk yvV-t+mo)Y,(d-V+mo)Yv
J (27r)d k2 [(p - k)2 - mo][(p' - k)2 - mo]

2ie2 1 1-x

2)d J dx
f

dy f dd k
(27r

[k2-mo(x+y)-2k(px+ply) +p2x+pny]3

2ie2µE r1 1-x r
(23r)d

J
dx f dy

J
ddk

X
Yv(/-fit+mo)Y,(P'-Ii+mo)Y

X Yv[lf'(1 -
y) + p2x(1 - x) + P'2y(l - y) - 2p . P'xyl3

(7.99)

where we have made the substitution k --> k - px - ply.
This expression, in turn, contains a divergent and a convergent part. The

convergent part, as before, gives us the contribution to the anomalous magnetic
moment of the electron.

From Eq. (7.61), the divergent part can be isolated as:

A(1)
e22µ r 1 1-X

2(47r)d/2
F(2 - d/2)

J
dx

J
dy

X yvYPYlYPYv
P'xyl2-d/2[mo(x + y) + p2x(1 - x) + p'2y(l - y) + 2p

e2o yt,
87r2E

This, in turn, means that we can write:

e2

Z1=1-87r2E

(7.100)

(7.101)

Notice that Z 1 = Z2, as we expected from the Ward-Takahashi identity.
In summary, we have, to lowest order, the correction to the electron self-energy,

the photon propagator, and the vertex function:

e2
E(d) = B--(-p'+ 4mo) + finite

2

Ilµv = 62E (kµkv - k28µv) + finite
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A(1) _
e°2

yN, + finite
87r2E

These, in turn, give us the expression for the renormalization constants:

Z = Z =1- e2
1 2

87r2E

Z3 = 1 -
67r2E

Z1
eo

ZZ Z3

(7.102)

(7.103)

Comparing this result with the Pauli-Villars regularization method as in Eq.
(6.98), we find that, to lowest order, the divergences are identical if we make the
following correspondence between the pole 1/E and the cutoff A:

1 A2

E
H

2 log m2
(7.104)

Thus, to this order, our results are independent of the regularization procedure.

7.6 Ward-Takahashi Identities

When we generalize our discussion to all orders in perturbation theory, our work
will be vastly simplified by a set of Ward-Takahashi identities, which reduce
the number of independent renormalization constants Z;. When we general-
ize our discussion to include gauge theories in later chapters, we will see that
Ward-Takahashi identities are an essential ingredient in proving that a theory is
renormalizable.

Specifically, we will use the fact that:

A,(P, P) = -
a

as E(l() (7.105)

where we have written the vertex correction in terms of the electron self-energy
correction.

To prove this and more complicated identities arising from gauge theories,
the most convenient formalism is the path integral formalism. However, for our
purposes, we can prove the simplest Ward-Takahashi identities from graphical
methods. To prove this identity, we observe that:

8 1 __ 1 1

apS-m+iE jJ-m+iEyµjf -m+iE

e2

(7.106)
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(To prove this matrix equation, we set up a difference equation and then take the
limit for small SpN,.) Now let us use the above identity on an arbitrary graph that
appears within E(li). In general, we can write E(p) as follows to bring out its p
dependence:

E(n) - 1
(7.107)

(d+4f,) -m

where the ellipses may represent very complicated integrals that are not important
to our discussion. Also, there may be a large number of propagators with p
dependence within E(p5), which we suppress for the moment. Now take the
derivative with respect to p,, and we find:

- a E(Po = E ... 1 Y 1 ... (7.108)
apN, ; of+Jj -m 1f+4fi -m

where we must differentiate over all propagators that have a p dependence. The
term on the right is therefore the sum over all terms that have electron propagators
containing p dependence.

The right-hand side of the previous equation is now precisely the graph corre-
sponding to a vertex correction connected to an external photon line with zero mo-
mentum. This in turn means that the right-hand side equals F, (p, p), as promised.
The purpose of this rather simple exercise is to prove a relation between renor-
malization constants. Now let us insert all this into the Ward-Takahashi identity.
Differentiating the full E(d) to all orders, we find:

a E(l() a [E(m) + (P(- m)E'(m) + E(lf)]
ap1L apN,

-y, E'(m) - a'2(p)

A,(P, P)

Y,(Z1 1 - 1)+Z1 1Aµ(P, P) (7.109)

where we have used Eq. (7.61).
Comparing terms proportional to the Dirac matrix, we see that the term (Z 1-

1)yN, must be proportional to -E'(m), which we calculated earlier to be equal to
-1 + (1/Z2) in Eq. (7.49).

Comparing these two coefficients of yN,, we easily find:

Z1 = Z2 (7.110)

which is our desired result. For a complete proof of renormalization, however,
we need a more powerful version of the Ward-Takahashi identity, rather than the
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one defined for zero-momentum external photons. We will use the version:

(p' - P),F (P', P) = [S/F 1(PI) - S'F 1(P), (7.111)

This is easily shown to lowest order, where S. 1 = p( - m. Then the Ward-
Takahashi identity reduces to the simple expression (p' - p)µ yµ = (d' -m -p'+m).
We can also show that this expression, in the limit that p --> p', reduces to the
previous version of the Ward-Takahashi identity.

This can also be rewritten in terms of the one-particle irreducible graph E.
Because S'F 1 = p(- m - E(p), we have:

(p' - P),AA = - [E(PA) - E(P)] (7.112)

The proof of this identity is also performed by graphical methods. We use the fact
that:

P(+i1 m y/P( lm =P( lm -P(+ 1 m (7.113)

which uses the identity:

1A(A-B)B
B A

(7.114)

To prove the general form of the Ward-Takahashi identity, we simply use this
identity everywhere along a fermion line or along a fermion loop. This procedure
is schematically represented in Figure 7.4.

Consider a specific member of E(p)os and follow the fermion line that connects
the index a with fl. Then schematically, we have:

n

E(PO) = Ef ... I... m Y'n (7.115)

where pn = po, where we have omitted all momentum integrations, and where a;
denote the momentum-dependent photon lines that are connected to other fermion
loops (which are temporarily dropped). The matrices are ordered sequentially.
Also, the total momenta contained within the various a; must sum to zero.

Let us do the same for Aµ. If we follow the fennion line connecting the two
fern ion ends of Aµ, we find:

J

f n-1/r
1 ) I

Aµ(P,P) _ ......EI1\Hfi
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a, a2 a3 a

P. P1 P2 P.

a, a2 a3 a a,, a

P. P, P2 p, P,+q p +4

Figure 7.4. The Ward-Takahashi identity is proved by examining the insertion of a photon
line along a fermion line contained within E and showing that we retrieve A.

In-1
{

1

'+j _ m Y'nX 41j--
s=r+1

(7.116)

The y, is inserted at the rth point along the fermion line, and we sum over all
possible values of r. In other words, we sum over all possible insertion points of
yN, along the fennion line. The essential point in the proof is the observation that
there is a graphical similarity between the vertex correction and the self-energy
correction. Graphically speaking, if we take all the graphs within E and attach an
extra photon line along all possible fermion propagators, then the resulting graphs
are identical to the graphs within A,.

To show this rigorously, let us now contract A, with qµ and use the identity
shown previously. Then each term in the rth sum in A, splits into two parts. We
now have 2r possible terms, which cancel pairwise because of the minus sign.
The only terms that do not cancel are the first and last terms:

n-1 r-1
1 )4,.G 1 1

J
... J ...E jl 4;j' m r _ m "Ir+j _ m )

n-1
1

X fl s=r+l41 P(s+ - m

E(po) - E(po + q)

4n

(7.117)

where po = p and p' = po + q.
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The last step in the proof is to notice that we could have attached the photon
leg of momentum q along any closed fermion loop as well. However, then the
pairwise cancellation is exact, and the contribution of all closed loops is zero.
This completes the proof of the Ward-Takahashi identity to all orders.

7.7 Overlapping Divergences

As we mentioned earlier, the renormalization program either cuts off the diver-
gences with counterterms or absorbs them by multiplicative renormalization. In
order to study how this is done systematically, we can use the method of skeletons.
Draw a box around each divergent electron and photon self-energy graph and each
vertex graph. Then we can replace the self-energy insertions with a line and the
vertex insertions with a point. In this way, we obtain a reduced graph. Then we
repeat this process, drawing boxes around the self-energy and vertex insertions
in the reduced graph, and reduce it once more. Eventually, we obtain a graph
that can no longer be reduced; that is, it is irreducible. The final graph after all
these reductions is called a skeleton. An irreducible graph is one that is its own
skeleton.

The advantage of introducing this concept is that the renormalization program
is reduced to canceling the divergences within each box. For example, consider
the complete vertex function F, summed to all orders. If we make the reduction
of I',,, we wind up with a sum over skeleton graphs, such that each line in the
skeleton corresponds to the proper self-energy graph SF and D'µ and each vertex
is the proper vertex. This can be summarized as:

F, (p, p') = Yµ + AS(S', D', F, eo, p, p') (7.118)

In this way, all complete vertex functions can be written entirely in terms of
skeleton graphs over proper self-energy graphs and proper vertices.

This process of drawing boxes around the self-energy insertions and vertex
insertions is unambiguous as long as the boxes are disjoint or nested; that is,
the smaller boxes lie wholly within the larger one. Then the skeleton graph is
unique. However, the skeleton reduction that we have described has an ambiguity
that infests self-energy diagrams. For example, in Figure 7.5, we see examples of
overlapping diagrams where the boxes overlap and the skeleton is not unique. One
can show that these overlapping divergences occur for vertex insertions within
self-energy parts. Unless these overlapping divergences appearing in self-energy
graphs are handled correctly, we will overcount the number of graphs. These
overlapping divergences are the only real difficulty in proving the renormalization
of 04 and QED.



248 Renormalization of QED

Figure 7.5. Examples of overlapping divergences found in QED.

There are several solutions to this delicate problem of overlapping divergences.
The cleanest and most powerful is the BPHZ program, which we will present in
Chapter 13. For QED, the most direct solution was originally given by Ward, who
used the fact that, although E(p) has overlapping divergences, the vertex function
Aµ does not. Therefore, by using the Ward-Takahashi identity:

8E(p) -= -A8pµ A (7.119)

we can reduce all calculations to functions in which overlapping divergences are
absent.

Mathematically, taking the derivative with respect to pµ is identical to inserting
a zero photon line at every electron propagator, as we saw in Eq. (7.106). This
means that every time an electron propagator appears in E, we replace it with
two electron propagators sandwiching a zero momentum photon insertion matrix
yµ. (However, we stress that there are still some serious, unresolved questions
concerning overlapping divergences that emerge in 14th order diagrams, which
we will discuss later.)

To see how this actually works, let us take the derivative of an overlapping
divergence appearing in E. In Figure 7.6, we see the effect that 8/8pµ has on the
overlapping divergence.

A single overlapping divergence has now split up into three pieces, each of
which has a well-defined skeleton decomposition. Therefore, the Ward-Takahashi
identity has helped to reduce the overlapping divergences within E to the more

Figure 7.6. The effect that taking the partial derivative with respect to pµ has on the
overlapping divergence.
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Figure 7.7. Taking the derivative of the photon self-energy graph with respect to the
momentum yields these diagrams.

manageable problem of calculating the skeleton decomposition of the vertex A.
As long as we reduce all electron self-energy ambiguities to vertex insertions via
the Ward-Takahashi identity, the overlapping divergence problem is apparently
solved.

For photon self-energy graphs, there is also an overlapping divergence prob-
lem, which is also treated in much the same way. Although there is no Ward-
Takahashi identity for the photon self-energy graph, we can solve the problem by
introducing a new function W,, which is defined by:

a
W, (k) = a [iD'(k2)]-1 (7.120)

where:

1D'(k2) = (7 121)
k2 (1 - e211(k2))

.

More explicitly, we can write:

W, (k) = 2ik, +ik, T(k2)

2

k2T = k2II(k2)J
kµ k

(7 122))(
µ [k 8

.

The whole point of introducing this function W, (k) is that it has no overlapping
divergences. Once again, the net effect of the partial derivative is to convert the
photon self-energy graph into a vertex graph for T, which has no overlapping
divergences. To see how this works, in Figure 7.7 we have performed the differ-
entiation of an overlapping photon self-energy graph and created a vertex graph
that has no ambiguous skeleton decomposition.

In summary, as long as we properly replace all electron and photon self-
energy graphs with their vertex counterparts, there is usually no need to worry
about overlapping divergences.
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7.8 Renormalization of QED

Over the years, a large number of renormalization programs have been developed,
with various degrees of rigor, and each with their own advantages and disad-
vantages. Since the reader will encounter one or more of these renormalization
programs in his or her research, it is important that the reader be familiar with
a few of these approaches. In this book, we will present three renormalization
proofs:

1. The original Dyson/Ward proof, (which apparently breaks down at the four-
teenth order, due to ovelapping divergences).

2. The BPHZ proof.

3. Proof based on the Callan-Symanzik equations.

We will first present the Dyson/Ward proof, which uses the auxiliary function W, to
handle the overlapping divergence problem. In a later chapter, we will renormalize
quantum field theory using more modem and sophisticated techniques, such as
the renormalization group and the BPHZ program, which are more general than
the proof that we will present here.

The Dyson/Ward proof of renormalization can be described in four steps:

1. First write down the complete set of coupled equations containing all the
divergences of the theory for all self-energies and vertices. Everything is
written in terms of skeleton graphs defined over the (divergent) complete
propagators SF and D'µ

2. Subtract off the infinite divergences only in the vertex functions T and AN,,
which are free of overlapping divergences. Then define the new renormalized
self-energy functions SF and Dµ in terms of these subtracted vertex parts.
This will enable us to write down an equivalent set of coupled equations for
the finite set of self-energy functions free of overlapping divergences.

3. Rewrite the subtraction process as a multiplicative rescaling of the vertex and
self-energy parts.

4. Absorb all multiplicative renormalizations into the coupling constant, masses,
and wave functions.

7.8.1 Step One

The proof begins by writing down the expression for the unrenormalized self-
energy graphs and vertices, summed to all orders, in terms of their skeletons. It
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will prove useful to summarize the notation that we will use:

proper e self-energy graph

proper y self-energy graph

proper vertex (unrenormalized)

complete e self-energy graph

complete y self-energy graph

renormalized e self-energy graph = Z
1 1 SF

renormalized y self-energy graph = Z3 1 D'µ

renormalized vertex = Z1rµ

(7.123)

Then the unrenormalized self-energy graphs and vertices satisfy:

rµ(p, p') = y l t + AS (S', D', r, eo, P I P')

W, (k2) = 2ikN, + ikN,rS(S', D', F, W, e021 k2)

S'(p)-1

= S'(po)-1 + (p - Po)"`rµ(P, PO)
1

D'(k2)-1 = fdxkW(xk) (7.124)

where the superscript S denotes skeleton graphs, the prime denotes the complete
propagator, which is the sum over divergent one-particle irreducible graphs.

The first two equations are really definitions, telling us that the vertex graphs
F, and W, can be written in terms of skeleton graphs. (Because they have no
overlapping divergences, this can always be done.) The third equation is the
Ward-Takahashi identity, and the last equation is an integrated version of the
definition of W,. Since these equations are all divergent, we must make the
transition to the renormalized quantities.

7.8.2 Step Two

To find the convergent set of equations, we want to perform a subtraction only
on those functions that have no overlapping divergences; that is, we perform the
subtraction on T and A. In this way, we remove the possibility of overcounting.
The subtracted functions are denoted by a tilde: -

A (p, p') = AS (p, p') - Aµ(po, Po)I =µ

T(k2) TS(k2)_T(2) (7.125)
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Only one subtraction is necessary since the diagrams are only logarithmically
divergent. (As before, we stress that there is an infinite degree of freedom in
choosing µ, the subtraction point. Whatever value of µ we choose, we demand
that the physics be independent of the choice.)

We note that AS(po, po) can be further reduced. Since it is defined forgo = µ,
it can only be a function of yN,. Thus, we can also write:

Aµ(po, po)l da=µ Ly, (7.126)

where L is divergent.
The important point is that we have only performed the subtractions on the

quantities that have no overlapping divergences and no overcounting ambiguities,
that is, the vertex functions T and A. This, in turn, allows us to define the finite
self-energy parts (with a tilde) via the following equations:

rµ(p, p') = y µ + Aµ(3, D, r, e2, P I P

WN,(k) 2ikN,+ik,T(S,D,r,W,e2,k2)

3(p)-1 = 3(po)-1 + (p - po)rµ(p, po)

b(k2) dx k"` W, (xk) (7.127)
fo

The advantage of these definitions is that everything is now defined in terms of T
and A, which have no overlapping divergences. However, the quantities P,, WN,
were simply defined by the previous equations. We still have no indication that
these subtracted functions have any relationship to the actual renormalized self-
energy and vertex parts.

7.8.3 Step Three

Now comes the important step. Up to now, we have made many rather arbitrary
definitions that, as yet, have no physical content. We must now show that these
quantities with the tilde are, indeed, the renormalized quantities that we want.

To see how this emerges, let us focus on the vertex graph. In terms of the
subtraction, we can write:

I'µ y, +Aµ

y,+ Aµ - Ly,.

(1-L)\y, +IILAs
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Z 1 Yv + Z
As (7.128)

1

where we have defined:

Z 1 = 1 - L (7.129)

Although we have factored out the renormalization constant Z 1 from this equation,
the right-hand side is still not in the correct fonn. We want the right-hand side to
be written in terms of the unrenormalized quantities, not the renormalized ones.

To find the scaling properties, it is useful to write the vertex functions symbol-
ically in terms of propagators S and D and vertices yN,. Symbolically, by deleting
integrals, traces, etc., the vertices can be written as products of propagators and
vertices:

Asn ti eo2nS2n(D)n(yµ)2n+1

T2n - eo S2n+a(D)n-°(Y)2n+o(2ikµ)1-° (7.130)

where or is an integer that increases by one for every differentiation of an electron
line,

Given this symbolic decomposition, we want to study their behavior under a
scaling given by:

Yv a y,

Dµ bDµ

S -> a-1S

(where a and b are proportional to renormalization constants).
Then it is easy to show that the vertex functions scale as:

(7.131)

aAS(S, D, yµ, e2, P, PI) = AS(a-1S, bD, ayN,, b-1e2, p, p)

b-1T S(S, D, yN,, 2ik,, eo, k2) = T S(a-1 S, bD, aF ,, b-12ik, , b-1e2, k2)

(7.132)

With these rescaling relations, we can now absorb the factor Z1 back into the
renormalized vertex function Aµ and convert it into an unrenormalized one, Let
a = Zi 1 and b = Z3. We then have:

rµ = Z1 (Yµ + Z rs(S, D, r, e2, P I P1) I
1
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= Zi [yµ +As (Z1S, Z3D, Zi 1r, Z3 -1e p, p/)]

= Z1 [Yµ + A(S', D', r, e2, p, p')]

= z,rµ (7,133)

where we have used Z 1 = Z2. This is the result that we wanted. We have now
shown that the subtracted quantity I', after a rescaling by Z1 and Z3, can be
written multiplicatively in terms of the unrenormalized quantity F,. This justified
the original definition of f that we introduced earlier.

7.8.4 Step Four

Now that we have renormalized the vertex, the rest is now easy. The vertex Wµ
can now be renormalized in the same way. With a = Zi 1 and b = Z3, we have:

W ,(k) = 2ik, + ikb, (TS(k2) - TS (A2))

(1- 2T S(µ.2)) (2ik + 1 - iTs(N2)ikµTs(k2)
2

Z3 (2ikA + 23 ikµTS(k2)

Z3 [2ik, + ik, TS(Z2S, Z3D, z-'r,1, z-1fV, Z3 le2, k2)]

Z3 [2ikµ + ik,T S(S', D', F, W, e2, k2)] (7,134)

Thus, we have the other renormalized relation:

Wµ = Z3Wµ (7,135)

From the renormalization of these vertex functions, it is easy to renormalize
the self-energy terms as well, since everything is multiplicative. We now have the
following relations that show the link between renormalized and unrenormalized
quantities:

FA = Z1 1rµ W, = Z31 Wµ

S' = Z2S Dµ = Z3Dµ (7,136)

e2 = Z3 1e2 Z1 = Z2

In summary, we have proved that a subtraction of the divergences can be
re-expressed in terms of a multiplicative rescaling of the vertex and self-energy
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Figure 7.8. This fourteenth-order photon self-energy Feynman diagram was shown by
Yang and Mills to suffer from a serious overlapping divergence problem, because of
ambiguities introduced when we take the momentum derivative. This graph apparently
invalidates the original Dyson/Ward renormalization proof

parts, This means that all divergences are multiplicative and can be absorbed into
a renormalization of the coupling constants, masses, and wave functions.

Although this was thought to be the first complete proof of the renormaliz-
ability of QED, this proof may be questioned in terms of its rigor, For example,
it was shown by Yang and Mills20,22 that there is an overlapping ambiguity at the

fourteenth order in QED, thereby ruining this proof. For the electron self-energy,
the Ward-Takahashi identity solves the problem of overlapping divergences, but
for the photon self-energy, they showed that the operation of taking a momentum
derivative is ambiguous at that level, thereby invalidating the proof (Fig. 7.8).
(They also showed how it might be possible to remedy this problem, but did not
complete this step.)

Second, another criticism of this proof is that we necessarily had to manipulate
functions that were sums of an infinite number of graphs. Although each graph
may be finite, the sum certainly is not, because QED certainly diverges when we
sum over all orders; that is, it is an asymptotic theory, not a convergent one. More
specifically, what we want is a theory based on an induction process, such that at
any finite order, all functions are manifestly finite. We need a functional equation
that allows one to calculate all self-energy and vertex parts at the n + 1st level
when we are given these functions at the nth level.

Since there are many functional equations that link the nth-order functions
to the n + 1st-order functions, there are also many inductive schemes that can
renormalize field the most useful of these schemes is the
inductive process using the BPHZ and renormalization group equations (which
will be discussed in further detail in Chapters 13 and 14).

In summary, we have seen that renormalization theory gives us a solution to
the ultraviolet divergence problem in quantum field theory. The renormalization
program proceeded in several steps, First, by power counting, we isolated the
divergences of all graphs, which must be a simple function of the number of
external lines. Second, we regulated these divergences via cutoff or dimensional
regularization. Third, we showed that these divergences can be canceled either by
adding counterterms to the action, or by absorbing them into multiplicative renor-
malizations of the physical parameters. Finally, we showed that all divergences
can be absorbed in this way.
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The weakness of our proof, however, is that it handles overlapping divergences
in an awkward (possibly incorrect) way, and that it is not general enough to handle
different kinds of field theories. It remains to be seen if the overlapping divergence
problem can be truly solved in this formalism. In Chapters 13 and 14, we will
present the BPHZ and renormalization group proofs of renormalization, which are
not plagued by overlapping divergences and are much more versatile.

This completes our discussion of QED. Next, in Part II we will discuss the
Standard Model.

7.9 Exercises

1. Show that Z 1 = Z2 to one-loop order for the electromagnetic field coupled to
a triplet of zr mesons, where Z1 is the vertex renormalization constant, and
Z2 is for then self-energy. (Hint: use the Ward-Takahashi identity.)

2. Do a power counting analysis of ¢P in q dimensions; isolate the graphs that
are divergent. Confirm the statements made in the text concerning the renor-
malizability or super-renormalizability of the theory in various dimensions.

3. Draw all possible graphs necessary to prove the Ward-Takahashi identity for
QED to order a3.

4. Do a power counting of the massive Yukawa theory, with interaction term
Isolate all divergent graphs, Show that all divergences can be, in

principle, moved into the physical parameters of the system. Outline the
renormalization program,

5. Analyze the renormalization properties of a derivative coupling theory:

g yIL (7.137)

Is the S matrix equal to one? Is the theory trivial? Consider making a
field redefinition on the ,/r and 1l , Calculate the self-energy correction to the
fermion propagator and verify your conjecture.

6. Consider the one-loop electron self-energy diagram in QED. Let this electron
also interact with an external scalar field via a derivative coupling, as in the
previous problem, To first order in g, attach this derivative coupling term
in all possible places along each electron propagator. There are three such
graphs. Show that the sum of these three graphs is zero.

7, Repeat the previous problem, except consider an electron line with all possible
photon lines attached to it to all orders in e, To first order in g, attach the
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derivative coupling interaction along all electron propagators and show that
this also sums to zero.

8. Consider the one-loop correction to the propagator in a massive ¢ 3 theory.
Calculate the one-loop correction using both the Pauli-Villars method and the
dimensional regularization method in order to find a relationship between e
and A/m.

9. Prove Eq. (7.91). Fill in the missing steps in its derivation that were omitted
in the text.

10. Fill in the missing steps in Eqs. (7.93), (7.94), (7.96), and (7.97).

11. Let Ka#ya equal the complete four-electron Green's function, where the Greek
letters label the Dirac spinor indices. From this, we can construct what are
called the Schwinger-Dyson equations for the electron vertex, with electron
momenta p and p':

rµ(P , P)ya Z1(Yv)ya - J (27r )a
[SF(p' +9)rµ(p' +9, p +q)

x SF (p + q)]O« Kad,sy (p + q, p' + q, q) (7.138)

and for the photon propagator:

a
ll (q) = iZ1 J (2 )aTr [Yµ3' (k + q)] (7.139)

Graphically, write down what these recursion relations look like. Then show
that they are graphically correct to two-loop order,

12. Show that K does not suffer from overlapping divergences, which means that
the Schwinger-Dyson equations (instead of the Ward-Takahashi identities)
may be used to renormalize QED to all orders.21.24





Part II

Gauge Theory
and the Standard Model





Chapter 8

Path Integrals

One feels as Cavalieri must have felt calculating the volume of a pyramid
before the invention of calculus.

-R. Feynman

8.1 Postulates of Quantum Mechanics

Previously, we outlined how to quantize field theories with various spins using the
canonical quantization approach, However, for increasingly complex systems,
such as gauge theory, quantum gravity, and superstring theory, canonical quanti-
zation proves to be a very clumsy formalism since manifest Lorentz invariance is
broken, Instead, we will explore a new method in this chapter,

Perhaps the most powerful quantization method is the path integral approach,
which was developed by Feynman,'"2 based on an idea of Dirac.3 The path integral
method is versatile enough to handle a variety of different types of gauge theories,
The path integral approach has many advantages over the other techniques:

1. The path integral formalism yields a simple, covariant quantization of com-
plicated systems with constraints, such as gauge theories, While calculations
with the canonical approach are often prohibitively tedious, the path integral
approach yields the results rather simply, vastly reducing the amount of work,

2. The path integral formalism allows one to go easily back and forth between the
other formalisms, such as the canonical or the various covariant approaches. In
the path integral approach, these various formalisms are nothing but different
choices of gauge.

3. The path integral formalism is based intuitively on the fundamental principles
of quantum mechanics. Quantization prescriptions, which may seem rather
arbitrary in the operator formalism, have a simple physical interpretation in
the path integral formalism,
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4. The path integral formalism can be used to calculate nonperturbative as well
as perturbative results.

5. The path integral formalism is based on c-number fields, rather than q-number
operators. Hence, the formalism is much easier to manipulate,

6. At present, there are a few complex systems with constraints that can only be
quantized in the path integral formalism.

7. Renormalization theory is much easier to express in terms of path integrals.

Our discussion of the path integral formalism begins with two deceptively
simple principles:

8.1.1 Postulate I

The probability P (b, a) of a particle moving from point a to point b is the square
of the absolute value of a complex number, the transition function K(b, a):

P(b, a) = I K(b, a) 12 (8.1)

8.1.2 Postulate II

The transition function K(b, a) is given by the sum of a phase factor e`S's, where
S is the action, taken over all possible paths from a to b:

K(b, a) = ke`Sms (8.2)
paths

where the constant k can be determined by:

K(c, a) _ E K(c, b)K(b, a) (8.3)
paths

where we sum over all intermediate points b connecting a and c.
These postulates incorporate the essence of the celebrated double slit exper-

iment, where a beam of electrons passes through a barrier with two small holes.
A screen is placed behind the barrier to detect the presence of the electrons. As a
point particle, an electron cannot, of course, go through both holes simultaneously.
Classically, therefore, we expect that the electrons will go through one slit or the
other, leaving two distinct marks on the screen just behind the two holes.

However, experiments show that the pattern created on the screen by repeated
passages of the electrons through these holes is an interference pattern, associated
with wave-like, not particle-like, behavior. Classically, we are therefore left with
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a paradox. A point particle cannot go through both holes at once, yet the passage
of a large number of electrons successively going past the barrier clearly leaves an
interference pattern, with minima and maxima, as if the electron somehow went
through both holes.

In the path integral approach, as in quantum mechanics, this puzzle can be
resolved. The postulates of the path integral approach and quantum mechanics
do not allow us to calculate the precise motion of a single point particle. They
only allow us to calculate probability amplitudes. The probability that an electron
will go from the source past the slits to the screen is given by summing over all
possible paths. These probabilities, in turn, may have wave-like behavior, even if
the electron itself is a point particle.

The sum over paths reproduces the interference pattern that is experimentally
seen on the screen. Thus, the path integral approach incorporates the philosophy
behind the double-slit experiment, which, in turn, embodies the essence of the
quantum principle.

As in quantum mechanics, we make the transition to classical mechanics by
taking the limith -> 0. For large values of S, the exponential of i S/h undergoes
large fluctuations, and hence cancels out to zero. Hence, the contribution of the
paths that maximize the action S do not contribute much to the sum over paths:

SS>h : E eisIft-0 (8.4)
paths

In the classical limit, the paths that dominate the sum are the ones where SS/R
is as small as possible. However, the path for which SS is minimized is just the
classical path:

SS = 0 -> classical mechanics (8.5)

Thus, we recover classical mechanics in the limit ash -> 0. The picture that
emerges from the path integral approach is therefore intuitively identical to the
principles of quantum mechanics. To calculate the probability that a particle at
point a goes to a point b, one must sum over all possible paths connecting these
two points, including the classical one. The path preferred by classical mechanics
is the one that minimizes the action for SS <h (Fig. 8.1).

Although the path integral method gives us an elegant formalism in which to
reformulate all of quantum field theory, one should also point out the potential
drawbacks of the formalism. One problem is that the path integral is not well
defined in Minkowski space. In this chapter, we will assume that all path integrals
are computed with the Euclidean metric. Then, the functional integral is taken
over a-s, which has much better convergence properties than integrals over e`s.
At the end of the calculation, we assume that we can analytically continue back
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Figure 8.1. The path integral sums over all possible paths connecting two points, including
the one favored by classical mechanics. In this way, the path integral sums over quantum
corrections to classical mechanics.

to Minkowski space. (The question of whether this analytic continuation from
Minkowski space to Euclidean space and back again is rigorously defined is a
highly nontrivial question. This is a delicate matter, the subject of a field called
axiomatic field theory, which is beyond the scope of this book.)

Another problem is that the transition between c numbers and operators be-
comes illdefined when the Hamiltonian has ordering problems. The path integral
over a system with the Hamiltonian of the form p2 f (q), for example, becomes
ambiguous when making the transition to the operator language, since p and q
do not commute. For systems more complex than the harmonic oscillator, the
integrals may not be Gaussian, and ordering problems may creep into the path
integral. For complicated systems, one must often use "point splitting" methods,
that is, separating two fields by a small infinitesimal amount in space-time in order
to regularize the integrals. Unfortunately, a detailed elaboration of these delicate
points is also beyond the scope of this book.

With these problems in mind, let us now compute with the path integral
approach. We first divide up a path by discretizing space-time. Let us divide up
each path in three-space into N points (Fig. 8.2). Then the "sum over all paths"
can be transformed into a functional integral:

lim
N II II SXn -> J

Dx
paths i=1 n=1

The integral f Dx is not an ordinary integral. It is actually an infinite product of
integrals, taken over all possible dx(t). Whenever we use the differential symbol
D, we should remember that it is actually an infinite product of differentials taken
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x
3

X n

X2

Figure 8.2. To calculate with path integrals, we break the path into a discrete number of
intermediate points, and then integrate over the position of these intermediate points.

over all points. In this functional language, the transition function becomes:

fDx
b

K(b ,a)=ke`SI'

where k can be determined as follows:

(8.7)

K(c, a) =
J

K(c, b)K(b, a) Dxb (8.8)

where we integrate over all possible intermediate points xb which link points a
and c.

To give this approach some substance, let us begin with the simplest of all pos-
sible classical systems, the free nonrelativistic point particle in the first quantized
formalism. Our discussion begins with the classical action:

S=J dt 2m±? (8.9)

Let us now discretize the paths. We take dt to be a small interval c and then
discretize the Lagrangian:

dt -> E

1
mz?dt -> 2m(xn - xn+l)ZE-1 (8.10)
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The transition function K(b, a) can be written as the path integral over e`s:

K(b, a) = lim f J ... dx2 dx3 ... dxN_1
C-O f

im N-1
x k exp

2E
(Xn - xn+1

n_1

)2/
(8.11)

Unfortunately, one of the drawbacks of the path integral formalism is that
embarrassingly few functional integrals can actually be performed. However, we
will find that the simplest Gaussian path integral is also the one most frequently
found for free systems. Specifically, we will repeatedly use the Gaussian integral:

00

J dxx2ne-r2X2 =_ 1'(n +
r2n+1 (8.12)

To evaluate the expression for K(b, a), we now perform one of these Gaussian
integrations:

00

dx2 exp [-a(xi - x2)2 - a(x2 - x3)2]

= 2a exp L-2a(x1 - x3)2] (8.13)

The key point is that the Gaussian integral over x2 has left us with another
Gaussian integral over the remaining variables. This process can be repeated an
arbitrarily large number of times: Each time we perform a Gaussian integral on
an intermediate point, we find a Gaussian integral among the remaining variables.

After repeated integrations, we find:

dXN_1 exp [-a(xi - x2)2 - ... - a(XN_1 - XN)2]

N-2

f(N_1)a2 exp L- N a 1(x1 - XN)2] (8.14)

This, in turn, allows us to calculate the constant k:

k=
(27riE)-1112)N

I\ m
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If we take the limit as the number of intermediate points goes to infinity, then we
are left with the final result for the transition function:

K(b, a) =
m

27r(tb - ta) tb - ta
(8.16)

This is a pleasant result. This is exactly the Green's function we derived in Eq.
(3.58) for nonrelativistic quantum mechanics. Beginning with only the postu-
lates of the path integral approach and the simplest possible classical action, we
have derived the Green's function found in quantum mechanics that propagates
Schrodinger waves. It obeys the equation:

1 z

2m 8x2
K(b' a) = i 8 K(b, a)

b b

(8.17)

Our first exercise in the path integral formalism gave us encouraging results.
Now let us tackle more general and more difficult problems, such as (1) the transi-
tion between the Lagrangian and the Hamiltonian approaches and (2) the transition
from c-number expressions to operator q-number expressions. In the usual canon-
ical approach, these two transitions appear rather ad hoc and counterintuitive.

In the path integral approach, the transition between the Lagrangian and Hamil-
tonian systems is easily performed by adding an infinite sequence of Gaussian
integrations for the momentum pi. For each infinitesimal integration, we use the
fact that:

f dp eiap2+ibp = VLi77r e-ib2/aa
f o

which can be proved by completing the square. If we let a = -1 /2m and b =t
and integrate over an infinite number of these momenta, then we have:

f
xb

, tb rK(b,

a) = Dx exp i
J

dt
L

m(zi)2 - V(x)]
t

rxb ftb 2

J a Dx Dp exp i dt pzi - 2m - V (x)(8.19)
x o

The Lagrangian appears on the first line, but the Hamiltonian, defined by
H(p, x) = p2/2m + V (x), appears on the second line. By performing the func-
tional integral over Dp, we can go back and forth between the Lagrangian and
Hamiltonian formalisms. In the path integral formalism, the relationship between
the Lagrangian and the Hamiltonian formalism is no mystery, but simply the
byproduct of performing an additional functional integration over momentum.

1/2
exp

(1/2)im(xb - xa)2
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(For clarity, because normalization factors, such as 1/2ir, appear repeatedly
throughout our discussion, we have absorbed them into the definition of Dx and
Dy. We will henceforth drop these trivial normalization factors, since they can
can always be explicitly written out later.) Thus, in the path integral formalism,
the difference between the two formalisms only lies in a Gaussian integration
over momentum. The path integral formalism allows us to go between these
formalisms with ease:

2

L=2m(±,)2-V(x)HH=2m+V(x) (8.20)

So far, everything has been defined in terms of c-number expressions. Opera-
tors, which are the basis of the canonical approach, do not enter into the picture at
all. Now, let us make the second transition, this time from the path integral formal-
ism to the operator formalism, to show that the operator formalism that we have
patiently developed in Chapters 3 and 4 is nothing but a specific representation of
the path integral.

We recall that in the canonical formalism, the starting point was the canonical
equal-time commutation relation between fields O(x) and their conjugates Tr(x).
Only later could we calculate the propagators and finally the S matrix. In the
path integral formalism, the sequence is roughly the reverse. We begin with the
S matrix as the starting point, and we later derive the operator formalism as a
consequence.

To see how operators naturally emerge in a formalism defined entirely without
operators, let us write the transition function between pointxl at time ti to point xN
at time tN in the Heisenberg representation. We will carefully divide the path into
N intermediate points. In this formalism, the transition probability of a particle
at point xl and time tl going to xN and time tN is given by the matrix element
between eigenstates ix, t)

The Heisenberg representation, we recall, is based on a complete set of position
eigenstates ix) of the position operator z, which is now treated as an operator with
eigenvalue x:

IIx) =xIx) (8.21)

We also introduce eigenstates of the momentum operator p:

1 = J

1 = JIP)dP(PI (8.22)
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such that they are normalized as follows:

269

(xIY) = S(x - Y)

eipx a-ipx(P Ix)
= (xI p) = (8 23)

2n' 2n
.

To check the consistency of this normalization, we perform the following manip-
ulations:

(xIY) _ (xIP)f dp(PIY)

f
d

e-ipx e'
P

2n 2rt

dp e-ip(x-Y)
27t

(8.24)

Our normalizations are thus consistent.
Our task is now to rewrite the functional integration over p at an intermediate

point along the path in terms of an operator expression defined in the Heisenberg
picture. We will use the fact that the transition element between two neighboring
points can be written as:

(x2I e-if(tz-tt)Ixl) = (x2, t2Ix1, t1) (8.25)

Let us take a specific value of I - (xi - x2)St and dp that appears within the
functional integral and carefully rewrite the integral over dp and its integrand as
follows:

I dpei(pi-x(x,p))St = dpe-ix(x,p)Steip(XI-x2)
27r 27t

= e-ix(x,a=)Ste-ixzp f dp eipx1
2n

= e-`x(x,ax)St(x2Ip) f dp (plxl)

= e-iH(x,ax)St
(x2Ixl)

= (x2 I e-t
H ax )St

1x1)

_ (x2, t2Ix1, t1) (8.26)



270 Path Integrals

We have now made the transition between a Lagrangian defined in terms of x and
x and a Hamiltonian defined in terms of x and its derivative 8x. The transition
was made possible because the derivative of the exponential brings down a p:

8x etpx = ip etpx

e-iH(x,ax)at eipx e-tx(x,p)at eipx (8.27)

In the path integral formalism, this is the origin of the transition between c numbers
and q-number operators; that is, the insertion of intermediate states defined in p
space allows us to replace the p variable with a 8x operator. Thus, we have made
the transition between:

H(x, p) H H(X, ax)

p H -jSx (8.28)

In summary, we have now shown that the path integral formalism can express
the propagator K(b, a) in three different ways, in the Lagrangian or Hamiltonian
formalism, or in the operator formalism in the Heisenberg picture. This can be
summarized by the following identity:

K(N, 1) _ (XN, tNlXltl)

(XN, tN I XN-1, tN-1) J dXN-1 (XN-1, tN-1I

...1X2, t2) J dx2 (X2, t2IX1, t1)

r rtN

J
Dx exp (i

J
dt L(x, z))

r,

r

fJ
DXDp exp (dt (p± - H(x, p))) (8.29)

,

Finally, let us reanalyze, from the point of view of path integrals, how the time
ordering operator T enters into the propagator. Let us analyze the matrix element
of an initial state I xi , t1) with a final state (x,, to 1, with the operators xj (tj) and
xk(tk) sandwiched between them. We will assume that tj > tk. As before, we
will take time slices and insert a series of complete intermediate states between
the states at each slice:

(Xn, tnlX(tj)X(tk)I x1, t1) = (Xn, tnlXn-1, to-1) f dx(tn-1)(xn-1, tn-11
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... Ixj+1, tj+1) f dx(tj+l)(xj+1, tj+ll xj, tj)x(tj)

...
Ixk+1, tk+1)

J
dx(tk+1)(xk+1, tk+llxk, tk)X(tk)

... Ix2, t2) f dx(t2)(x2, t2lx1, ti)

Taking the limit as the number of time slices goes to infinity, we have:

(xn,tnlx(tj)x(tk)Ixl,t1) = f DxDpx(tj)x(tk)

rn

x exp (i f (p± - H(p, x)) dtl

f Dx x (tj)x(tk) exp i
(Jt

L(x,z)dt)
,

(8.30)

(8.31)

Now, let us reverse the order of the times, such that tj < tk. In this case,
the previous formula must be modified because we can no longer take time
slices. Thus, whenever tj < tk, we cannot make the transition from operators
to path integrals unless we reverse the ordering of the operators. In order for this
formalism to make sense, we will always reverse the order of the operators, such
that the later times always appear to the left, so that we can proceed with taking
time slices. To enforce this condition, we must use the time ordered product in
this case:

(xn, tnl T [x(tj)x(tk)] Ixl, ti)

= f DxDp x(t j)x(tk) exp (i f dt (p± - H(p, x))) (8.32)
,

For a large number of insertions, we have obviously:

(xn, t,, I T [x(t j)x(tk) ... x(tm)] Ix1, ti)

fDxDpx(tj)x(tk)...x(tm)exp (i f [p -x - H(p, x)]) (8.33)

We emphasize that the left-hand side consists of operators, so the ordering of the
times is important. However, on the right-hand side we have a c-number expres-
sion, where the ordering of the x(ti) makes no difference. The correspondence
between operators and these c-number expressions in the path integral only holds
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when we can make time slices, that is, when the operators are time ordered. From
the path integral point of view, this is the origin of the time ordering in the matrix
elements.

8.2 Derivation of the Schrodinger Equation

In a first quantized formalism, where the action is a function of x` and not fields,
the path integral formalism gives us an added bonus: It gives us a derivation of the
Schrodinger equation. Usually, introductory courses in quantum mechanics begin
by postulating the Schrodinger wave equation. Certain conventions, such as the
quantization of x and p, seem rather arbitrary. Only later emerges the probabilistic
interpretation. Here, we reverse this order: we begin with the probabilistic
postulates of quantum mechanics and derive the Schrodinger wave equation as a
consequence, thus giving a new physical interpretation to that equation.

In the path integral approach, the evolution of a state is given by the transition
function K(b, a). From a classical point of view, this can be viewed as the ana-
logue of Huygen's principle, where the evolution of a wave can be determined by
assuming that each point along a wave front emits a new wave front. The integra-
tion over all these infinitesimal wave fronts then gives us the overall evolution of
the wave front. Mathematically, this is given by:

*(xi, ti) =
J

K(xj, tj;x;, t;)*(xi, t;) dx; (8.34)
00

Earlier, we derived, assuming only the Lagrangian (1/2)mv?, an expression
for the nonrelativistic transition function. Now let us calculate how wave fronts
move with this transition function. The time evolution, from t to t + St, is given
by:

* (x, t + E) =
J

Aexp 2E '(y, t) dy (8.35)
1

(im(x_y)2\

where:

A _ (27ric)1/2
I\ M

To perform this integration, let dy be replaced by dry, where q = y - x:

(8.36)

*(X, t + 0 =
roc

A-1e'mn2/2E*(x + q, t) dq (8.37)



8.3. From First to Second Quantization 273

Now Taylor expand the left-hand side in terms of t, and the right-hand side in
terms of q:

fi(x, t)+E a* r
A-leim q2 126

cc

_cc

The integration over dq is easily performed. The integration over the linear term
in q vanishes because it is linear, and the integration over the higher terms vanish
in the limit c -> 0. This gives us:

W 1 a2,'
. at 2m ax2

(8.39)

This is the Schrodinger wave equation, as desired. It is straightforward to in-
sert a potential into the path integral, in which case we derive the Schrodinger
wave equation in a potential, which is the traditional starting point for quantum
mechanics.

8.3 From First to Second Quantization

So far, we have only investigated the path integral formalism in the
formalism, reproducing known results. The reader may complain that the path
integral formalism is an elaborate, powerful machinery that has only rederived
simple results. However, when we make the transition to the second quantized
formalism and eventually to gauge theory, we will find that the path integral
approach is the preferred formalism for quantum field theory. We saw earlier that
the integration over all intermediate points along a path was enforced by inserting
the number "1" at each intermediate point:

1 = Ixi, ti) J dxi (xi, tiI (8.40)

The transition to field theory is made by introducing yet another expression
for the number "1," this time based on an integration over an infinite number of
degrees of freedom. We will use the familiar Gaussian integration:

k=1

- 2

n J U dxj (x1 xi) exp I - E(xk)2 I (8.41)



274 Path Integrals

Now let us replace the variable x, with a function fi(x), which is temporarily
viewed as a discretized number *x, where x is now seen as an infinite discrete
index.

The transition from finite degrees of freedom to infinite degrees of freedom is
then made by inserting the following expression for "1" into the path integral:

Sx.y ,. fD D* X y exP - (:z)
z

where:

(8.42)

Di = fl d,li. (8.43)

Written in terms of functions *(x) rather than discretized variables *z, we
now have:

S(x - y) =
J D1 Di* **(x)*(Y) exp- (f DxI i(x)I2) (8.44)

These expressions can also be rewritten in terms of bra and ket vectors as follows:

*(x) _ (xlii)

**(x) _ (ilx) (8.45)

This allows us to write:

S(x - y) = f D2, ii*(x)ii(Y) eXP - (f Dx i*(z)i(z))

(xlii) f D2* exP- (f (iIz) Dz (zhii)) (DIY)

(x I l I Y) (8.46)

Written in this language, the number "1" now becomes:

1 = Iii) f d2iie-(*I*)(iI (8.47)

We can now repeat all the steps used in making the transition from the Lagrangian
approach to the operator approach in the Heisenberg picture by inserting this new
expression for the number "1" into the path integral. When we do this, we then
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have an expression for the transition function written entirely in terms of r(x). A
straightforward insertion of this new set of intermediate states yields:

K(b, a)
xy

Dx e` J dt 1'ms,'

Xa

f D1 Df* 1f(xa)*1f(xb)ei f dt *'(ia,-x)* (8.48)

where the Lagrangian is equal to:

L=*' (at - H) (8.49)

At this point, we have now derived a second quantized version of the non-
relativistic Schrodinger equation. This may seem odd, since usually quantum
field theory is associated with the merger of relativity and quantum mechanics.
But quantum field theory can be viewed independently from relativity; that is,
the essence of quantum field theory is that it has an infinite number of quantum
degrees of freedom. In this sense, the path integral formalism can accomodate a
nonrelativistic Schrodinger field theory.

Next, we would like to compute the familiar expressions found in Chapter 3
and 4 in terms of the path integral approach. First, we define the average (0) of
the expression 0 by inserting it into the integral:

(0) - N
J

DX exp l - T 2x; D;jxj I 0 (8.50)
\ i,i=1 J

Our goal is to find an expression for (0), and later make the transition to
an infinite number of degrees of freedom (n -+ oo). To find an expression for
this average, we will find it convenient to introduce an intermediate stage in the
calculation. We define the generating functional as follows:

2x;D;jxj +EJix; (8.51)I(D,J)J 11dx;exp(- E

i=1 ` i,J=1 i=1 ) .

where we fix N by setting I (D, 0) = N-1.
To find an expression for I (D, J), we first make a similarity transformation

x' = S,3xj, such that S diagonalizes the matrix D. We are then left with the
eigenvalues of the matrix D in the integral. The integration separates into a
product of independent integrations over x!. We then perform each integration
separately, giving us the square root of the eigenvalues of D matrix. The product
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of the eigenvalues, however, is equal to the determinant of the D matrix, giving
us the final result:

I (D, J) = (2n)' 2(det D,,)-lie exp
\

1 Ji(D-1)ikJk) (8.52)
i,k

2

Our goal is to evaluate the average of an arbitrary product x1x2 xn:

n

(xix2 Xn) - N f dx; xlx2 xn exp 1- 2x;D;ixi (8.53)
f i=1

where the normalization constant N can be fixed via:

I (D, 0) = N-1 = (27r )n/2 (det Dii) -1/2 (8.54)

We can also take repeated derivatives of I (D, J) with respect to J, and then set J
equal to zero. Each time we take the derivative 8/8Ji, we bring down a factor of
xi into the integral:

...Xn)
JI(D'J)IJ=o

1 -1 (8.55)Dk1k2 ... Dkn_'kn

pairings

This expression, for an odd number of x's, vanishes. However, for two x's, we
have:

(xixi) = (D-1)ii (8.56)

For four x's, we have:

(XiX3XkXl) [(D-1)ii (D-1)k!

+(D-1)ik(D-1)ii +
(D-1)u(D-1)ik]

(8.57)

Not surprisingly, if we analyze the way in which these indices are paired off, we
see Wick's theorem beginning to emerge. The point here is that Wick's theorem,
which was based on arguments concerning normal ordering of operators, is now
emerging from entirely c-number integrations.

The transition to quantum field theory, as before, is now made by making the
transition from a finite number of variables xi to an infinite number of variables
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O(x). As before, we are interested in evaluating the transition probability between
a field at point x and a field at point y:

f Do O(x)o(Y) exp i (f d4x L(-O)) (8.58)

To evaluate this integral, we will find it convenient, as before, to introduce the
generating functional:

Z(J) = N f Do ei f d4x[L(x)+J(x)O(x)] (8.59)

where:

Do F1 dO(x)
x

N_1 = f DO ei f d4x L(x) (8.60)

To perform this integration for a Klein-Gordon field, we will repeat the steps
we used for the simpler theory based on finite number of degrees of freedom. We
first make a shift of variables:

O(x) - O(x) +O(x)d (8.61)

where 0c1 satisfies the Klein-Gordon equation with a source term. We recall that
the Feynman propagator is defined via:

(aµa"L +m2)xLF(x - Y) _ -34(x - y) (8.62)

A classical solution can then be defined via:

c1 = - f AF(X - y)J(y) d4y (8.63)

which satisfies:

(aµaµ + m2).Oc1= J(x) (8.64)

We can now perform the integral by performing a Gaussian integration:

Z(J) = exp (-2 f d4xd4YJ(x)AF(x - Y)J(Y)) (8.65)
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where:

N-1 = [det (aA + M2) ]1/2 = f Do exp i (f d4xL(.)) (8.66)

Using the fact that:

S
J(Y)=S4(x-y)

SJ(x)

we find that the transition function is given by:

The average of several fields taken at points x; is now given as follows:

0(X1, X2, ... , Xn) = in (OI TO(Xl)O(X2) ... O(Xn)I0)

S!Z(J)
SJ(x1)SJ(x2) SJ(xn) I1=0

(8.67)

(8.69)

By explicit differentiation, we can take the derivatives for four fields and find:

4

1 1 SJ(X0 Z(J)I J=O = OF(X1 - X2)% F(X3 - X4)

+ OF(X1 - X3)OF(X2 - X4) + OF(X1 - X4)OF(X2 - X3) (8.70)

In this way, we have derived Wick's theorem starting with purely c-number
expressions.

Z(J) can also be written as a power expansion in J. If we power expand the
generating functional, then we have:

Z(J) = r n' f ... f d4x1 ... d4xn J(Xi) ... J(X,,)Z(n)(Xi ... xn) (8.71)

where:

Z(n)(Xl, ... , xn) = SJ(Xt)
Sn

. J(Xn) Z(J) J=o

= in(0ITO(xl) t(Xn)I0) (8.72)

In this way, the path integral method can derive all the expressions found earlier
in the canonical formalism.
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8.4 Generator of Connected Graphs

In analyzing complicated Feynman diagrams, we must distinguish between two
types of graphs: connected and disconnected graphs. A graph is called discon-
nected when it can be separated into two or more distinct pieces without cutting
any line.

The generating functional Z(J) that we have been analyzing generates all
types of Feynman graphs, both connected and disconnected. However, when we
apply the formalism of path integrals to a variety of physical problems, including
renormalization theory, it is often desirable to introduce a new functional that
generates just the connected graphs. The path integral formalism is versatile
enough to give us this new generating functional, which is denoted W (J). We
define this generator as follows:

Z(J) = eiW(J)

W(J) = -i log Z(J) (8.73)

If we take repeated derivatives of W(J) to calculate the relationship between Z
and W, we find:

32W i SZ SZ i 32Z

SJ(x1) SJ(x2) Z2 SJ(x1) SJ(x2) Z SJ(x1) SJ(x2)

and:

(8.74)

34W i 32Z 32Z
+ perm.

SJ(xl) 3J(x2) 3 J(x3) 3 J(x4) Z2 SJ(x1) SJ(x2) SJ(x3) SJ(x4)

- i
S4Z

(8.75)
Z SJ(x1) SJ(x2) SJ(x3) SJ(x4)

To analyze the content of these equations, let us power expand W(J) in powers
of J:

W(J)=
J (8.76)

n=0 /lI.

Taking J = 0, we arrive at:

iW(2)(XI, X2) = Z(2)(Xl, X2) (8.77)

This is not surprising, since the propagator is connected. The expansion, how-
ever, becomes nontrivial when we consider expanding out to fourth order, where
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disconnected graphs enter into the functional:

W'4)(X1, X2, X3, X4) i [Z12)(X1, x2)Z2)(x3, x4)+Perm.]

iZ14)(X1, X2, X3, X4) (8.78)

This equation can be checked to show that W generates only connected graphs.
For example, in 04 theory to order A, we can show that this works as indicated. In
this case:

Z12)(X1, x2) = -iAF(X1 -X2)+
2

f d4Z AF(X1 -Z)AF(Z -X2)AF(Z, Z) (8.79)

while:

Z14)(X1, X2, X3, X4) = - [OF(X1 - X2)OF(X3 - X4) + 2 terms]

__ c2 I

J
d4ZOF(Xl - Z)OF(Z, Z)% F(Z - X2)OF(X3 - x4) + 5 terms)

- i' (f d4ZOF(X1 - Z)OF(X2 - z)4!

x OF(X3 - Z)OF(X4 - z) + 23 terms) (8.80)

Inserting these factors back into the identity for W(4)(x1, X2, X3, x4), we find that
the disconnected pieces cancel, and the only term which survives is the connected
piece, which forms the topology of a cross.

Next, we would like to find the generating functional for proper vertices r,
which is essential in a discussion of renormalization theory. Proper vertices (or
one-particle irreducible vertices), we recall, appear when we consider renormal-
izing coupling constants. We define r(o), the generator of proper vertices, via a
Legendre transformation as:

r(o) = W(J) -
J

d4xJ(x)O(x) (8.81)

(From now on, we will use the symbol 0 to represent the c-number field.)
The fields 0 and J have a nontrivial relationship between them. They are not

independent of each other. In fact, by taking repeated derivatives, we can establish
the relationship between them. Let us take the partial derivative of the previous
equations with respect to J (keeping 0 fixed) and with respect to 0, keeping J
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fixed. Then by differentiating both sides, we have:

281

SW(J)
= fi(x -J(x) (8 82));3 J(x) SOW

.

Let us take repeated differentials of the above equations. Differentiating by J and
by 0, we find:

32W SOWG(x, y) =
_

SJ(x) SJ(Y) SAY)

y) =r(x SZr _ -SJ(x)
(8.83),

SOW SOW SOW

If we treat r(x, y) and G(x, y) as matrices with continuous space-time indices,
then they are inverses of each other, as can be seen as follows:

SZW SZr
f d4Y G(x, Y)r(Y, z) f d4ySAX) SAY) SO(Y) SOW

f d4 SA(X) 3AY)
SAY) SOW

SOW

SOW

S4(X - Z) (8.84)

We would now like to establish a relationship between third derivatives of
the functionals. If we differentiate the previous equation by J(u), we find that it
vanishes. Thus, we find the relationship:

f d4 S3 W 32r

YSJ(x) SJ(u) SJ(y) 30(y) SO(z)

f
d

4Y 2W 4 i sir
l SJ(x) SAY) f d Y

G(u,
y')

SO(Y) SOW SOW)

where we have the fact that:

(8.85)

3
I. 4 ,S ,(Y') 3 _ 4Yi S

(8.86)
SJ(u) = ,l d y SJ(u) SOW) - f d

G(u,
Y') SO(Y')
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Figure 83. Graphic representation of the relationship between W(J) and I'(0) out to third
order.

We can simplify this equation a bit by inverting the matrix r(y, z) that appears.
Then we find:

SJ(x) SJ(y) SJ(z)
_ -J d4x'd y'd z'

x G(x, x')G(y, y')G(z, z')
SOW) SO(y') SO(z')

(8.87)

Graphically, this is represented in Figure 8.3. In this way, we can derive relation-
ships between the generating functionals. However, taking repeated derivatives
becomes quite involved when we increase the number of legs. There is yet another,
perhaps more direct way in which to see the relationship between the various gen-
erating functions by taking power expansions. As before, we can power expand
as follows:

r(o = 1

J
dxl ... dxn o(x1) ... q(xn)r(n)(xl, ... xn) (8.88)-n!

n=O

We want a way to compare r(n) and W(n). To solve this problem, we would
like to power expand 0 in terms of J. By Taylor's theorem, we know that a power
expansion of 0 can be expressed in terms of powers of J, with coefficients given
by the nth derivative of 0 with respect to J. However, we already know from Eq.
(8.83) that the derivative of 0 with respect to J is given by the second derivative
of W with respect to J. Thus, from Eq. (8.82), we find:

Sir

O(x) = J d4x1 W(2)(x, x1)J(x1)+ 2 f d4x1 d4x2 W(3)(x, x1, x2)J(x1)J(x2)+...

(8.89)
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We also know the converse, that we can power expand J in terms of 0.
Likewise, we know from Taylor's theorem that the coefficient of each term is
given by the nth derivative of J with respect to 0. Thus, Eqs. (8.82) and (8.87)
give us:

J(x)
J

d4x1 [W(2)] -l (x, xl)O(xl)

J
d4yid4Y2d4Y3d4xld4x2 [W(2)]-l (x, Y3)

[W(2)]-1
(Xl, Yl)

2!

X [W(2)]-1 (x2, Y2)W(3)(Y1, Y2,
Y3)0(xl)O(x2)+... (8.90)

Let us introduce what is called the "amputated" functional:

W(n)(xl,...,xn)= f (8.91)
i-1

This has a simple meaning. Since the connected piece W(n) always has propagators
connected to each external leg, this means that f V() is just the connected part minus
these external legs. That is the reason why it is often called the "amputated"
Green's functions for connected graphs.

Now that we have solved for Win), we can now solve for the relationship
between W and I'. Equating terms with the same power of 0, we find:

W(2)(x1, X2) - [r(2)(xl,
x2)]-1

W(3)(xl, x2, x3)

W(4)(xl, X2, X3, X4)

r(3)(xl, x2, x3)

r(4)(xl, X2, X3, X4)

+ f d' yd4z r(3)(xl, x2, Y)W(2)(Y,
Z)

X I'(3)(z, x3, x4) + 2 terms (8.92)

Thus, to any desired level of expansion, we can find the relationship between
the proper vertices and the amputated Green's function for connected graphs.
The advantage of this path integral approach is that our results are independent
of perturbation theory. Without having to use complicated graphical techniques,
we can rapidly prove nontrivial relations between different types of vertices and
propagators. This will prove useful in renormalization theory.
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8.5 Loop Expansion

Up to now, we have only explored the power expansion of the S matrix in powers
of the coupling constant. However, in quantum field theory it is often convenient
to expand in a different power series, one based on the number of loops in a
Feynman diagram. In this section, we will show that the loop expansion, in turn,
corresponds to a power expansion in /i, Planck's constant. (To show this, we must
reinsert all /i factors that were eliminated when we originally set /i = 1.)

The expansion in loop number or/i has important implications. For example,
in Chapter 6 we learned that the Feynman tree diagrams for various scattering
amplitudes simply reproduced the results of the classical theory. A complicated
tree diagram may appear with a large number of coupling constants, but it still
only corresponds to the classical theory. To see the true effects of quantization,
we have to go beyond the tree diagrams and study loops. A power expansion in
the loop number or h, rather than the coupling constant, therefore measures the
deviation of the quantum theory from the classical theory.

Similarly, loop effects are also important when discussing radiative correc-
tions to a quantum field theory. If a Klein-Gordon theory, for example, has an
interacting potential V(O), then radiative corrections will modify this potential.
These radiative corrections, in turn, are calculated in the loop expansion. These
loop corrections are important because they shift the minimum of V(t) and hence
change the vacua of the theory. This expansion will prove useful when calculating
radiative corrections to the effective potential in Chapter 10.

In this section, we will show that the path integral gives a very convenient
way in which to power expand a theory in the loop order. Let us now rewrite
our previous expressions for the generating functional, explicitly putting back all
factors of h that we previously omitted. We know from dimensional arguments
and the definition of the path integral that the action appears in the functional as
S//i, so the generating functional Z(J) can be written as:

r
i

Z(J) =
J

Do exp f [2' +hJ(x)o(x)] d4x) (8.93)

Since we are interested in the relation between/i and the standard perturbation
theory, let us divide the Lagrangian into the free and interacting parts, 2' =
Ho + 21. We can extract -9j from the path integral by converting it into an
operator:

Z(J) = exp [, f d4x 2' (_)] Z0(J) (8.94)
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where Z0(J) is just a function of the free Lagrangian &o. If we evaluate the
derivatives, then the exponential in front of Zo simply reproduces 2i(q5) in the
exponential, giving us back the original expression for Z(J).

The advantage of writing the functional in this fashion is that we can now
explicitly perform the functional integral over 0 in the free partition functions
Z0(J), leaving us with the standard expression:

Z0(J) = exp -12
J

d 4 xd 4y J(x)LP(x - Y)J(Y)) (8.95)

Now we can begin the counting of b in a typical Feynman graph by inserting
Zo back into the expression for Z(J). For any Feynman diagram, each propagator,
from the previous expression for Zo, is multiplied by /i. However, each vertex,
because it appears in the combination &j /h, is multiplied by a factor ofh-1.

For an arbitrary Feynman graph, the total counting of b is given by ri raised
to the power of P - V, that is, the number of propagators minus the number of
vertices. However, we know from our discussion of renormalization theory in the
previous chapter that:

L=P-V+1 (8.96)

where L is the number of loops in a Feynman diagram. For any Feynman diagram,
we therefore pick up an overall factor of:

hP-V =,qL-1 (8.97)

It is now easy to see that a power expansion in/i is also a power expansion in
the loop number. In Chapter 10, we will use this formalism of loop expansions to
calculate the radiative corrections to several quantum field theories, showing that
the loop expansion is powerful enough to shift the minimum of the potential V(t)
via radiative corrections. This will prove essential in isolating the true vacuum of
a theory with a broken symmetry.

8.6 Integration over Grassmann Variables

Matter, of course, is not just bosonic. To incorporate fermions in the path integral
formalism, we must define how to integrate over anticommuting variables. To
do this, we must use the Grassmann variables, which are a set of anticommut-
ing numbers satisfying 6i6j = -6j6i. Integration over Grassmann variables is
problematic, since 62 = 0 for an anticommuting number, and hence the entire
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foundation of calculus seems to collapse. However, a clever choice allows us to
generalize the path integral formalism to fermions.

One of the features that we would like to incorporate in an integration over
Grassmann variables is the fact that the integral over all space is translationally
invariant:

J

'
dx O(x) =

J

00

dx t(x + c) (8.98)
00

Let us try to incorporate this feature in an integration over a Grassmann variable:

f d6 0(6) = J d6 0(6 + c) (8.99)

An arbitrary function 0(6) can be easily decomposed in a Taylor expansion, which
terminates after only one term, since higher terms are zero:

0(6) =a + b6 (8.100)

Let us now define:

to = fde

11 = fdee (8.101)

Inserting this power expansion into the integral, we find:

f d6 0(6) = al0 +bll = (a +bc)lo +bll (8.102)

In order to maintain this identity, we choose the following normalizations:

10 = 0
11 = 1

This, in turn, forces us to make the following unorthodox definitions:

f d6=0; fdee=1

(8.103)

(8.104)
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This is a novel choice of definitions, for it means that the integral over a Grassmann
variable equals the derivative:

r d6 = ae (8.105)

Now, we generalize this discussion to a nontrivial case of many Grassmann
variables. With N such variables, we wish to perform the integration:

N N

1(A) =
J

fl d6i d6/ exp E 6i Aii 6i (8.106)
i_1 i,1=1

where 6i and 6i are two distinct sets of Grassmann variables. To evaluate this
integral, we simply power expand the exponential. Because the Grassmann inte-
gral of a constant is zero, the only term that survives the integration is the Nth
expansion of the exponential:

N (AIJeJ)N
1(A) f fl d6id6iN (8.107)

- i=1 i, j=1

Most of the terms in the integral of the Nth expansion are zero. The only terms
that survive are given by:

1(A) = (Ad61 d6i eiei)
J

LEi'2-"Alip
A2i2A3t3 A NiN

perm

= det A (8.108)

An essential point is that the determinant appears in the numerator, rather than the
denominator. This will have some significant implications later when we discuss
ghosts and the Faddeev-Popov quantization program.

Now we make the transition from 6i to the fermionic field 9/r(x). We introduce
two sources rl and i7 and define the generating functional:

Z(rl, rl) = N
J

D* D, e ` f d4x[.2(x)+n*+in] (8.109)

where:

2'= 9/!(iyµaµ - m)9/i (8.110)

As before, we can perform the functional integral by shifting variables:

*(X) - *(X) + 'C1(x) (8.111)
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where:

'.I(x) _ - f SF(X - y),7(y) d4y (8.112)

Performing the integral, we find:

Z(rl, 1) = expf d4x d4y(- i i7(x)SF(x - Y)rl(Y)) (8.113)

where:

N = det (i o - m) (8.114)

The averages over the field variables can now be found by successively dif-
ferentiating with respect to the rl and fields and then setting them equal to
zero:

8 8
-iSF(x - Y) =

Mx) 8 17(Y)Z(17)1",n

N f D,/r Dv/r (Y)f'(x)e` f
dX L(x)

Successive integrations over the source fields gives us:

n
8

n
8

Z(rl, rl)I
;_i F WYi) n=nom

= (i)2"(OITt/r(x1)... (xn)I(yi)... *(y,.)10)

(8.115)

(8.116)

By performing the functional integration with respect to n and i , we once again
retrieve Wick's expansion for fermionic fields.

8.7 Schwinger-Dyson Equations

The functional technique allows us to formulate QED based on the Schwinger-
Dyson integral equation. This equation, when power expanded, yields the standard
perturbation theory. But since we do not necessarily have to power expand these
equations, these integral equations also apply to bound-state and nonperturbative
problems. The Schwinger-Dyson equation is based on the deceptively simple
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observation that the integral of a derivative is zero:

r Doa 0 (8.117)

Although this statement appears trivial from the point of view of functional analy-
sis, it yields highly nontrivial relations among generating functionals in quantum
field theory.

In particular, let us act on the generating functional Z(J) for a scalar field
theory:

0 =
J

DO exp (iS(cb) + i fd4xJcb) (8.118)

The functional derivative of the source term simply pulls down a factor of J. We
simply get:

0 =
J

DO [i S'(cb) + U] exp (S + i f d4x J(x)cb(x)) (8.119)

This can be rewritten as:

[s' (_) + J1 Z(J)=O (8.120)

This is the Schwinger-Dyson relation, which is independent of perturbation theory.
At this point, we can take any number of derivatives of this equation with respect
to the fields and obtain a large number of integral equations involving various
Green's functions. Or, we can power expand this equation and reproduce the
known perturbation theory.

For QED, the generalization of Eq. (8.120) reads:

LASI -z ,-ia ,ia +Jµ1 Z(J,)7,r7)=0 (8.121)
8

µ v

Our strategy will be to convert this expression for Z(J) into an expression for
W(J) and to an expression for F(O). Then we will take a derivative with respect
to Aµ and set all sources to zero. We begin by using the fact that:

SS 2 1
v

8Aµ
- ev/ryµv/r= [a gµv - (1 - a )aµav] A

We can rewrite the previous equation as an equation on W(J):

(8.122)

Jµ + [a2gµv - (1 - a-1)aµav]
SW

S TV
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SW SW S

\
8 W \

--e - 0
brl yµ bn

-earl Y. bbl (8.123)

Now let us convert this expression for W(J) into an expression for r(o), defined
by the Legendre transformation:

W(J, l, rl) = r(A, *, r d4x (J,LAµ +,rrl + i /i) (8.124)

We must make the substitution:

AA

JA
SAIL;

q = -a- (8.125)

SW SW

8Jµ; Srl

Sr Sr

Then the Schwinger-Dyson equation can be written as:

Sr
SAL(x) I*=,y o

[a2gµv - (1- a1)aN,a,]A°(x)

2 )-1
- ieTr

[YI,
(88) (x, x)] (8.126)

where the last term on the right is proportional to the electron propagator, and we
have used the fact that:

- 8«084(x - y) = r d4Z
82W 82r

(8.127)
J Srl«(xWy(Z) S 'v(Z)S7'6(Y) n n l l

Our last step is to take the derivative with respect to Av. Then the term on the
right is related to the photon propagator. The final expression becomes:

S2r
=

[a2gµv - (1- «-')a,iav] 84(x - y)SAA(x)SAv(y) A=,y=

+ ie2
J

d4u d4v Tr [y,,SF(x, u)Av(y, u, v)SF(v, x)] (8.128)

where we have defined the vertex function as:

Sir
SAIL(X) S (y) 81(Z)

IA=*= = eA,(x, Y, Z) (8.129)
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We have also used the formula for taking the derivative of an inverse matrix:

S
8 .A-1 = AA-1 (8.130)

µ 8Aµ

where.A = 82r/S,%r S,/r and:

SF(x,Y)=A-1 =

r
dap

l (21-)4p'-m-E(p)
(8.131)

These functional relations, in turn, are identical to the Schwinger-Dyson equations
introduced in Exercise (7.11).

In summary, we have seen that the path integral method of Feynman is not
only elegant and powerful, it is also very close to the original spirit of quantum
mechanics. The formalism is so versatile that we can reproduce the canonical
formalism discussed earlier, as well as quantize increasingly complicated theories,
such as Yang-Mills theory and quantum gravity. The path integral formalism, in
fact, has become the dominant formalism for high-energy physics. In Chapter
9, we will see the power of the path integral approach when we quantize the
Yang-Mills theory.

8.8 Exercises

1. Using path integrals for a free Dirac theory, calculate the expectation value
of the product of six fermionic fields in terms of propagators. Show that
the resulting expression is equivalent to the decomposition given by Wick's
theorem.

2. Prove Eq. (8.14).

3. Prove that the disconnected pieces in Eq. (8.78) cancel to second order in X.
Sketch how the cancellation works at third order.

4. Let 6; be a Grassmann column vector. Let us make the transformation of
variables: O; = M;j6j. We define:

f dal d¢2 ... do, (0102 ... 0,.) =
J

d61 d02- - - A. (6162 ... (8.132)
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Prove that this implies:

d0i d/2 din = (det M)-1d61 d62 . d6, (8.133)

which is the opposite of the usual rule for differentials.

5. Derive the Schrodinger equation for an electron in the presence of a potential
V(x) using path integrals.

6. For invertible, square matrices A, B, C, D, prove:

(
A C)
D B

A

01)(0 B DA1C)(D
7. For matrices A, B, prove:

log(AB) = log A + log B + 2 [log A, log B] + (8.134)

8. Prove:

det (1 + M) = 1 + Tr M + 2 [(TrM)2 - Tr(M2)] + (8.135)

9. For matrices A and B, prove, by power expansion, that:

eAeB =exp (A+B+[A, B] + 12 [A, [A, B]] +
12

[B, [B, All +

(8.136)

10. For matrices A and B, prove that:

A-COB-1D CB-1

1

( D B1

eAeB = exp[A, B] eBeA

eA+B = exp \- 2 [A, B] I eAeB (8.137)

Under what conditions are these identities valid?

11. For matrices A and B, prove:

(n(n+1)
p 2 [A, B] enAenB (8.138)e)n ex

Are there any restrictions on this formula?
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12. Prove:

f 1 "

J
d6 d62 d61 exp - E D;j6j = det D (8.139)

2 i,i=1

for the case n = 3 by an explicit calculation.

13. Prove the previous relation for arbitrary n. Prove it in two ways: first,

by diagonalizing the D matrix and then performing the integration over the
eigenvalues of D; second, by power expanding the expression and using the
known identities for the antisymmetric c tensor.

14. In Eq. (8.92), we established a relationship between the W(4) and I'(4). Find
the relationship between the fifth orders, then graphically illustrate what it
means.

15. For 04 theory, show that r(4) is actually one-particle irreducible. Expand it
only to fourth order in the coupling.





Chapter 9

Gauge Theory

We did not know how to make the theory fit experiment. It was our
judgment, however, that the beauty of the idea alone merited attention.

-C. N. Yang

9.1 Local Symmetry

An important revolution in quantum field theory took place in 1971, when the
Yang-Mills theory was shown to be renormalizable, even after symmetry break-
ing, and therefore was a suitable candidate for a theory of particle interactions.
The theoretical landscape in particle physics rapidly changed; a series of impor-
tant papers emerged in which the weak and strong interactions quickly yielded
their secrets. This revolution was remarkable, given the fact that in the relative
confusion of the 1950s and 1960s, it appeared as if quantum field theory was an
unsuitable framework for particle interactions.

Historically, gauge theory had a long but confused past. Although the Yang-
Mills equation had been discovered in 1938 by 0. Klein' (who was studying
Kaluza-Klein theories), it was promptly forgotten during World War U. It was
resurrected independently by Yang and Mi11s2 in 1954 (and also by Shaw3 and
Utiyama4), but it was unsuitable for particle interactions because it only described
massless vector particles. The discovery by 't Hooft5 that the theory could be made
massive while preserving renormalizability sparked the current gauge revolution.

Previously, we studied theories which were symmetric under global symme-
tries, so the group parameter c was a constant. But the essence of Maxwell and
Yang-Mills theory is that they are invariant under a symmetry that changes at
every space-time point; that is, they are locally invariant. This simple principle of
local gauge invariance, as we shall see, imposes highly nontrivial and nonlinear
constraints on quantum field theory.
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We begin with the generators of some Lie algebra:

[Ta, rb] = ifabcrc

Let the fermion field ,/ii transform in some representation of SU(N), not
necessarily the fundamental representation. It transforms as:

*i(x) -> SZij(x)*i(x) (9.2)

where SZjj is an element of SU(N).
The essential point is that the group element SZ is now a function of space-time;

that is, it changes at every point in the universe. It can be parametrized as:

Qjj(x) = (e-ie"(X)t) (9.3)
tj

where the parameters 6a (x) are local variables, and where ra is defined in whatever
representation we are analyzing.

The problem with this construction is that derivatives of the fermion field are
not covariant under this transformation. A naive transformation of the derivatives
of these fields picks up terms like aµQ. In order to cancel this unwanted term, we
would like to introduce a new derivative operator D, that is truly covariant under
the group. To construct such an operator Dµ, let us introduce a new field, called
the connection Aµ:

Dµ = aµ - igAµ (9.4)

where:

Aµ(x) = A(x)r' (9.5)

The essential point of this construction is that the covariant derivative of the
field is gauge covariant:

(D, )' = aµ'1/!' - 1gAµ*'

= Qaµ9/,l+ 1gAµQ9/!

= QDAl,.

The troublesome term aAQ is precisely cancelled by the variation of the Aµ term
if we set:

i
A/µ(x)

9
(9.7)
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Infinitesimally, this becomes:

+ abcebA

J

8Aa = -!a ea
µ g

c

I 8* = -1gea,a Y'
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(9.8)

[If we reduce SU(N) down to the group U(1), then we recover the field transfor-
mations for QED.]

It is also possible to construct the invariant action for the connection field
itself. Since Dµ is covariant, then the commutator of two covariant derivatives is
also covariant. We define the commutator as follows:

i
F,1 = -[Dµ, Dv]

9

= 8µA - ig[Aµ, Av]

(a,Aa - avAaa
+gfabcAb`Acv) ra

(9.9)

Because Dµ is genuinely covariant, this means that the Fµ tensor is also covariant:

Fµ , QFvQ-1 (9.10)

We can now construct an invariant action out of this tensor. We want an action
that only has two derivatives (since actions with three or higher derivatives are
not unitary, i.e., they have ghosts). The simplest invariant is given by the trace of
the commutator. This is invariant because:

Tr (QFv1Z-1SZFµvcl-1) = Tr (FµvFFLD) (9.11)

The unique action with only two derivatives is therefore given by:

S = J
d4x (_'rr Fµv Fµ°) =

J d4x (_F:F')1Lv (9 .12)

This is the action for the Yang-Mills theory, which is the starting point for all
discussions of gauge theory.

The field tensor Fv, we should point out, also obeys the Bianchi identities. We
know, by the Jacobi identity, that certain multiple commutators vanish identically.
Therefore, we have:

[Dµ, [Dv, Dp]] + [Dv, [Dr, Dµ]] + [Dp, [Dµ, Dv]] - 0 (9.13)
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This is easily checked by explicitly writing out the terms in the commutators.
Written in terms of the field tensor, this becomes:

[D,, F p] + [Dr, Fpp ] + [Dp, 0 (9.14)

(It is important to stress that these are exact identities. They are not equations of
motion, nor are they new constraints on the field tensor.)

Lastly, since ,fir -> ,rIlt and D, f -> QD *, it is easy to show that the
invariant fermion action coupled to the gauge field is given by:

S =
J

d4x,r(i lZ _ m)* (9.15)

9.2 Faddeev-Popov Gauge Fixing

The real power of the path integral approach is that we have the freedom to choose
whatever gauge we desire. This is impossible in the canonical approach, where
the gauge has already been fixed. However, in the path integral approach, because
gauge fixing is performed by inserting certain delta functions into the path integral,
we can change the gauge by simply replacing these factors. This formalism was
introduced by Faddeev and Popov.6

Historically, however, before the Faddeev-Popov method, the quantization of
Yang-Mills theory was not clear for many years. In 1962, Feynman' showed that
the theory suffered from a strange kind of disease: The naive quantization of the
theory was not unitary. In order to cancel the nonunitary terms from the theory,
Feynman was led to postulate the existence of a term that did not emerge from
the standard quantization procedure. Today, we know this ghost, first revealed by
Feynman using unitarity arguments, as the Faddeev-Popov ghost.

To begin, we first stress that the path integral of a theory like Maxwell's theory
of electromagnetism is, in principle, undefined because of the gauge degree of
freedom. Because the path integral DA and the action S are both gauge invariant,
it means that functionally integrating over DA will eventually overcount the
degrees of freedom of the theory. Because the Maxwell theory is invariant under
the gauge transformation:

(9.16)
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this means that functionally integrating over both Aµ and Au, will overcount the
integrand repeatedly. In fact:

f DAN,e`s = oo (9.17)

If we begin with one field configuration Au, and consider all possible Aµ, then
we are sweeping out an "orbit" in functional space. The problem is that, as SZ
changes along the orbit, we repeat ourselves an infinite number of times in the
path integral. Our problem is therefore to "slice" the orbit once so that we do not
have this infinite overcounting.

This is the origin of the gauge-fixing problem. To solve this problem, one is
tempted to insert factors like:

S(8 Aµ); S(V -A) (9.18)

into the path integral, forcing it to respect the gauge choice 8N, Aµ = 0 or V - A = 0.
More generally, we would like to fix the gauge with an arbitrary function of

the fields:

8 (F(AN,)) (9.19)

which would fix the gauge to be F(A,) = 0.
The source of the problem is that inserting a delta function into the functional

integration DA changes the measure of the integration. For example, we know
that the delta function changes when we make seemingly trivial changes in it. For
example, if we have a function f (x) that has a zero at x = a, we recall that:

S (.f (x)) =
S(x,-

a)
I.f (x)I

(9.20)

The choice 8 (f (x)) differs from the choice S(x - a) by a term f'(x). Thus, there
is an ambiguity in the measure of integration. To solve this ambiguity, we insert
the number "1" into the path integral, which we know has the correct measure:

1 = AFF
J

DSZ 8 (F(A2)) (9.21)

where AFP is the Faddeev-Popov determinant, which guarantees the correct
measure, and DSZ = ft dQ(x) is the invariant group measure. It satisfies the
invariance property:

DSZ = D(1l'Il) (9.22)
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if Il' is a fixed element of SU(N). Since SZ = 1 - iOara + , the group measure
(for small 6) is equal to:

DSZ = fl dOa(x)
a,x

(9.23)

(More details concerning the invariant group measure will be presented in Chapter
15.)

Inserting the number "1" into the functional, we now have:

r r

f
DAµ

J
DSZ 8 (F(A2)) e' f d4x H(A)

(9.24)

Our task is now to calculate an explicit result for the Faddeev-Popov determinant.
To do this, we first notice that it is gauge invariant:

LFP(AA) = LFP(A2) (9.25)

This is because it is equal to the integration over all gauge 0 factors, and hence
is independent of the gauge. However, it will be instructive to see this more
explicitly.

Let us change the gauge, replacing AN, in the Faddeev-Popov determinant
with Aµ. Then the definition becomes:

AFP(Aµ )

FP(Aµ) (9.26)

J
D1l' 8 [F(A2'')]

J D [cl'cl] 8 (F(A2 n))

J
DSl"S (F(A2"))

Thus, it is gauge invariant. Now we come to the crucial part of the calculation. Let
us make a gauge transformation on the entire path integral, so that AN, -> Aµ-`.
The measure DA, the Faddeev-Popov determinant, and the action S are all gauge
invariant. The factor that is not gauge invariant is F(A2), which changes into
F(A,,). The integral, after the gauge transformation, now becomes:

\J Dcl J DAµ LFP
8 (F(Aµ))

e; f d'x H(A) (9.27)

We have now accomplished the following:



9.2. Faddeev-Popov Gauge Fixing 301

1. We have explicitly isolated the infinite part of the matrix element, which is
given by:

f DSZ = oo (9.28)

By simply dividing out by the f DQ, we remove the infinite overcounting.

2. The gauge choice is now enforced by 8 (F(A, )).

3. The essential point is that the factor AFP gives the correct measure in the path
integral. This is the factor that was missing for so many years in previous
attempts to quantize gauge theories.

The problem of gauge fixing is therefore reduced to finding an explicit expres-
sion for LFP. From Eq. (9.21), we know that the Faddeev-Popov determinant is
written in terms of S(F(A2)), which in turn can be re-expressed via Eq. (9.20) as:

8 [F(A2)] = S(SZ - SZo) det
SF(A2)(x)

SSZ'(x')

where the determinant is a functional generalization of the factor If'(x)I
Thus, the Faddeev-Popov term can be written as:

AFP = det
S F(A2)(x)

SSZ'(x')

(9.29)

(9.30)

for F(AN,) = 0. To perform explicit calculations with this determinant, it is
convenient to rewrite this expression in a form where we can extract new Feynman
rules. To solve for the determinant, let us power expand the factor F(A2) for a
small group parameter 6:

F (A2(x)) = F(AN,(x)) +
J

d4y M(x, y)6(y) + (9.31)

In this approximation, only the matrix M survives when we take the derivative.
The Faddeev-Popov term can be converted into the determinant of the matrix M,
which in turn can be converted into a Gaussian integral over two fields c and ct:

LFP = detM =
J

Dc Dct exp i (fd4x d4y ct(x)M(x, y)c(y) I (9.32)

The determinant det M appears in the numerator of the path integral, rather than
the denominator. This means that when we exponentiate the Faddeev-Popov term
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into the Lagrangian, we must integrate over Grassmann variables, rather than
bosonic variables, as we discussed in Section 8.6. Thus, we find that c and ct are
actually "ghost" fields, that is, scalar fields obeying Fermi-Dirac statistics. This
is the origin of the celebrated Faddeev-Popov ghosts.

Alternatively, we could have rewritten the determinant as follows:

AFP = det M = exp (Tr log M) (9.33)

where the determinant is understood to be taken over discretized x and y and any
isospin indices. (To prove that the determinant of a matrix M can be written as the
exponential of the trace of the logarithm of M, simply diagonalize the M matrix
and re-express the formula in terms of the eigenvalues of M. Then this identity is
trivial.) This term can be written in more familiar language if we write the matrix
as M = 1 + L and expand as follows:

det(1 + L) = exp Tr [log(1 + L)]

exp
1)n-1

(- TrLn (9.34)
n=(001

n

The trace over L, we shall see shortly, can now be interpreted as closed loops in
the Feynman expansion of the perturbation theory.

To gain some familiarity with this Faddeev-Popov term, let us compute the
Faddeev-Popov determinant for the simplest gauge theory, Maxwell's theory.
Earlier, in the canonical and covariant approaches, we fixed the gauge without
even thinking about complications due to the functional measure. We will find
that we were lucky: The Faddeev-Popov measure is trivial for the gauges found
in Maxwell theory, but highly nontrivial for non-Abelian gauge theory. To see
this, let us choose the gauge:

F(A,) = a'AN, = 0 (9.35)

The variation of this gauge fixing gives us:

F(A2) = PAIL + aµaL6 (9.36)

Then the M matrix becomes:

M(x, Y) = 1 8 L1x,y
(9.37)
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Written in terms of ghost variables c and ct, this means we must add the following
term to the action:

f d
4x d4y ct(x)8µaµc(y) (9.38)

where the integration over ct and c must now be viewed as being Grassmannian;
that is, these fields are scalar Grassmann ghosts. Fortunately, this determinant
decouples from the rest of the theory. The determinant of the Laplacian does not
couple to any of the fermions or gauge fields in QED, and hence gives only an
uninteresting multiplicative factor in front of the S matrix, which we can remove
at will.

For the Coulomb gauge, we find a similar argument, except that the gauge
variation gives us a factor:

det V2 (9.39)

which also decouples from the theory. Thus, from the path integral point of view,
we were fortunate that we could take these gauges in quantizing QED without
suffering any problems. We are not so fortunate, however, for gauge theories,
where the Faddeev-Popov term gives us highly nontrivial corrections to the naive
theory. We begin by choosing a gauge for the theory, such as:

8µAµ = 0 (9.40)

If we place this into the path integral, then we must at the same time insert the
Faddeev-Popov measure:

AFP = det (M)x,y;a,b (9.41)

where x and y are discretized space-time variables, and a, b are isospin variables.
The matrix M is easily found:

Mab(X - Y) aQa(x)AMI(Y) = 86a(x)
(al(aeb +g fbcdA' ed)) (Y)

(-SabalLal` + gfabcAc)x,y 84(X - Y) (9.42)

If we rescale and exponentiate this into the functional integral, we find an additional
term in the action given by:

f d4X cta (Sabaµaµ - g fabcAc) cb (9.43)
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The c(x) are the celebrated Faddeev-Popov ghosts. These ghosts have peculiar
properties:

1. They are scalar fields under the Lorentz group, but have anticommuting statis-
tics, violating the usual spin-statistics theorem. They are therefore ghosts.
However, we do not care, since their job is to cancel the ghosts coming from
the quantization of the Aµ field.

2. These ghosts couple only to the gauge field. They do not appear in the external
states of the theory. Therefore, they cannot appear in tree diagrams at all; they
only make their presence in the loop diagrams, where we have an internal
loop of circulating ghosts.

3. These ghosts are an artifact of quantization. They decouple from the physical
spectrum of states.

9.3 Feynman Rules for Gauge Theory

Let us now put all the various ingredients together and write down the Feynman
rules for the theory. The action plus the gauge-fixing contribution becomes:

'+S'FP = -1FµavFaµv

-
?la(aµAaµ)2

while the ghost contribution becomes:

(9.44)

Hg =
J

d4xd4Y Eca(x)(M(x, Y)IabCb(Y) (9.45)
ab

where:

LM(x, Y)I ab = - g aµ (3abaA - gEabcAA) 84(x - y) (9.46)

To extract the Feynman rules from this action, we will decompose the action
into a free part and interacting part:

o = -4(aµA° - avAµ)2 - (aµAµ)2 +Caa2Ca (9.47)

and:

g(a Aa - a Aa )EabcAbµAcv
2 µ v v µ



9.3. Feynman Rules for Gauge Theory

+ 1 92EabcEadeAb Ac AdµAev
4 µ v

1gCatEabcaµAc Cb
µ

From this, we can read off the Feynman rules for Yang-Mills theory:

1. The gauge meson propagator is given by:
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(9.48)

v-(1 -iD i3abk 49)(9a) k2) = -µv( I k2+iE(g,v b k µ a
.

2. The (directed) ghost propagator is given by:

-------->-------- jab(k) = -i3ab 1 (9.50)
b k a k2+iE

3. The three-gauge meson vertex function for mesons with momenta and quan-
tum numbers (k1, µ, a), (k2, v, b), and (k3, .1, c) is given by:

v, b

µ, a

X,C

1 rabcµv1.

with yi_i k; = 0.

4. The four-gauge vertex is given by:

µ, a

p, d

v, b

X,C

abcd
= 1g2 I EabeEcde )llrµvAp (gµlgvp

- gvl gµP

+ EaceEbde )l(gµvglp
- gl,vgµP

+

= igEabc[(ki
-k2)XgPv

+ (k2 - k3)pgvl + (k3 - k1)vgA,l (9.51)

Eadeccbe (gµzgPv - gPZgµv) 1 (9.52)

with F4 1 k; = 0

5. The two-ghost/gauge meson vertex function is given by:

lrabc = ab
µ

gE ckµ

where kµ is the incoming ghost's momentum.

kk

(9.53)
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Now let us derive the Feynman rules for the gauge field coupled to a fermion
and a scalar field. We assume that the coupling to a scalar field is given by the
matrix Ra, taken in whatever representation we desire. The coupling is given by:

= ' [1} µ(aµ - igAµr') - m] 1f!

+ [(a'` - igAaµRa)cb]t
[(a,, - igAa Ra)cb] - mzq5tq5 - 4(q5tq5)z

(9.54)

Then the Feynman rules for this theory are given by:

1. The fermion propagator is given by:

a, i
iSF(P).P

iSii 1
jS-m+lE qP (9.55)

2. The scalar boson propagator is given by:

m P I

isIet
iOF (P)

P2 _ m2 + iE
(9.56)

3. The fermion-gauge-meson coupling is given by:

µ,a

ig(Yµ)., (ra)

4. The boson-gauge-meson coupling is given by:
e-, µ,a

ig(P + p')µRim

5. The two-boson-gauge-meson coupling is given by:

µ,a v,b

- igzgµv{Ra, Rb}

(9.57)

(9.58)

(9.59)
P%/ kP

6. The four-scalar couplings are given by -i.1.
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9.4 Coulomb Gauge

To begin a discussion of gauge theory in the Coulomb gauge, it is first instructive
to rewrite the original action as follows:

FµavFaµv - Fa,µv (aµAa - avAaa +gfabcAb`Av)

where it is essential to notice that Fµv is an independent field, totally unrelated to
the vector field A. (However, by eliminating the Fµv field by its equations of
motion, we can show the equivalence with the standard Yang-Mills action.) This
new version of the action is invariant under:

SAµ =

=S Fµv

-
g

aµga + fabcBbAµ

fabcgbFc
v (9.61)

(9.60)

Now let us take the variation of the action with respect to Fµv as well as with
respect to A. The two equations of motion yield:

Faµv aµAa - avAµ + g f abcAµAv

0 = aµFaµv + g fabcAb,µFc (9.62)

This new action will prove to be useful when quantizing the theory in the
Coulomb gauge. First, we will eliminate Fiaj in terms of the A° fields, keeping
For an independent field. Written in terms of these variables, we find that the
Lagrangian becomes:

2(For)2 - FQAI (a, AO - aoAa +g (9.63)

Let us define:

Pr =

Ba =

Foa

2ErikFa,ik(A)
(9.64)

In terms of these fields, we now have:

H = E° A° - -W (9.65)
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where:

=

2

[(E° )z + (B° )z] + Ap (8i E° + gfabc EbA; (9.66)

Written in this form, the similarity to the quantization of Maxwell's theory
in the Coulomb gauge is apparent. Of particular importance is the Lagrange
multiplier Aa, which multiplies the covariant divergence of E°, which is the
gauge generalization of Gauss's Law found earlier for QED in Eq. (4.54). The
equation of motion for Aa yields:

D;E°=B;Ea+gfabcEbA; =0 (9.67)

which indicates that not all conjugate momenta are independent, a situation com-
mon to all gauge theories.

There are two ways in which to solve this important constraint. First, as in
the Gupta-Bleuler approach, we can apply this constraint directly onto the state
vectors of the theory:

D; E° DIY) = 0 (9.68)

However, it is easy to show that D; E acting on a field A°, generates the standard
gauge transformation; that is:

[fd3XAaDE(X), A(y)] =-i(ajAb(Y)+gfbcdAcAd(Y))

(9.69)
Xo=Yo

Therefore the constraint equation means that the state vectors DIY) of the
theory must be singlets under the gauge group. This is a rather surprising result,
because it implies that free vector mesons A° are not part of the physical spectrum.
This is consistent, however, with our understanding of the quark model, where
nonperturbative calculations indicate that the only allowed states are singlets
under the "color" gauge group SU(3). The allowed singlets under the color group
include quark-antiquark and three-quark bound states, which are the only ones
seen experimentally. This will be important when we discuss the phenomenon of
confinement in Chapters 11 and 15.

The second approach in solving this constraint is to assume, for the moment,
that perturbation theory is valid and simply drop the higher-order terms. Then the
constraint equation reduces to the statement that the E° field is transverse. To see
this, we will decompose the Ea field into transverse and longitudinal modes:

Ea = EaT + El (9.70)
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V E1T =0 (9.71)

An explicit decomposition of any field Ea into transverse and longitudinal
parts can be given as:

Ei _ (Bij - vi
02

vj ) E + Di 02 vj E (9.72)

We will find it convenient to factor out the longitudinal mode explicitly by
introducing the field fa:

EaL = -vi f a (9.73)

Now insert these definitions back into the Gauss's Law constraint, which now
becomes:

Vi Ea + gfabc E' Ac

2 a abc b e abc bT c-Di fi - 8f vi f Ac + 8f Ei A; = 0 (9.74)

For the case of Maxwell's field, this constraint was trivial to solve, since the
cross term was not present. For the Yang-Mills theory, this cross term gives us a
nontrivial complication.

Fortunately, we can now solve for f a by inverting this equation as a perturba-
tion series. Let us rewrite it as:

Dab fb = fabc EbT Ac

where:

Dab = V28ab - gfabcA`
Vi

To solve this equation, we must introduce the Green's function:

(v23ab - gfabdAdvi) Obc(x Y;
A) = sac33(x - y)

(9.75)

(9.76)

(9.77)

Let us assume that we can invert this equation. (This statement, as we shall shortly
see, is actually incorrect.) Inverting this equation, we find the solution for f a:

,fa(x) = g f day Dab(x y; A) fbcdAc(y)E/d(y) (9.78)
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where:

ab
Qab(x y; A) = S +g r d3z 1 facbAkvk 1 +... (9.79)

4nx-yj f 47rx-zI 4nIx-yI

Let us now insert this expression back into the Hamiltonian, where we have
explicitly solved for the Gauss's Law constraint. The Hamiltonian becomes:

H = fd3X[(ET)2+(B)2+(Vr)2] (9.80)

and the generating functional becomes:

Z(J) _ DEa DA° S (DiE°) S (DiA°)

x exp (i f d4x [EkaAQk - 2(Ek)2 - 1 (Bk)2 - 2(Vkfa)2 - AkJk
J/

(9.81)

From this, we can read off the Feynman rules for the Yang-Mills theory in
the Coulomb gauge. We have written the path integral entirely in terms of the
physical, transverse states. The theory is hence unitary, since all longitudinal
modes with negative norm have been explicitly removed.

There is, however, another form for the Coulomb path integral that is more
covariant looking and whose Feynman rules are easier to work with. Both forms
of the Coulomb path integral, of course, yield the same S matrix. If we start with
the original action in Eq. (9.60) written in terms of the auxiliary field FN,,,, then
the path integral can be written as:

Z(J) = f DAµ DFµ S (DiA°) AFP(A)exp (isAn+zfd4x JµA)

(9.82)

where the Faddeev-Popov factor for the Coulomb gauge Vi A° = 0 can be written
as:

SV A () __ abOFP(A) = det (
SSZ(Y) /X,y

det [M (x, y)]

where:

(9.83)

Mab(x, y) = Dab(A)34(x - y) (9.84)



9.5. The Gribov Ambiguity 311

To calculate the Feynman rules from this action, we simply note that we can
write:

Mab = v2(sab + Lab)

where:

Lab=gfabc 12ACvi

Now we use the expression:

detM = exp (Tr log M) = [det v2] (det (1 + L))

exp [Tr log(1 + L)]

exp
(-1)n-1.

n=1
71

x f d4xi d4x2 ... d4xn Tr L(xi, x2)L(x2, x3) ... L(xn, xi)

(9.85)

(9.86)

(9.87)

where we have thrown away a factor of det V2, which contributes closed loops
that do not couple to anything.

In summary, we have shown that there are two equivalent ways of writing the
Coulomb gauge. The first, with all redundant ghost modes removed, is explicitly
unitary (but difficult to calculate with). The second form, although not manifestly
unitary, has a covariant form. The only correction to this covariant form is the
determinant factor, which we can see from the previous expression consists of
nothing but closed loops coupled to the AN, field. Thus, from a calculational point
of view, the only correction to the Feynman rules is to insert closed loops into the
theory connected to gauge fields.

9.5 The Gribov Ambiguity

There is, however, one tricky point that we have glossed over. As we mentioned
earlier, the operator Dab(A) in Eq. (9.76) is actually not invertible, and hence
the Coulomb gauge does not, in fact, completely eliminate the gauge degree of
freedom of the theory.

This unexpected result is due to the fact that the Coulomb gauge VA ° = 0
does not uniquely fix the gauge; that is, it is possible to find another which is
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gauge equivalent to Ai, that satisfies:

Gauge Theory

Di A; = 0 (9.88)

To see this, we write A' out in more detail:

A'= SZAiQ-1 - 1 (BiSZ)SZ-1 (9.89)
g

The important point is that A; contains a term proportional to 1/g. Perturbation
theory, as a power expansion in g, will never pick up this factor. As an example,
take the group SU(2), and take Ai to be gauge equivalent to the number 0:

Ai = _ i (aiH)H-i

g
(9.90)

with Vi A° = 0. If the Coulomb gauge were a good gauge, then the only solution
of this equation should be Ai = 0. However, this is not so. For example, we can
parametrize the previous gauge using radial coordinates:

SZ = cos w(r)/2 + i 6 n sin w(r)/2 (9.91)

where nini = 1 and ni = xi/r.
Then the Coulomb gauge condition becomes:

d2cw dco

dtz
+d -sin2w=0; t=logr (9.92)

which is the equation of a damped pendulum in a constant gravitational field. If
w = 0, then Ai = 0, and this is the solution we desire. The problem, however, is that
there are obviously many other solutions to this equation other than w = 0, so the
uniqueness of the Coulomb gauge-fixing procedure is violated. For a nonsingular
solution, we want w = 0, 27r, 47r, ... at t = -oo. But then the pendulum can
either fall clockwise or counterclockwise many times and then eventually wind
up at a position of stable equilibrium at w = -Jr. For these nontrivial solutions at
t -> oo, this means that we have the asymptotic condition:

(9.93)

Because the Coulomb gauge does not uniquely fix the gauge, we will, in
general, find an infinite sequence of identical copies, each related by a gauge
transformation, each satisfying the Coulomb constraint. We will call these Gribov
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copies.' Another way of saying this is that Mab(x, y; A) is a matrix that has a zero
eigenvalue. Not only do we have nonzero eigenvalues A, :

M°b *n (x) *n

but we also have eigenfunctions with zero eigenvalue:

M°bcm(x) = 0

(9.94)

(9.95)

Since the determinant of M can be written as the product of its eigenvalues:

detMab=fla.nfl0=0
n m

(9.96)

the determinant itself is zero and hence M is noninvertible. Thus, Mab cannot be
inverted. As a consequence, the formulas we have given for the Coulomb gauge
are actually slightly incorrect. The presence of these zero eigenvalue functions
0n(x) spoils the inversion process, and hence spoils the Coulomb gauge fixing.
Thus the canonical quantization program for gauge theory, based on quantizing
the physical fields, does not exist, technically speaking.

Although we cannot fully fix the gauge with the choice V1 A° = 0, we can still
salvage our calculation in the Coulomb gauge. In fact, we can show, to any order
in perturbation theory, that these zero eigenvalues do not affect our perturbative
results. The reason we can ignore these states with zero eigenvalues is that they
do not couple to the physical Hilbert space. For example, we can show:

(Ozf°jOn) =0 (9.97)

To see how this helps us, let us construct a modified propagator:

Dab(A)Gb`(x, y; A) = Sa`S3(x - y) - On(x)O.`(Y)

n

(9.98)

With these zero modes explicitly subtracted out, we can define the inverse
operator Gab without any problems. The perturbation theory with Gab can be
used because:

GV2f =AV2f (9.99)

because A [in Eq. (9.77)] and G only differ by the zero eigenvalues fin, which
vanish when contracted onto V2 f .

The moral of this exercise is that, although the Coulomb gauge is riddled with
Gribov copies, we can safely ignore them as long as one stays within perturbation
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theory. These Gribov copies carry an additional 1/g dependence beyond the first
copy, and hence cannot be picked up in perturbation theory. Once one leaves
perturbation theory to discuss nonperturbative phenomena, such as confinement,
then presumably these Gribov copies become important.

The fact that these Gribov copies can be ignored in perturbation theory is
fortunate, because the Faddeev-Popov quantization procedure becomes difficult
to work with in the presence of these copies. To see how the Faddeev-Popov
program is modified, let us enumerate the Gribov copies with an index n. Then
are an infinite number of solutions to the equation:

DiAac"I = 0 (9.100)

The Faddeev-Popov determinant presumably becomes modified as follows:

A-' [Aµn)l = J
DQ3 (DiA9) (9.101)

Then the generating functional becomes: -Z(J)
= f DAµ (An)' S (DiA°("))

n

x exp (IS + i f d4x Jµ Aµ) (9.102)

It is quite difficult to extract Feynman rules from a path integral as complicated
as this. Thus, the standard ghost/loop interpretation of the Faddeev-Popov factor
is now lost, and we have difficulty setting up the Feynman rules. However, as we
have stressed, in perturbation theory the part analytic at g = 0 is only a function
of the first Gribov copy, and so we can throw away all the infinite contributions
from the ambiguity as long as we stick to perturbation theory.

9.6 Equivalence of the Coulomb and Landau Gauge

In general, the Green's functions of a gauge theory are dependent on the gauge.
However, because the Green's functions are not directly measurable, this does not
cause any harm. But the S matrix, because it is, by definition, measurable, should
be independent of the gauge.
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We will now present a functional proof that the S matrix is independent of the
gauge. We will first establish how the generator of the Green's functions changes
when we go from the Coulomb gauge to the Landau gauge, and then show that
these modifications vanish when we go on-shell. We stress that our proof easily
generalizes to the arbitrary case, proving that the S matrix for gauge theory is
gauge independent. This will prove useful in the next chapter, where we discuss
gauge theory in different gauges. In one gauge, the "unitary" gauge, the theory
is unitary but not manifestly renormalizable. In the other, the "renormalizable"
gauge, the theory is renormalizable but not manifestly unitary. Because the S
matrix is gauge independent, this will show that the theory is both unitary and
renormalizable.

Our starting point is the generator of the Green's functions in the Coulomb
gauge:

Zc(J) =
J

DAµ 0 [Aµ] f S(V A;(x)) exp (iS[Aµ] + i fd4x JµAµ)
X

(9.103)

where AC[AN,] is the Faddeev-Popov measure coming from the Coulomb gauge.
Using functional methods, we will now change the gauge to the Landau gauge.
We will use the fact that the number "1" can be written, as usual, as:

1 = OL[Ald f D1(x) f j 3 (a"A2(x)) (9.104)
X

where this expression is written in the Landau gauge.
We will now insert the number "1" (written in the Landau gauge) into the

expression for the generator of Green's functions (written in the Coulomb gauge).
This insertion does not change anything, so the generator becomes:

ZC(J) = f DA, , t f D1(x) fl8 (aµA2(x)) OL [Aµ] IOC [Ale]
X

xf8(DiAi)exp(iS(AN,)+iJ d4xJµAN) (9.105)
X \

The insertion is contained within the first set of parentheses. Next, in order
to remove the SZ in the previous expression, we will make an inverse gauge
transformation on Aµ:

Aµ -> Aµ-1 . (9.106)

We will now use the fact that S(A,,), the Faddeev-Popov determinant, and the
measure DAN, are all gauge independent. The term 3 (8µAµ) loses its dependence
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on SZ, as desired. Thus, all terms involving the Landau gauge lose their dependence
on Q. On the other hand, we must carefully keep track of those terms in the
Coulomb gauge that are affected by this transformation. Then the expression for
ZC(J) becomes:

ZC(J) = f DAµ AL(AA) fl 8 (aµAµ) exp [iS(Aµ)]
X

x (Ac(AN,)
J

DSZ(x) fl 8 (DiA;1-')) exp (i
JX \

(9.107)

Almost all the dependence on the Coulomb gauge is now concentrated within
the first set of large parentheses. Our next step is to show that the factor appearing
within these large parentheses can be set equal to one, thereby eliminating almost
all trace of the Coulomb gauge. To analyze the term within these parentheses, we
first observe that the integration over D1 contains the delta function, which forces
us to pick out a particular value for SZ-1, which we will call SZo. This specific
value of SZo, because of the delta function constraint, must satisfy:

DiA"O - 0 (9.108)

In other words, we can rewrite the delta function term as:

f DQ fl 3 (Vi A;1-') = A o f DSZ8 (Q-1 - SZo) (9.109)
X

where Do and Ho are the terms that we must calculate. In general, this task is not
an easy one, because Ho is a function of Ai itself. However, we can determine Ho
because it must, by construction, satisfy:

DiAP'=Di{Ho[Ai-ig-1Q 1Vico]Q-1 0 =(9.110)

This expression cannot be solved exactly for A'0. However, we can always power
expand this expression to find the perturbative solution, which is given by:

A9O = (Bij - Vi Oz v1 I Aj + O(A2) (9.111)

Thus, to any order of accuracy, we can solve for Aµ° and SZo. The advantage of
introducing this expression for Ho is that we can now show that the object in the



9.6. Equivalence of the Coulomb and Landau Gauge 317

first set of large parentheses in Eq. (9.107) equals one:

'
S

(0`AjQ_'(x))

Oc(A J DSZ fj S (ViAP ) = Oc(A,) det
SSZ(Y)

X
X' y

Oc(A,) A '[Aµ°l (9.112)

where we have used the fact that OFP is gauge invariant. Thus, the term in the
large parentheses can be set equal to one, and the expression for Zc(J) can be
written as:

Zc(J) =
J

DAµ AL(AA) fl S (aI Au,) exp (iS(A,,) + 1
J

d4x JµAµ°)
X \

(9.113)

The important point here is that we have lost all dependence on the Coulomb gauge,
except for the term JµA2°. This means that the Green's functions, as expected,
are all gauge dependent. The next task is to show that the S matrix is independent
of the gauge choice, even if the Green's functions are gauge dependent. To do
this, we must extract out the dependence on Coulomb gauge parameters from the
Landau gauge parameters. The source J, in the functional, because it originally
came from the Coulomb gauge, satisfies:

Jo = Di Ji = 0 (9.114)

We may therefore write:

r
fd4x

f
d4x Jµ Aµ° = JµFL(A) (9.115)

where F is defined, to lowest order, as:

Fµ(A) = A,1(x)+O(Aµ) (9.116)

Now let us extract out all dependence on the Coulomb gauge out of the
generator of the Green's function:

/'
Zc(J) = exp Ci

J
d4xJµFµ (_i

S ZL(j)I j, (9.117)
Bill

We now have a functional expression relating the generating functional of the
Landau gauge to the generating functional of the Coulomb gauge. Next, we must
investigate the dependence of the S matrix on the gauge-dependent parameters.
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In order to compare our results for the S matrix, we must go on-shell; that
is, i.e., we must set the p2 -> 0 on the external legs of any graph. Then, if we
look at the contribution of the F term to any Feynman graph in this on-shell limit,
the only terms that survive are self-energy corrections (i.e., radiative corrections
to the propagator). In Chapter 7, we showed that the net effect of self-energy
corrections is to give us a multiplicative renormalization of the overall diagram.
This renormalization, in turn, can be absorbed in the overall renormalization of the
S matrix that must always be performed when calculating radiative corrections.
Thus, the S matrices calculated in the Coulomb or Landau gauges only differ by
a multiplicative constant, given by the renormalization of the self-energy parts,
which in turn can be absorbed into the overall renormalization of the S matrix. We
therefore find that the two formalisms give the same on-shell S matrix, as desired.

In summary, we have seen how the path integral method gives us a convenient
formalism in which to quantize gauge theory. The only complications are the
Faddeev-Popov ghosts, which arise from the functional measure of integration.
The power of the path integral method is that we can rapidly move from one
gauge choice to another in gauge theory. This is crucial in order to show that
gauge theory is both unitary and renormalizable.

In the next chapter, we will construct a realistic theory of the weak interac-
tions from gauge theory. The essential ingredient will be spontaneous symmetry
breaking, which allows us to have massive vector mesons without spoiling renor-
malization.

9.7 Exercises

1. Choose the gauge Ai = A. Is this a legitimate gauge? If so, construct the
Faddeev-Popov ghost term.

2. Quantize the theory in the gauge:

8µAµ + cAµAµ = 0

Calculate the Faddeev-Popov ghosts.

(9.118)

3. Repeat the analysis for the gauge:

8µAo8µAo = 0 (9.119)

4. Calculate the propagator in the gauge 17µAµ = 0, where 17µ is a constant and
normalized to 172 = 1 .
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5. Analyze whether the axial gauge A3 = 0 suffers from a Gribov ambiguity or
not. (Hint: see whether the gauge constraint is invertible or not.) Do other
gauges suffer from a Gribov ambiguity? Discuss the delicate points involved
with this problem.

6. A spin-3/2 field ,/gyp, has both vector and spinor indices (we will suppress the
spinor index). Its action is given by:

H = Eµvp°7/ipY5Yvap , (9.120)

Show that it is invariant under a local gauge symmetry 3*, = 8a, where a is
a spinor. Break the gauge by adding -1(f y) (y ,/r) to the action. Show
that the propagator equals yµ Kyv/kz.

7. If the spin-3/2 field also carries an isospin index, can it be coupled to the
Yang-Mills field in a gauge covariant fashion? Justify your answer.

8. Consider an SU(N) Yang-Mills field coupled locally to a multiplet of massive
mesons in the adjointrepresentation of SU(N). Write down the Feynman rules
for the scalar-vector interaction vertices.

9. From a canonical point of view, the purpose of the Faddeev-Popov ghost is
to cancel the ghost modes coming from the Yang-Mills propagator. In the
Landau gauge, prove that this cancellation occurs at the one loop level for
vector meson scattering.

10. Prove Eq. (9.34).

11. Prove that Eq. (9.78) solves Eq. (9.75).

12. By repeating the same steps used to show the equivalence between the
Coulomb and Landau gauge, show the equivalence between any two gauges
allowed by the Faddeev-Popov formalism.





Chapter 10

The Weinberg-S alam Model

If my view is correct, the universe may have a kind of domain structure.
In one part of the universe, you may have one preferred direction of the
axis; in another part, the direction of the axis may be different.

-Y. Nambu

10.1 Broken Symmetry in Nature

In nature, a variety of beautiful and elegant symmetries surrounds us. However,
there are also many examples of symmetries in nature that are broken. Rather
than put explicit symmetry-breaking terms into the Hamiltonian by hand, which
seems artificial and unappealing, we would like to break these symmetries in a
way such that the equations retain their symmetry.

Nature seems to realize this by exploiting the mechanism of spontaneous
symmetry breaking; that is, the Hamiltonian is invariant under some symmetry,
but the symmetry is broken because the vacuum state of the Hamiltonian is
not invariant. The simplest examples come from solid-state physics, where the
phenomenon of spontaneous symmetry breaking is quite common. Consider a
ferromagnet, such that the atoms possess a spin a;. Although the Hamiltonian
does not select out any particular direction in space, the ground state of the theory,
however, can consist of atoms whose spins are all aligned in the same direction.
Thus, rotational symmetry can be broken by the vacuum state, even when the
Hamiltonian remains fully symmetric. To restore the symmetry, we have to heat
the ferromagnet to a high temperature T, where the atoms once again become
randomly aligned.

In addition, spontaneous symmetry breakdown may also be associated with
the creation of massive vector fields. In the theory of superconductivity, for
example, spontaneous symmetry breaking occurs at extremely low temperatures,
giving us the Meissner effect, in which magnetic flux lines are expelled from the
interior of a superconductor. However, the magnetic field penetrates slightly into
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Figure 10.1. The first potential corresponds to a unique vacuum, or a Klein-Gordon field
with a positive mass. The second potential, which exhibits spontaneous symmetry breaking,
corresponds to a scalar field with a tachyon mass.

the medium, so there is a finite-range electromagnetic field, which corresponds to
a "massive photon." We conclude that spontaneous symmetry breaking can, under
certain circumstances, give mass to a massless vector field.

Similarly, spontaneous symmetry breaking gives us a solution to the problem
that faced physicists trying to write down a theory of the weak interactions in
1950s and 1960s. One candidate was the massive vector meson theory. However,
the massive vector meson theory was known to be nonrenormalizable by simple
power counting arguments. Spontaneous symmetry breaking, however, solves
this problem. It preserves the renormalizability of the original gauge theory even
after symmetry breaking, giving us a renormalizable theory of massive vector
mesons.

To illustrate spontaneous symmetry breaking, let us begin our discussion with
a scalar field with a q54 interaction which has the symmetry 4) -> -4):

I aµ0a'` - 2m24)2 -
4!

q54 (10.1)

If m2 is negative, then m is imaginary; that is, we have tachyons in the theory.
However, quantum mechanically, we can reinterpret this theory to mean that we
have simply expanded around the wrong vacuum.

In Figure 10.1, we see two potentials, one described by m24)2/2 +,kq54/4!

with positive m2, which gives us a unique vacuum, and another with negative m2,
which corresponds to a tachyon mass.

For the second potential, a particle would rather not sit at the usual vacuum
4) = 0. Instead, it prefers to move down the potential to a lower-energy state given
by the bottom of one of the wells. Thus, we prefer to power expand around the
new minimum 4) = v.
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(Classically, a rough analogy can be made with a vertical, stationary rod that
is hanging from the ceiling. Normally, the rod's lowest-energy state is given by
0 = 0. If we displace the rod by an angle 0, then the potential resembles the first
figure in Fig. 10.1. However, if the rod is sent spinning around the vertical axis,
then it will reach a new equilibrium at some fixed angle 0 = Bo, and its effective
potential will resemble the second figure in Fig. 10.1. For the spinning rod, 0 = 0
is no longer the lowest energy state.)

For the scalar particle we discussed before, if m2 is positive, then there is only
one minimum at the usual vacuum configuration 4) = 0 and the potential is still
symmetric; that is, it has the symmetry 4) -> -4.

However, if m2 is negative, then quantum mechanically the vacuum expecta-
tion value of the 4) field no longer vanishes because we have chosen the wrong
vacuum. For the tachyonic potential, we can easily find the location of the new
minimum:

00=v=± -6m2/.1 (10.2)

Normally, we demand that the vacuum expectation value of the scalar field
vanishes. However, if the naive vacuum is the incorrect one, then we find instead:

(0410) = v (10.3)

Clearly, our troubles have emerged because we have power expanded around the
wrong vacuum. To correct this situation, we must shift the value of the 4) field as
follows:

(10.4)

In terms of the shifted field , we now have broken the original symmetry 4) -> -4)
and:

(0*0) = 0

We also have a new action given by:

1a,aµ + m22 - 6.1v3 - 4.'k4

(10.5)

(10.6)

Because m2 is negative, we have an ordinary scalar particle with a positive mass
squared given by -2m2. The original symmetry between 4) and -4) has now
been spontaneously broken because the field has been shifted and there is a new
vacuum.
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Figure 10.2. The new solution to the minimum of the potential corresponds to a ring of
solutions.

Let us now examine a less trivial example given by the global O(N) scalar
theory, where the field q5' transforms as an N-vector:

1a"Oip0`µ 2m2oioi - 4(OiOi)z (10.7)

Again, if the mass term has the wrong sign, (i.e., if m2 is negative), then there
is a new vacuum solution given by:

4 4` = vz = -6mz/.1 (10.8)

Contrary to the previous potential that we examined, which had two minima,
this theory has an infinite number of vacua. In Figure 10.2, we can see that there
is actually a degenerate ring of solutions sitting in the bottom of the potential well.

Any solution of this equation yields a new vacuum. Now let us break this
degeneracy by singling out a specific direction in isospin space, the last entry in
the column vector:

(10.9)

where
This new vacuum is still invariant under the group that leaves the last entry

VN = v invariant, that is, the subgroup 0 (N - 1). We are thus breaking the original
symmetry group 0 (N) down to 0 (N - 1) with this choice of vacuum.
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Let ri be the generators of O (N). These generators, in turn, can be divided
into two groups: the generators of 0 (N - 1), and everything else. Let fj equal
these remaining generators. The simplest parametrization of this new vacuum is
to let the last component of the q5i field develop a nonzero vacuum expectation
value: ON -> ON + v, keeping the other 4i the same. However, we will find
it convenient to introduce a slightly more complicated parametrization of the N
fields within the vector q5i. We will choose instead:

0

0

0

v + U (x)

(10.10)

where we have replaced the original N fields 4,i with a new set, given by N - 1
fields i and by o,.

To see the reason for this particular parametrization, we recall that 0 (N) has
(1/2)N(N - 1) generators. The number of generators in O(N), after we have
subtracted out the generators of 0(N - 1), is:

2N(N- 1) - 2(N- 1)(N-2)=N- 1 (10.11)

Thus, there are N - 1 generators V that are not generators of the 0(N - 1)
subgroup.

A particularly useful parametrization for the generators of O (N) is given by a
series of delta functions:

(rij)kl = -i(Sik8ji - Silsjk)

(riN)kl = -i(sik8Nl - sil8Nk) (10.12)

To lowest order, we have 4,i = i for i < N and ON = v + o,, and the action
becomes:

2 (aµaaµa + aµiaµi)

- Im2(v+a)2-4i.k(v+v)4+higher terms (10.13)

The N - 1 i fields have become massless, and o, is now massive but no longer a
tachyon. The action is still invariant under a residual symmetry, 0 (N - 1).

We emphasize that the number of massless bosons i is equal to the number of
broken generators ti. We call these massless bosons, which signal the spontaneous
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breakdown of the theory, Nambu-Goldstone bosons.1-3 These bosons will play a
special role in constructing realistic gauge theories of the weak interactions.

In summary, we have:

0(N) -> 0(N - 1) = N - 1 Nambu-Goldstone bosons (10.14)

that is, the breaking of 0 (N) symmetry down to 0 (N - 1) symmetry leaves us
with N - 1 Nambu-Goldstone bosons j, or one boson for each of the broken
generators V.

10.2 The Higgs Mechanism

We now have a rule that the number of massless Nambu-Goldstone bosons equals
the number of broken generators of the theory. Let us discuss a more general
action to see if this result still holds:

1aµO'aµO-V05) (10.15)

where 0 transforms under some representation of a group G, which has N gener-
ators.

Let us say that there is a nontrivial vacuum, which we can find by calculating
the minimum of the potential:

3V

Sc; m=v
=0 (10.16)

Let (0j)o = v; be a solution of this equation that minimizes the potential. We find
that this new vacuum is still invariant under a subgroup of G, called H, which has
M generators. This means that there are M generators L that leave vi unchanged;
that is, they satisfy:

0 (10.17)

There are also N - M generators La for which L vj ¢ 0. In other words, the
generators a

j are of two types: L , which -generate the subgroup H, and a
,

which are all the remaining generators. The first set of generators annihilate on
vi, by construction, while the second set does not.

Next, we wish to show that expanding around this new vacuum will create
N - M massless boson fields. To begin, we define the variation of the scalar field
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as:

30 = -i6' L°O (10.18)

The potential V(O) is invariant under this transformation, so we have:

3V
3 = -i 3V

B°La =0 10 190i Oj
30i 30i

( . )

Since the parameters 6a are arbitrary, we have N equations:

3VLQO _
(10.20)

301 `j

Differentiating this, we arrive at:

S2V 3VL k=O (10.21)i
BOA k

so,

Substituting the value of 0 at the minimum into the previous equation, we find:

32V L°v =0 (10.22)
stistk 10=v ij >

If we Taylor expand the potential around the new minimum Oi = vi, then the mass
matrix can be defined as:

V (O) 2 (M2)i1(o - V), (O - v)j + .. . (10.23)

Now let us insert the previous equation for the mass matrix into Eq. (10.22).
This gives us:

(M2)i j Ljk vk = 0 (10.24)

This equation is trivially satisfied if L° is a generator of the subgroup H, since
L a vj = 0. The situation is more interesting, however, when the generator is one
of the N - M generators L of G that are outside H.

For these N - M generators Lij, Eq. (10.24) is an eigenvalue equation for
the matrix M2. It states that for each of the N - M generators L q., there is a zero
eigenvalue of the M2 matrix. Since the eigenvalues of the M2 matrix give us the
mass spectrum of the fields, we have N - M massless bosons in the theory.

Thus, after symmetry breaking there are N - M massless Nambu-Goldstone
bosons, one for each broken generator.
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In summary:

G -* H = N - M Nambu-Goldstone bosons (10.25)

A surprising feature of this method, however, arises when we apply the
Nambu-Goldstone theorem to gauge theories. In this case, will find that these
Nambu-Goldstone bosons are "eaten up" by the gauge particles, converting mass-
less Yang-Mills vector particles into massive ones. This is called the Higgs-Kibble
mechanism 4-6

Furthermore (and this is the key point), the Yang-Mills theory remains renor-
malizable even after the Higgs mechanism has generated massive vector particles.
In other words, this is the long-sought-after mechanism that can render a massive
vector theory renormalizable. It is not an exaggeration to say that this discovery,
by 't Hooft, changed the landscape of theoretical particle physics.

To see how the Higgs mechanism works, let us begin with a theory of complex
scalar particles coupled to Maxwell's theory. The action is:

= DN,O*Dµ0 - m20*0 - )(0*0)2 - 4 FµvFµv (10.26)

The coupled system, as before, is invariant under:

0 e-ie(X)0

0*
e+ie(X)(P*

All -> Aµ -
1

e
8µ8(z)

The action is invariant under U(1) = SO (2).
Now we break this symmetry; the new vacuum is given by:

(10.27)

(.P)o = v/v'2- (10.28)

We will find it convenient to parametrize the complex field 0 by introducing
two fields o, and 4:

= o,)/v'2-

(10.29)

We can now make a gauge rotation on both 0 and Aµ:

0 0' = e-'e/v0 _ (v + o,)/v G

Aµ Aµ Aµ
ev att (10.30)
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(We have gauge rotated the field away in the definition of 0' and A'.)
The final action now reads:

2= -
Ie2(A/ )2v(2v + v) - 10,2

QXV2 + m2) - kvO3 - a.v4
2 2 4

(10.31)

The AN field has become massive. The key point is that the has disappeared
completely. In other words, it has been "gauged away," or "eaten up" by the vector
field.

The Nambu-Goldstone boson, corresponding to the breaking of U(1) invari-
ance, has disappeared and reappeared in a new guise, as the massive component
of the massless vector field. Since U(1) is now broken, there is no longer any
gauge symmetry left to prevent the Yang-Mills field from acquiring a mass, and
hence it acquires a massive mode (at the expense of the mode, which vanishes).
Thus, the new field A' has three components (while a massless vector field has
two helicities or transverse polarizations), with one of these fields corresponding
to the old field. To see that the Aµ field has gobbled up the Nambu-Goldstone
boson, we note that its definition was: A' = AN, - (1/ev)BN,4, which clearly shows
that the field has been incorporated into the A' field.

Let us now discuss two slightly more difficult examples of the Higgs mecha-
nism with non-Abelian gauge fields. Then we will see that only some of the gauge
fields become massive. First, let us discuss a SU(2) gauge theory coupled to an
isovector triplet of scalar fields. We will break this down to U(1), so that only one
of the three gauge fields remains massless, while the other two acquire a mass by
eating up the Nambu-Goldstone bosons.

The action is:

2Dt
O'D"O' - V(0'0') - (10.32)

As before, we will choose V (O' o') such that there is a tachyon in the theory,
meaning that we have chosen the wrong vacuum. When we shift to a new vacuum,
we find that it is degenerate. We will break this degeneracy by shifting the third
component of the isovector:

0 0

WO = 0 = 0 (10.33)

V

v+or

where L' are the generators of SU(2), ; are the Nambu-Goldstone bosons, and
we choose the third isospin generator L3 to be the generator of the unbroken U(1)
symmetry.
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Next, we make a local gauge transformation on the fields, such that we remove
the fields appearing in the previous equation for 0:

0 O'_QO

L Aµ -> L Aµ = 52L AAQ-1 - g (8µS2)52-1 (10.34)

where:

Q = (10.35)

Let us expand the action around the new vacuum. The vector fields now have
the following action:

- 1F1 Fµ°'+ 1 2v2 (A1A1µ+A2A2µ)4 µv 2g µ µ (10.36)

Two of the gauge fields have acquired a mass, but Aµ, corresponding to a residual
U(1) symmetry, is still massless. Again, the number of Nambu-Goldstone bosons
equals the number of broken generators.

The other terms in the action are:

28µv 8µv - V(v+v)+higher terms (10.37)

The 1,2 fields, as expected, have disappeared completely by being absorbed into
the gauge fields.

Finally, we must now show that the Higgs mechanism works for an arbitrary
gauge theory. The important feature that we want to demonstrate is that the number
of gauge fields that become massive is equal to the number of broken generators
of the gauge group.

We start with a gauge group G, which has N generators, and hence N gauge
fields A. We also have the real scalar field 0 transforming under some n-
dimensional representation of the group G. We start with the action:

_ -1FµvFµva + 2(aµ - igLaAN)o (aµ - igLbANb)o - V(O) (10.38)

where L° is an n x n representation of the group G, that has N generators.
Let us choose V(O) so that symmetry breaking occurs. Let 0 = v be a

matrix equation defining the minimum of the potential. We want a vacuum that
is invariant under an M-dimensional subgroup H of G. The generators of H,
because they leave the vacuum invariant, satisfy L°v = 0.



10.2. The Higgs Mechanism 331

We now parametrize the scalar field as:

N
Oo = exp

(iMLh/v)(v+v)
(10 .39)

where we sum over the N - M generators that do not correspond to the subgroup
H and do not annihilate v. For these generators L'v ' 0. Also, j are the
Nambu-Goldstone bosons.

The trick is now to choose a gauge transformation which swallows up the
fields appearing in the above definition. As before, we choose:

N-M
exp -i i L'/v 0 = QO (10.40)

.=1

The S2 in front of 0 precisely cancels against the 52-1 appearing in front of the
parametrization of 0, so the j fields disappear.

Inserting this parametrization into the action, we can collect the terms respon-
sible for the vector meson masses, which is given by:

2A' (M2)vAjµ =
2

(gL'vlgL1v) A' Aiµ (10.41)

where the brackets represent the matrix contraction or scalar product between two
vectors.

Thus, the masses of the gauge fields are given by the eigenvalues of the
following matrix:

(M2)'j = g2 (v I L'Li v) (10.42)

There are N - M non-zero eigenvalues to this equation, and hence there are
N - M massive vector fields (which have absorbed the remnants of the N - M
Nambu-Goldstone bosons).

In retrospect, the Higgs mechanism has a rather simple interpretation. We
know that a gauge theory locally invariant under a group G has no mass term in
the action for the vector field in perturbation theory. However, if the group G
breaks down to a subgroup H via symmetry breaking, then we know that the gauge
fields corresponding to the H subgroup must still remain massless. However, the
gauge fields corresponding to the broken generators of G are now free to become
massive.

Let us now present a more formal, model-independent proof of the Nambu-
Goldstone theorem. We begin with the observation that spontaneous symmetry
breaking occurs because the vacuum is not invariant under a certain symmetry,
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although the action is. In other words, beginning with a symmetry and its con-
served current JN,, we can construct its conserved charge Q such that:

Q =
J

d3xJ°; Q10):10 (10.43)

The essential point is that Q no longer annihilates the vacuum in a broken theory;
that is, the vacuum state 10) is not the true vacuum, so it is not annihilated by Q.
Current conservation means that the following commutator vanishes:

0 = J d3x [8µJ"`(x), 0(0)]

= 8o f d3x [J°(x), O(0)] + J dS [J(x), O(0)] (10.44)
s

for some scalar boson field 0(0). Then we make the assumption that for large
enough surfaces S, we can ignore the term on the right-hand side of the equation.
Hence:

dt [Q(t), /(0)] = 0

Then:

(10.45)

(011 Q(t), /(0)] 10) = C 0 (10.46)

where C is a nonzero constant. Now insert a complete set of intermediate states
inside the commutator. After making a translation, we can write this expression
as:

57(2Jr)383(pn)[(01 J°(0)ln) (njO(0)j0)e-rE`

n

- C ¢0 (10.47)

In general, unless En = 0, the positive and negative frequency parts cannot
possibly cancel, and hence the contributions to the sum cannot give us a constant.
In other words, it is impossible to satisfy the previous equation unless the mass of
the intermediate states vanishes. (Furthermore, these massless states must exist,
so that the sum adds up to a non zero value.) Thus, there must be a massless
Nambu-Goldstone state in the theory, with the property that:

(nJO(0)I0) ¢ 0, (OIJ°(0)In) :/0 (10.48)

This completes the proof.
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10.3 Weak Interactions

Now that we have investigated the possibility of spontaneous symmetry breaking,
we can apply this theory to the weak interactions, where it has enjoyed great
success.

To appreciate this breakthrough, we must realize that, from an historical point
of view, important progress in the field theory of weak interactions was relatively
stagnant for many decades, from the original Fermi action of the 1930s, to the
overthrow of parity, to the advent of gauge theories in the 1970s.

Fermi originally tried to explain the decay of the neutron into a proton, an
electron, and an anti-neutrino:

n -* p + e + v (10.49)

by postulating the phenomenological Lagrangian:

Y _ f(1prAWn)(1eFA v)+h.c.

JA,WJI pc+h.c. (10.50)_ 72

(Experimentally, GF = (1.16639 ± 0.00002) x 10-5 GeV-2.) This action,
from the very start, was known to suffer from a series of diseases. First, the rA
matrices could in principle consist of all possible combinations of the 16 Dirac
matrices. The lack of precise experimental data for years prevented a decisive
determination of the action. It took many decades finally to resolve that the correct
combination should be V - A,8-9 rather than scalar or tensor combinations.

The Fermi action also suffered from a fatal theoretical disease: It was non-
renormalizable. Four-fermion interactions must be accompanied by a dimension-
ful coupling constant (since the dimension of a spinor is 3/2). The Fermi constant
thus has the dimensions -2, and hence the theory was nonrenormalizable. Finally,
the theory violated unitarity. If we calculate the high energy behavior of the dif-
ferential cross section of any weak process, we can write (purely by dimensional
arguments):

do, GF
S

d Q 47r
(10.51)

(The differential cross section is a pure s wave because the four-fermion interaction
takes place at a single point.)



334 The Weinberg-Salam Model

V

Figure 10.3. If four fermions interact via a massive vector meson, then the exchange of
the vector meson, for a large mass, mimics the original Fermi four-fermion interaction.

On the other hand, we know from unitarity that the S matrix for s-wave
scattering must obey the law:

do, 1
(10.52)

These two results are obviously in contradiction for high energies. The discrep-
ancy between these two results becomes serious at around f - 500 GeV.

To extend the Fermi action, physicists tried to emulate the success of the
Yukawa theory for the strong interactions. If the Yukawa meson could mediate
the strong interactions, then perhaps a massive vector meson could mediate the
weak interactions. The obvious proposal was to treat the Fermi action as a
byproduct of vector meson exchange (Fig. 10.3):

2

2' = g ,(`I'py"``I'n)
8µv - kNkv/M

( eYvY v) (10.53)k2-M,,+iE

This, in turn, gave us a rough determination of the mass of the vector meson:

2Gp g,
Mti2,

(10.54)

A rough calculation put the vector meson mass at around 50-100 GeV.
The advantage of the vector meson approach was that it smoothed out the

singular behavior of the original Fermi action. However, the massive vector meson
theory was still nonrenormalizable. The propagator behaved as kµkv/M2k2 in the
ultraviolet region; so the higher loop graphs all diverged.

Meanwhile, the experimental confusion in the weak interactions continued
with the discovery of three identical sets of lepton pairs, corresponding to the
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electron, muon, and r particles and their corresponding neutrino partners:

(( ) (V, ) VA

(10 55
' b ' r

e

. )

To this day, no one knows why there are three identical copies of lepton
families, as well as quark families. The masses of the e, A, and r leptons in MeV
are .51099906(15), 105.658389(34), and 1784. Their neutrino masses have upper
limits given by 10 eV, .27MeV, and 35MeV.

10.4 Weinberg-Salam Model

The Weinberg-Salam model,10,11 one of the most successful quantum theories
besides the original QED, is a curious amalgam of the weak and electromagnetic
interactions. Strictly speaking, it is not a "unified field theory" of the weak
and electromagnetic interactions, since we must introduce two distinct coupling
constants g and g' for the SU(2) and U(1) interactions. Nonetheless, it represents
the one of the most important extensions of QED in the past quarter century.

We begin by discussing the SU(2) sector. Observationally, we must incor-
porate a neutral, left-handed Weyl neutrino along with a Dirac electron, which
can be considered to be the sum of left-handed and right-handed Weyl spinors.
The left-handed fermions form an isodoublet, consisting of the Weyl neutrino and
electron:

L - (10.56)

while the right-handed sector consists of an isosinglet, the right-handed electron:

R - (e)R (10.57)

This curious feature, that the electron is split into two parts, with the left- and
right-handed sectors transforming differently, is a consequence of the fact that the
weak interactions violate parity and are mediated by V - A interactions.

These two lepton sectors transform under SU(2) in different ways:

L -> e'12° ' tTL

R -> R (10.58)
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Now let us examine the transformation of these fields under:

L ->

R -> e` R (10.59)

R and L transform slightly differently under the U(1) transformation.
The charge Q of the pair (ve, e) is (0, -1), which is almost equal to the

eigenvalue of the isospin operator V. In fact, the correct formula for the charge
is:

Q = T3 + 2 (10.60)

where T3 = ±1/2 and Y = -1 for the left doublets, and T3 = 0 and Y = -2
for the right singlets. Thus, we need both the SU(2) and U(1) sectors to get the
charge correctly.

The final action consists of three parts. 21 is the gauge part; 2 is the
fermionic part; and 23 is the scalar Higgs sector:

2'=21+22+23 (10.61)

where:

1 = -4WµvW
aAv -

-FµvFNv

X2

X3 =

where:

iRy"`DAR+iLy"`DAL

DµcbtD"`cb - m20to - ;,(Oto)2

+ Ge(LcR + ROtL) (10.62)

W,av = a'Wa-avW'a+gfabcwbwC

Fµv = aµBv - avBA

DAR = (a +ig'BN,)R

DAL = [a1L+(i/2)g'Bµ - (i/2)gofW`,j L

DAO = [a1L - (il2)gaaWµ - (i/2)g'BN,] 0 (10.63)
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The scalar multiplet is a complex isodoublet given by:

(10.64)

where the doublet has charge (1, 0), which can be given by Q = T3 +(1/2)Y, such
that T3=f1/2 andY=1.

Symmetry breaking is induced by:

(0) =
0

(v/v/2-
(10.65)

After symmetry breaking, the fields Wµ and BN, recombine and reemerge as
the physical photon field AN,, a neutral massive vector particle ZN,, and a charged
doublet of massive vector particles WI :I:

3 ig
Z µ WW +sin6 B=

B2
Cos6w wµ (g2 9'2)

+cos6 BWA W
_µ

-sin6 Aw Wµ (g2
912)l A

Wµ = = (Wµ ± 1Wµ) (10.66)

where the Weinberg angle Ow is defined via:

6 gcos W (g2 + g'2)1/2

of
tan 6w = (10.67)

g

By examining the mass sector, we can read off the masses of the resulting
vector particles:

M2

W,

M2

MA

M2

w2

M2w
cost OW

0

Finally, the electric charge emerges as:

(10.68)

e = g sin 6w (10.69)
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Experimentally, the predictions of the Weinberg-Salam model have been tested
to about one part in 103 or 104. At present, we have the following values for the
parameters of the Weinberg-Salam model12:

sin2 6w = 0.2325 ± 0.008

Mz = 91.173 ± 0.020 GeV/c2

Mw = 80.22 ± 0.26 GeV/c2 (10.70)

The Weinberg-Salam model has been one of the outstanding successes of field
theory, gradually rivalling the predictive power of QED. The rest of this chapter
will be devoted to studying the many consequences of the model.

10.5 Lepton Decay

Let us now use the Weinberg-Salam model to do some simple calculations, such
as the decay of the muon or the r lepton to lowest order. Although the Born term
resembles the calculation that one might perform with the old massive vector me-
son theory, the Weinberg-Salam model allows us to calculate quantum corrections
to the massive vector meson theory that we can then compare with experiment.

We are interested in purely leptonic decays, such as:

µ- -* e- + ve + vN (10.71)

More generally, we can have:

1a(P1,Sa) - vb(p2)+Va(P3)+lb(P4,Sb) (10.72)

where p1 = P2 + p3 + p4 and a and b represent lepton generations. Thus, (la, Va)
and (lb, Vb) form two lepton generations.

A straightforward use of the Feynman rules for the Weinberg-Salam model
yields, to lowest order:

-ig2 ( g"`° + ql'q°/MK
-A=

8
(u3Yµ(l - Y5)ul) q2 - MW ) [uaYv(1 - YS)v2l (10.73)

The decay rate do) is given by:

do) =
(2n)434(P; - Pf)I I2d3p2d3p3d3p4 (10.74)

(2n)92E,2E22E32E4
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We can write ./l/G- as follows:

4
I I2 = 9

4
LNVM"`°

64M4

where:

(10.75)

Lµv = Tr [(u3u3)Yµ(1 - Y5)(u1u1)Yv(1 - Y5)]

2Tr YS)(d(l +ma)(1 Y5)] (10.76)

where we have used the Gordon identity and have taken Mw to be larger than the
momenta q2 and the mass term mamb.

Using the standard identities, we can write:

Lµv = Tr [N3Yµ(d(1 +maY5Va)Yv(1 - Y5)]

= p3(p1 - [Yayy yv(1 - Y5)] (10.77)

Similarly, M"`° has almost the same structure, so it can be written:

Mµv = (p4 - mbsb)ap2,e Tr [Yayyyv(1 - Y5)]

so the final result for ./l/6 is:

4

I I2 = 4 [p3 ' (p4 - mbsb)p2 - (P1 - masa)J
W

Inserting this expression back into the decay rate, we find:

(10.78)

(10.79)

do) = 94(p4 - mbsb)'(p1 - masa)° d I ,,v16(2n)5MWElE4 Spa µv

where:

= f d3p2 d3p3 P3µp2v84(p - P2 - P3)
Iµv J E2E3

n
=

6
(gµvp2 + 2pµpv) (10.81)

where p = p, - p4.
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To simplify this calculation, we will take the rest frame of the decaying lepton
1a. Then we have the following rest frame decomposition:

Pi = (ma, 0)

S. = (0, Sa)

P4 = (E4, P4)

Sb [P4 . sb/mb, Sb + (P4 sb)P4/mb(E4 + mb)]

Then the differential decay rate becomes:

dw = 94P4 dE4 d1
m2 +mb - 2m,,E4 ma(Ea - P4 SO

192(2n)4M4 ma

(10.82)

+ ma (p4 - mbsb -E4(Pa+sb)mb )
sa I +2(ma - maE4 - map4 Sa)

X [(ma - E4)(E4 - P4 Sb) + P4 (P4_mbsb - (P4 sb)P
E4+mb

4Al

This formidable expression can be simplified if we let Mb - 0. Let n be a unit
vector pointing along p4, such that cos 0 = sa n. Let x = E4/Em', where E4 ax
is the maximum allowed value of E4, or ma/2. Then we have:

do) 32Mti2y(192n)3 n(x)[1 + a(x) cosO] [1 - n .
sb] dx d c8o B do (10.84)

where:

n(x) = 2x2(3 - 2x); a(x) = (1 - 2x)/(3 - 2x) (10.85)

Now sum over the spin states of the bth particle, average over the spin states sa,
and integrate over dit We then find:

do) _ g4 man(x)
dx 32M4 192n3

Integrating over x, we find:

84ma GFinaT
32M4 (192)n3 192n3

(10.86)

(10.87)
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We performed this calculation for small mb. However, the calculation can also
be performed by adding in the corrections for small c = mb/ma. Power expanding
in this variable, we find:

r = G m F(E);
F(E) = 1 - 862 - 24E4 log E + 8E6 -6 8 + ... (10.88)

We should point out that this result can be generalized to allow for couplings
other than V and A, which allows for a test of the accuracy of the electroweak
theory. We could start with the transition probability:

-A (u4r(ul) [u3r1(g( +g;Y5)v2] (10.89)

where we include all possible 16 Dirac matrices in the transition element, not just
V - A.

For Mb = 0, the calculation of the decay rate is long but very straightforward,
and yields'3:

do)
A max2 dx d1
4 1927[ 3 4jr

x {6(l -x)+4p(43x - 1) - cos0 [2(1 -x)+43(43x - 1)] l

(10.90)

where we have: a = IgsI2+IgsI2+IgP12+Ig,12

a' = 2Re (gsg' + gpgs )

b = IgvI2+Ig'v12+IgA12+IgA12

b' _ -2Re (gvg' + gAgv )

C = I9TI2+IgT12

C' = 2Re (gTgT' )

The Michel parameters are defined as:

Ap = 3b + 6c

A4 _ -3a' - 4b+ 14c'

3 = (3b' - 6c')/(3a' + 4b' - 14c')

(10.91)

(10.92)

where A = a + 4b + 6c.
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When radiative corrections are included in the calculation, we find, for muon
decay:14

GAm 3( 8me 1 r a
27r

25 2) 3 M2

1927r
1- m 1+2r 4- r +SM J (10.93)

These and other theoretical calculations have shown good agreement with
experiment.

10.6 Rg Gauge

Now that we have described the Weinberg-Salam model, we will study, in this and
the next section, how to quantize it. We know that massive gauge theories are not
renormalizable by a simple analysis of the ultraviolet behavior of their propagators.
[These terms diverge as O (1) as kµ becomes large, which spoils renormalizability.]
Unlike the situation in QED, we cannot appeal to the Ward identities to eliminate
the troublesome term in the propagator: m2)].

This makes us wonder how spontaneously broken gauge theories can preserve
both unitarity and renormalizability, which seems totally contradictory. On the
surface, it seems impossible to preserve both features, which was one reason why
massive gauge theories were rejected as a model for the weak interactions.

To see how spontaneously broken gauge theories can be both unitary and
renormalizable at the same time, we will use the Rg gauge,15 which has the
advantage that it interpolates between two sets of propagators. We will then
specialize this to the 't Hooft gauge when we consider the case of the Weinberg-
Salam model.

To obtain the Rg gauge, we will insert a new term into the action. Let us
impose the gauge:

F(AA) = a(x) (10.94)

on our theory, where a(x) is an arbitrary, real field. We can insert the following
term into the path integral:

J Da e- f d4x a2(x) (10.95)
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The path integral, with the new gauge constraint, now becomes:

J DA' Da A.-PS (F(AN,) - a) exp [i J d4x (-2a2 + (x) (10.96)

By performing the path integral over a(x), we find that the Lagrangian is altered
by:

2' -I FTF (10.97)
2a

term:In particular, we will insert the gauge fixing

(F(Aµ) _ (a"Aµ)

With this new gauge-fixing term, the action becomes (with a = 1/4):

1

FN,,, F" - 2a (a"`Aµ)2

(10.98)

= 2Aµ [g,,,,82 + (a-1 - 1) a,,av] Av

Inverting this expression and solving for the propagator, we find:

(10.99)

Dµv = -k2 (g, - (1 - a)kk2kv ) (10.100)

Although the Green's functions for the theory are all gauge dependent (i.e., de-
pendent on the parameter a = we will find that the S matrix elements
are all independent of a, which is now seen to be an unphysical artifact of the
gauge-fixing procedure.

For various values of a, we have various gauges [see Eq. (4.44)]:

a = 1 : Feynman gauge

a = 0 : Landau gauge
(10.101)

Now let us discuss the massive case, which describes spontaneously broken
gauge theories. When the gauge meson develops a mass, the action becomes:

- 21a FT F = Aµ [gµv82 + aµav(a-1 - 1) + g"`vm2J1 Av

To find the Green's function, we need to solve:

[(a2+m2)g"L' _a A a v (I- a-1)] 0(x - y;a)vv = -SpS4(x - y)

(10.102)

(10.103)
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Inverting this expression, we find that the propagator is given by:

a)=- 8µv-(1-a)kµkv
1 1

k2-amt+iE) k2-m2+iEC
(10.104)

(The propagator has a pole at k2 = am2, which represents a fictitious particle.
This pole is cancelled in the S matrix by other contributions, which preserves
unitarity.)

In the limit a -> 0, we find:

a0 0(k, a)µv
8µv - k,kv/k2

= - k2 - m2 + j C
(10.105)

In the ultraviolet limit, this propagator is much better behaved than the usual mas-
sive vector propagator; it goes as 0(1/k2), which gives us good power counting
behavior in the Feynman graphs. The price we pay for such a propagator, however,
is that the theory is not manifestly unitary. If we take the diagonal elements of the
propagator, they alternate in sign, an indication that there are longitudinal ghosts.

In the limit a -> oo, however, we have the propagator:

8µv - kµkv/m2
li-in 0(k, a)µv =

k2 - m2 + i E
(10.106)

a - 00

This propagator, by contrast, has very bad convergence properties. For large k, it
behaves like a constant, which is disastrous from a power counting point of view.
The advantage of this limit, however, from the S matrix point of view, is that it is
unitary. The 0, 0 component of the propagator, taken in the rest frame, vanishes.

We now have the strange situation where for a = 0, the theory appears
renormalizable but not manifestly unitary, but for a = oo, the theory appears
unitary, but not manifestly renormalizable.

In summary:

J a -* 0 : Renormalizable, not manifestly unitary

jl a -> oo : Unitary, not manifestly renormalizable
(10.107)

Although the Green's functions are dependent, we know that the S matrix
must be independent of , which is a gauge artifact; therefore the theory is both
unitary and renormalizable. Although this argument is not totally rigorous, the
Rg gauge, because it smoothly interpolates between two gauges, intuitively shows
how unitarity and renormalizability are complementary, not contradictory. To
see how to apply this to the Weinberg-Salam model, we now define the 't Hooft
gauge.
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10.7 't Hooft Gauge

One of the most convenient gauges to quantize the Weinberg-Salam model are
the 't Hooft gauges,16 which reveal the close link between unitarity and renormal-
izability. We begin by analyzing a O(3) gauge theory coupled to a triplet of Higgs
bosons:

-4 FµvFaµv + 2(aAOi + gEijkA' 0k)2 - V(O'0`)

where (r`)jk = -iEijk form the adjoint representation of 0(3).
As before, we will parametrize the Higgs bosons via:

0

0
i

exp -
U

rl + 2 r2) 0

f 2
-k1 + higher terms

v+17

(10.108)

(10.109)

We are replacing the original triplet of Higgs bosons 01, 02, 03 with the set

Now let us substitute this new parametrization of the Higgs sector into the
original action. After a bit of algebra, we find that the action can be written as
the sum of four pieces. The first piece is the usual gauge action plus scalar fields,
with a massive 17 field:

21 = - 4
2

)2 + (aµ2)2 +(8i7)2] + M,, i72 (10.110)

The second term involves a cross-term between the AA and ; field that we want
to eliminate:

-92 = M (A' A2 aµ 2) (10.111)

The third term consists of the interactions between the gauge field and the scalar
fields:

y3= (ii2 + g2v + g2172) (AA' +Aµ A2µ)+g17(Aµa"` ,+Ai228 2)

V+17

(10.112)
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The last term contains the scalar self-interactions:

2 2 2 2 2

4

2 2 .

Our goal is to choose a gauge in which the second term Y2 with the gauge-
scalar coupling vanishes. To kill this term, we choose the gauge:

2'GF = -2a (a ,A°'` - aM4Q)2 (10.114)

where M = gv. The cross term coming from the gauge fixing kills 23 after a
partial integration,.

Now let us write down the propagators for the various fields (disregarding the
ghosts):

(10.113)

A12 -i gµ - (1 - a)kµkv/(k2 - aM2)
µ k2 - M2 + i E

A3 -> i gµv

µ k2+lE

1,2

77

k2 - aM2
i

(10.115)
k2+2M2+iE

In the limit a -> oo, we have a unitary theory, but one in which manifest
renormalizability is lost. For this choice, called the unitary gauge, the spurious
pole for the 1,2 field at aM2 disappears from the theory, and we are only left with
the physical fields propagating in the theory.

In the limit a -* 0, the theory is renormalizable by power counting, but not
manifestly unitary. For intermediate values of a, the poles in the propagator of
the gauge fields Aµ2 at k2 = aM2 cancel with the poles in the propagators of the
1,2 field. Thus, it is no contradiction to have a theory which is both unitary and
renormalizable.

The point of this exercise is to quantize the Weinberg-Salam model. The
Higgs sector is given by:

2i9;i iaµ - 2 Bµ'o - 2 r Wµ - m20t0 - ;,(0t0)2 (10.116)

We will choose a parametrization that exchanges the complex doublet of
Higgs mesons 01, 02, which contains four separate fields, with the four real fields
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1, 2, 3, 77-

0

V2 1 - i3/U

1 2/v
(v+>))+... (10.117)

Expanding out the action generates a large number of terms. However, the
term in which we are interested is the cross term between the gauge and scalar
part, which is given by:

- MBBµ8µ3 + MWWµaµi + 2aµ ia'` , (10.118)

where we sum over i = 1, 2 and MB = g'v/2 and Mw = gv/2.
We now choose the 't Hooft gauge so that this cross term is cancelled:

2'GF = -I (a,WaA -
2a

(a B"` +aMB43)2 (10.119)

where we sum over a = 1, 2.
The cross terms cancel, and we are left with the mass terms:

- +42)-

This can be rewritten in terms of the physical fields:

1 (I - 1 r` o I 0 ) +...
V \ v+r /

Wµ = - sin Ow Aµ + cos BWZµ

Bµ = cosBWAµ+sin6wZµ

Wµ = (W4 f Wµ)

(10.120)

(10.121)

Now we can write down the new action, and from it extract the Feynman rules
for the propagator. The relevant terms are:

-4(aµ W - 2 - 4(8µB -

1 (8µW1 - 1 (a Aµ)22a µ 2a µ

2a1- (aAZ µ + CY MZ
3 )2
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+ 2MK,(W4W1A+WµW2"`)+ IMZZLZ"`+... (10.122)

The propagators can now be read off from the action:

W+
(1 - a)kµkv/(k2 - aMti2y)

µ k2-Mti2,,+iE

Aµ

Zµ

1gµ

k2+iE

gµv - (1 - a)kµkv/(k2 - aMZ)
k2-MZ+iE

i

k2 - a M2W

(10.123)
3 k2 - aM2W

Again, we have a theory in which unitarity is manifest for a -* oo but
manifest renormalizability is lost. The fictitious poles vanish, and we are left with
a theory defined only in terms of the physical fields. For a -* 0, the theory is
renormalizable, but not manifestly unitary. In general, the fictitious poles coming
from the propagators of the 1,2,3 fields cancel against the poles coming from the
propagators of the Zµ and Wµ fields, giving us a theory that is both unitary and
renormalizable.

10.8 Coleman-Weinberg Mechanism

Although spontaneous symmetry breaking lies at the heart of the Weinberg-Salam
model, one of its weaknesses is the arbitrariness of the Higgs potential. This is a
serious criticism, since many of the physical parameters depend crucially on the
precise form of the Higgs potential.

In principle, one would like to derive the Higgs potential from more funda-
mental principles, with as few arbitrary parameters as possible.

One interesting approach is the Coleman-Weinberg method," where the Higgs
potential is induced by radiative corrections, rather than being inserted by hand.
In this approach, we sum over higher-loop graphs to induce an effective potential,
which may then produce spontaneous symmetry breaking.

Ideally, one would like to start with a theory that is massless from the very
beginning and then induce the mass corrections appearing in the action by radiative
corrections. This is called dimensional transmutation, where a dimensionless
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V(4) -

Figure 10.4. The sum over one loop graphs with an arbitrary number of 0 external lines
generates an effective potential, which in turn can induce, under certain circumstances,
spontaneous symmetry breaking.

theory trades one of its dimensionless coupling constants for a dimensionful one.
This, in turn, gives us the hope of deriving all masses from first principles.

To illustrate this procedure, let us first study the simplest possible example,
the 04 theory. Although this theory is too simple to give us a reliable mechanism
to break gauge symmetries, this example reveals the basic principles.

Let us begin with the usual 04 theory, with the action:

L= 2(a0)2 _ 1m2,P2 - )'P4
(10.124)

(We will eventually take the limit as m -* 0 at the end of the calculation.) Our
task is to sum over an infinite series of one-loop graphs with an arbitrary number
of 04 vertices attached to it (Fig. 10.4).

After this sum is performed, the net effect of this series is to generate a
new, effective action where the potential is nonpolynomial. For example, let
us use Feynman's rules to give us the contribution to the single-loop potential.
Each single-loop diagram is given by an integral over the internal momentum.
Feynman's rules give us the contribution to the single-loop graph with n vertex
insertions as:

.(2n)(2n)!

d

4

k

i
2n2n f ((-ix)

- m2 +iE) (10.125)

where the symmetry factor must be inserted because there are (2n)! ways to
distribute 2n particles among the external lines. (We have taken the external lines
to have zero momentum. This will be justified later.)

Now we would like to write down an effective action that generates this series
at the tree level. To obtain this new, effective potential, we simply multiply the
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term with n insertions by 02n, where 0 from now on will represent the classical
value of the field. We must also correct for symmetry factors and then sum. The
effective potential now contains the term:

r d4k
°° 1

(_(?/2)2 / n

(10.126
J k2 - m2+iE )

This series, fortunately, can be easily summed by using the Taylor expansion for
the function log(1 + x). Let us sum the series (which yields a divergent integral)
and then perform the integration by putting in an explicit cutoff A:

a rr 2

Vest = 2m2¢2+4,0a+2f (27r)alogLl+k2-m2+iE]

2
2m2(P2

+ 4!
0

+ 32n2
W +?1 2/2

1 2 ,1¢2

/
[log

2 m2+,1¢2/2+ic
+ (m + (

A2 ) -
12]

(10.127)

where we have used the summation:

+ ... _ 128)(10 .,
k2 - (m2 +.1¢2/2)V - m2 k2 - m2 2 k2 - m2

Since the original theory was renormalizable, this means that, with the addition
of counterterms into the action, we can absorb all cutoff-dependent infinities into
a renormalization of the parameters of the theory.

We add the following counterterms to the action:

Veg-> Veg+ 202+ Bra (10.129)

and then solve for parameters A, B by making the following definitions of the
renormalized parameters:

1 11 2 1 1+
)

O=M

O=M
(10.130)

(We have taken the condition that the classical field ¢ = M in order to avoid
infrared divergences as we take the limit m -* 0.)
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Now let us insert this effective potential (with the counterterms added) and
then use these conditions to determine A and B. For small m, the calculation is
straightforward and yields:

Veff.r =
m2W 2+ 'O4

+ 6 I L \m2 + 2 log \m2 X2/2/

- 2a.m21 2 - 24,k2¢4

+ 4k2O4log
(2m2

.2
)

We now perform our last step, by taking the limit as m -* 0:

(10.131)

za z

Veff,r =
4!

0
4 + 256 2

(log M2 -
25

f (10.132)

This is our final result. On the surface, it appears that we have accomplished
our goal: We have traded a potential (with no mass terms) with a new potential
that has a new minimum away from the origin (where a new mass scale has been
introduced by radiative corrections).

However, this example has been too simple. The new minimum lies too far
from the origin, beyond the reliability of the one-loop potential:

2 32
2,l log (Mz

3
n + 0(,k) (10.133)

The term on the left is greater than one, so that the loop contribution is larger
than that of the tree contribution; so we are outside the region where the single-loop
approximation is reliable. We have gained some insight into the use of radiative
corrections to drive the minimum of the potential away from the origin, but our
example has been too simple, with only one coupling constant.

Next, we couple charged scalars to QED, where we now have enough coupling
constants to make the Coleman-Weinberg mechanism work. We start with a new
action, with two coupling constants e and X:

4FF°+2 (8,L - ieAN)¢ 2 -
4,

(0#0)2 (10.134)

We choose the Landau gauge, where the propagator becomes:

8u -
k2



352 The Weinberg-Salam Model

Figure 10.5. These are the only diagrams which contribute to the effective potential in the
problem.

We choose this gauge because k" A,,,, = 0. In this gauge, the only diagrams that
contribute to the effective potential are given in Figure 10.5.

The graph in Figure 10.6 does not contribute to the action because kN, does not
couple to the propagator in the Landau gauge. There are thus only three types of
diagrams that have to be computed.

We perform the calculation in the same way as before:

1. We sum over each set of diagrams separately in the one-loop approximation
by using the power expansion for log(1 + x).

2. We use a cutoff to render the integrals finite.

3. We introduce new parameters into the theory via counterterms.

4. We calculate the value of these new parameters at the classical value of ¢ = M.

All steps are exactly the same as before; the only difference comes from the
value of the coupling constant contribution of each of the three diagrams.

The result is given by:

25
f,r = 4!X04 + 64n2 (log M2 - 6/ C

C = ()/2)2 + ()/2)2(1/9) + 3e4 (10.136)

Figure 10.6. This graphs does not contribute because the momentum vector does not
couple to the propagator.
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[This result is almost identical to Eq. (10.132), except that the last factor of 3ea
comes from the trace of the Landau propagator, and the extra 1/3 ratio between the
(pi 02 contribution and the ¢i contribution comes from different Wick expansion
coefficients.]

We now make the assumption that ? is of the order of e 4 (which we will
show is self-consistent). Choosing the new minimum to be (0) = M, we find the
potential to be:

Veff,r =
4!

;'04
+ 64na

Oa (log
(0)2

- 6
)

(10.137)

We know that the slope of the potential at the minimum is related to the mass,
which we set to zero:

a

VVO)) = (-6 167x2) (0)3 =0

Solving, we find:

_ 33 4
87r2e

(10.138)

(10.139)

Thus, our assumption ? - e 4 is self-consistent. Moreover, we find a nontrivial
constraint between two previously arbitrary coupling constants. We have traded
the two dimensionless coupling constants e and ? for a dimensionful parameter
(0) and a dimensionless parameter e. As we said earlier, this is an example of
dimensional transmutation. At first, this might seem strange, because the original
theory had no mass parameters at all, and yet a new mass parameter seems to have
mysteriously entered into our theory.

The origin of this new mass comes from renormalization theory. Even in scale-
invariant theories with no mass parameters, renormalization theory introduces a
mass parameter because we must perform the subtraction of divergent diagrams
at some mass scale A. Changes in M simply involve a change in the definition
of the coupling constant. (This forms the basis of renormalization group theory,
which will be discussed in further detail in Chapter 14.)

Finally, with this new value of X, we can now write:

23e 4
Veff=64 7x204 log

( (0)2 2) (10.140)

This is our final result, which shows that there is indeed a new minimum of the
potential away from the origin, as claimed. We also mention that the generalization
to gauge theory proceeds as expected, with little change. The only complication
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is that new graphs are generated from the interaction Lagrangian that contains the
coupling:

Ot(AA . Al')O (10.141)

As we said earlier, to illustrate this method we have made a number of as-
sumptions; that is, the effective potential in Eq. (10.125) is defined at zero
external momenta. Let us now justify this assumption from a more general point
of view. To generalize our calculation, we will use the path integral method of
effective actions. We recall that Z(J) is the generator of Green's functions, and
that W(J) = e`Z is the generator of connected graphs. In Section 8.4, we showed
that a Legendre transformation produces the effective potential:

F(¢) = W(J) - f dax J(x)¢(x) (10.142)

We can power expand F as:

J dax1 ... dax, F (x1, ... , xn)O(x1) ...O(xn) (10.143)
n=1

n.

Each of the Fn(xl, ... , xn) is the sum over all one-particle irreducible Feynman
graphs. What we are interested in, however, is the effective potential Veff, which
is defined by taking the position space expansion of F:

F(cb) = f dax I (aucb)2Z(cb) + ...J (10.144)

where the term without any derivatives is defined to be the effective potential.
To calculate a manageable expression for the effective potential, we will take the
Fourier transform of F :

dak dak
rn(xr, ... > xn) = f

(27r)4
...

(27r)a
(27r)464 (k1 + ... + kn)

k2, ... , kn) (10.145)

Now let us insert this equation for F(¢) as a power expansion in 0. Inserting one
into the other, we find:

a a

r(m) _ n, f daxl ... daxn f ( )a ... (2 )a
n

x [rn(0 0,
... , 0)O(xr)O(x2) ... O(xn) + ...]
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J, ... , 0)¢(x)n + ] (10.146)
n nl

In the last step, we have power expanded Fn(kl, ... , kn) and have taken only the
lowest term. The higher-order terms contribute higher order derivatives of the
fields, in which we are not interested.

Now comes the key step, comparing this equation with the power expansion
of F(¢) in terms of 0. Comparing only the lowest-order term (which contains no
derivatives of the field 0), we can now extract the effective potential:

1'
Fn(0, 0, ... , 0)on(x) (10.147)VWeit = - E

n

This is the desired expression. It simply says that the effect of summing over
the loop expansion produces a series of Feynman diagrams with zero momenta
Fn (0, 0, ... , 0), such that they act as the effective potential for a new action. In
this way, we can justify all the steps that we made earlier from more intuitive
arguments.

The ultimate use of the Coleman-Weinberg method, however, remains un-
clear, especially since our accelerators have not been able to pin down the Higgs
particle and its interactions, other than the fact that its mass must be greater than
90 GeV. At the very least, we must use the Coleman-Weinberg mechanism to
calculate radiative corrections to standard spontaneously broken theories to show
that radiative corrections do not spoil the breakdown of symmetry. In other words,
the Coleman-Weinberg mechanism can erase minima as well as create them in
the potential. In this way, we find that the mechanism gives us bounds on the
hypothetical mass of the Higgs particle.

For the Weinberg-Salam model, a very straightforward summing of radiative
corrections coming from the scalar, fermion, and vector meson loops gives the
correction to the potential:

V(¢) = C¢4log(¢2/M2) (10.148)

where:

C= mfl (10.149)
167r v

V
f /

where V represents the sum over Z and W bosons. The value of v can be
determined by solving for the minimum of the potential:

av
ao

= 0 (10.150)
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The mass of the Higgs field then becomes:

2
m =, 2ap2

r / )+
(10.151)

Putting everything together, we find:

1 82V

MO > Cv2 =
1 3m _ 3a 2 (2+sec a Bw)

(10.152)
167t2va

v 16V2-GF sin4 6w

For the Weinberg-Salam model, we must have:

m0 > 7.9 GeV (10.153)

or else the radiative corrections will overwhelm the theory and destabilize the
vacuum. This bound is easily met.

Alternatively, one might postulate that the Higgs mechanism is driven entirely
by radiative corrections. In this interesting case, we find:

m0 - 11 GeV (10.154)

(which is experimentally ruled out).
In closing, we should also mention that a broken symmetry may be restored

under certain conditions. If we consider a ferromagnet, for example, we know
that the Hamiltonian does not select out any preferred direction, but the vacuum
state may consist of atoms that are all aligned. However, if we heat the magnet
sufficiently, the spins become more disordered until a phase transition occurs. At
even higher temperatures, the spin alignment is completely lost, and randomness
is restored.

Likewise, in a quantum field theory a spontaneously broken symmetry may
also be restored if we place the system in a hot enough environment. This is called
symmetry restoration. Although the temperature necessary to restore a broken
symmetry is extraordinarily high, this is not an academic question. It may have
great physical implications if we consider the temperatures found originally near
the Big Bang.

Perhaps, at the instant of the Big Bang, a unified theory of all known quan-
tum forces possessed a symmetry large enough to include the strong, weak, and
electromagnetic interactions and possibly even gravity. As the temperature of
the universe rapidly cooled, the original symmetry broke down in several stages.
The gravitational interactions first broke off from the particle interactions, then
the GUT symmetry broke down into the SU(3) ® SU(2) ® U(1) symmetry of the
Standard Model, then this group broke down into SU(3) ® U(1).
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If this general picture is correct, then the study of symmetry restoration gives
us a useful tool by which to probe the universe at early cosmological times. This
is discussed in more detail in the exercises.

In summary, we have seen how spontaneous symmetry breaking is perhaps
the most elegant way in which symmetries can be broken. We retain all the
symmetries of the theory in the Lagrangian, but the symmetry is broken via the
vacuum state. In particular, spontaneous symmetry breaking allows us to generate
a mass for the Yang-Mills theory without spoiling renormalizability. This was the
crucial step in creating the Weinberg-Salam model, which successfully unites the
electromagnetic interactions with the weak interactions.

In the next chapter, we will discuss how the Yang-Mills theory also forms the
basis of the strong interactions, giving us the possibility of splicing all quantum
interactions into a single Standard Model.

10.9 Exercises

1. Write down the Lagrangian for a model of Higgs mesons with localO(N)
symmetry, broken down to O(M) symmetry, for N > M, with the Higgs
transforming in the vector representation.

2. Do the same for a Lagrangian of Higgs with local SU(N) symmetry broken
down to SU(M) symmetry (N > M), with the Higgs transforming in the
fundamental representation.

3. Derive the Feynman rules in the 't Hooft gauge for Exercises 1 and 2.

4. Calculate the Coleman-Weinberg potential for self-interacting O (N) mesons
in the vector representation.

5. Consider the two-dimensional Gross-Neveu model, with N massless fermions
Vf °. The action is given by:

+ g0 (,°*°)2N
(10.155)

(This contains a four-fermion interaction, which is nonrenormalizable in four
dimensions.) By power counting, is this theory renormalizable in two dimen-
sions? Why? Write down all possible divergent graphs. Show that the action
is invariant under a discrete transformation:

*° -> y5*°, ° -> -j°y5 (10.156)
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6. Show that the Gross-Neveu Lagrangian can be rewritten as:

a - a2+ora*a
2gNo

where a is a scalar field.

(10.157)

7. Examine the one-loop graphs in this theory with external a legs and an
internal fermion loop. Calculate the effective potential V(Q) for the a field
by summing over one-loop graphs. Show that it equals:

N N d2 P - Q 2n

- iV= -i
2

C.-
2

2n (
Tr

27r)2f(P2+E, (10.158)
go r=1

8. Show that the potential can be written as:

r a2 d2 Or211
V N

L 2go - f (2n )2 log (1 + PZ / J

-1)] (10.159)= N[2go 2
47r

1
QZ(log A

2

ere we have taken a Euclidean integral and cut it off at momentum A.wh

9. Define a renormalization mass M, defined by:

1 N-1 d2V

g dal M
(10.160)

Solve for g, and write the potential as:

rr 2 2

V=NL2 -3)] (10.161)
g

Show that there is a minimum to this potential at a negative value, less
than V (O). Show that the theory has spontaneous symmetry breakdown,
and that dimensional transmutation has occurred. Which parameter has been
exchanged for which parameter?

10. A four-dimensional precursor to the Gross-Neveu model is the Nambu-Jona -
Lasinio model,18 with an interaction Lagrangian given by:

g [(1G1G)2 - ('Y5 ')2] (10.162)

Show that it is invariant under a global continuous transformation given by a
chiral U(1) ® U(1). Is the theory renormalizable? Perform the same analysis
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as before. Add in an extra a field, and perform the integration over V f; that is,
sum the fermion bubble graphs. Show that chiral symmetry breaking occurs
dynamically; that is, the fundamental action has no scalars, so the symmetry
breaking occurs via a pseudoscalar bound state of the fermions.

11. Add in a Maxwell term to make the Nambu-Jona-Lasinio action locally
chirally invariant. Show that the massless particles are removed in this case.

12. Although we have mainly discussed symmetry breaking, consider a model
where a broken symmetry may be restored if we heat the system sufficiently.
Consider a theory defined with potential V = Zm202 + (a./4!)¢4 for m2 < 0
with a Euclidean metric. Consider the finite-temperature Green's function:

Gp(x1, x2, ... xN) =
Tr e-PHT¢(x1)(Xx2) ...O(xN)

(10.163)
Tr e-PH

P = 1/kT, where T is the temperature and k is the Boltzmann constant. Show
that the one-loop correction to the potential is given by:

f d3k 2n2

V1
2P >2 J (27r)3

log (-4p2 - k2 - M2) (10.164)

where M2 = m2 + 2.11p2 and where the theory is periodic in time and therefore
has integral Fourier moments labelled by n.

13. The sum in the previous problem diverges, so use the trick:

v(E) E
n

8v(E) _ 2E
8E 47r2n2/p2 + E2

Using the fact that:

00

y2+n2 = -2y + 2ncothnyE
n=1

show that:

(10.165)

(10.166)

8v(E)
= 2i4 (1 +

1 /8E 2 ePE - 1

v(E) = 2i4 [(E/2) + P-1 1090 - e-PE)I +... (10.167)
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Then show that this implies:

3

V1 =
J (2 )3 [(EM/2) + P-' log(l - e-6EM)] (10.168)

where E2 = k2 + M2.

14. Show that, for high temperature (small P), the expression for the potential is:

V1
7r 2 M2 1 M3

90 4+2442 12n P

- 64- M4log M282 + 64-2----M 4 + O(M682) (10.169)

where c ' 5.41. Take the second derivative of V1 with respect to lp. From
this, show that the symmetry is restored when.

1 _ 24m2
(10.170)

Calculate the order of magnitude of this temperature for the Weinberg-Salam
model. At what temperature is the SU(2) ® U(1) symmetry restored? Can
these temperatures be found on the earth, in a star, or in the early universe?

15. Prove Eqs. (10.136) and (10. 149).

16. For superconductors, assume that there is an attractive force between electrons
that forms Cooper pairs. Assume that this many-body system can be described
by the Ginzburg-Landau action, which couples a 0 field to Maxwell's theory:

-4F2 +DA,¢D'`O* -m21012 -,1ioi4 (10.171)

For small enough temperature, spontaneous symmetry breaking occurs at the
minimum 1012 = -m2/2?1. > 0. Construct the conserved current jj,. For the
static case, calculate the vector current j. Assume that 0 varies slowly over
the medium, then show that this implies London's equation (i.e., j = -k2A),
where k2 = -em2/2? .

17. By Ohm's law, we have E = Rj. For the previous problem, using London's
equation, show that this means that the resistance is zero. Now take the curl
of Ampere's equation. Show that this implies:

V2B = k2B (10.172)
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so that (in one dimension) BZ ti e-k°. This means that magnetic fields
are expelled in a superconductor (Meissner effect), with penetration depth
characterized by 1/k. This implies that spontaneous symmetry breaking has
made the Maxwell field massive, with mass k2.





Chapter 11

The Standard Model

This was a great time to be a high-energy theorist, the period of the
famous triumph of quantum field theory. And what a triumph it was, in
the old sense of the word: a glorious victory parade, full of wonderful
things brought back from far places to make the spectator gasp with awe
and laugh with joy.

-S. Coleman

11.1 The Quark Model

The Standard Model, based on the gauge group SU(3) ® SU(2) ® U(1), is one of
the great successes of the gauge revolution. At present, the Standard Model can
apparently describe all known fundamental forces (excluding gravity).

The Standard Model is certainly not the final theory of particle interactions. It
was created by crudely splicing the electroweak theory and the theory of quantum
chromodynamics (QCD). It cannot explain the origin of the quark masses or the
various coupling constants. The theory is rather unwieldy and inelegant. However,
at present, it seems to be able to explain an enormous body of experimental data.
Not only is it renormalizable, it can explain a vast number of results from all areas
of particle physics, such as neutrino scattering experiments, hadronic sum rules,
weak decays, current algebras, etc. In fact, there is no piece of experimental data
that violates the Standard Model.

In this chapter, we will discuss the Standard Model by first reviewing the
experimental situation in the 1960s with regard to the quark model. Then we
will present compelling evidence, from a wide variety of quarters, that the strong
interactions can be described by QCD. Then we will marry QCD to the Weinberg-
Salam model to produce the Standard Model.
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Although the Standard Model makes the situation seem so clear today, back
in the 1960s the experimental situation with the strong interactions was totally
confused, with hundreds of "elementary particles" pouring out of our particle
accelerators. J. Robert Oppenheimer, in exasperation, said that the Nobel Prize
should be given to the physicist who did not discover a new particle. Although
the Yukawa theory of strong interactions was fully renormalizable, the coupling
constant of the strong interactions was large, and hence perturbation theory was
unreliable:

2
97r N

47r
- 14 (11.1)

One important observation was that the existence of resonances usually in-
dicated the presence of bound states, so Sakata' in the 1950s postulated that the
hadrons could be considered to be composite states built out of p, n, and A
particles. Then Ikeda, Ohnuki, and Ogawa2 in 1959 made the suggestion that
this triplet of particles transformed in the fundamental representation 3 of SU(3).
They correctly said that the mesons could be built out bound states of 3 and 3:

3®3=8®1 (11.2)

However, several of their assignments were incorrect.
In 1961, the correct SU(3) assignments were finally found by Gell-Mann 3,4

and Ne'eman,5 who postulated that the baryons and mesons could be arranged
in what they called the Eightfold Way. Then Gell-Mann6 and Zweig7 proposed
that these SU(3) assignments could be generated if one postulated the existence
of new constituents, called "quarks," which transformed as a triplet 3. Since all
representations of SU(N) can be generated by taking multiple products of the fun-
damental representation, in this way we could generate all higher representations
beginning with the quarks.

The quarks belonged to the fundamental representation of SU(3):

3 = q; = d (11.3)

S
U

where the quarks were called the "up," "down," and "strange" quark, for historical
reasons. The u and the d quarks formed a standard SU(2) isodoublet, but the



11.1. The Quark Model 365

addition of the third quark was necessary because it was observed in the 1950s
that a new quantum number in addition to isospin was conserved by hadronic
processes, called "strangeness." This new quantum number could be explained
in terms of SU(3), which is a rank 2 Lie group. Its representations are therefore
labeled by two numbers, the third component of isospin T3 and also a new quantum
number Y, called "hypercharge."

The new quantum number of strangeness and hypercharge could be related to
each other via the Gell-MamrNishijima8.9 formula:

3 0 0

Q=T3+
Y
2 = 0 -3 0 (11.4)

0 0
1

3

where Y = B + S. B is the baryon number, S is the strangeness number, T3 is the
third component of isospin, and Q is the charge.

To fit the known spectrum, the mesons were postulated to be composites of
a quark and an antiquark, while the baryons were postulated to be composites of
three quarks. Thus, we expect to see the mesons and baryons arranged according
to the following tensor product decomposition:

Meson = 3®3=8®1

Baryon = 3®3®3=10®8®8®1 (11.5)

The theory predicted that the mesons should be arranged in terms of octets and
singlets, while baryons should be in octets as well as decuplets. The fact that this
simple picture could arrange the known mesons and baryons in such an elegant
picture was remarkable.

In order to reproduce the known charges of the mesons and baryons, it was
necessary to give the quarks fractional charges:

2 1

3e; Qd=-3e; QS=-
1
3e (11.6)

Since three of them were required to make up a single baryon, this meant that
each of them had baryon number 3 . We summarize the quantum numbers of the
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quarks in the following chart:

u

S

Q T T3 Y S B

2
3

1

2
1

2
1

3
0 1

3

_1
3

1

2
1

2
1

3
0 1

3

-3 0 0 -3 -1 3

(11.7)

For the meson spectrum, we can get a rough classification by considering the
bound states generated by a qq pair. The bound states arrange themselves roughly
in the following angular momentum series (similar to the familiar series found in
spectroscopy using the notation 2S+lLj):

1So, 3S1, 1P1, 3P°, 3P1, 3p2, 1D2,... (11.8)

The fit between experiment and the predicted bound states of the quark model
was exceptionally good. For example, the octet containing the 7r meson and K
meson corresponds to the 'So bound state, while the K` multiplet is part of a 3S1
bound state:

q,q1 J=0 J=1

jud) 7r+(140) p+(770)

2-1/2Idd - uu) 7r°(135) p°(770)

jud) 7r-(140) p-(770)

2-1/2 Idd + uu) q(549) co(783)

Ius) K+(494) K`(892)

Ids) K°(498) K`0(892)

Ins) K-(494) K`-(892)

Ids) K°(498) K`0(892)

Iss) q'(958) 0(1020)

(11.9)



11.1. The Quark Model 367

Similarly, we can also analyze the baryons. The familiar proton and neutron
belong to the octet, while the A resonance (found in pion-nucleon scattering)
belongs to the decuplet:

gtgjqk J = 1/2 J = 3/2

uuu) A++(1230)

luud) p(938) A+(1231)

Judd) n(940) A°(1232)

Iddd) L-(1234)

Iuus) E+(1189) E+(1383)

2-1/2I(ud + du)s) E°(1192) E°(1384)

Idds) E-(1197) E-(1387)

2-1/2 J(ud - du)s) A(1116)

luss) °O(1315) 'x°(1532)

Idss) =--(1321) =--(1535)

Isss) Sl-(1672)

To see how the bound states are constructed, it is sometimes useful to rearrange
the meson and baryon matrices according to their quark wave functions. Let us
define:

uu ud us

M = q®q du dd ds
su sd ss 1

(2uu - dd - s9)/3 ud us

du (2dd - uu - s9)/3 ds

su sd (2ss - uu - dd)/3

+ (1/3)1(uu +dd +ss) (11.11)
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In terms of the familiar pseudoscalar mesons, we have the following arrangement
of the meson matrix:

M = 7r 1 r° + 1 K° (11.12)

72=no+ fq + K+

K- K° 2 q

Likewise, the baryon matrix can be arranged as:

1 Eo + -LAo E+
72

B=q®q®q=

P

n (11.13)

2 A°f
To actually perform any calculations with SU(3), we need, of course, an

explicit representation of the generators of the algebra. We will choose the
standard Gell-Mann representation of S U(3) generators in terms of 3 x 3 Hermitian
matrices:

0 1 0 0 -i 0 1 0 0

a.1 = 1 0 0 , x2 i 0 0 , X3= 0 -1 0
0 0 0 0 0 0 0 0 0

0 0 1 0 0 -1 0 0 0

x4 = 0 0 0 , x5 = 0 0 0 , x6 = 0 0 1

1 0 0 i 0 0 0 1 0

0 0 0 1 1 0 0

1L7 = 0 0 -i ) , 8 x= - 0 1 0 (11.14)

O i 0 0 0 -2

where:

Tr(X1X1) _+i

= k

2 2 1Ji/k 2

The structure constants are given by:

f123 = 1; .f147 = -,f156 = .f246 = f257 = f345 = -f367 =
2
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f458 = J678 = 2 (11.16)

From these commutation relations, we can work out the representations of the
group (see Appendix). Because SU(3) is a rank 2 Lie group, we can chart
the various representations of the group in a two-dimensional space, plotting
the eigenvalues of X3 of the SU(2) subgroup against X8, which is proportional
to the hypercharge. Thus, on a two-dimensional graph (isospin plotted against
hypercharge) we can pictorially represent the triplet, antitriplet, octet, decuplet,
etc. (Fig. 11.1)

Although hadronic masses are not exactly SU(3) invariant (i.e., the masses
of particles within a multiplet vary slightly), it is reasonable to assume that the
terms that break S U(3) symmetry should themselves transform covariantly under
SU(3). We assume, for example, that the mass term in the Hamiltonian includes
a term that breaks the symmetry transforms as X8, as hypercharge. We assume the
mass term has the form:

1 r(a + b)18)* + ... (11.17)

This, in turn, gives us nontrivial relations between the masses of the various
particles within a multiplet called the Gell-Mann-Okubo10 mass relation, which
provided experimental verification of the theory. It gives us the mass relation:

mN+m== 1(mE+3mA)

which agrees well with experiment. The left-hand side equals 2.25 GeV experi-
mentally, while the right-hand side equals 2.23 GeV.

For the spin-3/2+ decuplet, we also find the equal-spacing rule:

mfj - m=. = m-X. - mE. = mE. - mN. (11.19)

The experimental mass differences are 139, 149, and 152 MeV, respectively.
Historically, the prediction of the Sl- mass from this formula gave a boost to

the wide acceptance of S U(3) symmetry.
Because of the success of the SU(3) quark model, attempts were made to

generalize this to larger groups. One attempt, merging SU(3) with the SU(2)
of spin to create SU(6),1-13, tried to mix an internal symmetry with a space
symmetry. This was possible because SU(2)® SU(3) C SU(6). SU(6) had some
success in predicting the magnetic moments of baryons. [However, attempts
to generalize SU(6) to the relativistic case floundered because of the Coleman-
Mandula theorem.]

Attempts were also made to generalize S U(3) to S U(4)14 and beyond by adding
more quarks. This approach received experimental vindication with the discovery
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Figure 11.1. When we plot isospin against hypercharge, we can represent the triplet,
antitriplet, octet, decuplet, and higher multiplets in simple geometrical patterns.
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D,

DS

ud

sc

Figure 11.2. With charm plotted on the vertical axis, the quark model gives an excellent
fit to the charmed meson multiplet.

of the charmed quark c in 1974 and the bottom quark b in 1977. [However,
because the masses of the charmed and bottom quark are so large, global SU(4)
and SU(5) are less reliable than SU(2) and SU(3) experimentally.]

For the charmed quark system, the new qq and qqq states are given the
following group-theoretical assignments:

4®4 = 15®1
4®4®4 = 4®20®20®20 (11.20)

The charmed quark bound states are given the following names for the 0- and
1- multiplets (Fig. 11.2):
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4141 J=0 J=1

CE i?c(2980) J/41(3097)

cd D+(1869) (D`)+(2010)

Cu D°(1865) (D`)0(2007)

cu D°(1865) (D`)0(2007)

Ed D-(1869) (D`)-(2010)

cs DS(1970) *'(2109)D$

cs DS (1970) Ds-(2109)

We can also write down an explicit form for the generators of the SU(4) global
symmetry. In fact, it is possible to find a simple iterative algorithm to write down
the generators of SU(N) almost by inspection. We first notice that we can write
the first three X; matrices as follows:

X.=( 0

a,, 0
0

a=1,2,3 (11.22)

where this symbolically means that the Pauli spin matrices are placed in the upper
left-hand comer for a = 1, 2, 3.

Next, )14_7 obey a simple pattern. Along the right column and bottom row,
we insert the numbers 1 and 1 (as well as -i and i) symmetrically in all possible
slots. Finally, the generator X8 has the unit 2 x 2 matrix in the upper left-hand
comer and we choose the last number along the diagonal to make it traceless.

From this algorithm, we can easily write down the generators of SU(N) if we
know the generators of SU(N - 1). For example, we can now write down the
generators of SU(4) almost by inspection. To see this, we place the generators of
SU(3) in the upper left-hand comer for a = 1 - 8:

_ X° 0

0 0
a = 1, ... , 8 (11.23)

For the generators X9_14, we place the pairs of numbers 1, 1 and -i, i sym-
metrically in the right column and bottom row, while for the last generator X15 we
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put the unit 3 x 3 matrix in the upper left-hand side and make it traceless:

Xg

)113

X15
17

373

0 0 1 0 0 0 -i
0 0 0 0 0 0 0

x10 =
0 0 0 0 0 0 0

0 0 0 i 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 -i
Ik 12 =

0 0 0 0 0 0 0
1 0 0 0 i 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
Ik 14 =

0 0 1 0 0 0 -i
0 1 0 0 0 i 0

1 0 0 0
0 1 0 0

(11.24)
0 0 1 0

0 0 0 -3

Similarly, the generators of SU(5) can be constructed in this way. Although less
is known about the quark spectrum for mesons containing the bottom quark, all
states discovered so far obey the quark model predictions. The lowest lying states
include:

4j41 J=0 J=1

bb rib T(9460)

ub B+(5278) (B*)+(5324)

db B°(5278) (B*)°(5324)

ub B°(5278) (B*)°(5324)

db B-(5278) (B*)-(5324)

(The 77b has not been firmly established, and the charges of the B * are not yet
confirmed.)

Today, the original three quarks have been expanded to six quarks: the up,
down, strange, charmed, bottom, and top quark. All but the last have been
discovered. The global symmetry group SU(N) for N quarks is now called the
"flavor" symmetry.
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The rough values for the constituent quark masses in GeV are given by:

m
and

MS

= 0.35;

= 0.35;

= 0.5;

mC

Mb
mt

(11.25)

These quarks, in turn, can be arranged in three identical families or generations,
each having the same quantum numbers: (u, d), (c, s), and (t, b). (The reason
why nature should prefer three identical generations of quarks and leptons is one
of the great mysteries of subatomic physics.)

Historically, although the quark model had great success in bringing order out
of the chaos of the hundreds of resonances found in scattering experiments, it also
raised a host of other problems. In fact, each year, even as the successes of the
quark model began to pile up, the questions raised by the quark model also began
to proliferate. For example, why were the quarks not observed experimentally?
Were they real, or were they just a useful mathematical device? And what was
the binding force that held the quarks together? For example, some believed
that the glue that held the quarks together might be a vector meson; however,
to be renormalizable, it had to be massless. But this was impossible, because
if it was massless, then it should generate a long-range force, like gravity and
electromagnetism, rather than being a short-range force like the strong force.

11.2 QCD

After years of confusion, the theory that has emerged to give us the best under-
standing of the strong interactions is called QCD, which has the Lagrangian:

1 6
P - mi)ki (11.26)

where the Yang-Mills field is massless and carries the SU(3) "color" force [not
to be confused with the global SU(3) flavor symmetry introduced earlier]. Unlike
the electroweak theory, where the gauge group is broken and the Z and W become
massive, the color group is unbroken and the gluons remain massless.

The quarks have two indices. The i index is taken over the flavors, which
labels the up, down, strange, charm, top, and bottom quarks. The flavor index is
not gauged; it represents a global symmetry. However, the quarks also carry the
important local color SU(3) index (which is suppressed here). In other words,
quarks come in six flavors and three colors, but only the color index participates
in the local gauge symmetry. From the point of view of QCD, the flavor index,
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which dominated most of the phenomenology of the 1960s and 1970s, is now
relegated to a relatively minor role compared to the color force, which binds the
quarks together.

In fact, from the perspective of QCD, we can see the origin of the early
phenomenological successes of global SU(3). In the limit of equal quark masses,
the QCD action possesses an additional symmetry, global SU(N) symmetry for
N flavors of quarks. For the u and d quarks, this is a very good approximation;
so SU(2) global symmetry is experimentally seen in the hadron spectr un. The
s quark mass, although larger, is still relatively close to the u and d mass when
compared to the baryon mass; so we expect flavor SU(3) symmetry to be a
relatively good one. However, the masses of the c and b are much larger; so we
expect SU(4) or SU(5) flavor symmetry breaking to be quite large. The higher
flavor symmetry groups are hence less useful phenomenologically.

Although quarks have never been seen in the laboratory, there is now an
overwhelming body of data supporting the claim that QCD is the leading theory
of the strong interactions. This large body of theoretical and experimental results
and data, accumulated slowly and painfully over the past several decades, can be
summarized in the following sections.

11.2.1 Spin-Statistics Problem

According to the spin-statistics theorem, a fermion must necessarily be totally
antisymmetric with respect to the interchange of the quantum numbers of its
constituents. One long-standing problem, however, was that certain baryon states,
such as the 10 representation, which includes the A' resonance, were purely
symmetric under this interchange, violating the spin-statistics theorem.

For example, the wave function for this resonance is naively given by:

'F0= WSU(3)lyorbitallspin (11.27)

This wave function is symmetric under the interchange of any two quarks, which
is typical of bosonic, not fermionic, states. To see this, notice that the SU(3) flavor
part of the wave function is symmetric, since it is composed of three u quarks, all
pointing in the same direction in isospin space, as in (11.10). Also, since the spin
of this resonance is 3/2, all three quark spins are pointing spatially in the same
direction, so the spin wave function is also symmetric. Finally, the interchange of
the quarks in the orbital part yields a factor (-1)L, which is one because L = 0 for
this resonance. Thus, under an interchange of any two quarks, the wave function
picks up a factor of (+1)(+1)(+1) = 1, so the overall wave function is symmetric
under the interchange of the quarks, which therefore violates the spin-statistics
theorem for fermions.
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Since physicists were reluctant to abandon the spin-statistics theorem, one
resolution of this problem was to postulate the existence of yet another isospin
symmetry, a new "color" symmetry, so that the final state could be fully antisym-
metric. This was the original motivation behind the Han-Nambu15 quark model,
a precursor of QCD.

11.2.2 Pair Annihilation

The simplest way experimentally to determine the nature of this mysterious new
color symmetry is to perform electron-antielectron collision experiments. Pair
annihilation creates an off-shell photon, which then decays into various possible
combinations. We are interested in the process:

e+ + e- --> y --> q + q --> hadrons (11.28)

This process is highly sensitive to the number of quarks and their charges that
appear in the calculation. Using Feynman's rules, we find that the cross section
must be proportional to the number of quark colors times the sum of the squares
of the quark charges. In practice, it is convenient to divide by the leptonic
contribution to the cross section:

e++e- -4 µ++µ- (11.29)

By taking the ratio of these two cross sections, we should therefore find the pure
contribution of the quark color sector. In particular, we find:

Q(e+e- --> hadrons) zR = a(e+e_ - µ+µ_) = N Q, (11.30)

where N, is the number of quark colors and Q; is the charge of each quark.
For low energies, when we excite just the u, d, s quarks, we expect R to equal

3(4 + 1 + 1)/9 = 2. When we hit the threshold for creating charm-anticharm
intermediate states, then this ratio rises to over 4. If we include the u, d, s, c, b
quarks, then we have R = 11 /3. Experimentally, this agrees rather well with
experiment, assuming that there are three colors (Fig. 11.3).

11.2.3 Jets

High-energy scattering experiments should be able to knock individual gluons
and quarks out of the nucleus. Although they quickly reform into bound states
and hence cannot be isolated, they should make a characteristic multiprong event
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Figure 11.3. The plot of R against energy, which agrees with the value of R found in QCD.

in the scattering apparatus. These multiprong events, as predicted, have been
produced in high-energy scattering experiments.

For example, two-prong jets have a characteristic distribution dependence
given by (1 + cos2 0), where 0 is the angle between the beam and the jets. This is
consistent with the process e- + e+ --> q + q for spin z quarks, as expected. This
important topic will be discussed in the next section.

11.2.4 Absence of Exotics

Although the quark model had great success in fitting the known hadrons into
3 ®3 and 3 ® 3 ® 3 bound states, it was at a loss to explain why exotic states, such
as 3 ® 3, etc., should not be formed as well. Because the original quark model
gave no indication of what the binding force was, this question could never be
answered within the context of the old quark model.

QCD, however, gives a simple reason why these exotic states are absent. We
learned earlier in Section 9.4 that the states of the unbroken Yang-Mills theory are
singlets under the gauge group. We notice immediately that qq and qqq states are
invariant under the color group because they are contracted by constant invariant
tensors, like the delta function and the structure constant fijk. Low-lying exotic
states, because they are nonsinglets under the color group, are either absent or will
decay into the usual bound states. (Later, when we discuss lattice gauge theory,
we will see that QCD can, in principle, give us numerical results to back up this
heuristic result.)
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11.2.5 Pion Decay

The Feynman diagram for the decay n --> 2y consists of an internal quark triangle
loop, with the pion and the gamma rays attached to the three comers of the triangle.
Thus, this decay rate is proportional to the sum over all the quarks that occur in
this internal triangle loop. By comparing the experimental decay rate of the pion
into two gamma rays, we can therefore calculate the number of quark colors. The
experimental evidence supports the presence of 3.01 ± 0.08 colors.

11.2.6 Asymptotic Freedom

Historically, it was the discovery of asymptotic freedom that elevated QCD into
the leading theory of the strong interactions. Deep inelastic experiments, such as
e + p --> e + anything, showed that the cross sections exhibited scale invariance
at high energies; that is, the form factors lost their dependence on certain mass
parameters at high energies. This scale invariance could be interpreted to mean
that the quark constituents acted as if they were free particles at extremely high
energies.

QCD offers a simple explanation of this scale invariance. Using the renormal-
ization group, which will be discussed at length in Chapter 14, one could show
that the coupling constant became smaller at high energies, which could explain
the reason why the quarks behaved as if they were free. Asymptotic freedom gave
a simple reason why the naive quark model, which described complex scattering
experiments with free quarks fields, had such phenomenological success.

11.2.7 Confinement

The renormalization group also showed the converse, that the coupling constant
should become large at low energies, suggesting that the quarks were perma-
nently bound inside a hadron. This gave perhaps the most convincing theoretical
justification that the quarks should be permanently "confined" inside the bound
states. Although a rigorous proof that the Yang-Mills theory confines the quarks
and gluons has still not been found, the renormalization group approach gives us
a compelling theoretical argument that the coupling constant is large enough at
small energies to confine the quarks and gluons. If correct, this approach also
explains why the massless gluon field does not result in a long-range force, like
gravity or the electromagnetic force. Although the range of a massless field is
formally infinite, the gluon field apparently "condenses" into a stringlike glue
that binds the quarks together at the ends. [In Chapter 15, we will present some
compelling (but not rigorous) numerical justification for this picture using lattice
gauge theory.]
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Thus, with one theory, we are able to interpret two divergent facts, that quarks
appear to be confined at low energies but act as if they are free particles at high
energy.

The phenomenological success of the quark model, of course, is not exclu-
sively confined to the strong interactions. Quarks also participate in the weak
interactions, and have greatly clarified the origins of certain phenomenological
models proposed in the 1960s (such as current algebras). By studying the weak
currents generated by the quarks, one can find a simple quark model explana-
tion for a number of phenomenologically important results from weak interaction
physics, such as are given in the following sections.

11.2.8 Chiral Symmetry

In the limit that the quarks have vanishingly small mass, the QCD action possesses
yet another global flavor symmetry, chiral symmetry. For N flavors, the QCD
action for massless quarks is invariant under chiral SU(N) ® SU(N), generated
by:

q eWeag; q eir5Z°e,q

(11.31)

[Actually, the QCD action has the additional chiral symmetry U(1) ® U(1)
if we drop the X° in the previous expression. The first U(1) symmetry gives the
usual baryon number conservation. The second chiral U(1) symmetry will be
studied in more detail in the next chapter.]

Since the u, d, and s quarks have relatively small mass when compared with
the scale of the strong interactions, then QCD has a global chiral symmetry in this
approximation:

mu - and - ms ti 0 --> SU(3) ® SU(3) (11.32)

The SU(3) ® SU(3) chiral symmetry of QCD, in turn, allows us to compute a
large number of relations and sum rules between different physical processes.

Since chiral symmetry is broken in nature, for small quark masses we can,
in fact, view the jr meson as the Goldstone boson for broken chiral symmetry.
The fact that the n meson has an exceptionally light mass is a good indicator of
the validity of chiral symmetry as an approximate symmetry. A large number of
successful sum rules for the hadronic weak current, as we shall see, can be written
down as a byproduct of the smallness of the pion mass.
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Figure 11.4. Typical Feynman diagrams describing the collision of electrons and positrons,
creating jets.

11.2.9 No Anomalies

The theory of leptons given by the Weinberg-Salam model in Chapter 10 is actu-
ally fatally flawed by the presence of something called "anomalies," which will
be discussed in more detail in the next chapter. These anomalies sometimes arise
when a classical symmetry of an action does not survive the process of quantiza-
tion. In particular, there are certain divergent fermionic triangle graphs that can
potentially destroy the Ward-Takahashi identities and hence ruin renormalizabil-
ity. However, when the quarks are inserted into the Weinberg-Salam model, they
also produce anomalies, but of the opposite sign. In fact, the charge assignments
of the quarks and leptons in the Standard Model are precisely the ones that cancel
the anomaly. The vanishing of the lepton anomalies against the quark anomalies
in the Weinberg-Salam model can be seen as one more theoretical justification of
the Standard Model.

11.3 Jets

Now that we have completed a broad overview of the theoretical and experimental
successes of the Standard Model, let us now focus in detail on some of the specifics.
One of the most graphic reasons for supporting QCD is the existence of "jets" in
electron-positron collisions. In Figure 11.4, we see some of the typical Feynman
diagrams that arise when electrons collide with positrons.

The momentum transfer is so large that the quarks, antiquarks, and gluons in
the final states are scattered in different directions. They later regroup into standard
hadrons to form a jet-like structure, which has been found experimentally.



11.3. Jets 381

We will analyze the process with the following labeling of momenta:

e -(q) + e+(q') -- q(p) + q(P') + g(k) (11.33)

with Q =q+q'=p+p'+kandS = Q2.

For the two-jet event (where we drop the final gluon), we can factorize the
transition matrix into a leptonic and a hadronic part:

I I2=S 1 Hµv

where:

(11.34)

1µv = )(OIJvIe+e-)*

spins

Tr (YYv)

j E2
(gµgv +gvgµ - g vq , q') (11.35)

The hadronic part, to lowest order, can also be calculated in the same way:

2
of i

Hµv = E,2
(PµPiv

+
PvPiµ

- BµvP . P (11.36)

where e f is the electric charge of the quark flavor index f . Then we have:

I12 =
e2 e2

f (1 + cost 8)4E (11.37)

where 8 is the center-of-mass scattering angle, so the differential and total cross
sections for the two jet process are given by:

OO

4S
(1+cos28) (ee

f,c
)

2

(11.38)
4352 E (ee2

f,C

This (1 + cos2 8) dependence on the angle 8 has actually been seen experimentally
in two-jet processes, strengthening our belief in spin-2 quarks.



382 The Standard Model

For the three jet event the calculation is a bit more difficult because of the
kinematics. The only complication is the hadronic part:

Hµv = E (g9gI JAJO)(gggJJ J0)*
s,s',c, f,t

r
8PoPoko " t" e2 g2 Tr [ \ p1k )Yµ

-Yµpk(,V+K) i)

x J (Yv
P
1

k
(d+ P P 1, k (d'+ )Yv),

where t is the gluon polarization. This then becomes:

2 2 2
Hµv - PoPoko f

efg

x ( P P'
(2[p, p']N.v + [k, p + P']µ,,)`(P k)(P' k)

(11.39)

1+ p + k]µ» - [p, pl,, )

+ p'
1

k ([p, p' +k]u» - [p', P'lµ»)) (11.40)

where we have defined [p, q]µ - pt q + qt p - gt v p q. Then the transition
element:

2

\4E2/

1 (eefg)2
16E6pop'ko f,

x
\ (P ' k)(P' k)

[2(P q)(P . q') + 2(P . q')(P' q)

+1kp
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+ P71 k [(Q ' q)(Q p) - 2(p - q)(p ' q') - 2(p' ' q)(p' - q')J/
'

(11.42)

In practice, it is difficult to tell which jet emerged from which constituent.
Therefore, let us number the jets. Let piµ represent the momentum of the ith jet.
We define the variables:

xi - pip/E (11.43)

where p3 = k. Let us also choose the center-of-mass frame, so that: q = (E, q)
and q' = (E, -q).

Then the kinematics gives us:

X1 + X2 + X3 = 2 (11.44)

The differential cross section is then given by:

dv = (8ir3)2
J

I.AI2d3p
d3 p' d3k S4 (p + p' + k - Q) (11.45)

Inserting the value of into the cross section, we get:

2 2
(Q l2do = 3E2

4ndx1 dx2 E
e 1

Xi +X2
X (G-

x1)(1-x2)+perm (11.46)

The experimental data is sometimes analyzed in terms of a quantity called
"thrust," which can be defined as:

T = 2 (Ei Plli).
Ei IPi I

(11.47)

where the prime in the numerator means we sum over all particles in just one
hemisphere. The thrust is a good variable because it varies from T = 1 (isotropy)
to T = 1 (perfect jet behavior). In Figure 11.5, we see some typical three jet
events found at PETRA compared to the theoretical prediction. The agreement
with the experimental data is excellent.
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Figure 11.5. Experimentally, jets are found in collision processes, confirming the predic-
tion of QCD (solid line).

11.4 Current Algebra

In the 1960s, before the rise of gauge theories and the Weinberg-Salam model,
the original four-fermion Fermi action was a useful phenomenological guide that
could account for some of the qualitative features of the weak interactions.

The hadrons participate in the weak interactions. For example, the hadrons are
mostly unstable and decay via the weak interactions. The $ decay of the neutron
is the classic example of the weak interaction of the hadrons. Mimicking the
success of the simple Fermi action, attempts were made to describe the hadronic
weak interactions by postulating that the action was the product of two currents.
The phenomenology of the weak interactions in the 1960s was dominated by
something called current algebra,16," which postulated the commutation relations
of the currents among themselves. By taking their matrix elements, one could
therefore derive sum rules that linked different physical processes. Although
there was no understanding why the effective action should be the product of two
currents, or why they should obey a chiral algebra, these current algebra relations
agreed rather well with experiment. From the perspective of the Standard Model,
however, we can see the simple origin of the current algebras.

To be specific, let us analyze the weak interactions of the quarks. We will
insert quarks into the Weinberg-Salam model, arranging them into standard SU(2)
doublets and U(1) singlets, which gives us the Glashow-Weinberg-Salam model.
We now pair off the three generations of quarks u, d, c, s, t, and b with the three
generations of leptons:

\
Ve

/L

(uS).d L\ µ
/L ( s

)L; (v2r
/L \

b
/L

(11.48)
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Notice that we are suppressing the color index on the quarks. From the point of
view of the weak interactions, the color force is not important.

As with the electron, the quarks also have right-handed SU(2) singlets:
UR, dR, CR, SR, tR, bR, which are necessary when we construct mass eigenstates
for the quarks. (We will describe the question of mixing between these various
generations shortly.)

The Lagrangian for the Standard Model then consists of three parts:

27standard Model = Hws (lept.) + 2.s (had.) + 29QCD (11.49)

where W-S stands for the Weinberg-Salam model, and lept. and had. stand for
the leptons and quarks that are inserted into the Weinberg-Salam model with the
correct SU(2) ® U(1) assignments. (We assume that both the leptons and hadrons
couple to the same Higgs field in the usual way. We also ignore quark mixing
here.)

In order to get the correct quantum numbers, such as the charge, we must
choose the following covariant derivatives for the left-handed and right-handed
quarks in Yws(had.):

/u 'D I - [8 - i (g) _`W` - i (g B
U

(11.50)A

d c
Fi

2 6 d )c

and:

DIUR = [aµ - i(2g'13)Bµ] UR

DµdR = [aµ + i (g'/3)Bµ] dR (11.51)

Since the quarks have different charges than the leptons, the coefficients appearing
in the covariant derivatives are different from Eq. (10.63), in order to reproduce
the correct coupling of the photon Aµ to the quarks.

From this form of the Standard Model action, several important conclusions
can be drawn. First, the gluons from QCD only interact with the quarks, not
the leptons. Thus, discrete symmetries like parity are conserved for the strong
interactions. Second, the chiral SU(N) ® SU(N) symmetry, which is respected
by the QCD action in the limit of vanishing quark masses, is violated by the weak
interactions. Third, quarks interact with the leptons via the exchange of W and
Z vector mesons. Since the action couples two fermions and one vector meson
together, the exchange of a W or Z meson couples four fermionic fields together.
As in the previous chapter, one can therefore write down a phenomenological
action involving four fermions, similar to the original Fermi action. In the limit of
large vector meson mass, the Standard Model action can therefore be written as the
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sum of four-fermion terms that link quarks and leptons together. The important
observation is that the charged W and neutral Z mesons couple to the currents, so
the effective four-fermion action is the sum of the products of two currents:

2'eff= 1JAJ" (11.52)

where we sum over charged and neutral currents, and where the charged weak
current is the sum of a leptonic and a hadronic part:

J" = J" + J"lept had

The leptonic part is given by:

/Jlpt=YeY"(1-Y5)lve+'I ,,Y"(1-Y5) ,,,,

and the hadronic part is given by a vector and axial-vector piece:

J" =V"-A"
had

(11.53)

(11.54)

(11.55)

where the vector and axial vector currents are made out of quark fields. (There are
corresponding expressions for the neutral current, which is mediated by Z meson
exchange and is diagonal in the lepton fields.) If we neglect strangeness, then the
charged hadronic weak current can be written as:

1

0 0 0 u

J"d = dy"(1 - YOU = (u d 9)y(1 - y5) 1 0 0 d

0 0 0 S

=
4xl_i2y"(l - y5)q/2 (11.56)

In other words, it transforms as the 1 ± i2 component of a SU(2) triplet.
As before, the effective coupling constant GF, because it is generated by the

exchange of W and Z mesons, is related to the vector meson coupling constant;
that is, GF/f - g2/Mw.

Because the weak current is the sum of a leptonic and hadronic part, and
because the effective action is a product of two such currents, the effective weak
action can be broken up into three pieces, generating hadronic-hadronic, hadronic-
leptonic, and leptonic-leptonic interactions:

Heff = > {J1ept + Jhad}µ {J1ept + Jhad}" (11.57)



11.4. Current Algebra 387

where we sum over both charged and neutral currents. The Standard Model effec-
tive action can therefore describe, in principle, all possible interactions between
subatomic particles.

In the previous chapter, we discussed the leptonic-leptonic weak interactions.
In this section, we will discuss the hadronic-hadronic weak interactions induced
by the hadronic part of the weak current. Then in a later section, we will discuss
the hadronic-leptonic interactions, which can mediate the weak decay of hadrons.

The current algebra relations can also be easily deduced from the Standard
Model. The vector and axial vector currents generated by chiral SU(N) ® SU(N)
symmetry of the quark model are:

Vµ = gy X°q/2; Aµ = gyu.Y5X°q/2 (11.58)

where a.° are the generators of SU(N), and q transforms in the fundamental
representation of SU(N). For the free quark model, it is then easy to show that
these SU(N) ® SU(N) currents generate a closed algebra, which forms the basis
of current algebra.

To see this more explicitly, we note that our action is invariant under:

8 i = -i°(r°)`,O, (11.59)

(for generality, 4i can be either fermionic or bosonic).
From our previous discussion, we know that, for every symmetry of the action,

we have a conserved charge:

Q°(t) =
J

Jo (x) d3x (11.60)

where the current is:

8.9 (11.61)
SaAoi

We know that the conjugate field is given by:

n; (x) = (11 62)
saooi

with canonical commutation (anticommutation) relations:

[7r;(x, t), O;(y, t)] _ -is3(x - y)S;j

.

(11.63)
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Assuming that the current is composed out of free fields, we can take the
commutator of two charges:

[Q°(t), Qb(t)] f d3x d3Y [7Li(X, t)(r°)ijq5j(X, t), 7rk(Y, t)(ib)klq5!(Y, t)]

-f d3 xd 3Y17Li(x, t)(r°)ij [oj(X, t), 7rk(Y, t)] (rb)k1Ol(Y, t)

+ 7rk(Y, t)(rb)kl [7Li(X, t), 41(y, t)] (r°)ijOj(X, t)}

-f d3X {7rk(X, t)i[r°, rb]kjq5j(X, t)} (11.64)

Finally, we find:

[Q°(t), Qb(t)] = ifabcQc(t) (11.65)

where the derivation works equally well for commutators with bosons and anti-
commutators with fermions.

Let us assume that we have, in addition to the usual symmetry, an axial
symmetry, generated by:

Q5a(t) =
J

Jo°(x) d3x (11.66)

Then it is easy to show that the vector and axial vector currents generate the
algebra:

[Q°(t), Qb(t)] =
i fabcQc(t)

[Q°(t), Q5b(t)] =
i fabcQ5c(t)

[Q5a(t), Q5b(t)] =
i fabcQC(t)

(11.67)

For a unitary group, this generates the group SU(N) ® SU(N). To see this, we
redefine:

QL, = 1 (Qa _ Q5a)

QR = 1(Qa + Q5a)

These generators have the commutation relations:

(11.68)

[Q(t), (t)] = if abc Qc
L L L(t)
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[Q(t), Q(t)l = if abc Qc
R R R(O

[QL(t), QR(t)l = 0

We can also show that the unintegrated currents satisfy:

[Q°(t), J, (x, t)l = i fabcJc(x t)

as well as:

389

(11.69)

(11.70)

[Jo(x,t),
Jo(Y,t)}=ifabcJo(x,t)83(x-y)

(11.71)

For our purposes, we are interested in the current algebra that generates
SU(N) ® SU(N) from Eq. (11.55):

[Vo (x, t), Vo (Y, t)l = ifabcVo (x, t)83(x - y)

[Vo (x, t), A0(Y, t)l = ifabcAc(x, t)S3(x - y)

[Ao(x, t), Ao(Y, t)l = ifabcVo (x, t)S3(x - Y) (11.72)

We should be careful to state, however, that the current algebra for the other
components of Jµ do not form such a simple algebra. For example, one can show
that the commutator between a current Jo and J; does not close properly:

[Jp(x,t),J,b(Y,t)l = ifabcJic(x,t)83(x-y)

+S,ba83(x-y)
ayj

(11.73)

where the last term is called a Schwinger term. Very general arguments show that
such a term must necessarily exist in the algebra. In our discussion of current
algebra, we must be aware of the presence of these Schwinger terms.

11.5 PCAC and the Adler-Weisberger Relation

By analyzing the properties of these weak currents, we can derive a large body of
relations between different physical processes, which agree remarkably well with
experiment. In this section, we will study the Conserved Vector Current (CVC)
hypothesis, the Partially Conserved Axial Current (PCAC) hypothesis, and the
Adler-Weisberger relation.
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Although these relations were originally derived from the effective action and
current algebra, we can see that they are all rather simple consequences of the
Standard Model.

11.5.1 CVC

To see the origin of the CVC hypothesis,18 notice that the muon decay constant
G. is remarkably similar to the coefficient Cv appearing in the strong current of
the old Fermi model for beta decay:

JA ad.
_

1

72 (11.74)

In fact, the coupling constants for muon decay and neutron decay differ by only
2.2%:

Gµ - G
G =2.2%

Fi

(11.75)

To explain this, we assume that the strong electromagnetic current, which
transforms like JJ under SU(2), must be part of the same SU(2) multiplet as
the strangeness-preserving hadronic weak currents J 2 and J a`2. The CVC
hypothesis simply says that J2 is conserved:

CVC : aµJW+i2 -0 (11.76)

just like the strong electromagnetic current, which can now be written as:

44. = V3 + Va (11.77)

Since the electromagnetic current and the hadronic weak current J i2 now trans-

form as part of the same SU(2) multiplet, there should be relations among the
couplings for this current. This simple observation has had experimental success,
for example, in explaining the beta decay rate of pions.

From the point of view of the quark model, CVC has a simple interpretation.
The CVC relations can be derived by writing down the quark representation of
the various currents:

2_ 1_ 1
3uyµu - 1

3 6
dyµd = 14YµIq+4Yµ

2
q

Vhad = dYµu + ... = 9Yµ1-i29 + ... (11.78)
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(where the ellipses represent the strangeness-changing part of the hadronic weak
current, which we will discuss shortly). Written in terms of the quark fields,
then it is obvious that the electromagnetic current and the strangeness-preserving
hadronic weak current are part of the same SU(2) multiplet. Since SU(2) is a
reasonably good symmetry of QCD, we expect CVC to hold (but be broken by
electromagnetic interactions and the fact that m ' md).

11.5.2 PCAC

Now let us assume, because of approximate chiral symmetry, that a modified
current conservation rule applies for the axial current A' as well. The approximate
SU(2) ® SU(2) chiral symmetry of QCD allows us to write down new relations
based on the PCAC (partially conserved axial current) hypothesis.19-2' This states
that the divergence of the axial current is exact in the limit of SU(2) ® SU(2)
symmetry, but is broken by the quark masses. Phenomenologically, this means
that the conservation of the axial current is broken because of the small pion mass
(which is now viewed as a Nambu-Goldstone boson).

To see how PCAC provides nontrivial relations between scattering amplitudes,
let us construct the matrix element of the axial current Aµ between the vacuum
and a pion state 1lrb). This matrix element can be coupled to the matrix element of
the leptonic weak current, so that it governs the decay of the pion into an electron
and neutrino. By Lorentz symmetry, this matrix element can only be proportional
to the momentum of the pion:

(01A' (0)l nb(P)) = i fn8ab pµ (11.79)

where f, is the pion decay constant, and experimentally it is equal to 93 MeV.
We normalize the pion state by:

(O14>a(0)1nb(P)) = Sab

Now let us take the divergence of this equation:

(Ol aµAa (0) 1 nb(P)) = sabmnfn = fm 2 (014,°(0)1 nb(P))

(11.80)

(11.81)

where we have integrated by parts. It is therefore reasonable to set, as an effective
relation:

8µA° m2,/,°µ - fn Yr
(11.82)

which is the PCAC hypothesis. In the limit of vanishing pion mass, we have
exact chiral symmetry, and hence these equations give us an exactly conserved
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axial vector current in this limit. (From the point of view of the quark model, one
can explicitly take the derivative of the axial current and one finds that it is not
conserved. The right-hand side of the equation is proportional to 4X°y5q, which
has the quantum numbers of the n meson. When matrix elements of this relation
are taken, one can, with a few assumptions, show that the PCAC relation holds.)

One of the great successes of PCAC was the derivation of the Goldberger-
Treiman relation 22 The origin of this new relation was simple. The PCAC
hypothesis links the axial current to the pion field. By taking different matrix
elements of the PCAC relation, we can derive different relations between different
physical processes. For example, if we take the matrix element of the PCAC
equation between neutron and proton wave functions, then we can establish a
relationship between the pion-nucleon coupling constant gaNN and the decay
constant of the pion fa. Thus, PCAC is able to link two unrelated physical
processes, pion-nucleon scattering and pion decay.

To see how this happens, let us take the matrix element of the axial current
between neutron and proton states. The only axial vectors that we have at our
disposal are q ,y5 and yy5. Thus, the matrix element must have the following
form:

(P(k')IAI i2ln(k))=up(k')[y y5gn(g2)+q y5hn(g2)] u,,(k) (11.83)

Now take the matrix element of the pion between the proton and neutron states:

(P(k')j4+jn(k)) _ _g (11.84)

which is dominated by the pion pole term and where the coupling constant
gaNN(g2) is related to the physical coupling constant for pion-nucleon scattering
by:

gaNN

gaNN
4n

gaNN(mn)

14.6 (11.85)

Now let us put everything together. Let us take the divergence of the matrix
element of the PCAC equation. This easily gives us:

2f 2

92 mmn
gaNN(g2) = 2MgA(q2) + q2 hA(q2) (11.86)

Let us now set q2 = 0, and make the crucial assumption that gaNN(g2) does not
vary much between q2 = 0 and the pion mass squared. (This assumption is based
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on the fact that the pion mass is small, and that the analytic behavior of the function
is relatively smooth in q2 space.)

When we make this assumption, we find the celebrated Goldberger-Treiman
relation, which agrees well with experiment:

fag,,NN
87)= PA(0) (11 .

M

Experimentally, 9A(O) - 1.22, while fg,NN/mN - 1.34.
This relation, we saw, depended crucially on the mass of the pion being small;

that is, the masses of the u and d quarks are relatively small on a hadronic scale.
However, the mass of the strange quark is larger than the others, and hence we
expect the approximation to be less reliable for the K meson.

11.5.3 Adler-Weisberger Relation

Finally, one of the most important relations that one can derive from the current
algebra is the celebrated Adler-Weisberger23,24 sum rule, which relates the integral
of pion-nucleon cross sections to known form factors.

Our goal is to write the pion-nucleon scattering amplitude in terms of the scat-
tering of nucleons and axial currents using current algebra and PCAC. Therefore,
we wish to study the scattering of nucleon N and the axial current:

N(pi) + Ab(gi) -- N(P2) + A' (q2) (11.88)

where pi + ql = P2 + q2, and where we will eventually set ql = q2. The matrix
element for this process is given by:

Tµb = f d4Xe`9.x (N(P2)I T Aa (x)Ab(0)I N(Pi)) (11.89)

Let us contract this amplitude with qµq'. By integration by parts, we can
convert this into a divergence. Each time the derivative hits a 8 function within
the time-ordered product, it creates a delta function. Then it is not hard to show:

qi q2 Tµb = i f d4X e`y X (N(P2)I3 Aµ(X)a°Ab(0)I N(Pl))

- iqi (N(P2)IS(xo)[A0, Aµ(X)}IN(Pi))

+ (N(P2)I S(xo)[Aa(X), a°Av(0)IIN(Pi))1 (11.90)
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In general, almost nothing is known about the left-hand side of this equation.
However, the three terms on the right-hand side of this equation can, by PCAC
and current algebra, be reduced into known quantities.

For example, the first term on the right-hand side of this equation can be related
to the pion-nucleon scattering amplitude via PCAC. Using the LSZ and PCAC
relations, we can rewrite the usual pion-nucleon amplitude as:

T,°N = i
J

-m,)(q2 -mn)

X (N(P2)I TOa(X)4b(0)I N(Pi))

2 M2 )(q2 2 4 -2 f 4 igIx
i(91 -m7r 2 -mn)mn fn J d Xe

X (N(P2)IT [a"Aa (X)a"Ab(0)]I N(Pi)) (11.91)

The second term on the right-hand side of Eq. (11.90) can also be reduced if
we use the following current algebra relation:

S(xo)[Ao(0), Aµ(X)] = -i8(XO)EabcVV(X) (11.92)

(There is a potential Schwinger term in this commutator, but one can show that it
cancels out.)

Because the iso-vector current appears on the right-hand side, its matrix ele-
ment is proportional to rc, so we can now reduce this expression down to:

-iq" f d 4 x (N(P)I8(XO)[Ao(0), Aa (X)]I N(P))

= Eabcq"ii(P)y
rcu(P)12

= 2p . gabcrc/2 = -iv[ra, rb]/2 (11.93)

where
The third term on the right-hand side of Eq. (11.90), which we will can vN ,

can also be simplified. It is easy to show that this term is symmetric in a and b.
(To prove this, we drop the term with the integral over the spatial derivative ai A',
since we assume that the fields vanish sufficiently rapidly at infinity. Then we are
left with a commutator between Ao and 3°Ao. By integrating by parts, we can
move a° to the other current. Then by reinserting the spatial derivatives, we find
that QNb = ab .)

Putting everything together, we can write Eq. (11.90) as:

q"q°Tµb = -i(q2 - M2)m4 +iv[r°, rb]/2 - iaN (11.94)
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Next, we wish to reduce the left-hand side of this equation. In the low-energy
limit q --- 0, the term that dominates this expression consists of the one-nucleon
pole term, since the Feynman propagator of the one-nucleon pole term diverges.
Using Feynman's rules, we can add the two one-nucleon pole diagrams that
contribute to the pion-nuclear amplitude in this limit.

The poles coming from the two graphs are proportional to l/[(p ±q)2 - M2] _
1/(±2v + q2), where v = p q. To calculate the residue of these two pole terms,
we use the fact that the matrix element of Aµ between two nucleon states is given

by Eq. (11.83).
Using the Gordon identity, we find that the sum of the two one-nucleon

exchange graphs becomes:

gµq°Tab - 2ig2 ([ra, rb]V - Sabg2) (v2 - M2g2)/(g4 - 4v2) + .. .

1gAV[ra, rb] + .. . (11.95)

where q2 « v = p q for small q.
To simplify matters, we will be interested only in the amplitude that is anti-

symmetric in a and b (so we can drop oN'). We will make the following isotopic
decomposition of Tab:

Ta°bN = T+Sab +
iEab`r`T_

(11.96)

We are only interested in T-.
We can now put all the pieces together in Eq. (11.90). Taking the limit as

q2 -> 0 in the expression for T,,aNb (q2, v), Eq. (11.90) becomes:

lim v-1 T-(v, 0) = (1 - 8n )/.f,2
V-0

(11.97)

This is our primary result. However, left in this fashion, this sum rule is rather
useless. In order to make comparisons with experimental data, we must rewrite
this in terms of measurable cross sections. Since T- is analytic and odd under
v -> -v, v-1 T- satisfies an unsubtracted dispersion relation:

T-(v, 0) - 2 f' Im T-(v', 0) dv'
v 7r

vo
v2 - v2

Putting v = 0, we arrive at:

00
1

z
= 1+

2M2

J
dv
V2

ImT-(v,0)
gA gaNN vo

(11.98)

(11.99)

where we have taken advantage of the Goldberger-Treiman relation.
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Using the optical theorem, we can write:

Im T-(v, mn) = v[a "(v) - n'p(v)] (11.100)

Inserting this back into the dispersion relation, we find the Adler-Weisberger
relation:

2
--- +

2M2 [°° dv
Or'r-

gA gaNN vp V
(11.101)

Putting the experimental values into the relation, we can solve for gA, which yields
1.24, in good agreement with the experimental value of 1.259.

11.6 Mixing Angle and Decay Processes

In the previous section, we saw how the hadronic-hadronic part of the effective
Standard Model action in Eq. (11.57) gave us a wealth of weak interaction relations
that agreed well with experiment. In this section, we will examine the hadronic-
leptonic part of the effective Standard Model action. Specifically, we will study the
decays of hadrons via the weak interactions, which is mediated by the hadronic-
leptonic effective action. However, since there is a vast number of decays, we will
not catalog them. Although the Standard Model gives us the ability, in principle, to
calculate them all, we will only use the Standard Model to make certain qualitative
observations concerning these decays.

In the 1960s, many of these important decays were carefully experimentally
studied, although there was no comprehensive, underlying explanation for their
behavior. From the perspective of the Standard Model, many of the mysteries of
these decays can be easily explained. In particular, we will be interested in the
decays of the K mesons, which are bound states of the strange quark with the u or
d quarks. The addition of the strange quark to our discussion, however, brings in
an important complication: the quark mixing angles. Since the weak interactions
do not respect chiral SU(3) ® SU(3) symmetry, there is no unique way in which
to insert the strange quark into the Weinberg-Salam model. In principle, since
the d and s quarks have the same charges, and since the weak interactions do not
respect global SU(3) symmetry, there is nothing to prevent the d and s quarks
from mixing within the same SU(2) doublet. We can parametrize this ambiguity
by taking the following SU(2) doublet:

(
u

dcos6c+ssin6c )L
(11.102)
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where 6c is called the Cabibbo angle.25 The Standard Model does not explain
the origin of this mixing. The Cabibbo angle, however, allows us to parametrize
our ignorance. Like the quark masses, the Weinberg angle, etc., it is one of the
many undetermined parameters within the Standard Model (which indicates that
the Standard Model is only a first approximation to the correct theory of subatomic
particles). Experimentally, we find:

sin 6c = 0.231 ± 0.003 (11.103)

so that the Cabibbo angle is equal to 6c - 15°.
In the Weinberg-Salam model, the W and Z mesons then couple to the strange

current, given by uyy,(1 - y5)s times the sine of the Cabibbo angle. If we write
this in terms of its SU(3) content, this strange current transforms as the 4 + i5
component. Thus, the vector and axial charged vector hadronic currents can be
written as:

VN, = COSBcVµ+i2+sm6cVµ+'5

Aµ = cos6cAµi2+sin6cAµ+i5 (11.104)

If we write these charged currents in terms of their quark content, we find:

JN, = VN, - AN, = cos 6c (uyd - uyy5d) + sin6c (uys - uyy,y5s) (11.105)

Since the Cabibbo angle is experimentally found to be relatively small, sin 6c
is suppressed relative to cos 6c. The effective action, written in terms of this quark
representation, automatically reproduces the fact that the 1 +i 2 reactions are larger
than the 4 + i5 reactions. This is because the u - s quark current (transforming
like the 4 + i5 current) is suppressed by a factor of tan 6c relative to the u - d
quark current (transforming like the 1 + i2 current).

Now that we have parametrized the strange hadronic current, there is a wide
variety of decay processes that can be described by the Standard Model. It will
be helpful to divide these decays into several classes.

11.6.1 Purely Leptonic Decays

These decays involve no hadronic particles at all. For example, the decay of the
muon is a purely leptonic decay process.
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11.6.2 Semileptonic Decays

Semileptonic decays are those that involve both hadrons and leptons. For example,
the decay of hadrons into leptons is a typical example. These decays, in turn, are
divided further into two types, AS = 0 and AS 0.

For AS = 0, the beta decay of the neutron is one of the most important
examples. Other AS = 0 semileptonic decays include the following hyperon and
pion decays:

E- -+ A+e+v
7r -+ 7r0 +e+v (11.106)

Strangeness-changing decays include: A --f p + e + v.
Some other examples of semileptonic decays are given by 7r13 and K13 decays:

7r+ -+ 7r0 +1++v,

K+ -+ 7r°+1++v, (11.107)

where l = e, A.
In an obvious notation, the decays of the K meson are sometimes designated

Ke3, Kµ3, Ke4, and Kµ4.

11.6.3 Nonleptonic Decays

These decays involve the decay of hadrons into other hadrons. These decays can
also be divided into two classes, AS = 0 or AS ¢ 0.

Some of the hyperon nonleptonic decays are:

E+

A

S2-

P +7r°

n +7r°

A+7r (11.108)

Nonleptonic K decays include:

K° -+ 7r++7r-

K+ -+ 7r++7r°+7r° (11.109)

Although the Standard Model gives us the ability to calculate these decays
from Feynman's rules, we will only make a few brief qualitative observations
concerning these decays, from the point of view of the Standard Model.
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First, the Standard Model forbids a large number of decays that cannot be
described by the current-current effective action. This is totally consistent with
the experimental data. Second, the various rules that have been accumulated over
the years (such as the A I = 1 rule) can be explained qualitatively by analyzing the
isospin nature of the currents of the Standard Model. Third, we find that certain
decays are suppressed relative to others because the Cabibbo angle is small.

As an example, consider the decays:

7r+ 7r0+e++Ve

K+ -f 7r0 +e++Ve (11.110)

The first transition from 7r+ to 7r° is mediated by a current transforming as
1 + i2, while the transition from K+ to 7r° is mediated by a 4 + i5 current. Thus,
we expect that the coupling constants for these decays to be related to each other
via the Cabibbo angle, which agrees with experiment.

11.7 GIM Mechanism and Kobayashi-Maskawa Matrix

Experimentally, there is very strong experimental evidence that strangeness chang-
ing neutral currents are suppressed. For example, we have the experimental
results:

F(KL -' µ+µ
)

F(K2 --f all)

I (K} --f 7r}vv)
I'(Kf --f all)

<

10-8

0.6 x 10-6 (11.111)

The numerator is sensitive to the existence of a weak current that couples to
the strange quark s, is electrically neutral, and changes the strangeness number.
The fact that these processes are extremely rare indicates that such currents should
be absent in our action, at least to lowest order.

One of the triumphs of this simple picture is the success of the GIM (Glashow-
Iliopoulos-Maiani) mechanism,26 which uses a fourth, charmed quark to cancel
such currents at the tree level.

So far, the model that we been describing allows strangeness-changing neutral
currents, which arise when we analyze the following part of the neutral current:
Jµ = d1yy,(1 - Y5)d'. If we expand out this current, we find the piece:

9 y,,(1 - Y5)d sin 6c cos 6c (11.112)
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which introduces strangeness-changing processes through the s - d coupling. We
want to cancel this term.

To explain the absence of such a current, we will use the fourth charmed quark,
which will give us a global SU(4) flavor symmetry. The hadronic weak current
can now be represented in terms of four quarks as:

Jµ = 4 yµ(l - y5)),°4/2

where q consists of two SU(2) doublets:

Cd')'
(SIc

where:

(11.113)

(11.114)

d' = d cos 0c + s sin 0c

s' = -d sin 6c+ s cos 6c (11.115)

The key observation is that the existence of the charmed fourth quark allows
us to express the neutral current, which is diagonal in the fermion fields, as the
sum of two terms:

d'yy,(l - y5)d' +s'y/,(l - y5)s' (11.116)

Because of the presence of s' in the neutral current, there is an additional piece
to the strangeness changing neutral current given by:

-syN,(1 - y5)dsin6ccos6c (11.117)

If we add the two pieces in Eqs. (11.117) and (11.112) together, we find
an exact cancellation, meaning that (at the tree level) there are no strangeness-
changing neutral currents. The mixing of the various quarks therefore gives us
new physically interesting results.

(Another way of saying this is that the total neutral current has the quark
content: d'd' + s's' = ad + ss if we drop the Dirac matrices. This combination
is invariant even after rotating the quarks by the Cabibbo angle 6c. The neutral,
strangeness-changing current vanishes because there is no term proportional to sd
in this combination.)

We can now appreciate the importance of the angle 6c, which not only serves
to suppress some reactions that occur with sin O c, but also eliminates strangeness-
changing neutral currents via charm. Given the importance of mixing between
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generations, let us now try to analyze the question of mixing systematically
between three generations of quarks and leptons. The Cabibbo angle, for example,
was the unique way in which to mix two generations of quark flavors. It is possible,
with a few simple arguments, to write down the complete set of these mixing angles

for three generations.
To construct the most general charged weak current, we first notice that the

u, c, t all have charge 3, while d, s, b all have charge -1. Since the weak
interactions do not respect global flavor symmetry, there is nothing to prevent
mixing within these groups of quarks of the same charge. We thus have the
freedom to rearrange the charge 3 and the charge -1 quarks into two multiplets
called U and D, respectively:

U

d
U = c ; D = s (11.118)

t b

where the space in which we are working is labeled by the generation or family.
Since we have three families, we can mix the three families of quarks within U
and D. The most arbitrary mixing between them can be parametrized by:

U" = Mu U; D" = MD D (11.119)

where Mu and MD are 3 x 3 unitary matrices.
Then the charged weak current can be written as:

JN, = U"yN,(l - y5)D"

= Uyy,(1 - y5)MD (11.120)

where we have defined the Kobayashi-Maskawa matrix27 as:

M - MUMD (11.121)

The unitary matrix M is a Nf x Nf matrix for Nf families. This matrix has, in
general, Nf real parameters. However, since there are 2Nf quarks, 2Nf - 1 of
these parameters can be absorbed into the quark wave functions. We are then left
with (N f -1)2 real mixing angles that cannot be absorbed by any field redefinition.

For Nf = 2, we have one mixing angle, which is the just the original Cabibbo
angle. In that case, the charged weak current is:

J = (u vs)
dC cos Bc sin Bc

\ SsinB os B- c c c /
(11.122)
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However, for Nf = 3, we have the possibility of four mixing angles. Tradi-
tionally, these four mixing angles are parametrized with three angles O j, i = 1, 2, 3
and one phase S. Then the matrix M is usually written as:

1 0 0 C1 Sl 0

M = 10 C2 S2

X

- S1 C1 0

0 -S2 C2 0 0 1

1 0 0 1 0 0

X 0 1 0 x 0 C3 S3 (11.123)

0 0 e`s 0 -S3 C3

where Ci = cos Oi and Si = sin 61.
Written out explicitly, this is:

Cl S1C3 S!S3

M = - S,C2 C,C2C3 - S2S3eis CiC2S3 + S2C3eis

S1S2 -C1S2C3 - C2S3eis -C,S2S3 +C2C3eis

(11.124)

Experimentally, the three mixing angles Oi are either smaller than or compara-
ble to the Cabibbo angle. In the limit 02 = 03 = 0, then 01 reduces to the Cabibbo
angle. Also, one of the advantages of the KM formalism is that it gives us a
convenient way of parametrizing C P violation, which is found experimentally in
K meson decays.128 The angle S gives us a complex M matrix, thereby violating
CP invariance. (CP invariance demands that M* = M.)

In summary, the Standard Model is created by splicing QCD with the Weinberg-
Salam model. It allows us to unify all known experimental data concerning particle
interactions via the gauge group S U(3) ® S U(2) ® U(1). The gauge fields of color
SU(3) are responsible for binding the quarks together, while the gauge fields of
SU(2) ® U(1) mediate the electromagnetic and weak interactions. Altogether,
there are quite a few free parameters in the theory: three coupling constants for
the groups in SU(3) ® SU(2) ® U(1), two parameters in the Higgs sector (the
Higgs mass and the Higgs vacuum expectation value v), Nf + 1 quark parame-
ters [2Nf quark masses for Nf families and (Nf - 1)2 KM mixing angles and
phases], an equal number Nf + 1 of lepton parameters (for massive neutrinos),
and the angle OQCD (coming from instanton contributions). For a Standard Model
with massive neutrinos, we thus have 2(Nf + 1) + 6 free parameters. For three
families or generations, that makes 26 free parameters. (For massless neutrinos
and no leptonic mixing angles, we have 19 free parameters.) With so many free
parameters, the Standard Model should be viewed as the first approximation to
the true theory of subatomic particles.



11.8. Exercises 403

In the next chapter, we will discuss quantum anomalies that arise in any naive
attempt to quantize chiral fermions. The marriage between quarks and leptons in
the Standard Model is not a trivial one, because the anomalies of the leptons in the
Weinberg-Salam model cancel precisely the anomalies coming from the quarks.

11.8 Exercises

1. Calculate the tensor product reduction of 3 ® 8 and 6 ® 6 for SU(3) using
Young tableaux. Identify the dimension of each of the Young tableaux in the
decomposition.

2. For SU(4), calculate the decomposition of:

15®15®15 (11.125)

3. If we adopt the SU(3) particle assignments in Eqs. (11.9) and (11.10), show
that the meson and baryon matrices are given by Eqs. (11.12) and (11.13).

4. Using Feynman's rules, prove Eq. (11.30).

5. Why must a Schwinger term exist in Eq. (11.73)? Hint: assume that the
Schwinger term is missing, and then prove:

0 = A[Jo(x, t), aoJo(y, t)lI0)

= i E teipe(X-r) + e-iPe(X-Y)
n

xEnI(0IJo(0)In)I2 (11.126)

Then prove that this relation shows that Jo = 0, and so, by contradiction, there
must be a Schwinger term.

6. Let the electromagnetic current J elm be sandwiched between two proton states.
By invariance arguments, the most general matrix element is given by:

W, SCI J m(x)I P, S) = e`(P'-P)"Xu(P', S!)(Fi(42)Y
L

F2(42)+i
2M

o,

'Lv

q1, + F3(42)4µ)u(p, S)

(11.127)
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and qN, is the difference in momenta. Using the fact that the electromagnetic
current is conserved, prove that F3(q2) = 0. Using time-reversal invariance,
prove that Fl and F2 are both real.

7. Write down an explicit matrix representation of the generators of SU(5) and
SU(6) using the algorithm mentioned in the book.

8. Can the bottom quark and top quark be added and still have no flavor changing
neutral currents? Examine the KM matrix.

9. Prove Eq. (11.90).

10. In the Standard Model with two generations, we could have mixed the u and
c quarks together as well as the d and s quarks. This would give us two
Cabibbo angles. How do we reconcile this with a single Cabibbo angle?

11. Since the experimental evidence points to three quark colors, why cannot
the color gauge group be SO(3) instead of SU(3)? SO(3) would appar-
ently satisfy many of the experimental tests. (Hint: analyze if the triplet
representations are real or complex for the antiquarks.)

12. Show explicitly how the Nf x Nf K-M matrix, with Nf real parameters, can
be reduced to a matrix with only (Nf - 1)2 unknowns after a re-definition of
the quark wave functions.

13. Let the matrix element of the strangeness-preserving vector hadronic weak
current between neutron and proton states be:

W I i2'µ In) =u' 1 fi(g2)+i 22M)Orµ"q»+f3(g2)gµ f X.i+i2u (11.128)

Using the CVC hypothesis, prove:

fi(g2)

f2(g2)

f3(q2)

= FP (g2) -Fn(q2) -' 1 (as q2 -' 0)

= F2(g2)-F2n(g2)_/,tp-µn (as q2 -' 0)

= 0 (11.129)

where F, are defined in Problem 6.

14. For the massive quark model, prove to lowest order that the divergence of the
axial current can be written as:

BN,A°µ = 2imgx.°y5q (11.130)

(where we integrate by parts). What assumptions are necessary to convert
this into the PCAC relationship?
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15. Prove that the strangeness-preserving charged hadronic weak current J as+rz

and its conjugate are responsible for inducing the following weak reactions:

7r } --f vacuum state

7r } --f 7r °

n -- p

E} -, A° (11.131)

where we omit the effect of the leptonic weak current.

16. Similarly, prove that the strangeness-changing charged hadronic weak current
jIL5ad and its conjugate are responsible for inducing the following reactions:h

K}

K}

vacuum state

7r0

E}

A°

n

p (11.132)

where we omit the effect of the leptonic weak current.

17. Show that the covariant derivatives for the quarks in Eqs. (11.50) and (11.51)
yield the correct charge assignments of the quarks after symmetry breaking.





Chapter 12

Ward Identities, BRST,
and Anomalies

12.1 Ward-Takahashi Identity

In the case of QED, we found that the Ward-Takahashi identities1"2 were a power-
ful way in which to prove important relations between renormalization constants.
In this chapter, we will examine these identities from the path integral point of
view, and show how they can be generalized to gauge theories with very little extra
effort. We also explore perhaps the most convenient way in which to summa-
rize the information contained within the Ward-Takahashi identities, which is the
BRST approach. And finally, we will show that these Ward-Takahashi identities
actually break down in certain circumstances due to anomalies.

The origin of the WT identities lies in the gauge invariance of the generating
functional of QED, which is given by:

Z(JJ,
J

DAIL D D* exp i f d4X [&(*, Aµ) + AAJµ + w +'H

(12.1)

If we make a field redefinition of r and AN, (i.e., make an arbitrary, field-
dependent redefinition of the fields), we know that the generating functional
Z(JN,, , q) remains the same. This is because changing variables in an integral
never affects its value.

We can consider a gauge transformation to be a specific type of field re-
definition. Thus, the generating functional is trivially invariant under a gauge
transformation. This will allow us to derive nontrivial identities on the generating
functional.
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We know that the action and the measure are all gauge invariant. The generat-
ing functional is also invariant; so the only terms that are not gauge invariant are
the gauge-fixing term and the coupling to the sources. The non-gauge-invariant
terms, we see, must all vanish because of the overall invariance of the generating
functional under a field redefinition.

We begin with the gauge-fixed action:

(12.2)

and the following gauge transformations on the fields:

SAIL = 8µA

S* = -ieA1/.i

S = ieA

The variation of the generating functional is given as:

(12.3)

Z +SZ = JDAL Di Di/iexpiJ d4X(H(AIL, +r*+ n

+BILAJIL - leAO /i' -
A82(8

A)
a

SZ = JDALDi1J D*
J

A \-BILJIL + ie(i71/i - l7) - 1 82(8 A)) d4x

x exp i f d4x [&(AIL, , ) + AILJIL + l71/r + n] (12.4)

To lowest order in A, this can be written as the functional version of the WT
identity:

iAI-BILJIL -e(i 3 -r1Sq)+aa2aL ' ]Z(JIL,0 (12.5)

where we have made the substitutions:

`AIL -a -i
S s

S- JIL
; 'Y '-+ -l

Ss ; 1/! --+ -l
S

q
(12.6)

We now have established the nontrivial WT constraint on the generating functional.
This identity, however, is not yet written in a form recognizable from our previous



12.1. Ward-Takahashi Identity 409

discussion of the WT identities. To derive the first consequence of the identity, let
us differentiate the expression with respect to J = _
The terms that survive are:

= 0.

z

82aµ ) 12
aJIL(x) aJ»(Y)a

Y ( .7)

Now let us take the Fourier transform of the expression. In momentum space,
we have:

1 k2kILAµ»(k) = k
C1

(12.8)

where Aµv is the connected part of the interacting photon propagator. The general
solution to this equation is easy to find in terms of a longitudinal and a transverse
part:

Lµ»(k) = (gµv - kkvlk2).f(k2) (12.9)

for some function f (k2). This means that the longitudinal part is unchanged by
higher-order corrections, as expected.

However, to make contact with the Ward-Takahashi identity found earlier in
QED, it is necessary to convert the constraint into one for the proper vertices. We
recall first that Z = ei W, so we can write the identity as a constraint on W:

C1e1r1Sn -r1S f 1a2aµ3 iµIW(Jµ,8µJµ (12.10)
a

The next step is to convert the identity to a constraint over IF, the generator of
proper vertices. As usual, we now make a Legendre transformation on the fields:

r(Aµ, G,) = W(JJ, r1, rl) - f d4x (A, Jµ + r (12.11)

Then we can make the following substitutions:

Sw
SJIL

Sw

3r

SAIL
Aµ ;

SrSw
S

_ -r (12.12)
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Making these substitutions, we then have the formula for the proper vertices:

aA BF -s,l,)-a-'a2a'LAµ=0 (12.13)
SAIL

This is the form for the Ward-Takahashi identity that yields the various identities
found in QED. Notice that by repeated differentiation of this identity, we can
derive more and more complicated versions of the WT identity.

As an example, let us take the simplest case, where we differentiate the above
equation by r(x) and r(y) and set r AN, = 0 at the end of the calculation.
After differentiation, we find:

S3
P

F- az
3, (x)S*(Y)SAA(z)

- ie S(x - z)S1kX)S_(Y)

- S(y - z) 32
0, 0) = 0 (12.14)S(x)S*(y)

where F(0, 0, 0) equals F(AN,, , r) where all fields have been set to zero.
The Fourier transform of IF, in turn, can be related to both the electron propa-

gator SF as well as the proper vertex function FN, via:

f d4x f d4y eip'x-ipy S2F(0, 0, 0)
f f S1(x)S*(y)

(2n)43(P'- P)iSF(P)i-1 (12.15)

(where the prime indicates that we are taking the interacting electron propagator)
and:

f 44 4 i(P'x-PY-qz)
33F(O,

0, 0)

J
d xd yd ze

3(x)3/(y)SA1(z)

= ie(2ir)4S(P' - p - q)I'µ(P, q) (12.16)

Taking the Fourier transform of the Ward-Takahashi identity, we have:

q F,L(P,q,p+q)=SF 1(P+q)-SF 1(P) (12.17)

which is the more familiar form of the identity found in Chapter 7.
If we take the limit as qN, --f 0, we find:

as,'
0 ) =I' ( F

812P, , Pµ a
. )(
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12.2 Slavnov-Taylor Identities

As in the case of ordinary QED, we may derive a set of identities on the generating
functionals of gauge theory. However, the corresponding identities, called the
Slavnov-Taylor identities,3'4, are much more involved. Later, we will use what
is called the BRST formalism in order to simplify the complications found in the
Slavnov-Taylor identities.

The Slavnov-Taylor identities are complicated because of two factors: the
nonlinear nature of the gauge transformation, and also the presence of the Faddeev-

Popov ghosts.
The generating functional (for just the gauge field) can be written as:

Jd4x 1

Z(J) = N J DAµ1Fp expl (_!(Fa4 )2 - 2a FT F + Ja,AaF`)

(12.19)

As we saw earlier, L\Fp can be written as the determinant:

LFp = det (M)X,y;ab (12.20)

where the M matrix is defined in terms of the gauge-fixing function Fa(A, ):

SFa(Aµ(X)) = f d4Y M(X, Y)abAb(Y) (12.21)

As before, we know that Z(Ja,) is invariant under a field redefinition. Since
a gauge transformation is also a field redefinition, it means that the generating
functional is gauge invariant. Thus, SZ = 0 under this transformation. This
means:

0 = 8Z(Jµ) =f DAµ AFp exp i f d4X [&(A) + JµAal`

x (- 1 Fa(X) f d4YMab(X, Y)Ab(Y) + JµDµA)
a

(12.22)

For small A, we can bring the last term in the exponential into the integrand.
Finally, we can choose A --> M-1 A. With this substitution, we now have the new
identity:

[!Fc (__) _ f d4y (y; Z = 0 (12.23)
µ
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This is a rather complicated nonlinear identity, and in general it is quite difficult
to extract simple identities on the proper vertices. Also, this identity is rather
awkward to work with from the point of view of renormalization theory.

There are, however, some clever tricks that one can use in rendering this
problem tractable. The key to this simpler construction is to use the BRST
construction.

12.3 BRST Quantization

After fixing a gauge, we know that a gauge theory is no longer gauge invariant.
All the local gauge invariances have been removed from the theory. Thus, it is
rather surprising that, even after gauge fixing has been performed, a new symmetry
arises involving the Faddeev-Popov ghosts. This new symmetry, however, is a
global one, and hence no new degrees of freedom can be eliminated from the
gauge-fixed theory.

We recall that the gauge-fixed action is given by:

4(Fµ )2 - (8 A)2 - t `VDAna (12.24)

The original action, of course, was invariant under:

SAaa = g a Aa + fabcAb Ac

Now make the replacement:

(12.25)

Aa = _,a), (12.26)

where a and X. are both Grassmann variables and X. is constant. Then the gauge-
fixed action is invariant under a new global symmetry5:

SAaa = -1(D,,a)),
g

Sna = _ 1 fabc7b7cx
2

S1 a = -1(WLAaa
ag

(12.27)
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To prove the invariance of the action, we note that:

and:

BY-GF =

g

(aµAa) X (12.28)a

S&FF = - (spa) j/L a - ?]aaµS (DA a)

Adding these together, we find:

(12.29)

Sy = (SD,, a) (12.30)

We can use also prove that:

S(D,a) = S(fabcnbnc) = 0 (12.31)

where we have used the Jacobi identity on the structure constants:

fabkfkde + fadkfkeb + faek fkbd = 0

Thus, the action is BRST invariant.
Since the original variation was nilpotent, one can also show that:

Sz

BRST = 0

(12.32)

(12.33)

Using Noether's method, we can also construct the current that corresponds
to the BRST variation. Using the Noether prescription, we find:

Jµ
BY SBRSTO'j

S

(-FaaVDVa - fabc7b7cl
2 J

From the Noether current, we can also construct the BRST charge:

QBRST = J Jo d3x

which satisfies the nilpotency condition:

Qz

BRST = 0

(12.34)

(12.35)

(12.36)
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In general, the states of the theory are constructed from all possible monomials
that one can construct out of ?]° and °. Thus, the Fock space has increased
enormously with the presence of these ghosts and antighosts. However, one can
show that the physical state condition (similar to the Gupta-Bleuler condition) is
given by6:

QBRSTIW) = 0 (12.37)

The states that satisfy this condition are the physical states of the system. We now
have a compact and elegant statement of the physical state condition.

12.4 Anomalies

Because of the subtle manipulations that must be performed on potentially diver-
gent quantities when we renormalize a theory, there may be unexpected surprises.
One of these is the existence of Adler-Bardeen-Jackiw (ABJ) anomalies.7'8

An anomaly is the failure of a classical symmetry to survive the process of
quantization and regularization. For example, in a chiral gauge theory, we naively
expect axial currents to be conserved. However, we will find that actions that are
classically chiral symmetric can develop anomalies that spoil the conservation of
the axial current.

If we start with a gauge theory that naively is invariant under axial gauge
symmetry:

_, eiE(X)Y5* (12.38)

then we can define:

Vµ(X) _ 'Y(X)Y" Y(X)

Aµ(X) _ 1 r(X)YµY5(X)

P(X) _ *(X)Y5*(X) (12.39)

Using the naive equations of motion, we can easily show:

8µVµ = 0
8µf1µ = 2imP(x) (12.40)

The last equation vanishes in the limit of zero mass, that is, when chiral
symmetry is restored. It appears as if we have an exact conservation of both the
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vector current and the axial current in the zero mass limit. However, we will see
that this current conservation is anomalous, that the divergence of the axial current
is not equal to zero, even in the zero mass limit.

Specifically, we will examine the "triangle graph," which consists of an internal
fermion loop connected to two vector fields and to one axial vector field. This is
appropriately called the V-V-A triangle graph.

If we perform power counting on this graph, we find that the integration
over d4k gives us four powers of momentum in the numerator, but the fermionic
propagators only give us three powers of momentum in the denominator. Thus,
the graph should diverge linearly.

The origin of this anomaly is rather subtle. In performing the integration
over the loop variable, we will cancel certain graphs by performing a shift of the
integration variable. Normally, one expects that integrals like this vanish:

f(x)]=0
CK)

(12.41)

because, by shifting x + a --f x, we get an exact cancellation. However, we have
tacitly made certain unjustified assumptions.

To see how this integral may not vanish, let us power expand it:

a2
dx (a! '(x) + 2 f"(x)

2

= a[f (oo) - f(-oo)] + 2 [f'(oo) - f'(-oo)] + ... (12.42)

If the integral off converges, then there is no problem in setting the above equal to
zero. However, if the integral diverges linearly, then Eq. (12.41) need not vanish.
In fact, it can equal a[f (oo) - f (-oo)].

We can also generalize this ambiguity to arbitrary (Euclidean) dimensions.
Let us define the function:

A(a) = JdNx[f(x+a)_f(x)]=
f dNx [aaf(x)+ 1(a1L aµ)2.f(x)+...1

= aµ R.f(R)SN(R) (12.43)

In performing the integral over the volume element d^'x, we used Gauss's theorem
to drop all but the first term in the expansion. In the last line, the volume integral
reduces to a surface integral over a large hypersphere with radius R, surface area
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Figure 12.1. The V-V-A and V-V-P triangle graphs, which give rise to the anomaly.

SN(R), labeled by the vector X. For the case of four dimensions, we can perform
the integral, and take the limit as the hypersphere's radius R expands to infinity.
The result is:

A(a) = lim (2in2)aLXN,R2,f(R) (12.44)
R--,oo

Now that we see the inherent ambiguity in shifting the integration variable in a
linearly divergent integral, let us apply this knowledge to gauge theory. To begin,
let us examine the following two matrix elements, corresponding to the V-V-A
and V-V-P triangle (Fig. 12.1):

T,»P(kl, k2, q) = i f d4x1 d4x2(OI T [V(xi)V»(x2)Ap(0)]

Tµ (k1, k2, q) = if d4x1 d4x2(OIT [Vµ(x1)V»(x2)P(0)]

(12.45)

Our next step is to differentiate the previous expressions. This will pull down
a factor of qP, but there are complications when we take the derivative of a time-
ordered product, which contains theta functions in the time variable. In particular,
we have:

alAx° - y°) = 3µ03(x° - y°) (12.46)
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This means that:

aX T (VN,(x)O(y)) = T (a"V,(x)O(y)) + [Vo(x), O(y)] (x° - y°) (12.47)

for an arbitrary operator O(y).
Taking different derivatives of the matrix element, we easily derive:

ki TN,vp = 0

k2Tµvp = 0

gPTµvp = 2mTµv (12.48)

Written out explicitly using Feynman rules, we find that the matrix elements can
be written as:

f d4p

Tr

i i
Tµvp(a) = -J (2n)4[#+4 myPIp(+yI- i¢-m

X _mYµJ

+{k1+--*k2; µ+-->v} (12.49)

It is important to notice that we have explicitly made a shift p -> p + a in
performing the integral where a = akl + (a - 8)k2, where a and P are arbitrary.
Normally, for convergent integrals, Tvp(a) is independent of a by shifting the
region of integration. However, we now see that Tvp(a) is linearly divergent, and
hence inherently ambiguous. We can, of course, explicitly calculate the value of
TN,vp(a) - Tvp(0) using the formula derived earlier.

Dropping the cross term for the moment, we find:

Tµvp(a) - Tµvp(0)

p4 aA
8

Tr YPYS Yv 1 Yµ + .. .f d4 1 1
--

(2n) app 0 -m ,I- Vi -m

2n2aA
_ -i lim p2pATr(yaYPY5YPYvYsYµ)papfips/p6 +(2n)4 p-,oo

2in2aA pkps
= lim 4iEµvpg + {kl +--> k2;µ(2ir)4 p-,oo p2

= EQN,vpar.. /8n2 + {kl - k2;µ - v} (12.50)
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This then gives us:

TN,vp(a) - Tµvp(0) = - k2)a (12.51)

where P is a constant that is not yet determined and is inherently ambiguous.
Finally, the anomalous Ward-Takahashi identity can be written as:

2gPTµvp = 2mTµv -
1

4n2
P Eµvapkal kP (12.52)

This equation, which expresses the divergence of the axial current, implies that
axial current conservation is anomalous.

At this point, the value of P is arbitrary. P, in turn, can be calculated by
the fact that we would like to preserve the vector current conservation. Thus,
we demand that ki TN,,,p = k2TN,vp = 0, even though they, too, are anomalous.
However, demanding that the vector current be exactly conserved serves to fix the
ambiguity in P.

To fix the value of P, we now calculate the anomaly coming from the vector
current and then set it equal to zero.

We must thus calculate:

1 / d4p r 1 1 1

k TµvP(0) - (-1)J (2n)4LTr

-mYPYST 4-mYvK1 _m i

+ Tr ( 1 YPY5 1 II1 1 Yv 1 I (12.53)-m - 4-m p'- V2-m

Using the identity:

1 = (d-m)-[(d- Jl1)-m]
[(lf- K2) - m] - [(P- 4) - m] (12.54)

we can write the expression as the difference between two shifted integrands,
which in turn allows us to write everything in terms of a limit on a hypersphere:

k"Tµvp (1) f J
d4pTr(YPY5 1 1 )- (27r)4

m Y V - m )

- Tr( 1 1 )
\YPYS Y°(lf- K2)-mp'-m

ki /'d48 (Tr[YPY5(d- V2+m)Yv(lf+m)]\
(2n)4 J [(p - k2)2 - m2](p2 - m2)
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2i7r2ki pa
(27r)4

p-.oo p2Tr(Y5 YPY. YvYp)k2Pfi

pavsl 287(2

Ekrka

This means that:

419

(12.55)

QQ
1+

k1 Tµvp(N) =
87(2 Evpa=k1

k2 (12.56)

The key point is now this: For arbitrary values of P, it is impossible to keep
both vector current conservation and axial vector conservation. We will keep the
vector current conserved and push the anomaly entirely onto the axial current
conservation.

With the choice _ -1, we find:

q"Tµvp = 2mTµv - 21 Eµvorka k (12.57)
7_r2 1

Written in x space, the ABJ anomaly can be summarized as follows:

8µAµ = 2imP(x) + 8-
1

2FµvFµ° (12.58)

where Fµ = ZEµvcr8Ftfl.

12.5 Non-Abelian Anomalies

For the non-Abelian case,9 we must study the following anomalous V-V-A graph:

Tab` k k i
J

d4x d4x Va x Vb(x A 0 0 e'k,X,+ik2'X2

v),( i, 2, g) = i 2 (OAT [(i) v 2) c() )

(12.59)

The anomalous Ward-Takahashi identity becomes:

gpTabc - 2mTabc -µvp - µv
1

2 EµvPakPk2
Dabc + .. .

27r
(12.60)

where:

Dab` = 2Tr ({ra, rb}rc) (12.61)
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(The anticommutator in the trace comes from the fact that we must add two
triangle diagrams together to produce the anomaly. The only difference between
these two diagrams is that the a and b lines are interchanged; so this explains the
anticommutator.)

The origin of the axial anomaly, however, has much deeper significance at the
quantum level, persisting for every possible regularization scheme. The method
of Pauli-Villars regularization, for example, violates chiral symmetry, because we
have explicitly added a massive fermion into the theory. Thus, a theory that is
classically chiral invariant does not necessarily maintain chiral invariance if we
use the Pauli-Villars regularization method.

This anomaly persists even if we use other regularization schemes. For ex-
ample, in the dimensional regularization scheme, there is no higher-dimensional
counterpart of y5, so we expect that dimensional regularization will also spoil
chiral symmetry.

In Chapter 15, we will discuss yet another regularization scheme, putting
space-time on a discrete lattice. In contrast to the previous regularization schemes,
lattice regularization does preserve chiral invariance at every step of the transition
from the classical theory to the quantum theory. Putting fermions on a lattice does
not spoil chiral symmetry at all. Then, the theory is chirally invariant even as we
perform the quantization program. (However, there is still a catch to this, as we
shall see.)

12.6 QCD and Pion Decay into Gamma Rays

One of the earliest discoveries in this area was the realization that these anomalies
may actually solve the n -> 2y puzzle. Historically, it was noticed that jr meson
decay into two photons was not occurring with the expected rate. However, by cor-
recting for the presence of an anomaly, we can obtain the experimentally observed
decay rate. (The presence of the anomaly does not necessarily spoil renormal-
ization, because here there is no Ward-Takahashi identity that is destroyed, since
there is no local conserved axial current.)

The Feynman graph that mediates pion decay into two photons is a triangle
graph, in which the two photons couple to an internal fermion loop via two currents
J. The pion also couples to this internal fermion loop, but, because of PCAC,
the pion couples via the axial hadronic current. Thus, we have the classic V-V-A
triangle, which we know is anomalous.

The decay of a pion of momentum p into two photons of momenta kl and k2
is denoted by:

n(p) -j y(ki)+y(k2) (12.62)
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and governed by the following matrix element:

(y(ki, Ei), Y(k2, E2)I no(p)) = i(2n)4rN,,,(p, ki, k2)

x 64(p - kl - k2)E1(kl)EZ(k2) (12.63)

The tensor rµ,,, in turn, is given by:

rµ»(p, ki, k2) = e2
J d4x d4Y (OI T [JJ(x)J»(Y)]

Ino)eik,X+ik2Y (12.64)

where JN, is the electromagnetic current.
By Lorentz invariance, we know that the only tensors that we can use to

construct this matrix element are k1, k2, and EµvAP. Since the pion is a pseudoscalar
particle, we must choose:

rµ»(p, ki, k2) = iEN,vapki kzr(p2) (12.65)

Next, we can use LSZ methods to reduce out the pion field appearing in the
state vector 17r (p)). Then we use PCAC, given by to replace the
pion field with the divergence of the axial current. Then our tensor becomes:

rµ»(p, ki, k2)
ie2(q2 M'2r)

d4x d4y
fmm7r

x (OIT 10) (12.66)

(Because we are analyzing the no field, we must use the third component of isospin
Aµ in the PCAC relations.)

Our goal is to derive a low-energy theorem on this matrix element. To do this,
let us define a new matrix element, which will prove useful in our discussion:

rµ» (p, ki, k2) = J d4x day eikz y-iP x (0IT 10) (12.67)

The trick is to find a relationship between our rµv and the new r,v that we have
just written.

Next, we will hit this tensor with pl. Contracting the left-hand side with
PI is equivalent to taking the derivative with respect to x of the right-hand side.
However, taking the x derivative of the right-hand side will pick up the derivative
of a 0 function appearing in the time-ordered product, which in turn will yield
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delta functions. Performing the derivative, we find.

pATT» A(p, ki, k2) = -if d4 xd 4y erk2 Y-iP"X

x ((OAT 10)

+ (OAT {S(xo - yo) [Ao(x), J (y)] Jµ(0)} 10)

+ (OAT {S(xo)[Ao(x), Jµ(0)]J (y)} 10)) (12.68)

In the limit as p -> 0, the left-hand side of the equation vanishes. Also,
the two commutators on the right-hand side of the equation also vanish, using
the current algebra relations. Thus, all terms have vanished except rµ,,, which
therefore must also vanish. This means that the entire equation has collapsed,
showing that it can never decay to two photons in this limit, which violates the
experimental data. This problem can be resolved by noting that the Feynman
graph that dominates this process to lowest order is the V-V-A triangle graph,
which we know is anomalous.

Inserting the anomaly back into the previous relationship, we therefore have:

z

li k1, k2) = ie2f Eµvapki k2 (12.69)

where the value of D depends on the fermions moving within the triangle graph.
Comparing this with our previous Lorentz decomposition of this tensor, we

therefore have:

r(o) =
e2D

2ir2 fn
(12.70)

Now let us calculate D. To lowest order, we can assume that the naive quark
model is correct. Using free-field representations of the currents, we find that the
electromagnetic current is related to the charge Q matrix by the following-

Jµ(x) = 4(x)y Q4(x) (12.71)

where:

Q = diag (2/3, -1/3, -1/3) (12.72)

and that the axial current is given by:

x3

Aµ(x) = 4(x)Yµy5 2 4(x) (12.73)
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where:

X3 = diag (1, -1, 0) (12.74)

Inserting these expressions back into the value for D, we find:

N X3=N
D = Tr {Q Q} )

(12 75)2 ,
2 6

.

where N is the number of colored quarks. Assuming N = 3, this gives us a value

of:

P(0) = 0.037 mn 1

This is to be compared with the experimental value:

P(mn) = 0.0375 mn 1

(12.76)

(12.77)

if we have three colors of quarks.
Yet another check on the Standard Model is the fact that the anomaly con-

tribution of the leptonic and hadronic sectors of the Weinberg-Salam model just
cancel each other. The leptonic sector of the Weinberg-Salam model, by itself,
is not renormalizable because of the chiral anomaly. However, the true anomaly
is the sum of the anomalies coming from the leptonic and hadronic sectors of
the Glashow-Weinberg-Salam model, and these cancel perfectly, giving us con-
fidence once again of the correctness of the Standard Model.

To see how this works, let us calculate the anomaly contribution from the
leptonic sector of the Weinberg-Salam model. In particular, the calculation sim-
plifies if we just calculate the anomaly coming from the coupling of the Zo with W+
and W-. (This W W Z triangle graph appears, for example, in neutrino-neutrino
scattering, where a triangle graph is exchanged between the two neutrinos.)

Since right-handed fermions do not couple to the W vector meson, we are only

interested in the left-hand anomaly:

Tr ra{rb, r`}L, (12.78)

For the W mesons, the isospin coupling is easy to find, since they couple to
fermions via r+:

rb ^' r+> r` ^' r- (12.79)

To find the contribution from the Z vertex is a bit more complicated, but it
can be read off the Lagrangian using Eqs. (10.62) and (10.66). The Z gives an
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isospin coupling of:

r, - sec 8W (r3 + sine 8w Q) (12.80)

Now let us insert everything into the anomaly:

Anomaly - Tr [(r3 + sin2 BWQ){r+, r_}] (12.81)

All terms in the trace vanish, except the one containing the charge Q, so we have:

Anomaly " Y Q'c (12.82)

In other words, the sum of the left-handed changes must sum to zero. However,
it is easy to see that the sum of the electron and neutrino charge does not vanish,
and hence the Weinberg-Salam model, for the leptons is not rcnonnalizable. In
other words, the leptonic sector by itself is not self-consistent.

In the Standard Model, however, we add the contribution of both the leptonic
and the hadronic sector. The right-handed quarks do not couple to the W meson,
so we only have to sum the contributions of the charges of the left-handed quarks.
The sum of the two sectors is given by:

Anomaly - Q(e) + Q(v) + 3 [Q(u) + Q(d)] =-1+0+3 (3 - )=r0 (12.83)

Thus, for one generation of quarks and leptons, we have an exact cancellation.
This result is also welcomed, because it helps to explain the rough symmetry
in the number of leptons and quarks that have been discovered over the years.
Every time a new lepton was discovered, a new quark would be discovered soon
afterwards, and vice versa. From this point of view, we need an exact balancing
between the lepton and quark sector to give us a renormalizable, anomaly-free
theory. (However, this still does not explain why leptons and quarks come in three

distinct generations.)

12.7 Fujikawa's Method

There is another method of obtaining the anomaly that is much simpler and more
conceptually intuitive using path integrals-10 We notice that the anomaly arises
because of a failure of the regularization scheme to accommodate the axial current
conservation. Thus, we might expect the failure of the symmetry to take place at
a more fundamental level, such as the quantum measure.
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Under the chiral gauge transformation:

-> eiOY5 *
e'OY5

425

(12.84)

we wish to calculate the change both in the action as well as in the functional
measure.

The action transforms as:

J
d4x ii p* -> J d4x iii 7 r -

J
d4x B(x)8N,J5 (12.85)

where the axial current is given by:

JS = YAYs (12.86)

The measure transforms as:

Di Di -> det (e`° '5) Di Di (12.87)

Normally, we discard the determinant because it appears to be a constant.
However, closer analysis of this term shows that it is actually divergent, and hence
requires regularization. This process of regularizing the determinant, in turn, will
generate the anomaly. To determine the value of the determinant carefully, let us
introduce a complete set of eigenfunctions 4 of the operator 0:

411(x) = a.n4n(x) (12.88)

We assume that the eigenvalues Xn are all discrete, although this is not neces-
sary. We will normalize these eigenfunctions as follows:

f d4x 0t(x)4m(x) = snm (12.89)

Then the Dirac spinor can be decomposed in terms of this complete set of eigen-
functions:

fi(x) anOn(x); 1G = On(x)bn (12.90)
n n

The functional measure can be rewritten as differentials over dan and An:

DtIID, ->fldanfldbm (12.91)
n m
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We are now in a position to determine the determinant in the functional
measure. The transformation of the field variables is now written as:

*'(x) = e'° * - Y anon = eiBys >2 amOm (12.92)
n m

Let us multiply both sides by On and integrate over x. Then we find:

an = CnmamY,
M

Cnm = f d4x On(x)ei°(X)Ys4'm(x) (12.93)

Thus, the change in functional measure is given by:

da'' = det (Cnm)-1 fldan (12.94)
M n

If the determinant of eiBys were equal to one, then the functional measure
would be invariant under a chiral transformation. However, a careful analysis
shows that this determinant is not equal to one and, in fact, is potentially divergent.
(The determinant occurs with exponent minus one because we are dealing with
Grassmann variables, not ordinary c numbers.)

For small B (x), we can make some approximations and rewrite the determinant
factor as:

det(Cnm)-' det (nm + J8(x)(x)5m(x)dx)

exp (-i Y f dx B(x)Om(x)Y5Om(x))
n J

= exp (-i f dx 0(x)A(x)) (12.95)

A(x) _ YOn(x)Y5&n (12.96)
n

Since the Di yields the same determinant, we find that the overall measure
transforms as:

D f Di7i -> exp (-2i
J

d4x B(x)A(x)) D/ Di7i (12.97)
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Written in this fashion, the determinant in the functional measure is actually
divergent, and hence must be regularized. This process of regularization, in
turn, will generate the anomaly, since the axial current conservation cannot be
maintained by any regularization scheme.

To regularize this sum, we will find it convenient to introduce the convergent
factor exp -(X" /M)2 and take the limit as M -> oo. Inserting this converging
factor into the sum, we have:

A(x) lim 4
nM-00

lim YOn(x)y5e-(,,/M)20n(x)

M-+oo
n

(12.98)

where we have replaced Xn with P.
Since we are taking the trace with respect to On, we are free to change the basis

of the trace. Using Eq. (8.23), we can change the basis to 1k) eigenstates instead,
as follows:

On(x) = (xln) = (xlk) J d
4 k

(kln)

= e-ik X f (27rd4k

)2

(kIn) (12.99)

Then the trace of a arbitrary matrix ,fib can be expressed as:

Tr.A(x) = E On (x)-A(x)On(x)
n

= Y(nIx)(x)(xIn)
n

E(n I k) J
d4k(kI x)I(x)(xI k') Jd4k' (k'In)

n

4

J
(4k (12.100)

where we have removed the sum over n because 1 = En In) (n I.
The trace over y5 can now be written as:

a

A(x) = lim Tr f (12.101)
M-00 J

Next, we must decompose (p)2. Because DN, is an operator, we must be careful
in handling this expression. This factor can be decomposed into an odd piece
proportional to [y", y°] and an even piece proportional to {yµ, y°} = 2gP".
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The odd piece, in turn, is proportional to [Dµ, Dv], which gives us Fu,,,. Putting
everything together, we now have:

d4k
A(x)

= MimoTr f 7r(- y5exp

x (-2M2 {[ikN,+DN,(x)]2+[yµ, y"]Fµv(x)})

lim Try5 ([y'`, yv]Fµv)2 (2M2)2 21 J (2n)4e-k21 Mz

16-x2 Tr Fµv FA,

In conclusion, we find that the trace of y5 can be written as:

(12.102)

A(x) = Tr (y5) = -
1

1 1 Tr FµvFµv (12.103)

Now let us put the total variation of the action and the measure together. From
Eqs. (12.85), (12.95), and (12.103), we find that:

D f Dii e' f d"xY(x) -> exp (i
J

d4x [fi(x) - 8(x)8µJ5])

x exp (-2i f d4x 1'(x)Tr Ft"'FN,v) D1 D,

(12.104)

This functional is invariant if we choose:

8µJ5 = -1- Tr (Fµ"FN,v) (12.105)

which is the same result that we found before in Eq. (12.58).
In summary, we have seen that the path integral method allows us to gener-

alize the Ward-Takahashi identities found earlier for QED. These identities arise
because the generating functional Z(J) is gauge invariant. When applied to gauge
theory, these identities become the Slavnov-Taylor identities and the BRST identi-
ties. The BRST symmetry arises because there is a residual (global) symmetry left
over after the gauge symmetry is broken and Faddeev-Popov ghosts are allowed
into the action.

These identities are crucial for renormalization. However, they can be violated
by chiral anomalies, which must therefore be cancelled. In the Standard Model,
the anomalies from leptons in the Weinberg-Salam model cancel against the
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anomalies coming from the quarks, giving us a renormalizable, anomaly-free
theory.

12.8 Exercises

1. For gauge theory, prove that the functional measure for the various fields is
invariant under a BRST transformation.

2. Calculate explicitly the anomaly contribution of SO(3) and show that it van-
ishes.

3. Discuss the generalization of the chiral anomaly in higher dimensions, such
as d = 6, 8, 10. What kinds of graphs are divergent? Using the Fujikawa
method, calculate what the anomalous term to current conservation might
look like. In 10 dimensions, show that the hexagon graph is anomalous.

4. Fill in the missing steps leading up to Eqs. (12.28), (12.29), and (12.31).

5. A representation a.a is called real if there exists a unitary matrix U such that:

)a = -U).QUt (12.106)

Show that the anomaly cancels for a real representation.

6. For the antisymmetric representation of SO(N) defined by Mab, the anomaly
is proportional to Tr ({Mab, MCd}Mef). Show that an invariant tensor cannot
be constructed out of Kronecker delta functions and antisymmetric E tensors
with the proper symmetry/antisymmetry properties of the anomaly (except
for N = 6). Therefore, the anomaly vanishes for all SO(N) except for SO(6),
where we have the invariant tensor Eabcdef.

7. Consider a Maxwell field locally coupled to a charged triplet meson field.
Construct the Ward-Takahashi identity for this theory.

8. Calculate the Ward-Takahashi identity in a theory of spin 3/2 particles coupled
to the Maxwell field, where the action contains (Note:

this action is actually inconsistent.)

9. Prove that the Z meson contributes the isospin factor given in Eq. (12.80) to
the anomaly.

10. Prove that the condition QBRST I `1') = 0 eliminates not only the ghost states
within IW), but also the longitudinal mode of the gauge field, leaving only the
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transverse, physical states. (Work only the lowest order in the ghost expansion
of IW).) Show that this condition reduces back to Gauss's Law.

11. Fill in the missing steps in Eq. (12.50).

12. Fill in the missing steps in Eq. (12.55).



Chapter 13

BPHZ Renormalization
of Gauge Theories

Veltman: I do not care what or how, but what we must have is at least one
renormalizable theory with massive charged vector bosons, and whether
that looks like Nature is of no concern, those are details that will be fixed
later by some model freak.. .

't Hooft: I can do that.
Veltman: What do you say?
't Hooft: I can do that.

13.1 Counterterms in Gauge Theory

The renormalization of spontaneously broken gauge theories, proved by 't Hooft,
using powerful techniques developed by Veltman, Faddeev, Popov, Higgs, and
others, opened the floodgates for acceptable quantum field theories of massive
vector mesons, which were previously thought to be nonrenormalizable.

In Chapter 7, we presented the proof of the renormalizability of QED based
on the original Dyson-Ward multiplicative renormalization scheme. Although a
number of proofs of the renormalization of non-Abelian gauge theories have been
proposed, we present two such proofs that are quite general and can be applied to
a wide variety of quantum field theories, including those that do not have gauge
symmetries. We will present the proof based on the BPHZ method and, in the
next chapter, a proof based on the renormalization group.

The renormalization program for gauge theories proceeds much the same as
for 04 and QED; that is,

1. First, by power counting arguments, we must isolate the superficially divergent
diagrams, show that their degree of divergence depends only on the number
of external lines, and that there are only a finite number of classes of these
divergent diagrams.
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2. We must regularize the divergent diagrams in order to perform manipulations
on them.

3. We must show that we can absorb the divergences into the physical param-
eters of the system, either by extracting out multiplicative renormalization
constants, or by subtracting off counterterms. Slavnov-Taylor or BRST iden-
tities are needed to show that gauge invariance is maintained and that the
renormalized coupling constants have the correct value.

4. We then must prove, via an induction argument, that the theory is renormal-
izable to all orders.

Of course, we must also check that the renormalization program does not
spoil the original physical properties of the theory, such as unitarity. For gauge
theories, for example, the proof that the renormalized theory is unitary is actually
nontrivial.

We begin this program by power counting to determine the superficial degree
of divergence of the Feynman diagrams. We define:

L = number of loops

E,y = number of external fermion legs

EA = number of external vector lines

I,y = number of internal fermion lines

Ic = number of internal ghost lines

VA = number of three-vector vertices

VA = number of four-vector vertices

VG = number of ghost-vector vertices

V,, = number of fermion-vector vertices (13.1)

By now familiar arguments, we can show that the superficial degree of diver-
gence of any Feynman diagram is equal to:

D=4L-21A-I,y-21G+Vc+VG (13.2)

In addition, we have various identities among these numbers that eliminate all
internal lines and vertices from D. As in QED, we now observe that two fermion
lines connect with one vector meson line in a vertex. Thus, we have, as before:

V,y = I,, +
2

Ey (13.3)
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Each ghost propagator connects onto one end of a ghost vertex, so that:

VG = 1G (13.4)

We also have the constraint that there are no external ghost lines:

EA+21A=4VA+3VA+VG +V* (13.5)

Finally, we can count the number of loop variables in the theory. Each internal
leg IA, I,y, IG is associated with a momentum. However, there are restrictions
on these momenta. Each vertex VA, VA, V,11, VG contributes a delta function
constraint that enforces conservation of momentum at that point. We also have
the overall momentum conservation of the entire diagram. Thus:

3 4-VA-VQ+1 (13.6)L=IA+I*+IQ-VA

Putting everything together, our final result is that the superficial degree of
divergence is:

D = 4 - EA -
23

E* (13.7)

which is the same as for QED, as in Eq. (7.42).
This means that gauge theory is, in principle, renormalizable. The degree

of divergence is a function only of the number of external lines on any Feynman
graph, and it decreases for higher point functions. Furthermore, it is easily checked
that, as in QED, the classes of diagrams that diverge correspond to the renormalized
quantities of the theory. Thus, by renormalizing these physical parameters, we
can absorb all the divergences of the theory into these parameters.

Next, we try to isolate the possibly divergent graphs in Figure 13.1. To be
concrete, let us begin with the effective action defined in terms of the finite,
physical parameters g and m (in Euclidean metric):

1 a Aaa Aa+x(1/3+im)I (13.8)

By power counting, we can easily categorize which classes of diagrams are
divergent. To this effective action, we can then add the counterterms. It is
therefore just a matter of counting to show that the counterterms we must add to
the action have the form:

4(Z3 - 1)(8µAa - 8,A aµ)2 - (Z4 - 1)81-tel2fabcA6`AeaµAav
D&gauge
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Figure 13.1. The set of diagrams in gauge theory which are potentially divergent.

+ 4(Z5 - 1)g2A`
f°deAµA A `Ae" +

1 (Z, - 1) , Aaa . Aa
2ot

(13.9)

[We will use dimensional regularization, so we will find it convenient to perform
all integrations by working in the Euclidean metric and hence some of our signs
will be reversed due to the metric; that is, (yµ)2 = -4.]

Also:

A&fermion = (Z2-1)t/i
_1)g/.,,/2 Aµ//rayµ* (13.10)

and:

- 27 - 1)gAF12 fabcAµq*a aµ qb
& ghost = i(Z6 - l)8µ,;*a8µ,i° (Z

2(Zs - 1)g1.e12

where c = 4 - d. Each counterterm was chosen to kill off a divergence among
the Feynman diagrams generated by our action.

If we add the two pieces -9 and 0' together, we arrive at the action defined
in terms of the bare, infinite quantities:

1-F+ AY = 4(BLAv - aAN)0 - S0f
abCAbi0AC

VAov

+ 4So 2 f abc fadeAµb 0Av0AoµAov + 21 a Aoa Ao
0

a µ a- iii abc c *a b_ 1 ;iii abc a b c+ 1aµ,70 8 70 280 f Aµ00 aµ 770 2g0 f 0 Oa 0
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+ io io+igoAµo*oYµr° 0+imo o o (13.12)

Let us compare the equation on the left-hand side, which is defined in terms of
the Z's, with the right-hand side, which is defined in terms of the go's. Setting the
two sides equal, we find the relation between the multiplicative renormalization
constants and the counterterms:

go = gpE/2Z1/Z2 Z3; *0 = Z2

go, = W/2Z4/Z3/2; Aµ0 = 23A

go = W /2v 5/Z3; 110 = v brl (13.13)

goo =

go fill =

gNE/2Z7/V/ZZ3Z6;

gNE/2Zs/v 3Z6;

mo = mZm/Z2

In principle, the various coupling constants do not have to be equal. In the
original bare action, these coupling constants were, of course, all identical, but after
renormalization there is no guarantee that these coupling constants will remain
equal. In other words, there is the possibility that renormalization will destroy
gauge invariance. If they are not equal, then gauge invariance is broken. Gauge
invariance, therefore, demands that the various coupling constants be identical.
This is where we need the Slavnov-Taylor identities, to guarantee that we can
maintain gauge invariance during renormalization.

The Slavnov-Taylor identities (the gauge generalization of the Ward-Takahashi
identities) preserve gauge invariance and hence keep all the coupling constants
equal:

80 = g0 =g0 =90 =90 (13.14)

Setting the coupling constants to be equal, we arrive at:

Z4Z1 Z7 ZsZ5_ _ _ _
(13.15)

Z2 Z3 Z3 Z6 Z6

These identities are the gauge counterparts of the relation Z1 = Z2 found in
ordinary QED.

To prove that a theory is renormalizable, it is necessary (but not sufficient) to
show that, by power counting, we can cancel all potential divergences by adding
counterterms into the action, which in turn gives us a simple renormalization
of the physical parameters. To complete the proof, we must show that we can
write a recursion relation that proves that all diagrams are finite to all orders
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in perturbation theory. This recursion relation, in turn, must be able to handle
overlapping divergences.

To begin this inductive procedure, let us now show, to lowest order, that we
can explicitly eliminate all divergences via this renormalization procedure. We
will use the dimensional regularization approach, which is perhaps one of the
most convenient regularization approaches for gauge theories since it respects
the Ward-Takahashi identities. (The Pauli-Villars method, by contrast, violates
gauge invariance for non-Abelian theories. To apply it to gauge theories, one must
make a nontrivial generalization of this method involving higher derivatives.)

13.2 Dimensional Regularization of Gauge Theory

The task of demonstrating that all divergences at the first loop can be absorbed
into a renormalization is simplified by repeating some of the calculations that we
found in QED, except that we must include more diagrams with additional isospin
indices. We will only analyze the fermion self-energy graph, the vertex correction,
and the vector meson self-energy graph. The other divergences can be analyzed
in a straightforward fashion.

For example, the fermion self-energy diagram is identical to the QED electron
self-energy diagram, except that we must add in the isospin indices:

E (P) = TaTarQED (13.16)

(We work in the Feynman gauge.) To calculate this, we must be more specific
about the structure of the Lie algebra. In general, for Lie algebra generators r'
which are df x df matrices in some R representation of the algebra, we have:

Tr raTb = CR6ab (13.17)

where CR is called the Dynkin index of the representation R of the algebra.
rata is a Casimir operator of the Lie algebra; that is, it commutes with all

members of the Lie algebra. It can be chosen to be proportional to a df x df unit
matrix times Sab. To calculate the coefficient, we contract over a:

E Tr (Ta a) = NCR (13.18)
a

a)

where N is the number of generators in the algebra.
Thus, we have:

,ra,ra = d Cf (13.19)
f
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Figure 13.2. The vertex correction for gauge theory has an additional graph not found in
QED because of the three-boson interaction.

summed over a. This then gives us:

z

E(! _ -i NCf go (ii+4m)df 8Jr2c
(13.20)

[Notice that the sign appearing in this equation differs from Eq. (7.94) because
of our choice of Euclidean metric. Also, for SU(M), we have N = M2 - 1 and
df = M. For the fundamental representation, we have Cf = 1.] Likewise,
the vertex correction graph resembles the vertex correction graph found in QED,
except that there is an extra graph coming from the three-boson graph (Fig. 13.2).

The first vertex correction graph is directly related to the QED result:

rµ1) _ .rb,ra,rbrµQED

We use the fact that:

Tb,ra,rb = [ib, ra]tb + a,rb,rb

= ifbac TCT b + N
Cfra

df

1=

2

fbac fdbcrd + d Cfra
f

= 1Cadra+Cfra
df

(13.21)

(13.22)

where Cad is the Dynkin index in the adjoint representation of the group (the same
representation as the generators) and equals M for SU(M).

Our final result for the first vertex correction graph is then:

2

I'µ1)(p,q)=-igopE12iaYµ(2Cad+Cfd) (13.23)
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Next, we must calculate the vertex correction piece coming from the three-
boson graph that does not appear in QED:

rµ) _ 803µ3e/2 fabcrbrc
J
f ddkYa, 1 Y»(2n)d

V - m

X (k + p)ogvµ + (q - 2p - k)» S, + (p + q - 2k)µgo (13.24)
(p - k)2(k - q)2

We now contract over the isospin indices:

fabcTbTc = 1
Cad

a

2
(13.25)

and introduce Feynman parameters and integrate to zero any terms that are purely
linear in momenta:

1 1-x ddk
r(µ) - -180µ3e/2CadTa dX dy d

Jo o (27r)

X 2kµYv KY,

[k2 + m2(l - x - y) + q2X + ply - (qx - py)2]3

1 1-x

_ -13µe/2Ta Car J
dX

J
dy Yµ(1 - E/2)F(E/2)

2
0 0

47rµ2

M2(1 - x - y) + q2x + p2y - (qx - py)2

_
-igoµe/2Yµ ra S06C

E + (13.26)

The sum of the two contributions to the vertex correction gives us:

2 N
rµ = -igoµe/2Yya

E
(Cad + Cf d )f

2

Z1=1-8Si6 (Cad+Cf)+...

(13.27)

(13.28)

Last, we would like to calculate the vacuum polarization graph for the gauge
field. There are, unfortunately, four graphs that must be computed (Fig. 13.3),
only one of which can be read off from our QED calculations.
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Figure 13.3. Of the four graphs contributing to the meson self-energy graph, only one has

a counterpart in QED.

That contribution to the vacuum polarization contains internal fermion lines.
It is given by:

fl(f)ab = TL
(.ra,rb HQED

µv ) µv

2
2

-Cf6ab
16 o

g

2

(gµvp2 - pµpv) (13.29)

By a straightforward application of Feynman's rules, we can also calculate
the contribution in which gauge mesons circulate in the interior loop. We merely
contract over two gauge meson vertices:

flµl)ab(p) 1 g2p efacdfbdc f d k V"
f ( d k2(p +k)2

where:

(13.30)

VNv = [(2k + p)µgPa - (k + 2p)ogµp + (p - k)P911C

x [(2k + p)vgaP - (2p + k)° 6P + (p - k)PSv

_ (4d - 6)kN kv + (2d - 3)(kN pv + kv pN) + (d - 6) pN pv

+ [(p - k)2 + (2p+k)2]gµv (13.31)

Let us now introduce Feynman parameters into the calculation:
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1 d
flµlvab(p) - 1SoNe facd fbdc f dx

d k 1

2 (27r)d [k2 + p2x(1 - x)]2

x ((4d - 6)kN,kv + [(4d - 6)x(x - 1) + d - 6] pN, pv

+ {2k2 + p2[2x(x - 1) + 5]}gi,,,)

S2 acd bcd 1 dx
((3d - d/2)

2(47r)d/2
f f

Jo [p2x(1 - x)]1-d/2

F(2 - d/2) ( 2

+ tp2x(1 - x)]2-d12 1Sµvp [5 -2x(1 - x)]

+ pµpv[d - 6 - (4d - 6)x(1 - x)]} I

90 r2 19 11

167r2E f
acd fbcd (6 Sµvp2 -

3
P Pv) + ... (13.32)

where we only keep the pole term and drop finite parts, and where we eliminate
momentum integration over terms linear in the momentum. (We note that the
finite parts to this integral contain infrared divergences.)

Now we must also calculate the contribution to l(11vab coming from the ghost
loop. We find:

nµ2)ab(p)
=

fdca fcdb f ddk (k + p)µkv
J (27r)d k2(k + p)2

2 e acd bcd
1 dx r

ddk (k - px)v[k + p(1 - x)]N,
-SON f f fo J (27L)d [k2 + p2x(1 - x)]2

g02
e acd bcd

fo

1 dx d/2)
(47L)d/2

f f 2 [p2x(1 - X)]1_d/2

-2 x)F(2 - d/2))
[p2x(1 - X)]2-d/2

2 1 1

1 90 facd fbcd (6 g"' p2 +
3 puv) + (13.33)

where we drop all finite parts.
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There is also the zero-momentum loop diagram (and also two tadpole graphs)
that do not contribute anything at all. We know that they will give us mass
corrections that do not have any momentum dependence, being proportional to
8d (0). However, we know that, by gauge invariance, the mass of the gluon is
zero even after renormalization. Therefore, we can drop these potential mass
corrections from our calculation.

We summarize our final results for some of the renormalization constants:

z
Z1 = 1 - (Cad+Cfd)+...

f
2NC1Z' I

(

\
Z3 = 1 +

z

8n2E
(ai - 4Cf 1 +... (13.34)

which is consistent with Eq. (7.103).
This now completes the first step in the induction process. Now, we must

tackle the most difficult part of the program, which is to write down the recursion
relations and show they are actually satisfied.

13.3 BPHZ Renormalization

The multiplicative renormalization procedures that we developed for QED are
quite awkward when applied to gauge theories, since we have many more inter-
action vertices and fields. We now present a different renormalization scheme,
the BPHZ renormalization program, 1-3 which is one of the most powerful and
versatile of the various renormalization programs. Although it has a reputation of
being a formidable, difficult formalism, the essential features of this approach are
easy to summarize.

There are several important reasons for analyzing the BPHZ renormalization
prescription:

1. The BPHZ approach easily handles overlapping divergences, which are diffi-
cult to manipulate in other formalisms. In fact, overlapping divergences are
the chief complication in any renormalization program.

2. It is independent of the regularization prescription, and hence may be used to
show that renormalization theory is independent of the regularization scheme.
Since we use a subtraction on the integrand of the Feynman integral, we never
need to make any explicit mention of a regularization scheme. There is no
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need to discuss the details of Feynman graph divergences. All we need to
know is that a prescription exists to render a graph convergent.

3. Although the Dyson renormalization program outlined earlier is ideally suited
for multiplicative renormalization, the BPHZ formalism is more closely re-
lated to the counterterm method.

In the BPHZ formalism, we assume that the usual power-counting analysis has
been performed, leaving us with the final induction step. We begin by first showing
that we can, via a Taylor expansion at zero external momentum, eliminate the
divergent quantities of any graph by a subtraction. This is called the Bogoliubov
R operation. In our discussion of the BPHZ technique, we will derive an explicit
expression for the subtractions. We will then show that this method of subtractions
can be rewritten in terms of counterterms added to the action.

In this section, we will first try to outline the intuitive ideas behind the BPHZ
program, in order to stress the simplicity of its basic ideas, and then later we will
be more precise in our definitions. (We omit detailed proofs.)

We begin by defining the superficial degree of divergence of a graph as the
degree of divergences given by power counting. We define a renormalization part
as a proper (1PI) diagram that is superficially divergent. Let F be a particular
Feynman graph to which we associate a Feynman integral:

Fr = lim f dkl dkr lr
J

Ir = 11 A -xb)11 Vc (13.35)
a,b c

where the integrand consists of a certain number of propagators and vertices.
This graph, in general, is divergent as c -+ O. (Our results, however, will be
independent of any particular regularization scheme.)

We will now define the finite part of this graph, denoted by Jr:

Jr = lim f dkl . dkrRr (13.36)
E0' J

The goal of the BPHZ renormalization scheme is to find a prescription or a
set of rules by which we can extract Rr from any Ir. We define a graph to be
primitively divergent if it (1) is 1PI (one-particle irreducible), (2) is superficially
divergent, (3) becomes convergent if any line is broken up. For these primitively
divergent graphs, let us introduce an operator tr that has the ability to extract out
the divergent part of a graph via a Taylor expansion at zero momentum: Then:

Jr =
J

dki dkr(1 - tr)Ir (13.37)
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To define this operator, we define a Taylor expansion about the point where
all external momenta are set equal to zero. We define:

E-1

trlr(pi) Ir(O) +... + D(r)! E (pi,)x,(Pi2)xz ... (PiD)xDf 1

8°Ir
x

(8Pi,)x,(8Piz)xz ... (BpiD)xD
(13.38)

where E - 1 is the number of external lines and D is the superficial degree of
divergence. The operator (1 - tr) has a simple interpretation: It just subtracts the
divergent part of an integral at zero momentum, with the number of subtractions
determined by the superficial degree of divergence D.

The more general case, however, is much more complicated than this because
a graph F may have divergent subgraphs y; . In fact, a graph F may be superficially
convergent but may contain divergent subgraphs. The bulk of our work is to find
a way in which to catalog and then subtract each of these divergent subgraphs.
Because of the large number of definitions we must make, we will first intuitively
sketch the outline of the BPHZ program, without regard to rigor, in order to display
the essence of the technique. In the next section, we will be more precise in our
definitions.

Let us define Rr as the integrand of a graph with all subgraph divergences
subtracted out. The only divergence left is therefore the overall divergence of the
entire graph. Once we subtract out this overall divergence, then we are left with
all divergences subtracted, so we have the renormalized integrand Rr:

-Rr=Rr - trRr (13.39)

There are two equivalent approaches to finding the solution for Rr. Histori-
cally, the first approach was pioneered by Bogoliubov and Parasiukl and Hepp,2
who wrote down a recursion relation for Rr in terms of lower-order graphs. In the
second approach, Zimmerman3 wrote down the explicit solution of these recursion
relations for Rr.

To understand both approaches, we first recall that divergent subgraphs y; can
be one of three possible types. If we draw boxes around each subgraph, then these
boxes are either

1. Disjoint (the boxes are separated, with no common region).

2. Nested (one box appears entirely within another).

3. Overlapping (the boxes share some common lines).
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---------------

y Y3

----------------

--------------

Y3

2 Y3

Figure 13.4. The 6 ways we can draw boxes in the BPHZ approach, as shown here for the
two-loop graph, avoid the overlapping divergence problem that is a major obstacle in other
renormalization methods.

One can, of course, construct Rr by simply subtracting off all possible subdi-
vergences within Ir. In Zimmerman's approach, however, one omits the overlap-
ping divergences among the subdivergences. The subtractions are taken only over
nested and disjoint graphs. To see this, let U be any particular set of boxes. Let
.9" be the total set of all possible combinations of boxes. For example, in Figures
13.4 and 13.5, we show how to draw boxes around the various subgraphs for a
two-loop and three-loop diagram, such that we ignore all overlapping subgraphs.

Yi

Yt Y3

------------------------

8 Previous Graphs 1 YS

---------------------

Figure 13.5. The 16 ways that boxes can be drawn for the three-loop case avoid overlap-
ping divergences.
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There are 6 ways in which to draw these boxes for the two-loop diagram
(dropping overlapping combinations):

9 _ {0, Y1, Y2, Y3, Y3 Y1, Y3Y2} (13.40)

It is essential to notice that we have omitted the overlapping cases: { y2 y1 }, and
{y3 y2 y1 }. Symbolically, we may therefore write Rr as the usual Feynman integral
minus the divergences associated with each of these subgraphs:

Rr = [1 - t1'' - tY' - tY' + (-tY3)(-tY') + (-tY3)(-tYI)] Ir (13.41)

The generalization to the three-loop case is straightforward. The decomposi-
tion into boxes is given by:

IW_ = {#, Yt, 1'`i, Y3, Y4, Y5,

Y2Y1, Y3Y1, Y4Y2, Y5Y2, Y5Y1, Y5Y3,

Y5Y4, Y5Y1 Y2, Y5Y3Y1, Y5Y4Y3 }

Then Rr is given by:

(13.42)

Rr = [1 - tY' - tYI - tY3 - tY4 - tY5 + (-tY4)(-t'I)

+ (-tY')(-tY2) + (-tY3)(-t"") + (-tY5)(-tY, )

+ (-tY5)(-tY2) + (-tY5)(-tY') + (-tY5)(-tY4)

+ (-t')(-t)(-t") +(-tY5)(-t")(-tY')+(-tY5)(-tY4)(-tYZ),Ir

(13.43)

What is remarkable is that this subtraction process works even if we simply
drop the troublesome overlapping divergences. These terms, we recall, invalidated
the naive multiplicative renormalization scheme of Dyson/Ward for QED, which
broke down at the 14th-order level. So it is rather surprising that we can simply
drop them in the BPHZ counterterm approach.

To see why the overlapping divergences can be dropped in this approach,
consider the two-loop case shown in Figure 13.4. A direct calculation of the
double-loop graph shows that it contains divergences proportional to 1/E2, which
can be cancelled, as well as log p2/E. This second type of divergence is the
celebrated overlapping divergence and cannot, at first glance, be cancelled by
adding any counterterm to the action. A term like log 82 is required to cancel
this diagram, and such a term does not appear in the action and hence cannot
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be absorbed into any renormalization of a physical parameter. The method of
counterterms seems, at first glance, to fail.

Miraculously, however, such terms can, indeed, be cancelled if we take a
closer look at the method of counterterms. A single-loop counterterm for ¢3 can,
of course, cancel the subdivergence in yi. When applied to the double-loop graph,
this counterterm gives us 1/E multiplied by the loop integration of the rest of the
graph, which produces log p2. The product of the two gives us log p2/E, which
is the term needed to cancel the overlapping divergence. Thus, the single-loop
counterterms, when applied to the double-loop graph, give us a product that can
cancel the overlapping divergence log p2/E.

In BPHZ language, this cancellation is written as: (1 - tY3)tY1 tY, = 0.
Thus, overlapping divergences, which are difficult to handle in the multiplica-

tive renormalization scheme, can be cancelled by carefully iterating lower-order
counterterms for higher-order graphs. This demonstrates the superiority of the
counterterm method over the multiplicative renormalization.

In the same manner, one can show that all overlapping divergences drop out
to all orders, although we will not present the proof. BPHZ showed that this
cancellation can be generalized for an arbitrary number of tY' even if the y; are
overlapping.

Although this result is gratifying, there is still one last step that we must
complete. Zimmerman's solution, although explicit, still has one serious disad-
vantage. It contains nested graphs, which cannot be cancelled by the counterterm
method. This is because counterterms in the action only cancel against disjoint
graphs, never against nested graphs. (A simple application of Wick's theorem and
Feynman's rules for the counterterms shows that nested subdivergences are never
generated.)

To make contact with the counterterm method, we will now use an equivalent
method pioneered by BPH, which is equivalent to the Zimmerman solution. It is
possible to absorb all unwanted nested graphs into purely disjoint graphs (which
can be cancelled against counterterms) if we write down recursion relations for
lower-order subgraphs.

For example, in Figure 13.5, we notice that a nested graph arises from y3 and
y,. This nested divergence can be absorbed by introducing a new subtraction
operator RY3 which operates on subdivergences: Ry1Ir = Ir+(-t)Yl Ir, where Ry,
is an operator that subtracts out the divergences contained within the subgraph y3,
which is due to the subgraph yl. Therefore, the nested graph can be absorbed by
introducing this subtraction operator for subgraphs:

(_t)» f?
Y3

Ir = (-t)Y31r + (-t)Y3(-t)Y, Ir (13.44)

The last term is the nested graph, which has now been absorbed into the
operator Rya. This method is quite general: All nested graphs can be absorbed
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into the subtraction operator of some subgraph. BPHZ proved that this process
allows one to express Rr by iterating Ry for lower-order disjoint subgraphs and
dropping all nested ones.

Let now summarize both the Zimmerman and the BPH formalism. Let y be a
divergent subgraph. Let -T be the set of all possible combinations of just disjoint
subgraphs and -T U Y be the set of both disjoint and nested graphs. Then the
formulas of Zimmerman and BPHZ, respectively, can be written symbolically as:

Rrlr = ( 11 (-t)y) Ir
U"P,

E ( 1
1(-t)yRy ) Ir (13.45)

For example, for Figure 13.5, the set -T is given by just the disjoint set
{0, Yi, Yz, y3, y4, YiY2}. By expanding out all the terms in the BPH recursion
relation on the second line, we recover Zimmerman's formula on the first line.

The advantage of the BPH recursion relation is that we sum solely over
divergent disjoint graphs, which in turn can be cancelled against the counterterms
appearing in the action. The recursion relation is then the last step in demonstrating
that the BPHZ method guarantees that counterterms in the action can cancel against
all potential divergences of field theory.

13.4 Forests and Skeletons

So far, our discussion has tried to emphasize the intuitive nature of this BPHZ
approach, which is a specific prescription by which to subtract out all possible
divergent subgraphs. This intuitive discussion, however, will now be repeated
and strengthened by making a few rigorous definitions. Specifically, these def-
initions will allow us to show the equivalence of BPH's recursion formula and
Zimmerman's explicit solution.

Let y be a subgraph within a graph F. Two graphs are mutually disjoint if
they have no lines or vertices in common:

y,ny2=0 (13.46)
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Now define { yl, y2, ..., y,} to be a set of mutually disjoint connected subdi-
agrams of the same graph F. Then we define the reduction operation:

1'

r
(13.47)

which contracts each subgraph y; down to a point.
We say that two subgraphs overlap if they share some lines and vertices. More

precisely, they overlap if none of the following holds:

yl n y2 = 0; yi c y2; y2 c yl (13.48)

Both overlapping and nested graphs are omitted in Eq. (13.47).
Now we come to the definition of a forest (which includes nested graphs). A

forest U of F is a hierarchy of subdiagrams such that:

1. The elements of U are all renormalization parts.

2. Any two elements of U are nonoverlapping.

(Loosely speaking, as we saw before, a forest U is a set of subgraphs that can
be either nested or disjoint, but not overlapping. Each subgraph is superficially
divergent. For example, there are 16 forests in Figure 13.5.)

A forest is called full if it contains F itself. And it is called normal if it does
not. A forest is called empty if it contains only the null set.

To define this subtraction scheme, we introduce the Bogoliubov R operation.
Then BPH proved that Rr can be expressed recursively as:

C

Rr=Jr+ E Ir/{y,I...y}rI Oyt (13.49)
y,,...yc T_i

where we define:

Oy = -tyRy (13.50)

Then Rr can now be defined as follows:

Rr =

Rr =

Rr if F = renorm. part

(1 - tr)Rr if F renorm. part (13.51)

Notice that this definition of the R operation is recursive and that we only
subtract disjoint graphs. Ry is always defined in terms of Ry of lower order.
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The remarkable thing about this procedure is that it is equivalent to Zimmerman's
forest formula:

Rr = E fl(-tA)Ir (13.52)
allU AEU

where we now subtract both disjoint and nested graphs, and where the product
over ? are ordered, such that to is to the left of to if A 9 or.

We now sketch the proof that Zimmerman's Eq. (13.52) satisfies the recursive
BPH definition of Rr in Eq. (13.49). We can always find the unique set of biggest
disjoint subgraphs Ml, M2, ..., M of any forest U. Each biggest subgraph Mi
contained within a forest U may have smaller nested subgraphs contained within
it. To construct this unique set, we take any two nonoverlapping subgraphs yi and
yj within the forest U. Then we must have one of the three possibilities:

Yi C Y!

Yf C Yi

yj n yj 0 (13.53)

For the first possibility, we remove yi as a candidate for a biggest subgraph. For
the second possibility, we remove yj from consideration. For the last possibility,
we leave both in. By successively eliminating the various subgraphs in this way,
we are left with only the biggest subgraphs {Mi }, which are disjoint and unique.

The forest U is then the union of full forests, one for each Mi. We can therefore
rewrite Zimmerman's forest formula in Eq. (13.52) as:

Rr

n

Ir + [j_tM(,
M. ,..., M i=1 U1 E,9-(M1)

x E fl (-t)Y, ... fl (-t)Y Ir]
YEU

(13.54)

For example, consider Figure 13.5. The set of disjoint biggest subgraphs is
{Mi } = {0, yl, y2, y3, y4, Y1Y2}. Then the terms farthest to the right contain the
nested combinations {y3yl, y4y2}. In this way, Eq. (13.54) separates the forests
into two sets: the disjoint set {Mi } and the nested set.

The point of this construction is that we have rewritten the forest formula so
that all nested sequences of graphs appear within the parenthesis. This allows
us to regroup these nested formulas into the form (-t)MM RM; Ir. Since {Mi }
is the unique set of disjoint biggest subgraphs within any forest, we have now
converted sequences of nested subgraphs into a recursion relation involving only
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these biggest subgraphs. The nested graphs in Figure 13.5 have not disappeared;
they have simply been hidden within the M; .

With this regrouping of graphs, Eq. (13.54) has now been converted to the
expression E

1
11(-t)°'" R,M, Ir. But written in this way, we recover the BPH

formula of Eq. (13.49), based entirely on disjoint graphs Ml. This completes
the sketch that Zimmerman's forest formula in Eq. (13.52) (based on nested and
disjoint graphs) can be reexpressed in terms of the BPH recursion formula in Eq.
(13.49) (based only on disjoint graphs M1). This demonstrates the equivalence of
the two formulas given earlier in Eq. (13.45).

Now that we have rendered all graphs finite, the last step in the proof of BPHZ
renormalization is to show that this subtraction technique can be accomplished by
adding counterterms into the action. This is easy, since the subtraction process
on disjoint graphs that we have outlined is equivalent to the process of adding
counterterms into the action. Since the counterterms correspond to the set of
divergent disjoint graphs, the procedure of subtracting off the divergences is
identical to adding counterterms into the action. Since we saw earlier that these
counterterms are proportional to the original action, we have now demonstrated
that the BPHZ method is equivalent to multiplicative renormalization.

The Yang-Mills theory, because it satisfies all the properties required by
BPHZ, is therefore renormalizable. Not only does the Yang-Mills theory satisfy
all the requirements coming from power counting, it also satisfies all the properties
demanded by the BPHZ recursion method. (Since the BPHZ method makes no
mention of gauge invariance, we must also impose the additional constraint of the
Slavnov-Taylor identities to keep the renormalized coupling constants for gauge
theory equal.)

Finally, it is useful to compare the BPHZ method with the Dyson renormal-
ization program mentioned earlier. In retrospect, there are some key differences
between these two approaches. The Dyson renormalization program was based on
defining skeleton graphs constructed out of renormalized vertices and self-energy
graphs, such as SF. The Dyson approach from the very beginning tried to lump
infinite classes of divergences into these renormalized vertices and self-energy
graphs. The advantage of doing this is, of course, that one can immediately ex-
tract out the multiplicative renormalization constants Z1. However, the price we
paid for grouping the graphs from the very start into renormalized propagators
and vertices was that we were plagued with overlapping divergences. Thus, the
recursion relations had to be written out entirely in terms of vertices without the
overlapping divergences, which often gave us clumsy equations. Another disad-
vantage of the Dyson approach is that it was not very general. It was constructed
explicitly for QED, and hence must be modified in significant ways to handle
more general theories.

This, however, is precisely the advantage of the BPHZ method: It is quite
general. The BPHZ approach abandons the skeleton method of trying to lump



13.5. Does Quantum Field Theory Really Exist? 451

divergent graphs from the very beginning into SF, etc. The BPHZ approach is
based on successively adding counterterms to the action. These counterterms are
chosen to subtract out the divergent integrand of any Feynman diagram, without
performing any regrouping of diagrams into renormalized vertices and propaga-
tors. As a result, we lose multiplicative renormalization at each intermediate step.
However, the advantage of this is that we are no longer plagued by overlapping
divergences. Only at the last step do we recognize that these subtractions give us
counterterms that are proportional to terms in the original action, which in turn
finally gives us multiplicative renormalization.

(We should also point out some drawbacks of the BPHZ method. Because we
subtracted all diagrams at zero momentum, infrared divergences are more difficult
to handle in this approach. Also, the method must be modified to handle gauge
invariances, since the Slavnov-Taylor identity must be added as an additional
constraint.)

13.5 Does Quantum Field Theory Really Exist?

Because of the remarkable experimental success of quantum field theory in de-
scribing the interactions of electrons and photons, we might be surprised to find
that, strictly speaking, quantum field theory as a perturbation theory may not exist.
This is because although we can successfully renormalize the perturbation series,
there exists the possibility that the entire perturbation theory diverges. Simple
arguments, in fact, show that perturbative quantum field theory may likely di-
verge at extremely high order. Although the perturbation theory for QED seems
to converge rapidly at low orders because a - 1/137, eventually the Feynman
graphs themselves may overwhelm the smallness of the fine structure constant
and yield a divergent sum.

For example, Dyson pointed out many years ago that for negative a, QED
should be unstable, with unlimited virtual pair production from the vacuum.
However, virtual pair production with sufficiently small separation may become
real pair production by separating to larger distances. Thus, real pair production
from the vacuum could progress unimpeded, and the theory could collapse with
an unstable vacuum. Thus, QED may have a zero radius of convergence in a
space.

To see how the sum of a perturbation might diverge, let us take the much
simpler example of 04 theory without any kinetic term, and let us replace a
functional integral over 0 with an ordinary integral. Already, at this simple level,
we can see how the perturbation theory, although perfectly well behaved at any
finite order, diverges at infinite order.
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Let us examine the behavior of the following partition function at high order:

Z(g) = 1 (13.55)
J°°

This function is interesting because the coefficients in the expansion in g equal
the number of vacuum diagrams in 44 theory. Although this integral cannot be
performed exactly, we can always power expand this function in powers of g and
then try to sum the perturbation theory. A simple power expansion yields:

00

Z(g) _ > 9nZn
n=O

Zn _ on
°O

d
One 1 2 non F(2n +

ZW2n - n! _

(-1)

V:iFn
(13.56)

Our goal is to examine the behavior of the perturbation theory for large n. We can
use the Stirling approximation formula:

n! 2nnenlogn-n (13.57)

For large n, the perturbation theory therefore behaves as:

Z
(-16)n

e(n-1/2)logn-n
nN v" (13.58)

Although this simple example is unrealistic, we can already see the nontrivial
behavior of the theory in g space. The perturbation theory diverges with large n.

In fact, a more careful analysis shows that the theory, in complex g space, has
an essential singularity at g = 0. For any negative g, the integral over 0 blows up
and the theory breaks down. The potential is no longer bounded from below and
the integral diverges. Thus, there is ample reason to believe that QED may suffer
the same fate.

The tremendous experimental accuracy of the theory, however, shows us that
QED cannot be simply discarded as a physical theoryjust because the perturbation
theory may not converge. QED has been able to withstand all challenges over the
last 6 decades, and, not surprisingly, there is a resolution to this problem.

We can consider QED to be an asymptotic theory, that is, a theory that can,
for fixed n and a small enough, approach a definite result. For example, in our
simple example, we may treat the perturbation series as an asymptotic series:

n

`I
4`11'(2n + 3) Igln+1

Z Z;g < 2(g) - (n+1)! [CAS(! Argg)]2n+3/2
(13.59)

=0 2
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For our purposes, we may consider QED to be an asymptotic theory that
will allow us to obtain perfectly convergent results, even though the original
perturbation series, in principle, may not exist. One may also approach this
problem from another direction. One may be able to generalize the definition of
the original divergent function Z(g) even if the perturbation theory was divergent.
To do this, we will use the method of the Borel transform, which allows us to
extract meaningful information from divergent series. For example, let us begin
with a function G(g) whose power expansion in g diverges:

00

G(g) _ > angn = oo (13.60)

n=1

Although the original power expansion of G(g) makes no sense, it is possible
to define a new power series that has much better convergence properties. To
see this, let us divide each coefficient by n! in order to obtain a more convergent
series:

CC)

F(g) = r a gn (13.61)
n= n.

Although the original power expansion diverged, this new function has a radius
of convergence given by:

1 = lim sup
R1 n-oo

an

n!
(13.62)

1/n

With this new function, we can reintroduce the original function G(g) by defining
it to be:

G(g)
J

e-`F(tg)dt (13.63)
0

This new definition of G(g) reduces to the old one if we perform the integration
over dt:

CC)

G(g) _ a gn
J

e-ttndt
n=1 n' 0

00

E angn (13.64)
n=1

Although the original power expansion diverged, the advantage of this new defi-
nition of G(g) is that it may have a finite radius of convergence, while the old one



454 BPHZ Renormalization of Gauge Theories

was given by:

1 = lim sup Ian I1ln (13.65)
R2 n---goo

Thus, if R2 > 0, then R1 = oo. Similarly, if there is a singularity in the Borel
plane for F(g), then R2 = 0.

Now let us use this technique to analyze the Borel transform for the function
Z(g). The key to this method is to define a new function B(t) that is constructed
from the same coefficients Z. found in the divergent series except that we divide
each term by new factors sufficient to make the series converge. Then we take the
inverse Borel transform in order to recover Z(g) from B(t).

For example, we can define:

CC)

B(t) =
Zntn

(13.66)
1=O

I(n+2)

Because we have divided each term by the F function, the series may now converge
in a finite radius in t space.

Now that we have defined a function B(t) that exists, then we define the inverse
transform to recover Z(g):

Z(g) =
J

00 dte-` fB(gt) (13.67)

If this process of recovering the function Z(g) from its divergent perturbation
series exists, then we say that the theory is Borel summable.

Now let us analyze quantum field theories that might be Borel summable, even
if the original perturbation theory diverges. We would like to analyze theories
more realistic than this toy model that we have been studying. Our starting point
will be the usual N-point Green's function, but defined in Euclidean space:

(0IT [0(x1)0(x2) ... 4 (xN)] 10)

- f D 0e-S(0)0(xl)0(x2) ... O(xN)

- f DO e-s(m)
(13.68)

where 4(x) is a generic field for an arbitrary field theory of arbitrary spin. Our
task is to take the Borel transform of this function in order to find when the Borel
transform diverges.

To analyze this Green's function, we will rewrite the numerator of this function

as:

N(g) = g
J 00 e-`F(gt)dt (13.69)
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where:

F(z) =
J

DO S (z - S(4,)) q5(xl)q5(x2) ... q5(xN) (13.70)

(To prove the equivalence of this expression with the original numerator of
the Green's function, simply insert the expression for F into N and perform the
integration over t, which is trivial because of the delta function.)

We recognize F to be the Borel transform. In order to analyze the singularities
of the transform, it is helpful to analyze the singularities of a much simpler
expression. We would like to analyze the singularities of the following function:

f duI dug ... dUN S (z - .f (U1, U2, ... , UN))

= fdYVf_1 (13.71)

where E is a hypersurface in {u} space and where f(u) = z. (To prove this
identity, perform the integration over, say, ul. Then invert this implicit function,
and rewrite the expression in a more symmetric fashion.)

This function obviously diverges if there is a point where:

IV f12=1: of
8u;

= 0 (13.72)
2

Then the denominator blows up, and the function becomes singular.
Now replace u; with 4(x;) and f(u) with S(4,). Then, if we perform the

functional integral over 0, we find that the resulting integral is singular if, for
some S(4,) = z, there is a point satisfying the usual equations of motion:

SS(A)
= 0

SO(x)
(13.73)

In summary, we have shown that the Borel transform F blows up if there is
a solution to the Euclidean equations of motion where the action S(4,) is finite.
These finite-action, Euclidean solutions spoil Borel summability.

Unfortunately, such finite-action solutions to the Euclidean equations of mo-
tion actually exist. They are called instantons, and represent genuine solutions to
the gauge theory with Euclidean metric. Instantons will be discussed in greater
depth in Chapter 16, where they will play a key role in our understanding of the
stability of the vacuum. Thus the perturbation theory of gauge theory is neither
convergent nor is it Borel summable. QCD, for example, has zero radius of
convergence. We must, as a consequence, treat it strictly as an asymptotic theory.
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This also has practical implications for QCD. There are, as we have noted,
an infinite number of possible renormalization schemes. Usually, we say that the
sum of the perturbation series is independent of whichever scheme we choose.
However, in actual practice, as we have seen, the various subtraction schemes
have different convergence properties.

In summary, the divergences of gauge theory are only a bit more compli-
cated than those of QED. In both cases, power counting arguments show that the
divergences of a graph are functions of the number of external lines, and these
divergences can be absorbed into a renormalization of the physical parameters.

We have also seen that the BPHZ method gives us a powerful method of
renormalizing quantum field theories, including gauge theory. The advantage
of the BPHZ method is that overlapping divergences, which give rise to severe
complications for the Dyson approach, do not have to be treated separately. The
BPHZ method also gives us a simple formalism in which to handle counterterms.
No explicit regularization is needed.

In the next chapter, we will use renormalization theory to give us perhaps the
most important experimental verification of QCD.

13.6 Exercises

1. Draw all the Feynman graphs in gauge theory with fermions necessary to
calculate Z4, Z5, Z6, Z7, and Z8, to one-loop order.

2. Consider a cp3 theory. Consider (a) a four-loop diagram with the topology of a
ladder with five rungs; (b) a four-loop self-energy graph, consisting of a circle
containing three interior parallel vertical lines, with two external lines coming
out from the left and right. Break them both down in terms of a skeleton and
a forest decomposition.

3. Couple SU(N) Yang-Mills theory to a Yukawa theory of mesons with quartic
interactions. By power counting, find all primitively divergent graphs includ-
ing ghosts. Show which graphs correspond to the renormalization of which
physical parameters.

4. For the Yang-Mills theory coupled to Yukawa mesons, write down the coun-
terterms that must be added to the action to renormalize it. Find the relations
between the various Z; that are preserved by the Slavnov-Taylor identity.

5. From Feynman's rules for this same theory, setup the dimensionally regulated
integrals necessary to compute the scalar meson self-energy diagram and
scalar-scalar-vector meson vertex to lowest order. Do not solve.
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6. Consider the Slavnov-Taylor identity to one loop order in gauge theory cou-
pled to fermions. Prove two of the relations appearing in Eq. (13.15) to that
order.

7. Beginning with Feynman's rules, fill in the missing steps in Eqs. (13.24) and
(13.26).

8. Beginning with Feynman's rules, fill in the missing steps in Eqs. (13.30) and
(13.32).

9. Prove Eqs. (13.56) and (13.58).

10. Prove that Eq. (13.43) in Zimmerman's approach can be re-expressed as a
recursion relation, as in Eq. (13.49) in BPH's approach.





Chapter 14

QCD and the
Renormalization Group

There's a long tradition in theoretical physics, which by no means affected
everyone but certainly affected me, that said the strong interactions are
too complicated for the human mind.

- S. Weinberg

14.1 Deep Inelastic Scattering

One of the great theoretical breakthroughs in gauge theory was the realization
that the renormalization theory of gauge theories may explain many of the curious
features found in deep inelastic scattering. In fact, it was the remarkable success
of gauge theory in explaining the Stanford Linear Accelerator Center (SLAG)
experiments on electron-proton scattering that helped to elevate QCD into the
leading theory of the strong interactions. At very high energies, the form factors
begin to lose some of their dependence on certain low-energy dimensional pa-
rameters for IgI2 > 2GeV2. This phenomenon is called scaling. For the deep
inelastic scattering experiments at SLAC, where a high energy beam of electrons
was scattered off a proton target, Bjorkenl predicted that scaling should occur,
(using current algebra, Regge asymptotics, and kinematics).

The deep inelastic scattering amplitude was calculated for the process (Fig.
14.1):

e- + p - e- + anything (14.1)

for large momentum transfers of the electron. This was an ideal experiment to
analyze the structure of the proton, since the probe was an off-shell photon, which
has a relatively clean interaction with the hadrons.
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e

Figure 14.1. Deep inelastic scattering: in electron-proton scattering, an off-shell photon
probes the structure of the proton.

The simplest explanation of scaling comes from Feynman's parton model,
where the proton is assumed to consist of point-like constituents. 2,1 Remarkably,

such a simple picture explained many of the qualitative features of the SLAC
experiments, including scaling.

There was a puzzle, however. If the proton was a bound state of some mys-
terious force, then presumably nonperturbative effects were dominant. However,
the parton model indicated that, at high energies, the partons (e.g., quarks) could
be considered to act like free point-like particles. Apparently, nonperturbative
effects could somehow be neglected, and we could assume the quarks were free
to roam inside the proton.

This simple experimental picture was then explained through QCD. Using
the theory of the renormalization group, it could be shown that the renormalized
coupling constant varied with the energy scale. At increasingly high energies,
the coupling constant of the strong force became smaller and smaller, so that the
quarks could be treated as if they were free point-like particles in the asymptotic
domain. This effect was called asymptotic freedom. A general analysis revealed
that non-Abelian gauge theories were the only field theories in which asymptotic
freedom was exhibited.

The flip side of asymptotic freedom was that, at smaller and smaller energies,
the coupling constant became increasingly large. This could, in principle, explain
why the quarks were permanently confined within the hadrons.

Let us explain the development of asymptotic freedom by first giving the
experimental results at SLAC on scaling, and then continue our discussion of
renormalization theory and the renormalization group, leading up to the celebrated
result that non-Abelian gauge theories are asymptotically free.

We will close this chapter by showing that the renormalization group equations
give us a recursion relation that yields yet another method of renormalizing field
theory.

We begin by defining the kinematics of electron-proton deep inelastic scatter-
ing. Let the incoming electron have momentum k, and the outgoing electron have
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momentum k'. Then we define:

461

q

V =

k-k'
P'q
M
q2

x = (14.2)
2Mv

The SLAC experiments probed the interior of the proton with a photon that
was very much off-shell, (i.e., q2 , -00).

In the lab frame, where the proton is at rest, we have the following:

pN, = (M, 0, 0, 0); kN, = (E, k); kµ = (E', k') (14.3)

Therefore, in the limit of small electron mass, we have:

v =

q2 =

E-E'
-4EE'sin2(0/2) < 0 (14.4)

where 0 is the scattering angle.
We will be interested in the deep inelastic region, which is defined by:

V -+ 00

Deep inelastic region = -q2 - 00 (14.5)
X fixed

We can show that 0 < x < 1. (This parameter measures how far we are from
elastic scattering, which corresponds to the point x = 1.)

Using Feynman's rules, let us construct the scattering amplitude of an electron
colliding with a proton of polarization or, emitting some unknown state In):

[e2u(k', s')y u(k, s)]
\92

f [(nI Jµ(0)I P, a)] (14.6)

where JN, is the electromagnetic current, and the matrix element of this current
between hadronic states is unknown.

Using the standard rules for constructing differential cross sections, we find
that the scattering into the nth final state is given by:

n
d3Ptd3k'

U(2)32Podam- IvI2M2E(27r)32k
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x 4 E I.AI2(2'_r)434(p +k-k- pn) (14.7)
a,s,s'

where pn is the sum of the momenta of the various hadronic final states.
Now let us sum over all the hadronic final states n, and we obtain the inclusive

cross section:

d20, _ a2 E'
lµvW (14.8)

d1 dE' q4 (E) µ

where the leptonic tensor lµ is given by (uyu)(uyvu):

2

lµv = 1Tr ('yµ jyv) = 2(kµkv +kµkv +

2
gµv) (14.9)

The hadronic tensor Wµv is the object we wish to study, since it is basically
unknown. It can be vastly simplified, however, by explicitly performing the sum
over the unknown final state In). Using completeness arguments, dependence on
In) disappears:

Wµv
1 n d3Pi l

4M ` , n 'I ;_i ((2n)32pio )

x (p, o I JN(0)I n)(nl Jv(0)I p, o)(2 r)3S4(Pn -p-q)

1 d 4x
e (P, Q I [Jµ(x), Jv(0)]IP> a)4M ` (2n) (14.10)

[In the last step, we have written the product of two currents as a commutator.
We have dropped the term because it occurs with a momentum con-
straint pn = q - p. In the lab frame, this means that En = M - v, which cannot
be satisfied.]

We know from current conservation that 8N, Jµ = 0, or:

gµ Wt, = WN,vgv = 0 (14.11)

Thus, using general invariance arguments, we can re-express Wµv in terms of only
two form factors Wl and W2:

W""
gµgv P - q W W (14.12)(8µv - q2 Wl + Pµ - qµ q2 Pv - qv q2

M2
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Inserting this expression back into the differential cross section, we find:

dg2dv - g'
[vcos2 ) + 2Wt sin2

()] (14.13)

Experimentally, it was discovered that, in the deep inelastic region, the depen-
dence on q2 and v was replaced by the dependence on x = -q2/2Mv alone in the
structure functions:

MWi(g2, V) _ Fi(x)

vW2(q2, v) - F2(x) (14.14)

This relation is called Bjorken scaling.

14.2 Parton Model

The most intuitive explanation of the scaling relations came from the parton model.
The parton model simply assumed that the dominant contribution to the hadronic
tensor WN,,, came from the scattering of point-like constituents within the proton of
unknown spin. It was a very naive picture of the proton, but it worked surprisingly
well. In fact, it became a central mystery as to why such a naive model worked
so well, far beyond its hypothetical range of validity.

The essence of the parton model can be summarized in Figure 14.2, where
the dominant contribution to the hadronic tensor comes from the scattering of the
off-shell photon with a parton.

e

Figure 14.2. The parton model: an off-shell photon scatters off a point-like constituent of
the proton. Comparing the resulting sum rules with experiment shows that the parton has
spin 1 and most likely corresponds to a quark.
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We assume that the parton has negligible transverse momentum with respect
to the proton, so the parton momentum is in the same direction as the proton
momentum; that is, the parton has momentum gyp,,, where 0 < < 1.

As one might suspect, the secret of the parton model's ability to explain scaling
lies in the kinematics of Figure 14.2. To see how scaling emerges from this simple
picture, notice that momentum conservation forces us to have:

p' _ p + q (14.15)

Now square both sides of this equation. We arrive at:

P2 = 2P2 + 2Mv + q2 (14.16)

In the scaling region, where p2 and p'2 can be neglected, we have:

q2 + 2Mv - 0 (14.17)

In other words:

=x (14.18)

This is important, because it means that all structure functions will become func-
tions of or x alone. This, of course, is the essence of scaling. Thus, a very
simple kinematic picture of partons yields scaling behavior.

The naive parton model tells us more. From Eq. (14.15), one concludes that
x is the fraction of the momentum carried by the parton in the nucleon. For a
given spin, it allows us to calculate restrictions on Wl and W2. By checking
these structure constants against experiment, one can therefore determine the spin
of the parton. To see how the spin of the parton is determined, we note that,
in this approximation, the matrix element (vp, o JN,(0)Ip', o,) is proportional to

for spin z partons. Thus, the contribution to the hadronic tensor
coming from a parton of momentum p is given by:

Kµ»( ) = 1 P)]
8(P0- Po - qo) (14.19)

4M spins 2po

The total hadronic tensor is given by integrating this over all . Let the
number of partons of momentum p be proportional to some unknown function
f Then the total hadronic current from all partons is given by:

WN,,,= f1f( )Kµ()d (14.20)
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Let us now calculate all sums appearing in the scattering amplitude for the
partons. The sum over the spinors is easily calculated using the usual rules:

I E2 spins

_ Tr [L'Yµ(dfn + #)Yv]

= (14.21)

Now comes the crucial step. We will rewrite the delta function over momenta to
explicitly display the fact that = x:

S(Po - Po - qo)/2Po

= 0(P0')S[Pi2 - q)2)

= go)S(2Mv + q2)

= qo)S( - x)/(2Mv) (14.22)

It is important to note that we have generated the factor S( - x) from kinematic
arguments alone. Now insert everything back into the hadronic tensor. The
integral over is now trivial to perform, and we arrive at:

2- gµv (2M + .. .Wµv = PAPv (xf(x))M
(14.23)

Now let us compare this tensor with Eq. (14.12). We find that we have now
derived:

MW1

V W2

Fl(x) = If(x)

F2(x) = xf(x) (14.24)

Not only have we established scaling, we have also derived the simple relation:

2xF1(x) = F2(x) (14.25)

which is the Callan-Gross relation.
The usefulness of the parton model is that we can compare the scaling behavior

of W12 2 against the various predictions for spin-0 and spin-2 partons. For example,
for spin-0 partons, general invariance arguments show that we have:

(xPIJJIxP+q) ^' (2xp+q)N, (14.26)
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Therefore:

WN,,, ^' (2xp+q)N,(2xp+q)» (14.27)

Comparing this with the previous expression for the hadronic tensor in Eq. (14.12),
we find:

Spin0 : Fl(x) = 0 (14.28)

Experimentally, the Callan-Gross relation is reasonably satisfied, while the
spin-0 parton relation is not. This gives us confidence that the partons are, in fact,
just the quarks.

Next, we want to calculate the form factors F1,2 in terms of the various quark
constituents contained within the nucleon. In the naive quark model, as well as
in QCD, the electromagnetic current appearing in the scattering amplitude was
given by:

1

Jµ = 3uyµu - 3dyN,d - 3syµs (14.29)

since the charges of the quarks are given by 2/3, -1/3, -1/3.
Each piece of the electromagnetic current, given by the respective quark fields,

contributes to the structure function, which is now the sum of the squares of the
various contributions from each quark. Let us now separate out each individual
contribution of each quark current to Fl. Since F1 is written in terms of the square
of the current, it can be written as the sum over the square of the quark charge
times the individual distribution function:

2F1(x) = E Q? [qi(x)+qi(x)] (14.30)
i=u,d,s

where the charge of the quark is given by Qi and qi (x) is the distribution function
for the i th quark.

Then we have:

2Flp

2Fi"

4(up+up)+9(dp+dp)+9(sp+3p)

9(u 9(d 9(s (14.31)

where we have used the symbol u p (x), etc. to represent the u-quark contribution to
the structure function for e+p scattering. These functions represent the probability
of finding a quark-parton with x fraction of longitudinal momentum for the given
process. The coefficient appearing before each quark contribution is nothing but
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the square of the quark charge. Let us assume SU(2) isospin symmetry holds.
Then the up parton distribution function equals the isospin partner d,,. Isospin
invariance gives us the equivalence:

(14.32)

We will now drop the subscript p on the proton quark distribution functions.
Then we can write:

Fip(x) 4(u +u)+(d +d)+(s +s)
(14.33)

Fln(x) (u +u)+4(d +d)+(s +s)

Therefore we have the constraint:

1 < Fln(x) < 4 (14.34)4 - Fip(x) -

which agrees with the data.

14.3 Neutrino Sum Rules

Next, we would like to study neutrino-nucleon inclusive reactions:

v + N -> e- + anything (14.35)

which resemble the electron-nucleon inclusive reactions except that we use dif-
ferent currents within the Hamiltonian, and we have more invariant tensors in the
decomposition of the transition function.

For neutrino scattering, the hadronic current is given by Eq. (11.105):

JJ = uyµ(l - y5) (d cosOc +s sinOc) (14.36)

and the leptonic part is given by:

Jlept = iyµ(1 - y5)e + vµyµ(1 - Y5)N- + ... (14.37)
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Once again, the cross sections can be expressed in terms of various structure
functions W :

Wµv = 1 f d4x e'9.x(p, sI [Jµ(x), j" (O)] Ip, s)4M 2nspins

-W1gµ" +W2pµp"/M2 - iW3Eµvxppxgp/M2

+ W4 gµgv/M2 + W5(pµgv + pvgv)/M2

+ iW6(pµgv - pvgµ)/M2 (14.38)

where, because of the nature of weak interactions, we have more possible tensors
in the decomposition.

Then the cross section can be written in terms of these structure functions as:

d2 vo 2 a

dQ d E' 27r
2 sine (2-) W1 + cost (0)

2W2

T-
(E

ME) sin 2 (0) W3 (14.39)

where the - (+) sign corresponds to v (v) scattering.
In the Bjorken scaling limit, we find:

MWi(g2, v)

vW2(q 2, v)

vW3(q 2, v)

F1 (x)

F2(x)

F3(x) (14.40)

where the neutrino scattering amplitude has one additional structure function W3.
As before, we can now write down a number of relations for the structure

functions Wi using the fact that the scattering process probes the quark structure
of the nucleon. By analyzing the quantum numbers of the v + N reaction, the
hadronic current induces the transitions:

d u

S -> C

u -> d

E -> 9 (14.41)
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which appear multiplied by the factor cos2 0C, which we will take to be equal to
1. Similarly, the Cabibbo suppressed transitions:

d -> c

s -> u

u -> s

E -> s (14.42)

are proportional to sin2 0c and will be dropped. For V + N, the favored and
unfavored reactions can be found by simply reversing the direction of the arrow.

As before, we can write various sum rules by calculating the contribution
of the various quark distribution functions to the structure functions. In e + N
scattering, we found earlier that the structure constants were proportional to Q2
times the quark distribution function, as in Eq. (14.30). For v + N scattering,
the contribution of the ith quark to F2 or xF3 is proportional to g?q; (x ), where
qi is the distribution function of the ith quark, and g? is either cost 0C or sin 2 0C.

We will set Bc - 0 for now. The total contribution of the quarks to the structure
constants F2 and xF3 is then the sum over the various quark contributions:

F2(x) =

xF3(x) =

2x E [g2gi(x) +gjgi(x)]
i.i

2x > [g2gr(x) - gjqj(x)] (14.43)
i.i

We can read off the quark functions qj that have a nonzero contribution to this
sum by analyzing Eq. (14.41). For example, for v + p scattering, Eq. (14.41)
shows us that only the d, s, u, and c quark functions contribute with coefficient
cost Bc - 1.

Then the complete list of structure functions, written as sums over various
quark probability distribution functions, is:

vp:

vn:

F2=2x(d+s+u+c);

F2=2x(u+s+d+c);

xF3=

xF3=

2x(d+s-u-c)
2x(u+s-d-c)

(14.44)
Pp: F2=2x(u+c+d+s); xF3= 2x(u+c-d-9)
vn: F2=2x(d+c+u+9); xF3= 2x(d+c-u-9)

For the most part, we will ignore the contribution of the strange and charmed
quarks to the proton and neutron scattering function, since the nucleon is primarily
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made of up and down quarks. Then we have:

FZp-FZp = 2x[u(x)-u(x)-d(x)+d(x)]

= 4xT3(x) (14.45)

where T3 is the isospin density, which integrates to one-half. By integrating this
expression, we then arrive at the Adler sum rules:

f1 dx [F2p(x) - FZ"(x)] = 4 J1 T3(x)dx = 2 (14.46)

We can take the sum of the third structure function:

F3p+F3"=-2[u(x)+d(x)-u(x)-d(x)] (14.47)

We can therefore write (for zero strangeness):

F3p + F3" = -6B(x) (14.48)

Since the proton has baryon number B equal to one, we then find the Gross-
Llewellyn Smith sum rule6:

r
1

dx [F3p(x) + F3"(x)] = -6 (14.49)

The experimental value for this is roughly -6.4 ± 1.2.
Historically, many of these sum rules were derived from a variety of related

viewpoints, such as current algebra and the parton model. Although it was
gratifying to see the success of these methods, they basically relied on a simplistic,
free-field approach to the strong interactions. It was a puzzling question why
this naive approach should work so well and at such low energies. Given the
complicated nature of the strong interactions, the quark-parton model was working
well beyond the range of validity originally postulated for it.

14.4 Product Expansion at the Light-Cone

Yet another way to see that scaling emerges in the high-energy limit is to use
Wilson's operator product expansion,7'8 where we can show that the space-time
region explored by the deep inelastic experiments is near the light-cone. Again,
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the mystery is why the free-field approximation should work so well in describing
strong interactions.

The scattering amplitude can be written as the matrix element of the conunu-
tator of two currents:

Wµ =
4M ' '

f (2n)e'9 x(P, S114 x), J»(0)]IP, S) (14.50)

We will show that, using the operator product expansion, we can rederive the
scaling behavior of the form factors found earlier with the parton model.

We will show this in two parts. First, we will show that the deep inelastic
experiments probe a region of space-time near the light-cone (i.e., x2 - 0).
Second, we will then show that the operator product expansion of the currents
near the light-cone give us the desired scaling of the form factors.

To see this, let us explore the high q behavior of the integral, which is dom-
inated by a region where q x does not oscillate appreciably. (Regions of rapid
oscillation cancel each other out.) We expand q x into its components:

(qo + g3)(xo - x3) (qo - q3) (xo + x3) 2q x = + - =1 qixi (14.51)

Let us go to the rest frame of the proton, so that:

pµ = (M, 0, 0, 0); qµ = (v, 0, 0, Vv2 - q2) (14.52)

In the deep inelastic limit, where v, -q2 -> oo with -q2/2Mv held fixed, we
can show that:

qo + q3 - v; qo - q3 - q2/2v (14.53)

Since we are interested in the region of space-time where q x " 1, we thus have:

xo - X3 - O(1/v); xo +x3 - O(1/xM) (14.54)

Therefore:

XO -X3 ^ O(-1/q2) (14.55)

Thi hs means t at:

X2 = X02 - x2 G X2 - X3 _ O(-I/q2) (14.56)



472 QCD and the Renormalization Group

In other words, in the limit q2 -f -oo, the integral is dominated by:

X 2i -* 0 (14.57)

Therefore W. is dominated by the region of space-time near the light-cone. Now
that we have established the importance of the light-cone, we will now show that
the operator product expansion near the light-cone yields scaling behavior.

To see the importance of the operator product expansion, we note that the
product of two fields taken at the same point is divergent. Our job is to calculate
the short-distance behavior of the product of two currents JN,(x)Jv(0) and insert
this expression back into the integral. For free fields, we have:

Jµ(X) =: *(x)YAQf(x) : (14.58)

where Q is a matrix whose eigenvalues give the charges of the various fermions
in the theory.

To calculate the commutator, it will be useful to use Wick's theorem to de-
compose this product of currents. We will use a simple trick. We will analyze
the time-ordered product, which yields propagators that have well-known power
expansions. Then we will convert this time-ordered product into a commutator
by a change in the singular structure of the fields. We begin by writing:

T [Jµ(x)J,,(0)] = Tr [iSF(-x)yµiSF(x)YvQ2]

+ : (x)Y,,QiSF(x)YvQ/(0) :

+ *(0)YvQiSF(-X)YAQV/(x) :

+,%i(x)yµMx4r(0)yvQ, O) (14.59)

The advantage of using the time-ordered expression (rather than the com-
mutator) is that the propagator has an explicit expression in terms of x space
variables:

OF(X) =
47_3(x2)+

87cmx2B(x2) Pi(m P) - iNi(m x2)1

im- B(-x2
4n 2 - x2

)K1 (m -X2) (14.60)

where J,,, N and K are the standard Bessel functions. For our purposes, however,
we are only interested in the behavior of this function near the light-cone: x2 - 0.
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In this approximation, we have the simple result:

AF(X) - 47c2(x2 - iE)
+ O(m2x2)

473

(14.61)

Near the light-cone, the Feynman propagator for spin-2 fields can therefore
be written as:

SF(X) = (iy a - m)OF(x) ^ (ii) (42(X - iE)) +... (14.62)

We now make the switch from the time-ordered product to the commutator. In
space-time, this transition is possible if we make the substitution:

1

(
)n

27r1E(XO)S(n-1)(X2)

-X2-IE (n-1)! (14.63)

With this substitution, we can now write, using Wick's theorem:

nz
[gv3h1(x2)e(xo)[J (x), J(0)] + Iaµav [S1(x2)E(x0)]]

73

+ f Sµavp [Vfi(X, 0) - Vfi(0, X)]

+ ic...k [Afi(x, 0) - A'(0, x)] Iaa [S(x2)E(x0)] /(27r)

+ : (14.64)

where:

V ,(x, Y) = :(x)Y' Q2f(Y) :

A'(x,y) = :(x)Y'Y5Q2/(Y) : (14.65)

and where we have used the fact that:

YµYvYA = (Sµvxp+i6AvxpY5)YP

Sµvxp = gµvgxP + gµPgvx - gltxgvP (14.66)

The first term in the commutator does not contribute, since it is a c-number. The
second term involves bilocal currents defined at two distinct space-time points.
To evaluate them, we can take a Taylor expansion of the fields:

W (x/2)W (-x12) = W (0) I + a Al X2 + - a µ a µz X2 X2 + .. .
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-a
1 Xv' X'n --> -->

X (1- 2 , +2
2 2

av a, *(0) +

1 Xµ1 Xµ? Xµ" - H H H
n! 2 2 ... 2 *(0) aµ, aµ2 ... aµ *(O)+...

n

Putting this value back into the commutator of two currents, we find:

where:

(14.68)

(14.69)

Now insert this expansion back into the expression for Wµv. We are interested
in the averaged matrix element of these operators. When we perform the average,
the matrix element of O vanishes because Eµav is antisymmetric. We only need
to define:

1

2
1:(p , SIO(n P, S) = A(n+l)PPµ,Pµ2 ... pµ +.. .

S

(14.70)

where A(n+1) are undetermined constants.
Putting everything back into the expression for the deep inelastic scattering

amplitude, we now have:

1 d4x °O A(n+1)
y (x P/2)n nl SAUVOP as [3(x2)E(xo)]Wµv(P, q) ^ 2M J (2n)2
r`
odd n

(14.71)

Now, let us introduce yet another unknown function:

(14.67)

1 XAI Xµ'2 Xµ" (n+1)[1µ(x/2), J,,(-x/2)] = E n!22 ... 2OBµIµ2...µJO)Sµavfi
odd n

r 1 XAI Xµ2 Xµ" (n+l) I as [3(x2)E(xo)]
n! 2 2

... 2 1 (2jr)
even n

`
H H H

Ofiµ µ2...µn = W (O) a µ, a µ2 ... a µn Y Q2V (O)

H H H
O(z+l) ... A. (0) = *(O) Y'Y5Q2F(O)

A(n+1)

(x.- P/2)n nl = F(X P) (14.72)
odd n
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Thus, our expression for the scattering amplitude has now reduced down to:

Wµv(p, q) ,,, 2MSN,"vppf
(n)z

p)8"S(x2)e(xo) (14.73)

Everything has now been concentrated into this one integration. To perform
this integral, it is useful to take the Fourier transform of F(x p):

F(x p) =
J

d e`xp' (14.74)

Then the expression in the brackets becomes:

f d (14.75)

We now take the Fourier transform of S(x2)e(xo):

f d4keik-xS(k2)e(ko) = -i(27r)e(xo)S(x2) (14.76)

Putting this back into the expression for the scattering amplitude, we find:

1

2 PWµ
11 M

Fx gµ°+XP Pv+...( ) [ (14 77)
2M V MZ

.

Thus, we have now shown that scaling occurs, that is, that the form factors are
functions of x = -q2/2Mv. Furthermore, we reproduce Eq. (14.24); that is, we
have the scaling behavior of spin-2 partons:

MW1 -> Fl(x) = I P(x)

vW2 -> F2(X)=XP(X) (14.78)

(Actually, this last relation is not surprising, since we have taken a representation of
the hadronic current in terms of free spin- z quarks. If we had taken a representation
of the hadronic current in terms of free fields with different spins, we would have
derived different relations among the structure functions W1,2.)

In conclusion, any theory of the strong interactions must reproduce two seem-
ingly contradictory experimental results: that the quarks seem to be strongly
bound together in the low-energy region, but that they act as if they are free in the
high-energy region; that is, they act as partons.
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Remarkably, we will now see that the gauge theory of QCD can successfully
reproduce both behaviors. We will now develop the theory of the renormalization
group, and see that QCD is asymptotically free; that is, the quarks have vanishingly
small coupling constant in the high-energy region (they act as if they were free
point-like constituents) but they have a large coupling constant in the low-energy
region (which binds quarks together into mesons and baryons).

14.5 Renormalization Group

The renormalization group equations9-12 represent a deceptively simple constraint
on the renormalized vertex functions of any renormalizable field theory, yet they
yield some of the most nontrivial consequences.

The renormalization group equations are based on the simple observation
that the physical theory cannot depend on the subtraction point µ at which we
regularized our theory. We recall that the subtraction point µ was introduced
purely as a mathematical device to begin the process of renormalization, and that
no physical consequences could emerge from it.

This means that if we change the subtraction point µ, other parameters, such
as the masses and coupling constants, must also change in order to compensate for
this effect. In order to keep the physics invariant, changing the subtraction point
must be offset by changes in the renormalized physical parameters as a function
of the energy.

There are several equivalent ways in which to view this highly nontrivial
feature of renormalization theory:

1. If we adopt the formalism of counterterms and subtractions, then there are
an infinite number of ways in which to split the unrenormalized action -9o
into the renormalized piece ' and its counterterm A&. This is because
there is the ambiguity of how to split Ho between the renormalized action
and the counterterm, as we saw in Chapter 7. Changing the subtraction point
µ creates a corresponding change in the value of the renormalized physical
parameters, so that there are an infinite number of possible renormalizations
[see Eqs. (7.71)-(7.75)]. However, the physical quantities at fixed energy
must be independent of how we make the split, and this independence is
mathematically expressed in terms of the renormalization group.

2. If we adopt the alternative viewpoint of multiplicative renormalization, then
we have a multiplicative relation between the vertex functions of the un-
renormalized theory rand the vertex functions of the renormalized theory
r("). However, the unrenormalized vertex function r) is totally indepen-
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dent of the subtraction point µ (since subtractions are computed only for the
renormalized vertex):

--r(n)=0
a/I 0 (14.79)

Thus, to keep the unrenormalized vertex function rindependent of µ, it
means that there is a nontrivial relation between the renormalized r(^) and Z,
which is expressed mathematically as the renormalization group equations.

3. The group nature of the renormalization group can be seen more abstractly
if we let R represent some (unspecified) renormalization scheme. If ro is an
unrenormalized quantity and rR is same quantity renormalized by the scheme
R, then:

rR = Z(R)ro (14.80)

where Z(R) represents some renormalization constant under the renormaliza-
tion scheme R.

Let us now choose a different renormalization scheme R'. Since the
unrenormalized quantity ro was independent of the renormalization scheme,
then:

rR, = Z(R')ro (14.81)

Then the relationship between these two renormalized quantities is given by:

rR' = Z(R', R)rR (14.82)

where:

Z(R', R) - Z(R')/Z(R) (14.83)

Trivially, this satisfies a group multiplication law:

Z(R", R')Z(R', R) = Z(R", R) (14.84)

where the identity element is given by:

Z(R, R) = 1 (14.85)

Now that we have explained the origin of the renormalization group equa-
tions, let us try to find a mathematical expression for these relations. While the
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unrenormalized vertex functions are independent of g, the renormalized ones
are not. For example, in 04 theory, we have the following relationship between
unrenormalized and renormalized quantities:

r(,)(Pi, go, mo) = Z- nj2r(n)(Pi, g, m, N-) (14.86)

where g is the subtraction point, and we assume that we have used some regular-
ization scheme to render all expressions finite for the moment.

Now let us differentiate this via the dimensionless derivative g(d/dg). We
know that the unrenormalized bare quantity is independent of the subtraction point,
so that the derivative acting on the unrenormalized quantity must, by construction,
be zero:

o = agron)

(14.87)

We now use the chain rule. We choose as our independent variables g, g, and m:

d _ a ag a am a
dp. ag+agag+agam (14.88)

Let us make the following definitions (where we now take the limit as E -- 0):

P(g) = gag

Y(g) A
a

aglog\/Z0

my (g)
N

(14 89)m ag

With these definitions, we now have the compact expression:

.

gag + ig(g)ag - ny(g) + mYm(g)am f r(n)(Pi, g, m, g) = 0 (14.90)

These are the renormalization group equations, and they express how the renor-
malized vertex functions change when we make a change in the subtraction point

N.
(In principle, the parameters like 0 can also depend on the dimensionless

quantity m/g. Then the renormalization group equations become difficult to
solve as a function of two independent variables g and m/g. However, we can
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ignore this dependence on m/g if we adopt the "mass-independent regularization
scheme," or the "minimal subtraction scheme," which we will discuss later in
Section 14.8. We tacitly assume that we adopt this regularization scheme.)

The importance of the renormalization group equations is that they tell us how
the renormalized functions change as we vary the subtraction point g. We know
that no physics can emerge by a change in the subtraction point; so a change
in the subtraction point must be compensated by a change in how we define the
renormalized coupling constants and renormalized masses. The renormalization
group equations perform the book-keeping necessary to keep track of how these
other variables change when we change the subtraction point.

From our point of view, the most important parameter is P. Knowledge of
determines the behavior of the coupling constant as a function of the mass

scale. (We should also point out that the functions 0, etc. are dependent on the
regularization scheme that we use. Although the physics remains the same, the
exact form that these functions take varies with different regularization schemes.)

We first note that we can solve the expression for the 0 function. We simply
divide by 0 and multiply by dg:

dµ_ dg
it P(g)

Integrating, we have:

log g =
g(µ) dg-

go g(µo) P(g)

(14.91)

(14.92)

where to is some arbitrary reference point. For the moment, let us assume that,
for small g, we Taylor expand 0:

0-bgn+ (14.93)

for some coupling constant g and integer n. Then, inserting this value of 0 into
the integral equation, we can perform the integration and arrive at:

gn-1(g) =
g(go)n-1

1 - (n - 1)bg(ito)n-1 log (g/N-o)
(14.94)

Our goal, however, is to analyze the behavior of the theory at high energies,
so let us make the following scale transformation and derive a slightly different
constraint on the vertex functions. If we scale the momenta via:

pi -f e`pi = Apt (14.95)
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then, using dimensional arguments, the vertex function behaves as:

r(n)(),Pi, g, N) = ND.f(X2p, . pJ/ 2) (14.96)

where D is the dimension of the vertex function. (This is because r is a Lorentz
invariant, and hence can only be a function of the various dot products p; pj. To
create a dimensionless quantity out of this, we must divide this by g2. The over
all scaling quantity gD means that the function has dimension D.)

This, in tum, implies that the vertex function obeys the following equation:

Aa + a - D] r(n)(XP,, g, N-) = 0 (14.97)L 8g at

where. = el.
Now let us eliminate the term g(8/8µ)I' from this equation using Eq. (14.90).

Then we find:

at +P(g)ag + [D + ny(g)] f r(n)(AP,, g) = 0 (14.98)

If 0 were equal to zero, then the scaling behavior of the vertex function would be
given by:

r(n) ())D+nY(8)
(14.99)

which is the scaling behavior of the vertex function with the additional y(g)
correction. This the reason why y(g) is called the "anomalous" dimension. The
important point is that 0 and y measure the deviation from naive scaling.

Fortunately, we can solve this equation. Let us introduce the function g(g, t),
called the running coupling constant, such that:

dg(g, t)
= B(g) (14.100)

dt

with the boundary condition that g(g, 0) = g. Then the solution is given by:

r(xp1, g) = r(Pr, g)eXp (fg dgl P(g')/
(14.101)

where p = D +ny(g). To prove this, substitute it directly into Eq. (14.98).
To analyze the nature of these solutions, let us make a few definitions.
Let a fixed point represent a zero of the 0 function for some value gF. The

origin of the name comes from the fact that if the coupling constant were near this
fixed point gF, it will remain there as we increase g.
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P(g) P(g)

g g

a b

Figure 14.3. In (a), the slope of t4 is negative, giving us an ultraviolet fixed point. In (b),
the slope is positive, giving us an infrared fixed point.

To see this, let us analyze the situation in Figure 14.3 and power expand
around the fixed point:

0=9agg=(g-gF)P'(gF)f... (14.102)

In Figure 14.3(a), the slope of 0 is negative at the fixed point gF. Consider
what happens, as g increases, when g is near gF. If g is less than gF, and if
P' < 0, then the two signs cancel in the Taylor expansion and 8g/8g is positive,
so g rises with rising g. This means that g is driven towards gF for increasing g.
If, however, g is larger than gF and P' < 0, then the derivative 8g/8g is negative,
so g decreases with increasing g. Thus, g is driven downwards back toward gF
with increasing g. In both situations, g is driven towards gF with increasing g.
We call this an ultraviolet stable fixed point.

Now consider the situation in Figure 14.3(b), where the slope of 0 is positive
at gF. Then g is also driven towards gF, but for decreasing values of g. If g is
less than gF and P' > 0, then 8g/8g is negative. Thus, for decreasing g, g will
increase in the direction of gF. Likewise, if g is greater than gF and P' > 0, then
8g/8g is positive, and hence g will decrease towards gF if g decreases.

We can summarize this situation as follows:

P'(gF) < 0 : Ultraviolet stable

P'(gF) > 0 : Infrared stable
(14.103)
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Let us analyze some theories in this context. We know that, for 04 theory, the
coupling constants are related by:

80 = 8µE 1+ 16n2E) + .. .

Differentiating, we have:

2

E8µE + 6n2 + .. .

3g2

16n2

(14.104)

(14.105)

in the limit a -> 0.
The theory is not asymptotically free because of the positive sign of P. In fact,

it is easy to integrate the previous equation as a function of µ, and we arrive at:

go(go)
8(µ) = 1 - (3/16 r2)go(µo)log(µ/µo)

Clearly, increasing µ increases g.
Next, let us investigate QED. As before, we know that:

eo = eµ E/2 Z1
=

eµ E/2

Z2vZ3 Z3

e1El2 1 +
e2

12r e

Differentiating this equation to solve for 0, we find:

= aµ

e3

12n2

e e32e+
12n2

(14.106)

(14.107)

(14.108)

as e --> 0. As with the 04 theory, we find that 0 > 0, so that the running coupling
constant e increases with larger energies. In fact, we can easily integrate this
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equation, arriving at:

e2(µ) = 1 _ (e2(go)/67r2) log A (14.109)

which we derived in Section 7.4, using simpler methods.
The coupling constant increases with g, and there is the Landau singularity

at:

6n2
µ = to exp G2(go) /

(14.110)

(Although it appears as if the coupling constant blows up at this point, we must
realize that the formula breaks down in the approximation we have made, i.e., for
small e only.)

14.6 Asymptotic Freedom

One of the theoretical breakthroughs in quantum field theory came when the high-
energy scaling behavior found at the SLAC experiments could be explained via
non-Abelian gauge theory.

Previously, in Eq. (13.13), we found that the coupling constant renormalization
in gauge theory was given multiplicatively by:

Z
go = gltE/2 Z2 1Z3

If we put in the values of the Z's, we find:

r 2 11 2 \
go=gµE/2rl-8gc2E (Cad -3Cf)]+...

We can then solve for 0:

ag

gag

gag - 1) (16_g32
n/ 6C°d 3Cf

(14.111)

(14.112)

_ g3 11 4

1g3 (Cad 3Cf + (14.113)



484 QCD and the Renormalization Group

We come to the rather surprising conclusion that the theory is asymptotically free
if the following prescription is satisfied:

3Cad>4Cf (14.114)

This is the first example of asymptotic freedom, 13 - 15 which was discovered
by Gross, Wilczek, Politzer, and independently by 't Hooft. Asymptotic freedom
only occurs in the presence of gauge theories. For QCD, we have the group SU(3),
so that Cad = 3. The final relationship now reads:

16n2
(11-2 Nf+ (14.115)

P(g)

3

3

where Nf is the number of flavors of fermions in the theory. This is one of the
theoretical triumphs of gauge theory, that gauge theory proves to be the most
important ingredient in any asymptotically free theory.

The value of the coupling constant can also be integrated explicitly. Performing
the integration, we find to the one-loop level:

82(µ) =
82(µo)

1 +(82(µo)/8 r2) NY Cad - 3 Cf) log µ/µo
(14.116)

Because of the importance of asymptotic freedom, the 16 function has even
been computed to three loops:

16n2 (11 - 3 Nf/
(16n2)2

(1o2_ 33 Nf)

g7 2857 5033 325 2 9+O(g) (14.117)
(16n2)3 ( 2 18 Nf + 54

Nf)

(We should mention that the 16 function actually vanishes to all orders in pertur-
bation theory for certain forms of super Yang-Mills theories, which are finite to
all orders in perturbation theory. This will be discussed in more detail in Chapter
20.)

In summary, asymptotic freedom means that, roughly speaking, at shorter
and shorter distances, the coupling constant decreases in size, so that the theory
appears to be a free theory. This is the phenomenon of scaling, which is simply
interpreted as the quarks acting as if they were free partons in the high-energy
realm.

Conversely, at larger and larger distances, the coupling constant increases, so
that at a certain point perturbative calculations can no longer be trusted. Large
coupling constants, in turn, imply that the quarks bind more tightly together,
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giving rise to confinement. This is called "infrared slavery," which is the flip side
of asymptotic freedom.

Finally, we remark that there is a simple way in which we can describe
asymptotic freedom, which only manifests itself in non-Abelian gauge theories.
Although this example does not explain asymptotic freedom, it gives us a conve-
nient intuitive model by which to describe it.

In the case of QED, we know that, at large distances, the effective coupling
constant a gets smaller. This is because any charged particle is surrounded by a
dense cloud of electron-positron virtual pairs that tend to screen the charge of a
particle. Thus, the effective coupling constant is reduced by the presence of this
screening charge. At smaller distances, and higher energy, a probe can penetrate
through this virtual cloud, and hence the QED coupling constant gets larger as we
increase the energy of the probe.

Classically, we can think of this in terms of the dielectric constant of the
vacuum. If we place a charge in a dielectric, we know that the electric field of
the dielectric causes the dipoles within the dielectric medium to line up. The net
effect of the dipoles lining up around the charge is to decrease the charge, so the
medium has a dielectric constant greater than one.

The situation in QCD, as we have seen, is precisely the opposite. We no
longer have an electric charge (since QCD gauge particles have neutral charge),
but we have color charges and color coupling constants. This means that, at
large distances (low energy) the presence of the cloud of virtual particles creates
an antiscreening effect. The net coupling constant get larger at large distances.
Contrary to the situation in QED, a probe that comes near a colored particle feels
the coupling constant decrease at high energies. Thus, the dielectric constant of
the vacuum is less than one for an asymptotically free theory.

14.7 Callan-Symanzik Relation

We now would like to clarify certain points that were ignored earlier. We pointed
out after Eq. (14.90) that 0 is not, strictly speaking, just a function of g. It can also
be a function of the dimensionless parameter m/µ, and hence the renormalization-
group equations become much more difficult to solve. Therefore our previous
derivation of the scaling relations, although correct, was actually incomplete.

There are several ways in which to complete this subtle but important step.
The first is to use a slightly different form for the renormalization group equations,
called the Callan-Symanzik relations, 11.12 which are written as derivatives with
respect to the bare masses, rather than the subtraction point it. In this case, fi and
y appear in slightly different form, but are now functions of just one variable, the
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renormalized coupling constant. Then the renormalization group equations can
be rigorously solved, and we find the scaling relations derived earlier.

There is also a second solution, which is to use a different regularization
scheme, called the mass-independent minimal subtraction (MS) scheme,16 where
the mass dependence drops out from the very beginning in the definition of P.
Then we can ignore the mass dependence of these functions because of the way
that we have regularized all divergent integrals.

We will discuss the first solution to this subtle problem using the Callan-
Symanzik relations, where the renormalization group equations are derived from
a slightly different set of physical assumptions than before. Then later we will
discuss the MS scheme.

We begin with the obvious identity that the derivative of a propagator, with
respect to the unrenormalized mass squared, simply squares the propagator:

a i _ i i

amt 2-m2+iE
2-m2+iE(-t) 2-m2+iE

o p o P o P o

or simply:

(14.118)

a i0F = iLF(-i)i0F (14.119)
amo

Now assume that i0F occurs in some vertex function Fo") of arbitrary order.
Each time a propagator appears, the derivative replaces the propagator with the
square of the propagator. From a field theory point of view, the squaring of the
propagator (with the same momentum) is equivalent to the insertion of the operator
(62(x) in the diagram with zero momentum. [We recall that the addition of the
counterterm Sm202 into the action had the net effect of converting each OF into
OF. In the same way, the squaring of each propagator can be simulated by the
insertion of (62(x), which acts like a counterterm.]

This means that the derivative of an arbitrary vertex function with respect to
mo yields another vertex function where 0 2(x) with zero momentum has been
inserted. In other words:

aIa(pi)
=-'F(n)2APi) (14.120)0,0MO

where F0("0) 2 represents a vertex function with the insertion of this composite
operator.

We now make the transition from the unrenormalized vertices to the renormal-
ized ones. This means the introduction of yet another renormalization constant
Z02 to renormalize the insertion of the composite field operator.
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As before, the relationship between the renormalized and unrenormalized
vertices is given by:

r(n)(pi, g, m) _

r02)(p, pi, g, m) _

Now we use the chain rule to write:

Zn,2rpn)(pi, go, m0)

02(p, pi, 90, m0)

a amt a ag a

amo amo amt +amo ag

(14.121)

(14.122)

As before, we now apply this operator on the unrenormalized vertices, which then
picks up derivatives of the renormalization constants Z4, and Z02.

Putting everything together, and dividing by amt/amo, we find:

a a 1ma nY J r(n)(pi, g, m) = -im2Ctr(,)(0, pi, g, m) (14.123)

where:

P

Y

ag am 2)-1
2m2am0 (aM2m2alog2

am0\-1
amt amt

=
aZ z amt

a o

o /
(14.124)

am am

Although these equations look suspiciously like the previous renormalization-
group equations in Eq. (14.90), there are many subtle but crucial differences.
First, the definitions of the parameters, like fi, are different from the usual ones.
Most important, the previous renormalization group equations were written as
derivatives with respect to the subtraction point it, while the new ones are written
with respect to the unrenormalized mass m0. Second, it can be shown that
these functions are strictly functions of just one variable, the coupling constant.
Hence, they can be solved using the methods outlined earlier. Third, there is an
inhomogeneous term on the right-hand side of this equation, while the previous
renormalization group equation did not have this term.

Next, we would like to show how to eliminate the inhomogeneous term ap-
pearing in the Callan-Symanzik relation that does not appear in the original
formulation of the renormalization group equations. To eliminate this term, we
will appeal to Weinberg's theorem. In the version that we need, this theorem tells
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us that if we scale the external momenta as pi -f )p; in the deep Euclidean region,
the one-particle-irreducible Green's functions F(n)(pi) grow as ,l4-n times lower
polynomials in log) , while the Green's function F,Z) grows only as ) 2-n times
similar polynomials. We note that this divergence is just what one might expect
from naive dimensional grounds, and is also the superficial degree of divergence
of the graph.

Mathematically, Weinberg's theorem tells us that:

r(n)(,XPt> g, m)
;4-n (14.125)

for some constants an, bn. (In principle, the logarithms can sum to a nontrivial
expression, giving us the possibility that the entire expression scales as ,14-n-Y
where y is just the familiar anomalous dimension.)

For our purposes, the important point is that scaling takes us into the deep
Euclidean region, where F (l) is much larger than F i , so that we can drop the
latter term.

The Callan-Symanzik equations then become homogeneous, like the previous
equations given earlier, in this limit. Then the equations can be solved, much like
Eq. (14.101).

14.8 Minimal Subtraction

Finally we remark that it seems remarkable that the renormalization group equa-
tions work at all, that is, that we can extract information concerning the higher-
order behavior of the coupling constants knowing only the one-loop results.

For example, if we power expand the coupling constant g, we find an infinite
series of logarithms. The renormalization group equations, on the basis of just
the one-loop results, are able to reproduce the leading logarithmic behavior of the
entire function, without having to compute any higher-loop Feynman diagrams.

To see the origin of this rather mysterious but important result, it is perhaps
instructive to use what is called the minimal subtraction scheme.16. The MS
scheme defines the renormalized coupling constants strictly in terms of their poles
using dimensional regularization. Since we have the freedom to choose where we
separate the infinite part from the finite part, we will define the subtraction scheme
so that we only take the poles in c, so the counterterms have no finite parts.

The MS scheme has a further advantage because it is a mass-independent
regularization scheme. The Z's depend on it only through the renormalized cou-
pling constants. By dimensional arguments, hence the MS scheme produces the
functions fi, etc., which are independent of the renormalized mass. We mentioned
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earlier that our original derivation of the renormalization group equations in Eq.
(14.90) ignored the fact that fi could, in principle, be a function of both g and m /It,
which made solving the renormalization group equations difficult. We ignored
the dependence on m/µ because there exists a regularization scheme, the MS, in
which fi appears strictly independent of the renormalized mass m.

To begin our discussion of the MS, we define our unrenormalized variables as
follows:

go

m0

00

µE (g gn(g))

En
n=1

mn(g)
+

En
n=1

_
n=1`\ En J

(14.126)

The coefficients in the expansion are independent of m/µ, without any finite parts
at all. We also assume that µ(ag/aµ) is a smooth analytic function of c, so that
we can expand:

cc

µ
ag

= Y, dncn (14.127)
aµ n=o

Now the key physical input is this: the bare quantities are all, by definition,
independent of the subtraction point. Thus, we can differentiate them and set
them to zero. Thus:

µ-E ago = 0
aµ

or:

(14.128)

ag °O r agn agEg+g1+µ-+EE-nra µa +9,,+1 =0 (14.129)
It n=1 g

This is a set of nontrivial, highly coupled equations linking the various terms in
the MS scheme. To solve them, let us insert the power expansion of µ(dg/dµ)
into the previous equation and sort out powers of c:

E(g+d1)+(g1+do+d1 dg1)+ (gn+1+dodgr +d1dgr+11 0 (14.130)
g n=1

dg g
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Since each order of c must vanish separately, we now have the equations:

d1 = -g; g1 +d1gi = -do; (1 +dl
ddg

gn+l = -dog, (14.131)

as well as:

d
\l - g dg [gn+l - gl] = gn (14.132)

This is an important recursion relation, because it shows that the residues of the
higher-order pole terms can, in principle, be determined from a knowledge of just
the simple pole term.

We can repeat the same steps for the other parameters. Since the other
unrenormalized parameters are also independent of the subtraction point it, we
know that 8mo/8µ = 0 and 80o/8µ = 0. We can therefore derive the recursion
relation for the other residues:

d
gmn+1 = mngml - mn t l -g- g g1 = 0

g+1 = gdg I 91 (14.133)

In terms of the original renormalization group parameters, we also have:

fl(g) = -g1 +gai

Y(g) = gci

y. (g) = gbi (14.134)

We can draw several interesting conclusions from this simple exercise. It

is possible to construct a self-consistent renormalization scheme based entirely
on dropping all finite parts in the counterterms. Thus, the counterterms are
chosen to cancel just the poles, nothing more. Then the mass dependence within
the renormalization group parameters disappears, and our previous assumption
about dropping the m/µ dependence is justified. (We should point out there
exists a modified MS procedure, called MS, which is used extensively in the
literature. In the MS scheme, we eliminate the poles along with certain finite
transcendental constants.) Furthermore, the higher-order terms (in principle) can
be determined from lower-order terms by a recursion relation. The nth-order
coefficients are all determined from the (n - 1)st-order terms. In other words, the
renormalization group equations tell us that the knowledge of the lowest-order
terms will automatically determine much of the higher-order behavior, without
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actually having to compute all higher-order graphs. Thus, it is now no mystery
why the renormalization group equations only need, as input, the lowest-order
one-loop results, yet manage to determine much of the higher-order behavior
without having to perform multiloop calculations. The mathematical essence
of the renormalization group equations is that they are a recursion relation that
"bootstraps" all the higher coefficients from a knowledge of just the lower ones.

14.9 Scale Violations

The actual experiments done on deep inelastic scattering not only give us the
scaling behavior, they also give us the deviation to exact scaling, which we would
now like to calculate using renormalization group methods. In particular, we will
write down the renormalization group equations for the structure functions found
in lepton-nucleon scattering.

In the language of the operator product expansion given earlier, we can write
the behavior of two operators near the light-cone:

A(x)B(O) - Y C (XZ)Xli1x 2 Xli
Oµtliz µ°(X) (14.135)

i,n

where we no longer assume that we are dealing with free quark states. The
singularity found earlier for the free quark model can be included in the C,
function. The summation is performed over the spin n of the operators, and also
the type i, which is not yet specified.

We know that the dimension dA + dB of the left-hand side must be equivalent
to the dimension of the right-hand side, which is given by -n + do;. By scaling
arguments, we then have the behavior of the coefficients near the light-cone:

C7 (X2) ^. (X2)-(dA+dB+n-do')V2

(14.136)

Examining the power expansion, we see it is in general dominated by the
operator with minimum twist, which is defined by:

Twist=r= do; - n (14.137)

that is, the twist is equal to the dimension of the operator minus the spin. For
example, simple operators of r = 1 are given by:

0; a, o; (14.138)
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In deep inelastic scattering, the relevant operators are composed of quark fields
and gluons Aµ, so the minimum twist operators have r = 2 and their product

expansion is given by:

iT [JN,(x)Jv(0)] = Y, [ - Bµvxµlxµ2 ...xµ. in Cn1,i (X2, g' It)

n,i

+ 9µµ18vµ2xµ3 ...
in-2C2 i(x2,

g, µ)]
Oµ1µ2...µ.(O)

(14.139)

As before, by Lorentz invariance we can write the matrix element of Oi as a
function of the momentum p:

(pI O2 µ"
I

p) = A° (pµ1 pµ2... pµ^ + trace terms) (14.140)

where A" are undetermined constants, and where the trace terms arise because the
operator is traceless and symmetric.

In this form, the traces are a bit unmanageable. But we will use a trick. Each
pµi is contracted onto a xN,i, which in tum can be converted into a/aqN,; when we
take the Fourier transform of the expression. Then we can use the identity:

a a ... a =2ngN1gA2 q'" a + trace (14.141)
agµl agµ2

aqµ.

()fl

With this substitution, we can absorb all the trace terms into a single differential.
The goal of this process is to be able to determine the nature of the structure

functions of lepton-nucleon deep inelastic scattering. We are interested in the
tensor:

a
Tµ =

2i J Ip)

gµgv 1 1

-8µv + q2 / T1 + M2 (Pµ - q-2g qµ) (PV - r qv) T2

(14.142)

The relation of T, to the previous structure functions found earlier is given by:

W1,2 = 1 IM T1,2 (14.143)n
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Inserting Eq. (14.139) into Eq. (14.142), we find:

Tµv = I E[-gµv \2pgq\nonj(g2,8,1t)
2M n j

+ ppv(2p ' q)n-2(-q2)1-nC2,i(g2, g, µ)]A" (14.144)

where Q2 = -q2 and:

n

C1,i(Q2, g, 1t) = (Q2)n ( _) J d4x e`9 XCi'i(x2, g, lt)

n-2
C2,i(Q2, 8, lt)

= (Q2)n-1

\aq2/ f d4x ei9 XCi'i(x2, 8, l+)

(14.145)

Comparing this expression for Tµv with the original definition, we easily find:

T1(x, Q2) = 2M
X-nC1,i(Q2,

g, µ)A,"
n,i

T2(x, Q2) =
1

2M
x-n+1C2,i(Q2, g, j.t)Ai

n,i

Taking the moments of T1,2 with respect to powers of x, we then find:

r

fo

1

(14.146)

dx xn-2F2(x, Q2) ^
1

8
Y oni(Q2, g, µ)An

1,
i

1.

dx xn-1F1(x, Q2) ^' 4 C2,i(Q2, g, bt)A" (14.147)
i

1

Up to now, we have not used the power of the renormalization group. Since
these form factors are physical, measurable quantities, we now impose the fact
that they must obey renormalization group equations of the form:

A aµ +f(g)a
-

6jk - ykj] Ca,j(g2, g, It) = 0

The solution to this equation is easy to find:

C«,i(Q2/µ2> 8) 0«,j(1, g(t)) exp i -
i l

fdt' yji (8(t)) }

(14.148)

(14.149)
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where t = (1/2) log(Q2/µ2). We now use the fact that, to lowest order, we have:

N

Yinj

= -bg3 + O(g4)

= dnj 92 + O(g3) (14.150)

(The di'j, in fact, are exactly computable using lowest order perturbation theory.)
Then the Wilson coefficients obey:

(14.151)Cn i(Q2//.t2, g) ^ Ca,j(l' 0) [log
(Q2/µ2)]d"/2b

Reinserting these equations back into the expression for the integral of the mo-
ments, we find:

M2 (Q2)

Mi (Q2)

f

1

dx xn-2F2(x, Q2/µ2)

8 E C2,j(l, 0)A" [log
(Q2/µ2)-d"l2b

J
dxxn-1F1(x, Q2/µ2)

0

4 E O'j(l, o)A" [log
(Q2/µ2)]-d'i/Th

i
(14.152)

This is our final result. With a few modest assumptions and the renormalization
group equations, we can compute the logarithmic corrections to Bjorken scaling.
The point is that F1 is now a function of both x and Q, but the momentum
dependence is given by logs, which gives a weak violation of Bjorken scaling, as
observed experimentally.

14.10 Renormalization Group Proof

We began our discussion of renormalization theory in Chapter 7 with 04 theory,
but did not complete it because of the problem of overlapping divergences; for
example, there was no unique skeleton expansion of certain graphs, giving us
the headache of the overcounting of graphs. Although the 04 renormalization
program was simpler than the one for QED, the final step could not be com-
pleted because the skeleton reduction was not unique. For QED, however, the
renormalization program, although more difficult, could be completed because the
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Ward-Takahashi identity allowed us to write the vertex graphs (which do not have
any overlapping divergences) as the derivative of the self-energy graphs (which
have overlapping divergences). Then we could write all recursion relations strictly
in terms of graphs that have no overlapping divergences. The essential idea was
that taking derivatives of self-energy graphs, which have no skeleton reduction,
creates insertions of zero momentum photons. The insertions of these photons,
we saw, converts a self-energy graph (without a skeleton reduction) into a vertex
graph (with a skeleton reduction).

Now, the renormalization group equations can be viewed as the "Ward" identity
for scale invariance. They will allow us to complete the renormalization of 04

theory. The key, once again, is that taking the derivative of a self-energy graph
creates insertions of 02 that give us vertex graphs that have a skeleton reduction.

We remarked earlier than almost any functional recursion relation, linking
the (r + 1)st order term to the rth term, can be used as a basis to prove the
renormalizability of field theory if they have no overlapping divergences. We
recall that the Callan-Symanzik relations were derived by taking the derivative
of a vertex function with respect to the mass. This squared the propagator, which
could then be interpreted as the insertion of the operator 02 = 0 into the theory. By
expanding out the derivative with respect to the unrenormalized mass, we found:

t lea -+fl(g)ag +ny(g) f r(")(P;g, 1t)

\µaµ
+fl(g)a8 +ny(g)) F (4, p, g, l-i)

-iji2«(g)r8n)(O, p, g, it)

-iµ2«(g)F (O, q, p, g, µ)00

(14.153)

where the second equation arises by taking the second derivative with respect to
the mass squared.

Our approach will now be to treat the Callan-Symanzik relations as the equiv-
alent of the Ward-Takahashi identity, giving us functional recursion relations that
will allow us to complete the induction step. '7 18. We will discuss the 04 theory,
but the method is quite general. We can renormalize QED and non-Abelian gauge
theories without too much difficulty.

We recall that, for 04 theory, the vertices F(') for n > 4 all have a degree
of divergence less than zero. Furthermore, they have a skeleton expansion. In
this case, this means that they do not have subgraphs that have positive degree of
divergence (i.e., there are no nontrivial insertions of F(2) and F(4)). Since both the
overall divergence is negative and the divergence of all subgraphs is also negative,
then the graph itself is convergent. If we can understand the behavior of F(2) and
I'(4), then we can determine the behavior of all the F(') for n > 4 by a skeleton
expansion. We will thus concentrate on these two types of vertices.
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We will thus assume that [F(4)](r+1), [r(2)](r), and [I'0(2)] are all finite quan-
(r)

tities, where r denotes the order of the perturbation expansion. We also assume
that [f](r+l) and [y](r) are all finite as well.

Our task is then to show that renormalization-group equations allow us to

complete the induction step, that is, to calculate [F(4)
1r+2'

[F(2)1r+1' and F(2) in[]r+1
terms of the known quantities at a lower order. A close look at the renormalization
group equations shows that they are ideally suited for such a task.

The calculation is then carried out in three steps:

1. Calculate [F(4) 1r+2 in terms of the finite quantities.

2. Calculate [I'B2)]
r+1

3. Calculate [I'(2)]r+1

14.10.1 Step One

The first calculation is rather easy, since we can write the renormalization group
equations in the following fashion:

µaµ Lr(4)]r+2 = -tµ2 [re4)]r+2 - [(fl(g)-g + 4y) F(4)1 (14.154)
/ r+2

The first term on the right-hand side has a skeleton expansion. This means that,

at most, it contains [F(2)
Ir'

[F(2)] , and [F(4)]r+1, and hence, by construction, it
r

is finite. (One might suspect that the overall integration over these finite pieces
might contribute a divergence, but since the superficial divergence is -1, there is
no problem.)

The last term in the previous expression causes some problems, since we have
the term [fl]r+2 and [Y]r+i multiplying the lowest-order term in F(4) (which is
-ig). Therefore one might worry about the term [fl]r+i +4g[y]r+1 that appears
on the right-hand side.

However, we now use one more bit of information to show that this last
remaining term is finite. If we take the zero momentum renormalization group
equations, we find that they reduce to:

[fi + 4Y8]r+2 = µ2 [re4)(fi)]r+2 (14.155)

But we already showed that this was finite (since it it had a skeleton decomposition
given by finite quantities).
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In summary, all terms on the right-hand side have been shown to be finite.
The last step is trivial, which is to integrate both sides of the equation in order to

calculate [F141
],,2'

We can write the renormalization group equation as:

leaµ [r(4) (Flit, Albs, g)]r+2 = [,,D (Pll-e, A/l-t;g)]r+2 (14.156)

where we have now included explicitly the argument of the vertex functions, and
have written the right hand side as simply 4). Integrating, we have:

[r(4) 1 At
(pl bi, Alts; g)]r+2 = -ig - f « [4)(apl bi, aA/bi; g)]r+2 (14.157)

0

Thus, we have shown that all terms on the right-hand side of the renormalization-
group equations are finite, so therefore [F(4)]

+2
is also finite.

14.10.2 Step Two

In the second step, we will rewrite the second renormalization group equation as:

8 [F(2)] =
` 2 [ar(2)]8µ B r+1

- µ
99

r+1

[(fl(g)_+2y+ye)r(2)1 (14.158)
r+1

This can also be shown to be finite by repeating the same steps given earlier.
We first remark that F(2) is finite since it has a skeleton decomposition and can00

be calculated in terms of finite, lower-order parts. The only troublesome term is
the one on the right, which appears in the combination [2y + Y9]r+l, which does
not appear to be finite. However, as before, we simply take the zero momentum
limit of this equation. Then this precise combination [2y + ye] appears in the
low-momentum limit of F99, which we just showed to be finite. Finally, we then

integrate the entire equation in it to arrive at an expression for [F(2'1L
r+1

14.10.3 Step Three

Finally, to compute the remaining function [F(2) 1r+1' we write the first renormal-
ization group equation as:

it [I'(] _ -iµ2
[OF(2)]eµ r+1 r+1
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ag +2y/ I(2)J,+1
(14.159)

We also invoke similar arguments to show this is finite. First, we know that

[r(2)]
is finite. Therefore, the only troublesome term is the one involving

Q
r+1

[N]r+2 and [Y]r+1
Although this last term does not appear to be finite, we can power expand the

previous renormalization group equation around p2 = 0, and we have:

2[Y]r+1 =1L2 (a_F(2)(P2) (14.160)

This allows us to determine that [Y]r+l is finite, since the right-hand side is
finite. Also, we can show that [fl]r+2 is finite if we review our discussion of the
finiteness of [F(4) 1r+2'

Thus, the entire right-hand side of the renormalization group equation can be
shown to be finite, so a simple integration over it yields [I'(2)]r+1 entirely in terms
of finite quantities.

In summary, the SLAC deep inelastic scattering experiments demonstrated
the importance of Bjorken scaling. The simplest explanation of scaling comes
from the naive quark model using either a parton description or light-cone com-
mutators. However, this did not explain why the naive quark model should work
so exceptionally well, why strong interaction corrections could be ignored, or
why scaling set in so early. Ultimately, the scaling experiments were explained
in terms of gauge theory and the renormalization group. We have seen that the
coupling constant can change with the energy via the renormalization group equa-
tions. Since fi is negative near the fixed point for theories with gauge fields,
we can prove that QCD is asymptotically free; that is, at asymptotic energies,
the coupling constant goes to zero. Historically, the explanation of the SLAC
experiments by asymptotically free gauge theory helped to convince the scientific
community of the correctness of QCD, even though quarks have never been seen
experimentally.

Although the Standard Model has enjoyed great experimental success, there are
still important gaps left unanswered by the theory. In particular, we cannot explain
the low-energy spectrum of the hadrons until we understand quark confinement.
Furthermore, we cannot understand the origin of the generation problem, the
origin of the quark masses, etc. unless we go to theories beyond the Standard
Model. In Part III, we will turn to these questions.
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14.11 Exercises

1. Show Eq. (14.13).

2. Rewrite the light-cone commutator of two currents using scalars, as in Eq.
(11.61), rather than spinors. How will Eq. (14.68) be modified?

3. Prove the mass-independent MS prescription for y in Eq. (14.134).

4. Solve the Callan-Symazik equation in the deep Euclidean region.

5. Derive the analogue of Eq. (14.44) if we include the b and t quarks.

6. Consider the effect of the scale transformation xµ -f ;W' on a massless scalar
field. The variation of a scalar field is given by:

60(x) = (I +xµaµ)O (14.161)

Prove that the variation of the Lagrangian is given by:

6-9 = 8µ(X'` ') (14.162)

and that the Noether current is given by:

Jµ =x°TA + 28µ(02) (14.163)

If the scalar particle has a mass, show that the trace of the energy-momentum
tensor is proportional to the mass squared.

7. Consider the generators of an algebra given by: Pµ - yµ/R and Mµ° _
(1/2)Qµ°. Show that these generate the algebra 0(4, 1), the de Sitter group.
In the limit of R -f oc (i.e., in the limit that the de Sitter sphere approaches
ordinary space-time), prove that these generate the Poincar@ algebra. (This
is called the Wigner-Inonu contraction.)

8. Now consider the algebra generated by:

Pµ = taµ

Kµ = 2xµx'av - x28µ

Mµv = i(xµav - xvaµ)

D = Xµaµ (14.164)
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Prove that they have the commutation relations:

[PA> PJ = 0

[KL,

[KA> D] =

[PA> D] =

-KA

PA (14.165)

Complete all the other commutators. What transformations do these genera-
tors induce on xµ space? Show that D corresponds to a scale transformation,
and that KN, corresponds to an operator that is the product of an inversion,
translation, and another inversion. (An inversion is given by xN, -f xN,/x2.)

9. Show that this algebra generates 0 (4, 2).

10. Prove that:

0(4, 2) = SU(2, 2) (14.166)

which is called the conformal group.

11. Discuss how to use the renormalization group to prove the renormalizability
of QED. Set up the basic equations, discuss how the recursion relations might
work, but do not solve.

12. Complete the missing steps needed to prove Eqs. (14.131) and (14.132).

13. Prove Eq. (14.60).

14. Prove Eq. (14.61).

15. Prove Eq. (14.64).

16. Prove Eq. (14.68).

17. In the background field method, we expand AN, around a classical background
field B. that satisfies the equations of motion:

AA = BA + AA (14.167)

where A. represents the quantum fluctuations. Let us define their transfor-
mation properties as:

SBA = 8AA+g[BN,, A]

SAA = g[A,,, A] (14.168)
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Choose the gauge fixing term F to be:

F = BN,A'` +g[BN,, AA] = D(B)N,A" (14.169)

Prove that the gauge-fixing term violates gauge invariance, but preserves
the new invariance as defined. Prove that the Faddeev-Popov determinant
is also invariant. Thus, the gauge-fixed perturbation theory is still invariant
under the new gauge. Counterterms are also invariant, which vastly simplifies

calculations.





Part III

Nonperturbative Methods
and Unification





Chapter 15

Lattice Gauge Theory

Unfortunately, the color gauge theory will remain in limbo unless we
learn how to solve it and in particular get the spectrum out of it. So,
in particular, I wish to emphasize how one might solve the color gauge
theory to get a spectrum...

-K. Wilson

15.1 The Wilson Lattice

Although QCD is the leading candidate for a theory of the strong interactions, the
embarrassing fact is that perturbation theory fails to reproduce many of the essen-
tial low-energy features of the hadron world, such as the spectrum of low-lying
hadron states. Perturbation theory seems to be effective only in the asymptotic
region, where we can use the arguments of renormalization group theory to make
a comparison between theory and experimental data.

Nonperturbative methods, however, have proved to be notoriously difficult
in quantum field theory. However, one of the most elegant and powerful non-
perturbative methods is Wilson's lattice gauge theory,' where one may put QCD
on a computer and, in principle, calculate the basic features of the low-energy
strong-interaction spectrum. In fact, the only apparent limitation facing lattice
gauge theory is the available computational power.2

Monte Carlo methods,3'4 in particular, have given us rough qualitative agree-
ment between experiment and theory, giving us the hope that, with a steady
increase in computer power, we might be able to reduce the discrepancy between
theory and experiment.

We should also point out that we must pay a price for putting QCD on the
lattice. First, because the metric is Euclidean, it means that present calculations
with lattice gauge theory are limited to the static properties of QCD. Although
lattice gauge theory may be good for confinement and perhaps the low-energy
spectrum of states, it has difficulty calculating scattering amplitudes, which are
defined in Minkowski space. (One can, in principle, make an analytic continuation
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from Euclidean to Minkowski space, but then we need to have much greater
computational power than what is currently available.) Second, lattice gauge
theory explicitly breaks continuous rotational and translational invariance, since
space-time is discretized. All that is left is symmetry under discrete rotations of
the lattice. (Presumably, we can recover continuous symmetries when we let the
lattice spacing go to zero.) Third, we are limited by the available computational
power. Lattice sizes are thus unrealistically small, on the order of a fermi, so
that important effects that enter at larger distances are cutoff. However, since
computer power is increasing exponentially, there is hope that we will one day
soon extract a realistic spectrum from lattice gauge theory.

Let us begin by defining the simplest lattice in four dimensions, a Euclidean
hypercubical lattice with equal lattice spacing a in the x, y, z, and t direction. If
we take the limit as a -f 0, then our action should reduce to the usual Yang-Mills
action.

Between two neighboring sites of the lattice, we define a "string bit" or "link,"
which is a member of SU(3) and is denoted by U(n, n +,u). This string bit
connects the nth point with the n + 2 point, where 2 defines a direction in the µth
lattice direction.

We define this string bit or link to be unitary:

U(n, n + 12)t = U(n, n +,u)-1 = U(n +,u, n) (15.1)

Taking the inverse of a link therefore reverses its orientation. Since a unitary
matrix can be written as the exponential of an imaginary matrix, we can write:

.l°
U(n, n + 2) = exp iag 2 Aµ (n) (15.2)

where g is the coupling constant, ,l° the generator of SU(N), and Aa (n) is the
gauge field.

We define a plaquette as a square face of the lattice with dimensions a x a
(Fig. 15.1). Our action is equal to tracing Us around each of the squares of the
lattice:

S = - 2g2 Y. Tr UP
P

Up = U(n,n+2)U(n+µ,n+,u+G)U(n+,u+G,n+G)U(n+G,n)

(15.3)

where we symbolically sum over all plaquettes p in the four-dimensional lattice,
and where with each p we associate the point (n, 2, G). The essential point is
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n+v n+µ+v

n

Figure 15.1. A plaquette on a Wilson hypercubical lattice. The action is defined as the
sum of traces over these plaquettes.

that this formulation is both gauge invariant and also reproduces the Yang-Mills
theory in the continuum limit.

A gauge transformation is defined as:

U(n, n + 2) -* Q(n)U(n, n +,u)S2(n +,u)-1 (15.4)

Notice that a string bit is defined between two neighboring sites, while the gauge
parameter S2(n) is defined at a lattice site. Our action is invariant under this
transformation, since every Q(n) in the transformed action cancels against an
Q-1(n) in Tr UP.

Finally, we take the continuum limit. To do this, we must use the Baker-
Campbell-Hausdorff theorem to combine each of the Us in a plaquette into a
single exponential. We use the equation:

eAeB = eA+B+Z[A,B]+...
(15.5)

In general, we have an infinite number of terms appearing in this expansion,
corresponding to all possible multiple commutators between A and B. However,
because we take the limit as a -f 0, we need only keep the first-order terms in
this expansion.

For example, if we keep the lowest-order terms and drop all commutators, we
find terms like:

°
exp iag 2 +,u) - exp ia2g(.l°/2) [aN,A,(n) ]° (15.6)

Putting everything together, we find that we can write the action as:

S = -2g2 YTr exp (15.7)
P
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where AN,(n) = A'l'/2, and:

FN,,,(n) = ig[Aµ(n), (15.8)

Taking the limit as a -f 0, then we find the continuum result:

S

a-1(1 - 2
2g2

.1
\

1

4
J dax Fµ F'`°° (15.9)

We thus recover the continuum theory in the a -f 0 limit.

15.2 Scalars and Fermions on the Lattice

We have placed gauge particles on the lattice in an elegant fashion, preserving
exact gauge invariance on the lattice, even with finite spacing. We now generalize
these results to put scalars and fermions on the lattice. In particular, we will find
curious complications when fermions are introduced.

To put scalars on the lattice, we must make the substitution:

aAO -
a (O-A - On)

With this simple substitution, we find that the scalar action becomes:

S fd4x(2aµoaµo +
2m2c2 + 4!

4

2 YO-A - '''n)2 + as ( 22 Wn + 4
On)

n µ=1

(15.10)

(15.11)

To calculate the propagator of the scalar particle on the lattice, we will find it
convenient to go to momentum space. We wish to replace 0, with its Fourier
transform c(k). We will define:

f
dak

e`k O(k) (15.12)Wn = (2n)a



15.2. Scalars and Fermions on the Lattice 509

We will arbitrarily truncate the integral, since wavelengths smaller than twice the
size of the lattice can be discarded. We will take:

-Q <kµ<Q (15.13)

Now let us insert the Fourier expansion of 0, into the free action of the scalar
field on the lattice. The free part can be calculated by taking a double integral
over k and k':

a a

a4 d k d k' 1)(eiakµ - I)E
(2n)4 (2n)a

dak (eiak' - 1)(e-iakµ - 1)(2n)a

= 4J (2 a sin2(akN,/2) (15.14)

Inserting this back into the free action, we now have:

a
S = 2 J (2 a a2 sin2(akµ/2)+m2 0(-k)O(k) (15.15)

Not surprisingly, this differs from the usual propagator defined in momentum
space. Normally, the Euclidean Klein-Gordon equation has a propagator given
by 1/(k2 + m2). On the lattice, the propagator is generated by taking the inverse
of:

k2+M2 - m2 + 4 sin2(akN,/2) (15.16)
a-2µ

In the limit as a -f 0, we find that the two expressions are identical (for small k).
Both are parabolic, as shown in Figure 15.2. (For large k, the two expressions
differ noticeably. However, large values of k are cut off.)

The relative ease with which we could put scalar particles on the lattice
compares with the relative difficulty of placing fermions, especially quarks, on
the lattice. A number of problems, both conceptual as well as computational,
arise.

As before, we make the substitution:

(15.17)
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- 7t/a n/a

Figure 15.2. For small k, both the lattice and continuum inverse propagators behave like
k2 +M2 . For large k, where the lattice approximation is not reliable, they differ.

With this substitution, our lattice fermionic action becomes:

a3 4

S= 2Y, nY'(*n+G - *n-A) in
n µ=1

(15.18)

As before, we take the Fourier transform of the in field. This gives us the action:

S = f G
(-k) i

y, Y. sin(a kµ)
(27r)4

+ m I vG (k) (15.19)
1

Therefore, we wish to examine the properties of the expression:

2 sing akN, + m2
a2

(15.20)

Unfortunately, this has bad behavior as we take the continuum limit. In Figure
15.3, this expression contains two equal minimum within the Brillouin zone. One
is located at k = 0, as before. However, we also have the minimum located at
k = ±Jr/a.

Therefore, we have an unphysical doubling problem; that is, the lattice fermion
theory does not give us the correct continuum limit. In fact, since we have a
doubling for each space-time dimension, we actually have 24 = 16 times too
many fermions.

Several solutions have been proposed to cure this problem, none of them with-
out some drawbacks. One convenient solution to the fermion doubling problem
is to modify the lattice fermion action by hand, which can cancel the unwanted
zero. We can always do this as long as the correct continuum limit is obtained.
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-n/a n/a

Figure 15.3. Fermion doubling problem: For small k, both the continuum and lattice
fermion inverse propagators behave the same; for larger k, the lattice fermion propagator
has other minima.

We add to the previous action the following Wilson term:

1

2a
i , (*,,A + Yn-µ - 2 Yn) (15.21)

If we now calculate the momentum-space contribution of this term and add it
to the previous one, we find:

_ "' sinak cosak, 1

S = f (2-
(-k) i 1: yl` a + m - a *(k) (15.22)

u u

The second term, containing the cosine, preserves the original minimum at k = 0
but eliminates the unwanted one.

The existence of this fermion doubling problem is related to the anomaly
problem. As we saw previously, the various regulator schemes that we have
studied for Feynman integrals violate chiral symmetry. For example, Pauli-
Villars regularization adds infinite mass fermions, which violate chiral symmetry.
Similarly, dimensional regulation has problems because of the presence of ys,
which cannot be generalized in d-dimensional space. Thus, chiral symmetry is
not respected by these regulator schemes, and hence an anomaly arises.

On the lattice, however, chiral symmetry is exact for massless fermions.
Since chiral symmetry is respected by the lattice theory, there can be no anomaly.
However, there is a price we pay for the absence of the anomaly, and this is the
doubling of the fermion chiralities such that the anomaly cancels. If we calculate
the chiralities of the two types of fermions, we find that they are opposite and hence
produce no anomaly. The fermion doubling problem is thus deeply connected with
the problem of chiral symmetry breaking on the lattice. For example, adding the



512 Lattice Gauge Theory

Wilson correction term violates chiral symmetry, even for zero mass fermions.
Thus, studying chiral symmetry breaking on the lattice is always a bit delicate.

An even more difficult problem, from the point of view of computation, is the
problem of quark loops. This is because Grassmann variables cannot be modeled
on a computer. We cannot use Monte Carlo methods to minimize an action with
Grassmann variables.

However, we can functionally integrate out the fermion contribution entirely,
yielding determinant factors. For example, we have:

f D,Die`.f L(')d4x = det (iy4 8N -m) (15.23)

These determinants, in turn, can be modeled on computer, although they are
non-local and quite difficult to compute. This is unfortunate, since a computer
simulation of QCD necessarily involves quarks. This remains one of the main
computational problems facing lattice gauge theory. (However, calculations omit-
ting the fermion loops, called the "quenched approximation," exhibit many of the
nonperturbative features we expect in the final theory.)

15.3 Confinement

One of the main reasons for introducing lattice gauge theory is to calculate effects
that lie beyond the reach of perturbation theory, such as the confinement of quarks.
Although quark confinement has not been rigorously proved within the framework
of QCD, we provide compelling reasons for believing that quarks are confined in
lattice gauge theory.

In general, if the potential between two quarks is proportional to the distance
between them, then the two quarks can never be separated:

Confinement : V(r) - ar (15.24)

where a is called the string tension. If we try to separate the quarks by force,
then the restoring force of the linear potential between them grows sufficiently
rapidly to prevent them from being separated. Furthermore, the string may break,
creating a quark-antiquark pair held together by another string. Thus, they can
never be separated if they are bound by a linear potential. Similarly, if the quark
potential asymptotically becomes a constant or decreases with distance, then the
potential is not sufficient to confine the quarks.
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We will now see that, in the strong-coupling limit, the lattice gauge theory
confines quarks. Let us first set up the Wilson loop:

-II(C) = P Tr e' f,
n"aX (15.25)

where C represents a closed loop and where P represents the path ordering of the
exponential along the loop. (This means that we cannot simply perform the line
integral dx" along the loop. We must first split up the line integral into an infinite
number of infinitesimally small exponentials, and take the product of them ordered
sequentially along the loop.) Notice that the Wilson loop is gauge invariant.

We shall primarily be interested in the Wilson loop because it gives us a
criterion for confinement. The counterpart of the Wilson loop for the lattice is
given by:

W(C) _ (Tr JJ Un)
n

(15.26)

where we take the product around a discretized loop C. We will be interested in
the behavior of W(C) where C is a rectangular loop with width R in one spatial
direction and length T in the time direction, in the limit of large T.

Our strategy is to rewrite the path-ordered Wilson loop W(R, T) in terms of
the matrix elements of gauge-invariant, two-quark states. The two-quark state at
time t is given by:

f (C)4(t, 0) PC exp (ig A(z) dz q(t, R)0)4(t, O)q(t, R)) _ 1:
C f,o) 2

r(t, R)10) (15.27)

where the quark states are at equal times but are separated by a spatial distance R,
where PC takes the path-ordered exponential along the path C, and f (C) is some
function along the path C. The sum over C is taken over all paths that connect
the two points. The presence of the path-ordered exponential guarantees that this
two-quark state is gauge invariant.

Now construct the overlap function by taking the matrix element of the two-
quark state at time t = 0 and at some later time t = T. After inserting a complete
set of intermediate states, and taking the limit T -f oc, we find:

T Q(T, R) ° lim 0)4(T, R)14(0, 0)q(0, R) 10)

li (01rt(T, R)r(0, R)10)
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Tim
j>Ojrt(O,R)j0)j'e -EST

," e-Eo(R)T (15.28)

(In the T oc limit, only the smallest energy eigenvalue Eo dominates the
right-hand side of the equation.)

Now let us contract the quark wave functions that appear within S2(T, R). The
quark propagator (in a background of gluon fields) can be approximated as:

(Olga(t, x)gs(t', x)10) = exp (i f Ao(r, x)dr (Olgc (t, x)gs(t', x)10)o\ r

(15.29)
where the subscript 0 refers to free quark fields.

Within S2, we contract the quark field q(0, 0) with q(T, 0), and the quark field
q(0, R) with q(T, R). With this contraction, we find that there are now four
contributions to the path-ordered exponential integral. These four contributions
complete a path-ordered integral over the sides of a closed rectangle, whose
vertices are given by (0, 0), (0, R), (T, 0), and (T, R). Because the exponentials
are now taken over a closed loop, S2(T, R) is thus proportional to W(C). We have,
therefore:

lim Q (T, R) - lim W(T, R) - e-E0T (15.30)
T-+oo T-,oo

If the potential between the quarks grows like the distance of separation R, then
the quarks are confined. We therefore have:

W(R, T) -f exp(-aRT) (15.31)

Since the area of the Wilson loop is RT, the area law for the behavior of the
Wilson loop for large T gives us confinement.

If the quark potential goes to a constant m for large distance, then we have:

W(R, T) -f exp (-mT) (15.32)

which gives us a perimeter law for nonconfining potentials.

15.4 Strong Coupling Approximation

Since the area law gives us a criterion for confinement, our next task is to calculate
the functional integration in the path integral for gauge theory to see if QCD gives
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us a confining theory. We wish to calculate the functional integral of the Wilson
loop for small 1/g2 (i.e., the strong coupling approximation):

(W(C)) = 2
J

DUTr (U1U2 UN) exp I -2g2 ETrUPI (15.33)
\ P 1

where Ul U2 . UN Ul symbolically represents the product of a series of U matrices
around some closed path C in the lattice.

In order to perform this integration in the strong-coupling limit, we use the
invariant group integration dU introduced in Chapter 9. We recall that if U is an
element of a Lie group, then the invariant measure dU obeys the property:

d(U'U) = dU (15.34)

for fixed U'. dU is easy to construct for SU(2). For this group, we can reduce
the string bit to:

U11

bU
exp(igA/A

2
a)

(15.35)

where:

Bji = I galAb,1 (15.36)

and ao + a a = 1. Then it can be shown that the invariant group measure for
SU(2) is given by:

3

dU=n-Zdaodaida2da36 Ea?-1 (15.37)
=o

With this explicit representation of the group measure, we can easily prove:

f dUUlj = 0

1

dU Ui.h Uizjz = 2EiIil6i2jzf
f dU Uij(U-1)kl = 2SjkSil (15.38)
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With these integrals, we can perform the strong coupling expansion of the
Wilson loop. First, we reduce the plaquette to:

UP exp(igaF' 2 )

(15.39)

where:

Op = I ga21 Fa"
1

(15.40)

The action for the lattice gauge theory then becomes:

12(1 - 2TrUp)= 12(1 - cosop) (15.41)

Then the expectation value of a Wilson loop becomes:

(W(C)) = Z-1
J

DUTr (UlU2 . . . UN) exp 12 (1 - 2 cosop) (15.42)
g p

In the strong-coupling limit, we want to power expand this expression in terms
of 1/g2. If we expand the exponential, to lowest order we have:

(W(C)) ( 1
Z ... UN) (1_ 2g2 E Tr UP .. (15.43)=Z-1JDUTrUU 1

P

Because of the identities in Eq. (15.38), the functional integral is zero unless
each U within a plaquette is paired off the same U appearing elsewhere in the
integral. Unless the pairing takes place, the resulting integral is zero because
f dU U = 0. The pairing can be performed in two ways: U can pair off with the
same U appearing within the Wilson loop, or with the same U appearing within a
neighboring plaquette.

This stringent condition sets almost all the terms in the integral to zero; the
only nonzero contribution comes from plaquettes that completely fill the two-
dimensional space within the Wilson loop. This effect is called "tiling"; that is,
the only nonzero contribution comes from the plaquettes arranged like tiles within
the loop. Each plaquette borders another plaquette, or borders the Wilson loop.
In this way, each U appearing in the integral appears twice, either in neighboring
plaquettes or in a plaquette and the Wilson loop.

The functional integral is therefore proportional to the number of integrations
that we have performed; that is, it is proportional to A/a2, where A is the minimal
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area of a surface that fills up the loop C. The integral can be approximated in this
limit, and the strong-coupling expansion gives:

(W(C)) ^'eXp[_Afg)j (15.44)
a2

where f (g) = log g2 to lowest order.
The crucial point is that this trace goes as the exponential of the area of the

enclosed loop. We have, therefore, formally proved that the strong-coupling limit
produces a confining theory for the simplest SU(2) gauge theory.

A curious phenomenon occurs, however, when we try to reach the continuum
limit in the strong-coupling approximation. In the continuum limit, we need to
keep:

f (g) = constant
a2

(15.45)

If this condition is not met, then the trace formula becomes singular and mean-
ingless. Therefore, after taking the strong-coupling approximation, we cannot
take the continuum limit. Although this seems to be a problem, it is actually a
blessing in disguise, because the discussion we have just made applies to QED,
which we know is not a confining theory in the weak-coupling regime. Thus, we
wish to have a phase transition separating the weak- and strong-coupling regimes
for QED.

However, for gauge theory, we do not want a phase transition separating these
two regimes, because we want a theory of confinement for the quarks. Here we
see the crucial role played by non-Abelian gauge theory; QED has a qualitatively
different phase structure than non-Abelian gauge theory.

All these results can be generalized to SU(3) and higher. For SU(3), we need
the identities:

f dU (U)m,n = 0

f dU (U)m,n(U)v,e =
1

3sm,gSn,P

f dU (U)m,n(U)p,q = 0 (15.46)

Then the calculation proceeds as before, giving us the area law and hence a
confining theory for SU(3) lattice gauge theory in the strong-coupling limit.
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15.5 Monte Carlo Simulations

So far, our results have been qualitative and not quantitative. One of the great
advances in lattice gauge theory is the Monte Carlo method, where we can use
supercomputers to calculate a large number of numerical results for QCD.

A brute force calculation of the path integral, of course, is out of the question.
If we have the simplest possible group defined on the lattice, Z2, with elements
± 1, and if the lattice is 8 x 8 x 8 x 8 in size, then the sum contains the following
number of terms:

2214 = 216384 N 105460 (15.47)

Clearly, this is prohibitive. The Monte Carlo technique, however, evades this
problem by making certain approximations to the path integral.

The path integral, in general, sums over an enormous number of configurations
that contribute almost nothing to the integral. We wish to throw most of them away,
while keeping the ones that tend to minimize the action. The Monte Carlo method
gives us a specific algorithm by which to accept only these gauge configurations.

Let E1 be a certain set of initial values for each of the various links for
the entire lattice (say, each link equals one). Then the Monte Carlo method
generates a sequence of configurations E2, E3, .... When statistical equilibrium
is eventually reached, the probability of encountering any specific configuration
E in the sequence is proportional to e-°S. Then the expectation value of any
observable 0 may be approximated as:

m+n

(O) ^ - 0(Et)
n i=m+1

(15.48)

where O(Es) represents the average of 0 computed with the set of link variables
{Ei }, and where the first m steps have brought the system near equilibrium.
Notice that we have replaced the original sum over all gauge configurations with
this smaller, streamlined sum of configurations {E; } near equilibrium, which give
us the bulk of the nonvanishing contributions to the path integral.

There are several useful algorithms, such as the heat bath and the Metropolis
methods, which can generate this sequence of configurations {E; }. We will use
the latter. If we make the change from E to E' (by changing the value of just one
link), we can compute the corresponding change in the action:

AS = S(E') - S(E) (15.49)

Now comes the key step: choose a random number r between 0 and 1. If
e-°S > r, then the change from E to E' is accepted. If not, it is rejected.
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If AS is negative, then the change is always accepted since a-°S > 1.
However, if we only accepted negative values of AS, then we would always be
decreasing the action and hence would tend toward the classical equations of
motions. This, of course, throws out all quantum mechanical corrections and is to
be avoided.

By choosing this random number r, we are allowing positive values of AS, so
that the action can actually increase as we make the transition from E tc E. This,
in turn, allows for quantum fluctuations around the classical equations of motion.

Now make a change in another link, generating yet another configuration, and
test to see if it meets the proper criteria. In this way, we can sweep through the
entire lattice, making small changes successively in each link. Once we have
swept through the entire lattice, the process is repeated once again. After many
sweeps, we gradually reach thermal equilibrium, yielding the set of link variables
{E1 }. Then the process is repeated once again until, after many sweeps, we obtain
the second set of link variables {E2}. Over time, we arrive at a sequence of {Ei },
which we then insert into the sum in Eq. (15.48).

The net effect of this algorithm is that the new configuration E' is accepted
with the conditional probability of e-°S. To see this, let P(E -f E') be the
probability of making the change from E to E'. Then this algorithm gives us:

P(E El

1 if S(E) > S(E')

e-°S if S(E) < S(E')

This can also be written as:

(15.50)

P(E E') = e-S(E')+s(E)
(15.51)P(E'-E)

But there is something that still must be checked: Is this algorithm sufficient to
force the system into thermal equilibrium?

The advantage of this iteration process is that it does, in fact, automatically tend
toward thermal equilibrium. To see this, let us review what we mean by thermal
equilibrium. The transition matrix P(E -f E') satisfies the usual properties of
stochastic matrices:

E P(E -4 E') = 1

E,

P(E - E') > 0 (15.52)

(The first statement simply says that probability is conserved, i.e., that the sum of
probabilities for the transition to all possible configurations is equal to 100%. The
second statement says that the probabilities are never negative.)
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Next, we want to have the system in thermal equilibrium. We can consider
P(E - E') to be a square matrix, with elements labeled by {E}. We demand that
the Boltzmann distribution e-'(E) be an eigenvector of this transition P matrix:

E e-S(E)P(E - E') = e-S(E )

{E}

(15.53)

(This simply means that, if the system is already in equilibrium, then the transition
from E to E' leaves the system in equilibrium.)

We can also show that these three conditions are consistent with the detailed
balance equation:

P(E - E') _ e-S(EA)

P(E' - E) S(E)
(15.54)

To prove this consistency with the detailed balance equation, we can remove the
denominators by cross multiplying and then summing over E. This gives us:

Ee S(E)P(E EI)
{E}

E e-S(E)P(E' , E)
{E}

e-S(EA) (15.55)

where we have used Eqs. (15.52) and (15.53).
This shows that the detailed balance equation is a sufficient (but not necessary)

condition to prove thermal equilibrium. However, if we compare the detailed
balance equation with Eq. (15.51), we find that the Metropolis algorithm satisfies
this condition, and hence one can show that the algorithm drives the system to
thermal equilibrium, as desired.

Once we have reached equilibrium and have generated a sequence of these
configurations, we can calculate many numerical values for physical parameters.
The simplest and most convenient is the string tension. By analyzing the behavior
of the string tension, we can rapidly get an indication of the existence of a phase
transition.

If two quarks are indeed linked together by a thin, condensed glue of gauge
fields that behaves like a string, then it should be possible to calculate the tension
on that string with these methods.

Let W(R, T) describe the Wilson loop, as before, and define the string tension
as:

Q=log(W(R,T)W(R-1,T-1)1
(15.56)

\W(R - 1, T)W(R, T - 1))
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Figure 15.4. Monte Carlo simulation of a SU(3) lattice calculation, with string tension
plotted against 1/g2. As long as the string tension is nonzero, we have confinement.

Now insert the value of W (R, T) - e-E0T into this function. We find:

2 dEo(R)Q - a dR (15.57)

which very conveniently gives us the force between the quarks for all values of R.
By plotting the string tension a versus l/g2N, we can see in what region the

area law is satisfied or violated. In Figure 15.4, for example, we see a typical
result from a Monte Carlo calculation for SU(3). We plot the string tension a on
the vertical axis, and P - 1/g2 on the horizontal axis.

Finally, we remark that since Monte Carlo methods for SU(3) are slow and
cumbersome, it is instructive to analyze simpler groups, such as Z,,, defined at
each site.

Monte Carlo studies indicate that these systems with n = 2, 3, 4 exhibit a
two-phase structure. However, for n > 5, the theory seems to prefer a three-phase
structure. One phase corresponds to a confinement phase. Another corresponds
to a phase where we have spin waves and free photons. The third phase is peculiar
to systems with discrete groups only.

In the limit as n -f oo, the Z models approach U(1) gauge theory. In this
limit, one phase of the Z model shrinks to zero, leaving only two phases for large
n (and presumably QED).
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15.6 Hamiltonian Formulation

Since Lorentz covariance is manifestly broken on the lattice, it is worthwhile to
investigate the canonical formulation of lattice gauge theory as a Hamiltonian
system, where the time parameter t is continuous.

As before, the continuum Yang-Mills action can be written as:

L = pq - H(p, q) = E° A,° - 2
J

d3x ((E,)2 + EgG° (15.58)

where G° is the generator of gauge transformations.
We wish to put only the three space directions on the lattice and keep the

time component continuous. In the lattice limit, we have the Kogut-Susskind
Hamiltonian5:

2

H = 8 E°E° - 1 4Tr UP +h.c.
2a 4ag2 P

subject to the constraint:

(15.59)

Gal p)=0 (15.60)

This last constraint (Gauss's Law) forces us to choose only gauge-invariant states
for our system.

In this picture, gauge-invariant states include quark-antiquark states:

as well as glue-balls:

(flu) r(n+R) (15.61)
path

Trl j UI
`closed path J

(15.62)

This means that we are immediately left with a Hilbert space consisting of strings,
without any free gluon states. The advantage of this formalism, therefore, is that,
to lowest order, we see only strings. Any approximation we make will be an
approximation around string states.

The new commutation relations are given by:

[Ea(n, i), U(m, j)] = 2raU(m, i)Sijsn,m

[Ea(n, i), E'(m, j)] iEab`E`(n, i)SiSn,m (15.63)

where the lattice site is given by m, and where Ea(n, i) is the electric field.



15.7. Renormalization Group 523

Next, we wish to calculate the energy associated with these strings. In the
strong coupling limit, we can keep only the E2 term. For SU(2), we therefore
have:

(Ea)2UIO) = l a l aU10) = 3U10) (15.64)
2 2 4

We apply the Hamiltonian on a quark-antiquark state with length R to obtain
its energy:

Ho44) =
(g2\
2a/ C4/

(a)
l44) (15.65)

Thus, the energy of a string state, to lowest order, is proportional to its length,
with a string tension-given by 3g2/8a2. The Hamiltonian formulation of lattice
gauge theories gives us a quick way in which to see confinement and calculate the
string tension.

Using operator techniques, we can calculate the string tension to any arbitrary
accuracy. A more precise calculation of the string tension for SU(3) gives us:

= g2 4 11 2 61
s a s

2a2 (3 153
y

1632
y - 0.041378y - 0.034436y + ) (15.66)

where y = 2/g4.

15.7 Renormalization Group

We mentioned earlier that the continuum limit a -f 0 is a subtle limit requiring
renormalization group techniques. This is because the lattice spacing is a regulator
on the potentially divergent structure of the theory. To eliminate divergences and
take an appropriate continuum limit, the coupling constant g must be taken to
depend on a.

For example, let 0 be a physical observable with dimension d. Since there
are no intrinsic dimensional constants in the theory other than the lattice spacing,
then by dimensional arguments we can write:

0 = a-dr(g) (15.67)

where r is some function of the coupling constant g. The limit a -f 0 is ambiguous.
For example, for negative d, r(g) must become singular in order to have a finite
result.
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A mass m, for example, must obey:

m = 1r(g) (15.68)
a

Demanding that m be independent of a in the continuum limit leads to:

dm _ 0 (15.69)
da

Differentiating, we arrive at:

r'(g) = -r(g)lft)

P(g) = -a
8a

(15.70)

where P is the usual Callan-Symanzik function found in renormalization-group
theory.

We know that, for SU(N) theories, the behavior of P is given by:

aag =1og3+tig5+.

where:

11 N Q 34 N )2

P0=-
3 (16- 2th = 3 (16n2)

for SU(N) theory. We can then integrate the expression for r(g):

(15.71)

(15.72)

r(g) = ex p
dg

(15.73)
p C PV))

which becomes:

2)-,61/2.60
1

r(g) - (Pogexp -
2pog2

(15.74)

In the limit a -* 0, we take g -f 0, so that r(g) goes to zero in such a way that
m is finite and nonzero. In this way, masses can develop even in a theory with
no dimensional parameters. This is an example of "dimensional transmutation,"
where massless theories develop a scale because of renormalization effects.

In summary, lattice gauge theory gives us perhaps the best hope of extract-
ing the low-energy hadron spectrum from QCD. Approximations to lattice gauge



15.8. Exercises 525

theory, such as the strong-coupling approximation, indicate that quarks are con-
fined, as expected. Furthermore, simple computer calculations with Monte Carlo
programs show many of the qualitative features associated with nonperturbative
phenomena, such as phase transitions.

Some of the important problems facing lattice gauge theory include how to go
from the Euclidean metric to the Minkowski metric, how to calculate with quarks
on the lattice, and how to increase the computational power of our computers.
Although lattice calculations have not yet given us the mass of the proton or other
physical parameters of the low-lying hadron states, the qualitative features of the
theory are all in agreement with our expectations. The only limitation seems to
be the level of our current computer power.

15.8 Exercises

1. Complete all intermediate steps necessary to prove Eq. (15.7).

2. Prove that the Wilson fermion correction gives us the propagator in Eq.
(15.22).

3. Let U be an element of SU(2), parametrized as U = ao + i or a. Prove that
4

2 =a 1. Define the measure as follows:

dU =_ rr-2d4a S(a? - 1) (15.75)

Prove that the measure is invariant by multiplication with another element of
SU(2):

d(U'U) = dU (15.76)

for fixed U'.

4. For SU(2), prove Eq. (15.38).

5. Define the quantity:

W(J) - fdU exp (JU) (15.77)

For SU(N), prove that:

6 6

f dU U,1i1 U1z12 ... UiNJN = SJ SJ ... SJS
W(J) J=o (15.78)

Jlil J2i2 JNiN
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and that:

det (JW(J) = 1 (15.79)

[Hint: use the fact that SU(N) matrices have unit determinant.]

6. One can show that an explicit value for W(J) is given by:

W(J) _ (Eil...iNEJl...JNJJi2J2 ... JiN)N

(15.80)

Using this, prove that:

f dU Uilij ... UiNiN
1

- Eil... iN 6il...)N
N!

(15.81)

7. Evaluate:

f dUTr(U") (15.82)

for the SU(N) matrix U.

8. To construct the lattice version of the Bianchi identities, one must trace over
two plaquettes. Construct this trace, and show how to reduce down to the
usual Bianchi identity.

9. Consider the Z2 model in d dimensions, where the spins on the lattice can
only equal ± 1. The partition function Z and free energy F are given by:

Z = 2-Nd exp C Qp l = expNF(P) (15.83)
of=f1 p 1

where up is the product of the spins around a plaquette. For large P, the sum
over plaquettes can be performed. We find:

(cosh p)-Nd`d-nnZ = tlsl
closed surfaces

= 1 + (N/6)d(d - 1)(d - 2)t6

+(N/2)d(d - 1)(d - 2)(2d - 5)t10 + (15.84)
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and:

d(dF 1)
= 2 log cosh + 2 d(d - 2) [tanh p6 + (2d - 5) tank P'p +

(15.85)
for t = tanhp. The first term corresponds to summations over cubes, the
second to adjacent cubes, the next to disconnected cubes, etc. Prove these
two strong-coupling relations to second order only. Hint: use the fact that:

exp P ap = cosh P (l + tar) (15.86)

10. Prove Eq. (15.64).

11. In order to have the commutation relations in Eq. (15.63), what must the
complete lattice Lagrangian look like in terms of independent variables and
their conjugates?

12. Draw the graphs necessary for the calculation of Eq. (15.66) to second order.
Do not solve.

13. The lattice gauge action makes no mention of gauge fixing, yet all integrals
are well defined, without any infinite overcounting. How does the lattice
gauge action accomodate gauge fixing?

14. Discuss how lattice gauge theory might be formulated on a noncompact group.
Discuss some of the problems.





Chapter 16

Solitons, Monopoles,
and Instantons

I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped,
[creating] a large solitary elevation, a rounded, smooth and well-defined
heap of water .... I followed it on horseback, and overtook it still rolling
on at a rate of some eight or nine miles an hour, preserving its original
figure ... after a chase of one or two miles, I lost it in the windings of the
channel.

-J. Scott Russel, 1834

16.1 Solitons

Perturbation theory is based upon making power expansions of the path integral
around trivial vacua such as ¢ = 0 or const. However, there are solutions of
the classical, nonlinear equations of motion that exhibit particle-like behavior
that give us powerful insight into the nonperturbative behavior of these theories.
A new quantum power expansion can be developed around each exact solution,
allowing us to explore regions that are not accessible by standard perturbation
theory. In particular, these solutions give us nonperturbative information about
important physical phenomena such as tunneling and bound states.

In this chapter, we will describe three different types of classical solutions that
have been intensively studied:

1. Solitons are finite-energy, localized solutions to the equations of motion that,
after collisions, retain their shape. They were first investigated by J. Scott
Russell in 1834. Since then, a large number of different wave equations have
been shown to possess soliton solutions, especially in two dimensions.
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2. Monopoles, or particles with magnetic charge, were first investigated by Dirac.
They have been found in gauge theories with spontaneous symmetry breaking
and may have cosmological significance.

3. Instantons are finite-action solutions to the Euclideanized equations of motion.
Their presence signals the possibility of tunneling between degenerate vacua.

One of the surprising features of these solutions is that they can be studied
using topological methods.2 In topology, two geometric surfaces are considered
equivalent if they can be smoothly deformed into each other without cutting.
For example, a coffee mug, an inner tube, and a doughnut are all topologically
equivalent. We will find that certain topological numbers can be assigned to these
classical solutions.

Solitons (for solitary waves) exhibit some unusual properties, providing a
laboratory in which we can test some of our ideas about bound states. Eventually,
the hope is that we can extrapolate some of the qualitative features of solitons
to describe more complex bound-state systems, such as the proton. Their main
distinguishing feature is that, after they have scattered against each other, they
retain their shape (although there is a phase shift after the scattering). They are
hence stable against collisions and perturbations.

To exhibit soliton solutions, let us begin with a two-dimensional relativistic
Lagrangian:

2(x)2 - 2(q1)2 - U(O) (16.1)

where U(¢) is some arbitrary potential function. Its classical wave equation is
given by the Euler-Lagrange equations:

The energy is given by:

(16.2)

E _ / dx 12 (¢)2 + 2
(¢1)2 + U(¢)) (16.3)

-00

We can find solutions of the equations of motion by solving them for the static
case and then boosting them with a Lorentz transformation. For static solutions,
we can set ¢ = 0. If we multiply the static equations of motion by ¢', we have:

¢"¢' =
aUa )0' (16.4)
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These equations can be integrated over x, yielding:

2(01)2 = U (16.5)

Taking the square root, this equation can be integrated once again to yield:

X - xo
O(X)

=ff d¢
(16 6)

(XO) 2U(¢)
.

Let us now give some concrete examples of soliton solutions.

16.1.1 Example: ¢4

Let us choose the potential:

U(O) = 4 (02 - m2p.)2 (16.7)

The potential has two degenerate minima, given by the values:

¢ = fm/N/ (16.8)

This means that soliton solutions, if they exist, must asymptotically tend toward
these values as x -f ±oc; that is:

O(IxI = oo) = ±m/v (16.9)

To solve the system, we can integrate this 04 theory to yield:

O(X) d¢x-xo=f
f(XO) X12(¢2 - m2/.)

Inverting, we then find:

(16.10)

¢(x) = ±(m /v) tanh [(m//)(x - xo)] (16.11)

The ± sign in front indicates that there are two solitary waves, which are sometimes
called the "kink" and "antikink" solitons. This solution approaches the asymptotic
solution ¢ = ±m/v as it should.

The energy density is then given by:

E(x) = (m4/2.) sech4 [m(x - xo)/\h] (16.12)
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x

Figure 16.1. A soliton solution in 0° theory in two dimensions.

The mass of the soliton is given by the integral over the energy density:

f00 2v 2 m3M=J E(x)dx= 3 m (16.13)

Because the system is fully relativistic, we can obtain the time-dependent
solution by simply boosting the static one. This gives us the soliton moving at
velocity u (Fig. 16.1):

¢(x,t_m

tanh
m (x - x0) - ut

l
- u2

Then the energy of the soliton is given by:

E =
f_ 00 dx

110)2 + 1(01)2 + U(c))

M
1-u2

(16.14)

(16.15)

where M = 2'm3/(3..).
Perhaps the most interesting feature of the kink and antikink solitons is that

they are stable. Because of the way they extend asymptotically to infinity, it takes
an infinite amount of energy to change the kink to the constant, vacuum solution.
Although there are no Noether currents, we suspect that this stability, in turn,
indicates the presence of a conserved current.

In fact, we can define a conserved current as:

J`` = (16.16)
M
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which gives us the conserved charge:

Q= 1 dxJO= mf
533

(16.17)

It is now easy to see that the constant solutions correspond to Q = 0 and the
kink (antikink) solutions correspond to Q = +1(-1). Since Q is constant in time,
kinks with "topological charge" Q can never decay into solutions with different
topological charge. In fact, solutions of the equations of motion can be grouped
according to their value of Q; that is, they fall into discrete equivalence classes,
labeled by Q. Two solutions of the equations of motion, even though they may
look quite different, belong to the same equivalence class if they have the same
topological charge Q.

The concept of the topological charge (which cannot be derived from Noether's
theorem) will surface repeatedly throughout our discussion of solitons and instan-
tons.

16.1.2 Example: Sine-Gordon Equation

A more complicated example, the sine-Gordon equation, is given by:

.9 = 1 a,,¢V¢ + (m4/.l) [cos 1] (16.18)

Its wave equation is given by:

8A¢ + (m3/v) sin 0 (16.19)

To eliminate some of the unwanted constants, let us make the substitution
x -f mx, t -f mt, ¢ -f (V/m)¢. Then the wave equation simply reads
82¢+sin¢=0.

Perhaps the most important way in which to catalog solutions of the sine-
Gordon equation is by their topological charge. With the potential rescaled to
U(¢) = 1 - cos¢, the constant solutions with zero energy are given by:

¢=2Nir (16.20)

where N is an integer. Therefore, all soliton solutions must, at x -f ±oo, tend
towards one of these constant values, labeled by an integer N. If the topological
charge is defined as:

JI` = 1 (16.21)
2ir
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then the conserved charge is given by:

Q [¢(x = oo) - ¢(x = -oo)]
2n dx 8 27r

N1 - N2 (16.22)

where Nl and N2 are the integers that describe the asymptotic value of the field.
Since Q is a constant topological charge, solitons with one value of Q cannot

decay into solutions with a differing value of Q; that is, these solutions are stable
for topological reasons.

Let us now calculate the value of Q for different soliton solutions. The easiest
one is the static case, where we have:

¢
x - xo = f

(x) d¢

f 2 sin(/2)c )

Inverting, and then making a Lorentz boost, we now have the solution:

(16.23)

¢(x) = ±4 tan-1 Lexp (x 10
t

(16.24)
u 2

)
J

where the + 1 (-1) sign corresponds to the soliton (antisoliton) solution.
By examining their asymptotic values, we can easily show that the soliton (an-

tisoliton) solution has topological charge Q = +1(-1). Because of the periodicity
of the cos function, we can add 27rN to the soliton solution to generate a new
soliton solution with the same value of Q.

More complicated generalized solutions are not difficult to find. For example,
the following solution represents the scattering of a soliton off an antisoliton:

1 (sinh(ut/V'l --u 2)
cbs-A = 4 tan

u cosh(x/ 1 --u 2)
(16.25)

What is most remarkable about this soliton solution is that the individual
soliton and antisoliton waves keep their same shape even after a collision:

cbs(x + u (t - A/2) \ +cGA x - u (t - A/2)
-A cbs ) ) (16.26)

1-u2 1-u2

where t -f oc, where ¢s(¢A) corresponds to the soliton (antisoliton) solution, and
where there is a time delay given by:

A = [(1 - u2)/u]logu (16.27)
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For t -* oc, the asymptotic solution is the same, except that 0 flips sign.
Thus, the only difference between the asymptotic states at negative infinity and
the states at positive infinity is that there has been a time delay of A. Otherwise,
asymptotically it appears as if nothing happened.

We should also mention that the two-soliton solution is given by:

1 lu sinhx/ l - u24tancoshut/
l - u2

(16.28)

Since this function goes from -2n to 2n as x goes from -oc to +00, this two-
soliton solution has topological charge Q = 2.

Many-soliton solutions can also be found using an ingenious technique called
the Backlund transformation. Given a solution ¢o of these equations, we are able
to generate a new solution 01.

To see this, we write the sine-Gordon equation in terms of light-cone co-
ordinates or = (x + t)/2 and p = (x - t)/2. Then the sine-Gordon equation
reads:

ago -sin¢=0
aoap

(16.29)

We now define the Backlund equations as:

2 ao (01 - 00) =

1 aor(01+00) =
2

a sin[ 2 (01+00)]

. sin[-(01 - to)] (16.30)

Next, we multiply the first equation by a/ap and use the second equation to arrive
at:

z
1 a

(01 - 00) = cos[ 1(01 + Oo)] sin[ 1(Oi - 00)]
2 ao ap 2 2

2
sin ¢1-

1

2
sin ¢o (16.31)

Thus, ¢1 is a solution of the sine-Gordon equation if 00 is. The beauty of
this formulation is that we can now solve for ¢1 in terms of ¢o, thereby allowing
us to generate a new solution in terms of the old one. If, for example, we plug
in the trivial no-soliton solution ¢ = 0 into these equations, then we obtain the
one-soliton equation found earlier. The equation for ¢1 reads:

1

aol
2a2

1 = a sin(¢1/2)2 P
(16.32)
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which is easily integrated back to the one-soliton solution, with u = (1 - a2)/(1 +
a2).

16.1.3 Example: Nonlinear 0(3) Model

Let us start with a triplet of scalar fields cba with the simple 0(3) action:

Y = 1 2aµ (16.33)

This is the usual linear 0(3) model, except we impose a nontrivial constraint:

(ca)2=0.0=1 (16.34)

We can impose this constraint by using a Lagrange multiplier in the action:

S -S + J d2xl(¢ ¢ - 1) (16.35)

The energy of the system is defined as:

E = 1 J 8N8¢ 8N,¢ d2x (16.36)

(We have reversed the sign of the space derivative term in the Hamiltonian.)
As before, let us analyze the possible soliton solutions according to their

topological charge. We must first calculate the constant vacuum solutions, which
then fixes the asymptotic value of the solitons. Then we construct the topological
charge associated with each asymptotic value of the soliton.

The zero energy vacuum solutions obey 8µ¢a = 0, so they are just constants
pointing in some fixed direction in isotopic space ¢a = ¢o. As before, the soliton
solutions at infinity must asymptotically tend to this constant isovector 0a.

The field (pa (x), by definition, is a function that takes two-dimensional space-
time, labeled by t and x, into a vector ¢a in 0(3) isotopic space. In general,
this function therefore defines a map between points in R2 (the two-dimensional
plane) and the space of three real coordinates (pas.

However, as IxI -* oc, this function approaches the same constant value, ¢o.
Therefore x space is actually described by S2 (a sphere) since the values of the
function at infinity are all the same, no matter where we point. In other words, we
have replaced the plane with a sphere, where infinity has been transformed into
the north pole.

Furthermore, because of the constraint E3a_1 ¢a¢a = 1, the isotopic space is
actually a sphere S2. In conclusion, we find that the function (pa(x) is therefore a
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mapping of S2 (x, t space) onto S2 (isotopic ¢° space):

n : S2 -* S2 (16.37)

The question is: how many distinct ways can the points of a sphere be smoothly
mapped onto the points of another sphere? There is a theorem in topology that
says that the topologically distinct ways in which this mapping, called n, can take
place is labeled by the integers:

7C2(S2) = Z (16.38)

(These mappings actually form a group, since we can "add" these maps by se-
quentially iterating them.)

To motivate this abstract mathematical result, one can study the simpler ex-
ample of classifying the number of smooth maps from the circle Si onto another
circle S. Let ¢(9) map the circle (0 < 9 < 2n) onto the circle given by the
function ¢(0) = ¢(2n) mod 2n. Construct the charge:

f27rQ=

21
d6 rid(e)

21
[4(2n) - q(0)] (16.39)

At first, one might suspect that Q is equal to zero, because ¢(27r) = 0, or
that Q = 1, because ¢(2n) = 2n. However, there is also the possibility that
¢(2n) = 2Nn, where N is an integer, in which case Q = N. In this case, the
function ¢(e) maps the circle (0 < 9 < 2n) onto another circle N times; that is,
it repeatedly wraps around the circle an integer number of times. Q is therefore
sometimes called the "winding number," and is a topological invariant; that is,
it does not change even if we smoothly deform the function ¢(e), as long as
the boundary conditions remain the same. Thus, Q is sensitive to the overall
topological nature of the mapping 0(0), not its specific value. Mathematically, we
can say:

7rj (Sl) = Z (16.40)

Each value of N, in turn, represents an equivalence class of maps. Two functions
¢(e) and ¢'(6) are members of the same equivalence class or "homotopy class" if
they have the same N.

Returning now to the more difficult question of the nonlinear 0(3) model, we
shall find that the topological charge Q can be defined as:

Q = 1 J e,-P (aµ¢ X (16.41)
8n
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Our task is now to prove that Q is, in fact, an integer that represents the number
of inequivalent smooth maps from S2 to S2. Consider a sphere of unit radius, with
the surface described by the three-dimensional Cartesian coordinates xa, such that
F xQ = 1. We can also describe the same sphere with two dimensional coordinates
a1, 02, which can be polar coordinates or any local coordinates we place on the
surface of the sphere.

Then one can show that an infinitesimal element of surface area dSa pointing
in the a direction is given by:

dSa = 1 µv,abc aXb aXc
d2o

2 auN, ao
(16.42)

By a direct calculation, one can show that this expression is independent of the
specific choice of two-dimensional coordinates {o} one chooses. The surface
area of a sphere can then be computed by contracting dSa onto the unit vector Xa
and integrating:

4Njr =
J

dSaxa (16.43)

The integer N appears because the map xa(Ul, 02) may wind around the sphere
an integer number of times.

To make contact with the topological charge Q, the crucial step is to make the
replacement xa - ¢a. Then Q can be rewritten as:

Q
1 f EAvEabcoa a,,(pb avoc

1 f dSa pa=N
47r

(16.44)

The topological charge is therefore equal to the winding number, that is, the
number of distinct ways that the points on a sphere S2 can be mapped smoothly
onto another sphere S2. Each N, in turn, represents a distinct homotopy class of
maps.

Q is also important because it appears in the self-dual solutions of the nonlinear
sigma model. For example, consider the identity:

f d2X [(PAO ± EµvO X avo) (aµo ± Eµvo X a 'o)] > 0 (16.45)

(We are contracting with a Euclidean metric.) This quantity is positive definite
because it is the sum of squares of real numbers.
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Expanding, we find:

J
d2x [(PAO) O AO) + Eµv(O x a,O) Eµo(O x a,O)l

> ±2 J d2x aµO x av¢) (16.46)

The two terms on the left are actually the same, since EµvEpa = SAd + perm.
Finally, we arrive at:

E>4n1Q1

The equality E = 4n I Q I will be reached for the self-dual solutions:

aµO = ±EµvO x (avO)

16.2 Monopole Solutions

(16.47)

(16.48)

In addition to these two-dimensional toy models, we have the more complicated
monopole solutions of gauge theory. Before we discuss the properties of the gauge
monopole, let us review the properties of the Dirac magnetic monopole' found in
ordinary electrodynamics. The Dirac monopole is based upon a straightforward
generalization of the electric monopole. By analogy, the electric field E of a point
electric charge can be generalized to the magnetic field B of a point magnetic
monopole:

r rE=er B=gr3 (16.49)

Then Maxwell's equations are generalized to include a nontrivial divergence
of the magnetic field:

V E = 4ne83(r) -* V B = 4ng83(r) (16.50)

If we express these fields in terms of potentials E = -V and B = V x A, then
we seem to have a contradiction. Usually, the magnetic field, because it has no
sources, can be written in term of the curl of the vector potential. This is because
the divergence of a curl is equal to zero; that is, V V x A = 0. (This is because
a,aj 6i k = 0 since E`Jk is antisymmetric.)

However, it is possible to evade this identity if there is a delta function type
singularity in the A field. To see this, let us take a sphere surrounding the point
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monopole. At the top of the sphere, there is a small circle that is centered around
the north pole. The flux of magnetic field through this circle is given by:

f BdS = fVxA.dS

= c6A dl (16.51)

If the circle is infinitesimally small, including only the north pole, then the line
integral of the A field around this infinitesimally small circle is zero. However, if
the circle is made successively larger, until it includes the entire sphere, then the
surface integral over the B field is given by 4ng. However, the line integral over
the A field must be zero because the loop has become an infinitesimally small
loop surrounding the south pole. To avoid this contradiction, the A field must be
singular along the negative z axis. There must be an unphysical singularity that
extends from the origin down to the south pole and beyond. This singularity is
called the Dirac string.

In addition to the Dirac string, there is yet another curious property of magnetic
monopoles. When we apply quantum mechanics to monopoles, we find that the
magnetic monopole charge g cannot have arbitrary values; that is, the monopole
charge is quantized.

To see this strange effect, notice that a wave function i(i in the presence of a
monopole must be single valued when we go around the Dirac string. A plane
wave is given by:

* - exp (i/li)(p r - Et) (16.52)

The wave function, in the presence of a magnetic monopole, can be obtained
by making the standard substitution: p -* p - (e/c)A. With this substitution, the
wave function picks up a new phase factor given by:

(16.53)

In order for the wave function to be single valued when we go around a loop,
this factor must be equal to one. The line integral around the Dirac string must
therefore be 2nn, where n is an integer. Then we have:

2nn = f

chi
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ec 4n g (16.54)

Therefore the final quantization condition is given by:

hee=n (16.55)2
g

This quantization of the monopole strength is a rather curious result, which shows
that the quantum mechanics of magnetic monopoles yields novel features.

We would like to make a final remark about Dirac magnetic monopoles. One
can find fault with the previous presentation because of the existence of the singular
Dirac string. Although the Dirac string can be moved in any direction and also
has no physical consequences, one suspects that there is another formulation of
the monopole in which the Dirac string is absent. This new presentation of the
magnetic monopole uses the theory of fiber bundles. It has the advantage that the
presentation is completely nonsingular and also is formulated in a well-established
mathematical formalism.

Let A be the vector potential for the previous monopole, in which the Dirac
string goes through the south pole. However, there is, of course, another vector
potential A in which the Dirac string runs through the north pole. Our strategy
is to split the sphere surrounding the magnetic monopole into two pieces along
the equator. For the northern hemisphere, we take the field configuration A and
simply throw away the Dirac string running through the south pole. In the southern
hemisphere we take the field configuration A (and throw away the Dirac string
that runs through the north pole; see Fig. 16.2).

Thus, A defines the monopole field in the northern hemisphere, while A
describes the field in the southern hemisphere. Neither A nor A are singular.

However, there is a price we have to pay for this sophisticated construction;
that is, we have to piece together these two distinct patches in order to cover
the sphere. We will "glue" the two vector potentials along the equator. The final
gluing process between these two different field configurations is accomplished by
making a gauge transformation between the two configurations along the equator;
that is:

A=A+V1l (16.56)

Since a gauge transformation cannot affect the physics, we now have a de-
scription of the field configuration that covers the entire sphere. To see how this
gluing is actually accomplished, let us write down the explicit representation of
the vector fields. For A, we have:

A =
Y

X
6 r(r + z)
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Figure 16.2. A Dirac string. The total magnetic vector potential of a monopole is obtained
by splicing the field of the northern hemisphere of the diagram on the left with the field of
the southern hemisphere of the one on the right along the equator.

Ay = gr(r+z)
AZ = 0 (16.57)

Actually, a more convenient description of the monopole field is given in terms
of spherical coordinates. Let 9 be the polar angle, which is 0 at the north pole and
7r along the south pole. Let ¢ be the azimuthal angle, which ranges from 0 to 27r.
Then the field configuration is given by:

Ar = 0

AO = 0

AO = 8
1 -T cos9

(16.58)rsin9

Notice that we have two solutions, given by the sign of ±. The - solution
corresponds to A, while the + corresponds to A.

We can now "glue" the two configurations together along the equator by a
gauge transformation:

x

AO = AO - 2g = AO - (i/e)SV S-I (16.59)
r sin 9
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where:

S = e2`8eo

16.3 't Hooft-Polyakov Monopole

543

(16.60)

The previous discussion of magnetic monopoles, although interesting, was not
compelling, because ordinary electrodynamics does not require that monopoles
exist. Electrodynamics without monopoles is perfectly consistent. However,
in certain gauge theories, we will find that spontaneous symmetry breaking is
intimately connected with the existence of monopole solutions. Hence, monopoles
must exist for these theories as a consequence of broken gauge symmetry.

It can be shown that pure gauge theory does not, by itself, possess any static
nonsingular monopole configurations. However, a more general case, such as
gauge theory coupled to scalar fields, does possess monopole solutions.

We begin with the standard gauge action with scalar fields, with the gauge
group 0(3):

F'av F"" + 1
DµOa D"O`4 2

1 M2,paoa
- 4! (0a0a)2 (16.61)

One can show that there exists a solution with the asymptotic behavior (r -* oo):

aAi
rb-Eiab _er2

Aa -* 0

0a -
(-6m2/a.)ra

r
(16.62)

(We have made a nontrivial linkage between three-dimensional physical space and
three dimensional isospin space.) One can show from this that ¢a is covariantly
constant at infinity (i.e., D0a = 0).

This is the 't Hooft-Polyakov monopole.4.5 To compare this monopole, defined

for O(3) symmetry, with the usual Dirac monopole, we will have to define a new
Maxwell tensor F that will reduce to the usual one when ¢a becomes fixed in
isospin space. We define:

Fµv aµAv - avAA
ell

Cab,0a(aµob)(avoc)

A,, ¢aAa (16.63)
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With this definition, we can now calculate the magnetic and electric charge of the
monopole. We find that AN, = 0 and that:

1 k rk
Foi = 0, Fij = era

E`jkr
, Bk = er3

(16.64)

With this value of the magnetic field, then, we can show that the total flux through
a sphere surrounding the monopole is given by 4ir/e. But the total flux of a
monopole is 4irg, so the monopole magnetic charge then obeys the constraint:

eg = 1 (16.65)

which is twice the Dirac case in Eq. (16.55).
To reveal the topological nature of these monopole solutions, we remark that

the sole contribution to Fµ comes from the Higgs sector, since AN, = 0. The
magnetic current is given by K" = 8 Fµ9 and can be written entirely in terms of
Higgs field ¢a = A direct calculation shows that the conserved magnetic
current equals:

Kµ = - 1 EµvpoCab,
2e

Since 8µK" = 0, the conserved magnetic charge can be written as:

M = 1 I K° d3x
47r

(16.66)

1 f bak(pc d3X
8e7r

1 / (16.67)
8e7r

111 sz

where we have integrated by parts, so that this volume integral becomes a two-
dimensional surface integral taken over S2 at infinity, which is the boundary of
the static field ¢.

Comparing this with the definition with the winding number in Eq. (16.44), the
magnetic charge M is proportional to the winding number that maps the sphere S2
(in two-dimensional space) onto S2 (in isotopic space). But we know topologically
that:

7r2(S2) = Z (16.68)

so we are left with M = n/e, where n is the winding number.
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Finally, the previous results may be generalized to more complicated, phe-
nomenologically acceptable groups. The key element of this monopole solution
was the existence of a function ¢ that smoothly mapped S2 onto S2. If we have a
gauge group G that is broken down to the subgroup H, then monopole solutions
will exist if there are nontrivial mappings of S2 onto S2; that is:

n2(G/H) = Z (16.69)

where G/H is called the coset space, (G/H is the set of elements g, of G such
that g; is equivalent to $2 if 91 = $2h for some element h in H.) Any gauge theory
with this group property may have monopole solutions. For example, this can be
satisfied if H has U(1) factors.

For example, the GUT theory based on S U(5) can be shown to have monopole
solutions because it has a nontrivial homotopy group. In addition, it can be shown
that these monopoles have finite energy and mass given, after symmetry breaking,
by roughly 137MW, where MW is a vector meson mass, so the monopole can
be extremely heavy. (Any gauge theory with nontrivial homotopy groups can
have monopole solutions, and hence must account for the experimental fact that
monopoles have not been conclusively seen. This, in turn, places important limits
on the production rates for monopoles in the early universe.)

Finally, we remark that it is possible to develop a complete quantum theory of
these classical solutions, for example, a theory in which we can study the quantum
scattering of solitons against each other, including loops. The complete quantum
theory of solitons, however, is beyond the scope of this book. Instead, we will
now turn to another classical solution of field theory, the instantons.

16.4 WKB, Tunneling, and Instantons

One of the oldest nonperturbative methods is the semiclassical or WKB approach
used in ordinary quantum mechanics. One of the advantages of the WKB approach
is that we can calculate tunneling effects that are beyond the usual perturbative
method. To any finite order in perturbation theory, we will never see any of these
nontrivial nonperturbative effects. The WKB approach also naturally leads to the
concept of which have proved to be a powerful tool to probe the
nonperturbative regime of gauge theory. In particular, we will show that QCD
instantons force us to re-examine the whole question of CP violation.

We begin our discussion of instantons by considering h corrections to the
classical limit. To see the relationship between h and the perturbative coupling
constant g, let us rescale the 0 field found in ¢4 theory as 0 -- * ¢/g. Under this
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Figure 16.3. Quantum mechanically, a wave can tunnel across a barrier. WKB methods
give us the transmission probability.

rescaling, the Lagrangian transforms as:

2 H'M
g

(16.70)

where the mass also gets rescaled, and where -' is the action where the coupling
constant has been rescaled to unity. Classically, the coupling constant g is not
important: if we can solve it classically for any value of g, then we can also solve
it for any other value of g. It can always be rescaled to one.

Quantum mechanically, things are a bit different, because we also have the
quantityri. The factor appearing in the path integral is S/l, which can be rescaled
as:

S S

g2r1
(16.71)

Thus, the weak coupling expansion is identical to an expansion in/i in the semi-
classical approximation. The essential dimensionless parameter is g2ri.

We know from ordinary quantum mechanics that it is possible for a wave
to tunnel from one side of a potential well to the other side (Fig. 16.3). The
transmission amplitude is given by the WKB result:

XZ

F = exp [(-i
f

dx [2 V - El) [1 + O(h)] (16.72)/
The important point is to note that the tunneling amplitude occurs as exp(-1 /h . ),

and hence tunneling can never be seen to any finite order in/i. By the previous
rescaling argument, this also means that tunneling can never be seen to any finite
order in perturbation theory.

The WKB method, as it was originally formulated in nonrelativistic quantum
mechanics, consisted of solving the Schrodinger equation separately in different
regions. Then, by matching the wave function at the boundary of the potential,
we could calculate the leakage through the potential barrier.
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To generalize these semiclassical methods and recast them in the language
of path integrals, let us first define the partition function of a system with a
Hamiltonian H with an Euclidean metric as follows:

Z(,3) = Tr e-PH (16.73)

The fact that we have Wick rotated to a Euclidean metric, so the exponential
appears with a real argument, is essential to our discussion. Our approach to the
WKB method, as applied to path integrals, is to find classical solutions to the
Euclidean equations of motion and then to integrate functionally over quantum
fluctuations around these classical solutions.

If we trace over the Hilbert space of eigenstates of the Hamiltonian, then the
partition function can be written as:

00

Z(P) = T e- PE. (16.74)
n=0

We set,8 to be 1 / kT , where T is the temperature of the system and k is Boltzmann's
constant. For our purposes, however, we will interpret ,B to be the Euclidean time
T.

As ,B -* oc, at large Euclidean times, the right-hand side vanishes, but the
state of lowest energy E0 vanishes slower than the rest. To extract the lowest
energy eigenvalue E0, we therefore take the logarithm of both sides:

E0 = - 1 lim log Z(P) (16.75)

Thus, the advantage of examining the Euclidean partition function is that we can
analyze the ground-state energy of the system. Furthermore, if we calculate the
imaginary part of the energy of an unstable state, we can find the decay width,
which in turn gives us a derivation of the tunneling rate given earlier.

Let us now write the partition function in terms of path integrals involving a
specific potential function V(x):

Z(B) = Tre-PH

rx(0)

= J Dx exp -
12 ([ dt

1

2X2 + V(x)) (16.76)
x(o) g \ 0 /

whre x(O) = x(,B), and where we have rescaled x -* x/g to extract the coupling
constant in front of the action, and where ,B is treated like a Euclidean time.
(Notice that the potential appears with the opposite sign than is usually found in
the Minkowski path integral.)
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Figure 16.4. To analyze the tunneling between the two minima in the diagram on the left,
we must invert the potential and find classical solutions for the inverted potential on the
right connecting the two maxima. These are the instantons.

The stationary points of the path integral can be found by using the Euler-
Lagrange equations of motion:

.. av
X

8x
(16.77)

Because the sign of the potential is reversed from the usual one, we must now
solve the equations of motion in a potential that is upside down.

In Figure 16.4, we see a typical double-well potential V. The quantum-
mechanical problem can therefore be solved if we know the classical solutions to
the problem with the potential reversed, with Euclidean metric. We know from
ordinary quantum mechanics that a state that is concentrated in one part of the well
may tunnel into the other. To solve for the tunneling between these two states,
we must turn this picture upside down and solve for the motion of a classical
body with this new potential. Intuitively, this corresponds to solving the classical
problem of a ball rolling down one hill and arriving at the other hill.

The simplest classical solution for the system is just the static one:

x(r) = fa (16.78)

where the particle just sits at the top of each potential and remains there. If we
insert this solution back into the action S, we find that it corresponds to zero action.

A more interesting case is when the ball rolls down one hill and then up
the other, until it stops at the other maximum of the reversed potential. Let the
classical solution to this simple problem be given by x0:

x(r) = xo(r - r0) (16.79)

If we graph what this solution looks like classically, we find Figure 16.5(a). If we
then insert this solution into the Lagrangian, we find the graph in Figure 16.5(b),
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a b
ti

Figure 16.5. In (a), we see a plot of the solution x(r). In (b), we see a plot of the Lagrangian
evaluated at the classical solution.

which is a rough plot of the function:

L(r) =
21

_t' + V (xo(r)) (16.80)

Because this solution creates an almost instantaneous blip in the Lagrangian, we
call this finite-action, classical solution to the Euclidean problem an instanton.
Not surprisingly, we will call the solution that takes us back from the hill to the
original one an anti-instanton. Because we are taking the trace in the partition
function, we are integrating over all states which start at x = -a and wind up back
at x = -a. Thus, instantons and anti-instantons occur in pairs in the partition
function.

The summation in the partition function, of course, must also sum over multi-
instanton solutions as well. Because the instanton and anti-instanton create only a
momentary distortion in the Lagrangian, it is a reasonable assumption to replace the
sum over the complete multi-instanton solution with the sum over noninteracting
instanton and anti-instanton solutions appearing sequentially. Since each instanton
and anti-instanton appears only briefly, this approximation is a relatively good one
and is called the "dilute gas approximation," after a similar approximation found
in statistical mechanics. It treats multi-instanton solutions as if the instantons
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and anti-instantons were dilute (i.e., their density is low, and they act like free
noninteracting gas molecules).

We obviously neglect the overlap between instantons in this approximation,
so the contribution to the action by n pairs of instanton-anti-instantons S(Zn) is

roughly given by the sum of the individual contributions:

S(Zn) = 2n So (16.81)

Now we would like to calculate the contribution of these instantons to the
partition function, with the goal of calculating the ground state and decay rate for
this quantum-mechanical problem. We will expand the functional integral around
the classical solution for the zero-instanton and the one-instanton case as follows:

x(r) = -a ro)

x(r) = xo(r - ro) + (r - ro) (16.82)

where fi(r) represents the quantum fluctuation around the classical solution. fi(r),
in turn, can be decomposed into eigenfunctions:

(r) = T
n

(16.83)

where n are a complete set of eigenfunctions or normal modes. If we power
expand around the classical solution to the action, we find:

V(x) -*

S -* So+ f dr (2 + V"2) + (16.84)

The key assumption we will make is that we can ignore the higher corrections to
the potential and the action. This approximation is quite good near the bottom of
the well, where the potential is approximated by a quadratic function, but is less
reliable away from the minimum.

Let Z. represent the contribution to the path integral of n instanton-anti-
instanton pairs. After we make this approximation, we find:

Zo = f Dexp(- f 2(2+w2))dr\
= [det (-at + w2)] -112 (16.85)
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for the zero-instanton contribution, where to = V"(0), and:

551

Z1 = e-so f D exp C- f 2( 2 +
W/O) drf \ o

e-S° [det (-a? + V")1-1/2 (16.86)

for the one instanton-anti-instanton contribution. All determinants are evaluated
with respect to the eigenfunctions ,,.

In the dilute gas approximation, the complete partition function is given by
the sum over all the multi-instanton contributions, so:

Z(,B)=Zo+Z2+Z4... (16.87)

Our task is now to find an expression for Z, in terms of Zo and Z1.
In this approximation, the higher Z can all be reduced because the functional

integral factorizes. The two-instanton contribution, for example, consists of a
functional integral over two regions I and II, as in Figure 16.6. The functional
integral factorizes as the product of fl dx(r) a-S where r ranges over regions I
and II:

Z2 = Z1(I)ZI(II) (16.88)

ti

I
----------- Instanton

X(r)

------------ Anti-instanton
II

Figure 16.6. The instanton-antiinstanton contribution is shown in this diagram consisting
of an integral over regions I and II.
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where Zn (R) is the functional integral over the n-instanton configuration evaluated
only in region R:

Zn(R) =
J

...
J

fl dx(z) e - .fdz , c=) (16.89)
TER

Likewise, Z1 and Z0 can be factorized as functional integrals over regions I
and II:

Z0 = Zo(I)Zo(II); Z1 = Z1(I)Z0(II) (16.90)

By multiplying and dividing by Z0 we now easily have:

1 Z2_
Z (16 91)2

2 Z o
.

(The z factor comes from the restriction that the position of the instanton is taken
to be larger than the position of the anti-instanton. If we remove this restriction,
then we must compensate by dividing by 2.)

By continuing to factorize the functional integral into the product of Z0(R)
and Z1 (R) over different regions, we can then show that:

Zen =
1

T
2n

(2n)! Z0
(16.92)

where T = ZI/Z0. All Z2n are now expressed in terms of Z0 and Z1. If we sum
over all the multi-instanton contributions, we find:

Z(P) =
00 00

1E Z2n = Z0 T I T2n

n=0 n=0
(2n).

Z0 cosh T

e-flw/2+T (16.93)

where we took the limit as ,B -* oo in the last line.
In the limit of large P, the contribution of the vacuum to the partition function

gives us the standard harmonic oscillator result:

W

Zo e-fl(n+z)co
e-?flw

(16.94)
n=0
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In the presence of instantons, however, we expect to find a quantum correction
to this:

unit
E = 2 +e

where:

E Jim T

and:

T =
Z1

= eSo
det (-a? + V") 1/2

Zo (det (-a2 +W2) )

The final answer is therefore:

Eo = 2 +hKe-S0,ri

where K is the ratio of the two determinants.
Taking the imaginary part, we find that the decay width is:

(16.95)

(16.96)

(16.97)

(16.98)

F =hI Kle-S°mr (16.99)

which is the original WKB result presented earlier. To see this, we note that the
classical solution xl obeys

2
(.zC1)2 = V (x,l) so that:

1 °°
So = J d. -X'(+v) = J (Xcl)2 d r

2 .
rS2

fJ
l dx = 2V(x) dx (16.100)X,

so that the tunneling amplitude is proportional to:

1 XZ

exp 2V dx (16.101)

as in the WKB result quoted earlier in Eq. (16.72).
[We note that we omitted some subtle details concerning the determination of

K in our final expression. In particular, a naive calculation of K actually vanishes
because of zero modes, since the determinant in Eq. (16.97) is the product of
the eigenvalues, which can be zero. The zero mode is due to the time translation
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invariance of the system, and hence we must be careful in integrating over all
positions of the instanton. For a careful determination of K and how to handle
zero modes, the reader is referred to the literature on instantons.]

16.5 Yang-Mills Instantons

The purpose of discussing instantons is to probe the nonperturbative realm of gauge
theories. We will see that the theory of finite-action solutions to the Euclidean
Yang-Mills theory has profound implications for the nature of QCD. In particular,
we will be interested in considering the implications of classical solutions to the
Euclidean Yang-Mills equations of motion, which are self-dual.

If we define:

Fliv
_=

2
Eµvop Fop

then a classical solution is self-dual if:

(16.102)

F,,, = FF,,v (16.103)

Our first task is to calculate the action corresponding to a self-dual solution
to the Euclidean Yang-Mills theory. We begin with the simple observation that
the sum of squares of a sequence of numbers must necessarily be greater than or
equal to zero:

2 (16.104)

Let us now expand the terms in the sum. We use the identity:

EµvopEµvap = 2(sppsoa - spasop) (16.105)

From this, we can show:

F,,, F,,, = F, V F, v (16.106)

Therefore, our inequality now reads:

Tr F,v F,,, > Tr F,v Fµ (16.107)

Our original task, to calculate the action corresponding to a self-dual solution,
is now reduced to calculating the integral of FF. This is easily accomplished by
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observing that FF is actually a total derivative:

555

4 Tr Fµ Fµ = aµ Kµ

where a direct computation shows that:

(16.108)

K,, =e a Tr (AIacXAp - 3

Because of this, we can integrate over the volume of four-space:

(16.109)

f Tr FN,,, FN,,, d4x = 4 r 8, KN, d4x

= 4 J Ki d3Q (16.110)

Normally, in field theory we expect that the integral of a total derivative should
vanish. However, the field may vanish slowly enough at infinity so that we can
have nonzero values of this integral. In fact, as we shall demonstrate shortly, this
integral equals an integer:

n 32n2
fd4x

F7UFaµ

Putting everything together, we now have:

S = 4g2 f d4x

4I f d4x

8n2n
g2

and therefore:

8n2n
S Sself-dual = 2

g

(16.111)

(16.112)

(16.113)

As desired, we have now shown that a Euclidean, self-dual solution, if it exists,
has finite action, labeled by n, which will be called the winding number. Inserting
this value of the action back into the path integral, the contribution of the self-dual
solution to the functional integral is given by:

e-S = e-8,rz/g2 (16.114)
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This clearly shows the nonperturbative nature of the instanton. The contribution
of the instanton is proportional to exp(-1/g2), which can never be approximated
to any finite order in perturbation theory. Thus, the instanton contributes nonper-
turbatively to the gauge theory functional.

We still, however, have not touched upon a few important questions: First, do
these self-dual solutions really exist, and, if so, what do they look like, and what
possible physical consequence can Euclidean solutions have upon our Minkowski
world?

To answer these questions, we start with the one-instanton solution for SU(2)
Euclidean Yang-Mills theory. From our previous discussion of instantons, we are
led to postulate a form for the gauge field that asymptotically goes to the vacuum
solution AN, (-i/g)(8, cl)cl 1. We are led to postulate the form6:

2

A,,=(-ilg)x2+),2(aµQ)ci 1 (16.115)

where ), is an arbitrary parameter and where:

X4 ± [Qixi
x2

Since citci = 1, we have:

x2 = x4 +x2

(16.116)

(16.117)

We can also generalize this single-instanton solution to the more general case.
Let us define:

Aja = (Eaikak :8ai ao) log f

A° = ±aalog f (16.118)

where i, k = 1, 2, 3 and we have deliberately mixed up space and isospin indices.
The conditionFN,,, = ±FN,,, fixes a constraint on f :

f_laµf =0 (16.119)

If we choose f = 1 +,12/x2, then we recover the previous solution with winding
number n = ± 1. However, we can also choose:

n+1 ),2

f(n) (x) _ T ` (16.120)
i=1 (x - xi )2
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which corresponds to a multi-instanton solution, where the various instanton are
located at xi. This solution is parametrized by an arbitrary integer n.

Next, let us explore the asymptotic properties of this instanton. If we take the
limit x4 - ±oo, then the self-dual instanton solution reduces to:

AA - (-Llg) (aLcl) Q-1 (16.121)

that is, it approaches the vacuum solution at infinity, as desired. In particular, we
find that:

X4 - oo; Ai

X4 - -oo; Ai (16.122)

where:

n nnn = nl y SZ1 = exp -in
xiai

(x2
+),2)1/2

(16.123)

This is a rather surprising conclusion. It shows that the n-instanton solution,
at x4 = ±oo, connects two different vacua, which differ by one unit. One vacuum
has winding number n - 1, and the other has winding number n. (This is similar
to the instanton solution we found in Eq. (16.79), which connects the two vacua
atx = ±a.)

We now can give a mathematical meaning to the index n in Eq. (16.111). Let
us specialize our case to the group SU(2). The elements SZ of SU(2), in turn, can
be put in correspondence with the points that label a three-dimensional sphere, as
in Eq. (16.117). Thus, for each point x1 on a three-dimensional sphere S3, we
can generate an element SZ of SU(2).

Since, at asymptotic times, the gauge field becomes a pure gauge field:

AN, - (-i/g) (8 l) Q-1 (16.124)

then a pure gauge configuration is labeled by a three-dimensional surface, given
by a hypersphere S3.

Let us now insert this value of A. into the expression for Kµ:

Kµ = 6g2Ei a Tr (S2 18 cl) (Q-1aaQ) (S2-1ael) (16.125)

To make some sense out of this expression, we will parametrize the invariant
SU(2) group measure d U (which we introduced in Chapters 9 and 15) as follows:

dU=p(a1,a2,a3)dotdalda3 (16.126)
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where U is an element of S U(2) parametrized by some coordinates Qi. Let Uo be a
fixed element of S U(2), and U' = U0 U. If {Q } are the coordinates thatparametrize
U and {Q' } the coordinates that parametrize U', then the group measure obeys:

dU = dU'
p(or, Q2, or3) dor dor2 dQ3 (16.127)

that is, the group measure obeys d U = d(UoU) for fixed Uo.
Then there is a theorem from classical group theory that states that the invariant

measure p(Ql, Q2, Q3) is given by:

8
a{U 1 au

amU-l au
p(Qi, a2, a3) = E'jk Tr U-l au

i k

With this expression, one can check explicitly that:

p(ai) = p(Qi') Det

Then the index n is given by:

n = g
J

8 KN, d4x
4n2

acr'

acr

(16.128)

(16.129)

1

24n2
CAVaph Tr (Q-'8 i) (SZ-'8l) d3Q

fS3

1
2

dU24nfG (16.130)

In the last line, we have the integral over the invariant volume element in the
group space. The surface term in Euclidean space E4 is taken as r -* oo, where
r = (x1 +x2 +x3 +X42)1/2 . This boundary, of course, is the hypersphere S3. Thus,
the index n gives us the degree of mapping from:

S3 + S3 (16.131)

that is, it gives us the number of topologically distinct ways in which the surface
of S3 can wind around another S3.

This formalism thus gives us a nontrivial mapping from one S3 onto another;
one S3 represents the isotopic space of SU(2) denoted by SZ, and the other S3
represents physical space, the boundary of Euclideanized space, denoted by the
boundary of the integral over x-space .
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This mapping from S3 -* S3 is called n3(S3). In topology, one can show:

-7r3(S3) = Z (16.132)

Thus, the mappings of S3 -* S3 are characterized by integers; that is, the points
of one S3 can be mapped smoothly to another S3 such that we wind around S3 an
integer number of times. This now explains the mathematical origin of the index
n.

This clearly demonstrates the highly nontrivial nature of the gauge instantons.
It reveals the fact that the naive vacuum of Yang-Mills theory is the incorrect
one, that there are actually an infinite number of topologically distinct vacua, each
labeled by an integer n.

This shows that the vacuum of Yang-Mills theory actually consists of an
infinite number of degenerate vacua, so the true vacuum must be a superposition
of all of them.

16.6 9 Vacua and the Strong CP Problem

Finally, we comment on the physical interpretation of the theory of instantons8.9.
In ordinary quantum mechanics, we know that nonperturbative effects, such as
tunneling, can be computed using the WKB method. This formalism, in turn,
requires finding solutions to the Euclidean equations of motion that connect two
classical solutions at x4 -* ±00. We now see the true significance of instanton
solutions: They allow tunnelling between different vacua because they connect
these vacua at x4 -* ±oo.

The naive vacuum is thus unstable. The instanton allows tunneling between
all possible vacua labeled by winding number n. Thus, the true vacuum must be a
superposition of the various vacua In), each belonging to some different homotopy
class.

The effect of a gauge transformation SZ1 in Eq. (16.122) is to shift the winding
number n by one:

SZ1 : In) -* In + 1) (16.133)

Since the effect of SZ 1 on the true vacuum can change it only by an overall phase
factor, this fixes the coefficients of the various vacua In) within the true vacuum.
This fixes the coefficients of In) as follows:

00

Ivac)B = T en) (16.134)
n=-00
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We can then check that the effect of SZ1 on the true vacuum is to generate a
phase shift:

SZ1 : Ivac)e - e-ielvac)e (16.135)

The presence of instantons means that the true vacuum is parametrized by
the arbitrary number 0. The effect of this 0 dependence can be also expressed
by writing down an effective action. To do this, recall that in Chapter 8 we
wrote the expectation value (x2l e-i Hat Ixi) as a Lagrangian path integral, where
the integration over Dx connected the configurations xl and x2. Likewise, we
may write the expectation value (m l e-i Hat In) as the path integral over DAµ that
connects the mth vacuum with the nth vacuum:

(mle-iHtIn) = f [DAµ]y=m-n exp (-i
J

.'d4x) (16.136)

where we integrate over all A. of the same homotopic class with winding number
v=m - n.

This allows us to write the vacuum-to-vacuum transition as:

T eime'e-ine(mle-1HtIn)

m,n

Te-`(n-m)ee`m(e'-e)

[DA eisµ]n-m
m,n

8(0' - 0) re-`ve f[DAL
n

x exp (-i fdx45') (16.137)

where we have obtained the delta function by summing over m, and where [DAµ]
connects two vacua with different winding numbers. The phase factor a-ive can
be absorbed into the action. We know that v = (1/16n2) f d4x Tr FF, so we can
add it to the Lagrangian, giving us an effective Lagrangian:

Jeff=H+0v=H+
B

1

TrFµvFµv (16.138)

This is a rather surprising result, that the effect of the instantons is to create
tunneling between degenerate vacua, which in turn generates an effective action
with the additional term FF. The presence of this extra term in the action does not
alter the theory perturbatively, since it is a total derivative and hence never enters
into the perturbation theory. Perturbatively, we therefore never see the effect of
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this term. However, nonperturbatively, it will have an important effect on the
physics.

So far, our discussion has been rather abstract. We will now show that the
instanton solution has an immediate impact on QCD. The instanton solves one
problem [the U(1) problem] but also raises another (the strong CP problem).

To understand the U(1) problem, let us first catalog all the global symmetries
of QCD. In the limit of zero quark masses, QCD for the up and down quarks is
invariant under chiral SU(2) ® SU(2). This is because:

4pq=4LY'gL+4ROgR (16.139)

so the left- and right-handed sectors are separately invariant under SU(2)L and
SU(2)R.

QCD is also invariant under two global U(1) transformations. The first U(1)
transformation leads to a conserved current:

JN, = E 1a Yli 1'a
a

(16.140)

which give us baryon number conservation, which is, of course, seen experimen-
tally. However, the second U(1) symmetry is given by the transformation:

*a , e`" *a (16.141)

This leads to the current:

J5 = 'a (16.142)li
a

Although QCD is classically invariant under global SU(2) ® SU(2) ® U(1) ®
U(1), quantum corrections to QCD may alter this symmetry in various ways.
There are three possibilities:

1. A symmetry may be preserved by quantum corrections, in which case the
particle spectrum should manifest this symmetry.

2. The symmetry could be spontaneously broken, in which case there are
Nambu-Goldstone bosons.

3. The symmetry may be broken by quantum corrections, in which case the sym-
metry is not manifested in the particle spectrum and the Nambu-Goldstone
boson is absent.
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For example, chiral SU(2) symmetry is believed to be spontaneously broken,
so there must be Nambu-Goldstone bosons associated with this broken symmetry.
The Nambu-Goldstone bosons are the triplet of r mesons.

The axial U(1) symmetry, however, is more problematic. If it is preserved,
then all hadrons should be parity doubled. This is not the case, since the r meson
has no scalar partner.

The second possibility is that the axial U(l) symmetry is spontaneously broken,
in which case there should be a light Nambu-Goldstone boson. However, there
is no Nambu-Goldstone boson around the r meson mass. Weinberg has proved
a theorem that says that the U(l) Nambu-Goldstone boson should have mass less
than V3-m,,. However, there is no such particle. The particles that come closest,
the rl(549) and the x7'(985), fail to satisfy the Weinberg bound, and n(549) is
actually part of the pseudo scalar octet.

The U(l) problem, therefore, is to explain the absence of both parity doubling
as well as the Nambu-Goldstone boson for this symmetry.

This leaves open the third possibility, that the symmetry is not preserved
quantum mechanically. Indeed, one might suspect that the anomaly in the U(l)
current makes it impossible to construct conserved currents. There is indeed a
triangle anomaly, which breaks the conservation of the axial current. However, this
is not enough to solve the U(l) problem. By slightly modifying the calculation
of the triangle anomaly presented earlier to accomodate quark flavors, we can
calculate the contribution of the anomaly to the current conservation condition:

z

aµ Jµ =
8f g

(16.143)

where Nf is the number of flavors. However, using the fact that:

Tr (FN,, FN,,,) = 4a,, KN, (16.144)

where:

Kµ = 1CA PQTr (A°aPA° - 2igA°APA°) (16.145)
2 3

we can construct a current that is indeed conserved:

J5 = Js - Nf g2 K
A' l 2n2 li

The modified conserved charge 05 is given by:

(16.146)

dQ5 = J d3x a0 J50 = 0 (16.147)
dt
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Because of this, it appears that the modified current is still conserved, and that the
U(1) problem persists even in the presence of anomalies.

In conclusion, we seem to have exhausted all possibilities for the U (I) problem.
However, the solution to the problem was pointed out by 't Hooft,8 who observed
that instantons can render the previous equation incorrect. He pointed out that
there is yet another contribution to 05 that may break the symmetry. If we
calculate the change in 05 between the distant past and the distant future, the
presence of instantons can create a nonzero value for A Q5. We observe that:

AQ5 = fdt dQs fd4x= aµ5µ

z

= Nf g r d4x Tr (Fµ Fµ°) (16.148)
2n2 J

Usually, A Q5 is equal to zero because the right-hand side is the integral over a pure
divergence, which vanishes at infinity. However, in the presence of instantons,
the right-hand side does not vanish at all. We know that the instanton has a finite
action, so the right-hand side is not zero and A Q5 is not zero. Thus, there is no
Nambu-Goldstone boson because the current is not really conserved, and hence
the U(1) symmetry was not a good one in the first place.

(An equivalent way of stating this is to notice that the modified current is not
gauge invariant. The Green's functions for this modified symmetry may develop
poles that naively indicate that there are Nambu-Goldstone bosons in the theory,
but these Green's functions are gauge variant, and these poles cancel against other
poles. The gauge-invariant amplitudes, which add up both the gauge-variant
particle and ghost poles, do not have a net pole, and hence there are no Nambu-
Goldstone bosons.)

Instantons, therefore, appear to give us a nice explanation for the fact that the
Nambu-Goldstone boson associated with the breaking of axial U(1) symmetry
is not experimentally observed. However, instantons solve one problem, only to
raise another.

We saw earlier that the instanton contribution to the effective action 0H van-
ishes perturbatively but may have nontrivial nonperturbative effects. In particular,
because of the existence of EµvQP, it indicates that parity is violated by the strong
interactions. T is also violated; so there is a violation of CP. This is rather disturb-
ing, because CP is known to be conserved rather well by the strong interactions,
as measured by the neutron electric dipole moment, which is known experimen-
tally to obey d < 10-24 e-cm. This serves as an experimental constraint on the
parameters of the Standard Model, since we can calculate the perturbative and
nonperturbative (instanton) corrections to the neutron dipole moment. The per-
turbative corrections to the moment can be shown to give a dipole moment much
smaller than this, which then gives us a bound on the nonperturbative correction.
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This constraint gives us the bound on 0:
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0 < 10-9 (16.149)

This is the strong C P problem: If instanton effects necessarily contribute an extra
parameter to QCD, then why is 0 so small?

In principle, if one or more of the quarks had been massless, we could have
absorbed this term and preserved CP invariance. For example, if the up quark
had been massless, then we could have made the usual chiral transformation on
*,,, which creates a change in the action given by:

SS = -La f d4X (aAPA) (16.150)

so that SS = 2Nfa. We could thus absorb the 0 term by choosing an appropriate
a. However, the up quark is massive, so this line of argument is ruled out.

The simplest suggested solution to why 0 is so small is to invoke yet another
U(1) symmetry, the Peccei-Quinn symmetry,10 which is preserved by a combined
QCD and electroweak theory. The presence of this additional U(1) symmetry
would be sufficient to keep 0 = 0.

To see how the axion hypothesis works, consider the possibility of CP vi-
olation in QCD caused by introducing a complex, nondiagonal mass matrix M
for the quarks: q; M,jqj. Classically, M can be diagonalized and made real by
making a field redefinition of the quark fields q;, so CP violation does not appear
as a consequence of a complex mass matrix M.

In this field redefinition, we made a chiral transformation on the quark fields to
eliminate an overall phase factor. Once quantum corrections are allowed, however,
we can no longer eliminate this phase factor with a chiral transformation. Since
the functional measure Dq Dq is not invariant under a chiral transformation (see
Section 12.7), the chiral anomaly adds a 0 term to the measure, given by:

LDgDq - DgDgexp (Arg Det M (16.151)

Therefore the effective 0 is given by:

B -* B + Arg Det M (16.152)

To eliminate this effective 0 term, consider adding a new field or to the QCD action
given by:

Haxio. = *(Me')* + 2aµaaµa (16.153)
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where o, is the axion field, which couples to the quark mass term via a phase
factor. [The axion arises as a Nambu-Goldstone boson of the new broken U(1)
symmetry of the quark and the Higgs sector.]

Now perform another axial U(l) transformation on the quark fields that elim-
inates the FF term entirely and puts all CP violating terms in the mass matrix.
We then find that the mass term in QCD is multiplied by:

exp i (0 + Arg Det M - Q) (16.154)

Now make the trivial shift:

Q -* Q + 0 + Arg Det M (16.155)

Since the axion is massless, the kinetic term is invariant under this shift, so the
shift is sufficient to absorb all CP violating terms that appear exclusively in the
mass matrix.

In this way, the introduction of a massless axion field, to lowest order, can
absorb all strong CP violating effects by a shift. (At higher orders, the axion
develops a mass, although we can still absorb the CP violating terms.)

Although the axion gives us a way in which the strong CP problem might
be solved, experimentally the situation is still unclear. Experimental searches
for the axion have been unsuccessful. In fact, the naive axion theory that we
have presented can actually be experimentally ruled out. However, it is still
possible to revive the axion theory if we assume that it is very light and weakly
coupled. Experimentally, this "invisible axion," if it exists, should have a mass
between 10-6 and 10-3 eV. The invisible axiom" would then be within the bounds
of experiments. Phenomenologically, it has been suggested that the axion may
solve certain cosmological problems, such as the missing mass problem (i.e., that
only 1% to 10% of the mass of the universe is visible, and the remaining mass is
invisible, in the form of "dark matter"). However, until the axion is discovered, the
strong C P problem is an open question and much of this discussion is speculative.

In summary, we have seen that the theory of solitons, monopoles, and instan-
tons probes an area of quantum field theory that is not accessible by perturbative
methods.

Instantons (solitons) are classical finite-action (energy) solutions to the Eu-
clidean (Minkowski) equations of motion which obey special properties. Their ex-
istence proves that gauge theories are more sophisticated than previously thought.
The existence of instantons, for example, is an indication that tunneling takes
place in the theory. Instantons in gauge theory are useful in giving us a solution
to the U(l) problem, but they also raise the question of strong CP violation.
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16.7 Exercises

1. Show that the N-instanton solution in Eq. (16.118) solves the Yang-Mills
equations of motion.

2. Given the one-dimensional Lagrangian:

2X2 + 2x2(1 - x)2 (16.156)

Plot the potential and show that the instanton solution is given by:

x(t)
(1 +e+(t-to))

(16.157)

Where on the potential curve does this instanton make tunneling possible?

3. Let us integrate this Lagrangian from -,B/2 to ,B/2. Show that the energy and
action of this system are finite and are given by:

E(P) =
-2e-0 + O(e-20)

l
g

(6 -
2e-0

+
O(e-20)

) (16.158)S =

4. Consider the Lagrangian:

2+ g-1 [1 - cos(VIgx)] (16.159)

Again, graph the potential and show that the instanton solution is given by:

x(t) = 4 tan-le(t-to)

(16.160)

Between what states does this instanton make tunneling possible?

5. Show that the action is finite (when integrated as before) and that:

S=
8

g

6. Consider a massless four-dimensional (p4 theory with the action:

1(aµ(p)2+

1gO2 4

(16.161)

(16.162)
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Show that the instanton solution is given by:

O(x) = f
1 2 /

/j1+?12(x-xo)2 (16.163)

where a, is an arbitrary constant. Show that the action is again finite, with:

8,r 2S3
3g

7.

8.

(16.164)

Prove by direct computation that the sine-Gordon equation is solved by the
soliton solutions in Eqs. (16.24) and (16.25).

Consider the two-dimensional complex scalar theory with Lagrangian:

H = aµ0taµ0 + V(ata) (16.165)

Show that if V is given by:

QtQ

V 1+E2
[(1-0t0)2+E2, (16.166)

then a solution is given by:

Q
+ 1

1/2

- a
a cosh y

e-`w( (16.167)
= C -

with:

a = (1 + E2)(1 - (A2)

y = 2 l- w2(x - ) (16.168)

9. Prove that if the soliton system is translationally invariant, there is a zero
mode in Eq. (16.97).

10. For the 't Hooft-Polyakov monopole, prove explicitly that the solution for
Aµ and (p° in Eq. (16.62) solves the equations of motion of the monopole at
large distances.

11. For the nonlinear 0(3) model, in Eqs. (16.33) and (16.34), define the vari-
ables:

tot = 2(P1/(l - 03); ()2 202/(l - 03)

(D = w1+iw2; 0 =01+iO2 (16.169)
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Show that:

alto = [2/(l - 03)2](al(p +(p a l 03) (16.170)

Show that the self-duality condition in Eq. (16.48) becomes:

al(P = fi((P 82 03)

820 _ ±i ((P 8 1 03)

12. Show that this self-duality condition can be rewritten as:

awl au02 awl aw
8xl 8X2 ax2 - ax,

(16.171)

(16.172)

This means that the self-duality condition reduces to the Cauchy-Riemann
condition. This, in turn, means that any analytic function of z = xl + ix2 will
satisfy the self-duality condition, and hence the equations of motion.

13. Now choose the following analytic function:

w(z) _ [(z - ZOW]n

where n is an integer. Show that Q in Eq. (16.41) can be written as:

IZ -
=-4n (X2n +

a

11Z - ZoI2n)2Jd2z
n

Using polar coordinates, perform the integration and show:

(16.173)

(16.174)

Q =n (16.175)

as expected.

14. Prove that the invariant measure given in Eq. (16.128) satisfies the property
dU = d(UOU) if Uo is a constant.

15. Prove that the measure in Eq. (16.42) is generally covariant under a reparametriz
tion of the coordinates.

16. Another theory with instantons is the CPN theory. We begin with N + 1
complex scalar fields na(x) = n. The Euclideanized action is given by:

.° = DN,n* DN,n (16.176)
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where:

D.n = (a,, + i AN,)n (16.177)

We also have the constraint:

N+1

n*n (16.178)
a=1

Eliminate the Al field by its equations of motion. Show that the resulting
action is:

2' = (an* a ,n) + (n* a,,n)(n* a,,n) (16.179)

Show that this action is invariant under:

a,,n (a,,n+ia,,,An)eiA

n* aN,n n* aN,n+iaN,A (16.180)

17. For the CPN model, show that the positive-definite quantity:

f d2x 0 (16.181)

reduces to:r

2
J

d2x [(DN,n)* (Dan) ± iEN,v(DN,n*) 0 (16.182)

Show that this proves:

S > 2JrIQ1 (16.183)

where we define the topological charge as:

1
2Q d X EµvaµAv

2,r

= -i f d2x E n*)v(D (16.184)N, N,

2,r j

18. Prove that Eq. (16.109) solves Eq. (16.108).





Chapter 17

Phase Transitions
and Critical Phenomena

17.1 Critical Exponents

Historically, there has been a fair amount of cross pollination between statistical
systems and quantum field theory, to the benefit of both disciplines. In the past few
decades, many of the successful ideas in quantum field theory actually originated
in statistical systems, such as spontaneous symmetry breaking and lattice field
theory.

There are several advantages that such statistical systems have over quantum
field theory. First, many of them, in lower dimensions, are exactly solvable.
Thus, they have served as a theoretical "laboratory" in which to test many of our
ideas about much more complicated quantum field theoretical systems. Second,
even simple statistical models exhibit nontrivial nonperturbative behavior. While a
rigorous nonperturbative treatment of quantum field theory is notoriously difficult,
even the simple classical Ising model shows a rich nonperturbative structure.

Thus, statistical systems have helped to enrich our understanding of quantum
field theory. Even though they only have a finite number of degrees of freedom,
they have served as a surprisingly faithful mirror to the qualitative features of our
physical world.

We begin our discussion of statistical mechanics by making a few basic defi-
nitions. Whether discussing the properties of a solid, liquid, or gas, we will base
our discussion on the classical Boltzmann partition function:

(17.1)
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where En represents the energy of the nth state, k represents the Boltzmann
constant, and T represents the temperature.

(There is a close relationship between this partition function and the generating
functional of quantum field theory:

Z =
J

Dq exp i r L((P) d4x (17.2)

The difference, however, is that the field theory generating functional has an
imaginary exponent in Minkowski space and is defined over an infinite number of
degrees of freedom.)

In statistical mechanics, the fundamental quantity we wish to calculate is called
the free energy, defined by:

F = -kT log Z (17.3)

We say that a statistical model is exactly solvable if we can solve for an explicit
expression for the free energy.

As in field theory, the statistical average of any observable X is given by:

(X)=Z-1EXn exp(-b) (17.4)
n

There are only a few models that are exactly solvable (usually in two dimen-
sions).'"2 Some of them include the Ising model, the ferroelectric six-vertex model,
the eight-vertex model, the three-spin model, and the hard hexagon model. There
are also classes of solvable models, such as the RSOS (restricted solid-on-solid)
models.

One of the earliest successes of these models was their ability to describe the
properties of simple ferromagnets. For example, if we know that an atom has a
magnetic moment µ, then the energy of the atom in an external magnetic field H
is given by the dot product:

(17.5)

For quantum systems, we know that the magnetic moment is proportional to
the spin Q;. Therefore it is customary to add to the action the term:

Ho+Ha1 (17.6)

For systems with a magnetic field, for example, the magnetization M is defined
to be the average of the magnetic moment per site:

M(H,T)=N-1(Ql+...+QN) (17.7)
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In the limit that N - oo, we can describe the magnetization as:

573

M(H,T)=-HF(H,T) (17.8)

because taking the derivative with respect to H simply brings down Q; into the
sum.

The susceptibility is then defined as:

aM(H, T)
X(H, T) = aH

which is related to the second derivative of the free energy.
Similarly, the specific heat can be defined as:

8'FC=-T
aT2

(17.9)

(17.10)

If there is a collection of spins a, arranged in some regular two-dimensional
lattice, then we define the correlation function g;j between the ith and jth spins
as:

g+i = (a,ai) - (a,)(ai) (17.11)

In general, we find that the function g;j will depend on the distance x separating
the states, and at large distances, it will behave like some decreasing power of x
multiplied by some exponential:

gij ,,, x-te-Xl (17.12)

where is called the correlation length.
Near the critical temperature T, we find that these physical parameters, like

the magnetization, either vanish or diverge. Intuitively, for example, we know
that a magnetized substance begins to lose its magnetic properties as we increase
the temperature and the spins become random. At the critical temperature, we
find that the magnetic properties of the substance vanish. For example:

IT - TcI-Y, T > Tc

IT - TcI-Y , T < Tc
(17.13)

where y is the critical exponent that describes the susceptibility slightly above
the critical temperature. (We will use primed symbols to represent the critical
exponent just below the critical temperature.) This is shown graphically in Figure
17.1 for another quantity, the magnetization.
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T,

Figure 17.1. The critical exponent fi governs the behavior of the magnetization M below
the critical temperature.

The magnetization vanishes at T, and its behavior is determined by the critical
exponent ,B:

M-(TT-T)'9 (17.14)

Then the critical exponent a characterizes the behavior of the specific heat near
the critical temperature:

C, - (T - TT)-"
(17.15)

We can describe the behavior of the correlation length near the critical temperature
as:

- (T - T,)-° (17.16)

In what are called second-order transitions, as the temperature approaches the
critical temperature, the correlation length goes to infinity. (Because the system at
criticality loses its dependence on a length scale for these transitions, the system
becomes symmetric under conformal transformations. This means that we can use
the constraints coming from conformal invariance to place stringent restrictions
on the free energy at criticality. This will prove to be crucial in our discussion of
scaling and the renormalization group.)

At the transition point, the system loses all dependence on any fundamental
length scale, so the correlation function exhibits a power behavior:

g;j - X -d+2-)7
(17.17)

Also, the magnetization, at the critical point for weak magnetic fields, obeys the
relation:

M - H113 (17.18)
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We can summarize all this with the following simplified chart:

Magnetization M = -aF/aH (T - TT)#

Magnetization M at T = TT M = H 11s

Susceptibility X = aM/aH (T - T,)-Y

Specific Heat C = -T(a2F/aT2) (T - T,)-a

Corr. Function g,j - (a a1) x-to-xl

Corr. Function g,, at T = TT x-d+2-n

Corr. Length -x/ log g(x) (T - TT)_U

17.2 The Ising Model
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(17.19)

One of the first, and simplest, statistical systems to be analyzed was the Ising
model' in one dimension. Ising, who proposed and solved the model in 1925,
showed that the system had interesting physical properties, with a critical point at
H = T =0.

We begin by placing a series of spins Q,, which can take the values of ±1, at
regular intervals along a line. The energy of the system is given by:

N N

E(Q)=-JY'aJaJ+1 - HY'al
i=1 i=1

(17.20)

where the jth spin only interacts with its nearest neighbors at the j - 1 and j + 1
sites, and where H is the external magnetic field.

Then the partition function can be written as:

N N

ZN=Eexp (Kaiai+l
+haj

(17.21)er )
i=1 J=1

where we have rescaled the parameters via K = J/ kT and h = H/ kT .
We will find it convenient to introduce a 2 x 2 matrix:

V(Q,Q')=expCKQQ'+2 (Q+Q')) (17.22)
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This matrix V, which is called the transfer matrix, depends on whether the spins
are +1 or -1; that is:

V(+, +) V(+, -) e K+h

V(-' +) V(-, -) e-KV= _

Now comes the crucial transformation. We will rewrite the partition function
as a sum over a series of matrices:

ZN =Y, V(0'1,0'2)V(0'2,0'3)...V(QN-1,QN)V(QN,01) (17.24)
a

Therefore, the partition function can now be succinctly rewritten as:

ZN = Tr VN (17.25)

(17.23)

On one hand, we have done nothing. We have merely reshuffled the summation
within ZN by rewriting it as a sum over the 2 x 2 transfer matrix V. On the other
hand, we have made an enormous conceptual difference, because we can now
diagonalize the transfer matrix in terms of its eigenvalues; that is, there exists a
matrix P that diagonalizes V:

V=P
0

(17.26)

Substituting this into our original expression for the partition function, we now
find:

X1 0
N

ZN =Tr =XN+X (17.27)
0 X2

Let .ll be the larger of the two eigenvalues, which will then dominate the sum in
the limit as N --> oo. We then have:

F(H, T) _ -kT lim N-1 logZN = -kT log? l
N-.oo

-kT log (eK cosh h + e2K sinh2 h + e-2K) (17.28)

In addition to having an exact expression for the free energy, we also have an
exact expression for the magnetization:

M H, T)
sinh h

( ) _ (17.29)
e2K sinh2 h + e-2K
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This is an important result: We have obtained the complete solution for the free
energy and magnetization in an exactly solvable statistical mechanical system.

Because we have an exact expression for the transfer matrix, we can now solve
for the correlation length and show that it goes to infinity when H = T = 0. To
do this, we need to calculate the averages (o) and (Qi aj). We begin by defining
the matrix S in spin space as:

S=

which has elements:

S(Q, Q') = Qs(Q, Q') (17.31)

Therefore, the average can be written as:

(aia3) = ZN 1 Y or, V (Ql, a2)V (Q2, Q3)Q3 ... = ZN
1 TI SV2SVN-2 (17.32)

(17.30)

So:

(o,ia1) =

(Qi) =

ZN 1 TI SV'-'SVN+i-j

ZN1 TrSVN (17.33)

Now let the matrix P, which diagonalizes the transfer matrix, be parametrized
by an angle (P:

P-/coso -sino
I\ sin 0 cos 0

Then we have:

gij = (alai) - (Qi)(ai)

= cos2 (p + sin2 20 (X2/Xl )j -` - cos 20

= sin22(P(X2/Xl)i-i

e-(i-01l

So, we have the desired result:

= [log(,1/12)]
1

(17.34)

(17.35)

(17.36)
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At H = 0, we have:

lim-2 = 1
T-o, Xi

(17.37)

so tends to oo as H, T --> 0. Thus, all reference to a length scale has disappeared,
as expected, at criticality.

Since the model has been solved exactly, it is now an easy task to calculate
the critical exponents for the theory:

Ising model : (17.38)

Another lesson that we have learned from this simple example is that the
model was solvable because the partition function could be written in teens of
a single matrix, the transfer matrix, which obviously commuted with itself. For
more complicated models in two dimensions, we will find more than one transfer
matrix, and the essential reason why some of them are exactly solvable is that
their transfer matrices commute with each other.

Now that we have some experience using the transfer matrix technique, let
us tackle a nontrivial problem, the two-dimensional Ising model, which was first
solved exactly by Onsager4,5 in 1944 for the zero magnetic field case. Its partition

function is given by:

ZN = Eexp (K Y'aiaj +L Y'aiak) (17.39)
v \ (i,j) (i,k) /

where the (i, j) sum is taken symbolically over the nearest-neighbor horizontal
sites on the lattice and the (i, k) sum is taken over the vertical lattice sites.

Now rotate the lattice by 45 degrees so the lattice sites are arranged diagonally,
as in Figure 17.2.

Let us perform the sum over these rotated lattice sites first in the horizontal
direction over n sites, and then in the vertical direction over m sites. Let W and
V represent the partial sums taken in the horizontal direction. W and V alternate
as we descend down the lattice in a vertical direction. Then the partition function
is the sum of W V W V W taken in the vertical direction.

T o sum the lattice sites horizontally, let (P = {al, a2, ... , a,}; that is, (P is the
set of spins taken along a horizontal direction over n sites. Since each spin can
take on two values, (P has 2' possible values. Let (p' = {ai, a2, ... , an} be the set
of horizontal sites just below (P.
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exp (E(Kai+iai +Lajaj)
j=1

Figure 17.2. In the two-dimensional Ising model, we rotate the lattice by 45 degrees. By
summing horizontally across the lattice, we obtain V and W. Then ZN is the sum over
VWVWVWV .

Then we can define W and V as follows:

V& ,

Woe, exp (E(Kaiai
j=1

579

(17.40)

where W and V are now 2n x 2n matrices. As before, we can perform the sum
over the two transfer matrices by summing vertically over the lattice:

ZN=EE... Vm,02W0201...Wmmm.

mi 02 mm

Written in matrix form, this becomes:

(17.41)

2n

ZN = Tr(VW)m12 = YA' (17.42)
r=1

where A, are the eigenvalues. In the thermodynamic limit, as we let the number
of points n, m --> oo, the partition function is once again dominated by the largest
eigenvalue of the transfer matrix VW:

lim Z (A )m
n,m-.oc

(17.43)

The one-dimensional and two-dimensional Ising models are therefore closely
related to each other, and the calculation of the free energy (which we omit)
reduces to calculating the largest eigenvalue of the transfer matrix.

We should also mention that there are a number of models that generalize the
behavior of the Ising model and are exactly solvable. More important, there are a
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number of models that, although they may not be exactly solvable, exhibit critical
behavior that can be described by the known conformal field theories. Let us list
a few of these models and their properties.

17.2.1 XYZ Heisenberg Model

Closely related to the Ising model is the XYZ Heisenberg model. Here, we replace
the spin a; with a Pauli matrix. The Hamiltonian is given by:

H=-2E(JXajaj+i+Jyaja+i+Jzaiai+i+...) (17.44)

where the sum is taken both horizontally and vertically over the entire lattice.
We have different models for different values of J; :

If JX = Jy = J, then this is the usual Heisenberg model.

If JX = Jy = 0, then only Jz survives, and hence we obtain the usual Ising
model.

If Jz = 0, then we have the X Y model.

If JX = Jy, then we have the Heisenberg-Ising model.

17.2.2 IRF and Vertex Models

A large number of exactly solvable models can be grouped into two categories,
the IRF (interactions around a face) and the vertex models, which differ by the
way in which we place spins on a regular lattice.

The IRF model includes the Ising model and many of the other exactly solvable
models. If we place four spins a, b, c, and d (which can equal + 1 or 0) around
the four corners of a plaquette, the energy associated with the plaquette will be
E(a, b, c, d); so we define the Boltzmann weight of the plaquette as:

w(a, b, c, d) = exp[-E(a, b, c, d)/kT ] (17.45)

For different choices of E(a, b, c, d), we can represent a wide variety of models.
For example, the Ising model can be represented as:

E(a, b, c, d) 1J[(2a - 1)(2b - 1) + (2c - 1)(2d - 1)]

- 1J'[(2c - 1)(2b - 1)+(2d - 1)(2a - 1)] (17.46)
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and the eight-vertex model can be written as:

E(a, b, c, d) = -J(2a - 1)(2c - 1) - J'(2b - 1)(2d - 1)

- J"(2a - 1)(2b - 1)(2c - 1)(2d - 1) (17.47)

for a, b, c, d = 0, 1. The partition function for the IRF model is given by:

Z = 1: ... >2 fl w(Qi, aJ, ak, oi) (17.48)
al aN i, j,k,l

The other large class of models is given by the vertex models. For example,
in ice, we have the molecules of water held together by electric dipole moments.
Let us place water molecules on a square two-dimensional lattice, such that the
line segments forming the lattice correspond to the electric fields, represented by
arrows.

These arrows have only two directions on any given line segment. If we
impose the rule that there are always two arrows pointing out of and two arrows
pointing into each vertex, then at any lattice site, there are six different possible
orientations of the arrows. Each of these six different orientations will have an
energy associated with it, called Ei, for i = 1, 2, ..., 6. Thus, if (P represents the
lattice sites along a horizontal line, then we have the six-vertex model:

Z =Y, Y, ...Y, V(01,0)V(0,4)3)...V((PM,01)=TIVM (17.49)
01 02 OM

where:

V(0101)-TeXp(-(m1E1+m2

2

...+m6E6)\
(17.50)

The partition function can be totally rewritten in terms of.

w(i, ilk, 1) - exp [ - E(i, j, k, l)/kT] (17.51)

Different values of E(i, j, k, 1) correspond to different models.

17.3 Yang-Baxter Relation

The reason for the exact solvability of these models is that the transfer matrices,
which define the partition function and free energy, commute. When expressed
mathematically, this relationship becomes the celebrated Yang-Baxter relation. 1,6
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In fact, mutually commuting transfer matrices, or equivalently the Yang-Baxter
relation, are sufficient conditions for the solvability of any two-dimensional model.
(One way to show this is that commuting transfer matrices give us an infinite set
of conserved currents, which are sufficient to solve the system exactly. For more
precise details and subtleties, the reader is referred to the literature.)

Let us study the Yang-Baxter relation in terms of the vertex models. Let w(µi,
aeI , µi+1) represent the contribution to the sum from the ith site. Each Greek
index, in turn, can have values of ±1. Let us perform the sum horizontally, as
before:

w(I11, al IP1, /22)W (122, all F'2, /i3) ... w(ILN, aN I PN, A 1)
ILI AN

(17.52)
Let V' represent another transfer matrix (with a different Boltzmann weight

w'). Let us define the quantity:

S(IL, vlµ', Oct, P) = T w(IL, aly, l2')w'(v, YIP, V') (17.53)
r

Then the matrix product V V' can be represented as:

N1: Y_VayVY' =

fl S(12i, viIl2i+1, vi+llai, iii) (17.54)
y ILI,...,ILN Vl,..., VN i=1

We can write this in matrix form by introducing the 4 x 4 matrix S(a, P), which
is a (µ, v) x (µ', v') matrix whose elements are given by S(µ, vlµ', v'Ia, P). We
can therefore write:

(V V').,O = TrS(a1, N1)S(a2, P2) ... S(aN, $N)

(V'V )a,O = Tr S'(a1, N1)S'(a2, P2) ... S'(aN, NN) (17.55)

We now assume that V and V' commute, so that the two previous expressions
are identical. This is obviously possible if there exists a 4 x 4 matrix M such that:

S(a, P) = MS'(a, ,B)M-1 (17.56)

Let the matrix M have elements given by w"(µ, vjµ', v'). Let us multiply the
previous relation from the right by M, so we have SM = MS'. Written out
explicitly, this matrix equation is:

T w(IL, aly, li")w,(v,
YIp,

v")w"(v",
l2"Iv', l2')
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Figure 17.3. The Yang-Baxter relation, shown here pictorially, resembles the topological
relations found in knot theory and braid theory, which demonstrates the close relationship
between exactly solvable statistical systems and topology.

= C , wu(v, µlvu µ")w'(µ", al
Y lt')w(v", yl P, v') (17.57)

If we redefine:

w(lt, crlµ", Y) = SAY
(u)

Yl v ) = Srd (u + v)
µ,

w"(v", v') = (v) (17.58)

then we can write the Yang-Baxter relationship in the form:

v)Sy9(v) = Sko(v)SY,.(u + v)Saq(u) (17.59)

If we graphically represent this relationship, then we find the pattern expressed in
Figure 17.3, which pictorially displays the Yang-Baxter relation.

In summary, the reason why many of these two-dimensional models are ex-
actly solvable is because their transfer matrices commute, and the mathematical
statement of this fact is the Yang-Baxter relation. The problem of finding exact
solutions to these two-dimensional models then reduces to finding solutions to
a much simpler problem, the Yang-Baxter equation. Fortunately, a variety of
solutions to the Yang-Baxter relation exist. We notice that, as a function of the
parameters u, v, the matrices appearing in the Yang-Baxter relation have a vague
resemblance to the addition formulas for sines and cosines. By choosing an ap-
propriate ansatz, we can, in fact, reduce the Yang-Baxter relations to the usual
trigonometric addition formulas. (More precisely, it can be shown that a large
number of solutions to the Yang-Baxter relation can be found using the addition
formulas of what are called the "modular functions" z9, which are special functions
found in solutions to certain periodic boundary value problems.)

Each solution, in turn, corresponds to an exactly solvable statistical mechanics
model. Thus, we have now stumbled upon a powerful way in which to catalog
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the known exactly solvable two-dimensional models and also generate new ones.
We will not present the explicit solutions to the Yang-Baxter equation for these
models, since they are technically rather involved, so we refer the interested reader
to the references.

The Yang-Baxter equation, in turn, is intimately related to several other
branches of mathematics, such as knot theory, confonnal field theory, and quan-
tum groups. The topological structure of the Yang-Baxter relation resembles the
manipulation of strands of string. Hence, the Yang-Baxter relation can be reduced
to the braid group relations found in knot theory. Thus, the relationship between
knot theory and the Yang-Baxter relation gives us hope that a more or less com-
plete classification of solutions to the Yang-Baxter relation may eventually be
found.

17.4 Mean-Field Approximation

Unfortunately, the simplifications that exist in one- and two-dimensional sys-
tems that allow us to find exact solutions do not generalize easily to three and
four dimensions. The transfer matrix technique, the Yang-Baxter equation, and
other techniques devised for one- and two-dimensional systems do not have sol-
uble counterparts for higher dimensional systems. In fact, for years the two
dimensional Ising model (with zero magnetic field) was the only exactly soluble
two-dimensional system exhibiting a second-order phase transition.

We now must leave the realm of exact solutions and postulate various approx-
imation schemes, with varying degrees of success. We will study approximation
schemes that have been proposed over the years, the simplest and most widely
used being Landau's mean-field approximation.'

The essence of the mean-field approximation is that we can substitute the
actual field within a substance with an approximate, average field and ignore
fluctuations. In practice, the mean-field approximation assumes that the magnetic
field felt inside a substance equals the external magnetic field H plus an average
field M, which we can calculate by minimizing the action. This assumption, of
course, totally ignores the local fluctuations of the magnetic field throughout the
substance, but it serves as a rough first approximation.

By assumption, the mean-field approximation assumes that the magnetic field
is equal to the external magnetic field H, plus the average field M, plus small
corrections:

H'=H+aM-bM3+... (17.60)

where we ignore fluctuations. By assumption, the M2 term is missing and b is
small.
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We also know that the average value of M obeys the Curie law, that is, M is
proportional to the magnetic field H' and inversely proportional to the temperature:

M= cH'
T

(17.61)

From these two simple assumptions, we can derive a wide variety of nontrivial,
first-order results. Let us now solve for M:

_ cH' _ c(H + am - bM3)
M

(17.62)
T T

Let us define Tc to be ac, and then we have:

M(1 - Tc/T + cbM2/T) = cHIT (17.63)

Now set H = 0 and determine the behavior of M below the critical temperature.
The solution for M becomes:

MN Tc - T
cb

(17.64)

From Eq. (17.13), this implies that = 1/2. So the first critical exponent has
been determined.

Now let us take the derivative of M with respect to H, and assume that M is
small so we can drop higher powers. Then the susceptibility becomes:

am 1
X=aH- (17.65)

where we have used Eq. (17.14). So we have now derived the second critical
exponent.

Now set T = T, so we are sitting at the critical temperature. In this limit, the
magnetization M becomes very small. The dependence of M on H can again be
calculated from Eq. (17.63), and is therefore given by:

M - H 1/3 (17.66)

From Eq. (17.18), this therefore gives us 8 = 3.
In summary, we have calculated three critical exponents with very little effort

by making the key assumption in Eq. (17.60). The mean-field approximation
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gives us:

p_i
2

Mean-field theory : 8 = 3

Y=Y'=1

(17.67)

Thus, the mean-field approximation gives us a wealth of information about a
statistical system with very little physical input. Although the mean-field approx-
imation does not give very reliable results for complicated systems, it does much
better than one might first expect for relatively simple systems.

We would like to justify some of these assumptions within the framework of
an action and a partition function. We will analyze the mean-field approximation
within the context of one of the most widely studied statistical systems, Ginzburg-
Landau theory.8

To define the Ginzburg-Landau model in a way that resembles field theory, it
is convenient to introduce the variable or (x) to represent the value of the spin at
lattice site x. From a field theoretic point of view, the theory then resembles the
(p4 theory, except it has a linear term proportional to the external magnetic field:

7H, =
J

ddx (roa2(x) + 4U 4 0,4(X) + c [Va(x)]2 - H or(x)) (17.68)

where, by the symbol f ddx, we mean taking the sum over all lattice sites in the
limit of small lattice spacing, and Va denotes taking differences along the lattice.

The mean-field approximation, in the context of this field theory, becomes the
expansion of the action around a constant solution to the equations of motion,
which gives us an average value of the field. In other words, the mean-field theory
is based on the Born term of a perturbation theory. The mean-field approximation
corresponds to tree diagrams, and the loop diagrams correspond to the fluctuations
that we will ignore for the moment.

To first approximation, we find that the solution to the equations of motion is
given by a constant:

Q(x) = Q (17.69)

But this also means, from Eq. (17.7), that the magnetization can be given in terms
of the average spin:

M - Q (17.70)
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The gradient term in the action disappears, and then the equations of motion from
Eq. (17.68) become:

2Q [ro + (u/2)&2] - H = 0 (17.71)

In studying the various solutions of this equation, Landau observed that the
point ro = 0 marked a qualitative change in the nature of the system for small H,
so that a phase transition was evident. So therefore we can make the statement
that ro = 0 must be equivalent to T = TT for this phase transition:

ro = t(T - TT) (17.72)

for some constant t. [Eq. (17.72) means that there can be spontaneous symmetry
breaking at the critical temperature, since the sign of the mass term changes.]

Inserting this back into the original equation, we find:

2M (t(T - TT) + 2 M2) = H (17.73)

Now compare this with Eq. (17.60) postulated earlier. We find that there is an
exact correspondence, and hence we can derive the critical exponents precisely in
the same way as before.

A more detailed examination of the Ginzburg-Landau theory in the mean-field
approximation yields the following critical exponents:

Ginzburg-Landau model :

a=a'=2-d/2

Y=Y,=1
8=3

n=0

(17.74)

The approximation that we made, that the spin configuration that minimizes
the action is the constant one, is called the Gaussian approximation, since all
path integrals to lowest order become Gaussians. It is the particular form that the
mean-field approximation takes for the Ginzburg-Landau model.

Historically, when experimental results were not very precise, the mean-field
approximation was a valuable theoretical tool that gave good explanations of
the experimental situation. However, as the experimental results became more
precise over the decades, it became clear that the mean-field approximation gave
only a rough fit to the data. Attempts to go beyond the mean-field approximation,
however, were met with frustration. New theoretical ideas were necessary to push
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beyond the mean-field approximation. These new ideas came from scaling and
the renormalization group.

17.5 Scaling and the Renormalization Group

Although the mean-field approximation gives us crude but reasonable fits to the
data, it is difficult to go beyond the mean-field approximation and derive a per-
turbation series. Treating the mean-field approximation as the Born term in a
perturbation series creates new problems near a second-order phase transition.

In general, at a second-order phase transition the correlation length becomes
infinite. At the transition, spins located in different parts of the system have a large
effect on each other. This also means that specific features of the model wash out
at the phase transition, giving us universality. Since sets the basic scale of the
system, at criticality the system usually loses all dependence on length; that is, it
becomes scale or conformally invariant.

This means that the behavior of the magnetization, susceptibility, etc. near
the transition can be determined by the behavior of . But since - (T - T,)-°
this means that all critical exponents can be written in terms of more fundamental
critical exponents, like v.

For perturbation theory, however, this causes problems. In d dimensions, the
coupling constant g has dimensions. Therefore perturbation theory can be based
on the dimensionless quantity:

g 4-d
(17.75)

However, near a phase transition, we have --> oo, so this clearly diverges
if d < 4. The coupling constant becomes infinitely strong and the perturbation
theory makes no sense. For d > 4, the crucial features of the phase transition
often disappear, and the approximation becomes useless. For many years, this
prevented a perturbative generalization of the mean-field theory near the critical
point.

However, it is possible to set up a new perturbation theory that is defined near
the phase transition using the renormalization group. The new perturbation theory
will be defined in

d = 4 - E (17.76)

dimensions. (For example, for three-dimensional systems, E = 1.)
To understand how the E expansion cures the usual problems of ordinary per-

turbation theory, let us first use a few scaling arguments to derive the relationship
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between critical exponents. The free energy F has dimension equal to zero, since
it is not affected by a scale change. The free energy per unit volume therefore has
dimension d. Therefore, by the scaling hypothesis and Eq. (17.16):

F-d - (T - T)vd (17.77)

From the free energy, we can calculate other physical quantities and their
exponents. If we calculate the specific heat C, we find:

2

C = -T aT2 (T - TT)°d-2

It therefore follows from Eq. (17.15) that:

(17.78)

a = 2- vd (17.79)

From Eq. (17.17), the correlator of two spins has dimension d - 2 + n. The
dimension of spin is therefore half that amount. From Eq. (17.7), we see that the
magnetization has dimension dm = (d - 2 + 17)/2. Therefore we can read off its
critical exponent:

M ,. -(d-2+0l2

(T - Tc)°(d-2+n)l2

Therefore, from Eq. (17.13), we have:

,6= Iv(d-2+n)

(17.80)

(17.81)

We also know that the external field H, because M = -8F/8H, must have
dimension equal to:

dH=d-dM=(d+2-17)/2 (17.82)

Therefore, we also have:

M N (HhId")dm
(17.83)

in order to make the dimensions match. From Eq. (17.18), this gives us:

3=dHIdM=(d+2-n)1(d-2+n) (17.84)



590 Phase Transitions and Critical Phenomena

In summary, a few simple assumptions about the scaling behavior at criticality
give us nontrivial relationships between the various critical exponents:

Scaling :

a=a'=2-vd
P = v(d - 2 + 17)/2

8=(d+2-n)/(d-2+n)
v=v'=y/(2->1)

(17.85)

To go beyond these simple-minded arguments, we will now use the method of
block spins in order to calculate, to lowest order in E, the critical exponents.

The block spin method of Kadanoff9,10 is based on some rather intuitive ar-
guments. We know that, at criticality, the correlation length goes to infinity and
many of the features of the model get washed out. At the phase transition, the
partition function obeys a new symmetry. At first, this seem strange, since the
lattice spacing between spins is equal to a, which is not scale invariant. However,
at criticality, the system loses its dependence on a length scale and obeys highly
nontrivial scaling properties. This allows us to write down the renormalization
group equations for the system, using a prescription slightly different from that
used in the previous chapters.

Let us begin with a partition function Z (a) defined on a hypercubical lattice
of length L with spacing a. At each lattice site, we have a spin operator Q;, where
i = 1, ..., n. Now let us decompose this lattice into larger blocks of length b,
which is a multiple of a, so b = sa. We now perform the spin averaging within
each larger block. This averaging within each larger block creates a new average
spin or,' with a new Hamiltonian. This will create a new partition function Z'(b)
that is defined on a new lattice with lattice spacing b, such that the spin operator
at the various blocks is defined to be the average spin os'.

Now rescale the new partition function Z'(b) by simply reducing the lattice
spacing from b to a. In general, the partition function that we get Z'(a) is not equal
to the original Z (a) with which we started. This is because the two operations
we have performed are quite distinct. The first operation integrated out the spins
within each block to define a new lattice of length b, while the second operation
was a trivial rescaling from b back to a. However, at criticality, when we lose all
reference to mass scales, these two operations should be roughly inverses of each
other.

Let K. represent an operator that performs the first operation of averaging
within each block of size b. The operator K. transforms the original Hamiltonian
H(Q) into a new Hamiltonian H'(a') by averaging over the sd spins in each block
(we set k = 1):

K, [H(a)/T] = H'(a')/T (17.86)
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More precisely, the action of the operator K, is given by:

e-H'(a')/T = f e- H(a)IT H8
X

Qi'X - s-d Qi.y fldaj,y (17.87)
J i,X y i.y

where s-d FY oi,y represents the average spin over the sd old blocks, replaced by
the new block centered at x. This operation averages over all spins aj.y within
each block and replaces them with a function of spin o defined at the center of
each block.

We will find it more convenient to work in momentum space. The spin Qik,
where k represents the momentum, can be represented as:

Qik
= L-d/2 Y` ai,ceik-cL `

C

= L-d/2 Y, ik
k<A

(17.88)

(17.89)

where c is the site of the spin Qic. The momentum sum only extends as far as a
sphere of radius A. (Beyond that momentum, we are probing a distance less than
the lattice spacing, which is undefined.)

In momentum space, the K, operation can be written as:

e-H'(a')/T = f e- H(a)IT H doi.k (17.90)
J i,A>k>A/s

We have split the momentum sum over k into two parts. The sum over
A/s < k < A corresponds, in x space, to the sum over the spins with block size
less than b, but larger than a. The sum over k < A/s, which corresponds to taking
sums over blocks larger than b, is omitted in the block spin method.

Next, we rescale the size of the lattice from b back to a, which means we also
must rescale the following:

U(X) -->
U(X)S1-d/2

f
X --> X/Sf

J
ddX --> Sd

J
ddX (17.91)

where s is the scaling parameter.
The combination of the two operations, K, and the rescaling shown, gives us

the renormalization group operator R,, which acts on the physical parameters of
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the original theory, called collectively µ, and creates a new set µ':

µ' = R,µ (17.92)

where:

RsRs' = Rss' (17.93)

Now we apply the method of block spins to the Ginzburg-Landau action:

H(ro, u, c) = Ho f+ HI

Ho =
2 J

ddx [roa2+c(Va)2]

H, =
2

[ddX4 (17.94)

so that the set of parameters is µ = fro, u, c}.
The calculation is conceptually simple, but the details are a bit involved, so

we will break it up into four steps:

1. First, we perform the block spin integration, which converts H into H':

H(ro, u, c) --> H'(ro, u', c') (17.95)

where H' has the same form as H, except that it is defined with parameters
ro, u', c', and spins Q'.

2. Then we go to the critical point, where u is stationary, i.e. u' = u. The
solution of this gives us the critical value u*.

3. Near criticality, we solve for ro . This gives us the behavior of ro near
criticality:

(ro - ro )' = s 11° (ro - ro) + (17.96)

where the ellipsis includes terms of higher order in E. This gives us the value
of v.

4. Last, we will insert this value of v into the scaling relations in Eq. (17.85),
which gives us the remaining critical exponents.
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17.5.1 Step One

To begin, we will perform the sum by splitting up Qi into two pieces:

Qi = a,' + Qi

L-d/2 T Qi, k
k<A/s

L.-d/2 T ai.9
,A/s<q<A

593

(17.97)

where we have split the sum over momentum space into two parts. The purpose of
this split is that the summation over the blocks with less than size b is performed
by summing over the spins within A/s < q < A. Thus, we are only interested in
the summation over di, while keeping oi' constant.

After performing the averaging over di, we are left with a new Hamiltonian
defined totally with the variable Qi'. This new Hamiltonian H'(Qi') will have
parameters ro, u', and c' that we want to calculate.

We will only perform the calculation to lowest order, so we will power expand
in HI. After performing the block spin summation over Q. H changes into H',
where:

H' = 2 f ddx (r(c7')2+c'(Va')2+ 4
(0r')4) +...

R,H=H'+(HI)- 1((HI -(Hi))2) Qk - s Qs,k

Ho+A+B (17.98)

Our problem, therefore, is to average over Q, which leaves us with a modified
Hamiltonian H' defined in terms of or', which in turn allows us to compute ro and
u'.

The key to the calculation is therefore to compute A, B:

A = (H,) =
8

f ddx (Q4)

2

B 128
f ddx ddy

X ([Q4(x) - (0,4(x))] [0,4(y)
- (a4(y))] ) (17.99)

A and B, after summing over Q, are functions of (Q')2 and (Q')4, which give
corrections to ro and u.
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To perform the averaging over the block, we will use the following relations:

(a') = 0; m odd (ai,pai,9) = 3ij3p,-9 (ai,pai,-9) (17.100)

The summation is over a Gaussian, and is hence calculable. From the Hamilto-
nian in Eq. (17.94), we know that the two-point function is given by the usual
propagator, which is 1/(ro + cq2). Then the summation over the block spins from
A/s < q < A can be performed by taking the continuum limit:

(a2)

L d

A/s <q <A

-d f dd= 2 1n)n( q
ro + cq2f

gd-1A

dKd qn
A( /s ro + cq2

nc(1 - s-2+E) - nK4c-2ro logs + O(E2) (17.101)

where ddq = qd-ldgKd(27r)d and:

nc =

Kd =
(n/c)KdAd-2/(d - 2)

2-d+1Jr-d/2/F(d/2) (17.102)

where Kd is the surface area of a unit d dimensional sphere, divided by (27r )d'
andd=4-E.

The point of listing these identities is to find an expression for (a4), which
can now be written as:

(a4) = ([a'+2a'-a+a2]2)

= (a')4 + 2(a')2 (a2) +4((.5 . a')2) + (a4) (17.103)

Only the second and third term give a contribution to (a')2.
The third term can be written as:

((a . a,)2) T ai,aj(aial)
i,l

ai2 (a 2) In

ai2 [(nc/n) (1 - s2-d) - K4c-2ro logs] (17.104)



17.5. Scaling and the Renormalization Group 595

Now insertEqs. (17.101) and (17.104) into (17.103) and collect all terms contain-
ing (Q')2. Inserting these averages back into the expression for A in Eqs. (17.99)
and (17.98), we find:

ro = s21 ro + (u/c)(n/2 + 1)(A2/2)Kd(1 - s-2) + UCE

- ro(u/c2)(n/2 + 1) K4 logs + u2d] + O(E3) (17.105)

(where the C and D terms are not important to the final result).
Next, we wish to calculate the term B in Eq. (17.99). This is also straightfor-

ward. We define:

SijG(x - y) = (Qj(x)Qj(y)) (17.106)

h f hWe t ere ore ave:

G(r) = L-d Y, e`q.rq-2C-1
A/s<q<A

= (2n)-2r-2c-1 [Jo(Ar/s) - Jo(Ar)] (17.107)

where JO is a Bessel function, and:

/J d r 2(r) = 2 q3 dq (cq2)2
K

IA/s

A

K4 log s
17 108)1 .

c

If we expand the terms in B in Eq. (17.97), we find a large number of
extraneous terms. After summing over Q, the only terms that survive are of the
form (a')402 and (a')2(2. All summations over the j can be therefore performed
over the block spin. When the summation is performed, we find that we have a
new Hamiltonian H', which has the same form as the original Ginzburg-Landau
Hamiltonian, but is now a function of the spin operator Qi', with coefficients
ro, u', C.

Inserting these summations back into Eq. (17.99), we find that the (Q')4G2
contribution to B gives a correction to u:

u' = sE [u - (u2/2c2)(n + 8)K4logs] (17.109)

Now that we have explicit results for ro and u', this completes the first step of our
calculation.
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17.5.2 Step Two

To complete the second step, we go to criticality, where we have u = u' = u*,
since u is invariant under the scale transformation. Imposing this restriction, we
can now solve for u* from the previous equation:

U* /c2 =
2E

(17.110)
(n + 8)K4

We can also solve for the value of ro at criticality by inserting Eq. (17.110) into
Eq. (17.105) and ignoring higher-order terms:

ro = -(u*/c)(n/2+ 1)(A2/2)K4

n + 8
E(A2c/2) (17.111)

where we have inserted the value of u*.

17.5.3 Step Three

The third step consists of calculating the value of ro as a function of s. Inserting
the value of u* and ro into ro, we have:

(17.112)

where:

n+2 1

Yi =2-n+8E= v

This fixes the value of v to be:

_ 1 (n + 2)
V

2 + 4(n +
8)E

(17.113)

(17.114)
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17.5.4 Step Four

Finally, we now insert this value of v into the scaling relations in Eq. (17.85) to
obtain the rest of the critical exponents. To this order, we have n = 0; therefore:

Block spins :

17.6 E Expansion

a = (4 - n)E/2(n + 8)

/6 = 2 - 3E/2(n + 8)

y = 1 + (n + 2)E/2(n + 8)

8=3+E

n=0

v = f + (n + 2)E/4(n + 8)

(17.115)

We have seen the importance of the emergence of a new symmetry, scale invari-
ance, at criticality because the system loses all reference to a length scale at the
phase transition. This also means, however, that we can use an alternative method
of deriving these identities, equivalent to the method of block spins, which is the
familiar Callan-Symanzik equations. The usual Callan-Symanzik relations allow
us to calculate the critical exponents to arbitrary order in E by calculating loop
diagrams."

In familiar field theory language, we start with the action:

d
3 (a2 + m2()2

i=1

-g 4I
[((pa)2]2 - 23 SYn2((pa)2 (17.116)

where we sum over a = 1, ... , N and where Z 1 and Z3 are the usual renormaliza-
tion constants that correspond to the four-point and two-point functions. Notice
that we are taking a Euclidean metric, not a Minkowski metric.

Then we can immediately write down the Callan-Symanzik equations for the
s-point function:

- S,a s
(S)

ma_ +/3(g)a - 2Y3 F -or
8

(17.117)

where we will omit the right-hand side in the asymptotic limit that we are analyz-
ing.
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In this asymptotic limit, we can solve the Callan-Symanzik equations in the
usual way, and we get:

F(")(pi;m/),g) = s
fg(")dg y3(g')

[ex
(- g ft')

x I as) (p1; m, g

where g(),) is defined by:

f
g(A)

dg,
=log

)

(17.118)

(17.119)

However, as we mentioned earlier, this solution is only formal, since the
perturbation theory in g near the critical point does not make any sense, since the
dimensionless quantity in which we expand is gad-4, which blows up for d < 4
near criticality. This is the reason why, before renonnalization group arguments
were developed, the mean field approximation could not be generalized properly
near a phase transition.

Thus, we want a revised set of equations defined as a perturbation series in a
new, dimensionless quantity called u:

u - gmd-4 (17.120)

In terms of the new dimensionless variable u, the Callan-Symanzik equations
are almost identical, except that the independent variable is now given by u. We
therefore have:

P(U) = m 8u-
Y3(u) = m

am go

a logZ3(u)

go

(17.121)
am

and the bare coupling constant go is related to the renormalized one by:

Z1(u)
go=9Z3(u)

In terms of Z;, we can write:

P(u) = -E
d log uZi(u) 1

(du Z3 (u) )

Y3 (u) = P(u)
d log Z3 (u)

du

(17.122)

(17.123)



17.6. E Expansion 599

To make contact with the usual physical variables, we define the standard
renormalized two-point function as the mass squared, and four-point function as
the coupling constant at the point p2 = 0:

r(2)(P, -P; m, u)I P2=O

8p2
r(2)(P, -p' m,

u)I
Pz=0

F(4)(0, 0, 0; m, u)

= m2

= g (17.124)

where all vertices are defined as a function of u.
In terms of this new variable, we can extract the scaling property from the

solution to the Callan-Symanzik equations. We are interested in rescaling the
momenta pi --> X pi in the asymptotic limit ), --> oo. From simple dimensional
arguments, we know that naive scaling gives:

r(s)(),Pi ; m, u) = )`d-s(d-2)12F(s)(Pi ; ml), u) (17.125)

So far, everything resembles the ordinary field theoretic discussion. To begin
the calculation, let us assume that we are near a fixed point, such that:

i6(u*) = 0 (17.126)

Then the y3 term in Eqs. (17.117) and (17.118) contributes to the asymptotic limit
near u*, such that:

r(s)(),Pi;m, U*) ^' )`[d-s(d-2)/2-slh(u*)/2l (17.127)

However, we know from the definition of the critical exponents that the two-point
function scales as:

r(s)(),Pi)'" ),d-sdo
(17.128)

where 2dd is the anomalous dimension of (P. From the chart Eq. (17.19), we
can compare this with the two-point correlation function's asymptotic behavior
at criticality. Equating Eqs. (17.127) and (17.128) and setting s = 2, we have
2do = d - 2 + q, and thus:

n = Y3(U*) (17.129)

Our strategy to calculate the critical exponents is now as follows.
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1. First, we calculate the two- and four-point Feynman graphs necessary to
evaluate Z1 and Z3.

2. We insert these values of Z1 and Z3 into Eq. (17.123) and calculate P(u) and

Y3(u)

3. We calculate the critical point u * by setting ,B(u *) = 0.

4. Finally, we insert u* into y3, and use the relation y3(u*) = 17 to calculate the
critical exponent. By similar arguments, we can also calculate y. With 17 and
y, we can calculate all the critical exponents via the scaling relations in Eq.
(17.85).

The Feynman rules corresponding to our action are easy to calculate. The
propagator, for example, is just the usual 1/(q2 + 1). A direct calculation of the
renormalization constants for the two- and four-point functions yields:

Zi = 1+Sun68a

+ (Su)2
n2 + 26n + 108

a2 (5n + 22)c
+ 3)

36
9

/ O(u )

Z3 1+ n 182 (Su)2b

+ (n + 8)(n + 2) (Su)3(ab
- d/2) + O(u4) (17.130)

54

where S = 2nd/2/F(d/2)(2n)d and where values of the loop parameters a, b, c, d
are given by Feynman's rules:

a =

b =

d =

1 ddq
S(2n)d J (q2 + 1)2

1 d
S2(2n)2d dp2

p2=0

ddgl ddq2

(qi + 1)(qZ + 1) [(p + qi + q2)2 + 1]

1 ddgl ddq2
(2n)2dS2 f (qi + 1)2(g22 + 1) [(qi +q2)2 + 1]

1 di
S3(2n)3d dp2 Ip2-0

x ddg2 ( f ddgl
(p+q2)2+11\J (qi +1)[(qi+q2)2+l]

(17.131)
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These integrals can all be performed using dimensional regularization. We find:

a = E-1(l -e/2)+O(E)

1 - lE
b = - 8c- I/8+O(e)

c
2I

[I - E/2+O(e2)]

d = -6I [1_ 4E+0(e2)] -I/(4E) (17.132)

where:

I=f dx ( 1 + logx(1 -x) 1) (17.133)1 -x(1 -x) [1 -x(1 -x)]Z

We can now calculate 6 and y3 from the definitions of the renormalization-
group variables in Eq. (17.123):

,B(u) = -u(E - n 6 8(1 - E/2)(Su)

3n+14
+ 12 (Su)Z) + O(u4)

y3(u) = -En92(Su)2(b+(Su)n68(2ab-3d/2))+O(u4)

(17.134)

Solving 6(u*) = 0 at criticality, we find:

u* = S(n6 8)E [1 +E 12
+ 3(n O(E3)

(17.135)

If we now plug the value of u*(E) into y3(u) in Eq. (17.123), we then have a
power expansion of y3 = n in terms of c, as desired.

In addition to n, we must also evaluate one more critical exponent. In order to
determine all the critical exponents, we would also like to solve for the exponent
y, which determines the critical behavior of the magnetic susceptibility. The
susceptibility is defined as the second derivative of the free energy, and hence
we want to calculate the anomalous dimension of the composite operator 02(x).
Although only Z1 and Z3 are sufficient to renormalize the original action in
the usual way, we will find it convenient to introduce another renormalization
constant Z4, which is the renormalization constant that appears in the vertex of
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02(x) coupled to two other fields:

(02(x)O(Y)0(0)) = Z4(u)(02(x)O(Y)O(0))bue (17.136)

We will therefore find it convenient to introduce the vertex function F(I,S).

F(I,S) ... m, u = f dxI . . . dx(q, pI, PS, ) f s

X (02(x)O(xl) ... O(xs))
I PT

(17.137)

As before, we can show that this new vertex function also satisfies a Callan-
Symanzik relation:

(m as +,6(u)au - (s/2 - 1)),,3(u) - Y4(u) t F(I,S) = AF(I,S)

where:

Y4 = m

a

am
log Z4

log Z4

ga

(u)
du

(17.138)

(17.139)

We can now extract the asymptotic behavior of this vertex function as we
rescale the moments pi --> pi A:

F(I'S)(a,q; dpi) ^' ,-(s-2)(d-2)/2-(s/2-I)Y3(u`)-Y4(u') (17.140)

However, from general asymptotic arguments, we also know that the asymptotic
behavior of the vertex function is governed by the anomalous dimensions do and
dd2 :

r(I,S) N (17.141)

So we obtain from Eqs. (17.140) and (17.141), setting s = 2:

dd2 = 2dd - y4(u*) (17.142)

From this and the definition of y in Eq. (17.19), it can be shown that":

2-n
Y= (17.143)d - dd2

This is the desired relationship between the critical exponent y and the anomalous
dimension of 02.
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Now we repeat the same steps as before. Using Feynman graphs, we can
calculate Z4 in terms of a, b, c, d. We find:

)Z 1 = 1 - n 22 S - 2 S O) + n 6 24 u (c u)a( a )( + (u
6

(17.144)

From this, we can derive an expression for y4:

+ (S 2)] + O((2 - 3= n 2 S ) [- 17 4E( u a u) c a u )Y4(u)
6

( .1 5)

To sum up, our strategy, as we mentioned earlier, has been to calculate Z 1 and
Z3, which gives us ,6(u). By solving for,6(u*) = 0, we can calculate u*(E) at the
critical point. We insert u*(E) into the expression for y3,4, that gives us a power
expansion for n and y. Then, by the scaling relations, we can determine all the
critical exponents.

This expansion can be carried out to arbitrary accuracy in e. We list some of
the critical exponents which have been calculated out to fourth and fifth order":

n4 + SOn3a
n + 8) E - 4(n +

2)2
(n + 28)EZ -

8(n + 8)5
[

2(

+ 920n2 + 3472n + 4800 - 192(5n + 22)(n + 8)T I E3+0(64)

'6
_ 1 - 3 (n + 2)(2n + 1) 2 (n + 2) 3 23n + 128n

2 2(n + 8) E + 2(n + 8)3 E -8(n+8)51

+ 488n + 848 - 48(5n + 22)(n + 8)T]E3 + O(E4)

(n + 2) (n + 2) z z (n + 2) [ 4
Y

=
1+2(n+8)E+4(n+8)3(n +22n+52)E +8(n+8)5 n

6 + 44n3 + 664n2 + 2496n + 3104 - 96(5n + 22)(n + 8)T I E3 + O (E4)

3 = 3+E+2(n l 8)2(n2+14n+60)e2+4(n+8)4(n4+30n3

n

+ 276n2 + 1376n +3168) e3 +
16(n

1

+ 8)6
12n6 + 96n5 + 1778n4

+ 12760n3 + 50280n2 + 147136n + 263040

+ 768(n + 2)(n + 8)(5n + 22)T]E4 + O(E5)

(-nZ + 56n + 272)E3EZ
+ + 8)42(n + 8)2 8(n

+ 32(n +28)6 [ - 5n4 - 230n3 + 1124n2 + 17920n+46144
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768(5n + 22)(n + 8)T I E4 +0(6 5)

V
_ 1 + (n + 2) 6 + (n + 2) (n2 + 23n + 60)62

2 4(n + 8) 8(n + 8)3

+ (n + 2)
[2n4 + 89n3 + 1412n2 + 5904n + 8640

32(n + 8)5 L

- 192(5n + 22)(n + 8)T ]63+0(64)

(17.146)

where T = 0.60103.
To check the reliability of the methodology, we compare the perturbation

calculation at 6 = 1 with the high-temperature series calculations for the three-
dimensional Ising model, using the 6 expansion and the Landau theory:

Exponent E Expansion Ising Landau

v 0.626 0.642 ± 0.003 0.5

77
0.037 0.055 ± 0.010 0

y 1.244 1.250 ± 0.003 1.0

a 0.077 0.125 ± 0.015 0

16 0.340 0.312 ± 0.003 0.5

4.46 5.150±0.02 3

(17.147)

The 6 expansion is taken to second order, except for 17, which is taken to third
order. The agreement is surprisingly good even for 6 = I.

(We caution, however, that the 6 expansion is not convergent but only asymp-
totic. The convergence properties of the 6 expansion are not fully understood.)

In summary, in this chapter we have seen how phase transitions can be cat-
egorized according to their critical exponents. In two dimensions, a large class
of exactly solvable statistical models exist. The reason why they are solvable is
because of commuting transfer matrices, or the Yang-Baxter relation. Unfortu-
nately, many of the techniques used to solve these two-dimensional models do not
carry over to four dimensions.

The mean-field approximation has been one of the main ways in which to
extract qualitative features of more complicated statistical systems. However,
trying to treat the mean-field approximation as a Bom term to a power expansion
fails because, at criticality, the coupling constant g44-d is large. Fortunately,



17.7. Exercises 605

the renormalization group method allows one to expand in u = gmd-4. We can
then extract meaningful relations by solving for 8(u*) = 0 near criticality and
inserting these relations back into the scaling relations. The results, even for the
three-dimensional case (e = 1), are surprisingly good.

17.7 Exercises

1. Show that (Q4) = (n2 + 2n)(n,/n)2(l - Sz-d)2 for the Ginzburg-Landau
model. (Hint: use Wick's theorem.)

2. Consider the one-dimensional partition function:

(17.148)
m F. \ n i

where the spins sn are arranged discretely along a line and they can assume
any real value. Take the limit u --> oc and b --> -oc with b = -4u. Show
that this model becomes the familiar Ising model in this limit [if one puts in
a factor (u/ir)1/2 exp -u per spin]. (Hint: show that we recover a Dirac delta
function condition on the spin Sn.)

3. In the limit u --> 0, this becomes the Gaussian model. Why is it exactly
solvable? Rewrite the Hamiltonian totally in terms of the Fourier transform
aq = En exp(-iq n)Sn. Show that the term appearing in the partition
function: ,BH = K En >i Snsn+i - Zb En Sn can be rewritten as:

,BH =
d

2
(K > I exp(i qi) - 112 + (b - 2dK) Uq 7-q

(d

9

d
-2

J
(q2+r)Uga-q qd

(17.149)
9

where K is rescaled to one, and r = (b - 2dK)/K and Iq < 11.

4. For the Gaussian model, the two-point function is Fq = 1/(q2 + r). In x
space, we have: F(x) = fq eiq.xrgddq/(2,r)d. Show that this gives F(x) -
exp(-/IxI) and hence 1/Vr-. Given the form of r with K - l/kT,
show that v = 1/2.
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5. Consider the Ising model in d dimensions using mean-field theory. The
partition function is given by summing over nearest neighbors i, j :

Z = > exp (,6 sisi (17.150)
spins i

The magnetization is given by M = (si). In the mean-field approximation,
assume that all neighboring spins are replaced by their average value M.
Then the sum over nearest neighbors picks up the factor 2d,6M. Show that
the Boltzmann probability for the ith spin to have the value si is given by:

P(si) = exp(2d,8Ms;)
2 cosh(2d,6M)

(17.151)

(Hint: perform the sum over 2d neighboring sites, and treat the denominator
as a normalization factor.)

6. For this Ising system, assume that the average of si is also M. Show that this
gives us the self-consistency equation for the mean-field approximation:

M = (si) = tanh(2d,6M) (17.152)

For small 8, the unique solution is M = 0. For larger 8, at a certain point
there are nonzero solutions for M. Show that this phase transition takes place
at 8 > & = 1 /2d. This crude assumption agrees remarkably well with
the correct result, especially for larger d. (Hint: plot the equation for M
graphically for various values of 6, and show that a phase transition occurs at

7. Prove Eq. (17.38).

8. Fill in the steps in Eq. (17.101).

9. Prove Eqs. (17.105) and (17.107).

10. Draw the Feynman graphs that correspond to Eq. (17.131).

11. Prove Eq. (17.132).

12. Nonperturbative information can be extracted from SU(N) gauge theory in
the limit that N --> oc. Write QCD in the fundamental representation, so
that the gauge field is written as Aµb for a, b = 1, 2, 3, since the adjoint
representation can be written as the product of 3 and 3*. Show that the QCD
action can be written as follows:

bFa b+ ray (iaµsb (17.153)aL g L 4Fµ
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where:

Fµvb = aAAvb - avAµb + l (AµCA b - AvcAµb)

607

(17.154)

and A b a is a Hermitian, traceless matrix, such that AµQ = 0 and AµQ = Aµb.
Show that the gluon and quark propagator become:

(OI T [Aµb(X)Avd(Y)] 10) = (Sdsb - Nsbsd) Dµv(X - y)

(OIT [*a(X)jb(Y)] 10) = 86SF(X -Y) (17.155)

13. Consider the large-N limit with g2N held fixed. Consider a vacuum Feynman
diagram of very large order. It has the shape of a large polyhedron, with F
faces, V vertices, and I internal lines. Using Feynman rules, this polyhedron
corresponds to a Feynman diagram with I propagators, V vertices, and F
traces over internal lines. Show that whenever we trace over a loop (face), we
pick up a factor of N, since S. = N. Show that each gluon vertex contributes
a factor of N, and that each internal line I contributes a factor N-1; that is,
show that:

Faces

Vertices

Lines

N

N

N-1 (17.156)

Show that the Feynman diagram for this polyhedron has the overall factor of:

NF+v-I = NX (17.157)

where X is called the Euler characteristic of a polyhedron. It is a topological
invariant.

14. Now show that we can envision the vacuum Feynman graph as a sphere with
H handles (holes) and B boundaries, where the surface of the sphere is trian-
gulated by a large number of triangles making up the vertices and propagators
of a Feynman diagram. Show that the Euler characteristic becomes:

X=2-2H-B (17.158)

Show that the leading vacuum graphs behave like N2. They are topologically
equivalent to spheres with no handles or boundaries (H = B = 0). They
have no fermion lines (since fermions punch holes in the sphere, and thereby
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decrease the Euler number). They correspond to purely planar diagrams.
At the next order N, show that we have planar surfaces bounded by closed
fermion lines; that is, we have a sphere with one boundary B = 1. At the next
order 0 (1), we have either a sphere with a hole (i.e., a doughnut), or a sphere
with two boundaries (i.e., a disk with an inner and outer boundary). Comment
on the physical meaning of the N --> oc limit, in terms of the bound states of
the theory and the gluon "strings" that form between quarks.



Chapter 18

Grand Unified Theories

We present a series of hypotheses and speculations leading inescapably
to the conclusion that SU(5) is the gauge group of the world...

-H. Georgi and S. Glashow

18.1 Unification and Running Coupling Constants

The Standard Model successfully incorporates all the known properties of the
strong, weak, and electromagnetic forces. In fact, there is not a single experiment
in particle physics that contradicts the results of the Standard Model. Its weakness,
however, is that it is ad hoc: It has too many arbitrary parameters (especially
quark masses) and absolutely no interaction with the gravitational force. Since the
various interactions are simply spliced together, one feels that a more fundamental
theory should be possible.

One improvement on the Standard Model are Grand Unified Theories (GUT).
GUTS also share many of the weaknesses of the Standard Model (e.g., too many
arbitrary parameters, no interaction with gravity). However, they are genuine
unified field theories because there is only one gauge group and hence only one
coupling constant. Furthermore, they make a prediction that is now the subject of
several ongoing experiments: the decay of the proton.

One of the most compelling arguments for the unification of these forces
comes from asymptotic freedom. We deduced previously that the 6 function for
Yang-Mills theory can be written as:

3 2
'6 (g)16nz

[IIN_

3
3Nfl +... (18.1)

for a SU(N) gauge theory coupled to N f fermions transforming as the N-
dimensional representation of the group.
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S

Mx
µ

Figure 18.1. The strong, weak, and electromagnetic running coupling constants plotted
against the energy. At the GUT scale, all three coupling constants seem to merge into one.

At extremely high energies, the Callan-Symanzik relation shows that the three
coupling constants of the strong, weak, and electromagnetic interactions begin to
converge, leading us to suspect that all three interactions become part of the same
interaction at a very high energy.

For the strong, weak, and electromagnetic interactions, respectively, we have
three distinct equations for 8(g)':

63(93) Nf 1(11 -, 3
16n2

/92 22 2_
82(g2) Nf)(,

3 316n2

3 2

e = N ( N )L
(18 2), i(gl) f 16 3 f2

.

where we have set the number of Higgs particles to zero. All three equations can
be summarized as: 8i(gi) = big3/16ir2, which then determines the value of b1.

Let us assume that there is a mass scale, governed by Mx, where all three
coupling constants converge:

ai(Mx) = a2(Mx) = a3(Mx) (18.3)

where a, = g?/4n.
Then the solution to the renormalization group equation is given by (Fig.

18.1):

1 _ 1

+
bi

log
Mx- -

ai(µ) at(Mx) 2n µ
(18.4)
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Unfortunately, this shows that the unification of these three coupling constants
takes place at an incredible energy scale of 1015 GeV, which is far beyond the
ability of any accelerator to probe. Between 1 TeV and 1015 GeV, the simplest
GUT theory predicts that there will be a large energy "desert" stretching across
12 orders of magnitude in which no new interactions will be found.

Although the existence of this enormous desert is one of the main criticisms of
the theory, one attractive feature of this approach is that we have an experimental
handle by which to verify such models, and this is proton decay. Since GUTs
generically put leptons and quarks in the same multiplet, then the vector mesons of
the theory will in general mix up these leptons and quarks, thereby mediating the
decay of the quarks into leptons and hence producing proton decay. Since proton
decay can be measured in the laboratory, this give us an experimental handle by
which to accept or eliminate this approach.

18.2 SU(5)

One of the earliest GUT models was that of Pati and Salam.2 Perhaps the most
conservative choice for a model beyond the Standard Model is the "minimal"
SU(5) theory.' The Standard Model, with the gauge group SU(3) ® SU(2) ® U(1),
has four diagonal generators, corresponding to t3, t8 of color and t3 and Y of weak
isospin. The minimal choice beyond the Standard Model is a rank 4 group. The
complete set of rank 4 groups involving just one coupling constant can be easily
written down. There are just nine of them (including products of identical Lie
groups):

SU(2)4 0(5)2 SU(3)2

(G2)2 0(8) 0(9)

Sp(8) F4 SU(5)

(18.5)

We also want groups with complex representations, because the complex con-
jugate of a field transforms differently from the field itself in the Standard Model.
Of these, only SU(5) contains the Standard Model's gauge group with the proper
complex representations of quarks and leptons. There are phenomenological
problems with all of these groups except for SU(5).

In addition to being the minimal model compatible with complex representa-
tions, there are several other rather remarkable properties of SU(5) that make it
physically attractive:

1. It is free of anomalies.
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2. It gives precisely the correct quantum number assignments for the 15 left-
handed and right-handed quarks and leptons found in the Standard Model for
one generation.

3. It gives, after radiative corrections, a reasonably good approximation to
sin 2 O.

4. It gives a scenario by which the model breaks down to the Standard Model
via the Higgs mechanism:

SU(5) , SU(3) ® SU(2) ® U(1) --> SU(3) ® U(1) (18.6)

Let us now study each of these features of the GUT theory.

18.3 Anomaly Cancellation

Very few groups and their representations give a cancellation of the chiral anomaly,
but SU(5) gives such a cancellation with precisely the correct number of quarks
and leptons.

To analyze the representations of SU(5), we first remind ourselves that the
anomaly is proportional to:

Tr[{t°,tbITC] (18.7)

All representations of SU(N) can be found by tensoring the fundamental
representation (hence the name) and then taking the various symmetric and anti-
symmetric combinations of the indices found in the Young Tableaux. If we take
the antisymmetric representations [N, m] of SU(N) (corresponding to a vertical
stack of m boxes), then it is easy to see that their dimensionality is the number of
ways we can take N things m at a time:

dim [N ml _
N!

(18.8)
' m!(N -m)!

Furthermore, we can plug this fully antisymmetric representation of the gen-
erators of SU(N) into the anomaly condition, and we arrive at:

_ (N - 3)!(N - 2m)
AN'"` (N - m - 1)!(m - 1)! (18.9)

Now let N = 5. The fundamental representation is 5 with m = 1. If we
multiply two of these together, then we can rearrange them in symmetric and
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antisymmetric combinations:

613

5®5=10®15 (18.10)

If we take m = 1 or 2 (corresponding to 10), or 3, we find that they have
the same anomaly contribution. Therefore, the anomaly contribution of a right-
handed 5 precisely cancels a left-handed 10. For the fermion representation,
anomaly cancellation demands that we take:

Fermions : 5R + 10L, (18.11)

The anomaly also cancels for the following combinations of [N, m]:

SU(5) : [5, 1] ® [5, 3]

SU(6) : 2[6, 1] ®[6, 4]

SU(7) : [7, 2] ®[7, 4] ®[7, 6]

SU(8) : [8, 1] ® [8, 2] ® [8, 5]

SU(9) : [9, 2] ®[9, 5]

or: [9,1]®[9,3]®[9,5]®[9,7]

SU(10) : [10, 3] ®[10, 6] (18.12)

which, of course, does not exhaust all possible anomaly-free combinations.

18.4 Fermion Representation

Anomaly cancellation by itself is not so remarkable, since many other represen-
tations can achieve this. What is remarkable about this construction, however,
is that the 5 ® 10 representation contains precisely the correct quantum numbers
necessary to retrieve the Standard Model.

In the Standard Model, if we count the number of chiral fermion modes, we
find that we have 12 modes from the u` and d` quark sectors, 2 modes from the
electron field, and 1 from the massless neutrino, for a total of 15 modes.

However, since SU(5) has no 15-dimensional representation, we must split up
the fermions into two parts, the sum of a 5- and 10-dimensional representation. To
accomplish this, we take the 5 to be right handed and the 10 to be left handed, so
that 5 and 10 are both left handed. But this, however, is precisely the anomaly-free
combination that we just computed.
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This 5-dimensional spinor, transforming as [5, 1], is given by:

d'

d2

*5 = d3 (18.13)

e`

VC
R

If we break this down into the representations of SU(3) ® SU(2), we have:

5 = (3, 1) ® (1, 2) (18.14)

where the quarks correspond to (3, 1) and the leptons to (1, 2).
We will now take the left-handed 10 to consist of an antisymmetric [5, 2] with

two antisymmetric indices:

*1o

0 u3 -uz -u1 -d'
u3 0 ui -u2 -d2
uz -ui 0 -u3 -d3
u1 U2 U3 0 -e+
d' d2 d3 e+ 0

L

10 = (3, 2) ®(3, 1) ®(1, 1) (18.15)

where the quarks correspond to (3, 2) ® (3, 1) and the electron to (1, 1).
Likewise, the gauge mesons transform according to the adjoint representation

of SU(5), which has 24 elements. The breakdown of these elements in terms of
SU(3) ® SU(2) is given by:

24=(8,1)®(1,3)®(1,1)®(3,2)®(3,2) (18.16)

From this decomposition, we can identify the gauge mesons corresponding to the
Standard Model. The (8, 1) corresponds to the usual colored gauge bosons of
SU(3)c. The (1, 3) ® (1, 1) mesons correspond to the WN,, ZN,, and the electro-
magnetic field. Finally, the (3, 2) ® (3, 2) are new gauge mesons, which we call
the X and Y vector mesons, which couple the quarks to the leptons and hence
mediate proton decay.

Next, to extract any meaningful phenomenology from this model, we need a
specific representation of the X matrices, from which we can identify the charge
and different isospin operators.

There exists, of course, an infinite number of ways in which we can choose
these matrices. For convenience, we will take the following representation. Let us
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break up a 5 x 5 square matrix into four blocks, consisting of two smaller squares
and two rectangles. The upper left-hand comer block will be a 3 x 3 submatrix.
The lower right-hand comer block will be a 2 x 2 submatrix. In the diagonal
upper right- and lower left-hand comers, we will place 3 x 2 and 2 x 3 rectangular
submatrices.

We will adopt the normalization convention Tr L'Lb = 28°b. Then we can
write:

La=
\ 0

0 ); a=1,2,...,8 (18.17)

where A' are the usual Gell-Mann matrices for SU(3), and the 0 represents square
and rectangular blocks that contain only zeros for entries.

For the 9th and 10th generators, we use two Pauli matrices or 1,2 in the 2 x 2
block:

L9,b0 = (0 0
0 or 1'2

(18.18)

The 11th and 12th generators are taken to be diagonal, with the diagonal entries
given by:

L11 = diag(0, 0, 0, 1, -1)

L12 15 drag (-2, -2, -2, 3, 3) (18.19)

To define the next set of matrices, it will be convenient to define rectangular
matrices A and B:

1 0 0 0 0 0

Al = 0 0 ; A2 = 1 0 0 0 (18.20)

0 0 0 0 1 0

and:

0 1 0 0 0 0

B1 = 0 0 ; B2 0 1 ; B3 = 0 0 (18.21)

0 0 0 0 0 1

Then the 13th through the 24th generators are given by (for k = 1,2,3):

AkL13,15,17 = L11+2k 0
AT 0
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L14,16,18

L19,21,23

L20,22,24

L12+2k=( 0
t\ -iAk

L 17+2k __ 0 Bk

B 0

L 18+2k _ 0
iBk

-l Bk

0
(18.22)

Now let us identify the charge operator from this representation. If we analyze
the 5 representation of the fermions, their charge assignment is given by:

Q = 2 (L" +,15-13L 12)

Explicitly, the charge matrix is:

(18.23)

Q = diag ( - 1/3, -1/3, -1/3, 1, 0) (18.24)

The quarks have fractional 1/3 charge compared to the electron. This is
extremely important, because the charge assignments of the various quarks and
leptons are now quantized; that is, GUT theory gives us charge quantization. This
is different from the usual U(1) Maxwell theory, where the charge e is a continuous
parameter. Because the charge operator is now one of the generators of the group,
its eigenvalues are quantized and we have a definite quantized charge assignment
for the quarks and leptons. In fact, the quarks have 1/3 charge relative to the
leptons just because there are three colors within SU(3).

Similarly, the charge assignment of the 10 representation can be computed.
The charge operator Q, acting on the mixed tensor 10 - *', yields:

Q(ifi)=Qi-Qj (18.25)

From this, we can read off the charge assignments of the 10, which are also
experimentally correct. The relative ease with which we can generate the correct
quantized quark and lepton assignments is one of the successes of the GUT
approach.

We can now make the precise association between the vector mesons of SU(5)
and the vector mesons of the electroweak model (Wµ , Wµ, B) and the gluons
Gµ of QCD: We find:

W+
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All --> W3
µ µ

Aµ -' Bµ (18.26)

The new vector mesons, which are only specific to SU(5) and not the Standard
Model, are given the names:

A 13,14,...,18
µ

A 19,20,...,24
µ

Putting everything together, the 5 x 5 matrix AN, is given by:

(18.27)

24

AN, = ' >2Aµ L` (18.28)

where this can be rewritten as:

Aµ - (C D) (18.29)

where:

X1 Y1

A = Gµ - 30Bµ1. B = X2 Y2

X3 Y3

X1 X2 X3

Yl Y2 Y3 W-

W+

-W3 3B
30 + 30

Next, we would like to calculate sin2 Ow. This is now easily accomplished
by extracting out the coupling constant for SU(2) and U(1) from the coupling of
gauge bosons.

The covariant derivative associated with Wµ and Bµ can be related to the
coupling of Aµ and Zµ by extracting out the covariant derivative of the 11th and
12th generators:

Dµ = aµ - i(g/2) (Wµ L1' + BµL12)

aµ - i (g/2) [Aµ (sin 6wL11 + cos OwL12)

+ Zµ (cosOWL11 - sinOWL12)1

aµ, - i(eQAµ +gQZZµ)

J

(18.30)
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Since Q=(1/2)[L11+ 5/3L12],wecantaketheratiooflto 5/3,whichequals
the ratio of sin OW and cos 6w. Thus, we have:

3sinzOW= - = 8 1

8 g2

This prediction, by itself, would be a disappointment, since experimentally
the measured value is sine 0W - 0.23. However, we must consider this to be
a first-order value of the Weinberg angle OW that must be corrected by radiative
corrections coming from the renormalization group.

Earlier, we analyzed how the renormalization group arguments give us a handle
on the size of the GUT scale. Let us re-examine this calculation with SU(5) in
mind. For coupling constants g1, 92, g3 for the groups within the Standard Model,
we have the following solutions to the renormalization group equations:

82I (µ) _ (5/3) a(le)
4n cos2 OW

8z(µ) __ a(µ)

4n sin2 OW

(li)93
4n

a3(µ) (18.32)

where a(µ) describes the electromagnetic coupling.
By taking linear combinations of these equations, and using the fact that

g1(Mx) are all equal, we find:

ir 1 8
log(Mx/µ) ^

11 a(µ) 3a3(4))

and:

(18.33)

sine 0W - 3/8 - (55/24 r)a(µ) log(Mx/µ) (18.34)

A careful analysis of the parameters of the theory gives us:

Mx - 4 x 1014 GeV

sin20W 0.206+0-0164 (18.35)0.00

while the experimentally observed value is sine 0W - 0.2325 ± 0.0008.
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18.5 Spontaneous Breaking of SU(5)

Next, we wish to use the Higgs mechanism to break down the theory to the Standard
Model and eventually down to SU(3)c ® U(1)en The first breaking down to the
Standard Model is accomplished by taking a Higgs boson transforming in the 24
adjoint representation of the group. The second breaking down to SU(3) ® U(1)
is achieved via a 5 of Higgs:

24 : SU(5) , SU(3) ® SU(2) ® U(1)

5 : SU(3) ® SU(2) ® U(1) --> SU(3) ® U(1) (18.36)

If we describe the breaking of the Lie algebra via the adjoint representation
labeled by (La)bc = f°b`, then the matrices would then be 24 x 24, which is
unwieldy. To make things simpler, we note that:

5(9 5=24®1 (18.37)

which allows us to write down the Higgs as j)Q, where a represents the 5 index
and b the 5 index. We then take the 24 Higgs to be represented by the product:

j)a = OaOb - SOcOcsa (18.38)

where we have subtracted out the 1.
We can, of course, reassemble these mesons in terms of the 24 members of the

adjoint representation of SU(5). In the adjoint representation, the Higgs meson
becomes: 1 = 4p°L°/2 for a = 1, 2, ..., 24. The kinetic term for the Higgs
potential is given by:

1 za

Lo = 2 E DµI)°tDµI)°
a=1

where:

(18.39)

DA=BA - ig [v;2 1) (18.40)

We now choose a potential V(1) such that the minimum is given by:

(1)) = v diag (1, 1, 1, -3/2, -3/2) (18.41)
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This is equal to the unit matrix in the SU(3) subspace and equal to the unit
matrix times -3/2 in the SU(2) subspace. The only generators that have nonzero
commutators with this diagonal matrix are L This tells us that only the X
and Y vector bosons get mass, while preserving the massless nature of the vector
bosons for SU(3) ® SU(2) ® U(1). Thus, this successfully breaks SU(5) down
to SU(3) ® SU(2) ® U(1).

The mass matrix for the vector bosons is given by:

282 Tr [Aµ
(1)) ] 21 = mabAµAb,µ

Then we get:

z z 25 z2mX=mY= 8 g v

(18.42)

(18.43)

To arrive at this assignment of quantum numbers, we will take the Higgs potential
to be:

-µ2Tr(1)2)+ 1a (Tr(])2)2+ 1bTr(1)4) (18.44)
4 2

We can now shift the minimum and get an expression for v in terms of the
Higgs potential parameters:

2 15 2 7 2µ = 2av +2bv (18.45)

The second stage of Higgs breaking is mediated by a 5 Higgs boson, trans-
forming as a doublet under SU(2). From our discussion of the electroweak model,
we know that a suitable choice for the Higgs meson is given by:

h'
h2

H= h3 =(3,1)®(1,2)
h+

-h°

The potential for H is the same as for the electroweak model:

(18.46)

V(H) = -2v2IH12+ 4. (IH12)2 (18.47)

As usual, the breaking of SU(2) is performed by having an expectation value
along the h° direction:

(H) = (-h°) = v° (18.48)
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where v2 = V0. Then, as expected, we will have:

M , = MZ cos2 OW =
1
492 Vo (18.49)

Finally, we look at the fermion masses of the theory. They are generated via
the generic coupling rr i1), where 1 acquires a vacuum expectation value.

Since fermion masses appear via the coupling of two fermions to the Higgs
boson, we expect them to arise from interactions involving the combination (5
10) ® (5 ® 10). This decomposition is given by:

5®10 = 5®45

10®10 = 5®45®50

5®5 = 10®15 (18.50)

Fermion masses are thus generated by the Higgs in the following representa-
tions: 5, 10, 15, 45, 50. Since the 5 Higgs was used in the minimal SU(5) model
to break the electroweak interactions, no new Higgs need be added to the minimal
theory. Nonminimal SU(5), involving more parameters, can be constructed using
the 10, 15, 45, 50, which appear in the tensor product decomposition, meaning
that these Higgs can couple to two fermions and generate masses.

The nice feature of this construction, however, is that 24 does not appear in the
tensor product decomposition. Thus, the 1)24 Higgs meson does not couple to two
fermions, and hence the fermion masses cannot be of the GUT scale Mx. This is
gratifying, since we do not want any of the quarks and leptons to have GUT scale
masses. Notice that the 5 does appear in the tensor product decomposition, which
means that the fermion masses can be of the order of Mw.

Although minimal SU(5) seems to unify the strong and electroweak interac-
tions in a surprisingly tight fashion, we should point out that the current exper-
imental limits on proton decay seem to rule it out. For example, the theoretical
decay rate of the proton into an electron can proceed via:

F-1(p --> e+ +7r°) = 4.5 x 1029±1.7 yr (18.51)

which is much too fast. Experiment has pushed the proton lifetime to:

F-1(p-->e++n0), F-1(n-->e++n-)>6x 1031 yr (18.52)

Furthermore, electroweak measurement of the Z mass are apparently precise
enough to cast doubt on the value of sin2 OW - 0.206, predicted by the minimal
model [see Eq. (18.35)]. This, of course, does not rule out more complicated,
nonminimal S U(5) and models with more complicated GUT groups and couplings.
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18.6 Hierarchy Problem

The most important theoretical challenge facing GUT theory is the hierarchy
problem 4 The origin of this problem is easy to isolate. The SU(5) theory, for
example, has two Higgs bosons, which introduce the mass scales Mx and Mw.
Because of the vast difference between these two mass scales, it is important to
keep the two scales apart, so there is no mixing between them. We must, therefore,
"tune" our two mass scales so that we preserve the vanishingly small ratio between
them:

Mw -12
MX

'10 (18.53)

However, it easy to show that the loop corrections lead to interactions connect-
ing two 1 fields with two H fields. This, in turn, means that we must introduce a
term in the action that corresponds to this new graph:

V(1), H) = aIH12 Tr 1)2 +,6 H1)2H (18.54)

But introducing 1)2H2-type terms into the Higgs potential has mixed these two
mass scales. Thus, the vast ratio between these two mass scales has been destroyed.

We can, at this one-loop order, retune the parameters within the Higgs potential
so that we once again re-establish the hierarchy. The explicit calculation yields:

v2 - (15a +
2

6)v2 _ 10-24v2 (18.55)

Although we can now tune a and,6 to one part in 1024, we will find that the two-
loop result reintroduces mixing between these two mass scales, and the hierarchy
is again ruined.

We can always retune our parameters at the two-loop level, but then this
retuning will not survive at the third-loop order. Clearly, we have a problem. It is
difficult to imagine a more clumsy way in which to unify the known interactions
than continually to perform a retuning of parameters to incredible accuracy at each
order in perturbation theory.

18.7 SO(10)

Let us leave the minimal SU(5) model and go to the next model, SO(10),5-6

which incorporates many of the attractive "accidents" of the SU(5) model and
explains their origin group theoretically. In general, the series S 0 (N) is attractive
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because of anomaly cancellation. We know from Eq. (2.68) that the generators of
SO(N) can be written in terms of the matrix (M`j)ab, which is antisymmetric in
a, b and i, j. If we insert this value into the anomaly:

Tr[{M'
.

i ,
Mkr}Mmn]

(18.56)

we find that this number cannot, in general, be written as a constant tensor with the
indices i, j, k, 1, m, and n (except for N = 6, where a constant tensor with all the
symmetry properties is given by E"klmn) Thus, all SO(N) theories are anomaly
free except for N = 6.

Furthermore, we are interested in complex representations of the Lie group.
However, not all SO (N) groups have complex representations. In particular, the
requirement of complex representations restricts us to the groups SO(4n + 2).
Therefore, the smallest orthogonal group of rank > 4, with complex representa-
tions, is given by SO (10).

The representation in which we are interested is the 16-dimensional spinor
representation of SO(10). This is because the adjoint representation has 45
elements, which is too many, while the vector representation has too few, only 10
elements.

SO(10) includes SU(5) as a subgroup, therefore, all representations of SO(10)
can be described by giving its SU(5) quantum numbers. The essential feature of
the 16 is that, under SU(5), it transforms as:

16=5®10®1 (18.57)

where the 1 refers to the right-handed neutrino, which is missing in the minimal
SU(5) scheme. In one stroke, we see why the 5 ® 10 representation worked so
well, and this is because they are actually part of the 16 representation of SO(10).

The group SO(10) has 45 generators, which can be broken down under SU(5)
as follows:

45=24®1®10®10 (18.58)

where the 24 is the same multiplet of gauge bosons that we encountered earlier
for SU(5).

Symmetry breaking can proceed in numerous ways because of the large num-
ber of subgroups contained within SO(10). The simplest route to symmetry
breaking is given by:

SO(10) --> SU(5) --> SU(3) ® SU(2) ® U(1) --> SU(3) ® U(l) (18.59)
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The first breaking down to SU(5) can be mediated with a 16 of Higgs bosons.
The second breaking down to the Standard Model needs a Higgs in the 45 repre-
sentation. And the last breaking is accomplished via 10 Higgs:

16 : SO(10) , SU(5)

45: SU(5) --> SU(3) ® SU(2) ® U(1)

10 : SU(3) ® SU(2) ® U(1) --> SU(3) ® U(1) (18.60)

Yet another favored route is given by:

SO(10) --> SU(4) ®SU(2)L ®SU(2)R

SU(3) ® SU(2)L ® SU(2)R ® U(1)B-L

SU(3) ® SU(2) ® U(l) --> SU(3) ® U(l) (18.61)

This sequence of breakings is initiated by the following representations of Higgs
bosons: 54, 45, 16, 10:

54 : SO(10) , SU(4) ® SU(2)L ® SU(2)R

45: SU(4) ® SU(2)L ® SU(2)R

--> SU(3) ® SU(2)L ® SU(2)R (9 U(1)B-L

16: SU(3) ® SU(2)L ® SU(2)R ® U(1)B_L

--> SU(3) ® SU(2) ® U(1)

10: SU(3) ® SU(2) ® U(1) --> SU(3) ® U(1) (18.62)

Likewise, the fermion masses can also be analyzed. The fermion masses are
generated by two fermion fields; therefore, we find:

16®16=10®126®120 (18.63)

Thus, fermion masses can only be generated through Yukawa couplings via the
10, 126, or 120 representations for the Higgs particle. To see the relationship with
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the SU(5) model, we can decompose these representations as:

10 = 5®5

126 = 1®5®10®15®45®50

120 = 5®5®10®10®45®45 (18.64)

To perform calculations with S O (N) models, it is necessary to have a specific
representation of the spinors. We can use a simple recursive technique, generating
the spinor representation of SO (2n + 2) from the spinor representation of SO(2n).

Let I,`n) for i = 1, ... , 2n form a Clifford algebra for S0(2n). From these
elements, we can generate the Clifford algebra for SO (2n + 2), with elements
F( n+') f o r i = 1, ... , 2n + 2. The recursion relation is:

I,(n+l)
I

I,(n+l)
2n+1

I,(n+l)
2n+2

r(n) 0

0 I'(n)
t

(18.65)

For SO(2n + 1), its Clifford algebra is formed from I,`n+l) for i = 1, ..., 2n + 1,
that is, by omitting the last element of the Clifford algebra.

Then the generators of the group, in terms of the spinors, are given by:

Mab = t [I'a, I6]
4

(18.66)

For models beyond SO (10), it is useful to write down generic values of the
predictions of the various theories. For example, we can compute sin2 OW with the
simple observation that, before symmetry breaking, all couplings of the various
subgroups of the gauge group are equal. Therefore, we know that g?Tr (Ti2) for
the various subgroups is the same. Setting them equal, and solving for the ratio
of the coupling constants, we can show that:

i=1,2,...,2n

e2 Tr(T3)
sinew = -

9 2 Tr(Q2)
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aC _ Tr(Q2)

aem TrTT
(18.67)

where c refers to the SU(3) color subgroup.
There are, of course, many GUT models beyond the SO(10) theory. Let us

list a few of the restrictions on these models. First, we must have complex repre-
sentations (unless we want to have "mirror" fermions with opposite handedness to
the usual ones, but then we have another problem of explaining why their masses
are so heavy and hence are not seen). The only complex representations occur for

1. SU(N) for N > 2

2. E6

3. SO(4N+2).

Second, we want anomaly cancellations, which must be checked by hand. For
example, SO (N) is anomaly free if N 6.

Of these, the exceptional groups' look attractive, since there are only a finite
number of them and not an infinite series. Of the exceptional groups, E6 is
attractive since it has complex representations and can be broken in many ways,
including:

E6 ` SO(10) --> SU(5)

--> SU(3)c ® SU(2) ® U(1) (18.68)

The fermions can be accommodated in the 27 of E6. E7 can accomodate the
fermions in a 56 representation (except for the t quark), but has an unacceptable
structure for the weak currents. E8 has also been studied. Its lowest dimension
representation is the adjoint with 248.

One interesting sequence of breakings is given by:

E8 --> SO(16) --> SO(10) ® SO(6) --> SU(5) x SU(3) (18.69)

E8 and E6 have also been seriously examined from the viewpoint of the su-
perstring, where they are some of the preferred intermediate steps in symmetry
breaking.
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18.8 Beyond GUT

The GUT theories, although they have many compelling features, are a speculative
step beyond the Standard Model. There are other speculative steps. We mention
just a few of them.

18.8.1 Technicolor

Technicolor' is based on the philosophy that fundamental scalars are unattractive
and undesirable features of an electroweak model. They can be eliminated if they
emerge as bound states of some fermions. In order to drive the symmetry breaking
to give the W boson a mass of around 80 GeV, we must postulate a new color-type
interactions called hypercolor or technicolor, which becomes strong at 1 TeV.

One advantage of this approach is that the hierarchy problems seems to be
avoided. The hierarchy problem emerged when mixing between fundamental
scalars created radiative corrections that forced us to retune the parameters to
preserve the mass difference between ordinary energies and GUT energies. In
the technicolor picture, there are no such scalar couplings, because there are no
scalars.

Unfortunately, the simplest versions of technicolor have been ruled out be-
cause they have problems with flavor-changing neutral currents. A possibility
exists of avoiding this by proliferating technifamilies, but then these theories also
have problems with the various counterparts of the Nambu-Goldstone boson, the
technipions, which have not been discovered.

18.8.2 Preons or Subquarks

Everytime we have probed deeper into the structure of matter, we have seen a new
layer of constituents, from molecules, to atoms, to nuclei, to subatomic particles,
and to the quarks. It may not be such a leap of logic, therefore, to suppose that
the quarks themselves are composite objects.

Several problems face subquark theories. First, there are technical ones, such
as eliminating anomalies via the 't Hooft anomaly matching conditions. But there
are also more physical questions, such as the lack of any guiding principle by which
to construct subquark theories. Nature gives us few signals as to which direction
to take in generating subquark models, of which there are many. One criterion
is that these subquark theories must explain why the electron and neutrino seem
point-like with a small or zero mass, even though the energy of their constituents
is quite large by comparison. Naively, one would expect that, if the electron were
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a composite particle, its mass would be comparable to the energy scale of the
composite particles, which would be enormous.

18.8.3 Supersymmetry and Superstrings

Nature, however, does give us very strong signals, at least in one direction, and
this is the existence of gravitation. There is no question that gravitation exists, and
that it is the basic glue holding much of the universe together. Ironically, although
gravity was the very first force to have its fundamental classical equations revealed
with the work of Newton three centuries ago, it resists unification with the other
forces for a very fundamental reason: It is not renormalizable. Gravitation is a
gauge theory of great sophistication, requiring new ideas in order to marry it to
the other three fundamental interactions.

We now turn to the theory of general relativity and to the two theories that
give us the only known nontrivial extensions of Einstein's theory: supergravity
and superstrings. Not only does supersymmetry give us a plausible solution to the
hierarchy problem, it also gives us theories of gravity in which the divergences
are partially or even completely cancelled.

No one knows what will be the ultimate outcome to the vigorous theoretical
pursuit of a quantum theory of gravity. However, from the standpoint of quantum
field theory, it has already given us an incredibly rich laboratory by which to test
old ideas and generate entirely new ones.

In summary, GUT theories give us the first nontrivial extension of the Standard
Model. GUT theories based on gauge groups such as SU(5), 0(10), and E6 have
the advantage that they are elegant and have fewer coupling constants than the
Standard Model. Although the unification of the various forces takes place at
approximately 1015 GeV, GUT theories can still be tested if the proton decays.
Minimal SU(5) has now been ruled out experimentally, but theories with more
complicated groups and couplings are still consistent with experiments.

We now turn out attention to the problems raised by the GUT theories, such as
the presence of gravity, the hierarchy problem, and the renormalization of quantum
gravity.

18.9 Exercises

1. Show that, if we simply drop the massive X and Y mesons in the action for
SU(5) GUT theory, that the resulting theory (for the fermions and vector
mesons) becomes essentially the Standard Model action with gauge group
SU(3) ® SU(2) ® U(1).
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2. Take the spinor representation of SO (10). Explicitly extract the generators of
SU(5) from the generators of SO (10). Explicitly decompose this spinor into
the SU(5) representations in terms of quarks and leptons. In this way, show
how the SO (10) model decomposes into the Standard Model (for the leptons,
quarks, and vector mesons only).

3. In minimal SU(5), construct the explicit expression for the coupling of Higgs
bosons to fermions to form the Yukawa potential. Show explicitly how the
24 representation of the Higgs can break this down to the Standard Model.

4. Isolate which graphs would contribute to proton decay in the minimal SU(5)
model. By dimensional arguments, do a quick order of magnitude calculation
of the decay rate.

5. Let ri generate a Clifford algebra. Define:

ai = 2 (r2i -1 - i r2i ) (18.70)

Show that ai and at form a set of anticommuting annihilation and creation
operators; that is:

{ai, at } = 8ij (18.71)

with all other anticommutators being zero.

6. Let r° be a set of traceless Hermitian n x n matrices, which generate the
algebra of SU(n). Show that T°, defined by:

Ta - 1: at (r°)jkak (18.72)
jk

also generates the algebra of SU(n). Now show that any bilinear
a combination of generators Mij of the group SO(2n):

aak

Show that this proves that:

Z3jk + 2M2j-1,2k-1 + 2M2j-1,2k

1 i
--M2j,2k-1 + 2M2j,2k

SU(n) C SO(2n)

(18.73)

(18.74)

This shows one way in which to embed SU(5) GUT into SO(10) GUT.
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7. Let the at be five anticommuting creation operators acting on a vacuum 10).
For S0(10), show that a 32 dimensional spinor l*) can be decomposed as:

1*) = 10) i0+ai I0)ii + 1ajakl0)Ijk+ 12Eijklmakatam o)Y ji

+24jklmnaka/
amatl0)1j +aiazasaaas 0)*0 (18.75)

where i/rij is antisymmetric. Show that these form the SU(5) representations
of 1, 5, 10, and their conjugates. Show that this generates the irreducible
16-dimensional spinor and its conjugate. Now generalize your results for
SU(n) and SO(2n), decomposing a SO(2n) spinor into SU(n) multiplets.

8. The breakdown of SO(10) down to SU(5) leaves us with an extra U(1)
symmetry. Show explicitly how this extra quantum number can be associated
with B - L, where B is the baryon number and L is the lepton number.
Explicitly construct the operator which generates B - L.

9. In Eq. (18.60), there are several ways in which SO(10) may be broken
down, with various representations of Higgs. Construct explicitly the Higgs
potential for each of these breaking mechanisms. Analyze their strengths and
weaknesses.

10. In a model with E6 symmetry, we have E6 D S O (10) ® U(1). Thus, the 27
and adjoint 78 of E6 can be broken down into:

27 = 16®10®1

78 = 45®1®16®16 (18.76)

Rewrite this decomposition strictly in terms of SU(5) representations. From
this, describe the physical quark/lepton content of the 27 and the vector mesons
of 78. How many new particles must be postulated?

11. A Weyl neutrino cannot have a mass, since the mass term couples left- and
hand-handed fermion fields. However, consider a theory in which the neutrino
is a Majorana fermion, which obeys Then it is possible to construct
a mass term for this field:

*RiL = (*R)C*L = *L CAL (18.77)

Notice that this Majorana mass term is now defined totally in terms of t/*L.
Show that this quantity is Lorentz invariant. Show that, in contrast to the
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Weyl neutrino action [which is invariant under v --> eiev, which generates a
U(1) symmetry, or lepton number], the Majorana mass term violates lepton
number by two units.

12. Show that a Majorana neutrino cannot be generated in the Standard Model.
(Hint: show that a term like V CvL transforms like I = 1, I3 = 1, and see if
such a term can be generated by the Higgs mechanism.)

13. Show that a Majorana neutrino mass cannot be generated in a minimal SU(5)
theory, even though there is a I = 1 Higgs field. Can it be generated, if the
neutrino is a SU(5) singlet? What about SO(10)?

14. Prove that the spinor matrices of O(N) presented in Eq. (18.65) do, in fact,
satisfy the correct Dirac algebra.

15. Prove Eq. (18.67).





Chapter 19

Quantum Gravity

I was sitting in a chair in the patent office at Bern when all of a sudden a
thought occurred to me: "If a person falls freely he will not feel his own
weight." I was startled. This simple thought made a deep impression on
me. It impelled me toward a theory of gravitation. -A. Einstein

19.1 Equivalence Principle

One of the great physical problems of this century is to unify general relativity
and quantum mechanics. Together they can explain a vast storehouse of physical
knowledge, from the subatomic realm to the large-scale structure of the universe.
However, attempts to unify quantum mechanics with general relativity have all met
with frustration. General relativity has a negative dimensional coupling constant
(Newton's constant) and hence is not renormalizable in the usual sense. To

renormalize gravity, one must necessarily make a radical departure from quantum
field theory as we know it.

To see the origin of the problems with quantum gravity, let us first describe
the classical theory of general relativity. General relativity, like special relativity
before it, can be reduced to a few postulates.'

Equivalence Principle: The laws of physics in a gravitational field are identical
to those in a local accelerating frame.

Einstein stumbled upon this deceptively simple principle and its consequences
when he noticed that a person in a freely falling elevator would experience no
apparent weight. He called this "the happiest thought of my life." He generalized
this to say that no physical experiment could differentiate a freely falling elevator
from a frame without any gravity. In particular, it meant that in any gravitating
system, one can at any point choose a new set of coordinates such that the
gravitational field disappears. This new set of coordinates is the freely falling
"elevator frame," in which space appears locally to resemble ordinary Lorentzian
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space. We wish, therefore, to construct a theory that is invariant under general
coordinate transformations, that is, a theory in which one can choose coordinates
such that the gravitational field vanishes locally.

Following our discussion of gauge invariance, we will begin our discussion of
general relativity by proceeding in three steps:

1. First, we will write down the transformation properties of scalar, vector, and
tensor fields under general coordinate transformations.

2. Then we will construct covariant derivatives of these fields by introducing
connection fields (Christoffel symbols).

3. Finally, we will construct the action for general relativity and its coupling to
matter fields.

Since we need to express the physical consequences of the equivalence prin-
ciple mathematically, one needs a mathematical language by which we can easily
transform from one frame to another, that is, tensor calculus. We will define a gen-
eral coordinate transformation as an arbitrary reparametrization of the coordinate
system:

zµ =zµ(X) (19.1)

Unlike Lorentz transformations, which are global space-time transformations,
general coordinate transformations are local and hence much more difficult to
incorporate into a theory. A general coordinate transformation therefore describes
a distinct reparametrization at every point in space-time. (Historically, the local
nature of general coordinate transformations was one of the original inspirations
that led Yang and Mills to postulate local gauge theories.)

Under reparametrizations, a scalar field transforms simply as follows:

0(z) _ O(x) (19.2)

Vectors transform like dxµ or aµ. Using ordinary calculus, we can construct
two types of vectors under general coordinate transformations: covariant vectors,
like a., and contravariant vectors, like dxµ:

a ax, a

RA = axµ axv

dzµ = axvdx° (19.3)

(It is important to notice that xµ is not a genuine tensor under general coordinate
transformations. Not all fields with indices A, v.... are genuine tensors.)
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Given these transformation laws, we can now give the abstract definition
of covariant tensors, with lower indices, and contravariant tensors, with upper
indices, depending on their transformation properties:

v

Aµ(x) = axµ Av(x)

µ
Bµ(x) =

v
B°(x)ax

(19.4)

Since we have arbitrary coordinate transformations, these vectors transform under
GL(4), that is, arbitrary real 4 x 4 matrices.

Similarly, we can construct tensors of arbitrary rank or indices. They transform
as the product of a series of first-rank tensors (vectors):

m
Aviv... z axµr axv.Av"'

x 19.5i) 1.( ) ( )µtµ;...( ) =
U

axµi)

n

JJ v
i=1

We can also construct an invariant under general coordinate transformations
by contracting contravariant tensors with covariant ones:

AµB" = A,B' = invariant (19.6)

We now introduce a metric tensor g,,v that allows us to calculate distances on
our space. The infinitesimal invariant distance between two points separated by
dxµ is given by:

ds2 = dxµgµvdxv (19.7)

If gN,v is defined to be a second-rank covariant tensor, then this distance ds2 is a
genuine invariant.

The metric tensor transforms as:

ax" aXV
9µv(x) = (axµ) (axv) gµv(x) (19.8)

From this, we can deduce how the metric tensor changes under an infinitesimal
general coordinate transformation 8xµ = µ. By expanding the previous transfor-
mation rule, we find that the variation of the metric tensor under an infinitesimal
coordinate reparametrization is given as follows:

8gµv = av °gµa - °avgµv (19.9)

One essential point is that it is always possible to find a local coordinate
system in which we can diagonalize the metric tensor, so that gµv becomes the
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usual Lorentzian metric at a point. Then the space becomes "flat" at that point.
(We emphasize that it is impossible to gauge an arbitrary metric tensor so that
the space is flat at all points in space.) This is the mathematical expression of
Einstein's original observation, that one should always be able to jump into the
"elevator" frame at any single point in space-time, such that things look locally
flat.

Now that we have defined how scalar, vector, and tensor fields transform under
reparametrizations, the next step is to write down derivatives of these fields that
are also covariant. The derivative of a scalar field is a genuine tensor under general
coordinate transformations:

v

ax,laavO(W) (19.10)

However, as in the case of gauge transformations, we find that the derivative of
a vector is not a genuine tensor under general coordinate transformations. Under
this transformation, the derivative can act on the factor a, V, spoiling general
covariance. The solution to this problem, as we know from gauge theory, is to
introduce new fields, called connections, that absorb these unwanted terms. The
connection field for general relativity is called the Christoffel symbol F. We
introduce the symbol V,, which is a covariant derivative:

- aµVA
VpAv - aµAV - F Aa (19.11)

We will define the transformation properties of the connection such that the
derivative of a vector becomes a genuine tensor, paralleling the situation in gauge
theory:

(v Av)' axA axp
VAAPaxµ axv) (19.12)

Given this transformation law, we can, as in gauge theories, extract the trans-
formation law for the Christoffel symbol:

X
_axp axp ax° T a2iA axp ax°

rAV - axr axµ aiv rpa + axpax" axµ axv
(19.13)

We find that the Christoffel symbol is not a genuine tensor, but has an inhomoge-
neous piece. [We recall that the gauge field Aµ also has an inhomogeneous piece
in its transformation under SU(N).]
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Covariant derivatives can be constructed for increasingly complicated tensors
by simply adding more and more Christoffel symbols:

A°t°2...

P µtµ2 a
A"..

P µtµ2

+ rA Av`2... I'°t '2 3... (19.14)Pµt aµ2µ3... pA µtµ2...

pens perm

where we sum over all permutations of the indices. Notice that V,, depends on
the tensor it acts on. More and more Christoffel symbols are required if it acts
upon increasingly mixed tensors.

At this stage, we have placed no restrictions on the connection, other than its
transformation properties. The connection field, at this point, is an independent
field. We would, however, like to construct a theory in which all fields, including
the connection, are written in terms of the metric tensor. We thus need a constraint
on the connection. From the equivalence principle, we know that we can always
choose the "elevator frame" where the the metric tensor becomes the Lorentz
metric; that is, the derivative of the metric tensor vanishes in this inertial frame.
The covariant generalization of this statement is that the covariant derivative of
the metric tensor in any frame vanishes:

Vµgva = aµgva + rµvgap + I PAX9VP = 0 (19.15)

The number of independent equations in this constraint (4 x 10 = 40) is exactly
equal to the number of independent components of the connection if we assume
that the connection is symmetric in its lower indices. Thus, we can eliminate the
connection field totally in terms of the metric tensor. To do this, we first write the
equations in terms of the connection with only lower indices: rµv,a = gaal'µ,,.

Now let us rewrite the vanishing of the covariant derivative of the metric tensor
in terms of F,,,,,A. Written out explicitly (and cyclically rotating the indices), we
find:

aµgva + rµv,a + rµa,v = 0
avgaµ + I'va,µ. + I'av,µ = 0
aXgµv + I'Xµ,v + Ivµ,X = 0 (19.16)

These three equations are identical. But by adding the first two equations and
subtracting the last (and remembering that the Christoffel symbol is symmetric in
the lower indices), we then find:

rµv,a = - 1(aµgva + avgµa - aagµv) (19.17)
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19.2 Generally Covariant Action

Now that we have defined the transformation properties of the fields and con-
structed covariant derivatives, the last step is to write down the action for general
relativity and couple it to other fields. To construct the action, we will need to
take the commutator between two covariant derivatives. In flat space, this com-
mutator vanishes. However, for general coordinate transformations, we find that
this commutator does not vanish. By explicit construction, we find:

[Vµ, V ]AA = RN°VAAP

P = aP P - P a P rQ
RA avrA FP rva + FP AX (19.18)

We call Rµva the Riemann curvature tensor. (Alternatively, we could have derived
the curvature tensor by taking a vector Ax and then moving it around a closed
circle using parallel transport. After completing the circuit, the vector has rotated
by the amount RµvAAPA" where Aµ° is the area tensor of the closed path.)
From this, we can see the close analogy between the elements of gauge theory and
general relativity. This close correspondence can be symbolically represented as
follows:

(19.19)

By suitably contracting the indices in the curvature tensor, we can reduce it to
tensors of smaller rank. Contracting p and v gives us a second-rank curvature
tensor:

R,,. = RPivASP (19.20)

This is called the Ricci curvature tensor.
Finally, we can construct a genuine invariant by contracting all the indices:

8°gµ` = RRPvaPµ (19.21)

Using ordinary calculus, we can also construct the transformation properties
of the volume element:

d41= det (-) d4x (19.22)
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It is also easy to calculate the transformation properties of the determinant of
the metric tensor g. Because det(A BC) = detA detB det C, we can easily show:

8x
-8(x) = det

8zv
-g(x) (19.23)

An object that transforms like this is not a scalar in the usual sense. We call it a
scalar density.

The point is that now the product of these two is a genuine invariant:

d4x = invariant (19.24)

From this we can construct actions.
In order to write down an action, we wish to fulfill a few key conditions:

1. The action must contain no more than two derivatives, or else there are ghosts
in the theory that threaten unitarity.

2. The action must be invariant under general coordinate transformations.

Surprisingly, we find that there are only two solutions to these constraints,
given by:

S=-2- fd4xVR (19.25)

(We can also add the cosmological term, which is proportional to Ate, although
experimentally A is very close to zero.) This is the celebrated Einstein-Hilbert
action, which is the starting point for all calculations in general relativity.

We can also calculate the equations of motion from this action. By making a
small variation in the metric 8gµv, we can compute:

Bg
= ggµ.v3gµv

2V -ggµvagµv

BRµv = VVBI'µv - vp8rµv (19.26)

Taking the variation of the action, we then find the equations of motion:

Rµv - ZgµvR = 0 (19.27)

(The term 3 Rµv does not contribute because it turns into a total derivative.)
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In the presence of matter fields, we must alter this equation. We know that
scalar matter couples to gravity via the interaction 2 gµ°al-04 - gµ"Tµv;
therefore, the right-hand side of the previous equation should contain the energy-
momentum tensor.

One should mention that this equation reduces to the usual Newtonian potential
equation in the limit that c --> oc. In this limit, the metric tensor becomes the
Lorentz metric, except for the term goo:

goo - 1 -0 (19.28)

Then the 0 field becomes the scalar potential, and Einstein's equation reduces to
Poisson's equation:

Rliv - 2gµvR = 8-p- KKTµv -->
V20 = 47rKp (19.29)

where p is the source term. From this, one can derive Newton's original universal
law of gravitation, that the gravitational force is proportional to the product of the
masses and inversely proportional to the distance of separation squared.

19.3 Vierbeins and Spinors in General Relativity

The coupling of the gravitational field to other fields is also straightforward. The
generally covariant action for scalar and Yang-Mills fields is given by:

1

= 2 V g (gµvaµ0avo - m202)

_ -4VggI`agvpf'a fa
v op

(19.30)

However, the coupling of gravity to spinor fields leads to an immediate dif-
ficulty: There are no finite dimensional spinorial representations of GL(4). This
prevents a naive incorporation of spinors into general relativity. There is, for-
tunately, a trick that we may use to circumvent this problem. Although spinor
representations do not exist for general covariance, there are, of course, spinorial
representations of the Lorentz group. We utilize this fact and construct a flat
tangent space at every point in the space. Imagine space-time as a rolling hill.
Then the tangent space would correspond to placing a flat plane on each point of
the hill. Spinors can then be defined at any point on the curved manifold only if
they transform within the flat tangent space.
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We will label the flat tangent space indices with Latin letters a, b, c, ..., while
tensors under general coordinate transformations are labeled by Greek letters:
A, V,P,....

In order to marry the two sets of indices, we will introduce the vierbein or
tetrad, which is a mixed tensor:

Vierbein -. eµ(x) (19.31)

The inverse of this matrix is given by eQ .
The vierbein can be viewed as the "square root" of the metric tensor via the

following:

ea ea =µ v gµve.

eaµ = gµvea
v

ea ebµ = 3ab (19.32)

Since the Lorentz group acts on the tangent space indices, we can define
spinors on the tangent space. The Dirac matrices ya can now be contracted onto
vierbeins:

Yaeall = Yµ(x) (19.33)

It is easy to show that the commutator between two of these matrices yields the
metric tensor:

{yµ, yv} = 2gµ°(x) (19.34)

Our goal is to construct the generally covariant Dirac equation. We introduce a
spinor *(x) that is defined to be a scalar under general coordinate transformations
(and an ordinary spinor under flat tangent space Lorentz transformations):

Coordinate transformations : i/r --> i/r

Lorentz transformations : i/r -->
e`Eub(X)aab(19.35)

It is important to note that we have introduced local Lorentz transformations on
the flat tangent space, so Eab is a function of space-time.

This, of course, means that the derivative of a spinor is no longer a genuine
tensor. As before, we must introduce a connection field cvµ that allows us to
gauge the Lorentz group. The covariant derivative for gauging the Lorentz group
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is therefore:

VA* = (aµ 4(,µbgab)*

Quantum Gravity

(19.36)

The generally covariant Dirac equation is therefore given by:

(iyµVµ - m)i/r = 0 (19.37)

and hence the action for a Dirac particle interacting with gravity is given by:

.9= -
1

212
R +

e det eµ = .

This new connection field gives us an alternative way to construct the Riemann
curvature tensor. By taking the commutator of two covariant derivatives, we can
construct a new version of the curvature tensor:

-4RµCra (19.39)

Written out, this curvature tensor is generally covariant in A, v, but flat in a, b:

Rab = a wab - a wab +,ac,,cb -,ac,,cbµv - µ v v µ µ v v µ (19.40)

At this point, the connection field cvµ is still an independent field. We can
eliminate it in favor of the vierbein by placing an external constraint on the theory:

Vµev = aµev + I µvea + mµ eb = 0 (19.41)

Again, the number of independent equations in the constraint (4 x 6 = 24) equals
the number of independent components of the connection field, so we have elim-
inated the connection field entirely as an independent field.

The connection field can be calculated in much the same way as the I'µ v was
calculated, by rotating the various indices and then adding and subtracting them.
The result is:

cva = 1 eav(aµeb - aveµ) + 1eapeb°(a,ep - apes )eµ - (a <-> b) (19.42)
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19.4 GUTs and Cosmology

With this elementary introduction, we can now make qualitative statements con-
cerning the impact of GUT theory on cosmology. Any study of the origins of the
universe, of course, must be prefaced with a clear statement of assumptions and
prejudices, since the origin of the universe is not a reproducible event and cannot
be duplicated in the laboratory.

However, general relativity has given us a theoretical and experimental frame-
work in which to explain a large body of observational information. The scenario
emerging from general relativity, that the universe started with a cataclysmic ex-
plosion 10-20 billion years ago, is supported by three strong pieces of information:

1. Red shift. The far-away stars and galaxies are receding from us, as measured
by the Doppler shift. We do not see a blue shift in the heavens. General
relativity is in agreement with Hubble's law,2 which states that the farther
away a galaxy is, the faster it is moving away from us. Experimentally, this
linear relationship between distance and velocity is summarized in Hubble's
constant, measured to be H - 15 km/sec per mega light year.

2. Nucleosynthesis. The theory predicts that about a quarter of all hydrogen in
the heavens should have fused into helium by the Big Bang. It also correctly
predicts the abundance of many other elements.

3. 30 Background radiation. The "echo" from the Big Bang, as predicted by
Gamow, 4 should behave like blackbody radiation and should now have
cooled down to the microwave range. The observed temperature of the
background microwave radiation, measured by satellite to be 2.736 ± 0.01°,
fits well with Gamow's original prediction.

More specifically, the Big Bang can be viewed as a solution to Einstein's
equations in the presence of matter.

Let us assume an ansatz for the metric tensor that solves Einstein's equations,
for example, the Robertson-Walker metric. We assume that the metric tensor
is radially symmetric, with all angular dependence omitted, and that the time
dependence of the metric is represented by a single function R(t), which sets the
scale of the universe and acts as an effective "radius" of the universe. We assume
the ansatz:

ds2 = dxµ g,,,, dxv

dt2 - R2(t) (
dr 2

+ r2 d112) (19.43)
1 - kr2 /
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where d112 is the usual solid angle differential, and k is a constant. Now let us
assume a highly idealized model of the universe, consisting of a fluid of galactic
clusters, with an average density p(t) and average internal pressure p(t). In this
idealized frame, the energy-momentum tensor becomes: To = p, Ti' = -p, and
all other components are zero.

Because all angular dependence has been explicitly eliminated, we find that,
after inserting this ansatz into Einstein's equations, these equations collapse into
only two two equations for R(t):

(Ti?:)
8n k

= 3 GNP -
RZ

R = -4, N ( +

3
+

3 (19.44)

We can always rescale R so that k is +1 (closed universe), 0 (flat universe), or -1
(open universe).

These two relativistic equations actually have a simplified Newtonian interpre-
tation. Imagine a point particle at the surface of a sphere of radius R. The kinetic
energy of the particle is

z
k2. Its potential energy is G(M/R) = (4n R3/3)p(G/R).

Then conservation of energy states:

- t\ 3 pR)j =0 (19.45)
dt

[2k2

3

which yields our first relativistic equation.
The second relativistic equation can also be seen as the conservation of energy.

Imagine a sphere of radius R filled with a fluid, such that the conservation of energy
yields d U = -p dV for the kinetic theory of gases. Then this becomes:

d
dt

(4,-rR3p)3 = -
dt

(4 3 )
P- I

(19.46)

If we assume the cosmological constant is zero, A = 0, we can eliminate p
and obtain one equation:

2RR + k2 + k = 0 (19.47)

We assume that k = 0. For sufficiently large times, we find that the radius of the
universe expands in time as a power law:

(9)1/3
R= (19.48)2GMt2/3
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This power law describes the expanding Friedman universe,5.6 and was one of
the first cosmological models to be found from Einstein's equations. This model,
in turn, can explain the three experimental features of the Big Bang.

These general features, however, do not go far enough in terms of explaining
precisely how the universe cooled down since the initial Big Bang. The general
consensus is that the theory of elementary particles will ultimately play a decisive
role in this respect. From the point of view of GUT theory, the Big Bang can be
studied via a series of stages in the cooling of the universe. The boundary be-
tween each stage corresponds to the energy scale at which spontaneous symmetry
breaking occurred.

A rough sequence of events, supported by the general features of any GUT
theory, is as follows:

1. 10-' sec. At the Planck energy 1019 GeV, all the symmetries of gauge
theory were supposedly united into a single force. Gravitational effects were
strong and, in fact, were unified with the GUT forces.

2. 10-36 sec. At the energy scale Mx = 1015 GeV, the GUT gauge group broke
apart into SU(3) ® SU(2) ® U(1) of the Standard Model.

3. 10-10 sec. At 102 GeV, the electro-weak symmetry SU(2) ® U(1) broke
down into U(1)em.

4. 10-6 sec. At 1 GeV, the quarks bound together to form hadrons. Shortly
thereafter, nuclei slowly began to condense without being torn apart.

5. 1012 sec. At 10-9 GeV, atoms condensed without being ionized. Photons
could now move through space without being easily absorbed, so space be-
came black. Before this, space was full of ionized plasma and hence was
opaque to light.

6. 1016 sec. Galaxies began to condense about 1 billion years after the Big
Bang.

7. 1017 sec. The present day era, about 10 to 20 billion years after the Big
Bang.

Given this rough sequence of events for the beginning of the universe, we can
begin to ask what implications this has for the GUT theories. We find that the
GUT theories give us a clue to the solution to two long-standing cosmological
problems: the matter-antimatter asymmetry in the universe, and the flatness-
horizon problems.

It is a fairly well established fact that our visible universe is composed primarily
of matter, rather than antimatter. Although one may speculate that, at the Big Bang,
there were equal quantities of matter and antimatter present, we find that our
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universe is quite asymmetric. In fact, a rough estimate of the baryon-antibaryon
asymmetry is that the number NB of baryons dominates over the number of NB
of antibaryons by a factor of 10-9; that is:

8 =
NB - NB ,,, 10-9
NB + NB

(19.49)

(In fact, this small asymmetry between matter and antimatter is probably the
reason we exist in the first place to ponder this question.)

Unfortunately, the Standard Model gives us no clue as to why this asymmetry
between matter and antimatter exists. In the Standard Model, we must impose an
initial asymmetry at t = 0. However, even if we put C and CP violating terms in
the Standard Model at the origin of time, the C P T theorem can wash out baryon
asymmetry. This is because, at equilibrium, baryons and antibaryons will have
the same Boltzmann distribution because, by the CPT theorem, they must have
the same mass.

Thus, in order to explain baryon asymmetry, we must have two features:

1. Breaking of C and CP symmetry',' and baryon number at the origin of time.

2. A cosmological phase when these C and CP violating processes were out of
equilibrium.

Fortunately, GUT theories can accomodate both these desirable features. The
first criterion can be satisfied by GUT theory in a number of ways. The second
criterion is also satisfied if we analyze the cooling of the early universe.

Assume that, at GUT times, there was an X particle that decayed into quarks
and leptons and violated these symmetries. For very high temperatures, on the or-
der of kT > Mx, the X particle existed in thermal equilibrium with other particles,
and the decay of this particle could create a net baryon asymmetry. Normally, such
a baryon asymmetry is cancelled by the inverse decays of the particles at equilib-
rium, so the net baryon asymmetry does not survive. However, as the temperature
of the universe decreased and kT < Mx, one can show, by examining decay rates
and cross sections, that the X was no longer in thermal equilibrium, and any net
baryon asymmetry was frozen permanently. The population of X particles and
the number of inverse decays was suppressed by the Boltzmann factor:

exp (-Mx / kT ) (19.50)

To be more specific, consider the following reaction rates:

Ya =

Ya =

I'(X --> lcqc); Yb = I'(X - qq)

F(X --> lq); Yb = F(X --> q`q`) (19.51)
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where the superscript c refers to the charge conjugated particle. The C PT theorem
demands that these reaction rates obey the following relations:

Ya + Yb = Pa + Yb

Furthermore, at the Born level, C P T enforces the following conditions:

Ya = Ya : Yb = Yb

(19.52)

(19.53)

However, beyond the Born term, higher-order interactions can destroy this relation.
The presence of C and CP violating higher-order processes can produce the
following relations:

Ya - Ya=Yb - Yb 0 (19.54)

without violating the C PT theorem.
For example, in the minimal GUT theory, the first baryon asymmetric term

enters in at the 10th level in perturbation theory. (Unfortunately, this is many
orders of magnitude too small to explain the observed 10-9 asymmetry. More
complicated GUT theories, however, can obtain the observed asymmetry.)

19.5 Inflation

There are two puzzles that, within the framework of classical general relativity,
cannot be solved: the flatness problem and the horizon problem. A plausible
explanation for both, however, can be given if we add the effects of gauge theories
to general relativity.

The flatness problem arises because the universe appears much flatter than
it should be. We know that there is a critical density PC, such that if p < Pc,
the gravitational pull of the matter in the universe is too weak to reverse the
expansion, and the universe expands forever. For p > PC, the gravitational pull
is strong enough to force the expansion to stop and eventually reverse itself.
However, the density of the universe today seems to be fairly close to p - Pc _
3H2/8nG - 5 x 10-30 g/cm3. If we define:

Q= P (19.55)
PC

then we find that Il - 0.1 - 10.
Now assume that we extrapolate Il backwards in time, so that we compute Il

near the beginning of the universe. Il rapidly becomes close to one as we go back
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in time, meaning that Il was fine tuned in the early universe. For example, if we
extrapolate back to the GUT universe, we find:

Il = 1 ± O(10-55) at T = 1015 GeV (19.56)

This means that, near the beginning of time, Il was fine tuned to be 1 to one part
in 1055, which is difficult to believe.

The horizon problem has a similar origin. In general relativity, the horizon
refers to the farthest distance that we can see. If we look in distant parts of the
heavens, we find that the universe is quite isotropic. In fact, the universe seems
to be much more isotropic than it should be. In particular, the background 2.7°
radiation appears to be very uniform, no matter where we look in outer space.
But this is difficult to understand. For distant parts of the universe to be isotropic,
they had to be in causal contact with each other in the distant past. Because of
the limitation imposed by the speed of light, one can show that distant parts of
the visible universe could not be in causal contact with each other. Hence, the
universe should not be so isotropic.

Although the classical theory of general relativity has difficulty explaining the
flatness and horizon problem, one byproduct of gauge theory, Guth's inflationary
universe,9-11 has a plausible explanation for both.

Whenever we have spontaneous symmetry breaking in the Higgs sector cou-
pled to gravity, we generate a constant term, which corresponds to increasing
the energy density of the vacuum. Normally, we throw this away. However in
general relativity, this constant is multiplied by , so that it contributes to the
cosmological constant.

If we have a large cosmological constant A in the Einstein equations, then we
must use what is called de Sitter's solution. Like the standard Big Bang solution,
the de Sitter solution is found by assuming spherical symmetry; so the metric is
a function of the radius and time. Then Einstein's equations reduce to a simple
equation that can be solved with an exponential expansion, rather than a standard
power law expansion. The de Sitter solution, with the cosmological constant,
therefore yields an exponential expansion rather than a power law expansion:

R(t) - e't (19.57)

where:

87rp

,
1/2 Tc = (3MP MP (19.58)

where Tc is the critical temperature at which inflation begins. This exponential ex-
pansion, which naturally emerges whenever a symmetry is broken spontaneously,
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might be large enough to solve the flatness and horizon problem if it were on the
order of 1030

The flatness problem may be solved because the visible universe that we can
observe is only a tiny fraction of the total universe. Thus, our universe appears to
be flat only because the radius of the universe is so large.

The horizon problem may be solved because our present-day universe, ex-
trapolated back in time, was only a tiny speck in the original primordial nucleus
within which points were in thermal equilibrium. Thus, it is not surprising that
distant points in today's universe can have the same uniform temperature. Near
the beginning of time, our universe was small enough so that all points could be
in causal contact with other points.

As attractive as the inflation theory is, only detailed experimental observations,
for example, of the radiation left over from the early universe, will ultimately de-
termine whether the inflation theory holds up with time. (There are, of course,
problems with inflation. There is no unique way to introduce the potential nec-
essary to yield an expansion of 1030. There are several alternatives, but we often
wind up reintroducing some form of fine-tuning back into the problem, which is
undesirable.)

19.6 Cosmological Constant Problem

Although a naive application of GUT theory to cosmology seems to generate
experimentally reasonable results, we should mention a serious problems with
this (as well as any other) approach. This is the celebrated cosmological constant
problem. Experimentally, we can measure the possible presence of the cosmologi-
cal constant A by measuring exponential deviations from the standard R(t) " t2/3
expansion. Experimentally, we find that it is consistent with zero to a remarkable
degree:

A < 10-120M , = 10-84 GeV2 (19.59)

However, every time we break a symmetry spontaneously, we generate a vacuum
energy proportional to:

(!GNv))AcuT
3

Putting in the value of the SU(5) potential minimum with order MX, we find that
AGUT is 10100 times too big.
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In all of physics, nowhere do we find a greater divergence between theory
and experiment than in the cosmological constant problem. The addition of new
symmetries (such as supersymmetry, which we discuss in the next chapter) can
reduce this discrepancy, but only down to about 1050

The problem, at present, seems intractable. Even if we could somehow put
A - 0 at early times (which is one byproduct of supersymmetry), we still have
new contributions to the cosmological constant when we break supersymmetry
and approach present-day energies. These, too, must be set to zero by a mechanism
that is yet unknown.

19.7 Kaluza-Klein Theory

Perhaps the most theoretically clumsy feature of GUT theory is that general
relativity is spliced onto the theory by brute force. Ideally, we would like to
see gravitational interactions and GUT theory emerge from a higher unified field
theory from geometrical or group theoretical arguments, rather than being put in by
hand. The search for a more sophisticated theory embracing both gauge theory and
general relativity has led to a re-examination of the old theory of Kaluza-Klein,
which is perhaps one of the most ingenious extensions of the theory of gravity.
Kaluza12 originally proposed uniting both Maxwell's theory of electromagnetism
and Einstein's theory of general relativity by embedding both theories into a
generally covariant five-dimensional space-time. When first proposed in 1919,
the theory lacked an answer to the question: what happened to the fifth dimension?
Seventy years later, we are still grappling with this question.

Kaluza assumed that the fifth dimension was curled up into a tiny ring so
small that it could not be experimentally observed by any instrument. Thus,
although space-time may actually be five dimensional, experiments designed to
determine the size of the fifth dimension would be too crude to detect this. Klein13
then assumed that quantum corrections caused the fifth dimension to curl up. In
quantum gravity, there is only one dimensionful parameter, which is the Planck
length, or 10-33 cm. Since this sets the scale for quantum gravity, it means that
the fifth dimension might have curled up with approximately this radius, which is
too small for any instrument to detect.

Since the fifth spatial dimension is periodic, if we move in this direction,
eventually one returns to the starting point. The fifth dimension has the topology
of a circle:

O(x5) = O(x5 + 2nr) (19.61)
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where r is the radius of the fifth dimension. If we expand the field q(x) in this
periodic space as:

q(x) = E Oneipx

n

(19.62)

we find that p = n/r and the momentum conjugate is quantized in terms of the
integer n. These higher modes On correspond to particles of mass 1019 GeV. To
analyze the low energy limit of the theory, we can safely ignore these higher mass
particles and take only the n = 0 mode of the power expansion. This means that
O(x), in this approximation, loses all dependence on the fifth coordinate:

85(x) " 0 (19.63)

This, in turn, allows us to decompose five-dimensional general relativity into its
four-dimensional fields.

Let A, B, C, . . . represent five-dimensional space-time indices. Let us define
a new field, called A. = g5µ. The metric tensor now decomposes as follows:

gAB =
(

gµv +KZAAAv KAv

KAµ l6

(19.64)

Einstein's action in five-dimensional space, with the four-dimensional fields sep-
arated out, now reads:

-detgAB gABRAB = -detgµ gµvRµv _ 4FµvFPagµPgval +... (19.65)

We have decomposed a five-dimensional theory into a four-dimensional theory,
yielding the usual Maxwell theory coupled to general relativity.

We can also see how Maxwell's equations emerges by analyzing the gauge
symmetry. The metric tensor gµ5 = Aµ transforms as follows:

8gµ5 = SAµ = a5 µ + aµ 5 .., aµ 5 ' (19.66)

By taking the fifth coordinate sufficiently small, we retrieve the gauge variation
of the Maxwell field: K. = aiA.

Since the Maxwell field emerges as a byproduct of dimensional reduction,
one should be able to derive a relationship between the electric charge, Newton's
constant, and the radius of the fifth coordinate. Consider, for example, the Dirac
equation in a gravitational and electromagnetic field:

H = , -g 1 i yA (aN, + ieAµ) 11f (19.67)
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The coupling of the fermion to the vector potential is given by:

ieAN,ii'yµ* (19.68)

Now perform dimensional reduction on the fifth coordinate, using the fact
that a5 " 1/r, where r is the radius of the fifth coordinate. After dimensional
reduction, we have: K - µY /r yA* A

Equating the coefficients, we then have:

e - K/r

(19.69)

(19.70)

For the electric charge to be " 1/137, this means that r is a bit larger than the
Planck length.

19.8 Generalization to Yang-Mills Theory

The Kaluza-Klein method has a straightforward generalization to Yang-Mills
theory. In fact, its first published announcement came as a homework problem in
1963 at the Les Houches Summer School. 14.15

We now work in (4 + N)-dimensional space, which is decomposed as the
product of flat Minkowski space M4 and another N-dimensional manifold G. We
will thus work with the space M4 ® G. We use A, B, C indices to represent this
larger space; µ, v to represent the four-dimensional space; m, n to represent the
N-dimensional space; and a, b to represent the adjoint representation of a gauge
group.

To distinguish the metric tensors in various spaces, we will define YAB to be
the metric tensor in the larger 4 + N space. Let µ, v be the indices describing
four-dimensional space and let gN,v to be the metric tensor for this dimensional
space. Correspondingly, let m, n be the indices describing the N-dimensional
space, with metric Ymn. Let x parametrize four-dimensional space, and let y
parametrize N-dimensional space.

To isolate the Yang-Mills field, let us now reparametrize the metric tensor.
There are many ways to do this, but a convenient choice involves introducing a
new field Bµ, which is a mixed tensor. We will choose the following:

g pLv +Ymn mBm By YmnBn
YAB

By Ynm Ymn

Quantum Gravity

(19.71)

where gN,v is only a function of x, and ynm is only a function of y.
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By a direct calculation, we can show that the inverse metric is given by:

9AV -Bm gXA
yaB =

- ymn +Bm BQgAo
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(19.72)

Our task is to now insert the value of the metric, parametrized in this way, into
the Riemann curvature tensor defined over the larger (4 + N)-dimensional space.
The calculation is straightforward, yielding:

det gas RABgAB = detgAvdet ymn [R4(x) + RN(Y)

1+
IYmn(y);,,v(x)F'Xp(x)9'L"(x)gv'(x)+...

4

(19.73)

where R4(x) and RN(y) are the respective four- and N-dimensional curvature
scalars, but knv is not the usual Yang-Mills field tensor. Instead, it equals:

Fµv=a,Bt-By an Bµ-(µHv) (19.74)

Clearly, this is not the Yang-Mills tensor, and therefore Bµ cannot be the
Yang-Mills field. Notice also that the structure constant of the gauge group fbc
appears nowhere in our discussion, so we are missing some essential element.

At this point, we must make one more assumption that is not so obvious at
first. We will make the assumption that the manifold has a symmetry associated
with it; that is, we say that the manifold has an "isometry." On manifolds with
isometry, we can also extract a "Killing vector" A that mathematically expresses
the effect of this isometry.

For example, if a manifold loses all its dependence on the kth coordinate, then
it has a symmetry that is mathematically expressed as akgAv = 0. The generator
of this symmetry is labeled by LA = 3k 8A = ak. The Killing vector is then defined
as A = Sk . Covariantly, it satisfies the equation:

vASv + vvSA = 0 (19.75)

which is sometimes taken to be the definition of a Killing vector.
One example of a manifold with a isometry and a Killing vector is a two-

dimensional torus. Its isometry is the set of rotations in the azimuthal angle 0
about its vertical axis. Its Killing vector is a o. Another example is the two-
dimensional sphere S2. Its isometries consist of rotations in three dimensions
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about its center. The set of motions generated by these rotations is, of course, the
Lie group SO(3).

If we have an arbitrary manifold G with a set of isometries associated with it,
then these isometries will in general generate a Lie algebra associated with these
symmetries. Let us say that the generators of this symmetry are described by:

La = 5a am

such that they, by definition, generate a Lie algebra:

[La, Lb] = fbcLc

(19.76)

(19.77)

where fb, is the structure constant of a Lie algebra. Inserting the value of La into
this equation, then we find:

Sa am',b b- c, amSa - fbc"a

With this Killing vector, we can now define:

Bm yymAaA -Sa A

(19.78)

(19.79)

This is the redefinition we were seeking, where A. is the true Yang-Mills vector.
Inserting this back into the Fµ tensor, we get:

Fm yymFa +µv - Sa AV (19.80)

where Fµ is the true Yang-Mills tensor, and the higher dimensional action con-
tains the Yang-Mills action. It is now straightforward to show that the original
action in (4 + N)-dimensional space splits up into two parts, the usual four-
dimensional theory of Einstein and the standard Yang-Mills theory.

Now let us return to the expression we previously derived for the dimensional
reduction of RAB. The key idea is that now we can perform the integration over
y, yielding:

f d"'y detymn(Y) Ymn(YXa(YXb (Y) - QN8ab (19.81)

where 1 N is the volume over the y space. This is the last step in the construction
of the Yang-Mills action from the Einstein-Hilbert action in 4 + N dimensions.

The lesson learned from this exercise is that we cannot simply take a (4 + N)-
dimensional manifold M4 ® G and expect the Yang-Mills theory to emerge. The
extra assumption that we need is that the manifold G has a set of symmetries
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associated with it which generate a Lie algebra. Then the Yang-Mills field
emerges as a function of the Killing fields of the isometries.

All this, of course, is formal, but let us see whether any possible phenomenol-
ogy is possible with Kaluza-Klein Yang-Mills theories. Several questions come
to mind immediately:

1. Can the Standard Model gauge group be included in this scenario?

2. Can complex representations of fermions be included?

3. Is the theory renormalizable?

4. Why should higher-dimensional space compactify?

5. What about the cosmological constant?

To answer the first, we will use the fact that the Yang-Mills theory is generated
by isometries of the space-time manifold. Our task is to find the manifold that
has the group of the Standard Model as its isometry group.16

The isometry of the circle Sl is easy to find; it is represented by a simple
rotation about its axis, which can be obtained via SO (2) or U(1). The isometries
of the ordinary sphere S2 can be obtained via rotations, labeled by S O (3) or S U(2).
In general, the isometry group of Sn is given by SO(n + 1). This is easy to see,
because the defining equation of Sn is given by:

n+1

x?
i=1

(19.82)

which is invariant under SO (n + 1) rotations on x;.
Likewise, the isometry group SU(3) can be obtained via CP2. [C P, is the

complex space spanned by n + 1 complex coordinates z; , such that the point
{z1, z2, , Zn} is identified with the point {))z1, ))z2, , ))zn } for nonzero com-
plex X. Notice that this definition is invariant under SU(n + 1) rotations.]

We are therefore interested in the isometries of the 4 + 2 + 1 = 7 dimensional
manifold:

CP2®S2®S1 (19.83)

Thus, 4 + 7 = 11 is the minimal number of total dimensions that we must have in
order to have a Standard Model gauge group.

Now that we have successfully shown that a class of seven-dimensional man-
ifolds exists that can reproduce the isometry group of the Standard Model, our
next step is to ask whether this formalism can reproduce the complex fermions of
the Standard Model.
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Here, however, our formalism fails. There are powerful mathematical theo-
rems that, in fact, forbid complex representations of fermions in this approach.
This is disappointing, because it means that the Kaluza-Klein approach is not rich
enough to support the fermionic representations of the Standard Model.

To see this, we first study the Dirac operator defined on a (4 + N)-dimensional
product manifold, which splits up into two pieces:

iFADA = iy"Dµ(x)+iymDm(y) (19.84)

where each covariant derivative depends crucially on the structure of the manifold
(via the vierbein and the connection). In general, we are looking at the eigenvalues
of the Dirac operator. If the Dirac operator on the B manifold has eigenvalue m,
then we have:

iFADA = iy"`DN,(x)+m (19.85)

However, the mass m is of the order of the Planck mass, which is much larger
than the experimentally observed lepton and quark masses. Therefore, we must
set m = 0, meaning that we must look at the zero eigenvalue of the Dirac operator.

However, there is the Atiyah-Hirzebruch index theorem, which states that
manifolds that have zero eigenvalues of the Dirac operator can only have real
representations of fermions.

This theorem leaves us with only a few options. Either we adopt complicated
modifications of Riemannian manifolds in order to avoid this theorem, or we drop
Riemannian manifolds entirely, and study supersymmetric and superstring-type
theories.

But perhaps the most serious problem with quantum gravity and quantum
Kaluza-Klein theory is that they are all nonrenormalizable. We now turn to this
problem, which has baffled physicists for over half a century. Over the years,
a number of alternative approaches have been proposed to renormalize gravity,
none of them very successful. For example, let us assume that general relativity
is an "effective theory," and assume that we introduce counterterms to cancel
divergences at each order. Since we wish to preserve general covariance, the
counterterms will be of the generic form R2, R3, R4, ..., where R is composed
of the Riemann curvature tensor. Because these higher terms contain higher
derivatives, a theory of this type can be shown to converge sufficiently rapidly
to be renormalizable. However, the modified theory is no longer unitary. R2
has four derivatives in it, which leads to a theory with unitarity ghosts. (This is
not surprising, since the higher R terms act like a Pauli-Villars cutoff, which we
know introduces ghost states.) In other words, we gain renormalizability but lose
unitarity.
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19.9 Quantizing Gravity

To see why general relativity is not renormalizable, it is first important to explain
how to quantize the theory. We begin the process of quantization by power
expanding the metric tensor around some classical solution gµ°? of the equations
of motion:

gµv(X) = gµ°v +Khµv

where hµ is the graviton field and K GN. The classical metric gµ°v is usually
taken to be the Lorentz metric. Given this expansion, we can also expand the
Christoffel symbols, and hence the entire action, in a power series in hµv. Each
term of the power series contains two derivatives and an increasing number of hµ
fields and powers of the coupling constant. The action is nonpolynomial. The
existence of a dimensional Newton's constant, then, is the origin of the problem
of the nonrenormalizability of gravity.

Although the theory is not renormalizable, one can still study its Feynman
rules and scattering matrices to lowest-order. The Feynman rules for the graviton
propagator can be obtained by extracting the lowest order term quadratic in the
graviton hµ field.

The Lagrangian, in this approximation, reduces to:

H° = 4 Pavhpa)2 +(BµhP)2 - 2ahPaµhaµ +2aphvaavhPa] (19.87)

(where raising and lowering of indices is now performed by the flat Minkowski
metric). If we make a gauge choice, we can simplify this a bit. We can, of course,
add a term:

2Cµ' Cµ=avhµ_ 2aµhv (19.88)

(19.86)

to the action to break the gauge.
The sum of both the original Lagrangian and the gauge part simplifies the total

action to:

Ho = - IaAhp.VpaµvaAhµv

Vpaµv 2SPl2sav - 4Spasµv (19.89)

We can now invert the matrix Vpaµv to obtain the final propagator. (One can
check that the propagator is singular if the gauge-breaking part is missing.) We
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find the result for the propagator:

bµpbva + SNasvp - Sµvspa

k2+ie
(19.90)

The calculations for the higher vertices, however, are prohibitively difficult.
We must use special gauges and special tricks in order to reduce the number of
possible interaction terms.

19.10 Counterterms in Quantum Gravity

Although quantum gravity is formally nonrenormalizable, we can still hope that
(by a series of miracles) the divergences of the quantum loops cancel, leaving us
with a finite theory. Usually, miracles occur because of a local symmetry, leading
to Ward identities that cancel certain unwanted graphs. For quantum gravity,
however, we have no more symmetries by which to cancel the higher-loop graphs.

For cancellations to happen, higher-loop counterterms must be forbidden by
some unknown mechanism. If we can show that these higher-loop counterterms
cannot exist, then the theory might have a chance at being finite. Let us first
enumerate the total number of one-loop counterterms that are invariant. The total
number of counterterms that are invariant is just three, given by the set: R2A pQ,
R2v, and R2.

In the background field method (see Exercise 14.17), the counterterms are
gauge invariant, and we are allowed to eliminate some of them via the equations
of motion. If we set Tµv = 0, then Rµv - ZgNvR = 0, which implies Rµv = 0.
Thus, we are left with only one possible counterterm: R2ivpa. The question is:
Can some unforeseen identity or symmetry prevent this invariant from appearing
as a counterterm? If so, then general relativity would be one-loop finite even
without computing a single Feynman diagram.

It turns out that the answer is, indeed, yes. There is an identity, the Gauss-
Bonnet identity, that allows us to eliminate this last invariant as a possible coun-
terterm.

To see this, we first note that, as in Yang-Mills theory, there is a topological
invariant corresponding to the square of curvature tensors:

Total derivative = EabcdE"`vpaRab R`d (19.91)µv pa

We know how to reduce out the product of two antisymmetric constant tensors.
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We find:

EabcdEµvPQ = e D-1)PeaµebvecPedo (19.92)
P

where e is the determinant of the vierbein and we sum over the permutations in
the indices, which preserves the antisymmetries of the antisymmetric tensor. (The
left-hand side of this expression is a pure constant, while the right-hand side is a
function of x. However, one can show that the x dependence of the right-hand
side drops out.)

Plugging this expression into the original one, we find:

Total derivative " 4e(RµvPQ RµvPQ - 4RIVRµv + R2) (19.93)

This means that any counterterm that may appear at the one-loop level can be
eliminated. The second and third tensors are eliminated by the equations of
motion, and the first tensor is eliminated by the Gauss-Bonnet identity.

This is a truly remarkable result, indicating that quantum gravity is less diver-
gent than previously expected. However, this fortuitous cancellation is actually
an accident that does not generalize to higher loops. For example, at the two-loop
level, it has been shown by computer that the following term cannot be cancelled
by the equations of motion or any known

1

2p0p9

1
e Cµ'µ, Cµ5µ6 Cµ1µ2

E 2000
(167r2)2 µ1µ2 µ3µ4 µ5µ6 (19.94)

(where 1 /E represents the usual divergence found in quantum field theory, and
where the Cµv,,,s tensor is the Weyl curvature tensor, which is composed of Rie-
mann curvature tensors). The fact that this term does not cancel indicates that
perturbative quantum gravity, by itself, is not a finite theory. This is a great disap-
pointment, which has retarded progress in quantum gravity. The final answer will
require essentially new ideas to remedy this defect.

Several approaches may be taken to this problem. First, one can still hope that
the inclusion of matter fields will render the theory less divergent. Unfortunately,
it can be shown that if we couple spin 0, 1/2, and 1 fields, then the theory
becomes even more divergent. Even the first loop cancellation via the Gauss-
Bonnet identity is spoiled, and quantum gravity becomes a divergent theory when
coupled to matter.

Second, one might hope that coupling gravity to a spin 3/2 field may render
the theory less divergent. In the next chapter, we will see that a miracle does,
in fact, occur for this theory, called supergravity, at the first- and second-loop
level if we couple quantum gravity to a spin 3/2 field. As one might expect,
the cancellations occur because of a new symmetry in the theory, supersymmetry.
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The Ward-Takahashi identities are sufficient to cancel a large class of divergences.
Unfortunately, these identities are not powerful enough; supergravity appears to
diverge at the third-loop level.

Third, one may observe that the nonzero coefficient appearing in the divergent
two-loop term is 209. This factorizes into (26 - D) x 19/2 for D = 4 dimensions.
However, in 26 dimensions, this term might vanish exactly. The study of theories
defined in D = 26 dimensions takes us into superstring theory, which we will
study in Chapter 21.

In summary, we have seen that the equivalence principle naturally leads to a
generally covariant description of gravity in terms of curved manifolds. When
general relativity is combined with GUT theory, we find the theory of inflation,
which gives a plausible but not conclusive solution to the flatness and horizon
problems. Attempts to go beyond general relativity have led to renewed interest
in Kaluza-Klein theories, which unfortunately are neither renormalizable nor do
they accomodate chiral fermions. Next, we will study perhaps the most nontrivial
extension of quantum gravity, the supergravity theory and finally the superstring
theory, which holds the promise of successfully uniting all interactions into one
finite framework.

19.11 Exercises

1. Let the rµ, be independent fields, along with gN,,,. Take the usual Lagrangian,
R(r), except keep the Christoffel symbols as independent fields, not

related to the metric (this is called the Palatini form of the action). Prove that
the equations of motion for the Christoffel symbols yields the usual identity
Eq. (19.17), and hence the Palatini action is identical to the usual one, at least
classically.

2. Do the same for w' b. Prove that if the connection is an independent field and
the action is taken as det e then the equations of motion for the
connection are identical to its usual definition, given by Eq. (19.42). Unlike
the Christoffel symbol, the connection wµ is a generally covariant vector.
Prove this.

3. To lowest order in K, show that the lowest-order quadratic term in hN,v arising
from the linearized Einstein action equals Eq. (19.87). Prove that it is not
invertible, so that a propagator does not exist unless we fix the gauge.

4. Prove Eq. (19.13).

5. Prove that, as c -* oo, that the Einstein equations of motion reduce to the
usual Poisson equations for a gravitational potential 0 in the presence of a
source p.
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6. By varying the Einstein-Hilbert action, show explicitly that the equations of
motion for Einstein's equations are RN,,, = 0 (without matter fields). To show
this, you must prove that the terms containing 8Rµ in Eq. (19.26) can be
dropped when calculating the equations of motion.

7. Choose the harmonic gauge, where:

I
O.Vv)2 (19.95)

is added to the action for arbitrary a. Calculate the graviton propagator, and
the Faddeev-Popov ghost term. Compare the result with Eq. (19.90).

8. Prove that E°b`dE'`°APRµb(w)RXP(w) is a total derivative.

9. Starting with Maxwell's and Dirac's equations coupled to gravity, show that
the metric tensor couples to the energy-momentum tensor of the Maxwell
field and the Dirac field.

10. For the Kaluza-Klein theory, show explicitly that the five-dimensional Ein-
stein-Hilbert action reduces to the usual four-dimensional Einstein-Hilbert
action coupled to the Maxwell action, in the limit that the radius of the fifth
dimension becomes large.

11. Construct explicitly the Kaluza-Klein decomposition of a theory where the
isometry group is 0 (N) and extract the Yang-Mills theory.

12. Insert a cosmological term. Show that the radially symmetric solution of Eq.
(19.44) necessarily gives an exponential expansion (i.e., de Sitter space).

13. Prove, for an arbitrary matrix M:

S (detM) = (detM)(M-1)'jSM;j (19.96)

14. Using the expansion gN,,, = nµv + Khµ,,, find the exact relationship between
Newton's constant G and K.

15. Prove that the metric in Eq. (19.72) is the inverse of the metric in Eq. (19.71).

16. Prove that the action in Eq. (19.73), with the proper Killing vectors, yields
the usual Yang-Mills theory after dimensional reduction.

17. Power expand the Einstein-Hilbert action and explicitly derive all cubic terms
in hµ in the harmonic gauge. Also, for the quartic and quintic terms, count
the total number of ways in which four- and five-graviton fields and two
derivatives may be contracted onto each other. From this, one can appreciate
the complexity of doing calculations in quantum gravity.





Chapter 20

Supersymmetry and Supergravity

Supersymmetry is an answer looking for a problem.

20.1 Supersymmetry

-Anonymous

Supersymmetry has a long and interesting history. Apparently, the first known
mention of a supersymmetric group was by Myazawa,' who discovered the su-
pergroup SU(M/N) in 1966. His motivation was to find a Master Group that
could combine both internal groups and noncompact space-time groups in a non-
trivial fashion. Supergroups, in fact, are the only known way in which to avoid
the Coleman-Mandula theorem, which forbids naive unions of compact and non-
compact groups. Unfortunately, this important work was largely ignored by the
physics community.

Supersymmetry was rediscovered in 1971, from two entirely different ap-
proaches. In the first, the Neveu-Schwarz-Ramond superstring 1-2 was found to
possess a new anticommuting gauge symmetry. From this, Gervais and Sakita 3
then wrote down the first supersymmetric action, the two-dimensional superstring
action. The second approach was that of Gol'fand and Likhtman, 4 who were
looking for a generalization of the usual space-time algebra and found the super
Poincare algebra.

In 1972, Volkov and Akulov 5 found a nonlinear supersymmetric theory. And
finally in 1974, Wess and Zumino 6 wrote down the first four-dimensional point-
particle field theory action.

Although a wide variety of supersymmetric actions were then discovered in the
1970s, for many years supersymmetry was considered a mathematical oddity, since
none of the known subatomic particles had supersymmetric partners. However,
its possible application to quantum physics came when attempts were made to
iron out the inconsistencies of GUT theories.
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In the previous chapter, we saw that one of the theoretical problems facing
the GUT theory was the hierarchy problem; that is, renormalization effects will
inevitably mix the two mass scales in the theory, the GUT scale M2 and the
electroweak energy scale M. Thus, even if we fine-tune the theory at the
beginning to one part in 1012, they will still mix, ruining the separation between
these two mass scales. This means that we have to perform an infinite number of
distinct fine-tunings for each order in perturbation theory, which is undesirable.

One appealing solution to the hierarchy problem is to include supersymmetry,
both local and global. There are powerful nonrenormalization theorems in super-
symmetric theories that show that higher order interactions do not renormalize the
mass scale; that is, we do not have to fine-tune these parameters to each order in
perturbation theory. One fine-tuning at the beginning is enough. This does not ex-
plain where this original fine tuning came from; it only explains why higher-loop
graphs do not mix the two mass scales.

There are, however, many other reasons for examining supersymmetric theo-
ries. One of the main problems in building unified field theories is the inability to
find a gauge group that can combine the particle spectrum with quantum gravity.
The problem is the no-go theorem, which states that a group that nontrivially
combines both the Lorentz group and a compact Lie group cannot have finite
dimensional, unitary representations. This means that attempts to build a "master
group" that combines both gravity and the particle spectrum face an insurmount-
able difficulty.

There is, however, a way to evade the Coleman-Mandula theorem, and that
is to use supersymmetry. Since anticommuting Grassmann numbers were never
contemplated in the original derivation, the no-go theorem breaks down. The
Coleman-Mandula theorem never analyzed a nontrivial symmetry that mixes
bosonic and fermionic fields and places both in the same multiplet:

Bosons +-> Fermions (20.1)

Thus, there exists a supersymmetry operator Q that converts boson states I B) into
fermion states:

QIB) = IF) (20.2)

As a consequence, electrons can appear in the same multiplet as the Maxwell field.
In fact, there is the possibility of placing all the known particles found in nature
into the same multiplet.

Perhaps one of the most remarkable aspects of supersymmetry is that it yields
field theories that are finite to all orders in perturbation theory. In particular, we
will outline the proof that the N = 4 super Yang-Mills theory, and certain versions
of the N = 2 super Yang-Mills theory, are finite to all orders; that is, Z = 1 for
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all renormalization constants. 7-12 This is a surprising result, which indicates the
power of supersymmetry in eliminating many, if not all, of the divergences of
certain quantum field theories.

Yet another attractive feature of the theory is that once supersymmetry becomes
a local gauge symmetry, it inevitably becomes a theory of gravity. This new theory,
called supergravity, 13-15 has a new set of Ward identities that render the theory
much more convergent than ordinary gravity. In fact, the largest supergravity
theory, which has SO(8) symmetry, is almost big enough to accomodate all the
elementary particles.

We should caution the reader, however, about the limitations of supergravity
as well. Although supergravity is not as divergent as ordinary gravity, the theory
still is not finite. Local supersymmetry, by itself, is not powerful enough to cancel
all divergences of the theory. Second, the group SO(8) cannot (without extra
bound states) include all the particles of the Standard Model.

To remedy some of these problems, we will have to go to yet another, more
powerful theory, the superstring theory.

20.2 Supersymmetric Actions

We would first like to show that supersymmetry forces us to have equal numbers
of bosons and fermions. The simplest example is the Hamiltonian:

H = waata + wbbtb (20.3)

where we have bosonic and fermionic harmonic operators that obey:

[a, at] = {b, bt} = 1 (20.4)

The supersymmetric operator Q is defined as:

Q - bta+atb (20.5)

If at 10) is a one boson state, then Qat 10) becomes a one fermion state, and vice
versa. Q obeys the following identity:

[Q, H] = (Wa - wb)Q (20.6)

If wa = Wb = w, then the supersymmetric operator Q commutes with the Hamil-
tonian and:

{Q, Qt} = (2 H (20.7)
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These identities show that Q and Qt form a closed algebra with the Hamiltonian if
the fermions and bosons have equal energy. The unusual feature of these identities
is that the supersymmetric generator Q, in some sense, is the "square root" of the
Hamiltonian. Furthermore, this highlights the fact that supersymmetry closes on
space-time transformations. In this sense, it is radically different from the other
symmetries that we have studied so far, which have treated space-time and isospin
as entirely unrelated.

Another unusual consequence of this simple exercise is that the energy of
the vacuum must be zero in order to have supersymmetry. To see this, take the
vacuum expectation value of both sides of the previous equation. In order to have
a supersymmetric vacuum, we must have:

Q10) = 0 (20.8)

However, this implies that:

(01H10)=0 (20.9)

so that the vacuum must have zero energy. (This will have important implications
later, when we discuss supersymmetry breaking. In broken theories, we will find
that the vacuum energy becomes positive.)

To use symmetry to construct new actions, let us examine the very first and
simplest supersymmetric action that was discovered in 1971. This is the action
found by Gervais and Sakita that describes the Neveu-Schwarz-Ramond super-
string:

5= a(i ,IL )*a +aNlpaa1 pa (20.10)

which is defined in two dimensions for real, Majorana spinors (and where a is
an additional vector index that does not concern us here). The action is invariant
under:

S,/,a = -iy"aN,l6aE30a

= eli' (20.11)

There are several usual features of this action. We first notice that the super-
symmetric parameter E is a anticommuting spinor. This means that many of the
classical theorems concerning Lie groups and Lie algebras no longer hold. Sec-
ond, the fermions and bosons have the same index a; that is, they must transform
under the same representation of some group. (This will have important implica-
tions for the theory of super GUTs, because the fermions usually transform under
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the fundamental representation, while the Yang-Mills field transforms under the
adjoint representation. Super GUT theories, therefore, cannot easily place the
quarks and gauge particles in the same representation.)

Third, we notice that if we anticommute the fields a second time, we find:

[Si, 3210' = E1y'E2PN,O' - (1 `-' 2) (20.12)

These commutation relations mean that there exists a spinor operator Q" whose
anticommutation relations with itself yield the translation operator P. This
generalizes the discussion we found earlier, where Q formed a closed algebra
with H. Now, we find that the supersymmetric generator forms a closed algebra
with the vector P.

The previous action was written down in only two dimensions. To obtain a
four-dimensional theory, we now study the free Wess-Zumino action, where we
again have Majorana spinors:

S = 2
J

d4x [(a ,A)2 + (a ,B)2 + i liy"`8µ* + F2 + G2}

This action is invariant under:

(20.13)

SA = E,/r

SB = Ey5*

SF = iEyd"*

3G = iEy5yµaµ1Ir

S1/r = -iy"`(BM,A+y5a B)E-(F+y5G)E (20.14)

This action contains equal numbers of fermions and bosons, as desired. There are
four components within the off-shell Majorana field 1/r, and four boson fields A,
B, F, and G. It is easy to show that repeated variations of these 4 + 4 off-shell
fields close linearly among themselves. The supersymmetric algebra is thus linear.
However, because F and G are auxiliary fields, we can eliminate them from the
action from the very start. After this seemingly trivial elimination, the resulting
action no longer has equal numbers of fermions and bosons. The action is still
invariant under a modified form of supersymmetry, although it is no longer linear.
By taking two such nonlinear supersymmetric variations, we find that the algebra
does not close. This may seem disturbing, until we realize that the term which
breaks the closure of the algebra is proportional to the equations of motion. The
algebra then closes on-shell; that is, we must use the on-shell equations of motion
in order to close the nonlinear supersymmetric relations.
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It is more convenient therefore to retain these auxiliary fields in order to
maintain the complete off-shell, linear algebra. In fact, one of the most pressing
and unsolved problems in developing higher supersymmetric actions is to find all
the auxiliary fields that will linearize the supersymmetric gauge transformations.
The problem of writing down higher supersymmetric actions, in fact, often boils
down to the highly nontrivial task of finding all auxiliary fields that linearize the
supersymmetry algebra.

(It is also instructive to perform the on-shell counting of states for this action,
to confirm that we have the same number of fermions and bosons on-shell. The
Majorana fermion, which had four components off-shell, now only has two com-
ponents on-shell. Likewise, on-shell the F and G fields vanish, leaving us with 2
+ 2 fermion and boson states on-shell, as desired.)

Supersymmetry also generalizes to gauge theories. For example, the following
gauge action with a Maxwell field and a Majorana spinor is invariant under global
supersymmetry. It is the supersymmetric counterpart of QED:

S = fd4x (_2 4+ -*Y,aµ,/r + 2D2 (20.15)

The fields transform under:

SAµ = iEYµ1Ir

S1/r = a"`°Fµ» - Y5D E
Hi

SD = iey5yAaN,* (20.16)

Once again, we have equal numbers of fermions and bosons off-shell. Off-
shell, the Majorana field has 4 components, while the AN, field has 3 components
(because one is eliminated by gauge fixing), and the D field has one component.
We therefore have 4 + 4 fermions and bosons. On-shell, we also have the same
number of fermions and bosons. The 1' 1field now only has two components, the
D field disappears, and the AN, field has two components, so we are left with 2 +
2 fields on-shell. When we generalize this to non-Abelian gauge transformations,
we will find that the fermionic 1/r must transform in the adjoint representation, the
same representation as the gauge fields, since they all belong in the same multiplet.

So far, we have been exploring actions written totally in terms of their compo-
nent fields. This, however, becomes prohibitively difficult as we go to non-Abelian
and gravitational theories. In order to systematically generate new supersymmetric
actions, we now turn to a new formalism, the superspace formalism.
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20.3 Superspace

Unfortunately, the number of fields rapidly escalates for higher supersymmetric
actions. Perhaps one of the most beautiful ways in which to compress the blizzard
of indices that often appears in supersymmetric theories is through superspace. 16
This construction postulates the existence of four antisymmetric coordinates 0c,
that form the superpartner of the usual space-time coordinate:

{X"`, 0.} (20.17)

Supersymmetry, acting on the superspace coordinates, makes the following
transformation:

Xµ -> XF' +iEy"O

0. -> 0.+C. (20.18)

In practice, the use of complex Dirac spinors leads to reducible representations
of supersymmetry. In order to find irreducible representations, we will find it
more convenient to use Majorana or Weyl spinors. We will therefore split the
four-component spinor into two smaller spinors as follows:

(20.19)

Oa

(Because of this split of four-component spinors down to two-component spinors,
we will, unfortunately, find that the number of indices for irreducible representa-
tions proliferates considerably.)

In this formalism, we will take a modified Weyl representation of the Dirac
matrices:

Yµ =
0 a -t 0

Ys =
Q"` 0 0 t

(20.20)

where:

Then the typical spinor breaks up as follows:
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,li = *1 Y° = (Xa 6)

In this representation, the spinors become reducible; that is, the four-spinor i/i
has now been broken up into two two-spinors 0 and X, each of which forms a two-
dimensional representation of the Lorentz group. The Lorentz group generators
can be obtained by multiplying the old generators MN,,, = or ,,,/2 by the chiral
projection operators P. =

i
(1 ± i y5). In this way, we can split the original 4 x 4

Lorentz generators into two distinct 2 x 2 blocks. Each two-spinor then transforms
under a 2 x 2 complex representation of the Lorentz group, which we can show
is SL(2, C), the set of 2 x 2 complex matrices with unit determinant. We use the
fact that:

0(3, 1) - SL(2, C) (20.23)

Let the two-spinor 8a transform as the fundamental representation of SL (2, C),
where a = 1, 2. The complex conjugate of these matrices generates an inequivalent
representation of SL(2, C). We will label these two-spinors as 8a, where a = 1, 2
and the dot reminds us that the two-spinors transforms under
complex conjugate representation of SL(2, C).

We take the conjugation of spinors as follows:

(8a)*
= ea; (8a)* = ea

Raising and lowering in this two-dimensional space is done via:

612=E
12 ---E

so that:

*a

*a

-612+I

= 6ab.b;a =b6ba
b= *b

66a; Y6 =Gab

(20.22)

the inequivalent

(20.24)

(20.25)

(20.26)

Invariants under each of the two groups are given by:

and:

OX = OaXa = -gaXa

X = aXa = (20.27)

82=8aea; 82=9a8a (20.28)
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In this way, the standard invariant i i * for four-spinors decomposes as:

a

1

Xa) C O
0 / \ Xa /

+XO

We also have:

1Yµ/2 = X1 7 X2 + 17 2

(20.29)

(20.30)

In two-spinor notation, the supersymmetric transformation in superspace in
Eq. (20.18) is written as:

Xµ -> Xµ + iEUµe - ieUµE

ea -> ea + Ea

9a -> 9a + Ea (20.31)

Given this superspace transformation, it is now a simple matter to extract the
operators that generate this transformation:

Q. =

Qa =

aaa - (° )a aµ

-i a+ (8a )a aNea

The supersymmetric algebra now reads:

(20.32)

{Qa, Qb} =

{Qa, Qb} =

2 (or µ)ab PA

{Qa, Qb} = 0

( b 1 _ (_ b
[Qa, Mµv] = 2 \UNv)a Qb; [Qa, Mµv] = -2 Qb \(7µv)a

[Qa, Pµ] 0; [Qa, Pµ] = 0 (20.33)

where o = 2[YV', Y°]
Using superspace methods, let us now construct a few representations of

supersymmetry. We begin by constructing a vector superfield V (x, 8, B) that is a
function of superspace. Under a supersymmetric transformation, it transforms as:

8V(x,8)=i[EQ+QE,V] (20.34)
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(Since the supersymmetry generator has spin 2, this means that the supersymmetric
partner of any particle must differ by only spin 2. Supersymmetric multiplets can
then be grouped into collections of particles, each differing from the other by spin

2)
These superfields have many nice properties. The most important is that the

product of two superfields is again a superfield:

V1 V2 = V3 (20.35)

This can be simply checked by examining the transformation properties of both
sides of the equation. Although this product rule is simple in superspace, written in
component form it is highly nontrivial. Superspace thus gives a way of generating
new representations of supersymmetry from old ones.

By power expanding V(x, 8, B) in a power series in 8 and 8, we find that
the series terminates after reaching the fourth power of the spinor because of its
Grassmann nature. Since V is real, the most general parametrization is given by
a Taylor expansion in the Grassmann variables:

-2
V(x,0,9) = C-i6X+iXB- t262(M-iN)+ t26(M+iN)

- 8a, A" _ i826 I - 2&µ8"`X

+ IB2B \?. - 2oraµXl - 28262 (D + Ia2C l (20.36)

This is called the vector superfield because it contains an ordinary vector
field AN, (and not because the superfield has a vector index on it). The vector
superfield has 8 fermionic fields contained within X and X as well as 8 bosonic
fields contained within C, D, M, N, AN,; so we have an equal number of fermions
and bosons, as desired.

Under a supersymmetric transformation, we have:

V (X' 6, 6) -> V (X + i EQµ6 6 + E, 6 + (20.37)

By power expanding the previous equation and then equating coefficients, we can
calculate the variation of all the fields within the vector superfield:

8C = EYSX

8X = (M + y5N)c - iy"L(AA + YSaµC)c

8M = E(X - ioX)
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8N = Ey5(X-iOX)

8Aµ = iEy"X +Ea"X

bX = Av - y5ED

SD = -iEOy5?.

We can also introduce a new derivative operator:

Da =
a9a (Orµe)a

Da = - a + i (00r )a a,
aea

(20.38)

(20.39)

The importance of this derivative operator is that it anticommutes with the super-
symmetric generators. We list a few useful identities of this operator that we will
use extensively in this chapter:

{Da, Db} = 0; {Da, Db} = 0

{Da, bb} =

DaDbDc = DaDbDe = 0

DaD2Da = DbD2Db

D2D2D2 = -160µD2

D2D2D2 = -16a2D2

[D2 D2] = -16aµ - 8i D01) (20.40)

[Proving these formulas is not as formidable as one might expect. Once one
establishes the anticommutator between D and D, the other relations follow. For
example, the commutator between D2 and D2 can be evaluated by pushing all
Db to the right. Each time they pass a Da, we pick up 2i(Q"`)abaµ. Thus, after
pushing all bb to the right, we have:

[DaEabDb,
DaEabDb]

2(2i)(2i)EabEab(0rµ)ab(w)baaµav +

8Tr (a avTE)a"av+...

-16aµ+ (20.41)
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where c is a 2 x 2 matrix ( 0l 1
).

Finally, the identities involving six

derivative operators are proven by multiplying [D2, D2] by b2 or D2. In this
way, all identities can be proved.]

Because D,, anticommutes with the supersymmetric generator, we can apply
it at will on any superfield to form a constraint, such as:

DQ ct = 0 (20.42)

This constraint does not spoil the transformation of 0 under supersymmetry
because D,, anticommutes with the supersymmetry generator. A field that satisfies
this constraint is called a chiral superfield. (An antichiral superfield satisfies
DaO=0.)

It is simple to write down the solution to the chiral constraint equation:

q(x, 8, B) = exp (-i80B) q(x, 8); q(x, 8, B) = exp (i808) (x, 8) (20.43)

The problem of finding chiral superfields then reduces to the simpler problem of
power expanding O(x, 8), which terminates after only three terms:

O(x, 8) = A + 20* - 82F (20.44)

Once again, the number of fermion and boson fields are equal. i/i contains four
components, while A and F are complex scalar fields with four components in
all.

Written out explicitly, the variation of the fields is given by:

SA = 2E,

i0 AQ"`E

SF = -2laµVa (20.45)

Given these vector and chiral superfields, we can now construct superfield actions
that are manifestly supersymmetric. There are two ways in which supersymmetric
invariant actions can be constructed, one for vector fields and the other for chiral
fields. For vector fields, we simply integrate over all eight x, 8, and 8 indices.
This integration selects out the "D" term that appears in the variation of the vector
field. [The variation of the D term in Eq. (20.38) is a total derivative, and hence
always integrates to zero. That is why D terms are always invariant.] For chiral
fields, we only integrate over six variables, x and 8. This selects out the "F" term.
(The variation of the F term is also a total derivative from the above equation.)
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The simplest action based on superspace is the Wess-Zumino action, given
as:

S =
J

d8x 2 - [ f d6x (1,0 + 21 m02+ +h.c.] (20.46)

By integrating out the Grassmann variables, we retrieve the free Wess-Zumino
action in Eq. (20.13) we wrote down earlier.

Not only can we find a superspace formulation of the Wess-Zumino model,
we can also find the superspace formulation of gauge theory. To introduce gauge
invariance, we first notice that the vector field V contains the field AN,, which will
form the basis of a gauge theory. The variation of V, in turn, looks very much
like a chiral superfield A. which contains the combination 8µA.

What we want, therefore, is a real vector field V that transforms as:

8v=-
2

(A - A) (20.47)

where A is a chiral superfield. It is easy to show that this variation contains the
U(1) symmetry transformation 5Aµ - 8µA.

Now we wish to construct the counterpart of the Maxwell tensor Fµ,,, which
is invariant under this transformation. Let us define a chiral superfield W,,:

W. = 4DZD,, V

Da WQ = 0 (20.48)

where the last identity is important because it shows that W,, is a chiral superfield.
One can show that the Maxwell tensor is contained within WQ. Then it is easy to
show that:

8WQ = 0 (20.49)

where we have used the fact that both A and W,, are chiral superfields.
Our gauge-invariant action is therefore:

11 d4x d28 W°WQ (20.50)
16

which is invariant under both gauge and supersymmetry.
Next, we must show that this yields the correct U(1) action when we perform

the integration. In general, this integration is rather lengthy; so we will use a trick.
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We will use up many of the degrees of freedom in the gauge transformation so
that the theory is defined only in terms of the important fields.

Since A and F within the chiral field A are complex, we will find it convenient
to redefine these fields as A -> A + i B and F -> F + i G. Then under this gauge
transformation, we have:

C -> C+B

X -' X+'
M+iN

Aµ

X

->

->

M+iN-F-iG
AA+8µA

X

D -> D (20.51)

so that the A field is the gauge parameter associated with the gauge field A. We
can obviously use B, *, F, and G to eliminate C, X, M, and N. This leaves us
with a reduced vector multiplet:

V = (0, 0, 0, 0, Aµ, ?., D) (20.52)

We call this the Wess-Zumino gauge, 17 where we have partially used up the gauge
degree of freedom within the chiral superfields, leaving us with only the gauge
multiplet that includes the Maxwell field A. Placing the chiral superfield Wa into
the action, we obtain the original super Maxwell theory of Eq. (20.15).

The generalization of this construction to the full non-Abelian theory is also
straightforward. Let us define V = Vara, where the 1a matrices generate some
Lie group. The V transforms as:

8V = ig(A - At) (20.53)

for some chiral superfield A. Then we also have:

e-2V e-iAe-2V eiA (20.54)

Then define:

Wa = 8DDe2V
Dae-2V (20.55)

If we include matter fields within a chiral superfield, then:

0 -+ e-iA(P; , eiA (20.56)
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Then the coupling to the matter fields arises through:

e-2V o
(20.57)

Let us now put everything together. The most general coupling between a
superfield V and a matter superfield 0 is given by:

16Tr f d4x d28 WaWa + h.c.

+ 8 J
d4xd49 e-2V c (20.58)

After performing the Grassmann integrations, the action equals:

= fd4xTr(_ IFN,,,Fl" +2D2

+ IV ,AV"`A+ 1VLBVLB+1+1F2+ 1G2
2 2 2 2 2

- iA[B, D] - iii[?., A] - B] I (20.59)

where the matter field is in the adjoint representation of the group.
We also have the freedom of adding the most general renormalizable self-

interaction of the 0 field, which is at most cubic:

d4x d28 1 Xi0i + 1MijOiOj + 19ijkO1Oj k +h.c.)f 2 3
(20.60)

where the terms in the interaction must be gauge invariant.
At this point, we can make a few remarks about supersymmetry breaking.

There are two known ways in which we can break supersymmetry spontaneously.
We can simply add the gauge superfield V (from which we constructed the super-
symmetric gauge action) directly to the Lagrangian:

Y-> Y+kV (20.61)

The integration of this V field, of course, generates a "D" term (Fayet-Iliopoulos
term).18 Since the variation of this D term is a total derivative, we still have a
supersymmetric theory.

In general, this action creates a number of terms containing the D and F fields.
Since they appear in this action as nonpropagating fields, we can eliminate them by
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their equations of motion. After this elimination, we are left with quartic terms in
A, which generates a new effective potential. We then treat this effective potential
in the usual way: We hunt for new vacua that allow us to break supersymmetry
or gauge symmetry by shifting the vacuum (OVA 10) 0.

The difficulty with this procedure, however, is that V in general transforms
in the adjoint representation of the group, and hence cannot simply be added into
the action. This means that we must have extra U(1) symmetries so that V is
invariant and can be added freely in the action. However, this is often not desirable
phenomenologically.

Another more promising way to break supersymmetry is to add a term, called
the "F" or O'Raifeartaigh term, 19 to the action, which is also supersymmetric.

Let us add a chiral term W, called the superpotential, into the action. As an
example, consider the superpotential in Eq. (20.60). After performing the d28
integration, we are left with:

f d4x[Fi*Fi +a.iFF +mi1(A1F1 - I *it/ij)

+ gijk(AiAjFk - V/iV/jAk)+h.c.] (20.62)

Now let us solve for the equations of motion for the auxiliary Fi field:

- Fk = ?k +m,kA* +gijkA; A (20.63)

Now substitute this value for Fk and Fk back into the action. The superpotential
has now changed into the term:

1 t/fk - t/fAk i+h.c. - V(A1, A*) (20.64)-
where the potential V(A1, At) is given by:

V = >2 Fk Fk (20.65)

k

As before, the elimination of the auxiliary fields Fi and F* has generated an
effective potential V (Ai , A*) can shift the vacuum. This, in turn, generates a
fermion mass via the Yukawa term.

This simple exercise can be generalized for an arbitrary superpotential W(O),
where 0i are the scalar fields within W. By repeating the same steps, we can show
that the elimination of Fi and Fi* from the action generates the following potential
term:

21
2 aW(Qj) I

(20.66)21:
/

i 1//j + h.c.) - L a((
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Figure 20.1. In (a), the potential respects both supersymmetry and gauge symmetry. In (b),
the potential breaks supersymmetry (because the vacuum state no longer has zero energy)
but gauge symmetry is still unbroken. In (c), the potential preserves supersymmetry but
breaks gauge invariance. In (d), the potential breaks both supersymmetry and gauge
invariance.

Pictorially, we can analyze how to break supersymmetry and gauge invariance
with this potential. We recall from our previous discussion that supersymmetry
is preserved if the vacuum has zero energy. This can also be generalized to
show that if the vacuum has nonzero energy, then supersymmetry must be broken.
From the previous expression, the potential V is positive definite. Thus, to have
supersymmetry breaking, we need only show that some of the terms in V do not
vanish, thereby giving the vacuum nonzero energy.

In Figure 20.1, we see various possibilities for the effective potential. In
general, there are four possibilities. Potentials can be generated in which gauge
symmetry and supersymmetry are broken together or independently of each other.

When this mechanism for spontaneous symmetry breaking is applied to model
building, one problem is that we cannot put the gauge fields and matter fields in the
same multiplet since they transform differently under the isospin group; that is, the
fermions belong to the fundamental representation, while the gauge fields belong
to the adjoint representation. Therefore, we must introduce superpartners for both
the gauge fields and matter fields. We must therefore introduce the supersymmetric
partners of the familiar particles: bosonic "squarks" and "sleptons" transforming in
the fundamental representation, fermionic "gauginos" transforming in the adjoint
representation, as well as "Higgsinos" and "Goldstinos" Another problem is that,
since we do not see supersymmetry experimentally among the subatomic particles,
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we must be able to break supersymmetry at a sufficiently high mass scale so that
these superpartners do not violate known experimental results.

In addition, there are stringent mass relations that must be obeyed whenever
we use the "F" to break supersymmetry. Using the form of the potential in Eq.
(20.66), a careful analysis of the most general superpotential shows that the spin
0, spin 12 , and spin 1 mass matrix M, for spin i must obey the following relation:

Tr (Mo - M1/2+3M1 ) = 0 (20.67)

This relation, unfortunately, is badly broken phenomenologically. It shows that the
boson masses cannot be sufficiently heavier than the fermion masses as required
in model building. Even if "D" terms are added to action, they are unable to lift
this requirement. The only known way to avoid this mass condition is to add
soft breaking terms to the action (which is undesirable) or move on to a more
sophisticated theory, supergravity, which we will discuss shortly.

20.4 Supersymmetric Feynman Rules

There are several advantages to deriving the Feynman rules 20 for supersymmetric
theories using the superspace formalism. First, the large number of component
fields found within the superfield can be easily manipulated as a single block.
Before superfields were introduced, calculations with the component fields were
often long and tedious. Second, in the component formalism, the cancellations of
certain divergent graphs are rather miraculous. In the superspace formalism, it is
easy to see the origin of these cancellations. Finally, the usual rules of functional
integration generalize naturally to the superspace formalism.

To begin, we wish to find an expression for:

Z(J, J) =
J

Do D exp (is+ifd4xd2e J(p + i f d 4 x d2B

J is the source term for a chiral field.
There are two types of Grassmann integrations found in the action, over

d2B and over d4B. To derive the Feynman rules, we will find it convenient to
convert the chiral integral over d4x d20 into an integral over d4x d40 . This is
accomplished by remembering that taking an integral over a Grassmann number
is the same as taking a derivative. We can show:

f d28 = fd82d81=D2
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fd1d2=b2
f dwhich

hold when applied directly onto chiral superfields.
Using the formulas in Eq. (20.40), we find:

(20.69)

DZD2,p _ -168µi (20.70)

since DQc = 0. Then we write the chiral integral as:

f dax d20 q =
r

- J daxd2B
D2D2

( l68µ)

- J dax d40 (88
22)

0 (20.71)

The chiral integral over the mass term m02, for example, can be converted to
an eight-dimensional integral as follows:

DZDZfd4xd28c2 r
= - J dax d20 [ 1682 ]

drr 4x d29D2
0

J (j)
2

- f dax dae (P (882
(P)

(20.72)

Putting everything together, we have, for the free Wess-Zumino action with
an external chiral source J:

fd4x
2

S = dab 2mq ( 820) 2m (
8 2

D2 D2+J(-g
8a2 8a2

f dax dae
(fTAVf

+V TB)
(20.73)
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where /i = ( ) and:

/48µ -1 (D2/8a2)J
B= (20.74)

1 mD2/482 - ([)2/8a2)1

The functional integral can now be performed, leaving us with:

Z(J, J) exp \-i
J

d8z d8z'BT(z')A-1B(z))

exp (- 2 J d8z d8z'
L2

J(z)Do(z, z')J(z')

+ J(z)01(z, z')J(z') +

2

J(z)Do(z, z')J(z,)])

where d8z = d4x d48. The propagators are given by:

Do =
i mD2

4 p2(p2 - m2)

O1 = p2
-Im2s4(e1

- 82)

and where:

- mD2/4(8µ + m2)

1 +m2D2D2/168µ(8µ +m2)

(20.75)

(20.76)

1 + M21)2 D2/ 168µ(8µ + m2)

-mD2/4(82 + m2)

(20.77)

From these equations, we can write down the Feynman rules for a superfield
theory. These rules will become crucial when we discuss nonrenormalization
theorems.

20.5 Nonrenormalization Theorems

One truly remarkable feature of supersymmetry is the nonrenormalization the-
orem. This makes supersymmetric field theories a laboratory in which to test
ideas about quantum field theory that have more sophisticated renormalization
properties than ordinary ones.
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The reason why supersymmetric theories have better convergence properties
than ordinary field theories is that the fermion and boson loops of quantum field
theory appear with opposite signs and hence cancel. For example, one can show
that the quadratic divergences of simple supersymmetric theories cancel among
themselves, leaving only logarithmic divergences. Furthermore, one can show
that the mass and coupling constant corrections are actually finite to all orders in
perturbation theory, and hence only the wave-function renormalization constant
Zo appears.

One direct application of this is that the superpotential is not renormalized by
higher-loop corrections, and hence any fine tuning of the potential will not receive
any contributions from renormalization. There is no necessity of retuning the
parameters at each order in perturbation theory. This gives us a potential solution
to the hierarchy problem in GUT theory.

The proof that these cancellations persist to all orders in perturbation theory
is prohibitive in the component formalism, where a series of miracles occur that
cancel the divergent corrections to the mass and coupling constant. However,
the proof to all orders in perturbation theory can be easily performed using the
superspace method.

We recall that the propagators in the superspace formalism can be given by:

) =(l) (2( 1 84(8 - 8') (V(1)V(2)) _ 54(8-1 - 8')0 0 ) 2 2 ;P -m
2

p

1 mD2
(0(l)0(2)) = 54(8 - 8') (20 78)

4 p2(p2 - m2)
.

The vertices can be read off the Lagrangian, with the additional insertion of a
factor of -(1/4)D2 [or -(1/4)D2] acting on the propagator for each 0 (or ) line
that leaves the vertex. There is also a factor of f d48 at each vertex. Since we
are integrating over a series of delta functions, we find that all 8 integrations can
be performed exactly. What is interesting is that, by simply counting Grassmann
variables, we can show that f d28 or f d2B cannot be the end product of all the 8
integration. Only f d48 f (o, B) survives the integration process.

However, we know that the masses and coupling constants all appear in the
action via m2 f d28 02 or ?. f d28 03. Thus, corrections to these terms are finite.
There is only the wave-function renormalization Zo function, which contributes
to the mass and coupling constant renormalization via:

m -> Z0 lm; g -> Zo 3/2g (20.79)

Let us now analyze the terms that can be renormalized in gauge theory, that is,
have the form f d48 f (8, B). The degree of divergence of any graph (excluding
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the superpotential and terms that contain f d2e or f d2B) can be given as:

D=2-E-I (20.80)

where E is the number of external chiral lines and I is the number of massive
internal chiral propagators. From this, one can show that the possibly divergent
contributions are given by:

f d40 0; fd48Vc; fd4ev; Jd48VV; Jd48VVV (20.81)

We have used the fact that the dimensions of the fields and operators are given as:

[V] = 0; [0] = 1; [Da] = 2; [doe] = 2 (20.82)

Thus, all contributions (except for f d40 V), are logarithmically divergent.
The nonrenormalization theorem states that we only have wave-function renor-
malization and gauge coupling renormalization constants Zo and Zg, and that they
are logarithmically divergent.

We should note that the quantity f d48 V, which is quadratically divergent, is
gauge invariant only for U(1). Thus, for non-Abelian theories, this term is absent.
(Also, if Tr Q = 0, i.e., the trace of the charges of the scalar particles is zero, then
this term also vanishes.)

20.6 Finite Field Theories

One of the most remarkable properties of supersymmetry is that supersymmetric
field theories can be finite to all orders in perturbation theory, which was once
thought to be impossible. 7-12 In some sense, these theories answer Dirac's old
objections to quantum field theory, that renormalization theory was in some sense
contrived and artificial.

We will now construct the global SO (4) super Yang-Mills theory, which will
turn out to be finite to all orders in perturbation theory, and then we will discuss
the supergravity theory.

The SO (4) Yang-Mills theory can be constructed by coupling the N = 1 super
Yang-Mills theory, with the multiplet containing spins (1, 2), to three copies of
supersymmetric matter, containing the multiplet with spins (2, 0). To construct
the theory, we start with the usual Yang-Mills multiplet (A,, 1/r) and then add
three more fermion fields, which generalize 1/i into four fields 1/ii. We must also,
of course, add the corresponding scalar fields, which we choose to be self-dual
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and anti-self-dual:

Aij = 2EijklAk!; Bij = - 1

2EijklBk!

Then the SO (4) action becomes:

(20.83)

= TI (- 4FN,,,FA' + I gDN,AijD"`Aij + gDµBijDABij

1 1

+ i2*i[Vj, Aij]+-i*iy5[*j, Bij]+ 32[Aij, Bk!] [Aij, Bk!]

+ 64[Aij, Ak!][Aij, Ak!]+
64

[Bij, Bk!] [Bij, Bk!]) (20.84)

which is invariant under:

8Aµ

8Aij

8 Bij

8*i

iEiY, /li

Ei*j - Ejt/li +EijklEk*!

EiY5*j - EjY5*i - Eijk!EkY51/I!

- 1 1,

2UµvEiFl,,v + iyDN,(Aij +y5Bi1)EJ

+ 2i[Aij - y5Bij, Ajk+Y5Bjk]Ek (20.85)

The first indication that this action possessed remarkable renormalization prop-
erties came from the renormalization group, where it was noticed that i4 vanished
to the first-, second- and even third-loop level.

For the single-loop i4 function, we have a slight modification of the result
found for Dirac fermions:

83 CZ(G) [22 - 4v(M) - v(R)] (20.86)
167x2 6

where v are the number of Majorana fermions or real scalar fields. (There is one
Majorana fermion in the gauge multiplet. For each chiral superfield, there are
two Majorana fermions and two real scalar fields.) This function vanishes for
N = 4 super Yang-Mills theory, since there are three chiral superfields; therefore,
v(M)= 1+3=4andv(R)=2 x 3=6.

For N = 1 supersymmetry coupled to n chiral multiplets, the two-loop result
is:

93

= - 167x2
C26G) (18 - 6n) - (1 g5 C2(G)2(6 - IN + 8n) (20.87)
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For N = 4 super Yang-Mills theory, we have n = 3; therefore, P also cancels at
the two-loop level.

Since then, there have been several different proofs showing that the theory is
actually finite to all orders in perturbation theory. We will only summarize some
of the arguments. One proof of the theorem rests on the fact that the N = 4 theory
has the symmetry of the N = 1 and N = 2 theories as subsets. This yields a large
number of constraints among the various renormalization constants, eventually
giving us Z = 1 for all of them. Let us begin, for the moment, with the N = 1
super Yang-Mills theory coupled to supersymmetric matter fields. Let us couple
enough N = 1 multiplets so that we have the same number of fields as the N = 4
super Yang-Mills theory. However, although we have enough fields to construct
the N = 4 theory, assume that the coupling constants are not correlated with each
other as in the N = 4 theory, so we only have N = 1 supersymmetry.

Our strategy will be to show that, as we gradually change the coupling constants
so we recover N = 2 and then N = 4 supersymmetry, the resulting renormalization
constants also change, until they all reduce to Z; = 1 at the end. To construct the
action, we will introduce a vector multiplet V and a matter multiplet Tb in the
adjoint representation. Also, we introduce chiral matter multiplets 0' as well as
(Pb. Then the most general superpotential one can write down for these fields is
given by:

baba +bQ(Pa +bbq - mca(Pa +g(apb(b (20.88)

At this point, there is no correlation between the various coupling constants.
If we now turn on interactions, then we have the following possible renormal-

ization constants:

v2 ZvV2; Sv _4 Zggv

(P2
a

((Pa)2

(` Jb)2

Zm ;

Z'((pa)2;

Zq,(`Ya)2

go -> Zggm

m->m+5m

20.89)

We can also show (because of the nonrenormalization of e2V and because of the
properties of chirally supersymmetric interactions):

Z2Zv = 1; (Z9,)2ZPZ,,Zl = 1

(1 +Sm/m)2ZoZ1 = 1 (20.90)

which come from the nonrenormalization theorems for e2V and for chiral super-
space integrals.



20.6. Finite Field Theories 687

Now we impose an additional constraint. We will change the coupling con-
stants so that the matter multiplets and the N = 1 super Yang-Mills theory form
N = 2 multiplets. This means that the gaugino from V and the spinor from W
form a doublet; so we have a new constraint on the coupling constants. Since the
original coupling constants were arbitrary, we have the freedom to choose N = 2
symmetry, which gives us the additional restriction:

Zg = Zg; Zv = Zw (20.91)

which in turn implies:

Z0Z' = 1; Sm = 0 (20.92)

At this point, we have eliminated all but three renormalization constants, one for
each of the three matter multiplets. However, we still have the freedom to change
the remaining coupling constants so that the matter multiplets and the super Yang-
Mills theory form N = 4 super multiplets. This further restriction on the coupling
constants implies a symmetry between all the matter multiplets, so that:

ZO = Z = Z'P

However, from Eq. (20.90), this also implies that:

Z=1

(20.93)

(20.94)

for all renormalization constants in the theory. Thus, the N = 4 theory is finite to
all orders in perturbation theory.

By somewhat similar arguments, one can show that the N = 2 theory is finite
for all higher loop levels beyond the one-loop level (where it diverges). If we
relax N = 4 supersymmetry but keep N = 2 symmetry, then we lose the condition
that Zo = Z' and hence lose finiteness. Hence an ordinary N = 2 theory is not
finite. However, we still may be able to salvage this proof if we can find another
way in which to make Zo = Z.

The way to patch up the proof of finiteness for N = 2 theories is to use a
modification of the N = 2 theory, with real representations, in which a SU(2)
symmetry emerges that rotates &a into O Because of this additional symmetry,
we can now equate ZO with Z, and then the only divergences in this N = 2
theory come from Zv, which is one-loop divergent. Thus, we have proved that
the N = 2 theory, with real representations, is divergent only at the one loop-level
and finite at all higher orders.

However, we can modify the theory still further by adding more multiplets
to eliminate the one-loop divergence, rendering the modified theory completely
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finite to all orders. Once the one-loop divergence is eliminated, the modified
N = 2 theory is finite to all orders.

In summary, the N=4 super Yang-Mill theory and certain modified N=2 super
Yang-Mills theories are finite to all orders. These are remarkable results that
are totally unexpected. However, this property does not persist when we build a
supersymmetric theory of gravity. Although supergravity is much better behaved
than ordinary Einstein gravity, it is divergent at the three-loop level.

20.7 Super Groups

Now that we have accumulated some practice in constructing supersymmetric
theories, let us now analyze more systematically the group theoretic structure of
super groups. We know from the classical works of Lie and Cartan that a complete
classification of compact Lie groups is possible. Kac has generalized this result
and given us a complete classification of the super groups.

Although there are many possible super groups, the only ones in which we
are interested are the ones that generalize the standard space-time groups found
in physics, that is, the Poincar group and (for massless theories) the conformal
group, SU(2, 2) = O (4, 2). Each group, in turn, is part of an infinite series of super
groups, which are called the orthosymplectic Osp(N/M) and the superconformal
SU(N/M) groups, respectively. 21

To see how these super groups are constructed, we recall that the orthogonal
group O (N) is the set of all real orthogonal N x N matrices that leave the following
form invariant:

O(N) : xix1 = invariant (20.95)

Likewise, the symplectic group is the set of N x N matrices that leave the
following form invariant:

Sp(N) : 0,,,Cm,,8n = invariant (20.96)

where Cm,, is a real, antisymmetric matrix and the B are anticommuting numbers.
The orthosymplectic group Osp(N/M) is the set of matrices that leave the

following form invariant:

Osp(N/M) : xjxj +0,,,Cm,,8 =invariant (20.97)

f o r i = 1 , 2, ... , N and n = 1, 2, ... , M. Not surprisingly, the algebra of the
orthosymplectic group can be decomposed into blocks that contain the matrices
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of Sp(M) and O(N):

(20.98)Osp(N/M) OBN)
S

(MA

)
)\ P /

where A and B are determined by the commutation and anticommutation rela-
tions of the Jacobi identity. O(N) and Sp(M) are therefore subgroups of the
orthosymplectic group:

O(N) ® Sp(M) C Osp(N/M) (20.99)

More concretely, we are interested in the group Osp(1/4), which is the gauge
group of supergravity. It contains the symplectic group, Sp(4), which is isomor-
phic to the de Sitter group, and contains the same number of generators as the
Poincar group, P. and MN,,,. Its commutation relations differ only slightly from
those of the Poincar group; that is, the commutator of two translations [Pg,,
is proportional to the Lorentz generator divided by the square of a length, which is
called the de Sitter radius. In the limit of infinite de Sitter radius, two translations
commute, and hence we have the same commutation relations as the Poincar
group (see Exercise 14.7).

We also point out that the second physically interesting super group is the
superconformal group. The group SU(N), of course, is the set of unitary N x N
matrices with unit determinant. They leave the following form invariant:

SU(N) : (u`)*uj8ij (20.100)

Not surprisingly, the superconformal group SU(N/M) is the group with ele-
ments that leave the following form invariant:

(u`)*u3sij
+(e')*g,,,,,O' (20.101)

where i = 1 , 2, ... , N, m = 1, 2, ... , M, and where gm, = ±5mn.
SU(N/M) can naturally be decomposed into the following form:

SU(N) ® SU(M) ® U(1) C SU(N/M) (20.102)

Let us now be concrete about the generators of Osp(N/4). We know that this
orthosymplectic group must contain the generators of O (N), which we call Ti, as
well as the generators of the symplectic group Sp(4), which can be represented
by the usual Poincar generators P1 and MN,,,. We also have the supersymmetric
generator Q,,i, which now carries the O(N) index i, as well as the two-spinor
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index a. Then the generators of the super group are:

[T.,Tj] = IcijTk; {Qai, Qbj} 23ij (or 1).b PA

f
{Qai, Qbj} = 2EabZij, {Qai, Qbj} _ -2EabZij

[Qai, Mµv] = [Qai, Mµv] 2Qbi(&µv)Q

[Qai, T1] _ (bj)kQak+
[()a,, Tj] _ -(bj)kQak

[T, Pµ] = [Ti,Mµv]=0

[Zij, anything] = 0 (20.103)

where c are the structure constants for O(N), where the Zij are certain linear
combinations of the generators Ti:

Zij =

a the matrices bk are Hermitian.
Using simple arguments, one can show that SO (4) and S0(8) are the largest

possible groups for super Yang-Mills theory and for supergravity, respectively.
The proof of this important fact is rather simple. We know that the supersymmetric
generator for SO(N) supergravity is given by Qi, where a is a spinor index and
i is an SO(N) index, where i = 1, ... , N. We also know from group theoretical
arguments that the spectrum of supergravity states can be generated by hitting
the lowest helicity state I-) successively with the Qi operator. For the super
Yang-Mills theory, the field with the lowest helicity is the spin 1 vector particle,
while for supergravity it is the spin-2 graviton.

If we act with this operator once, we have:

(20.105)

In the super Yang-Mills theory, this means that the partner of the Yang-Mills field
is a spin 1 field with isospin index i. In the supergravity theory, it means that the
superpartner of the graviton is a spin 3/2 gravitino that also has an isospin index
1.

Similarly, we can hit the lowest helicity state with two supersymmetric gener-
ators:

(20.106)

For the super Yang-Mills theory, this means that the spin 0 particle has two indices
i, j that are antisymmetric. Thus, there are N(N - 1)/2 such scalar particles. For
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the supergravity theory, this state corresponds to a vector particle that transforms
as Aµ3, where i, j are antisymmetric.

This procedure can obviously be repeated an arbitrary number of times, each
time generating spinning particles with isospin indices that are antisymmetric in
i, j, k, .... However, there is an important restriction. For the super Yang-Mills
theory, we want the highest spin in the theory to be the Yang-Mills field. Thus,
we can only hit the lowest helicity state I-) four times with Q,,i until we arrive
at 1+), which is the highest helicity state corresponding to the Yang-Mills field.
Therefore, the maximum orthogonal group that we can accomodate without going
to higher spins is SO(4), because there are four half-steps in spin between the
lowest and highest helicity state of the vector particle.

Counting antisymmetric indices, it is easy to see that the helicities and number
of states for the N = 4 multiplet are given by:

Helicity : -1 - i 0 1 1

States : 1 4 6 4 1

(20.107)

There are 1 + 6 + 1 = 8 bosonic states and 4 + 4 fermionic states, so we have equal
numbers of bosons and fermions, as expected in any supersymmetric theory.

Similarly, we can only hit the graviton state with the lowest helicity-) eight
times with Q(Xi until we arrive at 1+), the highest helicity state that also corresponds
to the graviton. We must stop at this point, because an interacting massless spin 3
theory is known to be inconsistent. Thus, this procedure must not generate spins
beyond 2, or else we lose self-consistency. Since there are 8 half-steps between
-) and+), the maximum number of generators Q' must be N = 8. Thus, the

highest symmetry group must be SO(8). This is rather unfortunate, because this
group is too small to accomodate the Standard Model.

If we count the helicity states as before, then the N = 8 multiplet has the
following number of states:

Helicity : -2 -2 -1 -1 0 1 1 2 2

States : 1 8 28 56 70 56 28 8 1

(20.108)

Counting helicity states as before, we find that the number of antisymmetric
indices i, j, k, ... in a p-rank tensor is equal to:

( 8 )
(20.109)
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The total number of fields in the SO (8) theory is therefore given by 1 + 8 + 28 +
56 + 70 + 56 + 28 + 8 + 1 = 256. The number of bosonic states is given by 1 + 28
+ 70 + 28 + 1 = 128. Likewise, the total number of fermionic states is given by
8 + 56 + 56 + 8 = 128. So we have an equal number of boson and fermion fields
(on-shell).

20.8 Supergravity

Up to now, we have only considered global supersymmetry. However, the real
beauty of this approach emerges when we consider gauging the supersymmetric
group to produce a gauge theory of a new type. In this way, we will see that
supergravity necessarily emerges when we gauge the super group.

There are many ways in which to formulate supergravity. The approach we
will take will mimic the Yang-Mills approach as much as possible. We begin
with the super group Osp(1/4), which has 14 generators. In addition to the four
supersymmetric operators Q1, there are also the 10 generators of Sp(4), which
can be arranged as in the Poincare group, consisting of the Lorentz generators Mab
and the translations Pa. As in Yang-Mills theory, we will introduce a separate
connection field for each of the generators of Osp(1/4).

Let MA collectively refer to all the generators of Osp(1/4). They satisfy:

[MA, MB} = fACBMC (20.110)

where fAB are the structure constants of the group, and we have both commutators
and anticommutators in the algebra.

Let w collectively refer to all the connection fields. The fields transform as:

co, = fBCEB

where:

A a a6 Ce
COA

= {e,, cvA , *A}

(20.111)

MA = {Pa, -iMab, Qa} (20.112)

The covariant derivative is therefore:

VA =

aN,+e.Pa - (20.113)
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[Notice that gauging the translations Pa necessarily introduces a connection field
e', which is the vierbein field. Thus, gauging the super group Osp(1/4) necessar-
ily introduces the graviton field. There is no other choice. Local supersymmetry
necessarily creates a theory of quantum gravity.]

The commutator of two covariant derivatives yields the curvature tensor:

{v , V,] = RAJMA (20.114)

where:

RAv =a A fCB

In component form, this reduces to:

RNv(P) = aAe° H V)

Rah (M) = aA ,ab + cv ccvvb + e eb - (µ H V)

Rµv(Q) = auto, +' vVco6o, + *veAYa - (l H v)

The variation of the curvature is equal to:

SRAV - RAB VEC.f CAB

(20.115)

(20.116)

(20.117)

The action for supergravity is now given by contracting the curvature tensors
via the antisymmetric invariant tensors:

-9 = EAvpa [RAv(M)a6RpaEabcd + Rµv(Q)aRpa(Q)1(Y5C)as] (20.118)

where C is the charge conjugation matrix. If we make a variation of the action,
we find that the action is not invariant unless we enforce the condition:

RAv(P) = 0 (20.119)

The action, at first, appears to be a R2-type action, which is not unitary
(because of ghosts). However, this is an illusion. The R2 term is actually a total
derivative and topologically invariant. Hence, it can be dropped from the action.
The cross terms are linear in R and give us the supergravity action:

5° _
--1 eR -

2 AYvY5Da*pcAvPa (20.120)
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(There is also a term proportional to e4, which comes from a generalization of the
cosmological constant term divided by the de Sitter radius to the fourth power.
We can drop this cosmological term if we set the de Sitter radius to infinity.)

In a similar fashion, we can also introduce the curvatures for the group
SU(2, 2/1), the superconformal group. By contracting products of these cur-
vatures, one can write down a higher derivative theory that is locally superconfor-
mally symmetric, called conformal supergravity. 22

Although the N = 1 supergravity action was relatively easy to construct, there
are severe complications when generalizing this to N = 8 supersymmetry. To
construct the SO(8) action in the component formalism is prohibitively difficult.
Even the superfield method is prohibitive in this case. Instead, we will construct
the SO(8) action by using a trick. We will formulate the N = 1 supergravity
theory in 11 dimensions. Since the symmetry group for this higher-dimensional
theory is only N = 1 supersymmetry, the action is easier to write down. Then
we will use dimensional reduction or compactification to yield an N = 8 action in
four dimensions.

To see that the number of states formally is the same, let us count the number
of states within an 11-dimensional supergravity. The counting of states proceeds
as follows:

AeM

*M

AMNP -4

29x10-1=44

2 (9 x 32 - 32) = 128

(20.121)

where M, N represent 11-dimensional curved space indices, A, B represent flat
space 11-dimensional indices, and the spinors are 32 dimensional. e,Ati represents
the 11-dimensional vierbein linking the base manifold with the tangent space. *M
is a graviton field, and AMNP is an antisymmetric tensor field. The total number
of boson fields is 128, which equals the number of fermion fields, as it should.
The total number of boson and fermion fields is thus 256, which is precisely the
number of fields in the 11-dimensional N = 8 model. Thus, not only do we have
equal numbers of fermions and bosons, we also have the same number that appear
in the 11-dimensional action.

With some work, one can show that the action for 11-dimensional supergravity
is 23:

L = -21 eR - Ie
MFMNPDA1(a+Cw)J'P

4eFMNPQ
2 2
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- g4 e 12NFPQfR) (F - F)NPQR

v '2-K EMI...M

3456

which is invariant under:

SeM -

SAMNP

S*M

and where:

VL-
g

F[MN Yi P]

K-1DM(th)77 + 2 8
(FMQRS - 8SMI'QRS)r?FPQRS

'MAB = COMAB +
g

PFPMABQV Q

(20.122)

(20.123)

(20.124)

As mentioned earlier, the SO(8) action is too small to include the Standard
Model. If we go to higher supergravity theories beyond SO(8), then we have
interacting massless spin 3 fields, which are known to be inconsistent. This is
disappointing.

One alternative is to couple supergravity to supersymmetric Yang-Mills fields
with the gauge group given by the Standard Model. The addition of supergravity
gives us nontrivial corrections to the effective potential in Eq. (20.66), which
allow us to relax the stringent condition in Eq. (20.67). Supergravity coupled
to super Yang-Mills theory thus has interesting phenomenology. However, this
coupled theory diverges at the one-loop level, making it less convergent than
supergravity (which diverges at the third-loop level) or even ordinary quantum
gravity (which diverges at the second loop level). Thus, supergravity coupled to
a super Standard Model has phenomenologically good properties, except that it is
highly divergent.

In summary, we have seen that supersymmetric theories give us a theoretical
laboratory to study field theories with radically different properties.

First, they mix isospin and space-time symmetries in a nontrivial way, thereby
evading the Coleman-Mandula theorem. This gives us the hope of eventually
putting all subatomic particles in the same irreducible representation.

Second, they can cancel enough divergences to render the N = 4 and certain
N = 2 super Yang-Mills theories finite to all orders in perturbation theory. This
realizes Dirac's original dream of field theories that do not require renormaliza-
tions.
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Third, they can, in principle, solve the hierarchy problem. Supersymmetric
theories have powerful nonrenormalization theorems that prove that the mass
separation between GUT scale and low-energy physics is not renormalized.

Fourth, their local version necessarily contains gravity. Supersymmetric Ward
identities can remove the first- and second-loop divergences, although they fail
at the third loop level. Unfortunately, the maximum supergravity has SO (8)
symmetry, which is too small to include the Standard Model. In addition, the
theory is not renormalizable.

Faced with the divergence of supergravity, one is forced to enlarge the gauge
group, hoping to generate enough Ward identities that can cancel all possible
counterterms. The only known nontrivial generalization of supergravity is the
superstring theory, to which we turn in the next chapter.

20.9 Exercises

1. In quantum field theory, we must throw away, by hand, the infinite zero point
energy of the scalar and fermionic fields. Show that in a simple supersymmet-
ric theory, the zero-point energies of the bosonic and fermionic fields cancel
by themselves.

2. Perform the integration over the Grassmann variables in the Wess-Zumino
action in Eq. (20.46). Show that its free part is equivalent to the action written
in terms of components in Eq. (20.13).

3. Perform the integration over the action (20.50) in the Wess-Zumino gauge and
show that we recover the supersymmetric Yang-Mills theory in Eq. (20.15).

4. By direct computation, prove that the supersymmetric Yang-Mills theory in
Eq. (20.15) is invariant under a supersymmetric transformation.

5. Prove (only to lowest order) that the SO (4) Yang-Mills action in Eq. (20.84)
is invariant under Eq. (20.85).

6. Consider the constraint R' (P) = 0 in Eq. (20.119). Show that this constraint
is equivalent to the vanishing of the covariant derivative of the vierbein.

7. Prove all the relations in Eq. (20.40).

8. Write down an expression for the Noether (super) current for the Wess-
Zumino model.

9. In supergravity, show that the anticommutator of two supersymmetry varia-
tions of the gravitino does not close properly, showing that the theory does not
really form a group structure in the usual sense. (Show the presence of a few
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terms that do not close, not the whole expression.) Show that the noninvariant
terms are, in fact, proportional to the equations of motion, so that they vanish
on-shell.

10. el has 10 degrees of freedom, and *P, has 16 degrees of freedom, yet we
know that, in the canonical formalism of supergravity, we are only left with
two helicities for both. Show how, using gauge invariance, we can remove
all degrees of freedom down to two helicities.

11. In supergravity, the basic fields are the e' and the gravitino *P,. Perform the
counting of states both on-shell and off-shell. Show that off-shell, there is
mismatch of 6 fields, requiring auxiliary fields.

12. To compensate for these 6 missing boson fields, let us add nonpropagating
fields A. and S and P to the supergravity action:

L = - IeR - I DpVQ - 3 (S2 + P2 - A2) (20.125)

Show (to lowest order) that this new action is invariant under:

Be' =
2EYa ,

i
S*u = (Du + 2

A,y5)E - 2Yp,17E

SS = 3Ey . Rcov

SP = -4EY5Y . Rcov

SAp = 41 EY5(RF°v - 3Yuy . Rcov)

ri = -3(S-iy5P-iAy5) (20.126)

where:

µ,cov = µvpa l 1

R E YSYv(Dp*a - 2AQYS*P + 2YQq *P) (20.127)

13. Show that the supergravity algebra with these auxiliary fields closes properly
off-shell, without having to invoke the equations of motion. Calculate the
closure of the algebra for the gravitino field. (Only calculate the lowest-order
terms. Show that the terms that previously destroyed the closure of the algebra
cancel.)
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14. Show that, if we eliminate a)" in Eq. (20.120), we find that the connection
field picks up a contribution from the gravitino field. Show that this new term
is proportional to the torsion (i.e., F - I've).

15. Write down the supersymmetric version of SU(5) GUT, introducing separate
superfields for the various representations in the theory. Do not spontaneously
break the theory.

16. Using superfield methods, show that the simplest one-loop graph in the Wess-
Zumino model, after Grassmann integrations, is of the form f d40 f (0, 0).



Chapter 21

Superstrings

But the creative principle resides in mathematics. In a certain sense,
therefore, I hold it true that pure thought can grasp reality, as the ancients
dreamed.

- A. Einstein

21.1 Why Strings?

At present, there is only one finite theory of quantum gravity, and this is the
superstring theory. In this sense, the theory has no rivals. In addition, the theory
can apparently reproduce all the known particle interactions found in nature. The
fact that one can, in principle, construct solutions that include both gravity and
all known interactions from such a simple physical picture, the string, is rather
remarkable.

The desirable properties of string theory, as usual, derive from its powerful
gauge groups. The gauge groups of the superstring include:

1. Conformal and superconformal invariance. These are the symmetries defined
on the two-dimensional surfaces swept out by the string.

2. General coordinate transformation. Being a theory of quantum gravity, it
possesses space-time reparametrization invariance.

3. E8 0 E8. This gauge group emerges when we compactify some of the higher
dimensions of the theory.

4. Space-time supersymmetry. This symmetry helps to solve the hierarchy
problem and cancel some of the potential infinities of the theory.

The symmetries found in particle physics and general relativity therefore
emerge as a tiny subset of the symmetries of the superstring. In addition to being a
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finite theory of gravity, the theory also has definite phenomenological advantages
over other theories:

1. The group E8 ® E8 is large enough to contain GUT theory. Supergravity,
by contrast, was limited by its isospin group SO (8), which was too small for
phenomenology.

2. The superstring can accomodate complex fermion representations like those
found in the Standard Model because it is not based on Riemannian manifolds.
Kaluza-Klein theory, being Riemannian, cannot accomodate these fermion
representations.

3. The superstring theory is completely free of anomalies. Gravity theory in
higher dimensions, by contrast, has problems with anomalies once we have
chiral fermions.

4. The superstring theory gives a plausible explanation of the generation problem
in the Standard Model in terms of certain topological invariants that exist on
six-dimensional manifolds. GUT theory, by contrast, cannot explain the
presence of fermion generations.

5. The superstring theory has no hierarchy problem because of powerful non-
renormalization theorems. The GUT theory, however, has a hierarchy prob-
lem.

We caution, however, that as with all theories defined at the Planck energy 1019

GeV, like quantum gravity, the superstring theory is subject to the severe criticism
that it cannot be tested with present technology. Predictions of the theory, for
example, that space-time was actually ten dimensional at the instant of the Big
Bang, are beyond experimental verification. Unlike GUT theory, which yields
testable predictions in the form of proton decay, it is difficult to find an experiment
that can rule out (or in) superstring theory in the coming years.

Our philosophy, as we said before, is to treat superstring theory as a theoretical
tool, as an example of a field theory which has highly nontrivial features that can
probe the limits of quantum field theory. Underlying the superstring theory is a
genuine quantum field theory; from its Lagrangian, we can derive the standard
quantization rules and find the spectrum of states and the Feynman-like rules. This
quantum field theory of strings apparently satisfies all the nontrivial constraints
postulated for the S matrix. This quantum field theory also contains perhaps the
most sophisticated, self-consistent Lagrangian to appear in physics, and hence
deserves serious study. If we take particular subsets of this action, then we can
find the usual actions describing quantum gravity, supergravity, gauge theory, and
GUTs.
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With a few rather mild assumptions, one can also find classical solutions to
the string equations that come surprisingly close to the Standard Model, including
three generations of fermions with a stable hierarchy. However, the theory also has
an additional problem: It has millions of other solutions. It is not known how to
select the true vacuum among the millions that have been found. A nonperturbative
analysis is probably required to find the true vacuum of the theory, which is beyond
our current calculational ability. The main problem facing superstring theory is
thus theoretical, rather than experimental. If the true vacuum of the theory could
be found theoretically, it should be possible to make a direct comparison with
experiment. At that point, one can decide whether or not it correctly describes
all quantum forces. But until the true vacuum is found, the theory does not have
true predictive power. Until then, the superstring theory will remain a highly
sophisticated quantum field theory without direct physical application.

Because of the mathematical complexity of string theory, we will only sketch
some highlights of the theory in this chapter. The reader is referred to the literature
for a more detailed explanation of the theory.

21.2 Points versus Strings

String theory, at first appearance, seems strange because it was historically for-
mulated as a first quantized theory, rather than as a second quantized field theory.
Therefore, it will be instructive to examine the simplest first quantized system, the
relativistic point particle, and later develop the second quantized theory of points
and strings.

Let the coordinate represent a vector that points from the origin of our
system to the location of a point particle. As the particle moves, it sweeps out a
line, called the world-line, parametrized by r. The action is proportional to the
invariant length swept out by the world-line:

S = -m
J

di length (21.1)

This action is invariant under reparametrizations of is

i->f(i) (21.2)

To quantize the action, we first compute the momenta:

Pu SX
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xµ
-m

(X µ )2
(21.3)

Because of the last equation, the momenta are not all independent, signaling the
presence of a gauge invariance. To find the precise dependence of the momenta,
we take its square:

P2 m2
L (21.4)

Finally, we now apply this constraint directly onto the state vectors 10) of the
theory:

(P2 - m2)IO) = 0 (21.5)

as in the Gupta-Bleuler formalism. At this point, we recognize this as the wave
equation for the usual Klein-Gordon equation. This equation, in turn, can be
derived from the standard covariant second quantized action:

S = 2 fd4xO(x)(88+m2)O(x) (21.6)

In this way, we have made the transition from the first to the second quantized
formalism for free point particles.

Alternatively, the reparametrization invariance of the theory allows us to select
the following gauge choice:

(21.7)

In this gauge, the action assumes the familiar nonrelativistic, ghost-free form in
the limit of small velocities:

S -mJ di 1-U?

fdr 1
2mv (21.8)

Unfortunately, the first quantized formalism treats interactions in a rather
clumsy fashion. To introduce scattering, we do not add an explicit interaction
term, as in the second quantized formalism. Instead, we define the scattering
amplitude by taking the path integral over a space-time configuration that has the
topology of a Feynman graph. By summing over all such topologies, we arrive at
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the complete scattering amplitude:

N

fDx(t)exP(ifdt+iPi.xJ)31-

topologies j=1

(21.9)
By explicitly evaluating the integral, we find the product of a series of propagators
AF and vertices. In this way, we can reproduce the usual Feynman series. By
specifying the topology of the graph, we can reproduce the Feynman amplitude
for any 0' theory. To see this, we go to the Hamiltonian formulation, where the
constraint in Eq. (21.4) is enforced by a Lagrange multiplier:

°=Pp XU-.1(p2 -m2) (21.10)

By functionally eliminating p, and A, we can retrieve our original Lagrangian
appearing in Eq. (21.1).

Because we have reparametrization invariance, we have the freedom to fix the
gauge by setting A = 1. The new Hamiltonian is therefore H(p, x) = p2 -m2. The
propagator in the Hamiltonian formalism is easily calculated. Between asymptotic
states, it is given by the integral:

fo

00
rN = 1die-p2 2 = OF(p) (21.11)

PA
-

m

This reproduces the usual Feynman propagator.
If we now perform the path integration over the entire graph, then the path

integral yields the product of these propagators joined together according to the
topology of the Feynman diagram. In this way, the Feynman rules for any 0"
theory can be reproduced in the first quantized approach.

This simple example demonstrates that the Klein-Gordon theory can be for-
mulated as a first quantized theory, but it is rather clumsy. In particular, the sum
over the topologies of all Feynman graphs must be inserted by hand, which is
undesirable. Also, unitarity is not obvious at higher orders. By contrast, the
second quantized formalism is cleaner and can be derived from a single action.

Now let us make the transition from the point particle to the string, repeating
the same steps as before. When a point moves in space-time, it sweeps out a
one-dimensional world-line. When a string moves in space-time, it sweeps out a
two-dimensional sheet, called the world-sheet.

Let XN,(Q, t) represent a vector defined in D-dimensional space-time that
begins at the origin of our coordinate system and ends at some point along the
two-dimensional string world-sheet, as in Figure 21.1. We can place coordinates
along the world-sheet labeled by ° = for, t }.
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Figure 21.1. Xµ is a vector that goes from the origin to a point on a two-dimensional
world-sheet swept out by a string.

Let the metric 71N,,, = (+, -, -, - ) be the flat metric in D-dimensional
space-time, where µ = 0, 1, 2, ... , D - 1. Let gab represent a two-dimensional
metric defined on the surface.

Our action can be written ast:

S 4na' f d2
gab aaX,. abX 77 (21.12)

where we define a' = 1/2 for open strings and a' = 1/4 for closed strings. a' is
equal to the Regge slope, which we will define shortly. The action is manifestly
reparametrization invariant. If we reparametrize the two-dimensional world sheet
according to:

or -p&(a,t), i-pf(a,t) (21.13)

then the action is invariant under this two-dimensional general co-ordinate trans-
formation if:

ab( ) =
(a\

a I(_:b)gcd() (21.14)

Under this transformation, the action is manifestly co-ordinate invariant (be-
cause the transformation of cancels against the transformation of the two-VIg-

dimensional measure).
Under an infinitesimal transformation, the transformation of the fields be-

comes:

Sgab =
E

C acgab -
9

ac acEb -
9

bc acEa
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3XA = Ea aaX,j (21.15)

The action is also trivially invariant under local scale transformations:

gab , eogab (21.16)

Since the two-dimensional metric in the action does not propagate, we may
eliminate it via its equations of motion. Then, we find:

gab - aaXN, abV (21.17)

Reinserting this value of the metric tensor back into the action, we find the original
Nambu-Goto action 2-4:

S

1

2na'
d2

surface area (21.18)

where Xu equals 8X' and X" equals
It is remarkable that string theory, which provides a comprehensive scheme in

which to unite general relativity with quantum mechanics and all known physical
forces, begins with this simple statement: the first quantized action is proportional
to the area of the string world-sheet.

21.3 Quantizing the String

To calculate the spectrum of the string and its properties, we will quantize the free
theory using three different methods:

1. The Gupta-Bleuler formalism in the conformal gauge.

2. The light-cone gauge.

3. The BRST formalism.

21.3.1 Gupta-Bleuler Quantization

The gauge degree of freedom allows us to choose the conformal gauge:

Conformal gauge : gab = Sab (21.19)
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Then, our Lagrangian linearizes to the following5:

= I Rio, + (X')2] = 1 a1Xu az-Xu (21.20)
4n a' u 2n

where, after a Wick rotation, we have introduced the complex variable z:

z=a+ir (21.21)

The equations of motion are:

a2 a2

\a2Q
+

82> /
XA = 0 (21.22)

(In deriving these equations of motion, we had to eliminate a surface term; so
we must also set X' = 0 at the ends of the string.) The gauge-fixed action is no
longer locally reparametrization invariant, but it is still globally invariant under a
subgroup of reparametrization, conformal transformations:

z->f(z) (21.23)

Under conformal transformations, the string transforms as:

SX,(z, f) = Ea'X, + Eazx' (21.24)

To quantize the system, we first introduce the canonical conjugate:

[PP(a),Xv(a')] = -i?7"S(a -a')

P
`

- 3-9
(21.25)

1 SXA

We can always decompose the string variable via the Fourier series:

W
1V(a) = Y
n

(an -a`n)cosnQ
n=1

00

n
+a`n)cosna (21.26)

\\ n=1

where the commutation relations between the string variable and its momentum
conjugate are satisfied if:

[anµ, amv] = Sn,-m?7µv (21.27)
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To calculate the spectrum of states, we calculate the Hamiltonian:

00

H =
J

da(P _kA - = +a'pt (21.28)
0 n=1

Fortunately, the Hamiltonian is the simplest possible operator for an extended
object: the sum over an infinite set of independent harmonic oscillators. The
eigenfunctions of the Hamiltonian are therefore just the products of free creation
operators a_n,N, acting on the vacuum:

fl{a-n,Fi}I0)
n,µ

(21.29)

This allows us to display the spectrum of states, which correspond to an infinite
tower of point particles of arbitrary spin. The lowest states include a tachyon
and a massless vector meson (the Maxwell field or, if we include isospin, the
Yang-Mills field):

Tachyon = 10)

Massless vector = aA 110) (21.30)

(Historically, the tachyon was viewed as troublesome feature of the string
model. However, one can also view it as a blessing in disguise, because it signals
the presence of spontaneous symmetry breaking to a new, perhaps more physical
vacuum. Also, the tachyon disappears when we generalize the theory to the
supersymmetric string.)

The series continues indefinitely. The next few states include a massive spin-2
field and massive vector field:

Massive spin - 2 field

Massive vector field

a'`1a1I0)

aA2I0) (21.31)

In Figure 21.2, we plot the resonances on a chart, with mass squared on the
x axis and spin on the y axis. The linearly rising trajectories are called "Regge
trajectories" with Regge slope a'. The point where the leading Regge trajectory
hits the y axis is called the "intercept." The important point is to observe that
the massless Maxwell and Yang-Mills fields (with intercept one) are necessarily
included as part of the string spectrum. For closed strings, the intercept is equal to
two, so we necessarily have a theory of massless gravitons. (In the limit of zero
slope, we see that only the massless particles remain. Thus, the zero-slope limit
is a convenient limit in which we may retrieve point-particle field theory.)
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m2

Figure 21.2. Linearly rising Regge trajectories for open strings. The resonances of string
theory are states of arbitrarily high spin and mass. In the massless closed string sector, the
theory necessarily includes quantum gravity.

Next, we calculate the energy-momentum tensor of the system:

Tab = -47ra'
1 S-°

Sgab

This, in turn, can be shown to equal:

(21.32)

Tab = aaXN, abXA - I gabecd a,X' adXA (21.33)

We notice several important features of the energy-momentum tensor; that is,
it satisfies:

abTab = 0; Tr Tab = 0 (21.34)

Notice that the energy-momentum tensor forms a closed algebra. The Fourier
modes of the energy-momentum tensor form the Virasoro generators Lm6:

1

Lm =
J

da [eima(Too + T01) + e_ima(Too - To1)]
47ra'

1 jr
87ra'

00

am-nan
n=-oo

where an = VI-In-lan for n 0 and a0 = 2a' p. They obey the algebra:

(21.35)

[Ln, Lmj = (n - m)Ln+m + c Sn,-mn(n2 - 1) (21.36)
12

where c is the central charge and equals the dimension of space-time.
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(Another way to derive this algebra is to start with the Nambu-Goto action, and
then construct P1. as SH/SXN,. We find that the momenta are not all independent,
but instead satisfy an additional set of constraints:

2 1 2PA
+ (27a')2

XA 0

P" X'1` = 0 (21.37)

The moments of these constraints also form the Virasoro generators.)
In the Gupta-Bleuler quantization scheme, the ghosts that propagate in the

system (corresponding to the longitudinal modes of a',,) can be eliminated by
applying the gauge constraints directly on the Fock space. Thus, we apply:

LAIR) = 0, n > 0

(Lo - 1)JR) = 0 (21.38)

where the second condition is the mass-shell condition. After a rather tedious
calculation, one can show that these conditions are sufficient to eliminate all
unphysical states from the physical spectrum. However, there is an unexpected
result: the spectrum is ghost-free only if the dimension of space-time is 26.

21.3.2 Light-Cone Gauge

As in ordinary field theory, we can alternatively formulate the system in the light-
cone gauge7 where the unphysical longitudinal modes are eliminated from the
very start.

We will define the light-cone coordinates as:

X+ _ (X0+XD-1)

X- = _(X° - XD-1) (21.39)

and fix the gauge as:

X+(Q, i) =
P+i (21.40)

We can use this light-cone gauge to eliminate all nonphysical modes. By
taking the constraints in Eq. (21.37), we can eliminate unwanted longitudinal
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vibrations by solving for:

2p+
(p2 + -

X (Q) = fda'-(PiXi') (21.41)
P+

The Hamiltonian in the light-cone gauge reduces to:

H = f7r (Pt2
(21.42)

Notice that the physical Fock space consists of transverse harmonic oscil-
lators, which are ghost-free. Of course, we still must check that the theory is
Lorentz invariant. We do this by rewriting the Lorentz generators in terms of the
independent transverse modes. This is a bit awkward, but straightforward:

M" fda(XP- XP)
0

lx p° - x° pµ - i E n av nan/
n=1

(21.43)

The surprising feature of the Lorentz generators is that, in general, they fail to
close properly unless we impose one more constraint:

r O°1M-i M-I
= p+2+2

Y (at nan - Q-n an
L n=1

where:

On =0 (21.44)

On = 12 (26 - D) + n
(D

1226 + 2 - 2a) (21.45)

where a is the intercept. In order to have Lorentz invariance, we must set An
equal to zero, that is,

D = 26; a = 1 (21.46)

This is consistent with the result found in the conformal gauge, that self-consistency
of the string theory forces the dimension of space-time to be 26.
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21.3.3 BRST Quantization

Likewise, the BRST method should also reproduce this result. To BRST quantize
the string, we start with the invariance of the metric tensor:

39ab = gac abSV + aaSUc gcb - SUc acgab = Va SVb + Vb SVa (21.47)

The BRST procedure begins with the construction of the Faddeev-Popov
determinant, which is the determinant of the variation of the constraint. This,
however, is just the determinant of the operator Va. The Faddeev-Popov deter-
minant can thus be rewritten as:

AFP = det(Va) = det V det V (21.48)

We now introduce Faddeev-Popov ghosts by exponentiating this determinant:

AFP=J DbDbDcDce`f -10c

where:

(21.49)

Ybc = n (b a1c + b aZc) (21.50)

As usual, adding this ghost term to the original conformal gauge action in Eq.
(21.20) yields a residual global symmetry, called the BRST symmetry, which can
be generated by the BRST charge, which is computable from the Noether current.
A straightforward calculation of the Noether current yields8:

Q

where:

and:

1
C_n (Lx + Lnc - aSn,o)

n=-oo

OKD

co(Lo - a) + (C_nLn + L_nCn)
n=1

r
2 n,m=-oo

: C_mC-nbn+m : (m - n) (21.51)

{Cn, bm} = Sn _m (21.52)

QZ = 2 EcKD ( (m3 - m) + 6(m - 13m3) + 2am/ cmc_m (21.53)
m=-

which vanishes only if D = 26 and a = 1, as before.
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The new Fock space now consists of all possible products of all possible
creation oscillators, including the ghost oscillators:

H Ja"jfb-na}JC-p}j0)
n,m,p,µ

(21.54)

Although the Fock space now has a vastly increased number of ghost states, we
can eliminate all of them by applying the BRST operator onto the Fock space:

QI) = 0 (21.55)

Thus, all three quantization programs can be shown to have the same physical
spectrum if the dimension of space-time is 26. Also, the intercept condition forces
us to incorporate spin-1 Maxwell fields for the open string and spin-2 gravitational
fields for the closed string.

21.4 Scattering Amplitudes

Interactions are introduced by postulating that the string can break and reform an
arbitrary number of times. The world-sheet corresponding to this is therefore the
set of all two-dimensional complex surfaces with g holes or "handles," as shown
in Figure 21.3. (Two-dimensional complex surfaces are called Riemann surfaces.)
In this way, we introduce Feynman-like diagrams in a first quantized formalism .9

These simple Feynman-like diagrams conceal a large amount of information.
For example, if we carefully extract out the zero mass, spin-2 sector from these
Feynman diagrams, we will reproduce all of Einstein's theory of general relativity
power expanded around flat space.

Figure 21.3. Strings can break and reform, thereby sweeping out two-dimensional Rie-
mann surfaces of genus g. In this way, the string reproduces Feynman-like diagrams.
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6

0
T

Figure 21.4. The world-sheet for an N-point tree amplitude. For calculational purposes,
we have conformally mapped the world-sheet onto this surface. Momenta from tachyons
enter from the top of the world-sheet.

Let ` [N,g] represent all conformally inequivalent Riemann surfaces with
genus g and N "punctures" (external strings) located at infinity. Then the com-
plete N point tachyon amplitude is therefore given by summing over all functional
integrals defined over ` [N,g]:

AN(kl, k2, ... , kN) = J DXNJ ditg
A[N,sl

x exp d2zy(z)+Yik;,,,X°(z,)[if
N

Y
Nf dµ f eik;x;

g J i_1[N81
(21.56)

where dµ is a conformal measure on the Riemann surface. This is a generalization
of the first quantized point-particle path integral that we analyzed in Eq. (21.9).

Fortunately, for tree diagrams this amplitude is easily calculable. Because
the theory is conformally invariant, we will find it convenient to perform the
functional integral over the world-sheet corresponding to a long horizontal strip
with momenta entering the world-sheet at points along the top (Fig. 21.4). To
obtain the amplitude, we will then conformally map this strip onto the upper
half-plane. The external tachyon lines will then lie on the real axis.

To solve this functional integral, let us shift the integration variable by a
solution to the classical equation:

X11 -> XA,classical + Xµ (21.57)
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where the classical solution is determined via the Green's function for Laplace's
equation on the upper half-plane:

XA,classical = -ia' f G(z, z')J(z') dz'

G(z, z) = log Iz - z'I + log Iz - z*'I (21.58)

(This Neumann function is easily calculated by the method of images. The elec-
trostatic potential at a point z in the upper half-plane is the sum of the contributions
from a point charge placed at z' and also the image charge placed in the lower
half-plane at z*'.)

With this Neumann function, the Gaussian integral can be performed, leaving
us with the N-point tree amplitude10-14

:

ffldzA N i 1J IZi - Zj I-k`kj (21.59)
i=3 2<i<j<N

where the zi are on the real axis and obey: oo = z, > Z2 = 1 > Z3 ZN_ 1 > ZN =

0. This is the scattering amplitude that describes the scattering of N tachyons.
For N = 4, this expression reduces down to the celebrated Veneziano

formula: 15,16

r as_ (- ())r(-a(t))1B4(s, t dxx-s/2-2(1 - X)-t/2-2 -
o F(-a(s) - a(t)) (21.60)

where a(s) = 1+Is,a(t)= 1+it,s =(k,+k2)2,andt =(k2+k3)2.

The accidental discovery of this formula in 1968 by Veneziano and Suzuki,
who were trying to describe the scattering matrix for hadronic interactions, marked
the birth of what eventually became superstring theory. (They were originally
trying to find a formula for the scattering of pions, using S matrix theory and
finite-energy sum rules, when they stumbled across the Euler beta function, which
satisfied almost all the properties of the S matrix except unitarity.)

In practice, it is often more convenient to work with the operator formalism. To
convert the path integral to the operator formalism, we need to make the transition
from the Lagrangian formalism to the Hamiltonian formalism on the world-sheet.
Then the path integral will be defined in terms of X' as well as its conjugate
momentum Pi`, which is an operator. This transition is easily done, since the
Lagrangian describes an infinite set of noninteracting harmonic oscillators.

When we make the transition to the Hamiltonian formalism, the vertex eik.x

appearing in the path integral now becomes the operator expression:

V (k) =: e`k.X" := exp k a
exp (

k an eik.x (21.61)00

n=1
ri ` n=1 n
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(We must normal order this vertex. This is because in the path integral for the
N-point function we deleted the sum over i = j, which diverges. To eliminate this
divergent quantity in the operator formalism, we normal order the oscillators.)

In the Hamiltonian formalism, the transition element between two string states
is given by (X lei" I X'). If we make a Wick rotation, then the integrated propagator
between two states becomes:

D =
'

e-t(Lo-1)di = 1

Jo Lo - 1
(21.62)

sandwiched between any two string states. The Hamiltonian on the world-sheet
is given by L0-1.

For the path integral describing the N-point amplitude, the transition to the
Hamiltonian formalism gives us an expression for the N-point function17:

AN = (0, k, I V(k2)DV(k3) ... V(kN-1)I0, kN) (21.63)

where 10, k) = IO)e`k'x, where x'` is the center-of-mass variable describing X''.
To contract these oscillators, which are all written in terms of exponentials, we
use the coherent state formalism. We define a coherent state by:

00

),n

II)
=Yn,(at)nIO)

n=0

Then we have the identities:

(21.64)

(/SIX) = e'`*'

at°
X I?) = Ix),)

eAat I.1) = I.. + A) (21.65)

By contracting the oscillators, we reproduce the N-point amplitude in Eq. (21.59),
as desired.

From a physical point of view, the more interesting theory is the closed
string theory, which includes Einstein's theory of general relativity as a subset.
Closed strings can also be quantized in much the same way. The only major
difference mathematically is that the closed string contains two independent sets
of oscillators, not just one.

We can decompose the string variable in terms of two sets of commuting
harmonic oscillators:

(a/ 1/2 in a
= XN,+ 2 J (aneno+aneino

n=1
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+ ateina +ate-ino\
n n JN

1
00

P
inae-ina -(Q) =

pli + 0 (- 1Qn 1Qneµ
27r 27r 2a' n=1

+ is ein, +iane-ina\ (21.66)

where XN,(0) = XN,(2

The Hamiltonian

f2 r
H=7rJ dQ I

7r).

now also has do

/ X,2
a'PA+ 2af)

JF

ubled the number of oscillators:

=57(natan+natan)+a'p2 21.67)47r
n=1

The graviton naturally emerges as the massless state with spin 2:

Tachyon = 10)

Graviton = (a11 1a° 1 + aµ lav 1) 10) (21.68)

This, in fact, is perhaps the most attractive, and most mysterious, feature of string
theory, that general relativity is necessarily part of the theory. While other point-
particle theories try to avoid including the graviton, string theory views gravity as
an inseparable part of its formulation.

The propagator for closed strings is similar to the open string propagator,
except for one difference: There is an extra rotation factor P that guarantees that
the final result is not dependent on the origin of the parametrization. Thus, the
propagator is:

P
Lo+Lo-2

where:

(21.69)

(21.70)

where Lo - Lo is the operator that rotates the closed string. The propagator can
be written in an equivalent way:

D= -- f oo-2ZLo-2 d2Z = sin7r(Lo - Lo) 1
(21.71)

1<1 r(Lo -Lo) Lo + Lo - 2
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The N-point amplitude then becomes18,19:

AN = ,(0,k1IV(k2)DV(k3)...V(kN-1)I0,kN) (21.72)
Perm

where the permutation is taken over all possible orderings of the external legs.
When expanded out, the resulting N-point amplitude for closed strings is almost
identical to the one for open strings (except the zi variables are now integrated
over all complex space, not just the real axis).

The Virasoro constraints can also be written for the theory, which now become:

La I0) = Ln 10) = 0

(Lo + Lo - 2)I0) = 0

(Lo - Lo)I4) = 0 (21.73)

where the last constraint is due to the fact that the states should be independent of
where we chose the origin of our parametrization.

21.5 Superstrings

To make the spectrum more realistic, we must now turn to the superstring, which
introduces a new symmetry: supersymmetry. In fact, supersymmetry, as a sym-
metry of an action, was first discovered in 1971 in string theory, and only later
was adapted to four-dimensional point particle theories.

Let us introduce a new fermion field *,,, the counterpart of XN,, which is
a vector in space-time but transforms as a two-dimensional spinor in the two-
dimensional world-sheet. Then, the Neveu-Schwarz-Ramond (NSR) mode120,21

can be expressed as a two-dimensional action. Gervais and Sakita introduced the
following Lagrangian22:

'°=-21 (a (21.74)

where:

po-(0 -i )
,

p1=(0 i ) (21.75)
i 0 i 0
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and:

y A = Apo (21.76)

with the metric {pa, pb} _ -2riab, where i is diagonal and given by (-1, +1).
Written explicitly, this equals:

Y=27r1 [X - X - X' X'+i*o(al+ap)*o+i*10T-ap) 1] (21.77)

The important feature of this action is that it is explicitly invariant under the
following supersymmetry:

8Xµ = E1/µ, 81/lµ = -ipa aaXµ E (21.78)

The energy-momentum tensor can be written as:

Tab = aaXµ abX' + 4*µpa ablfµ + -* pb as*µ - (trace) (21.79)

By Noether's method, we can derive the conserved supercurrent:

Ja = 2pbpa*' abXµ (21.80)

We can rewrite the superconformal current Ja as:

TF= - 1
21/lµaXµ (21.81)

and its Fourier moments as:

Ga = 2 j
_

Za+(1/2)
TF(Z) (21.82)

27r i

We quantize the fermionic oscillators in the usual way:

{1/la (a, r), /b(Q', r)} = Jr8ab8(Q - a')riµ° (21.83)

Because we have more fields, there are actually two different boundary condi-
tions we may take on the theory, either periodic (R) or antiperiodic (NS) boundary
conditions. The 1/l, fields are equal to each other at a = 0, but at a = 7r they obey:

R : ,o(7r, r) = 1G1(7r, r)

NS : *o(7r, r) = -*1(7r, r) (21.84)
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With these boundary conditions, the harmonic oscillator decomposition is given
by:

ao
1µ -in(rfo)R: 0 1 =

µ
do e- 57

Vf2 n=-oo

00
1µ -ir(rfo)NS : *01 -

=
bµer (21.85)

2 rEZ+1/2

where we associate the lower index 0 (1) with the + (-1) sign appearing in the ex-
ponential, where the R states are integral moded, while NS states are half-integral
moded, and where we have the anticommutation relation among oscillators:

R . {dn,dm}VV8n,-m

NS : {b, , b,} = 17µV 8r,-s (21.86)

The Fock space of the theory now describes either an infinite tower of bosonic
fields, or fermionic ones:

R: fl{aµn}{d-"r}10)ua
n,r

NS : fl{aµn}{b° r}10) (21.87)
n,r

where u,, is a 10-dimensional (32-component) spinor.
The commutators and anticommutators of the energy-momentum tensor and

the supercurrent now form a closed algebra, called the superconformal algebra:

[Lm, Ln] = (m - n)Lm+n +
c

8
(m3 - m)sm+n,O

M
[Lm, GrI = 2 - r Gm+r

{Gr, Gs} = 2Lr+s +
2

(r2 -
4

8r+s,o (21.88)

where c = 2c/3.
An explicit representation of the NS superconformal operators is given by:

1 r 1 r, ( 1

Lm =
2 a-nam+n : +2 L, r + 2m : b_rbm+r

n=-oo r=-oo

00

Gr = T, a-nbr+n (21.89)
n=-oo
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For the R sector, the generators are given by:

Superstrings

r 1 r, ( 1

a-nam+n : + L, n + m d_ndm+n
n=-oo n=-oo

00

Gm = Y, a-ndm+n
n=-oo

(21.90)

Finally, let us define the operator QBRST. We find that the Faddeev-Popov
ghost factor can be written in terms of two commuting ghosts 0, y as:

L= (P a2y +c.c.) (21.91)

where c.c. is the complex conjugate.
The complete superconformal generators must also include the presence of

the b, c and 0, y ghosts:

Lghost
M

Gghost
m

°° °° 1

(m +n) : bm_nCn + Y" (m+n):m_nYn:
n=-oo n=-oo

00

-2 E b-nym+n + Y (2n - m) C_n Bm+n
n=-oo n=-oo

Finally, Q can be written as:

00 1 00

Q = (L-nCn + G_nyn) - 2 (m - n) : C_mc_nbm+n
n=-oo m,n=-oo

(21.92)

3n °°
+

2
+m C_nN-mym+n + y-my-nbm+n - ac0

m,n=-oo m,n=-oo

(21.93)

As usual, we can check for the vanishing of Q2, and we find the constraints:

D=10, a= i (NS)

0 (R)
(21.94)

Although the NSR formulation is quite simple and easy to work with, one
disadvantage is that ten-dimensional space-time supersymmetry (not to be con-
fused with the two-dimensional superconformal symmetry of the NSR model) is
not manifest. There exists another reformulation of this model, called the Green-
Schwarz model,23 which introduces two genuine ten-dimensional spinor fields S'
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and S2 (which have 210/2 = 32 components each). In this model, ten-dimensional
space-time supersymmetry is manifest as a symmetry of an action. (However, a
detailed discussion of this model is beyond the scope of this book.) The advantage
of introducing these spinors Si is that we can construct various superstring theories
from them.

21.6 Types of Strings

At this point, we may ask what are the various types of string theories one can write
that are supersymmetric, ghost free, and anomaly free. The easiest way to catalog
the various possibilities is through the light-cone quantization of the GS string,
since all ghosts have been removed and the theory is globally supersymmetric in
space-time.

The list of totally self-consistent superstring theories consists of:

1. Type I.

2. Type IIA.

3. Type IIB.

4. Heterotic.

(At present, the leading superstring theory is the heterotic string. When we refer to
the superstring theory, we are therefore implicitly referring to the heterotic string.)

It may seem surprising that there are so few self-consistent string theories,
while there are an infinite number of point particle theories. The reason for this
is that the Feynman diagrams of a point particle are based on one-dimensional
graphs, upon which we can impose any number of Lorentz covariant vectors
and spinors with arbitrary isospin indices in our Feynman's rules. However,
the Feynman diagrams of string theory are two-dimensional manifolds, obeying
strict self-consistency constraints; so it is not surprising that we only find four
self-consistent string theories.

21.6.1 Type I

The first string theory is called type I, which contains both open strings and closed
strings. The two spinor fields Sl and S2 of the GS model have the same chirality.
(Because the closed string emerges as a bound state of open string graphs, we
must add the closed string sector to the open string in order to maintain unitarity.)
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Gauge invariance can be added into the theory by multiplying the N-point
function with appropriate traces over the generators of some Lie algebra (called
Chan-Paton factors). The gauge group must be SO(32) in order to cancel all
anomalies.

21.6.2 Type IIA

For closed strings, there are two ways to choose the chiralities of S1 and S2. If we
choose them to be of opposite chirality, then we have the type IIA string. Type
IIA closed string theory is appealing because it has no chiral anomalies from the
very beginning (since the two chiral sectors cancel against each other). In the
zero-slope limit, when only the massless sector of the theory survives, the theory
reduces to the point particle N = 2, D = 10 supergravity theory.

21.6.3 Type IIB

For closed strings, if S1 and S2 have the same chirality, then we have the type
IIB superstring. However, in the zero-slope limit, when we analyze the massless
sector, we find that there does not exist any known covariant version of this theory.
Its light-cone reduction is well defined, but its covariant precursor apparently
cannot be written. (This may be because of our limited understanding of how to
construct point particle supersymmetric theories in ten dimensions.)

At present, it seems, however, that the type II string cannot describe the
physical SU(3) 0 SU(2) 0 U(1) symmetry of our low-energy universe. By
compactifying from ten dimensions to four dimensions, the type II string can
introduce a wide array of symmetries, but none of them seems to fit the description
of our world.

21.6.4 Heterotic String

The string theory that holds the most promise of describing the physical world
is the heterotic string.24 While the type I string uses multiplicative Chan-Paton
factors to introduce isospin symmetry, the heterotic string introduces isospin in an
unorthodox fashion. We recall that the closed string has two sets of operators, a
and a,,, which do not interact; that is, as the closed string propagates, it has right-
moving and left-moving oscillator modes. The heterotic string splits these modes
apart. The left-moving modes are purely bosonic and live in a 26-dimensional
space labeled by Xµ which has been compactified to ten dimensions, leaving us
with a compact 16-dimensional space. If we use the symbol X' (X' ) to represent
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the 10 (16)-dimensional space, then we have:

Xµ , {X`, XI } (21.95)

We will choose the compactified 16-dimensional string, labeled by XI, to live
on the root lattice space of an E8 0 E8 isospin symmetry. Since E8 is a rank-
eight Lie group, the heterotic string can be compactified so that its spectrum is
E8 0 E8 [or Spin(32)/Z2], which is certainly large enough to permit a serious
phenomenological investigation.

However, the right-moving modes only live in a ten-dimensional space and
contain the supersymmetric GS or NSR theory. When the left-moving half (con-
taining the isospin) and the right-moving half (containing the supersymmetry) are
put together, they produce a self-consistent, ghost-free, anomaly-free, one-loop
finite theory, the heterotic string (meaning "hybrid vigor").

The action for the heterotic string is therefore:

f fZn 16

S = _ -- dr
J

dQ [aaxi 8°X+ aaX' a°X' +
o

(21.96)
where I = 1, 2, ... , 16 and is an isospin index and where we enforce the con-
straints:

(a, - aa)X' = 0, y+S =
1

2(1 + yii)S = 0 (21.97)

where y+ = 2-1/2(y° + y9).
In the zero-slope limit, this theory yields ten-dimensional supergravity coupled

to a super Yang-Mills gauge multiplet with E8®E8 local gauge symmetry. Clearly,
we have enough symmetry to include the Standard Model and extract interesting
phenomenology.

21.7 Higher Loops

There are three main aspects to superstring theory:

1. Superstring perturbation theory.

2. Superstring compactification and phenomenology.

3. Nonperturbative approaches and string field theory.

We will discuss each of them separately.
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From the point of view of quantum field theory, superstring perturbation theory
gives us entirely new, unexpected mechanisms by which to cancel the divergences
found in quantum gravity. We find, for example, that the higher loops are not
ultraviolet divergent at all (because the presence of the infinite tower of resonances
acts, in some sense, like a Pauli-Villars regulator). The only problem comes from
infrared divergences, which in turn can be controlled by using symmetry.

To see this, we will only sketch the calculation of the single-loop amplitude,
omitting many details. We will, as expected, obtain the Neumann function defined
over a disc with a hole (defined in terms of Jacobi 9 functions). To calculate the
first loop amplitude for N external tachyons, we will simply trace over a series of
vertices and propagators, using the coherent state formula:

1
J

d2 ). e-'a'2 I.1) (.l I= 1 (21.98)
7r

Using Eqs. (21.65) and (21.98), it is now a simple, although tedious, matter
to take the trace over a string of vertices and propagators:

AN f d26p Tr [V(k1)DV(k2)... DV(kN)D]

f d26 Z. k /4 1 fd2).d2.
J p

N

H I `I1_1

x V(k2)ZR ... V(kN)zNI?)I5)

N

d2zi
l w l -41f(W)i-48 ( f-47r

)
13

[Xv(Cjr u')]k; ki /2

H
i=1 log IwI i<j

(21.99)

where:

vj = (27ri)-1 logZ1Z2 Zj

vii = vj - vi

i = (27ri)-1 log w

w = Z1Z2 ... ZN

Cji = Zi+1Zi+2 *"Zj

and where:

X(z, w) = exp
log2

IZI

(2 log I w I

Z_1/2 n (1 - wmz)(1 - wm/z)
W

(21.100)
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(_Jr(Im
2n exp

vj)2

__fm i )
Bi(v1iIT)

B; (OI r)

This, in turn, can be written as:

where:

AN =f d2.r (IM r)-2 C(i)F(i)
F

C(r) = 4(1 Im r)-12e4ncm T If(e2nrT)I-4s
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F(r) = 7r

1

N (Im T) l l
7 d2vi

l l7 (Xiik.ki/2

i=1 i<j

725

(21.101)

(21.102)

(21.103)

The important point is that ultraviolet divergences are completely missing in
this amplitude, which is astonishing because it contains the one-loop contribution
from the graviton and an infinite tower of massive particles. However, the theory is
infrared divergent, which corresponds to w -* 1, or to the interior hole shrinking to
a point. This infrared divergence can be eliminated when we go to the superstring
theory. To see this, we will analyze the superstring single-loop amplitude. We
simply present the result:

AN

where:

f N
47C

5f d2Zi IwI_2 l/ i_1 log IwI i<J
fd2r(Imr)_2Fs(r) (21.104)

2

Fs(r) = (Im i)-3 fld2vi fl
(Xii)

i=1 i<j
(21.105)

This amplitude appears to diverge as r -* 0. However, there is a symme-
try that is protecting the amplitude from diverging. This symmetry is modular
invariance,25 which is a global symmetry, a subset of conformal invariance. A
modular transformation on the r variable is generated by:

, ar+b
cr + d

(21.106)

where a, b, c, d are integers.
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The divergence of string theory is similar to the divergence of gauge theory
found by non-Abelian gauge theory. As in gauge theory, the path integral diverges
because of an infinite overcounting of the gauge symmetry, which is eliminated
by slicing the gauge orbit once. In string theory, the counterpart of slicing the
orbit is to take one "fundamental" region of the complex plane. We can do this by
taking the fundamental region to be:

-2<Re r<2
Fundamental region = Im r > 0

Ir > 1

(21.107)

Under a modular transformation, the fundamental region can be mapped into all
other points in the complex plane. Thus, the divergence is removed by taking one
fundamental region and throwing away the rest.

Multiloops have also be calculated in the string formalism.26-29 The inte-

grands of the multiloop amplitudes correspond to the Neumann functions defined
over Riemann surfaces of genus g. Because of this close analogy with Riemann
surfaces, we can see intuitively that the rather miraculous cancellation of all di-
vergences at the first-loop level persists to all loop levels. We know, by conformal
invariance, that we can isolate the divergence of each loop by "pinching" each
hole separately. Thus, the same arguments we used in the single-loop cancellation
can be used to show that the divergence of each "pinch" can be eliminated.

Once we have eliminated the divergences associated with each hole separately,
we still have to consider the subtle divergences associated with the multiple
deformation of the topology of the surface, that is, when several holes collapse
together. This is easiest to study in the light-cone gauge, where Mandelstam has
eliminated all divergences of the superstring.

21.8 Phenomenology

One of the main problems in superstring research has been to find the true vac-
uum of the theory, either perturbatively or nonperturbatively. Therefore, intense
research over the years has been spent trying to catalog the various possible
four-dimensional compactified strings.

A few classes of these solutions include:

1. Calabi-Yau manifolds,30 which are highly nonlinear, nontrivial manifolds
studied by mathematicians.
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2. Orbifolds,31 which are certain manifolds which have fixed points on them
(e.g., a cone is an orbifold).

3. Free fermion/free boson solutions. 32-34

Unfortunately, we now know millions upon millions of possible string vacua.
In fact, it is conjectured that the complete set of all possible string vacua is the
totality of possible conformal field theories.

Although there are an enormous number of possible four-dimensional string
vacua, the surprising feature of string theory is that, with a few rather mild
assumptions, one can come fairly close to describing the physical universe. Earlier,
we saw that Kaluza-Klein theory was too restrictive to describe the physical
universe. In particular, the Standard Model's gauge group and complex fermion
representations could not be accommodated. However, the string model, because
it is not based on Riemannian space, does not suffer from these problems. To
begin, let us make the following assumptions:

1. The string has compactified down to a four-dimensional Minkowski space
times a six-dimensional space:

M10-*M40K6

where M4 is a maximally symmetric space; that is,

R
Rµva# = 1(gµagv# - gNfigva)

(21.108)

(21.109)

2. N = 1 local supersymmetry has survived the compactification down to four
dimensions.

3. Some of the bosonic fields in ten-dimensional superstring theory can be set to
zero.

The second assumption, in particular, yields very stringent constraints on the
possible string vacua. The variation of a fermion *i transforming under N = 1
supergravity is given by:

3*i = [EQ, Wi] - Dic (21.110)

If supersymmetry is preserved, then the vacuum is annihilated by Q, and therefore:

Qlo) = 0 - (O!8 r lo) = 0 (21.111)
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In the classical limit, this means that Sfi itself must vanish:

S*i - DiE = 0

Superstrings

(21.112)

This deceptively simple statement is quite restrictive, because it means that c
is a generally covariant constant spinor. This, in turn, is only possible on a highly
specialized set of six-dimensional manifolds. To find these manifolds, we must
study the covariant derivative Di, which has the physical interpretation of being a
covariant displacement operator on the K manifold. If we travel in closed loops
in K space, then the effect of this is equivalent to taking multiple variations of the
fermion, so we arrive at:

E -* E + 0`r [D;, Dj]E (21.113)

where 0`j is the area tensor of the loop.
The statement that E is a covariantly constant spinor means that it is invariant

under multiple displacements in K space, so that:

[Di, Dj]E " RijkirklE = 0 (21.114)

In other words, this means that:

Rij = 0 (21.115)

that is, the manifold K is Ricci-flat.
On the manifold K, the displacement operator Di contains a connection field,

which is an 0(6) gauge field. However, we also know that 0(6) = SU(4).
Normally, a 0(6) spinor has eight elements. However, this eight-component
spinor can be decomposed according to SU(4) as:

8=4®4 (21.116)

that is, the eight-component spinor transforms as the sum of two four-spinors of
opposite chirality. We will take c to have positive chirality, so it transforms as
one 4. The fact that c is a covariantly constant spinor now reduces to the simple
question: What is the largest group that will leave a constant spinor invariant?
The answer is easy to see if we write the spinor as:

E = I
,. 1

(21.117)
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Clearly, SU(3) rotations, which do not affect the first three rows of c, are the
largest group that can leave c invariant.

In summary, we have shown that, with rather mild assumptions (namely,
that N = 1 supersymmetry survives the compactification), the manifold K is
both Ricci-flat and has SU(3) holonomy. We call such manifolds Calabi-Yau
manifolds.

Next, we must check that the Bianchi identities are satisfied for the theory.
Usually, these identities are trivially satisfied. However, for our case this is no
longer true, especially when we invoke the third condition, that certain fields
vanish. The Bianchi identities become:

1TrRAR=30TrFAF (21.118)

This is a highly nontrivial constraint, because the Riemann curvature sits on the
left-hand side, while the Yang-Mills field for the exceptional group sits on the
right-hand side.

However, there is a nontrivial solution to this constraint. This constraint
essentially forces us to make a link between the Yang-Mills connection field and
the connection field of Riemannian K space. Since we know that K is a Calabi-
Yau manifold with SU(3) holonomy, we can insert the connection field of K into
the connection field of E8 ® E8. We know that E8 contains SU(3) 0 E6 as a
subgroup. By preserving the SU(3) contained within E8, we achieve a breaking
of the original exceptional group symmetry, so that:

E8 ®E8 -* SU(3) ®E6 ®E8 (21.119)

The original fermions of E8 ® E8, which formed a representation 248, trans-
form under SU(3) ® E6 as follows:

248 = (3, 27) ® (3, 27) ®(8, 1) ®(1, 78) (21.120)

We can now place yet another restriction on the theory. The Bianchi identity
cannot be satisfied with any choice of fermions in four dimensions. A careful
analysis of the constraint shows that the fermions of the low-energy spectrum
must belong to the 27, which is precisely the favored GUT representation for E6.

Finally, one great advance of this construction over previous ones is that
we can determine the number of generations from purely topological reasons.
In standard GUT theory, we recall, there is no compelling reason to introduce
three exact copies of the theory. In superstring theory, we have an additional
constraint coming from topology. By analyzing which manifolds allow fermions
to propagate on them, this gives us a determination of how many generations
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of fermions are allowed. In particular, there are several manifolds that allow
precisely three generations of fermions on them.

In summary, with very mild assumptions, we have found a vast number of
solutions to the string equations of motion that mimic many of the features of the
physical universe.

21.9 Light-Cone String Field Theory

So far, we have developed string theory in the first quantized formalism, where we
postulated a large number of ad hoc rules to derive the S matrix. In this language,
we could not prove unitarity or fix the weights of the various diagrams. In this
section, we will derive the second quantized field theory of strings,35 where all the
Feynman rules are derived from a single action. We will first discuss the light-
cone string field theory, where unitarity is manifest, and then the BRST string field
theory, where Lorentz covariance is manifest.

The field theory of strings is based on (D(X), which is a functional; that is, it
is a function of every point XN,(a) along the string for all possible values of a:

(D(Xµ) = (D (XN.(Ql), X/e,(Q2)...., X,.(QN)) (21.121)

where Q, are the points along the string and we let N - oo.
We can also decompose this string functional in any basis we wish. In the

harmonic oscillator basis, the string field has a particularly simple form:

(D(X) = (XI(D(xo)) (21.122)

where:

I(D(xo)) = 4(xo)IO) +A,(xo)ai t!O) taitlO) +... (21.123)

where xo is the usual four-vector representing ordinary space-time. Here, we see
the explicit decomposition of the field functional in terms of the tachyon field
¢(xo), the Maxwell field A,,(xo), a massive graviton field g,,,,(xo), etc.

We can repeat our discussion in Section 8.3, where we made the transition from
first to second quantization for point particles. We find that the free light-cone
action is given by:

So = fdr DX; dp+ [(Dp.(X;, r)(i8T - H)(Dp.(Xi, r)] (21.124)
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Figure 21.5. In light-cone string field theory, there are five ways in which open and closed
strings may interact. Notice that all interactions take place locally along the string at certain
points. Closed string field theory has only a cubic interaction.

where the light-cone Hamiltonian is given in Eq. (21.42) and (Dp+(X1, r) is the
Fourier transform of (D(X-, X+, Xi) with respect to X_ after we have taken the
light-cone gauge X+ = p+i.

The measure DXi is equal to:

DXi = JJfldXni =flJJdXi(Q) (21.125)
i n i a

Next, we will only sketch how to write the interaction Lagrangian for the
light-cone string field theory. In Figure 21.5, we list the five possible interactions
that are required to describe open string field theory. (For a purely closed string
field theory, only the cubic term is necessary.) For open strings, an examination
of Figure 21.5 shows that strings canjoin at their endpoints (or break at an interior
point). Among other terms, the interaction Lagrangian contains a V term, with a
Dirac delta function sandwiched in between:

S3 =
H dp,. DXi S 8123 (Df i=1

(X3)+h.c. (21.126)1r=1 J
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where:

2

3123 = fl fl 8 X3(a3)-9(7ra1-a)Xi(al)-9(a-7ral)X2(a2)) (21.127)
i=1 0<a; <7ra;

where the string variables are defined as:

al = or, 0<or <7ral

a2 =

a3 =

Or -7ra1, 7ra1 < or < 7r(al +a2)

0 < or < 7r(al +a2) (21.128)7r(al + a2) - Or,

with the condition Y',i ai = 0. To calculate all N-point functions and loops
diagrams, it is necessary to use all five interactions shown in Figure 21.5. If we
let (D (IF) represent open (closed) string fields, we can symbolically represent the
interactions for the open and closed strings:

y
open =

(D3 + (D4 + (D2q, +qj3+(Dql

In other words, the open string vertex function by itself cannot generate all string
amplitudes, so we must necessarily include closed strings as well. Thus, even
if we started out with an open string theory without any gravitons, we find that
gravitons necessarily creep back into the theory. There is no choice: String theory
is by its very nature a theory of quantum gravity.

The purely closed string action, by contrast, is cubic. This is rather remarkable:
The theory of quantum gravity, which is highly nonlinear, coupled to an infinite
tower of spinning fields, is cubic. The W3 interaction is sufficient to generate all
the interactions of gravity coupled to matter fields.

closed =
q13 (21.129)

21.10 BRST Action

There is also a second quantized formalism in which gauge invariance and Lorentz
invariance is manifest. Let us choose the BRST action:

S =
J

DX Db Dc Db Dc (D Q(D (21.130)

where (D is defined to have ghost number -1, and Q is the usual BRST operator.
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The advantage of this second approach is that one can see explicitly the gauge
invariance of the theory. The theory is invariant under:

S(D = QA (21.131)

because Q is nilpotent.
As we mentioned, the first quantized string theory required a sum over the set

of all conformally inequivalent topologies. This conveniently concealed many
difficult questions concerning how to place coordinates (or moduli) on arbitrary
Riemann surfaces. The principal problem is that, until recently, mathematicians
have been unable to triangulate moduli space successfully for genus g Riemann
surfaces, even after a century of experience with these surfaces. Remarkably,
string field theory gives an exact triangulation of moduli space, thus solving a
long-standing mathematical problem.

Let us begin our discussion by first requiring that open string field theory be
a gauge theory that satisfies the axioms of gauge theory. Specifically, we need to
postulate the existence of a derivative Q and a product operation *. We postulate
the following five axioms:

1. The existence of nilpotent derivative Q such that Q2 = 0.

2. The associativity of the * product:

(A*B)*C=A*(B*C) (21.132)

3. The Leibnitz rule:

Q(A * B) = QA * B + (-1)IAIA * QB (21.133)

4. The product rule:

A* B= (_l)IA1IBI J B* A 134)(21f .

5. The integration rule:

f QA=0 (21 135).

where (-l)IAI is-1 if A is Grassmann odd and +1 if A is Grassmann even.

We postulate that the field A has the following transformation rule:

SA=QA+A*A-A*A (21.136)
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Figure 21.6. The symmetric interaction of Witten's covariant open string field theory.

Then we can construct a curvature form given by:

F= Q A+ A* A (21.137)

such that:

8F=F*A-A*F (21.138)

It is easy therefore to show that the following is a total derivative:

f F*F= f Q(A*QA+3A*A*Al (21.139)

Then the Witten action36 is given as a Chern-Simons form:

Y=A*QA+3A*A*A (21.140)

(The Chern-Simons form is preferable to the usual F2 form found in ordinary
gauge theory, because Q already has two derivatives contained within it.)

Our task is to find a multiplication operation that satisfies the postulates of
the * product. Then, the gauge invariance of the theory is automatic, without any
more work. We notice, first of all, that the * operation is symmetric in all three
strings. There is only one unique configuration that is symmetrical in all three
fields, and that is given in Figure 21.6, where the midpoint of the strings has been
singled out.

The multiplication operation:

IX3) = 1X1) * IX2) (21.141)

simply means that we have exchanged the Fock spaces of strings 1 and 2 for string
3, such that the points along 1 and 2 have been identified with points along string
3. The triple product (without ghosts) can be defined as a delta function:

(D* (D* (D = fDXiDX2DX3(Xi)(X2)(X3)
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3

X fl S \Xr,µ(Qr) - Xr-1,µ(7C - Ur-1))
r=1 O<ar <II/2

(21.142)

(where we omit the ghost delta functions).
Let us now write the ghost number for all the operators in the theory. The c

ghost has ghost number 1, the b ghost has ghost number -1, so that Q has ghost
number 1. This, in turn, fixes the ghost number of the A field to be -2, since the
action contains a term (AI Q!A), which must have total ghost number 0.

The ghost number of the gauge parameter A and the * operation can be fixed
by observing the gauge variation of the A field. In order for the left-hand side
(with ghost number -1) to equal the ghost number of the right-hand side, the
ghost number of A must be - i and the ghost number of the * operation must be
+2.

Similarly, we can fix the ghost number of the f operation by demanding that
the action have total ghost number zero. Putting everything together, we have the
following set of ghost numbers:

C: 1; *: 3
2

3b : -1; f
2

(21.143)
Q 1; A: 3_2

1A: .

2'

What is more interesting, of course, is a covariant closed string field theory.
Unfortunately, it is more complicated, requiring a nonpolynomial action where
the closed string interactions have the topology of polyhedra.31-39 In this short

chapter we are unable to present this action or other interesting features of the
superstring theory. We could only sketch the highlights. The interested reader is
therefore urged to consult the literature concerning the many fascinating properties
of superstrings that are beyond the scope of this book.

In summary, the advantages of the superstring theory are:

1. The theory is finite to all orders in perturbation theory. It requires no renor-
malization.

2. The theory necessarily includes quantum gravity and gauge theory as subsets.
Dropping quantum gravity from the action, in fact, destroys the properties of
the theory.

3. The theory contains all the symmetries so far found in quantum field theory
as a subset, yet it is totally free of anomalies.
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4. With only a few assumptions, one can obtain the chiral fermion spectrum
contained within the 27 of E6, which includes all the known fermions.

5. The generation problem can be formally solved by analyzing the topological
invariants of a six-dimensional manifold.

6. The model is so tightly constrained that only a handful of self-consistent string
theories is possible.

However, we should also mention the formidable problems facing superstring
theory:

1. As with any theory of quantum gravity, the superstring theory is defined at the
Planck energy, and hence testing the superstring theory becomes problematic,
if not impossible.

2. Millions of vacua for the theory have been found, some of which have three
generations of fermions and can reproduce many of the features of the Standard
Model. However, the outstanding problem is finding which one, if any, is the
true vacuum of the theory.

3. Experimentally, the theory cannot explain why the cosmological constant
is extremely close to zero. Supersymmetry, before symmetry breaking, is
powerful enough to fix the cosmological constant to be zero. However, once
supersymmetry is broken, it is not known how to keep the cosmological
constant zero.

Of these various problems, the most fundamental is perhaps the second. Until
the true, nonperturbative vacuum of the theory can be isolated among the millions
that have been discovered, the theory has no real predictive power. However,
since the superstring equations are perfectly well defined, the true nonperturbative
vacuum solution can, in principle, be found. Thus, the main problem facing
superstring theory at present is theoretical, to isolate the true vacuum of the theory,
rather than experimental. Until this solution is found, our attitude is to treat the
superstring theory as a highly sophisticated theoretical laboratory in which to test
the limits of quantum field theory.

21.11 Exercises

1. Show that Veneziano amplitude in Eq. (21.60) satisfies all the properties of
an S matrix, except for one; that is, show that it is analytic, Lorentz invariant,
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CPT invariant, crossing symmetric, and Regge behaved:

A(s, t) --+ s°°

737

(21.144)

for large s and fixed t. Why does the Veneziano formula not satisfy the last
remaining constraint of the S matrix, unitarity?

2. Using harmonic oscillators, expand out the N-point amplitude in Eq. (21.63)
using coherent state methods and show it to be equivalent to Eq. (21.59).

3. Express the N-point Veneziano formula so that it is manifestly invariant under
a real projective transformation performed on the integration variables:

az+b
z =

where ad - be = 1.

cz +d
(21.145)

4. For the Nambu-Goto string, calculate the momenta PN, and prove that it
satisfies Eq. (21.37).

5. Given the BRST operator Q, show by direct calculation that it is nilpotent
only in 26 dimensions; that is, prove Eq. (21.53).

6. Show that the condition QI(D) = 0 is sufficient to eliminate the longitudinal
mode of the Maxwell field.

7. For the string field given in Eq. (21.123), show that the variation:

8 ) = L_1!A) (21.146)

contains within it the gauge variation of the Maxwell field: 8AN, = aMA.

8. Show that the field variation:

8I(D) = L-1 JA) +L-i!A) (21.147)

yields, for the spin-2 field:

8h AV = 3 A (21.148)

9. In the commutation relation for the Virasoro algebra in Eq. (21.36), explic-
itly show where the c-number term comes from. (Hint: take the vacuum
expectation value of the Virasoro algebra.)
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10. Consider the state:

I,G) = (L_2 +aL2 1) (21.149)

where I¢) satisfies the Virasoro constraint. Show that this state does not
couple to real states that satisfy the Virasoro constraint; that is, show that it
is spurious. Now demand that this state also be real, that it also satisfy the
Virasoro constraint:

Lft if') = L2I'G') = 0 (21.150)

Show that this fixes D = 26 and a = 3/2. At first, this may seem to be a
disaster: We have constructed a real state that is also spurious. But show that
this state has zero norm, and hence the theory still makes sense at D = 26.

11. Calculate the four-point function for the scattering of four tachyons in the
Neveu-Schwarz model. Show that:

A4(s, t) = (0;k1Ik1 . b1/2V(k2)
1

V(k3)k4 b_1/2I0;k4)
Lo - 1

P(1 -a(s))P(l -a(t))
(21.151)P(l-a(s)-a(t))

where V = k,,*' Vo, where a(s) = 1 + a's and a'k2 = 1.

12. Prove:

det-1 2(1 - AB) exp
121 atB`j (1 -lAB)jk akj

IO)

(21.152)

[Hint: use Eqs. (21.65) and (21.98) by contracting onto coherent states.]

13. Prove the L_1, Lo, and L1 generate the group SL(2, R) (the set of 2 x 2 real
matrices with unit determinant). This is also called the projective group.

14. The modular group, which is the symmetry of the one-loop string amplitude,
is generated by:

(21.153)i
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Show that the group generated by these mappings is equivalent to the group
of transformations:

ar + b
cr +d

where a, b, c, d are arbitrary integers.

15. For the open bosonic string, prove:

(21.154)

(L - Lo - n + 1)Vo = Vo(L - Lo + 1)

1

(L - Lo + 1)
Lo 1 1 Lo + n - 1(L" - Lo - n + 1) (21.155)

From this, prove that:

(L =0 (21.156)

Show that this means that ghost states do not couple to trees, although they
can couple to loops. How does this compare with the way Yang-Mills ghosts
couple to trees and loops?

16. Prove that Eq. (21.10) is equivalent to the original Lagrangian in Eq. (21.1)
by functionally eliminating pN, and X.





Appendix

A.1 SU(N)

From the work of Lie and Cartan, we have a complete classification of the various
compact Lie groups. If we restrict ourselves to compact, real forms, then the
complete set is given by the infinite series, labeled:

An =

Bn =

Cn =

Dn =

SU(n + l)

SO(2n + 1)

Sp(2n)

SO(2n) A. 1)

as well as the exceptional groups, labeled by E6, E7, E8, F4, and G2.
Of special interest to physicists is the Lie group SU(N), which is the set of

all special, unitary N x N complex matrices. If U is a member of SU(N), then it
satisfies:

UUt = 1

det U = 1 (A.2)

By counting the constraints in this equation, we know that the matrix has N2 - 1
unknowns, or parameters.

Any unitary matrix can be represented by the exponential:

U = e`H (A.3)

where H is Hermitian:

Ht = H (A.4)

(This can be proved by taking the conjugate of both sides of the equation.)
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Since there are N2 - 1 independent Hermitian N x N matrices, we can also
write:

N2-1

U = exp (i Oa ra (A.5)
i=1 f

where to are independent Hermitian matrices, the generators of the group, satis-
fying:

[,a b] = ifabcrc (A.6)

To create irreducible representations of SU(N), we first postulate the existence
of N complex fields 0i that transform as:

O'` = Uj0' (A.7)

We also introduce a new field * that transforms as Vr* -, Vr*Ut. Then an
invariant is given by:

Invariant : *i*,Pi (A.8)

This is easily shown to be an invariant, because the transformed object contains
UtU sandwiched between the two fields. Since UtU = 1, we see that *i*oi is an
invariant.

In fact, we can use this as an alternative definition of the group; that is, SU(N)
consists of all complex transformations with unit determinant that leave i/ri*(Pi
invariant. That is,

Y''i ',l = (k (Ut)j, t Ul q11

k ,i/,_k (Uti Ul) `Y

= Y'i*Wi (A.9)

Notice that, unlike the case of O(N), the placement of the indices in the
upstairs or downstairs position is extremely important, because the location of the
indices indicates whether the vector transforms under U or under Ut.

The 0i transform according to the fundamental representation of the group.
The name is appropriate because we can derive the higher representations by
taking tensor products of the fundamental representation.
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Higher tensors transform exactly like the product of various fundamental
representations:

TyJIJZ..JM
I i2... iN

where it is important to keep track of the upstairs and downstairs indices.

A.2 Tensor Products

(A.10)

In general, such tensors are reducible. To find the irreducible representations, we
must take symmetric and antisymmetric combinations of the indices.

This tedious process of taking symmetric and antisymmetric combinations
is made simpler by noticing that there are two genuine constant tensors for the
theory:

61 1i2...1N = Eiliz...iN (A.11)

To prove that these are genuine tensors, we simply act on these tensors with U
matrices. As in the case of the group O (N), Sii can be shown to be a constant tensor
because U is unitary. Also, Ei'iz"'iN is a genuine tensor because the determinant
of U is equal to one.

For example, the tensor product A` Bi, composed of two vectors, is reducible.
To create smaller subsets that transform among themselves, let us take the sym-
metric or the antisymmetric combinations of A` Bi . We can write:

At BJ

A[iBj]

A(i Bi)

1 A[iBil + 1 A(iBi)
2 2

A` Bi - AiBi

A`Bi+AiBi

For SO (2), let the symbol 2 represent the two elements of a vector:

2 = At

(A.12)

(A.13)

In Eq. (A. 12), there is only one element in the antisymmetric combination, which
we represent symbolically as 1, and there are three elements in the symmetric
combination (one of which can be separated out as the trace). Then a shorthand
notation for Eq. (A.12) is given by:

2®2=2®1®1 (A.14)
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It is easy to show that the symmetric and antisymmetric tensors, by themselves,
form a separate representation of 0(2), thereby proving that the tensor product
A` Bj is reducible.

To construct irreducible representations of SO (3), it is useful to know that S`j
and E`ik are covariant tensors, and that we can take reducible representations and
extract out irreducible tensors from them.

As before, we can take the product of two vectors A' and B`, each of which
transforms as a triplet 3, and extract irreducible tensors. For example, we can
extract the singlet A'B' and the triplet E`jkAjBk from the product.

In general, the product of two triplets can be reduced according to whether
they are symmetric or antisymmetric. The symmetric combination is represented
as a 5 plus the trace 1, while the antisymmetric combination is represented as a 3,
so we have two equivalent ways of representing this:

A`BJ
.

= 1A(`B>) + 1Al`Bil
2 2

3®3 = 5®1®3 (A.15)

Similarly, we can construct the irreducible representations of SU(3) by taking
tensor products of the fundamental representation:

3®3=6®3 (A. 16)

We can also take the combination *,* times 0', which reduces to:

3®3=8®1 (A. 17)

where 1 is represented by *,*o'.
For SU(N), this identity can be written as:

N ®N = (N2 - 1) ®1 (A.18)

For more complicated tensor products, taking tensor products becomes rather
tedious, so we use the method of Young tableaux. Let the box symbol represent
0i. If we have the product of two vectors and take the symmetric product, we
have 0('O>), which is represented by two horizontal boxes.

In general, n horizontal boxes means that we have an n rank tensor such that
the indices are symmetrized.

The number of independent components within this horizontal array of boxes
is given by:

N+n-1 N(N+1)...(N+n-1)
= (A.19)

n n!
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3--

3 ®3 = 1®8:

®

3 ®3 = 6®3:

®

Figure A.1. In this diagram, we see that the product of a quark and an antiquark gives us
an octet and singlet, and that two quarks give us an antitriplet and a sextet.

When we have two boxes stacked vertically, this means that we are taking
a second-rank tensor and then taking the antisymmetric combination of the two
indices. In general, m boxes stacked vertically means that m indices are antisym-
metrized. The number of independent elements in such a vertical array is given by
N elements taken m at a time. Thus, the dimension of m boxes stacked vertically

a

b C

Figure A.2. In (a), a series of horizontal boxes corresponds to taking the symmetrized
tensor product of n vectors. In (b), a series of vertical boxes corresponds to taking the
antisymmetrized tensor product. In (c), we have a mixed tensor, with symmetrization for
horizontal boxes and antisymmetrization for vertical ones.
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is given by:

N _
(A.20)

m m!

For example, in Figure A. 1 we the Young tableaux for Eqs. (A. 16) and (A. 17).
In Figure A.2, we see more general types of young tableaux.

Of course, this process cannot be continued indefinitely. For SU(3), for
example, three boxes stacked vertically only have one element:

1 = EiikT`jk (A.21)

Therefore, for SU(N), N boxes stacked vertically corresponds to a tensor with
only one independent element, denoted by 1.

Also, notice that N - 1 boxes stacked vertically has N elements. This state
corresponds to Oi , which also has N elements. If we add one more vertical box
to N - 1 vertical boxes, then we get a scalar. Similarly, if we contract 0; with Oi,
we also get a scalar.

By convention, an arbitrary mixed tensor consists of a series of boxes stacked
both vertically and horizontally. Let f, equal the number of boxes stacked hor-
izontally in the i row. We take the convention that fi > fi+i; so the number of
horizontal rows diminishes as we go down the Young tableaux (see Fig. A.2).
An arbitrary Young tableaux can therefore be designated by a series of numbers
(fl, f2, ... fk), with each number representing the number of horizontal boxes in
each row.

For example, a series of n horizontal boxes is designed by (n, 0, 0...). A
series of m boxes stacked vertically is given by ( 1 , 1, ... , 1) with m entries.

Then there is a classical theorem from group theory that the dimensionality or
number of independent elements in the mixed tensor (fl, f2, ... , fk) is given by:

D(fl, f2, ... , fk) = (l + fl - f2)(l + f2 - f3) ... (l + fk)

X
(i+f1;f3)(i+f2;f4)...(i+)

X (1+f1
2

f4) (1+f2 2 f5)...(1+f22)

X (l+f1;f5)...(l+)f

X (i+) (A.22)
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A.3 SU(3)

We can repeat many of the same steps for SU(3) using ladder operators. Notice
that there are two generators that commute among each other (because they are
diagonal):

T3=F3; Y= 2 Ts (A.23)

This means that we can simultaneously diagonalize both operators, and that the
eigenstates of these operators are indexed by two numbers, the ordinary isospin
and the hypercharge.

We therefore have states labeled by their eigenvalues:

T3It3, Y) = t3It3, Y)

YIt3,Y) = YIt3,Y)

As with SU(2), we will now introduce the ladder operators of SU(3):

TT = F1 ± i F2; U± = F6 ± i F7; VV = F4 ± i F5

The new commutation relations now become:

[T3, TT ] = ±Tt

[T3, U±] _ :FU±/2

[T3, V±] = fV±/2

[T+,V-]=-U-
[U+, V-] = T_

[T+,T-]=2T3

[V+, V-] _ (3/2)Y + T3

[T+, U-] = 0

[Y,TT]=0

[Y, U±] = ±U±

[Y, V±] ±V±

[T+,U+]=V+

[T3, Y] = 0

[U+, U-] = (3/2)Y - T3

[T+, V+] = 0

[U+,V+]=0

(A.24)

(A.25)

(A.26)

By examining the commutators carefully, we see that T+ raises the eigenvalue
t3 by one unit, and T_ lowers it by one unit. Since T± commute with Y, they
leave y the same. We also see that U+ lowers t3 by one-half unit, and raises y by
one unit. Likewise, V+ raises t3 by one-half unit and raises y by one unit.

Graphically, we can represent this in eigenvalue space by plotting t3 horizon-
tally and y vertically. Then the action of the ladder operators is to raise or lower



748

Figure A.3. The ladder operators T±, Uf, and Vf change the eigenvalues of a state in the
direction of the arrows shown in this chart.

the various eigenvalues along the horizontal, vertical, and diagonal lines, as in
Figure A.3.

By hitting an eigenstate jt3, y) with these operators U±, VV, and T±, this
eigenstate is converted into an eigenstate that lies one step removed from the
original state, according to the prescription given.

In general, all the Lie groups can be analyzed in this fashion via the ladder
operators. Given the generators of an algebra, we can divide them into two types
of generators:

1. The Cartan subalgebra, consisting of the generators H which all mutually
commute among themselves:

[H;, Hj] = 0 (A.27)

The number of such generators in the Cartan subalgebra is called the rank
rof the group. [For example, SU(3) is a rank-two group because its Cartan
subalgebra consists of T3 and Y.]
Then we can simultaneously diagonalize the members of the Cartan algebra,
so that an eigenvector of these operators is given by:

111,12, ... , lr) (A.28)

2. The ladder operators, which move the various eigenvalues of the eigenvector
by various amounts:

Lt111,...,l,,...)=Cj11,...,1,±1,...) (A.29)

Since each ladder operator changes the eigenvalue of the state, we can label
each ladder operator by a vector a in the space of eigenvalues, which is called
root space.
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Then, by taking successive products of the various ladder operators acting on
a state of highest weight, we can fill out any representation of the group.

In this way, we can systematically exhaust all possible representations of all
possible Lie groups.

A.4 Lorentz Group

Because 0(4) = SU(2) ® SU(2), we can also categorize the irreducible represen-
tations of the Lorentz group using two-component, complex spinors belonging to
SU(2).

We can decompose the four-spinor as:

We can then take the two-spinors as:

(1/2 0) = 1 2+ 2 Y5

(0, 1/2) = 1

2
Ys

(A.30)

(A.31)

We can then construct higher spin fields by taking tensor products between
the spinors. For example, vectors can be constructed by taking the product of two
spinors:

Vector : (1/2, 0) ® (0, 1/2) = (1/2, 1/2) (A.32)

A spin 3/2 field can be represented in several ways, but the most common is
to take the product of a vector and a spinor:

(1/2, 1/2) ® (1/2, 0) = (1, 1/2) ® (0, 1/2) (A.33)

In more familiar language, this corresponds to constructing a four-spinor with a
vector index attached:

Spin 3/2: *N, =
' "_

I (A.34)
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Then the (0, 1/2) spinor corresponds to contracting the spin 3/2 field with a
gamma matrix:

(0, 1/2) = yl*A (A.35)

The (1, 1/2) field then corresponds to a spin 3/2 field that has zero contraction
on a gamma matrix:

(1, 1/2) = Y'F. - (1/4)y,.Y'*v (A.36)

Similarly, a spin-2 field can be represented as the product of two vectors:

Spin 2 : (1/2, 1/2) ® (1/2, 1/2) _ [(0, 0) ® (1, 1)]S ® [(0, 1) ® (1, 0))A (A.37)

where S(A) represents a symmetric (antisymmetric) combination.
In more familiar language, this means that we can take the symmetric or

antisymmetric combination of a second-rank tensor:

gµv = 2g(, v) + 29[µv] (A.38)

where the parentheses (brackets) represent taking the symmetric (antisymmetric)
combinations.

Then we can extract out the trace part of the symmetric tensor:

gµv - 1

1 bAvgv

µgµ (A.39)

Thus, (1, 1) corresponds to a traceless, symmetric second-rank tensor, which we
adopt as our definition of the spin-2 field.

We can go to higher and higher representations, but there is eventually a
problem: A theory of interacting massless spin 3 particles does not seem to be
consistent.

Finally, we remark that it is customary to decompose the Lorentz group into
various pieces, depending on the sign of certain parameters.

For example, we saw that we could take det A = ± 1. If we only take the
det A = 1, we have the proper Lorentz transformations, forming the subgroup
S 0 (3, 1); that is, the Lie group is special; the determinant is equal to 1. The group
is called the improper Lorentz group if det A = -1.

From the definition of the metric, we know that:

gµv = ApµgpoAav (A.40)
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Taking the 0 - 0 component of this equation, we arrive at:

1 = (A8)2 - (Ao)2 (A.41)

so that:

(AO)2 > 1 (A.42)

We thus have the orthochronous Lorentz group, with AO > 1, or the nonortho-
chronous Lorentz transformation, with AO _ -1.

Thus, there are four ways in which we can decompose the Lorentz group,
depending on the sign of det A and A8:

Proper orthochronous : det A = 1 AO > 1 1

Improper orthochronous : det A = -1 A o > 1 P

Improper nonorthochronous : det A = -1 AO < 1 T

Proper nonorthochronous : det A= 1 Ao < 1 PT

(A.43)

For example, ordinary rotations and boosts (which can be smoothly deformed
back to the identity) are part of the proper orthochronous Lorentz group.

A parity transformation x` -x` belongs to the improper orthochronous
Lorentz group. Time inversion t -> t belongs to the improper non-orthochronous
Lorentz group. Full inversion xµ -> -xµ, which is the product of a parity and
time inversion, belongs to the proper nonorthochronous Lorentz group.

A.5 Dirac Matrices

Independent of any representation, the Dirac matrices obey a number of identities
that follow from the definitions:

{L
yV } = Y/YV + Y'YA = 2gµ°

Y° = $; Y` = $cr`

Y5 = Y5 =
iY0YIY2Y3

= 4 EAVUPYAYV Y'YP

aAV = 2IYµ, YV I
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y
E alp

5aµv =
1 µvap

2

40 _ a b - iaµvaµbv

yµyµ = 4

YAYvYA

YAYvY),

YA

YAYV Y),YaYµ

YAYVyzyaYPYY

Y/UvzYA

YµavAYaYA

-2y v

4gva

-2yay'`yv

2(yPyvy)'ya - yay),yvyP)

= 0

= 2yaava (A.44)

They also obey the following trace identities:

Tr(yµ' . yl^) = 0; nodd

Tr(yµyv) = 4gµv

Tr(yµyvypya) = 4(gµvgPa-gµPgva+gµagVP)

Tr(y5y y YPYT) = -4iENvpa

Tr (41 42 ... 42n) = al 'a2Tr(43... 42n) -al a3Tr(42 44... 42n)

+ c12n-1) (A.45)

Under Hermitian conjugation and charge conjugation, the Dirac matrices obey:

YOt = YO;
yit = _yi

Y = -Y5
t

OY5 0 = -Y5Y

Y0Y5YAY0 = (Y5YP)t

yOaµvyO = (aµv)t

CT = Ct = -C; C2 = 1; CCt = Ct = 1;

CyµC-1 = -y



A.5. Dirac Matrices 753

CY5C-1

= Ys

Ca,,vC-1 = -aµv

CYSY,C-1 = (YSYµ)T (A.46)

Let us now specialize to specific representations. The most common is the
Dirac representation, which has four complex components:

0

- a`

0 a'

a` 0

7`

0

_
(

ak 0a`
-

E,Jk
0 ak

- iU2o
C iY2Y°

=
\

-ia2
0

(A.47)

Under the Lorentz group, the Dirac representation is reducible. Each Dirac
representation can be split up into two smaller representations. We can take
the chiral projection, which gives us the Weyl representation for left-handed and
right-handed spinors:

Y°
0 -1
-1 0

yi

0 a` )
-a ` 0 11

1 0

0 -1

0
°i i C

(Ti 0
) ; aU

= E C 0
Uk )

0 -a` k
0 ak

2C = (_0ia i0a2
(A.48)
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We can also take a purely imaginary representation of the spinors, given by
the Majorana representation:

y0

Y1
=

YZ =

y3 =

0_
2a ) ;

Q2 0 Y

C

-ivl 0

0 -ivl

Y5 =

Q2

0

0
-Q2

C = ( 0
-aQ2

(A.49)
iv2 0

We define conjugate spinors by:

(A.50)

On-shell, the spinors u and v represent the electron and positron wave function.
They obey:

(P(- m)u(p) = 0

(p'+m)v(p) = 0

u(p)(p' - m) = 0

v(p)(p'+m) = 0 (A.51)

The spinors u and v also obey a number of normalization and completeness
relations. They are normalized as follows:

u(p,s)u(p,s) = 1

v(p,s)v(p,s) = -1 (A.52)
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These spinors obey certain completeness relations:

755

Y' u'(p, s)nP(p, s) - v'(p, s)iP(p, s) = S«P (A.53)
S

r 'p'+ m 1 + y5
= L 2m 2

and:

r 1
v'Jp, s)vP(p, s)

m-i1+Y5
_ - L

2m 2

If we sum over the helicity s, we have two projection operators:

(A.54)

(A.55)

(A.56)E u' (p, SAP (p, s) = (P(+
M ),.,pfs 2'm

Ev'(p, SOP(p, s)
(- d+m (A.57)

±s \ 2m ap

These are projection operators, and hence they satisfy:

A2 = A±; A+A_ = 0; A+ + A_ = 1 (A.58)

A.6 Infrared Divergencesto All Orders

Although we have proved that infrared divergences can be eliminated to lowest
order by adding the bremsstrahlung diagram to the vertex correction diagram, we
would now like to generalize our result to all orders in perturbation theory. At
first, this may seem like an impossible task, since there are an infinite number of
ways in which the infrared divergence enters into various Feynman diagrams.

However, the problem is actually tractable for two reasons. First, only a
small subset of all possible Feynman diagrams actually contributes to the infrared
divergence. We will therefore only concentrate on those diagrams where the
emitted real photon is attached to the initial or final electron leg, which contributes
to the infrared divergence when they are on the mass shell. If the photon has a
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small momentum q, and is emitted from an on-shell electron with momentum p,
then the Feynman propagator contains a factor:

1 1

(p+q;)2 -m2+iE 2p - q; +iE
(A.59)

For small qj, we see that we have an infrared problem. (Photons attached to
internal electron lines, or electron lines which are far off the mass shell, will not
contribute.)

Second, there are remarkable identities that make it possible to show that all
these divergences cancel exactly. The calculation to all orders is not difficult
once we realize that it is possible to sum the contribution of the real and virtual
photons into an exponential function. Let the contribution of the emission of each
real photon contribute a factor R, while the contribution of integrating over each
virtual photon contributes V. Then the contribution of summing over arbitrary
numbers of real and virtual photons, we will show, conveniently sums up to an
exponential, given by:

du = ddQSl

dSl
exp R exp2V (A.60)

O

Before, we found that the integration over the real photon contribution is taken
from µ to some detector sensitivity energy Eo, and hence yields a factor of
log(E2/µ2). The integration over the virtual photon contribution is given by
an integration over the four-momenta, which yields log(-q2/µ2). Since we are
taking the exponentials of these two divergent factors, the log µ2 cancels perfectly,
and the final result is convergent.

To begin the process of summing over photon lines, let us analyze a process
where we have an electron coming in with momentum p and scattering off with
momentum p'. If there were no infrared divergence problems to worry about, the
contribution of this diagram would be of the form u(p')Ou(p). However, because
of the infrared corrections, we must calculate the contribution due to the emission
of real photons and the integration over virtual photons.

To perform the calculation, it will be convenient to insert a large number of
photons radiating from the electron line with momenta q;, as in Figure A.4.

Our job will be to calculate how to attach these various photon lines in various
ways in order to perform the summation over real and virtual photons.

To calculate V, the contribution of the virtual photons, we will pair off these
photon lines, in arbitrary order, and then perform the integration over the virtual
photon's momenta. Then we must perform the summation over all possible
pairings. To calculate R, by contrast, the contribution from the emission of a real
photon, we will sum over the photon polarization and integrate over the photon
momenta.
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p p

Figure A.4. N-point graph for the emission of soft photons, which has an infrared diver-
gence.

If we examine, using Feynman's rules, the sequence of propagators in the
figure (with photon legs attached near the top of the diagram), we find:

u(p) ... (-i yµ,) [iy (p' + qi + 2- + qi) +m ]
(p +ql+. .qi) M2 +iE

[iy.(p'+ql+...qi+i)+m1x
u(P) (A.61)

(p' + ql + ... + qi+1)2 - m2 + j6

This Feynman diagram is not as hopeless as it may seem, especially when we
assume that each qi is small. First, consider the photon line with momenta qi that
is near the emitted electron, with momentum p'. We can significantly simplify
the numerator by shoving all momenta JS' to the left, where they hit u(p), and
then we can use the Dirac equation. Since all 1S' can be reduced to m, the only
possible tensor left-over is p'µi ; so the numerator simply becomes the product of
p'µi. Similarly, the denominators can be simplified.

For small qj, the product of Feynman propagators becomes:

u(p') T7 P11 i
i (p'.(lqk))

(A.62)

The next task is to sum over all permutations of the qi appearing in the
product. Although this may seem difficult, we can use a formula that simplifies
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this calculation enormously:

1 1

perm

1

p' ql
p'q2... p'

qn
(A.63)

where we sum over all permutations of the qi appearing on the left hand side of
the equation. (The proof of this formula can be carried out by induction.)

In summary, we are now left with a very simple expression, with each photon
contributing a factor of p'µ' / p' qi to the product. Not surprisingly, the same
process can be carried out for photon legs attached to the bottom half of the
diagram. Then we shove all j to the right and use the Dirac equation. Then the
Feynman diagram reduces to a product of pµi l p qi.

Now let us sum up the contribution of all such diagrams, in any possible
order. The photon with momentum qj can be attached to the initial or the final
electron. Thus, the photon with momentum qi contributes two factors, depending
on whether it attached to the initial or final electron leg. Since this photon can be
attached to either leg, the correction factor for all the various photons is simply:

n

enu(p')Ou(p) fl Q/Li(g1) (A.64)
i=1

where we define:

plµi pµ;
Qµ'(gi) I\ JI (A.65)

At this point, we must now begin the contraction process on the various photon
lines. Let us say that there is a total of 2N + M photon lines. We will contract
and integrate over N pairs of photon lines in order to calculate the contribution
of virtual photons. The remaining M photons will be emitted as real photons,
contributing to bremsstrahlung.

To calculate the virtual photon contribution, we must pair off the photon
legs, insert a photon propagator for each of the N pairs, and then perform the
integration over d4q. Each contraction of a pair of virtual photon legs contributes
the following factor:

i e2 / d4q
Q(qi) Q(-qi) (A.66)V ° - 2 f

(27r)4

But we must also sum over N such contractions (and divide by a factor of N!,
which represents the number of ways that we can permute these lines). This gives
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us the following correction factor for virtual photons:

Cc VN
E-=exp V

N i
(A.67)

.N=o

Similarly, we must now calculate the contribution of M emitted real photons
to the scattering cross section. This means inserting the photon polarizations,
summing over these polarizations, squaring the matrix element, and integrating
over the photon's phase space. Fortunately, the summation over the polarizations
just gives us a delta function, so the contribution of each emitted photon gives us
a scalar product between Q(q) and Q(-q), as before. The value of R is therefore:

3

R - -e2 f (3q ' Q(q) Q(-q)r)3 2k
(A.68)

By the same logic as before, we must sum over M of these factors, emitted
photons, giving us RM, and then divide by M!. As before, this gives us a factor
of exp R.

The net effect of summing over all possible permutations of the 2N + M
photon lines, which generate both the real emitted photons and the virtual photon
loops, is therefore the product of two exponentials. We can now summarize the
contribution of both the real and the virtual photons by the formula:

dQ = dQ
exp(2V) exp R (A.69)

dQ dSl)o

The last and final step then involves inserting the actual value of V and R
into the above formula. These values were already computed for the one photon
bremsstrahlung process and vertex corrections that were computed earlier. We
find:

2V (= - f( 2)1

2

og4
2\ /

R - f ( 2 )1o (
2

70)(Ag g-

As expected, we find a cancellation between the two factors, yielding an expression
that is finite and independent of µ. We can now safely take the limit as µ goes to
zero, therefore obtaining the correct result without any infrared divergences.
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A.7 Dimensional Regularization

The following formulas can be derived by taking the derivative of the formulas
presented in Chapter 7:

d"k kµ

f (k2 + 2k q - m2)a

d"k kµkv

(k2 + 2k q - m2)a

d"k kµkvka

(k2 + 2k q - m2)x

-17r"l2
P(a)(-q2 -

m2)a-n/24µP(a - n/2)

i,rn/2
P(a)(-q2 - m2)a-n/2 [gµgvP(a - n/2)

+
1
28µv(-q2 - m2)P(cr - 1 - n/2) 1

i,rn/2

P(a)(-q2 - m2)a-n/2 L - q q g1P(a - n/2)

1

- 2 (gµvg), + gvagµ. + gaµgv)

x (-q2 - m2)P(cr - 1 - n/2)]

dnkkµkvkakp _ i_rn/2

(k2 + 2k q - m2)a P(a)(-q2 - m2)a_n/2 [gµgvgi.qpr(a - n/2)

+
1

2
(gµgv8),p + perm) (-q2 - m2)P(cr - 1 - n/2)

1 l+ 4
(gµvgap + perm) (-q2 - m2)P(cr - 2 - n/2)J

(A.71)

A general formula is given as follows:

where:

I
dnkk,1kli,z...kµy _ ijrn/2

(A.72)(k2 + 2k q - m2)a P(a)(-q2 - m2)a
TµWz...µy

Tµ.µz...µp (-1)p (q, qµ2 qµn P(a - n/2)

+ 7 E (9AIA2gFi3 ... gµ,) (_q2 - m2)P(a - 1 - n/2)

P(a - 2 - n/2)+ d (9AIA29A3Fiaq 5 ... gµy) (-g2 - m2)2

pens
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+ (2)-P/2 E (gµiµ2gµ3µ4 ... gµP-IAP)
perm

x (-q2 - m2)P/2F(a - p/2 - n/2)) (A.73)

for p even. For p odd, the last term should be:

+(2)-[P/21 E (gP.iµ2 ... gµP-2µP-,qAp)
perm

x (_q2 _ m2)[P/21F (a - [p/2] - n/2) (A.74)

where [m] means taking the largest integer not greater than m.
By contracting the various k,, we can also derive a succession of related

formulas involving k2.
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