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Preface

Over the past 20 years, cosmology has emerged as a mature research field, in which
it is possible to perform precise measurements and test fundamental physics. Its
significance in relation to the other areas of research in physics has grown sub-
stantially. To wit, two out of ten Nobel Prizes in physics awarded during the past 10
years were conferred for studies related to cosmology (in 2006 and in 2011).
Among the preceding more than 100 awards, only one-half of one Nobel Prize (in
1978) was for cosmology.

The number of researchers working in cosmology is increasing, and students
taking introductory courses on cosmology include not only those who plan to work
in this field, but also those with different interests, seeking to get at least a basic
understanding of the subject.

The aim of this book is to provide an introduction to modern cosmology for
senior undergraduate and graduate physics students, without necessarily requiring a
strong background in theoretical high energy physics. Students in
astronomy/astrophysics, in experimental high energy physics, or in other areas of
research as well may be interested to learn some fundamental concepts of the
structure and evolution of the Universe. Typically, these students are not closely
familiar with General Relativity and quantum field theory, and therefore they may
find it difficult to digest the existing cosmology books on the market.

This book describes the so-called Standard Cosmological Model. The model’s
theoretical aspects are based on General Relativity and on the Standard Model of
particle physics, with the addition of the inflationary paradigm. This scenario is
very successful in explaining a large amount of observational data including, in
particular, the description of the Universe expansion, the primordial abundances
of the light elements, and the origin and the properties of the cosmic microwave
background radiation. However, there is also a plethora of observed phenomena
that does not fit the frameworks of the Minimal Standard Model of particle physics
and cosmology, and represents clear indications for new physics. To name just a
few examples, the minimal model cannot explain the cosmological matter-
antimatter asymmetry, the observed accelerated expansion of the contemporary
Universe, and does not have any candidate for dark matter. The cosmological
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inflation is still at the level of a hypothesis. Its realization demands some new field
or fields, which have not yet been discovered.

These subjects are presented here within a rather heuristic approach, which
includes a needed description of observational data, and a reduction of mathe-
matical technicalities as much as possible. Chapters 6 and 7, dealing, respectively,
with inflation and baryogenesis, are more advanced and require some knowledge of
quantum field theory, but students who are not familiar with those concepts can skip
these chapters without affecting their comprehension of the rest of the book. The
content of this book is partially based on the cosmology class given at Fudan
University by one of the authors and on lectures given at a number of universities
by the other.

The work of C.B. was supported by the NSFC grant No. 11305038, the
Shanghai Municipal Education Commission grant No. 14ZZ001, the Thousand
Young Talents Program, and Fudan University. The work of A.D.D. was supported
by the grant of the Russian Federation Government 11.G34.31.0047.

Shanghai Cosimo Bambi
Novosibirsk Alexandre D. Dolgov
May 2015
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Chapter 1
Introduction

Cosmology (from Greek kosmos, world, and logos, study) is the science devoted to
the study of the Universe on large scales and of its evolution. In comparison to other
branches of physics, cosmology possesses some peculiar features. First, we have only
one system, namely our Universe. This is not the case, for instance, in particle or
nuclear physics, where one can repeat an experiment many times, exploring different
samples, or even in astronomy, where one can observe different objects belonging
to the same class. Second, we are observing the Universe at a specific moment of
its evolution, that is, today. Despite that, we can study the early Universe by looking
at regions far from us, thanks to the finite value of the speed of light. Lastly, in
cosmology the observer performing the measurements is inside the system.

Modern cosmology was born after the advent of General Relativity in 1915.
However, till the end of the 20th century it was not possible to perform precise mea-
surements, and thus the approach was to use the known laws of physics, tested today
and usually only on small scales, to study the Universe on large scales and at different
times. In the last years of the 20th century, cosmology became amature research field
and entered a golden age with a large number of high quality observational data. The
importance of cosmology in physics has grown a lot and this is proved by the recent
Nobel Prizes in physics: in the last 10years, two out of ten prizes were awarded to
studies in cosmology (see Table1.1).

Using modern advanced instruments, it is possible to measure the cosmological
parameters with very high precision and therefore to use the Universe as a laboratory
to test elementary particle physics. Today there is an unambiguous astronomical
evidence strongly requiringnewphysics beyond theMinimalStandardModel (MSM)
of particle physics and maybe even beyond General Relativity. Table1.2 shows the
milestones of modern cosmology, which will be briefly reviewed in this chapter and
then discussed with more details in the rest of this book.
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Table 1.1 Nobel Prizes in physics for studies in cosmology

Year Winners Motivation

1978 Penzias, Wilsona Detection of the CMB

2006 Mather, Smoot Detection of the CMB anisotropies

2011 Perlmutter, Schmidt, Riess Discovery of the accelerating expansion of the Universe
aPenzias and Wilson shared the 1978 Nobel Prize in physics with Kapitsa, who was awarded for
his contribution to low-temperature physics

Table 1.2 Milestones of modern cosmology

Year Event

1915 Einstein formulated the theory of General Relativity

1922 Friedmann derived and solved the Einstein equations for cosmology (Friedmann
equations)

1927 Lemaitre derived the Friedmann equations and the would-be Hubble law

1929 Hubble measured the Hubble constant

1933 Zwicky got evidence for the existence of dark matter

1946 Gamow predicted the cosmic microwave background (CMB)

1948 Alpher and Gamow published the theory of the big bang nucleosynthesis (BBN)

1960–1970s The Standard Model of particle physics was formulated

1964 Penzias and Wilson detected the CMB

1967 Sakharov proposed the Sakharov conditions for baryogenesis

1967 Zeldovich pointed out the cosmological constant problem

1974 Two groups (Einasto, Kaasik and Saar; Ostriker, Peebles and Yahil) announced
the discovery of the flat rotational curves in galaxies

1980 Kazanas, Starobinsky, and Guth proposed the inflationary paradigm

1992 The COBE satellite detected the CMB anisotropies

1998 The Supernova Cosmology Project and the High-Z Supernova Search Team
discovered the accelerating expansion of the Universe

2003 The WMAP satellite measured with high precision the CMB anisotropies

2003 Gravitational lensing studies of the Bullet Cluster provided very strong evidence
for the existence of dark matter

2013 The Planck satellite measured with high precision the CMB anisotropies

1.1 Problems in Newtonian Cosmology

Before the advent of General Relativity in 1915, the knowledge of the Universe was
quite poor. In Newtonian mechanics, it is problematic to describe an infinite distri-
bution of matter. Before the discovery of Hubble’s law, the Universe was supposed
to be static, infinitely old, and having an infinite volume. However, this was in dis-
agreement with the darkness of the night sky. Such a paradox is commonly attributed
to the German physician and astronomer Heinrich Wilhelm Olbers, who described it
in 1823, and for this reason it is today known as Olbers’ paradox. However, it seems
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that the problem was already known for a long time. The paradox starts from three
assumptions:

1. The Universe is infinite in space.
2. The Universe is static and infinitely old.
3. Stars are uniformly distributed in the Universe and they have the same luminosity.

The assumption 3 is clearly an approximation, but it sounds reasonable if we imagine
averaging over large volumes. The number of stars in a spherical shell with radius r
and width dr is

N = 4πr2n dr, (1.1)

where n is the mean stellar number density in the Universe, which is a constant
according to the assumption 3. If L is the luminosity of a single star, i.e. the energy
emitted per unit time, the intensity of the star radiation at the distance r is

I = L

4πr2
. (1.2)

Eventually, the observed intensity from all the stars in the whole Universe should be

Itot =
∫ +∞

0

L

4πr2
4πr2n dr, (1.3)

which diverges. In other words, the night sky should be extremely bright rather than
dark. This tells us that at least one of the initial assumptions is wrong. While we do
not know today if the Universe is spatially infinite or not, the assumption 2 is surely
wrong and the Universe is far from being static.

1.2 The Standard Model of Cosmology

The Standard Model of cosmology (also called Standard Cosmological Model) is
currently the best theory for the description of the Universe. It is based on two
fundamental ingredients: the Standard Model of particle physics, which is used for
thematter content, andGeneral Relativity, which describes gravitational interactions.
It also requires the inflationary paradigm, which is an elegant mechanism to fix a
few problems of the scenario. The Standard Model of cosmology very successfully
explains a huge amount of observational data, including as the most remarkable
ones Hubble’s law, the primordial abundances of light elements, and the cosmic
microwave background.

However, there are several puzzles that strongly suggest to look for new physics.
It is striking that only 5% of the Universe is made of the known matter (mainly
protons and neutrons). About 25% of the Universe is likely made of some weakly
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interactive particles not belonging to the MSM of particle physics. For the time
being, this component is called dark matter. The other 70% of the Universe is
really a mystery: it looks like a uniformly distributed substance with an unusual
equation of state P ≈ −ρ, where P is the pressure and ρ is the energy density1

and it is responsible for the contemporary accelerated expansion of the Universe.
This substance is usually called dark energy, but its origin is not clear at all and a
breakdown of General Relativity at large scales is also a possibility. The mechanism
of inflation still remains at the level of paradigm. It does not fit the framework of
the Standard Model of particle physics. Lastly, we do not understand the origin of
the matter-antimatter asymmetry around us. The local Universe is clearly matter
dominated, but such an asymmetry cannot be created within the MSM of particle
physics.

Albert Einstein published his paper on the theory of General Relativity in 1916. In
1922, a Russian physicist and mathematician, Alexander Friedmann, derived from
the field equations of General Relativity the fundamental equations for the descrip-
tion of the evolution of the Universe, today known as the Friedmann equations. The
same equations and the prediction of the expansion of the Universe were obtained
independently by a Belgian priest, Georges Lemaitre, in 1927. While these funda-
mental equations come from the theory of General Relativity, it is useful to see a
heuristic derivation of them. Let us assume that matter is uniformly distributed in
the whole Universe, which is therefore homogeneous and isotropic. The motion of
a particle with respect to a point P is determined by Newton’s law of universal
gravitation

mä = −GNMm

a2 , (1.4)

where a is the distance between the point P and the particle, a dot indicates a
derivative with respect to the time coordinate, m is the particle mass, and M is the
mass enclosed in the sphere of radius a centered at the point P . If we multiply both
sides of Eq. (1.4) by ȧ and integrate it over time, we get

ȧ2 = 2GNM

a
− k, (1.5)

where k is an integration constant. If we divide both sides of this equation by a2,
we replace M by (4/3)πa3ρ, where ρ is the mass density, and introduce the Hubble
parameter H = ȧ/a, we find

H2 = 8πGN

3
ρ − k

a2 , (1.6)

1In this textbook, we use the so-called natural units in which c = � = kB = 1, unless stated
otherwise. For more details, see Appendix A.
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which is the first Friedmann equation. a is called cosmological scale factor and
sets the distances in the Universe as a function of time. For instance, if at the time
t1 two objects are at a distance d1, at the time t2, as a consequence of the expan-
sion/contraction of the Universe, the distance between these two objects is

d2 = d1
a(t2)

a(t1)
. (1.7)

The Hubble parameter measures the expansion rate at the time t . The value of the
Hubble parameter today is called the Hubble constant and it is usually denoted as
H0. Since the value of the Hubble constant was quite uncertain for a long time, it is
common to use the expression2

H0 = 100h0
km

s · Mpc
(1.8)

and to keep the parameter h0 in all the equations. Today we know that h0 ≈ 0.70
with a few percent accuracy.

From the Friedmann equations, it follows the so-called big bang model of the
Universe. In this picture, the Universe started expanding from an infinitely dense
primordial plasma. The time t = 0 is the moment of the big bang, which, how-
ever, has to be interpreted with caution, because the Friedmann equations predict a
spacetime singularity and an infinite energy density of matter, which are most likely
pathologies of classical General Relativity and are believed to be fixed by unknown
quantum gravity effects. In the course of the Universe expansion, the temperature
and the particle density of the primordial plasma drops down. As a consequence,
the particle reaction rate decreases with time and at a certain point some particle
species stop interacting with the rest of the plasma. This is expected to be a very
common phenomenon during the history of the Universe and naturally permits the
production of relics, which, if stable, may survive till today. Table1.3 summarizes
the main events in the history of the Universe, from the big bang singularity to the
present days. The physics above 200 GeV is not known, so the predictions are based
on speculations and depend on the specific models. Moreover, for the time being we
have no observational signatures from the Universe before the big bang nucleosyn-
thesis (BBN) ,3 and, though the electroweak and the QCD phase transitions can be
expected from the known physics, there is no proof that the Universe was at some
time at those temperatures.

2The parsec is a common astronomical unit of length and its symbol is pc. 1 pc = 3.086 · 1016 m.
1 kpc = 103 pc, 1 Mpc = 106 pc, etc.
3An important exception is the spectrum of the primordial density perturbations, which were gen-
erated before the BBN, presumably during the period of inflation.
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Table 1.3 History of the Universe

Age Temperature Event

0 +∞ Big bang (prediction of classical General Relativity)

10−43 s 1019 GeV Planck era (?)

10−35 s 1016 GeV Era of Grand Unification (?)

? ? Inflation (?)

? ? Baryogenesis

10−11 s 200 GeV Electroweak symmetry breakinga

10−5 s 200 MeV QCD phase transitiona

1 s –15 min 0.05–1 MeV Big bang nucleosynthesis

60 kyr 1 eV Matter-radiation equality

370 kyr 0.3 eV Recombination and photon decoupling

0.2–1 Gyr 15–50 K Reionization

1–10 Gyr 3–15 K Structure formation

6 Gyr 4 K Transition from a decelerating to an accelerating Universe

9 Gyr 3 K Formation of the Solar System

13.8 Gyr 2.7 K Today
aNo observational evidence, but prediction based on known physics

1.2.1 Hubble’s Law

Hubble’s law was predicted on the basis of the Friedmann equations by Lemaitre in a
paper published in 1927. In 1929, EdwinHubble confirmed the lawwith astronomical
observations and measured the value of the today expansion rate of the Universe,
now called the Hubble constant and indicated by H0. Hubble’s law reads

v = H0d, (1.9)

where v is the recession velocity of a source at the distance d.
Hubble was studying Cepheid stars, which are very luminous variable stars and

their luminosity and pulsation period are strongly correlated. Thanks to this correla-
tion, these stars can be used as distance indicators. From the brightness of the star, it
is possible to infer the distance to the host galaxy d. From the spectrum of the host
galaxy, one can measure the redshift z = Δλ/λ, where λ is the wavelength at the
point of the emission and Δλ is the difference between the wavelengths at the point
of the observation and of the emission. Hubble found a proportionality between z
and d. If the redshift z is interpreted as Doppler boosting, then for v � 1 we have
z ≈ v and thus we find Eq. (1.9). However, the exact origin of the phenomenon is
the expansion rate of the Universe in General Relativity, not a recession velocity
in Special Relativity. The law holds for sources at a distance of a few Mpc up to
a few hundreds Mpc (z < 1). For closer sources, the actual Doppler boosting due
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to the motion of the source is dominant. For far away sources, there are significant
deviations from the simple form of Hubble’s law.

The original measurement of Hubble was

H0 ∼ 500
km

s · Mpc
. (1.10)

With the notation of Eq. (1.8), it corresponds to h0 ≈ 5, which is much higher
than the accepted today value, h0 ≈ 0.7, probably due to systematic errors in the
measurements of the distances by Hubble.

1.2.2 Big Bang Nucleosynthesis

Theprediction of the primordial abundances of the light elements is another important
success of the StandardModel of cosmology. Indeed, most of the 4He in the Universe
was produced during the first few minutes after the big bang. It cannot be explained
by the production through nuclear reactions inside stars. This can be easily seen with
the following rough estimate. The present day luminosity of the Galaxy is

L = 4 · 1036 J/s. (1.11)

If we take into consideration that the production of 1kg of 4He provides an energy
in electromagnetic radiation at the level of 6 · 1014 J and that our Galaxy is about
10 Gyr old, we find that the amount of the produced 4He is

M4He ≈ 4 · 1036 J/s · 3 · 1017 s
6 · 1014 J/kg ≈ 2 · 1039 kg. (1.12)

This is about 1% of the mass of our Galaxy, MGalaxy ≈ 3 · 1041 kg. On the other
hand, we observe an abundance of 4He at the level of 25%.

The theory of the production of light elements in the early Universe was pioneered
by Alpher and Gamow in 1948. In the course of the cosmological expansion, the
temperature of the primordial plasma dropped down and it became possible to form
bound states of nucleons. The BBN started when the Universe was about 1 s old and
the plasma temperaturewas close to 1MeV.However, the onset of the synthesis of the
light elements took place later. The first element to be produced was the deuterium
and its binding energy is about 2 MeV. An efficient production of deuterium started
only when the temperature of the Universe was around 80 keV, because the number
density of photons was much higher than that of protons and neutrons and therefore
even though the number of high energy photonswas suppressed at lower temperatures
by the Boltzmann factor, their amount was still large enough to destroy deuterium
nuclei. After the production of deuterium, the nucleosynthesis continued to form
3He, 4He, and 7Li. At first approximation one can assume that all the neutrons that
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survived till the beginning of the deuterium synthesis eventually formed 4He, because
this nucleus is very strongly bound.Heavier elementswere not significantly produced
during the BBN, because of lack of time and the absence of stable nuclei with A = 5
and 6 just above 4He. Therefore they were produced later inside stars.

The prediction of the primordial abundances of light elements requires numerical
calculations. The first codes were written at the end of the 1960s. These calculations
require the knowledge of the Standard Model of particle physics (in particular the
number of the light particle species and their interaction properties) as well as a
number of nuclear reaction rates that can be measured in laboratory. In the Standard
Model, the matter content is known and the model has only one free parameter,
namely the ratio of the cosmological number density of baryons (i.e. the sum of
proton and neutron number densities) to that of photons, which is usually denoted
as η. The predictions of the primordial abundances of D, 3He, 4He, and 7Li can
thus be calculated as functions of the single parameter η. From the comparison
between theoretical predictions and observations, we can determine its value. The
determination of the primordial abundances of these elements from astronomical
observations is not an easy job, because of later reactions that changed the initial
values. However, already in the 1970s it was clear that

η ∼ 10−10 − 10−9. (1.13)

Now it is known with a few percent accuracy. This number can be eventually con-
verted into the contribution of ordinary matter on the total mass/energy of the Uni-
verse. It turns out that protons and neutrons only represent about 5% of the total
budget.

1.2.3 Cosmic Microwave Background

When the temperature of theUniverse dropped below∼ 0.3 eV, electrons and protons
combined to form neutral hydrogen atoms (as well as electrons and helium nuclei
formed helium atoms). Similar to the onset of the BBN, this phenomenon occurred
at a temperature much lower than the ionization energy of hydrogen Eion = 13.6 eV,
because of the large number of photons with respect to electrons and protons: even
though exponentially suppressed by the Boltzmann factor, the number of photons
with sufficient energy in the plasma was large enough to prevent the recombination
when the temperature of the Universe was higher. This event is called recombination
andoccurred at the redshift zrec ≈ 1100 or, equivalently,when theUniversewas about
370,000year old. Before recombination, photons were in thermal equilibrium with
matter through elastic Thomson scattering off free electrons.After recombination, the
absence of free electrons caused the decoupling of photons frommatter. At this point,
photons started freely propagating in the Universe. The events of the recombination
and of the photon decoupling are clearly correlated and occurred more or less at
the same time, namely zrec ≈ zdec. These photons form the cosmic microwave
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background (CMB), reaching us today from the so-called last scattering surface, a
spherical surface centered at our position where such photons interacted with matter
for the last time. The spectrum of the CMB is very close to that of a black body with
a temperature of 2.7 K. There are very small anisotropies at the level of 10−5. The
today number density of CMB photons is around 400 cm−3 and they only contribute
∼0.005% in the total energy budget of the Universe.

The CMB was predicted by Gamow in 1946. Later, other authors tried to esti-
mate the present day temperature of these photons, obtaining different results due
to the poor knowledge of the values of the cosmological parameters. The CMB was
accidentally detected by Penzias and Wilson, who were working on a satellite com-
munication experiment. For this discovery, Penzias and Wilson received the Nobel
Prize in physics in 1978.4 A real breakthrough in the study of the CMB and in cos-
mology was the launch of the COBE satellite in 1989. This experiment was able to
detect temperature anisotropies at the level of one part in 105. These small fluctua-
tions do depend on the values of the cosmological parameters and their detection by
COBE is thought to be the birth of cosmology as a precise science. George Smoot
and John Mather received the Nobel Prize in physics in 2006 as principal investi-
gators of two instruments on COBE. At the very end of the 20th century, several
balloon-borne experiments measured the CMB fluctuations on small angular scales,
providing a better estimate of several cosmological parameters. TheWMAP satellite
was launched in 2001 and its data were released from 2003 till 2012. Its measure-
ments of the CMB anisotropies provided precise estimates of many cosmological
parameters at the level of a few percent. In particular, they confirmed the energy
budget of the Universe, in which only about 5% is ordinary matter, about 25% is
dark matter, and about 70% is dark energy. After WMAP, the CMB anisotropies
were studied by a more advanced satellite, Planck, which was launched in 2009 and
the mission’s all-sky map was released in 2013.

1.3 Evidence for New Physics

As it has been already stressed, the Standard Model of cosmology relies on the
current understanding of the fundamental forces of Nature and the established types
of the basic constituents of matter. In other words, the model is based on the Standard
Model of particle physics and General Relativity.

With these two ingredients, the Standard Cosmological Model encounters several
problems. Some of them can be fixed by the inflationary paradigm,which postulates a
period of exponential expansion in the very early Universe. The physics of inflation
cannot be cast in the Standard Model of particle physics and General Relativity.
Moreover, while the inflationary scenario is usually thought to be the best candidate

4A similar, though less accurate, observation was done by Ter-Shamonov, who was calibrating the
antenna prototype of the Russian radio telescope RATAN-600.
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to do this job, it is not the only one and it is still at the level of speculation, without
observational evidence in support of it and against alternative scenarios.

Moreover, this is not the end of the story. The Standard Model of particle physics
and General Relativity cannot explain a number of observations, which therefore
strongly suggests to look for new physics. The local Universe is clearly matter dom-
inated: there is not much antimatter around us. When and how this matter-antimatter
asymmetry was created? After years of investigation, we have to conclude that the
MSM of particle physics cannot explain it, but a reasonable extension of it can still
successfully resolve the issue.

Another fundamental open problem concerns the origin and the nature of dark
matter. From the BBN, we find that only about 5% of the total energy budget of the
Universe is contributed by ordinarymatter, mainly by protons and neutrons (the latter
are bound in atomic nuclei). From a number of observations, like the study of the
rotational curves of nearby galaxies, we infer that the amount of gravitating matter
should be much higher, around 30% the total energy density of the Universe. What
is the 25% of the gravitating matter made of? In the MSM of particle physics there
are no good candidates for that. So new physics is necessary, and there are indeed
potentially good candidates in theories beyond the MSM.

Lastly, from the study of the expansion rate of the Universe we find that we are
in a phase of accelerated expansion. If we believe in the Friedmann equations, the
phenomenon could be explained by an exotic nature of the 70% of the energy in
the Universe. The latter is called dark energy, but actually we do not know if new
physics comes from the matter sector, i.e. physics beyond the Standard Model of
particle physics, or from the gravity one, namely from a breakdown of the Einstein
theory of General Relativity at large scales. This body of evidence coming from
astronomical observations is today one of the main motivations to look for new
physics outside the standard theoretical frameworks.

1.3.1 Inflation

The Standard Cosmological Model, if it is solely based on the MSM of particle
physics and on General Relativity, runs into several serious problems.

First, we see that the angular anisotropy of the CMB is quite small. This suggests
that different parts of the skywere causally connected at the time of the last scattering.
However, this is not what one would expect from the Friedmann equations for a
radiation or a matter dominated universe. This is called the horizon problem.

Second, observations show that the Universe is quite close to the geometrically
flat case; that is, the term proportional to the constant k appearing in Eq. (1.6) can be
neglected.On the other hand, as one can see from the Friedmann equations dominated
by usualmatter, an increasingly strong departure fromflatness is developedwith time.
So the Universe had to be extremely fine-tuned to the flat one at the very beginning.
This fine-tuning looks very unnatural and creates the so-called flatness problem.
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Third, we need a mechanism to generate primordial inhomogeneities at cosmo-
logically large scales, the seeds of future galaxies.

Fourth, beyond the framework of the MSM of particle physics, we would expect
the formation of dangerous relics at early times. These relics could be some heavy
particles or topological defects that would force the Universe to recollapse too soon.

A way to solve the problems of flatness, horizon, and dangerous relics is to pos-
tulate a period of exponential cosmological expansion, the so-called inflation. It was
suggested in 1979 by Kazanas and Starobinsky, and, in a more complete form, by
Guth in 1980. However, the concrete mechanism of inflation suggested by Guth was
not realistic. This fault was cured in 1982 by Linde and, independently, by Albrecht
and Steinhardt, who suggested the so-called new inflationary model and introduced
a dynamical inflaton field to produce the exponential expansion of the Universe.
The mechanism of generation of density perturbations at the inflationary stage was
proposed by Mukhanov and Chibisov (in Russian alphabetic order). Now many dif-
ferent scenarios of inflation are worked out and there is common agreement that
a sufficiently long period of inflation could solve all the four problems mentioned
above.

At present, the inflationary paradigm is still at the level of speculation, but the
inflationary prediction of the spectrum of primordial density perturbations in good
agreementwith thedata is a strong argument in favor of the existenceof an inflationary
period. There is no established inflaton candidate within the MSM, though attempts
to identify the inflaton and Higgs fields are pursued. In principle, other mechanisms
may solve the problems of the Standard Cosmological Model. All these mechanisms
require new physics.

1.3.2 Baryogenesis

The local Universe is clearly matter dominated. The amount of antimatter is very
small. The latter can be explained as a result of antiparticle production by high energy
collisions in space. The existence of large regions of antimatter in our neighborhood
would produce high energy electromagnetic radiation created by matter-antimatter
annihilation, which is not observed. On the other hand, matter and antimatter seem to
have quite similar properties and thus it would be natural to expect amatter-antimatter
symmetric Universe. If we believe in the inflationary paradigm, an initially tiny
asymmetry cannot help, because the exponential expansion of the Universe during
the inflationary period would have washed out any initial asymmetry, just like it can
wash out dangerous heavy relics produced in the very early Universe. A satisfactory
model of the Universe should be able to explain the origin of the matter-antimatter
asymmetry.

The termbaryogenesis is used to indicate the generation of the asymmetry between
baryons (basically protons and neutrons) and antibaryons (antiprotons and antineu-
trons). In 1967, Andrei Sakharov pointed out the three ingredients, today known
as Sakharov principles, to produce a matter-antimatter asymmetry from an initially
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symmetric universe. Actually, none of these conditions is strictly necessary, but coun-
terexamples require some tricky or exotic mechanisms. TheMSMof particle physics
does have all the ingredients to meet the Sakharov principles. However, it turns out
that it is impossible to generate the observed matter-antimatter asymmetry in this
framework: its parameters simply do not have the right values to do it. This is a clear
indication for physics beyond the MSM. Unfortunately, there is no unambiguous
indication for the energy scale of the new physics. Today there are several scenarios
that can potentially explain the matter-antimatter asymmetry around us. However,
they typically involve physics at too high energies to be tested at particle colliders,
at least for the time being.

1.3.3 Dark Matter

In 1933 Zwicky found that most of the mass in the Coma cluster seemed to be made
of some form of non-luminous stuff. From themotion of the galaxies near the edge of
the cluster, he got an estimate of the total mass of the Coma cluster. Such a value was
significantly higher than that inferred from the estimate based on the brightness of the
galaxies. Later, other observations confirmed that a significant fraction of the mass
in galaxies had to be made of non-visible matter. In particular, strong evidence came
from the measurement of galactic rotation curves. The issue became more intriguing
in the 1970s, with the advent of accurate numerical calculations of the abundances
of primordial light elements. From the comparison of theoretical predictions and
observational data, the BBN theory required an amount of ordinary matter made of
protons and neutrons at the level of 5% with respect to the total energy of a flat
universe, namely a universe with k = 0 in Eq. (1.6). At the same time, the estimates
of the mass in galaxies and clusters suggested something like 30%.

The study of the discrepancy between the amount of matter inferred from the
BBN (capable of counting only ordinary matter, i.e. protons and neutrons) and the
one inferred through the effect of the gravitational force is a very active research
field. The possibility of a breakdown of Newtonian gravity at scales larger than a few
kpc, and therefore of a wrong estimate of the galaxy masses with the virial theorem,
has been seriously considered for a long time. In 2003, gravitational lensing studies
of the Bullet Cluster provided quite a strong evidence for the existence of non-
baryonic dark matter. The Bullet Cluster is a system made of a cluster and a smaller
subcluster that collided about 150Myr ago. The components of the system responded
to this collision in a different way. The stars, observed at optical wavelengths, were
not significantly affected by the collision, while the hot gas, observed in the X-ray
band and representing most of the baryonic matter of the clusters, was strongly
affected by the collision. Gravitational lensing studies show that there is a significant
displacement between the center of the totalmass and the center of the baryonicmatter
inferred from optical and X-ray observations. The interpretation is that the mass of
these clusters is dominated by some dark matter objects, which presumably are
weakly interactive particles that were not affected by the collision. The displacement
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between the two centers ofmass strongly disfavors a solution based on amodification
of gravity and supports the dark matter hypothesis.

Dark matter must be made of weakly interactive objects/particles and be stable or
have a very long lifetime, because otherwise it would have been already decayed into
something else. For sure, it is electrically neutral. In the context of the MSM of par-
ticle physics there are no good dark matter candidates. The neutrinos of the Standard
Model would have the correct interaction properties, but we know today that their
mass is too low to contribute a significant fraction of the cosmological dark mat-
ter. Good dark matter candidates exist in theories beyond the MSM. Until recently,
the strongest candidate was the lightest supersymmetric particle of the supersym-
metric extensions of the MSM. However, so far no signature of supersymmetry has
been observed at the Large Hadron Collider (LHC) at CERN in Geneva. The non-
observation of supersymmetric particles created serious doubts on the validity of low
energy supersymmetry.

Let us mention in conclusion that dark matter is not necessarily just elementary
particles. There are models of dark matter consisting of some bound states of new
elementary particles or even ofmacroscopically large entities being either some kinds
of solitons or compact stellar-like objects.

1.3.4 Cosmological Constant Problems

In addition to the first Friedmann equation given in (1.6), the evolution of theUniverse
is governed by the second Friedmann equation, which reads

ä

a
= −4πGN

3
(ρ + 3P) , (1.14)

where P is the matter pressure. The Friedmann equations inevitably predict that
the Universe is either expanding or contracting. There is no natural way for a static
system. For ordinary matter, ρ + 3P ≥ 0 and therefore ä < 0; that is, the expansion
can only decelerate.

Before the Hubble discovery of the cosmological expansion, the common belief
was that the Universe was static and eternal (the assumptions leading to Olbers’
paradox). To resolve the contradiction between the General Relativity prediction
of a non-stationary universe and this wrong belief, Einstein introduced the so-called
cosmological constantΛ.With this new parameter, the Friedmann equations become

ȧ2

a2 = 8πGN

3
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3
− k

a2 , (1.15)
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In this case, it is possible to have a static universe (even if unstable). After the
discovery by Hubble, the constant was removed, being useless at that time. Einstein,
according to some quotations, said that its introduction was the “biggest blunder” of
his life. On the contrary, in 1967, Zel’dovich pointed out that the effective value of
the cosmological constant should receive a huge contribution from particle physics.
There is currently no satisfactory explanation for this puzzle, which is usually called
“old problem of the cosmological constant”.

At the end of the 20th century, the Supernova Cosmology Project and the High-Z
Supernova Search Team explored type Ia supernovae at high redshift to study the
expansion of the Universe. Surprisingly, they found that the Universe was accelerat-
ing rather than decelerating, as expected from the Friedmann equations with ordinary
matter satisfying the condition ρ +3P ≥ 0. For such a discovery, the team leaders of
these projects, Saul Perlmutter, Brian Schmidt, and Adam Riess, received the 2011
Nobel Prize in physics.

The origin of the phenomenon is completely unknown. Observations may be
explained with a tiny but positive cosmological constant, and for this reason the
puzzle is sometimes called “new cosmological constant problem”. The accelerated
expansion rate of the Universe might be caused by some exotic stuff uniformly
distributed over the whole Universe, generically called dark energy, which behaves
as a perfect fluid with the unusual equation of state ρ ≈ −P . Alternatively, classical
General Relativity may break down at large scales and not to be appropriate for the
description of the Universe at large distances.

There is also the so-called “coincidence problem”, concerning the reason why the
possible energy density of this exotic stuff is today of the same order of magnitude as
the energydensity of the normally gravitatingmatter, despite very different evolutions
during the cosmological expansion: they contribute respectively about 70% and 30%
to the energy of the Universe and dark energy stays constant in the course of the
expansion, while “normal” matter (including the dark one) drops down as 1/an with
n = 3 or 4.

1.4 Age and Size of the Universe

By age of the Universe we mean the time that passed from the beginning of the
expansion to the present days. We do not have exhaustive knowledge about the
physics of the very earlyUniverse andwedonot possess observational evidence of the
Universe at temperatures above a fewMeV, except for the spectrum of the primordial
density perturbations. However, from the Friedmann equations we see that the time
since the big bang singularity predicted by General Relativity and the BBN (the
first event for which we have a rigorous observational evidence) is only about 1 s
and therefore completely negligible with respect to the time from the BBN to the
present days. A simple estimate of the age of the Universe can be obtained assuming
a constant expansion rate. In this case, the age of the Universe is simply the inverse of
the Hubble constant; that is, 1/H0 ≈ 14 Gyr. A more accurate estimate requires the
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knowledge of the energy content of the Universe, since, according to the Friedmann
equations, the Hubble parameter depends on the energy density ρ and the constant k,
see Eq. (1.6). The age of the Universe accepted today is 13.8 Gyr. Such an estimate
is consistent with the age of the oldest stars in globular clusters, which are supposed
to be formed 1–2 Gyr after the big bang.

Let us now get a rough idea of the typical size of the structures in the Universe.
We can start from our Galaxy, theMilkyWay, which is quite a standard galaxy. It has
a stellar disk with a radius of about 15 kpc and an average thickness of 0.3 kpc. There
are about 1011 stars in our Galaxy, and the Solar System is in this disk at about 8 kpc
from the center. The disk is surrounded by a spheroidal halo of old stars with roughly
the same radius as the disk. A larger spheroidal halo is made of dark matter. The total
mass of the Milky Way is estimated to be around 1012 M�.5 Our Galaxy belongs to
the Local Group, which is a group of about 50 galaxies in which the Milky Way and
the Andromeda galaxy are the largest ones and most of the others are dwarf galaxies.
The Local Group has a total mass of about 1013 M� and a radius of 1.5 Mpc. The
Local Group belongs to the Virgo Supercluster, which contains about 100 galaxy
groups and clusters. The total mass of the Virgo Supercluster is about 1015 M�
and its radius is about 15 Mpc. Above the Virgo Supercluster, we find the visible
Universe: it contains about 108 superclusters, which all together count something
like 1011 galaxies, its total mass is 1023 M�, and its radius is about 15 Gpc.

At present, we do not know the actual size of the whole Universe. In the simplest
case of a homogeneous and isotropicUniverse, there can be three kinds of geometries,
depending on the sign of k in Eq. (1.6). k = 0 corresponds to a flat universe, k > 0 to a
closed universe, and k < 0 to an open universe. It is usually assumed that theUniverse
has a trivial topology, even if this assumption could be questioned. In the case of a
trivial topology, flat and open universes are spatially infinite, so they might contain
an infinite number of galaxies. A closed universe is like a 3-dimensional sphere and
has a finite volume. Current observations suggest that our Universe is close to be
flat, which means that all the three scenarios could be possible and the Universe may
either be spatially finite or spatially infinite. People have also studied the possibility of
more complicated scenarios and universes with non-trivial topologies (Linde 2004;
Luminet et al. 2015). In this case, even flat and open universes with k ≤ 0 may be
compact and have a finite volume. If the Universe were spatially finite and everything
werewithin the visibleUniverse, we could observe electromagnetic radiation emitted
by the same very distant source and coming from two different points in the sky. The
study of possible similar correlations in the CMB has only provided lower bounds
on the size of the Universe; that is, if the Universe has a finite size it must be anyway
larger than the visible Universe (Cornish et al. 2004).

5M� ≈ 2 · 1033 g is the Solar mass, which is quite commonly used as a unit of mass in astronomy.
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1.5 Cosmological Models Beyond General Relativity

Classical General Relativity predicts an initial spacetime singularity, where the scale
factor a vanishes and the energy density of matter becomes infinitely high. However,
a breakdown of the classical theory is more likely and the removal of the singularity
could be achieved by unknown quantum gravity effects, which are supposed to show
up at the Planck scale MPl = 1019 GeV. In classical General Relativity, the concepts
of space and time are quite different from those in Newtonian physics, as suggested
by our experience in everyday life. It is likely that in the quantum gravity regime even
the relativistic concept of spacetime becomes inadequate and it may be misleading
to use it when talking about the beginning of the Universe, or at least this concept has
to be taken with some caution. At present, we do not have any robust and predictable
theory of quantum gravity capable of providing clear answers about the physics at
the Planck scale and the origin of our Universe. Nevertheless, people have tried to
study possible scenarios on the basis of some quantum gravity inspired models.

In many extensions of classical General Relativity it turns out that gravity may
become repulsive at very high densities. In this case, going backwards in time, we
still find that the Universe was smaller, denser, and hotter, but at a certain point we
should reach a critical density and have a bounce. Bouncing cosmological scenarios
can arise from different theories (Novello and Bergliaffa 2008). The key point is that
the singularity of classical General Relativity, inwhich the scale factor a vanishes and
the energy density diverges, is replaced by a bounce, occurring at a critical value of
the energy density. From dimensional arguments, if the bounce arises due to quantum
gravity effects, it is natural to expect that such a critical density is the Planck energy
density ρPl = M4

Pl. The bouncing scenarios that remove the big bang singularity are
only partially a solution, because they do not tell us anything about new concepts of
the spacetime and they just move the origin of the Universe to an earlier time. An
extension of this picture is the idea that our Universe was born from the gravitational
collapse of a region in another universe and, more general, that there may be many
universes generated in this way. In other words, if there is somewhere an overdense
region that collapses, an exterior observer may see the formation of a black hole,
while the collapsing matter inside may eventually bounce and expand, generating a
new universe. At present, all these scenarios are at the level of speculations, and it is
not clear if they could ever be tested.
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Chapter 2
General Relativity

General Relativity is our current theory for the description of the gravitational force.
It is the first ingredient in the Standard Model of cosmology. General Relativity has
successfully passed a large number of tests, mainly in Earth’s gravitational field,
Solar System, and by studying the orbital motion of binary pulsars (Will 2006).
Today, the observed accelerating expansion rate of the Universe is questioning the
validity of the theory at very large scales, but at present the phenomenon may be
explained with a small positive cosmological constant.

The basic idea of General Relativity is that the gravitational force can be inter-
preted as a deformation of the geometry of the spacetime, which is not flat any more.
The kinematics, namely how particles move in the spacetime, is determined by the
geodesic equations and it is a relatively easy problem. The dynamics, i.e. how the
energy makes the spacetime curved, is regulated by the Einstein equations. The latter
are second order non-linear partial differential equations for the metric coefficients
and it is highly non-trivial to find a solution. Analytical solutions are thus possible
only in special cases, in which the spacetime possesses some nice symmetries.

This section provides a short review on General Relativity, focusing on the con-
cepts necessary for an introductory course on cosmology. More details can be found
in standard textbooks like Hartle 2003, Landau and Lifshitz 1975, Stephani 2004.

2.1 Scalars, Vectors and Tensors

Let us start considering the usual Euclidean space in 3 dimensions. The coordinate
system can be indicated by x or {xi }, with i = 1, 2, and 3. In the case of Cartesian
coordinates, we have {xi } = {x, y, z}. If we have a curve γ from the point A to the
point B, its length is given by

I =
∫

γ

ds, (2.1)
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where ds is the line element. The curve γ can be parametrized in terms of a chosen
coordinate system as γ (λ) = {x(λ), y(λ), z(λ)}, where λ is an affine parameter
running along the curve. Equation (2.1) becomes

I =
∫ λ2

λ1

[(
dx

dλ

)2

+
(

dy

dλ

)2

+
(

dz

dλ

)2
]1/2

dλ, (2.2)

where γ (λ1) and γ (λ2) correspond, respectively, to the point A and B. Equation (2.2)
can be written in a more compact way by introducing the metric tensor gi j

I =
∫ λ2

λ1

[
gi j

dxi

dλ

dx j

dλ

]1/2
dλ, (2.3)

where we have used the Einstein convention of summation over repeated indices;
that is,

gi j
dxi

dλ

dx j

dλ
≡

3∑
i=1

3∑
j=1

gi j
dxi

dλ

dx j

dλ
. (2.4)

In this case, gi j is 1 for i = j and 0 for i �= j . In the case of spherical coordinates
{r, θ, φ}, the line element is

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (2.5)

and therefore g11 = 1, g22 = r2, g33 = r2 sin2 θ , and all the off-diagonal terms
vanish.

If we go from the coordinate system {xi } to the coordinate system {x ′i }, the
infinitesimal displacements change as

dxi → dx ′i = ∂x ′i

∂xa
dxa . (2.6)

Since the length of the curve and the line element must be independent of the choice
of the coordinate system, the metric tensor changes as

gi j → g′
i j = ∂xa

∂x ′i
∂xb

∂x ′ j
gab. (2.7)

It is easy to verify that this is indeed the case for the metric tensor in Cartesian and
spherical coordinates.

In general, we call vector an object V with components V i s changing according
to the rule
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V i → V ′i = ∂x ′i

∂xa
V a, (2.8)

when we go from the coordinate system {xi } to the coordinate system {x ′i }.
The dual vector of V is the object with components given by

Vi = gi j V j , (2.9)

and, under a coordinate transformation, its components change with the opposite
rule; that is,

Vi → V ′
i = ∂xa

∂x ′i Va . (2.10)

Upper indices are used for components that obey the rule in Eq. (2.8), lower indices
when the transformation rule is given by Eq. (2.10).

A scalar is an object invariant under a coordinate transformation. For instance, a
scalar is

S = Vi V i . (2.11)

From the transformation rules of Vi and V i , we see that S → S′ = S.
The derivative operator, ∂i ≡ ∂/∂xi , is a dual vector because

∂i → ∂ ′
i = ∂xa

∂x ′i ∂a . (2.12)

In general, upper indices can be lowered with the use of gi j , as shown in Eq. (2.9),
and lower indices can be raised with the use of gi j , which is the inverse matrix of
gi j , so

V i = gi j Vj . (2.13)

Indeed, V i = gi j Vj = gi j g jk V k = δi
k V k = V i , where δi

k is the Kronecker delta
and gi j g jk = δi

k by definition of inverse matrix. We also note that the metric tensor
with an upper and a lower index is the Kronecker delta, gi

k = δi
k .

Tensors are a multi-index generalization of vectors and dual vectors. The metric
tensor gi j is an example of tensor with special properties. In general, the components
of a tensor can have some upper and some lower indices; examples are Ti j , T i j , T i

jk ,

T k
i j l , etc. In the case of a change of coordinates, upper indices transform according

to the rule in Eq. (2.8), while lower indices follow the rule of Eq. (2.10). For example,
in the case of a tensor with components T k

i j l , we have

T k
i j l → T ′k

i j l = ∂xa

∂x ′i
∂xb

∂x ′ j

∂x ′k

∂xc

∂xd

∂x ′l T c
ab d . (2.14)
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Upper indices can be lowered with gi j , lower indices can be raised with gi j . For
instance,

Ti jkl = gkaT a
i j l , T kl

i j = glaT k
i j a, etc. (2.15)

2.2 Geodesic Equations

The geodesic equations determine the kinematics, namely how test-particles move
in space. With the introduction of the metric tensor, we can use the same formalism
for Newtonian and relativistic mechanics.

2.2.1 Newtonian Mechanics

In Newtonian mechanics, the Principle of Least Action plays a very important role.
It can be used to obtain in an elegant way the equations of motion for a system when
its action is known. In the case of a free point-like particle, the Lagrangian is simply
given by the kinetic energy of the particle

L = 1

2
mv2 = 1

2
mgi j

dxi

dt

dx j

dt
, (2.16)

where m is the mass of the particle, v = (v1, v2, v3) is the particle velocity, gi j is the
metric tensor, {xi } are the particle coordinates, and t is the time. The action is

S =
∫

Ldt. (2.17)

From the Principle of Least Action, we find the Euler-Lagrange equations

d

dt

∂L

∂ ẋ i
− ∂L

∂xi
= 0, (2.18)

where the dot indicates the derivative with respect to t .
If we plug the Lagrangian in Eq. (2.16) into the Euler-Lagrange equations (2.18),

we obtain the geodesic equations

ẍ i + Γ i
jk ẋ j ẋ k = 0, (2.19)

where Γ i
jks are the Christoffel symbols

Γ i
jk = 1

2
gil

(
∂glk

∂x j
+ ∂g jl

∂xk
− ∂g jk

∂xl

)
. (2.20)
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We note that the Christoffel symbols are not the components of a tensor. Indeed,
if we consider the coordinate transformation {xi } → {x ′i }, the Christoffel symbols
change according to the rule

Γ i
jk → Γ ′i

jk = ∂x ′i

∂xa

∂xb

∂x ′ j

∂xc

∂x ′k Γ a
bc + ∂x ′i

∂xa

∂2xa

∂x ′ j∂x ′k . (2.21)

Γ i
jk transforms as a tensor only in the special case of linear transformations. In

Cartesian coordinates, all the Christoffel symbols vanish, and therefore the geodesic
equations simply reduce to ẍ = ÿ = z̈ = 0 (First Newton’s Law). In spherical
coordinates, we have

r̈ − r θ̇2 − r sin2 θφ̇2 = 0, (2.22)

θ̈ + 2

r
ṙ θ̇ − cos θ sin θφ̇2 = 0, (2.23)

φ̈ + 2

r
ṙ φ̇ + 2 cot θ θ̇ φ̇ = 0. (2.24)

2.2.2 Relativistic Mechanics

In Special andGeneral Relativity, time and space are not two independent entities any
more and the Newtonian 3-dimensional space becomes a 4-dimensional spacetime.
The coordinates are usually indicated by {xμ}, with μ = 0, 1, 2, and 3, where the
0 component refers to the temporal one and the 1, 2, and 3 components refer to the
space ones. Greek letters μ, ν, ρ,…are commonly used for the spacetime indices
ranging from 0 to 3, while Latin letters i , j , k,…are for the space components only,
ranging from 1 to 3.

In Special Relativity and in Cartesian coordinates {t, x, y, z}, or {t, x} with x =
{x, y, z}, the metric tensor is indicated by ημν and the line element of the spacetime
ds is1

ds2 = ημνdxμdxν = dt2 − dx2 − dy2 − dz2 = dt2 − dx2. (2.25)

The metric coefficients are thus η00 = 1, η11 = η22 = η33 = −1, and all the off-
diagonal components vanish. The Principle of Least Action can be naturally extended
to relativistic mechanics. The action for a free point-like particle can now be written
as

S = −m
∫

γ

ds, (2.26)

1In this book, we use the metric signature convention (+ − −−), which is common in particle
physics. In the General Relativity community, it is more common the convention (− + ++).
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where m is the particle mass, γ is the particle trajectory, and ds is the line element
of the spacetime. From the action (2.26) and the line element (2.25), we find that the
Lagrangian is

S =
∫

Ldt ⇒ L = −m
√
1 − v2, (2.27)

where v = dx/dt is the particle velocity. In the non-relativistic limit v2 � 1, we
recover the Newtonian Lagrangian (modulo a constant)

L ≈ −m + 1

2
mv2, (2.28)

and therefore we obtain the correct Newtonian equations of motion.
In general, the metric tensor gμν has not the simple form of ημν . The line element

is an invariant; that is, it is independent of the choice of the coordinates. With the
terminology of the previous section, ds2 is a scalar. We can thus define the following
coordinate independent types of trajectories:

ds2 > 0 time-like trajectories,

ds2 = 0 light-like trajectories,

ds2 < 0 space-like trajectories. (2.29)

In particular, massless particles like photons will follow light-like trajectories with
ds2 = 0; that is, massless particles move with the speed of light. The equations of
motion for a massless particle can still be obtained from the action in (2.26), but now
m cannot be the mass but just a constant with the dimensions of mass.

In the case of massive particles, it is convenient to use as affine parameter λ their
“proper time” τ , i.e. the time measured in the rest-frame of the particle. Since ds2 is
an invariant, dτ 2 = ds2, because the coordinate system is anchored on the particle
and therefore there is no motion along the spatial directions. With this choice of the
affine parameter, gμν ẋμ ẋν = 1, where the dot indicates the derivative with respect
to τ .

In Newtonian mechanics, the motion of a test-particle in a gravitational field can
be described by adding the correct gravitational potential to the Lagrangian of the
free particle. One of the key-points in General Relativity is that the gravitational
field can be absorbed into the metric tensor gμν : in other words, we have still a free
particle, but now it lives in a curved spacetime and follows the geodesics of that
spacetime. If the metric of the spacetime gμν is known, we can obtain the geodesic
equations from the action in Eq. (2.26) with ημν replaced by gμν . Equivalently, one
can write the Euler-Lagrange equations for the Lagrangian

L = gμν ẋμ ẋν . (2.30)
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The geodesic equations have the same form as the ones in the Newtonain theory,
with Latin letters replaced by Greek letters

ẍμ + Γ μ
νρ ẋν ẋρ = 0 with Γ μ

νρ = 1

2
gμσ

(
∂gσρ

∂xν
+ ∂gνσ

∂xρ
− ∂gνρ

∂xσ

)
. (2.31)

The fact that the motion is only determined by the background geometry and not
by specific features of the body meets the well-known Weak Equivalence Princi-
ple, which asserts that the trajectory of a test-particle is independent of its internal
structure and composition (Will 2006).

It is instructive to see how we can recover the Newtonian limit. We use Cartesian
coordinates andwe require that: (i) the gravitational field isweak, (ii) the gravitational
field is stationary, and (iii) the motion of the particle is non-relativistic. These three
conditions are given, respectively, by

gμν = ημν + hμν with |hμν | � 1, (2.32)
∂gμν

∂t
= 0, (2.33)

dt

dλ
	 dxi

dλ
. (2.34)

Within these approximations, the geodesic equations reduce to

d2xμ

dλ2
+ Γ

μ
00

(
dt

dλ

)2

≈ 0 with Γ
μ
00 ≈ 1

2
ημν ∂h00

∂xν
. (2.35)

After a simple integration, we find

d2xi

dt2
≈ −1

2

∂h00

∂xi
. (2.36)

If we compare Eq. (2.36) with the Newtonian formula mẍ = −m∇Φ, where Φ is
the Newtonian gravitational potential, and we require that the spacetime is flat at
infinity, we find

g00 = 1 + 2Φ. (2.37)

2.3 Energy and Momentum in Flat Spacetime

From the Lagrangian in Eq. (2.27), we obtain the particle 3-momentum

p = ∂L

∂v
= mv√

1 − v2
, (2.38)
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and the particle Hamiltonian

H = pv − L = m√
1 − v2

. (2.39)

H corresponds to the energy of the particle, i.e. E = H . For v2 = 0, we get
the particle rest-energy E = m. We note that, if this particle is made of a number
of elementary particles, its rest-energy is not just the sum of the masses of all the
elementary particles, but it includes also the kinetic energy and the interaction energy
of all the constituents. In the non-relativistic limit v2 � 1, the particle energy is

E ≈ m + 1

2
mv2. (2.40)

The correct Newtonian kinetic energy is thus recovered subtracting the rest-energy
m from the total energy E . Massive particles cannot reach the speed of light v2 = 1
because it would require an infinite energy.

The 4-momentum of a massive particle can be introduced as

pμ = mẋμ = (E, p) . (2.41)

The scalar pμ pμ = m2 corresponds to the well-known relativistic formula relating
the energy, the mass, and the 3-momentum of a particle

E2 = m2 + p2. (2.42)

2.4 Energy-Momentum Tensor in Flat Spacetime

Let us consider a system with action

S =
∫

Ldt with L =
∫

L d3V, (2.43)

where L = L (φ, ∂μφ) is the Lagrangian density and depends on the field φ(t, x)

and on its first derivatives, while d3V = dx dy dz is the volume element in Cartesian
coordinates. Since L does not explicitly depend on the coordinates xμ, the system
is closed, and its energy and momentum are conserved. If we apply the Principle of
Least Action, namely we consider small variations of φ and ∂μφ and demand that
δS = 0, we get the equations of motion

∂

∂xμ

∂L

∂
(
∂μφ

) − ∂L

∂φ
= 0. (2.44)
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Using the equations of motion and the fact that ∂μ∂νφ = ∂ν∂μφ, we find

∂L

∂xμ
= ∂L

∂φ

(
∂μφ

) + ∂L

∂ (∂νφ)
∂μ (∂νφ)

=
[

∂

∂xν

∂L

∂ (∂νφ)

] (
∂μφ

) + ∂L

∂ (∂νφ)
∂ν

(
∂μφ

)

= ∂

∂xν

[
∂L

∂ (∂νφ)

(
∂μφ

)]
. (2.45)

We define the energy-momentum tensor of the system as

T ν
μ = ∂L

∂ (∂νφ)

(
∂μφ

) − ην
μL , (2.46)

and Eq. (2.45) reduces to

∂νT ν
μ = 0. (2.47)

A few comments are in order here. First, Eq. (2.46) looks like the Legendre
transformation of the Lagrangian density, so T 00 should be the energy density of the
system and T 0i s should be themomentum densities of the system. Second, Eq. (2.47)
is an equation of conservation. Indeed, if we integrate Eq. (2.47) over the volume V
and we apply Gauss’ theorem, we find

d

dt

∫
V

T 00d3V = −
∫

Σ

T 0i d2σi , (2.48)

d

dt

∫
V

T 0i d3V = −
∫

Σ

T i j d2σ j , (2.49)

where d2σ j represents the surface element of the surface Σ and it is outwardly
perpendicular to Σ . Third, such a definition of the energy-momentum tensor has
some ambiguity: if T μν is our energy-momentum tensor, the tensor

T μν + ∂ρ Aμνρ with Aμνρ = −Aμρν (2.50)

satisfies Eq. (2.47) as well. It turns out that such an ambiguity can be removed by
imposing that T μν is a symmetric tensor, namely T μν = T νμ. If the initial energy-
momentum tensor is not symmetric, it is always possible to make it symmetric
with a suitable choice of Aμνρ . This requirement can be inferred by imposing the
conservation of the angular momentum of the system in Special Relativity, which
can be constructed from T μν as

Mμν =
∫

V

(
xμT ν0 − xνT μ0

)
d3V . (2.51)
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It is easy to see that

∂μMμν = 0 ⇒ T μν = T νμ. (2.52)

2.5 Curved Spacetime

In curved spacetime, but even in flat spacetime in curved coordinates, the derivative
of a scalar is a vector, but the derivative of a vector is not a tensor. The generalization
of the ordinary derivative ∂μ in curved spacetime, or in curved coordinates in flat
spacetime, is the covariant derivative ∇μ. For a generic vector V μ, the action of the
covariant derivative is

∇μV ν = ∂μV ν + Γ ν
μρV ρ. (2.53)

It can be checked that for a dual vector Vμ the action of the covariant derivative is

∇μVν = ∂μVν − Γ ρ
μνVρ. (2.54)

One can see that∇μV ν and∇μVν are tensors and that∇μ is the natural generalization
of ∂μ. In the case of a generic tensor with upper and lower indices, the rule is

∇ρT μ1...μm
ν1...νn

= ∂ρT μ1...μm
ν1...νn

+Γ μ1
ρσ T σ ...μm

ν1...νn
+ · · · + Γ μm

ρσ T μ1...σ
ν1...νn

−Γ σ
ρν1

T μ1...μm
σ ...νn

− · · · − Γ σ
ρνn

T μ1...μm
ν1...σ

. (2.55)

With the covariant derivative, we can introduce the Riemann tensor as the com-
mutator of the derivatives

∇μ∇νVρ − ∇ν∇μVρ = Rσ
ρμνVσ , (2.56)

for any vector V μ. It turns out that the Riemann tensor can be written as

Rμ
νρσ = ∂Γ

μ
νσ

∂xρ
− ∂Γ

μ
νρ

∂xσ
+ Γ

μ
λρΓ λ

νσ − Γ
μ
λσ Γ λ

νρ. (2.57)

Since it is a tensor, under a coordinate transformation {xμ} → {x ′μ} it changes as

Rμ
νρσ → R′μ

νρσ = ∂x ′μ

∂xα

∂xβ

∂x ′ν
∂xγ

∂x ′ρ
∂xδ

∂x ′σ Rα
βγ δ. (2.58)

With the Riemann tensor, we can introduce the Ricci tensor Rμν and the scalar
curvature R
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Rμν = Rρ
μρν , R = gμν Rμν. (2.59)

R is a scalar, namely it is invariant under coordinate transformations. Rσ
ρμν and Rμν

are tensors. If all their components vanish in a coordinate system, they vanish in any
coordinate system, as can be seen from Eq. (2.58). In particular in flat spacetime
Rσ

ρμν = 0.
An important issue concerns how the laws of physics formulated in Special Rela-

tivity changewhenwepass toGeneralRelativity. In flat spacetime, under a coordinate
transformation from Cartesian to other coordinates, it is easy to see that one has to
replace ημν with gμν and ordinary derivatives with covariant derivatives:

ημν → gμν , ∂μ → ∇μ. (2.60)

The integral over d4x = dtd3V is replaced by
√−gd4x , where g is the determinant

of the metric tensor

d4x → √−gd4x . (2.61)

These rules directly follow from the coordinate transformation and they are easy to
check, for instance for the transformation from Cartesian to spherical or cylindrical
coordinates. In the case of curved spacetime, the issue is more tricky. In principle,
there may appear some interaction terms with the Riemann tensor, the Ricci tensor,
or the scalar curvature. These terms are called non-minimal couplings (an example is
given in Sect. 2.6). It turns out that, for the time being, experiments and observations
are consistent with the simple rules of Eqs. (2.60) and (2.61). Such a prescription is
not demanded by any fundamental principle and sometimes it may not be unique, but
it just seems to work. Lastly, we note that the conservation of the energy-momentum
tensor in Eq. (2.47) becomes

∇μT μν = 0 (2.62)

in curved spacetime. However, since we have now the covariant rather than the
ordinary derivative, there is no conservation of T μν . The reason is that matter can
exchange energy and momentum with the gravitational field.

2.6 Field Theory in Flat and Curved Spacetimes

In flat spacetime and Cartesian coordinates, the action of a field can be conveniently
written in the form

S =
∫

L d4x, (2.63)
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where L is the Lagrangian density, as introduced in Sect. 2.4. In the case of the
electromagnetic field, the Lagrangian density is

L = −1

4
Fμν Fμν, (2.64)

where Fμν = ∂μ Aν − ∂ν Aμ is the field strength, Aμ = (φ, A) is the 4-potential,
φ is the scalar potential, and A is the vector potential. The electric field E and the
magnetic field B are related to the 4-potential Aμ by

E = −∂t A − ∇φ , B = ∇ ∧ A. (2.65)

From the definition of Fμν , it follows that

∂μFνρ + ∂ν Fρμ + ∂ρ Fμν = 0. (2.66)

If we write Eq. (2.66) in terms of the electric and magnetic fields E and B, we find
the second and the third Maxwell equations in the usual form

∇ · B = 0 , ∇ ∧ E = ∂t B. (2.67)

Applying the Principle of Least Action, we consider small variations of Aμ and of
its first derivatives in the action and we get the field equations of the electromagnetic
field in covariant form

∂μFμν = 0. (2.68)

These equations in terms of the electric and magnetic fields E and B reduce to the
first and the fourth Maxwell equations in vacuum, namely

∇ · E = 0 , ∇ ∧ B = ∂t E. (2.69)

It is straightforward to write the action and the field equations for the electro-
magnetic field in curved spacetime following the recipe of Sect. 2.5. We replace
ordinary derivatives with covariant derivatives. However, the field strength of the
electromagnetic field is unaltered

Fμν = ∇μ Aν − ∇ν Aμ = ∂μ Aν − ∂ν Aμ, (2.70)

because the Maxwell tensor Fμν is antisymmetric with respect to interchange of μ

and ν and symmetric Christoffel symbols disappear from the difference. Fμν is now
obtained by raising the indices with gμν , not with ημν . The Lagrangian density is
still given by Eq. (2.64), while the action is

S =
∫

L
√−gd4x . (2.71)
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Equations (2.66) and (2.68) become, respectively,

∇μFνρ + ∇ν Fρμ + ∇ρ Fμν = 0,

∇μFμν = 0. (2.72)

Let us now consider a scalar field, which is the simplest field and it is widely
used in cosmology. In flat spacetime and Cartesian coordinates, the action is given
by Eq. (2.63) and the Lagrangian density is

L = 1

2
ημν

(
∂μφ

)
(∂νφ) − 1

2
m2φ2, (2.73)

where φ is the scalar field and m is the mass of the particles associated to this field.
From the variation of the action, we get the field equation (Klein-Gordon equation)

(
∂μ∂μ − m2

)
φ = 0, (2.74)

where ∂μ∂μ = ∂20 − ∂21 − ∂22 − ∂23 is the D’Alembert operator. In curved spacetime,
the action is given by Eq. (2.71) and the Lagrangian density becomes

L = 1

2
gμν

(
∂μφ

)
(∂νφ) − 1

2
m2φ2. (2.75)

The field equation in curved spacetime is

(
∇μ∂μ − m2

)
φ = 0. (2.76)

As discussed in Sect. 2.5, it is not guaranteed that the Lagrangian density in the
presence of a gravitational field is given by Eq. (2.75) and there are no interaction
terms. In cosmology, it is common to introduce some non-minimal couplings. In the
simplest case, the Lagrangian density can be taken as

L = 1

2
gμν

(
∂μφ

)
(∂νφ) − 1

2
m2φ2 + ξ Rφ2, (2.77)

where ξ is a dimensionless coupling constant. We note that in Eq. (2.77) we have
∂μφ and not ∇μφ. This is because φ is a scalar and therefore ∂μ = ∇μ.

2.7 Einstein Equations

In the previous sections, we have seen that the motion of test-particles is determined
by the geodesic equations and the non-gravitational laws of physics in flat space-
time can be easily translated for a curved spacetime with the prescription given in
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Eqs. (2.60) and (2.61). In all these cases, we just need to know the backgroundmetric
gμν . The latter depends on the coordinate system, but it takes into account the grav-
itational field as well, and therefore it is determined by the matter distribution. The
Einstein equations are the master equations of General Relativity and they relate the
spacetime geometry to the matter content. They can be obtained by imposing a num-
ber of “reasonable” requirements, and a posteriori one can check that its predictions
are consistent with observations. One can thus require that

1. They are tensor equations, to be independent of the coordinate system.
2. They are partial differential equations at most of second order in the variable of

the gravitational field, namely gμν , in analogy with the other field equations in
physics.

3. They must have the correct Newtonian limit.
4. T μν is the source of the gravitational field.
5. If T μν = 0, the spacetime is flat.

From the requirements 1 and 4, the Einstein equations must have the form

Gμν = κT μν, (2.78)

where Gμν is the Einstein tensor and κ is the Einstein constant. Since ∇μT μν = 0,
we need that

∇μGμν = 0. (2.79)

From the conditions 2 and 5, it follows that the simplest choice is

Gμν = Rμν − 1

2
gμν R, (2.80)

where Rμν is the Ricci tensor and R is the scalar curvature. The tensor in Eq. (2.80)
satisfies the condition in (2.79), called Bianchi identity. To find the Newtonian limit,
we assume the approximations (2.32) and (2.33), as well as that in our coordinate
system all the components of the matter energy-momentum tensor are negligible,
except the 00 one, which describes the energy density and reduces to the matter
density in the Newtonian limit, so

T00 = ρ Tμν = 0 for μ, ν �= 0. (2.81)

After some passages, we find

R00 = 1

2
Δh00 = κρ, (2.82)

whereΔ is the Laplace operator. The Poisson equation ofNewtonian gravity is recov-
ered by replacing h00 with 2Φ, where Φ is the Newtonian gravitational potential, as
found in Sect. 2.2.2. The Einstein constant is thus
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κ = 8πGN = 8π

M2
Pl

, (2.83)

where GN is the Newton constant and MPl = G−1/2
N is the Planck mass.2 In the

next chapters, we will use the Planck mass instead of GN, as it is more common in
particle cosmology.

If we relax the assumption 5, the Einstein equations can have the form

Rμν − 1

2
gμν R + Λgμν = 8πGNT μν, (2.84)

where Λ is called cosmological constant. For a non-vanishing Λ, we do not recover
the flat spacetime in the absence of matter. However, a sufficiently small Λ cannot
be ruled out by experiments.

Lastly, like any other known field equation of physics, even the Einstein equations
can be derived from the Principle of Least Action. The total action of the system has
the form Stot = SEH + Smatter, where SEH is the Einstein-Hilbert action describing
the gravitational field

SEH = 1

16πGN

∫
R
√−gd4x, (2.85)

while Smatter is the action of the matter sector. If we consider small variations of the
metric coefficients and of their first derivatives, we get the Einstein equations. Such
a procedure allows to define the matter energy-momentum tensor as

T μν = 2√−g

δSmatter

δgμν

, (2.86)

which is automatically a symmetric tensor (see the discussion at the end of Sect. 2.4)
and reduces to the one of Special Relativity in the absence of gravitational fields. If
we consider small variations of the fundamental variables of the matter sector and
of their derivatives, we get the field equations of matter (e.g. the Maxwell equations
in the case of an electromagnetic field).

The covariant conservation (2.62) of the energy-momentum tensor (2.86) follows
from the invariance of the action with respect to arbitrary coordinate transformations,
according to the Noether theorem. This property is compatible with the Einstein
equations (2.84), with Λ = 0 due to the Bianchi identity (2.79). This identity is
automatically fulfilled in General Relativity, as follows from the definition of the
curvature tensors and the Christoffel symbols. If Λ �= 0, Λ must be constant, and
this is why it has the name “cosmological constant”.

2We remind the reader that we are using units in which c = � = 1. If we reintroduce c and �, we
have κ = 8πGN

c4
= 8π�

M2
Plc

3 .
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There is an interesting analogy between the automatic conservation of the left
hand side of the Maxwell and the Einstein equations. The Maxwell equations in the
presence of electric current have the form

∂μFμν = J ν (2.87)

Because of the antisymmetry of Fμν with respect to the interchange of μ and ν, the
derivative of the left hand side vanishes, ∂ν∂μFμν = 0. So it implies the current
conservation.

Problems

2.1 The exterior gravitational field of a spherically symmetric object is described
by the Schwarzschild solution. The line element is

ds2 =
(
1 − 2GNM

r

)
dt2 −

(
1 − 2GNM

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2. (2.88)

Here M is the gravitational mass of the object.

(a) Write the geodesic equations. [Hint: write the Euler-Lagrange equations for the
Lagrangian in (2.30) with gμν of the Schwarzschild solution and then arrange
these equations in the form (2.31).]

(b) Find the non-vanishing Christoffel symbols. [Hint: they can be gotten from the
geodesic equations rather than from their definition in terms of themetric tensor.]

(c) What is the value of the Riemann tensor, Ricci tensor, and scalar curvature for
r → +∞?

2.2 The Friedmann-Robertson-Walker metric describes the spacetime geometry of
a homogeneous and isotropic universe. The line element is given by

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2.89)

where a(t) is called scale factor and it is a function of t only, while k is a constant.

(a) Answer the questions (a) and (b) of the previous problem for the metric in (2.89).
(b) Is the energy of a test-particle conserved? And its angular momentum?
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Chapter 3
The Standard Model of Particle Physics

The Standard Model of particle physics currently represents the best framework for
the description of all the known elementary particles and all the fundamental forces
of Nature except gravity, namely the electromagnetic force, the strong nuclear force,
and the weak nuclear force. Matter is described by fermions, spin-1/2 particles,
which are grouped into two classes: leptons and quarks. Forces are described by
gauge theories and are mediated by gauge bosons, spin-1 particles. The Standard
Model of particle physics includes also a spin-0 particle, the Higgs boson, which
provides a mass to the other fundamental particles (charged leptons, quarks, weak
gauge bosons). Particles are classified according to their quantum numbers, which
are related to the invariance of the theory under certain symmetries. Figure3.1 shows
the fundamental particles of the Standard Model of particle physics and their basic
properties (Olive et al. 2014).1 Starting from a small number of assumptions, we
can write the most general Lagrangian, finding that the model depends on 19 free
parameters (9 fermion masses, 3 quark mixing angles, 1 quark CP violating phase,
3 gauge couplings, 1 Higgs vacuum expectation value, 1 weak mixing angle, and 1
CP violating parameter of the strong interaction), and their numerical value has to
be determined in experiments.

Interactions betweenmatter particles are created (mediated) by the exchange of the
so-called gauge bosons. The electromagnetic interaction is induced by the exchange
of photons. The corresponding theory is called quantum electrodynamics, or QED.
The strong interaction is mediated by eight gluons, which interact with the strong
charge of quarks, called color, so the theory has the name quantum chromodynamics,
or QCD. The weak interaction is induced by the exchange of heavy intermediate
bosons, the electrically charged W ± or the neutral Z0.

The model is very successful in explaining a large number of observations and its
predictions well agree with particle collider experiments. In some cases, it is possible
to perform very precise measurements, and the agreement with theoretical calcula-
tions is excellent. For instance, the electron anomalous magnetic dipole moment has

1We have to distinguish theMSMand aminimally extendedmodel, which includes Supersymmetry,
possibly Grand Unification, and sometimes even something more, see below.
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Fig. 3.1 Building blocks of the StandardModel of particle physics.Matter is described by fermions,
forces are mediated by bosons. For every particle, we show the name, symbol, electric charge q,
and mass m

been tested at the level of 10−8. Nevertheless, there are both theoretical problems
and observational data that require new physics. From the theoretical side, the prob-
lem to make the Higgs mass stable against huge quantum corrections suggests that
new physics is not far from the electroweak energy scale. A possible solution is the
supersymmetric extension of the MSM, in which every Standard Model particle has
a supersymmetric partner. The Standard Model of particle physics assumes that neu-
trinos are massless. Today we know this is not the case, but there are several ways
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to provide neutrinos with a mass. From cosmology, new physics is required because
the Standard Model of particle physics has no good dark matter candidate, it cannot
generate the matter-antimatter asymmetry observed around us, and there is no way
to produce an early period of inflation.

This section provides a short review on the Standard Model of particle physics.
More details can be found in many textbooks on this subject, like Griffiths (2008).

3.1 Fermions

Fermions are spin-1/2 particles and therefore obey the Fermi-Dirac statistics. They
are grouped into two classes: leptons and quarks. Leptons do not interact through the
strong nuclear force. Quarks interact through all the fundamental forces of Nature.
Leptons and quarks are the basic building blocks of matter. Around us, there are no
free quarks, as a consequence of the confining property of the strong nuclear force.
Free quarks were likely to be present in the primordial plasma of the early Universe,
when the temperature was above the QCD phase transition, TQCD ∼ 200 MeV.
Today we observe bound states: baryons, consisting of three quarks, and mesons,
which are bound states of a quark and an antiquark. Baryons and mesons are called
hadrons, which was a term coined to indicate particles subject to the strong nuclear
force and therefore different from leptons. Protons and neutrons are baryons made
of the lightest quarks. Electrons are the lightest leptons with a non-vanishing electric
charge.

There are three generations of leptons and three generations of quarks, called
first, second, and third generation. In every generation, there are two particles with
quite similar properties but different electric charge. The members of the first gener-
ation are light particles, those in the second generation are heavier, those in the third
generation are much heavier, though we do not know if this is true for neutrinos.
We do not know why there are three generations and not four or more, but there
are arguments suggesting that there may not be heavier generations with relatively
light new neutrinos. An indication comes from the study of the primordial abun-
dances of light elements (see Sect. 8.7). Another argument is based on the study of
the decay of the Z-boson in collider experiments. Z-bosons decay into a fermion and
the corresponding antiparticle. If the decay product is a charged lepton-antilepton
or a quark-antiquark pair, it is seen in the detector. If it is a neutrino-antineutrino,
it is not detected. However, it is possible to measure the decay rate into “invisible”
particles, namely particles that cannot be seen by the detector. It turns out that the
measured decay rate into invisible particles is consistent with the theoretical predic-
tions for three light neutrinos, not four or more. If there were a fourth generation,
the corresponding neutrino should be quite heavy (2mν > MZ , to make the decay
kinematically forbidden).

http://dx.doi.org/10.1007/978-3-662-48078-6_8
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3.1.1 Leptons

Leptons interact through the weak nuclear force and, if they possess a non-vanishing
electric charge, theyhave also electromagnetic interactions. In anygeneration, there is
an electrically charged lepton and the corresponding electrically neutral neutrino. The
three electrically charged leptons are the electron (e−), the muon (μ−), and the tauon
(τ−), and each of them has its antiparticle, namely the positron (e+), the antimuon
(μ+), and the antitauon (τ+). Since all these particles have spin 1/2, the total number
of degrees of freedom is 12. In the MSM of particle physics, neutrinos are massless
and only interact through the weak nuclear force. Since the latter only acts on left-
handed particles and right-handed antiparticles, we have three massless left-handed
neutrinos (electron neutrino νe, muon neutrino νμ, tauon neutrino ντ ), and three
massless right-handed antineutrinos (electron antineutrino ν̄e, muon antineutrino ν̄μ,
tauon antineutrino ν̄τ ).2 Overall, there are 6 degrees of freedom. The Lagrangian of
the StandardModel is invariant under a global transformation of the kind L → eiα L ,
where L is calledweak isospin doublet and groups theDirac spinors of the two leptons
of the same generation, while α is a constant. Such a symmetry is associated to the
conservation of the lepton number of every generation, usually indicated by Le, Lμ,
Lτ .

Today we know that neutrinos “oscillate”; that is, they can transform to neutrinos
of another generation. Such a phenomenon clearly violates the lepton number of the
generation, but not the total lepton number L = Le + Lμ + Lτ . Neutrino oscillations
occur because the neutrino mass eigenstates and the neutrino flavor eigenstates (they
are also called interaction or gauge eigenstates) do not coincide. When a neutrino
is generated or interacts with another particle, it falls into a flavor eigenstate, which
is a linear combination of mass eigenstates. In the process of free neutrino propa-
gation, the relative phases of the mass eigenstates change, if masses are different,
and therefore neutrino stops being a single flavor eigenstate but becomes a mixture
of different flavors. When the neutrino interacts with matter again, it may create a
charged lepton of different flavor. This is possible only in the case of a non-vanishing
mass (at least for two neutrinos), and therefore neutrinos must have a mass, though
very small.

3.1.2 Quarks

Quarks interact through the electromagnetic, strong, and weak nuclear forces. As
leptons, they are grouped into three generations, with the first generation made of
the lightest quarks and the third one with the heaviest quarks. Every generation
has a U -type quark (up quark u, charm quark c, top quark t) with electric charge
+2/3, and a D-type quark (down quark d, strange quark s, bottom quark b) with

2Particles with spin in the same (opposite) direction as their momentum are called right-handed
(left-handed). In the case of massless particles, this is independent of the reference system. For very
light particles, this classification is approximately valid too.
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electric charge −1/3. Every quark has its antiparticle, called antiquark (antiquark up
ū, antiquark down d̄, antiquark charm c̄, etc.). The strong interaction among quarks
is generated by the so-called color charges: every quark can have three different
color charges, which are conventionally called red, blue, and green. Overall, the
total number of degrees of freedom is 2 × 2 × 2 × 3 × 3 = 72. Adding the 18
leptonic degrees of freedom, the total number of fermionic degrees of freedom is 90.
Like leptons, heavier quarks can decay into lighter ones, but, in contrast to charged
leptons, the flavor is not conserved, i.e. quarks of different generations can transform
to each other, though the probability of such processes is suppressed with respect to
transformations between the members of the same generation.

Free quarks have never been observed. Only bound states made of three quarks
or three antiquarks (baryons or antibaryons) or of a quark and an antiquark (mesons)
have been registered. This is due to the confining property of the strong interaction.
Only colorless states are allowed to propagate as free particles at low temperatures,
below the QCD phase transition, which presumably takes place at T ∼ 200 MeV.
Protons are the lightest baryons and they are a bound state uud. Neutrons are the
next to the lightest baryons and they are a bound state udd. The state uuu is not
the lightest one because quarks are fermions and they have spin 1/2, so we can at
most arrange two fermions with the same quantum numbers but opposite spin (+1/2
and –1/2) in the same energy level. Antibaryons are bound states of three antiquarks
(e.g. antiproton, antineutron, etc.), while mesons (e.g. pion π , kaon K , etc.) are
colorless bound states made of a quark and an antiquark. The theory predicts even
more complex colorless bound states, like penta-quarks made of four quarks and an
antiquark, but, despite some claims of their observation in the past, there is no clear
detection of them.

3.2 Bosons

Bosons have integer spin, so they obey the Bose-Einstein statistics. In the MSM of
particle physics, elementary bosons are the gauge bosons, which are the force carries,
and the Higgs scalar, which plays a special role providing a mass to quarks, charged
leptons, and weak gauge bosons. The interactions among the fundamental particles
of the Standard Model are summarized in Fig. 3.2.

3.2.1 Gauge Bosons

In the Standard Model of particle physics, interactions are introduced by imposing
the principle of gauge invariance. We start from a Lagrangian invariant under the
global transformation ψ → Gψ , where ψ is a fermionic field and G is a space-
time independent transformation (global transformation) belonging to some group.
Global invariance can be generalized bydemanding that the symmetry transformation
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Fig. 3.2 Interactions among the particles of the Standard Model

depends upon the spacetime coordinates, G = G(x). In this case, the symmetry is
called local or gauge symmetry. Kinetic terms of matter fields in the Lagrangian are
nor invariant with respect to coordinate dependent transformations. The compensa-
tion of this non-invariance requires the introduction of a new vector field, say Aμ.
The particles associated to the new field Aμ are called gauge bosons. They must be
massless, otherwise the gauge symmetry would be broken. The principle of gauge
invariance is a very elegant way to introduce interactions, because with a simple
assumption we obtain a well defined Lagrangian, generally leading to a renormaliz-
able theory. A few more details on gauge theories can be found in Appendix B.

The Standard Model of particle physics is described by the gauge theory UY (1)×
SUL(2) × SU (3).3 Below the electroweak symmetry scale ∼200 GeV, the elec-

3We note that the Y in UY (1) stands for hyper-charge. It is used to distinguish the U (1) symmetry
above the electroweak symmetry breaking from the U (1) symmetry below the electroweak sym-
metry breaking; the latter is indicated by Uem(1) and describes the usual Maxwell electrodynamics.
The L in SUL (2) is used to indicate that the SU (2) symmetry only acts on left-handed particles and
right-handed antiparticles. In some extensions of the Standard Model there is also the symmetry
SUR(2), which acts on right-handed particles and left-handed antiparticles.
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troweak symmetry UY (1) × SUL(2) is broken, and there is the residual symmetry
Uem(1)which describes the electromagnetic force. TheUem(1) sector is called quan-
tum electrodynamics (QED). The photon (γ ) is the massless particle associated to
this residual symmetry. The W - and Z -bosons mediating the weak interaction are
instead the other gauge bosons that acquire a mass because the symmetry is broken.
SU (3) describes the strong interaction force, which is called quantum chromody-
namics (QCD). Since SUL(2) and SU (3) are non-abelian gauge theories, their gauge
bosons carry a non-vanishing charge and couple each other. Gauge bosons are spin-1
particles. The total number of degrees of freedom is thus 2(γ , because photons are
massless and have two spin states) + 3 (Z , because it has a mass and therefore there
are three possible spin states, namely +1, 0, –1) + 2 × 3 (W + and W −, which are
massive) + 2 × 8 (gluons g) = 27.

As we have already mentioned, QCD is described by SU (3). It has two pecu-
liar features, namely confinement and asymptotic freedom. Confinement means that
the force between two quarks increases as their distance increases. In the end, it is
not possible to have an isolated quark, because the energy of separation becomes
so high that the process creates quark-antiquark pairs. Asymptotic freedom means
that the interaction becomes weaker as the energy increases. At high energy, QCD
becomes a perturbative theory, because the coupling constant is small and pertur-
bative calculations, similar to those in QED, are applicable. At low energies, the
QCD coupling constant is not a small parameter and the calculations require non-
perturbative techniques.

3.2.2 Higgs Particle

TheHiggs boson is the only spin-0 particle in the StandardModel of particle physics.
Its existence was confirmed by collider experiments only in 2013. It plays a special
role, because it provides a mass to the other particles through the so-called Higgs
mechanism and it is responsible for the electroweak symmetry breaking.

The phenomenon of spontaneous symmetry breaking is known also in other fields
in physics. For instance, in a ferromagnetic material, when the temperature is above
the Curie temperature, TCurie, the magnetic moments of the constituent particles
point in all directions, so magnetic domains are absent and the magnetization of
the material is zero. Below TCurie, magnetic domains are spontaneously formed,
stochastically choosing a certain direction, because it is energetically more favorable
for the particles to align their spins along the same line.

Something similar happens with the Higgs field. Here the critical temperature
is the electroweak scale Tew ∼ 200 GeV. Below the electroweak scale, the Higgs
field acquires a non-vanishing vacuum expectation value, which breaks the UY (1)×
SUL(2) gauge symmetry. The gauge bosons of UY (1) × SUL(2) mix together and
the result is the weak nuclear force, mediated by the massive gauge bosons W and
Z , and the electromagnetic force, mediated by the massless photon and representing
the residual symmetry Uem(1).
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TheYukawa terms in the Lagrangian of the form H ψ̄ψ , where H is theHiggs field
and ψ is a fermionic field, become the fermionic mass terms when the Higgs field
has a non-vanishing vacuum expectation value. In the unbroken symmetry phase,
the UY (1) × SUL(2) symmetry forbids any mass term, which is thus possible only
when the electroweak symmetry is broken.

3.3 Feynman Diagrams

Particle physics experiments usually involve scattering processes, in which some
particles collidewith a target or with other particles andwewant to study the products
created in the collision. The initial and the final states can be approximated by free
particles andwe can estimate the probability amplitudewithin the StandardModel. In
most cases, we can do it by using a perturbative expansion in the coupling constants.
In the case of the electroweak sector UY (1)× SUL(2), the gauge coupling constants
are small and the perturbative approach works very well. In QCD at low energies,
this is not true and we have to proceed with other techniques, while the perturbative
approach can be used for high energy processes.

The graphical representation of the perturbative approach is the Feynmandiagram.
Figure3.3 shows the elastic scattering of two electrons. The initial and the final states
are two free electrons. The grey blob represents the interaction area. Since we are not
able to get the exact solution of the field equations describing the process, we adopt
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Fig. 3.3 Feynman diagrams for electron-electron scattering. The perturbative approach works
because the expansion parameter is
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αem � 1. Every vertex is suppressed by the factor
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a perturbative approach. At the zeroth order, there is no interaction. At the first order,
we have the exchange of a photon. Every vertex in the diagram is suppressed by the
factor

√
αem , where αem = e2/4π ≈ 1/137 � 1 is the fine structure constant and

the expansion parameter. At the second order, we have several diagrams. Figure3.3
shows the exchange of two photons and the exchange of a photon with the production
of an electron-positron pair.

The Feynman diagrams are a convenient graphical representation of the perturba-
tion theory approach. They can be easily obtained from the basic interaction vertices.
The fundamental vertices of the Standard Model of particle physics (except those
involving the Higgs boson) are reported in Fig. 3.4. These are the building blocks for
the perturbative calculations. Every vertex must conserve the sum of the 4-momenta
of incoming and outgoing particles, the electric charge, and any other quantum num-
bers respected by the theory. For instance, the baryonic and/or the leptonic num-
bers may not be conserved if they are broken in the fundamental Lagrangian. The
4-momentum of intermediate (virtual) particles is also fixed by energy-momentum
conservation. However, these particles are normally off-mass-shell, i.e. their momen-
tum does not satisfy the usual condition for free particles p2 = m2. This allows, for
instance, that two light particles like electrons can interact through an exchange of a
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Fig. 3.4 Standard Model interactions mediated by gauge bosons
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heavy boson, like Z0. For example, a e+e− pair can go into a virtual Z -boson, which
e.g. can then transform into a ν̄ν pair.

3.4 Beyond the Minimal Standard Model of Particle Physics

Despite the excellent agreement between theoretical predictions and experimental
measurements, the MSM of particle physics has a few open problems that clearly
indicate the existence of new physics. From the pure theoretical side, themain issue is
the stability of themass of theHiggs boson. Indeed, one can expect huge contributions
to the square of the Higgs mass m2

H from the coupling with massive fermions at the
level of

Δm2
H = −|λ f |2

8π2

(
Λ2

UV + · · ·
)

, (3.1)

where λ f is theYukawa coupling between theHiggs field and the fermion f andΛUV
is an ultraviolet energy cut-off. Unlike the other massive particles,4 the Higgs mass is
not protected by any symmetry at high energies, and therefore one could expect that
such a contribution is huge, with ΛUV of order the Planck scale MPl ∼ 1019 GeV,
where quantum field theory presumably breaks down. Since the quark top has the
largest Yukawa coupling, it should provide the main contribution to a huge Higgs
mass. Its contribution to theHiggs bosonmass is represented by theFeynmandiagram
in the left panel in Fig. 3.5. While it would be possible to renormalize the physical
Higgsmass to an acceptable value of order of the electroweak scale, this would sound
as an ad hoc fine-tuning. In other words, it would not be a natural solution. The issue
is usually called hierarchy problem.

The phenomenon of neutrino oscillation is another clear evidence for physics
beyond the MSM. In the MSM of particle physics, neutrinos are massless. The
observed phenomenon of neutrino oscillation, in which neutrinos of one flavor can
turn into neutrinos of another flavor, is only possible if the mass eigenstates and the
flavor eigenstates are not the same; that is, at least two neutrinos must be massive.
While it would be easy to provide neutrinos with a mass, neutrinos are special,
because, in contrast to quarks and charged leptons, only the left hand component
of neutrinos is interactive, while the the right hand component is sterile. Neutrinos
are also electrically neutral, and this allows to introduce a mass only to left-handed
neutrinos (the so-called Majorana mass).

The general Lagrangian of the MSM allows for a CP violating term in the QCD
sector. Charge-conjugation transformation, C, changes a particle into the correspond-
ing antiparticle. Parity transformation, P, is simply mirror reflection. In the MSM,
we expect, on rather general grounds, the presence of a term in the QCD sector that

4Leptons, quarks, and massive gauge bosons are protected by the electroweak symmetry, which is
restored at high energies and forbids mass terms.
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t
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Fig. 3.5 Left quadratically divergent contribution from the top quark to the square of the Higgs
mass. Right the similar contribution from the scalar supersymmetric partner of the top quark in a
supersymmetric extension of the Standard Model

is not invariant under a CP transformation, the so called θ -term. However, no CP
violation in QCD is observed. Thus the CP violating parameter should be very small,
but there is no natural explanation for that. This is called the strong CP problem.

Physics beyond the MSM is also required by cosmology. First, there is no good
darkmatter candidate within the StandardModel. Darkmatter particles must bemas-
sive, stable, and cannot have strong and electromagnetic interactions. The neutrinos
of the StandardModel cannot do the job because their mass is too low, but in the past,
when their mass constraints were much weaker, they were considered as possible
candidates.

Second, within the MSM of particle physics it is impossible to generate the
observed matter-antimatter asymmetry. Some time ago, the electroweak baryogene-
sis scenario was very popular. In this framework, the cosmological matter-antimatter
asymmetry would be generated at the electroweak symmetry breaking in the MSM.
However, it was later understood that the mechanism does not work for a number of
reasons.

Third, there is no way to arrange inflation. Again, the scenario of a Standard
Model inflation with the Higgs field in the role of inflaton field was investigated, but
it was eventually found that the mechanism encounters serious problems.

We may also add a fourth problem, namely the explanation of the present accel-
erated expansion rate of the Universe. In this case, however, we do not know if new
physics is necessary in thematter or in the gravity sector, or, in otherwords, if we need
to modify the MSM of particle physics or Einstein’s theory of General Relativity.

3.4.1 Supersymmetric Models

Supersymmetry is a symmetry relating fermions, particles with half-integer spin, and
bosons, particles with integer spin. Every particle in one of the two groups must have
a “super-partner” in the other group. In any supersymmetric extension of the Standard
Model of particle physics any known particle should have a super-partner not yet
discovered. The super-partner should exactly have the same properties as the original
particle, except for the spin. Of course, the world around us is not supersymmetric,
because we do not see these super-partners. For instance, there is no scalar particle
with the properties of electron. So Supersymmetry, if it exists, must be broken at low
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energies, just like the electroweak gauge symmetry. In this case, the super-partners
should get masses of order the Supersymmetry breaking scale and it is possible that
such an energy scale is high enough that the super-partners of the Standard Model
particles have not yet been created in particle colliders.

The first appealing feature of Supersymmetry is that it can stabilize the mass of
the Higgs boson. Indeed, for any Standard Model diagram like that in the left in
Fig. 3.5, we should have a diagram involving the super-partner, like that in the right
in Fig. 3.5. It turns out that the contribution to the square of the Higgs mass from a
scalar particle has the form

Δm2
H = 2

λs

16π2

(
Λ2

UV + · · ·
)

. (3.2)

If every fermion of the Standard Model has two scalar super-partners (fermions have
spin-1/2, so they have two degrees of freedom, while scalars are spin-0 particles,
just one degree of freedom) the quantum corrections to the Higgs mass can cancel.
Since the Higgs mass is about 126 GeV, this is a strong argument to expect that
the Supersymmetry scale is not too higher than the electroweak one, say ∼1 TeV.
Another interesting possibility offered by supersymmetric models is that they often
provide good dark matter candidates.

3.4.2 Grand Unification Theories

In the Standard Model of particle physics, the electromagnetic and the weak forces
are not really unified. Even above the electroweak symmetry breaking scale, there are
two different gauge groups and thus two different coupling constants. On the other
hand, it is appealing to have a unified description of all the forces. Grand Unifications
Theories (GUTs) have been proposed with this goal. The simplest possibility is a
theory based on the symmetry group SU (5). In SU (5), we have 24 gauge bosons. In
this scenario, SU (5) should be spontaneously broken to UY (1) × SUL(2) × SU (3)
at “low” energies. Below the SU (5) breaking scale, the masses of 12 gauge bosons
would be of the order the SU (5) breaking scale, while UY (1) × SUL(2) × SU (3)
would remain the residual symmetry above the electroweak scale with 12 massless
gauge bosons.

In quantum field theory, the numerical value of the parameters of the theory
depends on the energy scale involved in the measurement process. This is the direct
consequence of quantum corrections. The coupling constants are not an exception
and therefore they “run”; that is, their numerical value depends on the energy scale of
the physical process. The dependence of the coupling constants on the energy scale
is determined by a few factors, including the particle content. From very precise
measurements at the electroweak scale performed at the Large Electron-Positron
collider (LEP) at CERN, in Geneva, in the 1990s, one can see that the coupling
constants of the MSM do not converge to a single value at high energies, see the top
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panel in Fig. 3.6. However, it turns out that the unification is possible in the case of
a supersymmetric extension of the Standard Model with the super-partners having
masses around 1−10 TeV, as shown in the bottom panel in Fig. 3.6. This is at present
the only indication in favor of a low energy Supersymmetry and of a GUT with a
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Fig. 3.6 Extrapolation of the inverse of the gauge couplings of the StandardModel to high energies
on the basis of high precision measurements at LEP at CERN. α1, α2, and α3 are, respectively, the
gauge couplings of UY (1), SUL (2), and SU (3). In the case that the matter content is determined by
the MSM particles only, we do not see any unification of the gauge couplings at high energies (top
panel). If we assume that for every MSM particle there is a new particle with the same interaction
properties and amass in the TeV range, the gauge couplings converge at MGUT ∼ 1016 GeV (bottom
panel). The latter is interpreted as the GUT scale at which the SU (5) symmetry is broken. Its precise
value depends on the assumed mass of the new super-partner particles
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large energy scale, around 1014−1016 GeV. GUTs may have important implications
in cosmology.

3.4.3 Heavy Neutrinos

In the Standard Model of particle physics, we only have massless left-handed neu-
trinos and massless right-handed antineutrinos. Neutrinos are the only elementary
fermionswithout electric charge. They interact through theweak nuclear force,which
only acts on left-handed particles and right-handed antiparticles.

Today we know that neutrinos are not massless, but their masses are unnaturally
small in comparison with those of the other Standard Model particles. The other
fermions get a mass through the interaction with the Higgs field. The Lagrangian
density has a term of the form λ f H ψ̄ψ , where λ f is the Yukawa coupling between
the Higgs field H and the fermionic field ψ . When the Higgs field acquires a non-
vanishing vacuum expectation value v, the former Yukawa term in the Lagrangian
density becomes the mass term of the fermionic field ψ , leading to the mass m =
λ f v. This mass term mixes left-handed and right-handed fermions and it is called
Dirac mass. This is the only possibility of introducing masses to electrically charged
fermions. Such a mass term violates the UY (1) × SUL(2) symmetry and therefore
fermions can have a mass only after the electroweak symmetry breaking. Since
v ∼ 250 GeV, for a “natural” value of the Yukawa coupling λ f the masses of the
Standard Model fermions should be of order the electroweak scale. From this point
of view, only the quark top has a natural mass. In the case of neutrinos, the mass
constraint is mν < 2 eV and such a small value sounds very unnatural.

There are several ways to provide neutrinos with a mass. An appealing scenario is
the so-called see-saw model, which has links to very high energy physics, possibly
to the GUT scale. The starting point is a mass matrix of the form

(
0 m
m M

)
. (3.3)

m is the neutrinoDiracmass coming from the electroweak symmetry breaking,which
is expected to be of order of 100 GeV and requires right-handed neutrinos and left-
handed antineutrinos. M is the neutrinoMajoranamass of right-handed neutrinos and
left-handed antineutrinos. Since the latter have no charge with respect to the Standard
Model gauge symmetries, themass term involving M can be generated byhigh energy
physics and M may be huge, even of order the GUT scale ∼1014−1016 GeV. The
mass eigenvalues of the mass matrix in (3.3) are

m± = M ± √
M2 + 4m2

2
. (3.4)
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If M � m, we have

m+ ≈ M , m− ≈ −m2

M
. (3.5)

The negative mass eigenvalue does not present any problem, because for fermions
the sign of the mass can be changed by the so-called γ5 transformation of the spinor.
Moreover, in all physical effects there appears only m2, never m.

If M increases, m+ increases too, while m− decreases. This is the reason for the
name see-saw mechanism. For m ∼ 100 GeV and M ∼ 1014−1016 GeV, we find
m− ∼ 0.001 − 0.1 eV, which is consistent with the present mass constraints.

3.4.4 Peccei-Quinn Model

Peccei and Quinn suggested a possible solution to the strong CP problem, i.e. to the
explanation why the CP violating parameter of the strong interaction is unnaturally
close to zero. The model introduces a new global U (1) symmetry under which some
complex scalar field has a non-vanishing charge. At low energies, the symmetry is
spontaneously broken and the vacuum expectation value of the scalar field automat-
ically happens to be at the point where the CP violation related to the QCD θ -term
disappears.

As a result of the spontaneous symmetry breaking, there appears a very light
scalar boson called axion. This is a consequence of a general theorem by Goldstone
that the spontaneous breaking of a global symmetry leads to a massless scalar field.
A non-zero mass of the axion appears due to additional explicit symmetry breaking
related to the so called instantons. Depending on the value of the axion mass, these
particles may also be good dark matter candidates.

3.5 Probabilities of Reactions Among Particles

The reaction rates of scattering processes can be calculated in the framework of quan-
tum field theory. They cannot be rigorously derived within an introductory course on
cosmology. In this section, we just provide a recipe to get a rough estimate of cross
sections of scattering processes on the basis of the leading order Feynman diagram.
More details can be found in any introductory textbook on quantum field theory,
like Mandl and Shaw (2010).

As discussed in Sect. 3.3, all the quantum numbers must be conserved at every
vertex, according to the conservation laws determined by the Lagrangian of the the-
ory. The fundamental vertices including only fermions and gauge bosons are shown
in Fig. 3.4. Every vertex is suppressed by the corresponding gauge charge, say g, or,
equivalently, by the square root of the gauge coupling αg = g2/4π . The perturba-
tive approach is valid if g � 1. Such a condition holds in the electroweak sector,
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while it is satisfied only in the case of high energy collisions in QCD. Internal lines
connecting two vertices introduce an additional factor (propagator) in the amplitude
described by the diagram. In the case of a boson of mass M , the factor is

∼ 1∣∣M2 − q2
∣∣ , (3.6)

where q is the 4-momentum transferred to the virtual boson. If the internal line
describes a fermion, the factor is

∼ M + γ · q∣∣M2 − q2
∣∣ . (3.7)

where the product γ · q is the scalar product of the 4-momentum q by some spin
matrices (Dirac matrices). For an order of magnitude estimate, q2 ∼ E2, where E
is the characteristic energy scale of the process.

The probability of a reaction is given by the square of the amplitude described
by the diagram. The cross section can be evaluated from dimensional arguments,
remembering that in natural units it has the dimensions of inverse square of energy.

Example 3.1 Let us consider the scattering e−νe → e−νe at energies E � MW .
The left diagram in Fig. 3.7 is one of the leading order Feynman diagrams for this
process (there is also a diagram with the exchange of a Z -boson). Every vertex
introduces the factor g ∼ 0.1, while the propagator introduces the factor 1/M2

W ,
since E � MW . The amplitude corresponding to this diagram is thus of the order of
g2/M2

W . The cross section is proportional to the square of the amplitude. Since, as
we have mentioned above, the cross section has the dimension of inverse square of
energy, it can be estimated as

σ(e−νe → e−νe) ∼ g4

M4
W

E2 . (3.8)

The factor E4 comes from the square of the product of four Dirac spinors; the factor
1/E2 comes from the particle flux by which the amplitude squared should be divided
to obtain the cross section.

W

νe

e− νe

e− νe

e− νe

e−

Fig. 3.7 Left first order Feynman diagram for the scattering e−νe → e−νe mediated by a W -boson.
Right the same process in the Fermi theory
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In the Fermi theory of theweak interactions, the scattering e−νe → e−νe is described
by a 4-fermion interaction term of the form G F (ψ̄ψ)(ψ̄ψ) in the Lagrangian density
(right diagram in Fig. 3.7). Here G F ≈ 10−5 GeV−2 is the Fermi constant. From
dimensional arguments, it is easy to conclude that the cross section must be

σ(e−νe → e−νe) ∼ G2
F E2 . (3.9)

The Fermi theory holds at low energies, E � MW . In this regime it agrees with the
Standard Model predictions, since G F ∼ g2/M2

W .

Example 3.2 Let us now consider the scattering e−e+ → μ−μ+ at energies mμ �
E � MZ . The leading order Feynman diagram is the left one in Fig. 3.8 (the diagram
with the exchange of a Z -boson is suppressed for E � MZ ). The two vertices
contribute with the factor α and the propagator introduces the factor 1/E2. So the
amplitude is of order α/E2 and the square of the amplitude is approximately α2/E4.
The cross section is thus

σ(e−e+ → μ−μ+) ∼ α2

E2 . (3.10)

We note that the assumption mμ � E � MZ makes the only energy scale of the
problem equal to the scattering energy in the center of mass E .

Example 3.3 Lastly, we want to estimate the cross section of the elastic scattering
e−γ → e−γ at low energies E � me, which is called Thomson scattering. The
leadingorder Feynmandiagram is the right one inFig. 3.8. The twovertices contribute
with the factor α and the propagator gives the factor 1/me, since E � me. So the
cross section is of the order

σ(e−γ → e−γ ) ∼ α2

m2
e

. (3.11)

γ
e−

e+ μ+

μ− e−

γ

e−

γ

e−

Fig. 3.8 Left first order Feynman diagram for the scattering e−e+ → μ−μ+ mediated by a photon.
Right first order Feynman diagram for the scattering e−γ → e−γ
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Problems

3.1 Estimate the cross section of the scattering νeνμ → νeνμ, both in the case
E � MZ and E � MZ .

3.2 Draw the Feynman diagram for themuon decay. [Hint: since the lightest baryons
and mesons are heavier than the muon, the latter can only decay into leptons.]

3.3 Draw the Feynman diagram for the neutron decay n → pe−ν̄e. [Hint: the
neutron is a bound state udd and the proton is a bound state uud. A d quark in the
neutron decays into a u quark with the emission of a virtual W -boson.]
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Chapter 4
Cosmological Models

The Einstein equations relate the geometry of the spacetime, encoded in Gμν , to the
matter content, described by the matter energy-momentum tensor T μν . If the matter
content and its distribution are known, we can determine the spacetime geometry.
In general, it is highly non-trivial to solve the Einstein equations, because they are
second order non-linear partial differential equations for ten components of themetric
tensor. Analytic solutions can be found only if some “helpful” symmetries of the
spacetime are present. In the StandardModel of cosmology, we assume the so-called
Cosmological Principle:

The Universe is homogeneous and isotropic. (4.1)

This is clearly an approximation, because we observe a lot of structures and the
Universe is far from being homogeneous and isotropic. However, if we average over
large volumes, say over scales larger than 10Mpc, the assumption sounds reasonable.
Moreover, it essentially relies on the fact there are no preferred points or preferred
directions in the Universe, a sort of Copernican Principle. Nevertheless, it is also
possible that high precision data cannot be treated with this simplification and there
is today a debate on the realm of validity of the Cosmological Principle and even on
the fact that currentmeasurements of the cosmological parametersmight deviate from
their correct values because they are inferred under the assumption of homogeneity
and isotropy (see e.g. Fleury et al. 2013; Marra et al. 2007).

If the Cosmological Principle is valid, the geometry of the Universe is described
by the Friedmann-Robertson-Walker (FRW) metric. The latter only depends on a
constant parameter k and a function of time a(t). The constant k may be positive,
negative, or zero, respectively for the case of closed, open, or flat universe. If k �= 0,
it is usually normalized to unity, k = ±1. a(t) is the scale factor and determines
the evolution of distances between distant (not bound) objects in the Universe. If
we plug the FRWmetric into the Einstein equations, we obtain the Friedmann equa-
tions, which determine how a(t) depends on time for different forms of cosmological
matter. In the old Friedmann cosmology, it was assumed that all physically relevant
models started from an initial singularity, where the scale factor was zero. The Uni-
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verse expansion was supposed to start from this initial singularity, called big bang,
or near it. The expansion rate and the final destiny of the Universe depend on its
3-dimensional geometry and the matter content. In the simplest cases of matter dom-
inated or radiation dominatedmodels, theUniverse first expands and then recollapses
if it is closed (k > 0), while it expands forever if it is open (k < 0) or flat (k = 0). In
the presence of vacuum energy, the picture is more complicated and the fate of the
Universe depends on the specific contribution of its components. Current observa-
tions support the so-called Λ cold dark matter model (ΛCDM model), in which the
Universe is almost flat and today it is dominated by vacuum (or vacuum-like) energy.
The latter represents about 70% of the total energy density, while the other 30% is
made of non-relativistic matter. The contribution from other components is much
smaller and irrelevant for the current expansion regime. The age of the Universe,
namely the time interval from the beginning of its expansion up to today, is around
14 Gyr.

4.1 Friedmann-Robertson-Walker Metric

If we assume the Cosmological Principle, the background geometry is strongly con-
strained, independently of the Einstein equations of General Relativity. The Cos-
mological Principle requires indeed that there are no preferred points (homogeneity,
namely invariance under spatial translations) and no preferred directions (isotropy,
or invariance under spatial rotations) in the 3-dimensional space. However, it is still
allowed that the spacetime geometry depends on time. It turns out that the only back-
ground compatible with these requirements is the FRWmetric (Weinberg 1972), and
its line element is

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (4.2)

wherea(t) is the scale factor,which is independent of the spatial coordinates {r, θ, φ},
while k is a constant. The latter can be positive, negative, or zero, but it is always
possible to properly rescale the coordinate r and have k = ±1 or 0. For k = 1, we
have a closed universe, for k = 0 a flat universe, and for k = −1 an open universe.
If we consider a gravity theory different from General Relativity, but we keep the
assumption of the Cosmological Principle in a 3 + 1 dimensional spacetime, the
background geometry is still given by the FRW metric. General Relativity can only
determine a(t) and k if the properties of the matter in the universe are known. We
note that a flat universe is not necessarily a flat (Minkowski) spacetime, but when a
is independent on t and k = 0, we recover the flat spacetime of Special Relativity.

It is instructive to compute some invariants of the FRWmetric. This can be easily
done, for instance, with some specific Mathematica packages, but it would be a good
exercise to make these calculations by hand, to gain a better insight into the formality
and the spirit of the Riemann geometry. The scalar curvature turns out to be
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R = −6
k + ȧ2 + äa

a2 , (4.3)

and it vanishes when k = 0 and a is independent of t (flat spacetime of Special
Relativity). We also note that R diverges when a → 0. If we multiply the left and
the right hand sides of the Einstein equations (2.78) with Λ = 0 by gμν , we get

R = − 8π

M2
Pl

T , (4.4)

where T = T μ
μ is the trace of the matter energy-momentum tensor. The divergence

of R thus implies the divergence of T . The square of the Riemann tensor is given by

Rμνρσ Rμνρσ = 12
k2 + 2kȧ2 + ȧ4 + ä2a2

a4 , (4.5)

and it also diverges for a → 0.
Lastly, we note that the Einstein equations are local equations. They cannot tell us

anything about global properties of the spacetime like its volume. The same metric
can indeed describe topologically different universes. This point was already noticed
by Friedmann (1999). If we assume that the Universe has a trivial topology, the 3-
volume is finite if k = 1 and infinite for k = 0 and −1. From the FRW metric we
have

Vuniverse =
∫

V

√
−3gd3x = a3(t)

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ Rk

0

r2dr√
1 − kr2

, (4.6)

where 3g is the determinant of the spatial 3-metric, while Rk = 1 for k = 1 and +∞
for k = 0 and −1. The integration gives

Vuniverse =
{

π2a3(t) for k = 1
+∞ for k = 0,−1

. (4.7)

Closed universes are always finite, but in the case of non-trivial topology even flat
and open universes may have a finite volume. As we will see in Chap.10, current
CMB data suggest that the Universe is close to be flat, allowing both k = 1 and
k = −1. This means that even assuming a trivial topology we cannot say if our
Universe has a finite or an infinite volume. In the case of non-trivial topology, the
size of the Universe may be evaluated by looking for “ghost images” of astronomical
sources, because in a multi-connected universe the radiation emitted by a source
should be detected from different directions. For the time being, there is no evidence
of any ghost image and therefore we can only get a lower bound on the possible size
of a topologically non-trivial universe.

http://dx.doi.org/10.1007/978-3-662-48078-6_2
http://dx.doi.org/10.1007/978-3-662-48078-6_10
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4.2 Friedmann Equations

The assumption of the Cosmological Principle requires that the spacetime geometry
is described by the FRW metric. The scale factor a(t) and the constant k can be
obtained from the Einstein equations if the matter content of the Universe is known.
The latter can be describedwith good approximation by the energy-momentum tensor
of a perfect fluid

T μν = (ρ + P) uμuν − Pgμν , (4.8)

where ρ and P are, respectively, the energy density and the pressure of the fluid.
Since in the coordinate system of the FRW metric the Universe is manifestly homo-
geneous and isotropic, we have to consider the rest frame of the fluid in which
uμ = (1, 0, 0, 0). If we plug the FRW metric and the energy-momentum tensor of
this perfect fluid into the Einstein equations, from the 00 component we find

H2 = 8π

3M2
Pl

ρ − k

a2 , (4.9)

where H = ȧ/a is the Hubble parameter. Equation (4.9) is called first Friedmann
equation. In the general case, we can expect that the Universe is made of different
components, say dust, radiation, etc. ρ and P have thus to be seen as, respectively,
the total energy density and the total pressure

ρ =
∑

i

ρi , P =
∑

i

Pi , (4.10)

where the sum is taken over all the relevant types of matter. The 11, 22, and 33
components of the Einstein equations provide the same equation, which reads

ä

a
= − 4π

3M2
Pl

(ρ + 3P) . (4.11)

This is the second Friedmann equation.
In the FRW metric, the covariant conservation of the energy-momentum tensor

∇μT μ0 = 0 becomes

ρ̇ = −3H (ρ + P) . (4.12)

Equation (4.12) is not independent and it can indeed be derived from the first and the
second Friedmann equations (see the discussion at the end of Chap.2). At this point,
we have three unknown functions of the time t , namely ρ, P , and the scale factor a,
and two equations, the two Friedmann equations or one of the Friedmann equations
together with the covariant conservation of the energy-momentum tensor (4.12).

http://dx.doi.org/10.1007/978-3-662-48078-6_2
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One more equation is thus necessary. One typically uses the matter equation of state,
expressing the pressure in terms of the energy density, P = P(ρ). In the simplest and
practically important case, the relation between the energy density and the pressure
is linear

P = wρ , (4.13)

with w constant. For instance, dust is described by w = 0, radiation by w = 1/3 (this
is true for any kind of ultra-relativistic matter, not only for photons), and vacuum
energy by w = −1. However, if we consider other forms of matter, w may not be
a constant any more and, in general, the linear relation between the energy density
and the pressure may not be valid.

For k = 0, the first Friedmann equation is

H2 = 8π

3M2
Pl

ρc ⇒ ρc = 3M2
PlH

2

8π
, (4.14)

which defines the critical density ρc. The value of the critical energy today is

ρ0
c = 3M2

PlH
2
0

8π
= 1.878 · 10−29 h2

0 g/cm
−3

= 1.054 · 10−5 h2
0 GeV/cm−3 . (4.15)

4.3 Cosmological Models

If we know the matter content of the Universe, we can solve the Friedmann equations
and find the spacetime geometry of the Universe at any time. A different matter
content provides a different cosmological model. If we assume an equation of state
in the form (4.13), the covariant conservation law (4.12) becomes

ρ̇

ρ
= −3 (1 + w)

ȧ

a
, (4.16)

and therefore

ρ ∼ a−3(1+w) . (4.17)

The energy density thus scales as 1/a3 for dust, as 1/a4 for radiation, and it is
constant in the case of vacuum energy. If we plug this result into the first Friedmann
equation and we neglect the k/a2 term, we find (for w �= −1)

a(t) ∼ tα with α = 2

3 (1 + w)
. (4.18)
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This is a good approximation at early times, because, if we go backward in time,
a → 0 and the k/a2 term is subdominant with respect to those of dust and radiation,
which scale, respectively, as 1/a3 and 1/a4.

4.3.1 Einstein Universe

If we write the Einstein equations with a non-vanishing cosmological constant Λ as
in Eq. (2.84), the first and the second Friedmann equations become

H2 = 8π

3M2
Pl

ρ + Λ

3
− k

a2 , (4.19)

ä

a
= − 4π

3M2
Pl

(ρ + 3P) + Λ

3
. (4.20)

The Einstein universe is a cosmological model in which matter is described by dust
(P = 0) and a positive cosmological constant is introduced to make the universe
static, in accordance with the common belief before the discovery of Hubble’s law.
Imposing the condition ȧ = ä = 0 in Eqs. (4.19) and (4.20), we find

ρ = ΛM2
Pl

4π
, a = 1√

Λ
, k = 1 . (4.21)

We note that the Einstein universe is unstable, in the sense that small perturbations
would force it either to collapse or expand, and therefore it does not lead to a static
universe as it was its original purpose.

4.3.2 Matter Dominated Universe

Non-relativistic matter with the equation of state P = 0 or, equivalently, w = 0 is
usually called dust. From Eq. (4.12), we find

ρa3 = constant ≡ A . (4.22)

The first Friedmann equation becomes

ȧ2 = 8π A

3M2
Pl

1

a
− k . (4.23)

Let us introduce the new variable η, related to t by

http://dx.doi.org/10.1007/978-3-662-48078-6_2
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dη

dt
= 1

a(t)
. (4.24)

The new time variable η is called conformal time. In terms of η, Eq. (4.23) can be
rewritten as

a′2 = 8π A

3M2
Pl

a − ka2 , (4.25)

where the prime denotes the derivative with respect to the conformal time η. Equa-
tion (4.25) can be integrated by separation of variables. If we choose the initial con-
dition a = 0 for t = 0, we find the following parametric solutions for t and a in the
case of closed (k = 1), flat (k = 0), and open (k = −1) universes

k = 1 a = 4π A

3M2
Pl

(1 − cos η) , t = 4π A

3M2
Pl

(η − sin η) , (4.26)

k = 0 a = 2π A

3M2
Pl

η2 , t = 2π A

9M2
Pl

η3 , (4.27)

k = −1 a = 4π A

3M2
Pl

(cosh η − 1) , t = 4π A

3M2
Pl

(sinh η − η) . (4.28)

Figure4.1 shows the scale factor a(t) as a function of the cosmological time t for the
three scenarios. A closed universe expands up to a critical point and then recollapses.
An open universe expands forever. A flat universe is the boundary case between
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Fig. 4.1 Scale factor a as a function of the cosmological time t for the three types of matter
dominated universes: closed universe (k = 1), flat universe (k = 0), and open universe (k = −1).
Here t and a are presented in units in which 8π A/M2

Pl = 1
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open and closed universes: it expands forever, but the expansion rate asymptotically
approaches zero, namely H → 0 for t → +∞. These statements are valid if the
cosmological constant is zero.

4.3.3 Radiation Dominated Universe

The equation of state of relativistic matter is P = ρ/3, so w = 1/3. It describes a
gas of massless non-interacting particles, but it is also valid in the case of an ultra-
relativistic gas, in which the particles’ rest-energy is negligible in comparison to their
total energy. From Eq. (4.12), we find that

ρa4 = constant ≡ B , (4.29)

and the first Friedmann equation can be written as

ȧ2 = 8π B

3M2
Pl

1

a2 − k . (4.30)

If we impose the initial condition a(t = 0) = 0, we find the following solutions for
the scale factor a(t) in the case of closed (k = 1), flat (k = 0), and open (k = −1)
universes:

k = 1 a =
[
2

√
8π B

3M2
Pl

t − t2
]1/2

, (4.31)

k = 0 a =
[
2

√
8π B

3M2
Pl

t

]1/2

, (4.32)

k = −1 a =
[
2

√
8π B

3M2
Pl

t + t2
]1/2

. (4.33)

As in the matter dominated universe, when k = 1 the universe first expands, then
the scale factor reaches a maximum value, and eventually the universe recollapses to
a = 0. An open universe (k = −1) expands forever, while a flat universe represents
the critical case separating the closed and the open models. Figure4.2 shows the
scale factor a(t) as a function of the cosmological time t for these three scenarios.
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Fig. 4.2 Scale factor a as a function of the cosmological time t for the three types of radiation
dominated universes: closed universe (k = 1), flat universe (k = 0), and open universe (k = −1).
The scale factor is expressed in units in which 8π B/M2

Pl = 1

4.3.4 Vacuum Dominated Universe

In a vacuum dominated universe, there is no matter, so ρ = P = 0, but we allow for
a non-vanishing cosmological constant. As we will show in Chap.11, in quantum
field theory the vacuum is not empty and in General Relativity it should act as an
effective cosmological constant or, more precisely, the vacuum energy is equivalent,
up to a constant factor, to a cosmological constant.

In the case of Λ > 0, the Friedmann equations provide the following solutions

k = 1 a =
√

3

Λ
cosh

(√
Λ

3
t

)
, (4.34)

k = 0 a = a(0) exp

(√
Λ

3
t

)
, (4.35)

k = −1 a =
√

3

Λ
sinh

(√
Λ

3
t

)
. (4.36)

If Λ < 0, the solution is

k = −1 a =
√

− 3

Λ
cos

(√
−Λ

3
t

)
, (4.37)

and there is no solution for k = 0 and 1. Lastly, when Λ = 0, we recover the flat
spacetime with k = 0 and a constant.

http://dx.doi.org/10.1007/978-3-662-48078-6_11
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4.4 Basic Properties of the FRW Metric

As it is discussed in Sect. 2.2, the motion of test-particles in curved spacetime can
be studied by considering the Lagrangian

L = gμνx ′μx ′ν , (4.38)

where now we use the prime to indicate the derivative with respect to the affine para-
meter λ, while the dot is reserved for the derivative with respect to the cosmological
time t . Since the FRWmetric depends on t through the scale factor a(t), the particle’s
energy is not a constant of motion. Let us now consider a photon and a coordinate
system in which its motion is only along the radial direction. In this case, the relation
gμνx ′μx ′ν = 0 becomes

t ′2 = a2

1 − kr2
r ′2 . (4.39)

If we write the Euler-Lagrange equations for xμ = t and we use Eq. (4.39), we find

t ′′ = −aȧ
r ′2

1 − kr2
= − ȧ

a
t ′2 = −a′

a
t ′ . (4.40)

t ′ is proportional to the photon’s energy E and therefore t ′′/t ′ = E ′
γ /Eγ . We thus

find that a photon propagating in a FRW background redshifts as the inverse of the
scale factor

Eγ ∼ 1/a . (4.41)

The phenomenon is called cosmological redshift, to be distinguished from the
Doppler redshift due to the relative motion of a source and from the gravitational
redshift due to the climbing in a gravitational potential. It is also responsible for the
behavior of the energy density of radiation that scales as 1/a4: the photon number
density scales as the inverse of the volume, 1/a3, while the photon’s energy scales
as 1/a.

The cosmological redshift of a photon can also be derived in the following way.
We consider the emission of monochromatic electromagnetic radiation emitted by a
source at the origin r = 0. The wavefront emitted at the time t = te is detected at
the time t = to at the radial coordinate r = ro. Since ds2 = 0, we can write

∫ to

te

dt̃

a
=

∫ ro

0

dr̃√
1 − kr̃2

. (4.42)

The right hand side does not depend on the time t . If we consider the wavefront after,
which is emitted by the source at the time t = te + δte at r = 0 and it is detected at
the time t = to + δto at r = ro, we have

http://dx.doi.org/10.1007/978-3-662-48078-6_2
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∫ to+δto

te+δte

dt̃

a
=

∫ ro

0

dr̃√
1 − kr̃2

=
∫ to

te

dt̃

a
, (4.43)

and therefore

∫ te+δte

te

dt̃

a
=

∫ to+δto

to

dt̃

a
⇒ δte

a(te)
= δto

a(to)
. (4.44)

δte and δto are, respectively, the wavelengths of the radiation measured at the time te
and at the time to. It follows that the photon wavelength scales as a and the photon’s
energy as 1/a, in agreement with Eq. (4.41).

An important concept is that of particle horizon, which is the distance travelled
by a photon from the moment of the big bang to a certain time t . It defines the radius
of causally connected regions at the time t , in the sense that two points at a distance
larger than the particle horizon have never exchanged any information. For a flat
universe (k = 0), from the equation for light propagation ds2 = 0, we find

r =
∫ r

0
dr̃ =

∫ t

0

dt̃

a
= 1

a(t)

t

(1 − α)
, (4.45)

where in the last passage we have used the fact that a ∼ tα for w �= −1, see
Eqs. (4.18), (4.27), and (4.32). The proper distance at the time t between the origin and
a point with radial coordinate r is d(t) = a(t)r and therefore the particle horizon is

d = t

1 − α
. (4.46)

In the case of a universemade of dust, we find d = 3t , while for a radiation dominated
universe we have d = 2t . We note that the particle horizon increases linearly with
time, while a ∼ tα with α < 1 in the case of non-exotic matter with w ≥ 0, which
means that more and more points of the Universe become causally connected at later
times.

The case of a universe filled with vacuum energy has to be treated separately.
Here the scale factor is given by Eq. (4.35) and the particle horizon is

d =
√

3

Λ

[
exp

(√
Λ

3
t

)
− 1

]
. (4.47)

Since the scale factor also grows exponentially, if two regions are at a coordinate
distance larger than

√
3/Λ, they will never been able to exchange any information.
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4.5 Age of the Universe

From the Friedmann equations, one finds that a universe begins with a spacetime
singularity (the scale factor a vanishes) and expands (a increases). At the singularity,
the energy density diverges. Actually, we do not expect that standard physics can
work above the Planck scale MPl ∼ 1019 GeV, where quantum gravity effects should
become important.However, in the absence of a robust and reliable theory of quantum
gravity we can only describe the Universe within classical General Relativity. In this
framework, the Universe was born at the time in which the energy density diverged
and the age of the Universe is the time interval measured with respect to the temporal
coordinate of the FRWmetric from this initial time till today. The age of the Universe
can be estimated from the value of the Hubble constant and its energy content.

We note that the initial moment is absolutely inessential for the calculation of the
age of the Universe. The difference between the Universe age estimated from the
initial Planck time and from the moment of the BBN is approximately one second,
to be compared with about 10 billion years.

If we multiply and divide the left hand side of the first Friedmann equation by the
critical density ρc, we obtain

H2 = 8π

3M2
Pl

ρc

(∑
i

ρi

ρc
− ρk

ρc

)
, (4.48)

where we have introduced the effective energy density corresponding to a possible
non-vanishing spatial curvature, ρk = k/a2. Today the Universe is mainly filled with
non-relativistic matter, which has energy density scaling as 1/a3, and vacuum energy
with constant density. In the estimate of the age of theUniverse, at first approximation
we can neglect the period of radiation dominated regime, because this time interval
is much shorter than the period of matter dominated and vacuum energy dominated
regimes.

To do the calculations, we introduce the dimensionless ratios of the energy den-
sities of different forms of matter to the critical energy density, Ωi = ρi/ρc, and we
rewrite Eq. (4.48) as

H2 = H2
0

[
Ω0

m (1 + z)3 + Ω0
Λ + Ω0

k (1 + z)2
]

, (4.49)

where the indices 0 indicate the today values. Ω0
m and Ω0

Λ are, respectively, the con-
tributions from non-relativistic matter (dust) and from a non-vanishing cosmological
constant. To take into account the evolution of these energy densities in the course
of the cosmological expansion, we have introduced the redshift factor

1 + z ≡ a0
a

. (4.50)
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As it can be easily checked, the factor (1 + z)n properly takes into account the
expansion of the Universe. For instance Ωm(z) = Ω0

m (1 + z)3, because the energy
density of dust scales as 1/a3. From the definition of Hubble parameter, we see that

H = d

dt
ln

a

a0
= d

dt
ln

1

1 + z
= − 1

1 + z

dz

dt
, (4.51)

which can be plugged into Eq. (4.49) to obtain

dt

dz
= − 1

1 + z

1

H0

√
Ω0

m (1 + z)3 + Ω0
Λ + Ω0

k (1 + z)2
. (4.52)

With the substitution Ω0
k = 1 − Ω0

m − Ω0
Λ, we find the time difference between

today (z = 0) and the time at which the redshift of the Universe was z in terms of
H0, Ω0

m , and Ω0
Λ

Δt = 1

H0

∫ z

0

dz̃

1 + z̃

1√(
1 + Ω0

m z̃
)
(1 + z̃)2 − z̃ (2 + z̃) Ω0

Λ

. (4.53)

The total age of the Universe is obtained for z → +∞. To be more accurate, we need
to take into account the contribution of relativistic matter, but, as we have mentioned
above, this leads to a very small correction.

It is easy to see that the integral is typically of order unity, so the time scale is
set by 1/H0 ∼ 14 Gyr. In the simple case of flat universe with no vacuum energy,
namely Ω0

m = 1 and Ω0
Λ = 0, the age of the Universe would be

τU = 1

H0

∫ +∞

0

dz̃

(1 + z̃)5/2
= 2

3

1

H0
∼ 10 Gyr . (4.54)

In other cases, one can calculate the integral numerically. The results for a flat Uni-
verse (Ω0

Λ = 1 − Ω0
m) and for a Universe with no vacuum energy (Ω0

Λ = 0) as a
function of Ω0

m are shown in Fig. 4.3.

4.6 ΛCDM Model

Ω0
m and Ω0

Λ can be estimated by measuring the apparent luminosity of standard
candles, namely sources with a known intrinsic luminosity. If there were no expan-
sion of the Universe, the flux density of the radiation emitted by a similar source
and measured by a detector on Earth would simply be Φ = L/4πd2, where L is
the intrinsic luminosity (power) of the source and d is its distance from us. In an
expanding universe, the fluxΦ scales as the area of the spherical shell at the detection
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time, so d should be replaced by a0r , where r is the radial coordinate of the FRW
metric and the detector is assumed to be at r = 0. Moreover, photons are redshifted
by the factor 1 + z = a0/ae, where ae is the scale factor at the emission time, and
any time interval at the emission time is measured by us to be longer by the same
redshift factor 1 + z. Eventually, the flux density of the source is

Φ = L

4πa2
0r2(1 + z)2

= L

4πd2
L

. (4.55)

where we have introduced the luminosity distance dL

dL = a0r(1 + z) =
√

L

4πΦ
. (4.56)

For radial photon trajectories g00dt2 + g11dr2 = 0, and therefore

(1 + z)dt = a0
dt

a
= a0

dr√
1 − kr2

. (4.57)

Using Eq. (4.52), Eq. (4.57) can be recast in the following form

a0

∫ r

0

dr̃√
1 − kr̃2

=
∫ z

0

dz̃

H0

√
(1 + z̃)2

(
1 + z̃Ω0

m

) − z̃ (2 + z̃)Ω0
Λ

, (4.58)
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where

∫ r

0

dr̃√
1 − kr̃2

=

⎧⎪⎨
⎪⎩
arcsin r if k = 1 ,

r if k = 0 ,

arcsinh r if k = −1 .

(4.59)

If we combine Eq. (4.56) with Eq. (4.58), we can write the luminosity distance as a
function of z, H0, Ω0

m , and Ω0
Λ. For k �= 0, we find

dL

(
z, H0,Ω

0
m,Ω0

Λ

)
= (1 + z)

H0

√
|Ω0

k |
S

(√
|Ω0

k |
∫ z

0
F(z̃)dz̃

)
(4.60)

where

S (x) =

⎧⎪⎨
⎪⎩
sin x if k = 1 ,

x if k = 0 ,

sinh x if k = −1 .

(4.61)

F(z) = 1√
(1 + z)2

(
1 + zΩ0

m

) − z (2 + z)Ω0
Λ

. (4.62)

If the Universe is flat, k = 0, the luminosity distance is given by

dL

(
z, H0,Ω

0
m,Ω0

Λ

)
= (1 + z)

H0
S

(∫ z

0
F(z̃)dz̃

)
. (4.63)

In recent years, high redshift supernovae are efficiently used for the determination
of the cosmological parameters. Type Ia supernovae (SNe Ia) are thought to occur
in binary systems in which one of the stars is a carbon-oxygen white dwarf. While
white dwarfs are the remnants of stars that have ceased nuclear fusion, carbon-
oxygen white dwarfs can restart nuclear reactions if the temperature of their core is
raised and exceeds a critical value. In a type Ia supernova, a carbon-oxygen white
dwarf should accrete matter from a companion star. This would force the star to
contract, leading to an increase of the core temperature. Since white dwarfs are
unable to regulate the burning process as normal stars do, they undergo a runaway
reaction, with the subsequent release of a large amount of energy in a short time
interval. This leads to a supernova explosion. The efficiency of the mechanism is
determined by the temperature of the core and therefore by the mass of the white
dwarf. After some corrections for every source, the peak luminosity can be used
as a standard candle (Leibundgut 2001). From the study of low-redshift type Ia
supernovae, it is possible to measure the Hubble constant H0. The study of high
redshift type Ia supernovae led to the discovery of the accelerated expansion rate
of the Universe (Perlmutter et al. 1999; Riess et al. 1998). Current data support
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Fig. 4.4 Constraint from type Ia supernovae on the plane (Ω0
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Λ). In combination with the CMB
data that require Ω0

m + Ω0
Λ ≈ 1, observations favor the so-called ΛCDM model with Ω0

m ≈ 0.3
and Ω0

Λ ≈ 0.7

the so-called ΛCDM model, in which the present day Universe is dominated by
vacuum energy plus some non-relativistic matter (see Fig. 4.4). When the supernova
measurement is combined with CMB data, which suggest Ω0

m + Ω0
Λ ≈ 1, the best

fit values are

Ω0
m ≈ 0.3 , Ω0

Λ ≈ 0.7 . (4.64)

4.7 Destiny of the Universe

The geometry of a universe is determined by the sign of k, which can be properly
rescaled to be 0 or ±1. If a universe is only filled with dust (P = 0) and vacuum
energy (P = −ρ), the condition to be flat is

Ωm + ΩΛ = 1 , (4.65)

while the universe would be closed (open) if Ωm + ΩΛ > 1 (< 1).
If Λ = 0, a closed universe first expands and then recollapses, as shown by

Eq. (4.26). Open and flat universes expand forever, see Eqs. (4.28) and (4.27). In the
presence of vacuum energy, the situation is more complicated. IfΩm ≤ 1, the fate of
the universe is determined by the sign of Λ: for Λ = 0, the universe would expand
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above and below this line. The line “Expansion” separates universes that expand forever (above)
from universes that first expand and then recollapse (below)

forever, but since Ωm/ΩΛ ∼ 1/a3, at a sufficiently late time even a tiny cosmologi-
cal constant becomes dominant and, if it is negative, it terminates the expansion and
the universe recollapses. For Ωm > 1, the universe expands forever if the effect of
a positive vacuum energy becomes important before the universe starts recollaps-
ing. The line on the (Ωm,ΩΛ) plane separating eternally expanding universes from
universes having initially an expanding phase followed by a contraction is given by

ΩΛ =
{
0 for Ωm ≤ 1 ,

4Ωm sin3
[
1
3 arcsin

(
Ωm−1
Ωm

)]
for Ωm > 1 .

(4.66)

Lastly, we can distinguish accelerating (ä > 0) and decelerating (ä < 0) uni-
verses. From Eq. (4.11), we see that the condition for ä = 0 is

ρ + 3P = 0 ⇒ Ωm = 2ΩΛ . (4.67)

A universe is thus accelerating (decelerating) if Ωm < 2ΩΛ (Ωm > 2ΩΛ).
The geometry, the final destiny, and the acceleration of different types of universes

are illustrated on the (Ωm,ΩΛ) plane in Fig. 4.5.
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Problems

4.1 Verify Eqs. (4.3) and (4.5).

4.2 Reconsider the discussion on the age of the Universe presented in Sect. 4.5 in
the case of a non-negligible radiation component Ωγ .

4.3 Let us consider universes only filled with radiation and vacuum energy. Deter-
mine the line ä = 0 and the one separating universes in eternal expansion from those
that will recollapse.
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Chapter 5
Kinetics and Thermodynamics in Cosmology

5.1 Introduction

At the early epochs of the cosmological evolution, the state of matter in the Universe
was very close to the thermal equilibriumone. In a sense, the situationwas opposite to
normal thermodynamics, where thermal equilibrium is established after sufficiently
long time. In cosmology, the younger is the Universe, the faster are reactions among
particles, and less time is necessary to reach the equilibrium. In the early Universe,
the reaction rates were typically higher than the expansion rate, H = ȧ/a, despite
the rise of H as 1/t at short cosmological times. This condition was fulfilled almost
till the GUT epoch, TGUT ∼ 1015 GeV, if it ever existed in the Universe.

In thermal equilibrium, the state of matter is described by very few parameters:
temperature and chemical potentials of different particle species. The distribution
of particles over their energies is determined by the equilibrium and is given by
the canonical Fermi-Dirac or Bose-Einstein forms (including possible formation of
Bose-Einstein condensates).

The equilibrium state of the primeval plasma grossly simplifies theoretical con-
siderations. However, the most interesting phenomena appear because of deviations
from the equilibrium, such as, e.g., freezing ofmassive species, distortion ofmassless
neutrino spectrum, baryogenesis (considered in Chap. 7), etc.

5.2 Thermal Equilibrium in the Early Universe

5.2.1 General Features

Observing the Universe today, we can understand what were the cosmological phys-
ical conditions in the past. The first evident conclusion is that the Universe was
denser and hotter. According to Eq. (4.41), the temperature of radiation drops down
as the inverse of the cosmological scale factor. So, if we travel backward in time, we
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would observe the corresponding temperature rise. According to the results of the
previous chapter, the energy density of radiation and of non-relativistic matter scale,
respectively, as 1/a4 and 1/a3. Going backward in time to smaller and smaller a, we
would see that the density of matter rises in accordance with these laws. This rise
should change or terminate when the equation of state of the cosmological matter
changes or quantum gravity effects become operative. As for the latter, we do not
expect them at temperatures below MPl, so it may be safe to extrapolate back to such
high temperatures. Another possibility is a change of equation of state of the cos-
mological matter. This is what is realized in inflationary models. Roughly speaking,
the equation of state became P = −ρ and thus the energy density stayed constant.
In the simplest versions of the inflationary models, it was the vacuum-like energy of
the inflaton field.

According to the Standard Cosmological Model, the matter in the Universe was
created by the inflaton decay. Prior to that, the Universe was an exponentially ex-
panding darkness with only the inflaton field present there. At some stage, this quasi-
empty dark state exploded, producing all the elementary particles,mostlywithmasses
smaller than the inflaton mass. This picture surprisingly closely reminds the biblical
account of Creation. Initially “Earth was without form and void, and darkness was
over the face of the deep”. Then all of a sudden there was a powerful explosion, the
big bang, exactly in the spirit of “let there be light”.

The theory of particle production by an external time dependent (oscillating) field
is well established. The process is reliably described by mathematical equations, so
we have a rigorous description of this phenomenon. The energy spectra of the created
particles depend upon the details of the production and might be rather complicated.
Fortunately (for theorists), thermal equilibrium in the primeval plasma was soon
established and the whole production history forgotten.

The thermal equilibrium state is realized when the characteristic reaction rate,
Γ , is larger than the Universe expansion rate, H. For particle scattering with cross
section σ , the reaction rate can be estimated as

Γr = ṅ

n
∼ σvn , (5.1)

where n is the number density of particles in the plasma and v is their relative velocity.
The typical magnitude of cross sections at high energies is σ ∼ g4/s, where g is the
coupling constant of particle interactions and s = (p1+p2)2 is the total energy of the
colliding particles in their center of mass system. In GUTmodels, g2 ∼ α ∼ 0.01. If
thermal equilibrium is established, then s ∼ T2 and n ∼ T3, where T is the plasma
temperature. If the essential processes are the particle decay and the inverse decay,
then the characteristic reaction rate is simply the decay width

Γd ∼ g2m

γ
, (5.2)

where m is the decaying particle mass and γ is its Lorenz γ -factor.
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The reaction rates should be compared with the Hubble parameter, which, from
Eq. (4.9), turns out to be H ∼ T2/MPl for a radiation dominated universe, see below.
Since the Planck mass is much larger then the typical mass parameters in elementary
particle physics, we could expect that at temperatures below10−3−10−4 MPl thermal
equilibrium was well established:

g4T � T2

MPl
⇒ T � g4MPl . (5.3)

It is interesting that, in thermodynamics, equilibrium is usually established after
sufficiently long time, while in cosmology it takes place at short times in the early
Universe, because of the high density of particles there. More details are presented
in the concrete examples studied below.

Now we discuss some properties of the thermal equilibrium plasma in the cos-
mological background. Equilibrium distributions in the homogeneous case have the
well known universal form, but somewhat different for bosons and fermions

f (eq)

j (Ej, T , μj) = 1

exp
[(

Ej − μj
)
/T

] ± 1
, (5.4)

where j denotes the particle type, Ej =
√

p2 + m2
j is the particle energy, T is the

plasma temperature (common to all species in equilibrium), and μj is the chemical
potential for the j-type particle. Plus sign in front of unity corresponds to fermions
and minus sign corresponds to bosons.

The number density n and the energy density ρ of particles are expressed through
the integrals of the distribution function over momentum, namely

nj =
∑

s

∫
d3p

(2π)3
fj , (5.5)

ρj =
∑

s

∫
d3p

(2π)3
E(p)fj . (5.6)

Let us present also an expression for the pressure, whichwill be used inwhat follows:

Pj =
∑

s

∫
d3p

(2π)3

p2

3E
fj . (5.7)

The summations here and in Eqs. (5.5) and (5.6) are made over all the spin states
of the particles in question. If, as it is often the case, all the spin states are equally
populated, the summation is reduced to the multiplication of the integrals by the
number of spin states, gs. There is an exception for this rule: for neutrinos, only
left-handed states are populated, while right-handed states are (almost) absent, see
below Sect. 5.3.1.

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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For massless particles with zero chemical potentials, the integrals (5.5) and (5.6)
can be taken leading to the following results for bosons

n0b ≈ 0.122gsT
3, ρ0

b = π2

30
gsT

4 . (5.8)

The analogous expressions for fermions can be obtained using the following rule
expressing integrals from fermionic distribution functions through the bosonic ones

∫
dppnff = (1 − 1/2n)

∫
dppnfb . (5.9)

Correspondingly, nf = (3/4)nb and ρf = (7/8)ρb for massless particles withμ = 0.
In the non-relativistic case, when T � m and μ = 0, the bosonic and fermionic

distributions are almost the same and have the form

nm
b = nm

f ≡ nm = gse
−m/T

(
mT

2π

)3/2

, ρm
b = ρm

f = mnm (5.10)

During practically all the history of the early Universe, the primeval plasma was
dominated by relativistic matter. Indeed, the contribution of non-relativistic parti-
cles, i.e. of the particles with large masses, m > T , was Boltzmann suppressed as
exp(−m/T), while for m ≤ T , the particles were relativistic. Let us express the
Hubble parameter through the plasma temperature at the onset of the BBN epoch,
when the plasma temperaturewas about 1MeV.According to the equations presented
above, the energy density can be written as

ρrel = π2

30
g∗T4, (5.11)

where g∗ includes the contribution of all the relativistic particle species in the plasma,
i.e. the number of their spin states for bosons and 7/8 of the number of spin states for
fermions.1 So the contribution from photons is gγ = 2; the contribution from e+e−
pairs is 7/2, and the contribution from neutrinos and antineutrinos is (7/4)(3+ΔNν),
where ΔNν is the effective number of any other relativistic particle species with
the energy density normalized to the equilibrium energy of one neutrino species.
Summing up all the contributions we find

1We can still use Eq. (5.11) in the case of one or more decoupled relativistic components with
possible different temperatures, but now g∗ is

g∗(T) =
∑

bosons

gi

(
Ti

T

)4

+ 7

8

∑
fermions

gi

(
Ti

T

)4

, (5.12)

where the first summation is over all the boson species and the second one over all the fermion
species, gi is the number of spin states of the species i, and Ti is the temperature (or effective
temperature in the case of decoupled particles) of the species i.



5.2 Thermal Equilibrium in the Early Universe 75

g∗ = 10.75 + 7

4
ΔNν . (5.13)

In addition to the already included particle species, there were baryons and dark
matter particles in the plasma at that time. However, the energy densities of these
non-relativistic contributions were about 10−6 with respect to the relativistic matter.

Now we can express the Hubble parameter through the temperature of the rela-
tivistic primeval plasma. From Eqs. (4.9), (5.11), and (5.13), one can find

H = 5.44

√
g∗(T)

10.75

T2

MPl
. (5.14)

Since at the relativistic stage H = 1/(2t), the law of the Universe cooling with time
turns out to be tT2 = const and, keeping in mind that a(t) ∼ √

t, we can see that

T ∼ 1

a(t)
. (5.15)

The temperature of radiation drops according to this law for any expansion regime
if the energy exchange with massive particles can be neglected. Elastic scattering of
radiation off massive particles would lead to a somewhat faster cooling. On the other
hand, massive particle annihilation to relativistic species would heat up the plasma
and result in a slower cooling. The origin of such cooling or heating is described in
Sect. 5.2.3. Note that, for a quick estimate of the temperature of the plasma, a simple
approximate relation is helpful: the temperature inMeV is equal to the square root of
the Universe age in seconds. In the calculations made above we neglected possible
chemical potentials of the relativistic particles. They are supposed to be small and, if
they are known, they are small indeed. For example, the baryonic chemical potential
of quarks is about 10−9 T and the leptonic chemical potential of neutrinos is smaller
than 0.1 T .

Evidently, for vanishing chemical potentials, the number and energy densities of
particles and antiparticles are the same in equilibrium, since the masses of particles
and antiparticles are supposed to be equal. This equality is a consequence of the CPT
theorem. So to describe the case when there is an asymmetry between particles and
antiparticles it is necessary to introduce for them unequal chemical potentials. Let
us stress that chemical potentials do not vanish in equilibrium if the difference of
number densities of particles and antiparticles is conserved. It happens if the particles
in question possess a conserved quantum number, such as, e.g., baryonic or leptonic
number which are supposed to be conserved at low energies.

As we see in what follows, in equilibrium the chemical potentials for particles
and antiparticles have equal magnitude and opposite signs, μ̄ = −μ. We can find
the difference between the densities of massless fermions and antifermions using
Eqs. (5.4) and (5.5):

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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n − n̄ = gs T3 ξ3 + π2ξ

6π2 , (5.16)

where ξ = μ/T is the dimensionless chemical potential, see e.g. Landau and Lifshitz
(1980). As we show below, if there is no entropy release, e.g. by massive particle
annihilation, the temperature drops down as the inverse scale factor, T ∼ 1/a, and
ξ = const. The last condition describes the conservation of particle number differ-
ence in the comoving volume, i.e. in the volume which expands together with the
Universe, V ∼ a3.

5.2.2 Kinetic Equation

Here we present the kinetic equations governing the evolution of the distribution
functions and their approach to equilibrium. In the case of weak interactions among
particles in the plasma, the equation can be written in the following form

df i

dt
= [

∂t + ṗ∂p + ṙ∇]
f i = Ii

coll , (5.17)

where f i is the distribution function for particles of type i and Ii
coll is the collision

integral describing the particle interactions. It will be specified below. In general,
the function f i depends upon time, space coordinate r, and the vector of particle
momentum p. Sometimes we omit the index i.

In the homogeneous and isotropic case, the distribution functions only depend on
the time t and on the absolute value of the particle momentum p, while they do not
depend on the space coordinate r, so the last term in the left hand side of this equation
vanishes. Following the approach discussed in Sect. 4.4, we can see that ṗ = −Hp
in the FRW background. We can thus rewrite the left hand side as

df i

dt
= [

∂t + ṗ∂p
]

f i = Hx∂xf i(x, yj) = I i
coll, (5.18)

where x = m0a, yi = pia, and m0 is an arbitrary normalization parameter with
dimension of mass. The temperature of the primeval plasma usually drops as the
cosmological scale factor, see Eq. (5.15), and during this regime it is convenient to
take x = m0/T and y = p/T .

The collision integral for the process i+Y ↔ Z , where Y and Z are some arbitrary,
generally multi-particle, states, has the form

Ii
coll = (2π)4

2Ei

∑
Z,Y

∫
dνZ dνY δ4(pi + PY − PZ )

×
⎡
⎣|A(Z → i + Y)|2

∏
Z

f
∏
i+Y

(1 ± f ) − |A(i + Y → Z)|2fi
∏
Y

f
∏
Z

(1 ± f )

⎤
⎦ , (5.19)

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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where A(i + Y → Z) is the transition amplitude from the state i + Y to the state
Z ,

∏
Y f is the product of the distribution functions forming the state Y , the sign in∏

(1 ± f ) is + for bosons and − for fermions, PZ,Y is the total momentum of the
state Z or Y , and

dνY =
∏

Y

dp ≡
∏

Y

d3p

(2π)32E
. (5.20)

All the terms in Icoll can be easily understood. The factors 1/2E is related to the
relativistic invariant normalization of the amplitudes. The δ-function ensures the
energy-momentum conservation in the reactions. The integration is taken over the
phase space of all participating particles except for the particle i. The reaction prob-
ability is evidently proportional to the particle densities in the initial state and to the
Fermi suppression or Bose enhancement factors in the final state, which is realized
by the products of fin and of (1 ± ffin).

By definition, the equilibrium distribution functions are the functions annihilating
the collision integral, i.e. Icoll[feq] = 0. We can easily check this if the invariance
with respect to time reversal holds and the approximation of the Boltzmann statistics,
for which feq = exp (μ − E)/T , is valid. Because of the invariance with respect to
time inversion, the absolute values of the amplitudes of direct and inverse reactions
are equal after time reversal of the kinematic variables, i.e. the change of the signs
of momenta and spins. Since in the collision integral the summation over all the spin
states and the integration over momenta is made, this change of signs is not essential
and we can take the direct and inverse amplitudes to be equal and thus the collision
integral would contain the factor

Πinfin Πfin(1 ± ffin) − Πfinffin Πin(1 ± fin) . (5.21)

Since the Boltzmann statistics is valid for f � 1, this factor is reduced to Πinfin −
Πfinffin. This difference evidently vanishes due to the energy conservation and if the
usual equilibrium condition among chemical potentials is fulfilled, namely

∑
μin =

∑
μfin . (5.22)

We leave as an exercise to prove that the difference (5.21) is also zero for the case
of quantum (Bose and/or Fermi) statistics and that the collision integral vanishes
even if the T-invariance is not fulfilled. The last exercise may be too difficult and the
readers can find the prove in Dolgov (1979).

The energy conservation condition is automatically fulfilled in the absence of
external time dependent fields, but the conservation of chemical potentials (5.22) is
only valid in the equilibrium case. The system evolves to the state with conserved
μ if the efficiency of inelastic reactions is high enough. Elastic reactions do not
help to enforce the condition (5.22) because for elastic reactions this condition is
automatically fulfilled, so chemical potentials do not evolve in elastic reactions.
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Efficient elastic scattering reactions induce the canonical form of the distribution
over energy, so, in the case of equilibrium with respect to elastic reactions, the
dependence of f on the particle energy takes the form f ∼ exp[(μ − E)/T)] in the
case of the Boltzmann statistics or f = 1/[exp(E − μ)/T) ± 1], but the parameters
μ may be arbitrary. Only inelastic reactions with non-conservation of the number of
the particles in question lead to the equilibrium condition (5.22).

To understand the role of inelastic processes, let us consider the electron-positron
annihilation into two and three photons. If these reactions are sufficiently fast, they
enforce the following conditions

μe− + μe+ = 2μγ = 3μγ . (5.23)

From these equations, it follows that in equilibrium

μγ = 0, μe+ = −μe− . (5.24)

These equations demonstrate the general situation that in equilibrium the chemical
potential of a particle species is zero if the particle’s number is not conserved, and
that the chemical potential of particles and antiparticles have equal absolute values
but opposite signs.

Note that chemical potentials of bosons are bounded from above by their masses,
i.e.μ ≤ m, otherwise the distribution function at some lowmomenta, p2 < μ2 − m2,
would be negative, which is physically senseless. Now an interesting problem arises.
As it is mentioned above, chemical potentials are introduced to describe an asymme-
try between the number densities of particles and antiparticles. If we take a plasma
with an excess of bosons with respect to antibosons, this difference, if it is suffi-
ciently small, can be described by a properly chosen chemical potential. But what
happens if the asymmetry increases? The chemical potential should also increase till
it reaches the maximum allowed value μ = m. What happens after that? The answer
is that a larger asymmetry would induce the formation of a Bose condensate and the
equilibrium distribution would take the form

f B
eq(E, T , m, C) = 1

exp [(E − m)/T ] − 1
+ C

(2π)3
δ(3)(p) . (5.25)

The last term proportional to the δ-function of the momentum describes the con-
densed part of the distribution with the constant C being the amplitude of the con-
densate. It can be shown that this function, f B

eq(E, T , m, C), is an equilibrium distri-
bution, i.e. it annihilates the collision integral if and only if μ = m. We leave this
problem as an exercise.

Note that the equilibrium distribution functions are always determined by two
parameters: the temperature, which is common for all particles, and the chemical
potential, which is generally different for different particle species. If a chemical
potential is fixed by itsmaximumvalueμ = m, then there appears another parameter,
the amplitude of condensate, C.



5.2 Thermal Equilibrium in the Early Universe 79

Since the collision integral vanishes at f = feq, it is often approximated as

Icoll ≈ −Γ (f − feq) , (5.26)

where Γ is the effective reaction rate. This is not a very accurate approximation and
it is not always applicable, but in some cases it works reasonably well. We use this
equation to estimate deviations from equilibrium of massive particles in the FRW
background. We assume that the deviation is small and the distribution function can
be presented as

f = feq + δf . (5.27)

Using the variables x and y, introduced after Eq. (5.18), we write feq in the form

feq = 1

exp(
√

x2 + y2) ± 1
, (5.28)

where we neglected possible chemical potentials.
Substituting this expressions into the kinetic equation (5.18) with the collision

integral in the form (5.26), we find

δf

feq
= Hx

Γ

∂xfeq

feq
= − Hx2

Γ
√

x2 + y2
= − m2H

TEΓ
, (5.29)

where we took the normalization mass m0 equal to the mass of the particles under
scrutiny. With H from Eq. (5.14) and T ∼ m, one estimates the deviation from
equilibrium as δf /feq ∼ m2/(MPlΓ ). Typically Γ ∼ αnm, where α ∼ 10−2, n = 1
for decays and n = 2 for two-body reactions. So for the particle masses below 1016

GeV the violation of thermal equilibrium is quite small.
As one can see from Eq. (5.29), the equilibrium of massless particles is not de-

stroyed by the cosmological expansion. Even if the interaction is switched off, the
distribution remains of the equilibrium form with the temperature and the possible
chemical potential dropping down as 1/a. Indeed, the left hand side of the kinetic
equation can be written as (here we return to the standard variables, p and t)

(
∂t − Hp∂p

)
feq

(
E − μ(t)

T(t)

)
=

[
− Ṫ

T

E − μ

T
− μ̇

T
− Hp

T

]
f ′
eq , (5.30)

where the prime means the derivative of f over its argument (E − μ)/T . The factor
in the square brackets vanishes if μ̇ = Ṫ/T = −H and if E(Ṫ/T) = −Hp, which
can be and is true only for E = p, i.e. for m = 0. It explains, in particular, the
observed perfect equilibrium spectrum of the CMB. Note that μ/T = const implies
the particle conservation in the comoving volume, i.e. n ∼ T3; however, it is not of
importance for the CMB, because μ/T � 1.
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5.2.3 Plasma Heating and Entropy Conservation

It is shown above that the temperature of a plasma consisting ofmassless or very light
(m � T ) particles drops down as 1/a(t). However, a noticeable fraction of massive
particles with m ∼ T would destroy this simple law. There are several instructive
examples that help to understand the reasons for deviations from the 1/a-law.

Let us first consider light particles in thermal equilibrium with the rest of
the plasma. Their distribution had the equilibrium form (5.4), with exp(E/T) =
exp(

√
x2 + y2). If these particles completely stopped interacting at some tempera-

ture Td , then the distribution would become

exp(E/T) = exp

(√
x2d + y2

)
, (5.31)

where xd = m/Td . A realistic example of such particles is presented by neutrinos,
for which Td ∼ 1 MeV and xd � 1 (see Sect. 5.3.1). So we would expect that the
neutrino distribution after their decoupling should be

fν = 1

exp(p/Tν) + 1
, (5.32)

where Tν does not have a meaning of temperature because the temperature is deter-
mined for the equilibrium case when the distribution depends upon E/T . For non-
interacting particles, the parameter Tν always drops as 1/a. In the case of massless
particles, it is a real temperature.

The situation would be different if the massive particles are in mutual equilibrium
but do not interact with any other matter. In this case, the distribution should have
the equilibrium form (5.4), but the temperature would not follow the law T ∼ 1/a. A
simple and practically interesting example is a collection of non-relativistic particles
that have sufficiently strong elastic scattering maintaining the canonical distribution
over their energy but their annihilation is switched-off, so the number density in
comoving volume remains constant. To achieve this, an effective chemical potential
should be developed, μ ∼ m, the same for particles and antiparticles, if the latter
exist and the number densities of particles and antiparticles are equal. Since in this
conditions feq depends upon p2/(2mT), the constant number density in the comoving
volume implies T ∼ 1/a2.

If there is a mixture of relativistic and non-relativistic matter with an energy
exchange between them, then if the massive particles do not annihilate, the plasma
cooling rate would be between T ∼ 1/a and T ∼ 1/a2. The presence of massive
non-annihilating particles acts as an extra cooling agent leading to a faster than 1/a
drop-off of the temperature.

If, however, the annihilation is essential, the cooling would proceed slower than
1/a due to the release of energy accumulated in the particle masses. One can deter-
mine the law of cooling in this case using the entropy conservation law per comoving
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volume

dS

dt
≡ d

dt

(
a3

ρ + P

T

)
= 0 , (5.33)

which can be derived as follows. The expressions for the total pressure and energy
density are given by Eqs. (5.6) and (5.7) after summation over all particle species j.
For relativistic (i.e. essentially massless) particles

s = ρ + P

T
= 2π2

45
gs∗T3 , (5.34)

wheregs∗ = gb+(7/8)gf , see the comment belowEq. (5.9).2 The entropy is conserved
for the equilibrium distributions with zero chemical potentials. In fact, a weaker
condition is sufficient, namely that f is a function of E/T , where T is an arbitrary
function of time. To derive Eq. (5.33), we use the covariant energy conservation
ρ̇ = −3H (ρ + P), Eq. (4.12), and the law of the pressure evolution

Ṗ = Ṫ

T
(ρ + P) , (5.36)

which can be obtained by differentiation of Eq. (5.7) over time and integration of the
result by parts.

Let us consider now an example of plasma populated by photons and electron-
positron pairs with the initial temperature exceeding the electronmass, Tin > me, and
the final temperature Tfin � me, at which practically all electrons and positrons are
annihilated. In the real situation, there is a small excess of electrons over positrons,
but we neglect it here. The initial entropy of the plasma fully populated by γ , e+,
and e− is (11π2/45)(ainTin)

3 and the final entropy is (4π2/45)(afinTfin)
3. Using the

conservation law (5.33), we find that the photon temperature drops slower than 1/a

Tfin

Tin
=

(
11

4

)1/3 ain

afin
. (5.37)

This result is used in the next subsection for the calculations of the neutrino to photon
temperature ratio.

2If all the components of the plasma have the same temperature, g∗ = gs∗. If this is not the case, we
have the counterpart of Eq. (5.12) and gs∗ is

gs∗(T) =
∑

bosons

gi

(
Ti

T

)3

+ 7

8

∑
fermions

gi

(
Ti

T

)3

, (5.35)

which may be different from g∗.

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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5.3 Freezing of Species

According to the simple estimates presented above, in a certain temperature range
there is good contact among particles in the primeval plasma and thermal equilibrium
is established.When the temperature drops down, interactions of some particles with
the rest of the plasma become too weak to maintain equilibrium and they start to
live their own free life. This process is called freezing of species. There are two
possibilities to terminate the interaction. The first one is realized if the interaction
strength drops down with energy. In this case, the decoupled particles are generally
relativistic at the moment of decoupling and their frozen number density is close
to the number density of the CMB photons. This happens with weakly interacting
particles such as neutrinos.

The second type of freezing occurs even with strongly interacting particles. They
may be in strong elastic contact with the plasma but they stop annihilating because
their number becomes exponentially small and it is impossible to find a partner to
commit a pairwise suicide. Correspondingly, the number density of such particle be-
comes constant in the comoving volume. This is the case of non-relativistic freezing.
By such a mechanism, the number density of dark matter particles was fixed.

5.3.1 Decoupling and Gershtein-Zeldovich Bound

An example of particles that decoupled while being relativistic is represented by
neutrinos. At low energies, below the masses of the W - and Z-bosons, neutri-
nos possess 4-fermion interactions determined by the Fermi coupling constant
GF ≈ 10−5 GeV−2.Correspondingly, the processes of neutrino scattering on charged
leptons and neutrinos and ν̄ν-annihilation all have the cross section of the same or-
der of magnitude, namely σW ∼ G2

Fs, where s = (p1 + p2)2 is the total energy of
the colliding particles in the center of mass system. The corresponding reaction rate
ΓW = σW n ∼ G2

FT5 is to be compared with the Hubble parameter H ∼ T2/MPl.
Thus the equilibrium would be broken below the temperature

Tf ∼ mN

(
1010mN

MPl

)1/3

∼ MeV , (5.38)

where mN ∼ 1 GeV is the nucleon mass. More accurate calculations are necessary to
establish if Tf is larger or smaller than me, which is important for the calculations of
the number density of relic neutrinos nν at the present time and for the cosmological
bound on their mass mν .

For more accurate calculations of the decoupling temperature from the electron-
positron plasma, we can use the kinetic equation in Boltzmann approximation with
only the direct reactions with electrons, i.e. νe elastic scattering and νν̄ annihilation
taken into account
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Hx
∂fν

fν ∂x
= −80G2

F

(
g2L + g2R

)
y

3π3x5
, (5.39)

where the exact expression for the amplitude of the neutrino interaction is used with
gL and gR being some constants of order unity and different for νe and νμ,τ (see any
textbook onweak interactions). The dimensionless parameter x is the neutrino energy
in units of temperature, x = E/T . It is clear from this equation that the freeze-out
temperature, Tf , depends upon the neutrino momentum y = p/T , and this can distort
the spectrum of the decoupled neutrinos, as we see in what follows. For the average
value of the neutrino momentum, y = 3, the temperature of decoupling of neutrinos
from e± is

Tνe = 1.87 MeV, and Tνμ,ντ = 3.12 MeV . (5.40)

The decoupling temperatures with respect to the annihilation ν ν̄ ↔ e+e− which can
change the number density of neutrinos are equal to Tνe ≈ 3 MeV and Tνμ,ντ ≈ 5
MeV, respectively for νe and νμ,τ .

To take into account all the reactions experienced by neutrinos, including elastic νe
and all νν scattering, we need to make the substitution (g2L + g2R) ↔ (1 + g2L + g2R)

in Eq. (5.39). In this way, we can find that neutrinos completely decoupled and started
to propagate freely in the Universe when the temperature dropped below

Tνe = 1.34 MeV and Tνμ,ντ = 1.5 MeV . (5.41)

An accurate calculation of the neutrino decoupling temperature is presented in Dol-
gov (2002).

To summarize, the decoupling of all the neutrino flavors took place at a temper-
atures higher than the electron mass, when e+ and e− were abundant in the plasma.
So the e+e− annihilation heated up the photon gas, while the neutrino temperature
remained intact and dropped down as 1/a. At high temperatures, the ratio of neutrino
and photon densities was (nν + nν̄ )/nγ = 3/4. It is assumed here that the neutrino
chemical potentials are zero and so nν = nν̄ . For non-zero μν , the total number den-
sity of neutrinos plus antineutrinos would be higher, with an increase proportional to
μ2

ν . Another important assumption is that only one spin state of neutrinos is present
in the primeval plasma. If neutrinos were massless or had a Majorana mass, then
only the left-handed spin state would exist. However, massive neutrinos with Dirac
mass have altogether four states: left-handed neutrinos and antineutrinos plus right-
handed ones. Neutrinos participating in the usual weak interactions are left-handed,
i.e. their helicity (spin projection on the direction of the neutrinomomentum) is equal
to −1/2, while antineutrinos have helicity equal to +1/2. Right-handed neutrinos
must be produced by the weak interactions but with a small probability propor-
tional to ΓR ∼ (mν/E)2ΓL ∼ G2

Fm2
νT3, where ΓL is the probability of left-handed

neutrino reactions due to the usual weak interactions. Rescaling the equilibrium
condition (5.38) for left-handed neutrinos to the right-handed ones, we find that νR

would have equilibrium density at TR ∼ (G2
Fm2

νMPl)
−1 ≥ 1010 GeV, if mν < 1 eV.
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However, at energies comparable to, or larger than, themasses of theweak bosons, the
weak interaction cross section stops rising and instead drops down as σW ∼ α2/T2,
where the coupling constant is α ∼ 0.01. The interaction has a sharp maximum near
the W or Z resonance, when the energies of the colliding leptons at the center of
mass are equal to half of the W or Z mass. The rate of νR production is strongly
enhanced at the resonance but still the equilibrium νR density can be reached only
for mν > 2 keV. Details can be found in Dolgov (2002), Sect. 6.4. The νR number
density may be unsuppressed if they were produced by a new interactions with the
strength similar to that of the electroweak one. As we will see in Sect. 8.7, an analysis
of light elements abundances created at the BBN allows to put restrictive bounds on
the strength of such interactions.

Even if νR were abundant in the Universe at some high temperatures, their number
density with respect to νL would be suppressed at∼1MeV due to the entropy release
by massive particle annihilation on the way. This effect is analogous to the photon
heating by e+e− annihilation discussed in Sect. 5.2.3. Thus we conclude that νR were
practically absent in the cosmological plasma at MeV temperatures.

The ratio of the number densities of the usual left-handed neutrinos and photons
after the neutrino decoupling and e+e− annihilation is given by the ratio of the cube of
their temperatures, nν/nγ = (3/4)(Tν/Tγ )3 with Tν/Tγ = (4/11)1/3, see Eq. (5.9).
This is true for any neutrino flavor, νe, νμ, and ντ , or, as it would be better to say,
for any of the three neutrino mass eigenstates, ν1,2,3. Let us note, however, that the
eigenstates of the neutrino Hamiltonian in a hot cosmic plasma differ from those in
vacuum.

The temperature of the decoupled neutrinos dropped down as T ∼ 1/a, while Tγ

dropped slower, as given by Eq. (5.37). Correspondingly

nνL + nν̄L

nγ

= 3

11
(5.42)

and the ratio of the neutrino temperature to the photon temperature is

Tν

Tγ

=
(

4

11

)1/3

= 0.714 . (5.43)

In fact we can speak about the neutrino temperature after their decoupling only when
T � mν , see the end of Sect. 5.4.

In the Standard Cosmological Model, the number densities of neutrinos and pho-
tons remained constant in the comoving volume, so we can calculate the present day
number density of neutrinos knowing the today number density of CMB photons,
nγ = 0.2404 T3 = 411(T/2.725K)3 cm−3, see Eq. (10.19):

nν = 56 cm−3Σspecies = 336 cm−3 , (5.44)

http://dx.doi.org/10.1007/978-3-662-48078-6_8
http://dx.doi.org/10.1007/978-3-662-48078-6_10
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where the summation is done over all the neutrino and antineutrino species, assuming
that all the mass eigenstates are equally populated and that the densities of neutrinos
and antineutrinos are equal, i.e. μν = μν̄ = 0.

The present day energy density of neutrinos must be smaller than the total energy
density of matter, ρm. This leads to the following upper bound on the sum of the
masses of the three mass eigenstates of neutrinos

∑
mνj < 94 eV Ωmh2 . (5.45)

Since h2 ≈ 0.5, Ωm ≈ 0.25, and the masses of different neutrinos are nearly equal,
as follows from the data on neutrino oscillations, we find mν < 5 eV for any neutrino
mass eigenstate. This bound was derived in 1966 in a seminal paper by Gershtein and
Zeldovich (1966). Somewhat similar result was obtained 6 years later by Cowsik and
McClelland (1972), who, however, assumed that all the spin states of neutrino (left-
and right-handed) were equally populated and did not take into account the photon
heating by e+e− annihilation, with the result that they overestimated the neutrino
density by roughly a factor seven. The result in Eq. (5.42) is a cornerstone of the
cosmological bounds on mν , which are being obtained nowadays with better and
better precision. The Gerhstein-Zeldovich (GZ) limit (5.45) may be immediately
further strengthened by taking into account that cosmological structure formation
would be inhibited at small scales if ΩHDM > 0.3ΩCDM (see Sect. 9.2). This gives
mν < 1.7 eV. Recently, on the basis of detailed studies of the contemporary data on
the large scale structure of the Universe and on the spectrum of angular fluctuations
of the CMB, the bound is mν < 0.3 eV, which is almost an order of magnitude
stronger than direct laboratory measurements (Olive et al. 2014).

The next question is how robust the GZ bound is. Is it possible to modify the stan-
dard picture to avoid or weaken it? The bound is based on the following assumptions:

1. Thermal equilibrium between ν, e±, and γ at T ∼ 1 MeV. If the Universe never
was at T ≥ 1 MeV, neutrinos might be under-abundant and the bound would be
much weaker. However, a successful description of light element production at
the BBN makes it difficult or impossible to eliminate the equilibrium neutrinos
at the MeV phase in the Universe evolution.

2. Negligible lepton asymmetry. A non-zero lepton asymmetry would result in a
larger number/energy density of neutrinos plus antineutrinos and the boundwould
be stronger.

3. No extra production ofCMBphotons after the neutrino decoupling. Strictly speak-
ing, this is not excluded but strongly restricted. If the extra photons were created
before the BBN terminated, they might have distorted the abundances of light
elements. Late time creation of extra photons, after the BBN, would lead to dis-
tortions of the energy spectrum of the CMB, so there remains only very small
freedom, not sufficient to change nν/nγ essentially.

4. Neutrino stability on the cosmological scale, τν > tU . If neutrinos decay into
other normal neutrinos, e.g. νμ → νe + X, the total number of neutrinos does not
change and the limit on the mass of the lightest neutrino remains undisturbed, but

http://dx.doi.org/10.1007/978-3-662-48078-6_9
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heavier neutrinos are allowed. If the decay goes into a new lighter fermions, e.g.
sterile neutrino, the bound may be weakened for all neutrino species.

5. No late-time annihilation of ν + ν̄ into a pair of (pseudo) Goldstone bosons,
e.g. majorons. For noticeable annihilation, a too strong coupling of neutrinos to
majorons is necessary, which is probably excluded by astrophysics.

So we have to conclude that there is no trivial way to weaken the GZ bound.

5.3.2 Freezing of Non-relativistic Particles

Heavy and sufficiently strongly interacting particles may have decoupled from the
primordial plasma at a temperature that was much smaller than their mass, Tf < mh.
After decoupling, the number density of these particles stopped falling down as
nh ∼ exp(−mh/T), according theBoltzmann suppression law, but remained constant
in the comoving volume. This happened because the number density had already
turned very small, dropping down as exp(−mh/Tf ), and it became very difficult
to find a partner for self-destruction through mutual annihilation. It is assumed,
of course, that these particles are stable. This phenomenon is called freezing in
English literature. In Russian literature, it originally got the name “quenching” as
was suggested by Zeldovich who pioneered the study of this process.

The number density of heavy particles at the decoupling is given by

nh/nγ ∼ (mh/Tf )
3/2e−mh/Tf � 1 , (5.46)

so such particles may have masses much larger than those allowed by the GZ bound
and can make cosmologically interesting cold dark matter with Ωh ∼ 1. The frozen
number density of such particles is determined by the cross section of their annihila-
tion and it is given by a simple expression, see the derivation below and, e.g., Dolgov
and Zeldovich (1981)

nh

nγ

≈ (mh/Tf )

〈σannv〉MPlmh
, (5.47)

where mh/Tf ≈ ln(〈σannV 〉MPlmh) ∼ 10 − 50. To derive this expression, one has
to numerically solve the kinetic equation governing the evolution of the number
density of heavy particles, but it is anyway instructive to make some analytic calcu-
lations. Moreover, the analytic results are pretty accurate. The calculations of frozen
abundances are usually done under the following assumptions:

1. Boltzmann statistics. It is usually a good approximation for heavy particles at
T < m, since their distribution function is small, namely fh � 1.

2. It is usually assumed that the number densities of the heavy particles and their
antiparticles under scrutiny are equal, so in full thermal equilibrium at high tem-
peratures, namely for T ≥ m, their chemical potential vanishes.
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3. At lower temperatures, however, the heavy particles were in kinetic, but not chem-
ical, equilibrium, i.e. their distribution function has the form

fh = e−E/T+ξ(t) , (5.48)

where ξ is the effective chemical potential normalized to temperature, ξ = μ/T .
Chemical equilibrium is enforced by the annihilation for which an antipartner
is needed. However, its number density at T < m is exponentially suppressed.
On the other hand, kinetic equilibrium demands encounter with abundant light
particles. That is why the chemical equilibrium stops being maintained much
earlier than the kinetic one.

4. The light particles, produced by the annihilation of h and h̄ and producing hh̄
pairs by the inverse process, are supposed to be in complete thermal equilibrium.

5. By assumption, the charge asymmetry of heavy particles is negligible and thus
the effective chemical potentials for particles and antiparticles are equal, ξ = +ξ̄ .
However, sometimes this restriction is lifted, and the asymmetry is allowed to
be essential. In this case, the annihilation proceeds much more efficiently and
the survived abundance of h is determined by the magnitude of their charge
asymmetry.

The kinetic equation under this assumption turns into an ordinary differential equa-
tion, which was derived in 1965 by Zeldovich (1965) and used for the calculation of
the frozen number density of non-confinedmassive quarks in Zeldovich et al. (1965).
In 1978, the equation was applied to the calculations of the frozen number densities
of stable heavy leptons in Lee andWeinberg (1977); Vysotsky et al. (1977), and after
that it got the name Lee-Weinberg equation, though it would be more proper to call
it Zeldovich equation.

The equation has the following Riccati type form

ṅh + 3Hnh = 〈σannv〉(neq 2
h − n2h) , (5.49)

where nh is the number density of these heavy particles, neq
h is its equilibrium value,

and 〈σannv〉 is the thermally averaged annihilation cross sectionmultiplied by velocity
of the annihilating particles

〈σannv〉 = (2π)4

(neq
h )2

∫
dphdph̄dpf dpf ′δ4(Pin − Pfin)|Aann|2e

−
(

Ep+Ep′
)
/T

, (5.50)

where dp = d3p/[2E (2π)3]. The annihilation (and the inverse annihilation) is as-
sumed to be a simple two-body process, namely h + h̄ ↔ f + f̄ .

The integration in Eq. (5.50) can be taken down to one variable and we find (Gon-
dolo and Gelmini 1991)

〈σannv〉 = x

8m5
hK2

2 (x)

∫ +∞

4m2
h

ds (s − 4m2
h)σann(s)

√
sK1

(
x
√

s

mh

)
, (5.51)
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where x = mh/T , s = (p + p̄)2, and K1 and K2 are the modified Bessel functions.
Usually x � 1 and σannv → const near the threshold, so the thermally averaged
product 〈σannv〉 is reduced just to the threshold value of σannv. The expression above
can be useful if the annihilation cross section noticeably changes near the threshold,
e.g. in the case of resonance annihilation.

For the derivation of Eq. (5.49), we start with the general kinetic equation

∂t f − Hp∂pf = Iel + Iann , (5.52)

wherewe take into account only two-body processes with heavy particles. The elastic
scattering is governed by the Iel term in the collision integral and the two-body
annihilation is governed by Iann. When T < mh, the former is much larger than
the latter because of the exponential suppression of the density of heavy particles,
fh ∼ exp(−mh/T). Since Iel is large, it enforces kinetic equilibrium, i.e. the canonical
Boltzmann distribution over energy

fh = exp[−E/T + ξ(t)] . (5.53)

With such a form of fh, we can integrate both sides of Eq. (5.52) over d̄p and the
large elastic collision integral disappears, but the impact of it remains in the distrib-
ution (5.53).

As the last step, we express ξ(t) through nh

exp(ξ) = nh

neq
h

(5.54)

and we arrive at Eq. (5.49). This equation can be solved analytically, approximately,
but quite accurately. At high temperatures, T ≥ mh, the annihilation rate is usually
high

σannvnh/H � 1 , (5.55)

and thus the equilibrium with respect to annihilation is approximately maintained.
We can thus write nh = neq

h + δn, where δn is small. It is convenient to introduce the
dimensionless ratio of the number density to the entropy r = nh/s, so the effects of
the expansion of the Universe disappear from the equation

ṅ + 3Hn = sṙ , (5.56)

since, according to Eq. (5.33), the entropy is conserved in comoving volume, ṡ =
−3Hs.

Introducing the new variable x = mh/T and assuming that Ṫ = −HT , which is
approximately true if the entropy release by massive particle annihilation is small,
we arrive at the equation
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r′ = Qx−2
(

r2eq − r2
)

, (5.57)

where the prime denotes the derivative over x, Q = gs∗
√
90/8π3g∗ σannvmhMPl �

1, gs∗ is defined in Eq. (5.34), the Hubble parameter is given by Eq. (5.14), and
according to Eqs. (5.8) and (5.10) we have

req(x) = gh

gs∗
e−x

( x

2π

)3/2
. (5.58)

Since the coefficient Q in front of the brackets in Eq. (5.57) is huge, r should
weakly deviate from equilibrium, so we can write r = req(1 + δr), where δr � 1.
It is the so-called stationary point approximation, which implies that the factor that
is multiplied by Q in the right hand side of the equation vanishes with an accuracy
of 1/Q terms. It follows that

δr ≈ − r′
eqx2

2Q r2eq
. (5.59)

Since req exponentially drops down, δr rises, and the approximation breaks down
roughly speaking when δr reaches unity. After that, we use another approximation:
neglecting r2eq, we analytically integrate the equation for r and obtain the final re-
sult (5.47). For its derivation, we assume that the annihilation proceeded in s-wave,
so the product σannv tends to a non-vanishing constant. The annihilation cross section
in higher partial wave vanishes as a power of the center of mass 3-momentum of the
colliding particles. The result can be easily generalized for this case and we leave
its derivation as an exercise. Another way to solve Eq. (5.49) is to transform this
Riccati-type equation to the second order Schroedinger-type one and to integrate the
latter in quasi-classical approximation.

Let us apply the obtained results for the calculation of the frozen number den-
sity of the lightest supersymmetric particle (LSP), which must be stable if R-parity
is conserved and is a popular candidate for dark matter (the topic will be briefly
introduced in Sect. 9.2.1). The annihilation cross section is estimated as

σannv ∼ α2/m2
LSP . (5.60)

Correspondingly, the energy density of the LSP would be

ρLSP = mLSPnLSP ≈ nγ m2
LSP

MPl
ln

(
α2MPl

mLSP

)
. (5.61)

For mLSP = 100 GeV, which is a reasonable value in a minimal supersymmetric
model, we find

ΩLSP ≈ 0.05 . (5.62)

http://dx.doi.org/10.1007/978-3-662-48078-6_9
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This value is very close to the observed 0.25 and makes the LSP a natural candidate
for dark matter.

Another interesting example is the frozen number density ofmagneticmonopoles,
which may exist in spontaneously broken gauge theories containing O(3)
subgroup (Polyakov 1974; ’t Hooft 1974). The cross section of the monopole-
antimonopole annihilation can be estimated as

σannv ∼ g2/M2
M , (5.63)

where MM is the monopole mass. Correspondingly, the present day energy density
of magnetic monopoles would be (Zeldovich and Khlopov 1978; Preskill 1979)

ρM = nγ M2
M

g2MPl
. (5.64)

The slow diffusion of monopoles in the cosmic plasma due to the mutual attrac-
tion would slightly diminish the result, but not too much. If MM ∼ 1017 GeV, as
predicted by GUTmodels, monopoles would overclose the Universe by about 24 or-
ders of magnitude assuming that their initial abundance was close to that of thermal
equilibrium. This problem played a driving role for the suggestion of inflationary
cosmology.

5.4 Neutrino Spectrum and Effective Number of Neutrino
Species

As it is shown in Eqs. (5.29) and (5.30), massless particles keep their equilibrium
distribution even after their interaction is switched off. This means that if the ther-
mal equilibrium was initially established due to sufficiently strong interactions, the
spectrum would remain that of equilibrium even after all the interactions have been
switched off. An impressive example of such a situation is represented by the CMB
photons: their spectrum is measured to be of the black body equilibrium form with a
precision better than 10−4, though these photons stopped interacting with the cosmic
plasma and between themselves after the hydrogen recombination, which took place
at the redshift zrec ≈ 1100 (see Sect. 10.1).

However, this is not true for neutrinos. Their spectrum started to deviate notice-
ably from the equilibrium one at redshift ∼1010, i.e. near the neutrino decoupling
temperature, despite the fact that the non-vanishing mass of neutrinos is absolutely
unessential at such temperatures. The point is that at that period there were two
weakly interacting components in the primeval plasma with different temperatures:
the neutrino part, consisting of νe, νμ, and ντ , and the electromagnetic part, consist-
ing of photons and e+e− pairs, which were in the process of annihilation, heating up
the electromagnetic part of the plasma, as is described in Sect. 5.2.3. The neutrino

http://dx.doi.org/10.1007/978-3-662-48078-6_10
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decoupling from e+e− pairs was not instantaneous and the residual energy exchange
between the hotter electron/positron component and the cooler neutrino gas was go-
ing on. The probability of the energy transfer depends upon the particle energy and,
as a result, the neutrino spectrum became distorted. This phenomenon was discov-
ered in Dolgov and Fukugita (1992a, b), where the shape of the spectrum distortion
was analytically calculated

δfνe/f eq
νe

≈ 3 × 10−4 E

T

(
11

4

E

T
− 3

)
. (5.65)

This analytical estimate was confirmed by the precise numerical solution of the
integro-differential kinetic equation (Dolgov et al. 1997, 1999) and by subsequent
work (Mangano et al. 2002), which confirmed this result. For discussion, history,
and the list of references, see Dolgov (2002).

Due to such energy influx from the hotter electron-positron pairs to cooler neu-
trinos, the real neutrino energy density increased with respect to the would-be equi-
librium one with Tν = 0.714 Tγ . This effect can be described by an increase of the
effective number of the equilibrium neutrino species, ΔNν = 0.035. There is an ad-
ditional contribution to the effective neutrino number, ΔNν = 0.011, which comes
from a decrease of the photon number density due to the deviation of the γ e−e+
plasma from the ideal gas (e.g. from a decrease of the photon energy density due
to non-zero plasma frequency) (Heckler 1994; Lopez et al. 1999). Because of this
effect, the neutrino energy density relative to that of ideal photons rises by 1.011.
Hence the total number of the effective neutrino species in the standard model is

Nν = 3.046, (5.66)

instead of the usual three. Physically we have exactly three standard neutrinos, but
their energy density is slightly above the equilibrium value and is normalized to
photons with slightly smaller energy density than the usual black body radiation. An
increase of the number of neutrino species has negligible effect on the BBN (Dolgov
and Fukugita 1992a, b), but may be noticeable in future CMB measurements.

In conclusion to this section, let us note that though we mentioned above that
the neutrino temperature is approximately 1.4 times smaller than the temperature of
photons, i.e. today it should be 1.95 K, would neutrino be massless, the distribution
of neutrinos has the non-equilibrium form

fν ≈ [exp(p/Tν) + 1]−1 , (5.67)

i.e. the magnitude of neutrino momentum enters instead of the neutrino energy and
so the parameter Tν does not have meaning of temperature. The correction (5.65) is
neglected here.
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Problems

5.1 Derive Eq. (5.9).

5.2 Derive Eq. (5.10).

5.3 Derive Eq. (5.16). [Hint: the calculations of integrals with the equilibrium dis-
tribution functions are discussed in detail in Landau and Lifshitz (1980).]

5.4 Check that the equilibriumBose andFermi distribution functions (5.4) annihilate
the collision integral (5.19) if the T -invariance is not broken.

5.5 Show that the Bose condensed distribution functions (5.25) annihilate the colli-
sion integral (5.19) if and only if μ = m.

5.6 Why in the distribution function p and t are taken as independent variables, while
in Eq. (5.30) we treated the momentum as a function of the time, namely p = p(t)?

5.7 Find the frozen number densities of protons and electrons in a charge-symmetric
universe. [Answer: np/nγ ≈ 10−19, ne/nγ ≈ 10−16.]

5.8 What number density would have antiprotons if (np − np̄)/nγ = 10−9?
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Chapter 6
Inflation

6.1 Introduction and History

The idea of inflation was probably the most important breakthrough in cosmology
of the XX century after that of the big bang. Historically, the first papers in which an
exponential expansion was invoked for solving some problems of the FRW cosmol-
ogy were those by Starobinsky (1980), where it was mentioned that an exponential
expansion leads to a flat geometry of the Universe, and by Kazanas (1980), who
found that a similar expansion could make the Universe isotropic. A few months
later, the famous paper by Guth “Inflationary universe: A possible solution to the
horizon and flatness problems” was published (Guth 1981). This work initiated a
stream of papers that remains unabated to the present day. In the Starobinsky model,
the initial de Sitter-like stage was created by R2 corrections to the Einstein-Hilbert
action, while in the scenarios proposed byKazanas andGuth the vacuum-like energy,
whichmight dominate during a first order phase transition, was suggested as a driving
force of the exponential expansion. It was soon understood that the latter mechanism
was not satisfactory because it would have created an inhomogeneous Universe con-
sisting of many relatively small bubbles in an exponentially expanding vacuum-like
background. The first workable mechanism of inflation based on a slowly evolv-
ing scalar field was suggested by Linde (1982) and, independently, by Albrecht and
Steinhardt (1982). The most appealing inflationary scenario is probably the so-called
chaotic inflation, proposed by Linde (1983). For a review on inflationary models and
the associated main issues, see e.g. Linde (1990), Kinney (2015), Dolgov (2010),
Baumann (2015).

There is a significant “pre-inflationary” literature directly related to the subject.
The idea that the Universe avoided an initial singularity and underwent an exponen-
tial period during which the mass of the cosmological matter rose by many orders
of magnitude was discussed by Gliner (1966) and Gliner and Dymnikova (1975).
A de Sitter-like (exponentially expanding) non-singular cosmology was considered
by Gurovich and Starobinsly (1979) and by Starobinsky (1979). In the latter paper,
an important result was obtained, namely that during the “initial” exponentially
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C. Bambi and A.D. Dolgov, Introduction to Particle Cosmology,
UNITEXT for Physics, DOI 10.1007/978-3-662-48078-6_6

93



94 6 Inflation

expanding stage gravitational waves were produced and that they may be observable
at the present time. If observed, it would be one of the strongest “experimental”
evidence for the existence of a primordial inflation. However, an absence of primor-
dial gravitational waves would not kill the idea of inflation because their predicted
intensity is model dependent and may be quite low.

Another prediction of inflation is the spectrumof primordial density perturbations,
which is already verified by available data. Pioneering calculations of the spectrum
were done by Mukhanov and Chibisov (1981) and confirmed later by many other
studies (Linde 1990; Kinney 2015; Dolgov 2010; Baumann 2015).

It was shown in the paper by Sato (1981) that an exponential expansion induced
by a first order phase transition would never be terminated for certain under-critical
values of the parameters. This happened to be a serious shortcoming of the suggested
later first inflationary scenarios. It was also noticed by Sato (1981) that an exponential
expansion might permit astronomically interesting antimatter domains.

6.2 Problems of Pre-inflationary Cosmology

Despite the great success in the description of the Universe on the basis of General
Relativity, the FRW cosmology suffered from quite a few serious problems, which
were initially considered as virtually unsolvable. The only option in the market was
the anthropic principle: the conditions in the Universe must be such that they allow
observers to exist and to ask the question why the Universe is suitable for life.

First of all, the origin of the cosmological expansion was a mystery. Gravity was
believed to be universally attractive and the sudden repelling forcewhich acted briefly
at the beginning and then disappeared without trace was difficult to digest, to say the
least.

Second, the temperature of the CMB coming to us from different patches in the
sky is almost exactly the same, though celestial points separated by more than one
degree never knew about each other in the FRWcosmology. This is called the horizon
problem or the causality problem.

A similar problem is related to the fact that the observed Universe is almost
homogeneous at large scales, while no mechanism to make it the same everywhere
was known.

The cosmological energy density is not much different from the critical one and
so the geometry of the 3-dimensional space is close to be Euclidean. To achieve this
state at the present time, the Universe had to be extremely well fine tuned at its early
stage. The geometry should have been flat with a precision of about 10−15 at the
BBN epoch and at the level of ∼10−60 at the Planck time. This is called the flatness
problem.

Last but not least, for the creation of cosmic large scale structures (galaxies,
clusters, to say nothing about stars and planets) the presence of primordial density
perturbations at astronomically large scales is necessary. However, no single rea-
sonable mechanism of generation of density perturbations at such large scales was
known.
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All these cosmic mysteries can be uniquely and beautifully solved if initially (say,
at some very early time) the Universe exponentially expanded with the scale factor
rising as

a(t) ∼ exp(HI t) , (6.1)

where the Hubble parameter HI was approximately constant during at least about
60–70 e-folding times, i.e. the duration of inflation should satisfy the condition
HI Δt > 60.

6.2.1 Kinematics and Main Features of Inflation

Before discussing the above mentioned problems in more detail, we briefly present
some mechanisms that could lead to an exponential cosmological expansion. An
important condition for the (quasi-)exponential expansion is that the Hubble para-
meter should be (quasi-)constant. For simplicity, in this section where we discuss the
kinematics, we assume that H is strictly constant, namely the exponential expansion
is created by a cosmological constant (see Sect. 4.3.4) or, which is the same, by a
vacuum energy-momentum tensor, which has the form

T (vac)
μν = ρ(vac)gμν , (6.2)

where ρ(vac) ≡ ΛM2
Pl/(8π). The vacuum has thus the “equation of state”

P(vac) = −ρ(vac) . (6.3)

So for the vacuum the parameter w introduced in Eq. (4.13) is −1. As follows from
Eq. (4.12), the vacuum energy does not change with time, ρ(vac) = const . Of course,
for an inflationary scenario this cannot be exactly true, because it would mean that
the exponential expansion would exist forever. In realistic inflationary models, the
expansion could be governed, for instance, by a scalar field φ called inflaton with
energy density only approximately constant, see Sect. 6.3.1. Inflationary models are
described in Sect. 6.3. In the course of the cosmological expansion, the energy density
of the inflaton field dropped down, first very slowly when φ ≈ const , and later, when
φ begun to oscillate, the stored vacuum-like energy of φ turned into the energy of
a hot “soup” of elementary particles. At the first stage, the Universe looked as a
dark expanding empty place. The second stage was the big bang, when the primeval
plasma was created. It is impressive that the total mass/energy of matter inside the
observed Universe volume is by far larger than the initial mass/energy inside the
microscopic volume from which the Universe originated. Still it agrees with the
energy conservation law (4.12).

http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_4
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6.2.2 Flatness Problem

The cosmological 3-geometry is determined by the ratio of the total cosmological
energy density to the critical energy density, Ω = ρ/ρc, where ρc = 3M2

PlH
2/(8π)

as given by Eq. (4.14). Using Eq. (4.17), we find that Ω evolves as a function of the
scale factor as

Ω(a) =
[
1 −

(
1 − 1

Ω0

)
ρ0a2

0

ρa2

]−1

, (6.4)

where the subindex 0 is again used to denote the present day values of the correspond-
ing quantities. The cosmological constant is not explicitly included in Eq. (6.4), but,
as it is common in the literature, it can be conveniently taken into account by adding
the proper vacuum energy density to the total energy density ρ.

If we assume that ρ is the energy density of some kind of normal matter, it drops
down as ρ ∼ 1/an with n = 3 or 4, respectively for non-relativistic or relativistic
matter. In this case, the product ρa2 tends to infinity when a → 0. This implies that
in the past Ω had to be very precisely tuned to 1 to be still close to 1 today. For
example, the fine-tuning of |Ω − 1| should be 10−15 at the BBN and 10−60 at the
Planck era. Otherwise, the Universe would have recollapsed in a much shorter time
than its present age, 1010 yrs, or would have expanded too fast to allow any structure
formation. However, if at some stage ρa2 rose with rising a, then the necessary
fine tuning can be automatically realized. For example, an inflationary period with
ρa2 ∼ exp(Ht) and Ht > 65 would be sufficient.

The evolution of Ω(a) is schematically presented in Fig. 6.1. For small values of
a, the energy density is approximately constant and Ω tends to 1. For large values of
a, the product ρa2 drops down and Ω starts deviating from 1. The upper and lower
curves correspond, respectively, to the cases in which Ω > 1 and Ω < 1. The line
Ω = 1 separating the two previous scenarios does not change with a. For normal
matter with ρa2 going to zero at large a, the upper curve tends to infinity, while the
lower one goes to zero.

6.2.3 Horizon Problem

To create the same temperature of the CMB over the whole celestial sphere, pho-
tons should have exchanged energy among themselves along the whole sphere. The
distance that a photon, propagating with the speed of light, could pass during the
all history of the Universe is determined by the equation of motion for a massless
particle

ds2 = dt2 − a2(t)dr2 = 0 . (6.5)

http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_4
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Fig. 6.1 Evolution of Ω in terms of a rising scale factor a. The upper and lower curves correspond
to the cases Ω > 1 and Ω < 1, respectively. The special value Ω = 1 does not change with a—the
middle straight line. The scale factor a is presented in logarithmic scale of arbitrary units

So the distance dl = a(t)dr passed by a photon during the time t would be

l(t) = a(t)
∫ t

0

dt ′

a(t ′)
=

{
2t radiation dominated expansion, a(t) ∼ t1/2 ,

3t matter dominated expansion, a(t) ∼ t2/3 .
(6.6)

In reality, individual photons propagated to much shorter distances, because they
slowly diffuse due to their interactions with the cosmological plasma till the hydro-
gen recombination at zrec ≈ 1100. Still the interactions between different parts
of the plasma can be realized by macroscopic physics, e.g. by sound waves with
a speed comparable to the speed of light cs = c/

√
3. After recombination, inter-

actions among CMB photons can be neglected. The maximum distance at which
the temperature might be equilibrated is about the Universe age at recombination,
dcausal ∼ trec ≈ 1013 s. After recombination, dcausal rises due to the cosmological
expansion by zrec ≈ 103 and today reaches the value ∼1016 s. The angular size of
this path on the sky is

θmax = 1016 s

2π tU
≈ 1◦ , (6.7)

where tU ≈ 1010 years is the Universe age. θmax is the maximum angle for which an
exchange of information and energy in the FRW cosmology is possible. However, if
the FRW expansion regime was preceded by an exponential expansion, the causally
connected region would be extended by the factor lin f l = H−1

I [exp(HI t) − 1] and
with Hi ti > 70, the same as in Sect. 6.2.2, the whole observed Universe would be
causally connected.
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6.2.4 Origin of the Cosmological Expansion

The equation of state (6.3) for the inflaton field and the second Friedmann equa-
tion (4.11) explain the origin of the cosmological expansion. Indeed, for P = −ρ the
acceleration becomes positive: ä/a = +8πρ/(3M2

Pl). So when the quasi-constant
inflaton field dominated the cosmological energy density, it created gravitational
repulsion at cosmological scales, and the Universe started expanding. The accelera-
tion later changed to normal deceleration, but the expansion continued, becoming in
a sense the motion by inertia with diminishing speed. It was believed that the accel-
erated expansion was present only in the early Universe, during inflation. However,
it was established during the last two decades that the Universe started expanding
with acceleration again at a relatively recent cosmological epoch, at redshift of order
1, see Sect. 4.6 and Chap.11.

It is worth noting that antigravity, which may apparently be induced by matter
with negative pressure such that |P| > ρ/3, cannot be created by any finite body,
since it is well known that the gravitational field of such bodies is created by their
mass, which is an integral from the pressure density over the volume of the body,
and it is always positive in non-pathological theories. The impact of the negative
pressure is cancelled by surface effects. So cosmic ships cannot fly using negative
pressure, at least if standard General Relativity is valid.

6.2.5 Smoothing Down the Universe and Creation
of Primordial Density Perturbations

Inflation is able to fulfill two apparently opposite tasks. Firstly, it smoothed down
density perturbations at very large scales, which would not be causally connected
in a FRW universe. The cosmological energy density in regions where matter was
never in causal contact might have very different values, while we observe that the
Universe looks pretty homogeneous at very large scales, comparable to the present
day horizon. The flattening of the density contrast at a given length is forced by an
exponential rise of the length with practically fixed height of the contrast.

Simultaneously, inflation could generate small density perturbations inside the
present day horizon by the amplification and the exponential expansion of quantum
fluctuations during the quasi-de Sitter (inflationary) stage. This mechanism is dis-
cussed in more detail in Sect. 6.6. These density perturbations were amplified during
the matter dominated stage in the course of the cosmological history and became
seeds for large scale structure formation, explaining clumpiness of the Universe at
galactic, galaxy cluster, and supercluster scales. The spectrum of density perturba-
tions predicted by inflation, the so-called Harrison-Zeldovich spectrum (Harrison
1970; Zeldovich 1972), well agrees with astronomical observations.

http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_4
http://dx.doi.org/10.1007/978-3-662-48078-6_11
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6.2.6 Magnetic Monopole Problem

This is an example of probably non-existing problem, which greatly stimulated work
on inflationary models. A magnetic monopole is an object with an elementary mag-
netic charge (e.g. a single South pole without the North one or vice versa) and was
proposed byDirac (1931). The theorywas not really satisfactory because it demanded
an unphysical string going from the monopole to infinity. However, with the famous
Dirac quantization condition

qeqm = n

2
, (6.8)

where qe and qm are, respectively, the electric and the magnetic charges, such a string
becomes unobservable.

The situation became very different after the papers by Polyakov (1974) and
t’Hooft (1974), who independently discovered that in some spontaneously broken
gauge theories with unbroken electromagnetic subgroup U (1) there exist topolog-
ically stable classical solutions, which are not elementary particles and possess a
magnetic charge satisfying the condition (6.8). By definition, a classical localized
solution has a size much larger than its Compton wavelength, d 	 1/m. The mono-
pole solution has the form

φa = ra

r
v f (r) , Aa

j = r j

qer2
εai j F(r) , A2

t = 0 , (6.9)

where φa is a Higgs-like scalar field, Aa
j is a vector gauge field, a is the O(3) group

index, i and j are space indices, f (r) and F(r) are functions of the radial coordinate r
only and have boundary conditions f (0) = F(0) = 0 and f (+∞) = F(+∞) = 1,
and v is the vacuum expectation value of the Higgs field. By assumption, O(3) is a
subgroup of some symmetry group of the GUT under consideration. It is interesting
that the space vector ra bears the index of the group of rotation in internal space, i.e.
a here does not numerate the space coordinates, x , y, or z, but runs over the group
indices. For example, if the internal symmetry group would be the SU (3) of color,
then a runs over the three color indices. εai j has mixed space and group indices. The
characteristic size of the monopole is equal to the inverse mass of the Higgs or gauge
boson, d ∼ 1/m X , while the monopole mass, M , is of the order m X/q2

e ∼ v/qe. For
a GUTwith an energy scale MGU T ∼ 1014 GeV, the mass of the monopole would be
about M ∼ 1016 GeV. Properties of classical topologically stable objects appearing
in spontaneously broken gauge theories are reviewed in Vilenkin (1985), Vilenkin
and Shellard (1994), Dolgov (1992).

If one believes that GUTs are the correct way of unification of the strong and
the electroweak interactions and that in the early Universe the temperature reached
a value of the order the GUT scale, then magnetic monopoles had to be abundant
in the early Universe and their present mass density should be much larger than the
observed one (Zeldovich and Khlopov 1978; Preskill 1979). Magnetic monopoles
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would have thus overclosed the Universe. We can prove this by using the same
approach as we applied to calculate the frozen density of massive stable particles
in the Universe. The only difference in the calculations is that, in contrast to usual
dark matter particles, monopoles and antimonopoles are mutually attracted, which
somewhat enhances the probability of their annihilation. We can use the result of
Sect. 5.3.2, according to which the energy density of GUT monopoles is 24 orders
of magnitude larger than that allowed by data, Eq. (5.64). An enhancement of the
annihilation due to the mutual attraction could somewhat change this result, but it
still remain extremely large. More detailed calculations of monopole-antimonopole
annihilation can be found in Dolgov and Zeldovich (1980).

The calculations of frozen densities of massive particles performed in Sect. 5.3.2
have been done under the assumption that the initial density of these particles was
thermal, i.e. it was determined by thermal equilibrium. If the initial temperature of
the Universe was smaller than the monopole mass, their density would be suppressed
by the factor exp(−M/T ). Though this assumption is probably not correct, it does
not help to solve the magnetic monopole problem. Strictly speaking, we do not know
the probability of production of classical objects (such as monopoles) in elementary
particle collisions, but most probably it is strongly suppressed. Colliding particles
must produce a certain highly coherent state of vector (gauge) and scalar fields
with some non-trivial topology. The phase space of such a state is extremely small,
probably at the level of exp(−CMd), where M is the mass of the object, d is its size,
and C is a constant which is probably large. For classical objects, Md 	 1. Thus
the monopole production should be strongly suppressed even at high T . However,
as we have already said, it does not solve the overabundance problem of magnetic
monopoles. The point is that there is another mechanism to produce monopoles, the
so-called topologicalmechanism (Kibble 1976). Such amechanism can be visualized
with the example of the production of cosmic strings: in causally non-connected
regions in the Universe, the variation of the phase of a complex scalar field, φ, along
a closed loop is not necessarily zero but could be 2πn and, if there is a singular state
ofφ inside this loop such that the loop radius cannot be shrunk down to zero, a cosmic
stringwould be created.With thismechanism, onewould expect on average one string
per cosmological horizon. Detailed calculations can be found in Vilenkin (1985),
Vilenkin and Shellard (1994), Dolgov (1992). Amagnetic monopole is, in particular,
a state of a vector field directed out of the center of a sphere surrounding themonopole,
like the needles of a hedgehog. Such a configuration could be accidentally formed
in the process of cosmological cooling when a gauge symmetry was spontaneously
broken. Inside such a sphere, a magnetic monopole would be certainly created. The
probability of this configuration is quite large and so monopoles would destroy the
Universe. Inflation saved us from this gloomy destiny.

In conclusion, let usmention a strikingphenomenondiscoveredbyRubakov (1981,
1982, 1982): in the vicinity of a magnetic monopole, protons would quickly decay.
In other words, monopoles catalyse proton decay. Such a process could be a cheap
energy source. Though it has no direct relation to the subject of this chapter, it might
contribute to the generation of the baryon asymmetry of the Universe if the amount
of monopoles were not negligibly small.

http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
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6.3 Mechanisms of Inflation

6.3.1 Canonical Scalar Inflaton with Power Law Potential

In the simplest case, a quasi-exponential cosmological expansion is assumed to be
created by a real scalar field with the action

S[φ] =
∫

d4x
√−g

[
1

2
gμν∂μφ∂μφ − U (φ)

]
, (6.10)

where U (φ) is the potential of φ usually taken as a polynomial

U = 1

2
m2φ2 + λφ

4
φ4 . (6.11)

Such potential leads to a renormallzable theory for the self-interacting field φ.
In the FRW background metric, the field φ satisfies the equation of motion

φ̈ + 3H φ̇ − ∇2φ

a2 + U ′ = 0 , (6.12)

where U ′ = dU/dφ. The energy-momentum tensor of φ is

T μν = 2√−g

δS

δgμν

= ∂μφ∂νφ − gμν

[
1

2
(∂φ)2 − U (φ)

]
. (6.13)

If φ slowly changes as a function of the space and time coordinates, then the deriva-
tives in the above expression can be neglected and T μν ≈ gμνU (φ), i.e. this energy-
momentum tensor is approximately equal to that of the vacuum (6.2). An important
difference is that ρ(vac) is strictly a constant, while U (φ) slowly drops down because
φ also slowly moves to the equilibrium point, where U ′ = 0. Usually the subtraction
constant is taken in such a way that at the same point where U ′ = 0, the poten-
tial U vanishes, the real vacuum energy disappears, and the exponential expansion
terminates.

A slow variation of φ can be achieved due to a large value of the Hubble parameter
or, as it is usually said, due to a large Hubble friction. If we neglect the space
derivative term, Eq. (6.12) coincides with the equation of motion of a point-like
body in Newtonian mechanics with the liquid friction term 3H φ̇. Evidently, the
motion under such conditions proceeds with an almost constant and small velocity,
φ̇ ≈ const . To see this, let us neglect the higher derivative term, φ̈ in Eq. (6.12), and
explicitly solve it. This approximation is called slow roll approximation. In this case,
the equation of motion is reduced to the first order equation

φ̇ = − U ′

3H
. (6.14)
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If the cosmological energy density ρ is dominated by the slowly varying inflaton
field φ, then the Hubble parameter is equal to

H2 = 8πU

3M2
Pl

. (6.15)

From Eq. (6.14), dt = −U ′dφ/(3H), and thus the number of e-folding during the
slow roll regime can be estimated as

N =
∫

Hdt = 8π

M2
Pl

∫
dφU (φ)

U ′(φ)
. (6.16)

We take for simplicity a power law potential, U (φ) = gφn/n, though more compli-
cated forms are possible and easy to analyze in the assumed slow roll approximation.
For a power law potential, we find

N = 4π

nM2
Pl

(
φ2

in − φ2
f in

)
≈ 4π

nM2
Pl

φ2
in , (6.17)

where φin and φ f in are, respectively, the initial and the final values of φ and it is
assumed that φ f in � φin . For a successful inflation, it is necessary that N > 65–70,
which implies φ2

in ≥ 5.6 n M2
Pl. The final value of φ is determined by the condition

that H becomes comparable or smaller than the frequency ωφ of the oscillations of
φ near the bottom of the potential. After that, the exponential expansion turns into
a power law expansion. For the harmonic potential U = m2

φφ2 (n = 2), the initial

value of φ2 should be larger than 11 M2
Pl. The frequency of the oscillations near the

minimumofU isω2 = mφ , so, from the condition H = ω2 with H2 ≈ 4πU/(3M2
Pl),

the minimum amplitude of the field would be φ2
f in = (3/4π) M2

Pl ≈ 0.24 M2
Pl. For

quartic potential (n = 4),U = λφ4/4, the frequency of the oscillation isω4 = √
λφ,

and inflation terminates at φ2
f in = 0.48 M2

Pl.
For a successful inflation, it is thus necessary that the field amplitude is larger

than MPl. At first sight, this looks disturbing. However, there is no reason to worry
about, because the observable quantity is the energy density of φ and it remains much
smaller than M4

Pl because the conditions mφ � MPl or λ � 1 must be imposed to
avoid too large density perturbations, see Sect. 6.6.

The slow roll approximation is valid if the following two conditions are satisfied

φ̈ � 3H φ̇ , (6.18)

and

φ̇2 � 2U (φ) . (6.19)
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To this end, we need

∣∣∣∣U ′′

U

∣∣∣∣ � 8π

3M2
Pl

. (6.20)

For instance, in the case of a non-self-interacting massive field with U = m2φ2/2,
the slow roll approximation would be valid if

φ2 >
4π

3
M2

Pl . (6.21)

With φ exactly at the lower limit, the number of e-foldings is not enough, but a
slightly larger φ can do the job. The harmonic potential does not exceed the Planck
value if

φ2 <
M4

Pl

m2
φ

. (6.22)

If we take φ equal to the upper bound, namely φin = M2
Pl/mφ , and mφ ∼ 10−6 MPl,

which is demanded by the condition of sufficiently small density perturbations, the
number of e-foldings would be huge, N = 1013. On the other hand, the characteristic
time when all this happens is tiny, tin f ∼ 10−31 s. The duration of inflation is thus
very short, but during this very short period our huge Universe was inflated out of
an extremely tiny initial volume.

6.3.2 Other Mechanisms of Inflation

In addition to inflationarymodels based on slowly evolving scalar fieldswith different
forms of the potential, which are essentially described in the previous subsection,
there are quite a few more exotic suggestions made later. The discussion here is by
necessity very brief. Details can be found in Linde (1990), Kinney (2015), Dolgov
(2010), Baumann (2015).

Among them, there is the scenario of double field or hybrid inflation (Adams and
Freese 1991; Linde 1991, 1994). It is realized by two scalar fields with an interaction
potential that can be taken, for instance, as

U (φ, χ) = 1

2
(λ1φ

2 − v2) χ2 + λ2

4
χ4 + U (φ) . (6.23)

HereU (φ) is a slow-rolling inflatonpotential andλ1,2 are positive coupling constants.
The inflaton field φ is initially large and the system evolves along the valley χ = 0.
Whenφ2 drops below v2/λ1, thefieldχ acquires a non-vanishingvacuumexpectation
value, χ2 ∼ v2/λ2, so the effective mass of φ becomes large, m2

e f f ∼ (λ1/λ2)v2,
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and φ quickly evolves down to the equilibrium point φ = 0, efficiently producing
particles and heating the Universe (see the discussion in Sect. 6.4).

Inflation can be naturally realized by a pseudo-Goldstone field, that is why the
name “natural” (Freese et al. 1990). Probably some explanation is necessary here. As
a result of the spontaneous breaking of a global symmetry, there appears a massless
scalar boson θ . If, however, in addition to the spontaneous breaking, the symmetry is
also broken explicitly, such a boson would acquire a small mass, which would lead to
a slow motion of θ to the minimum of the potential and its vacuum-like energy may
create sufficient inflation. In this sense, the model is similar to that considered in the
previous subsection. Note that, before the symmetry breaking, since θ is massless, it
may have an arbitrary value from 0 to 2π , so initially it could be naturally displaced
from the would-be equilibrium point, which appears after θ became massive.

A quite unusual model, called k-inflation, was suggested in Armendariz-Picon
et al. (1999). It is a scalar field model that does not contain a potential but the kinetic
term has a non-canonical form. The Lagrangian of this model is

L = p(φ, X) , (6.24)

where X = (∂φ)2/2. In the FRW metric with a homogeneous field φ = φ(t),
X = (φ̇)2/2. It is assumed that p vanishes when φ → 0, so it can be expanded as

p = K (φ)X + L(φ)X2 . (6.25)

The energy-momentum tensor in this theory has the form

Tμν = ∂p

∂ X
∂νφ ∂νφ − pgμν , (6.26)

and therefore the function p can be interpreted as the pressure density of the field φ.
Its energy density, according to Eq. (6.26), is equal to

ρ = φ̇
∂p

∂φ̇
− p . (6.27)

The extremal points of p(X), where its derivative over X vanishes, has the vacuum-
like equation of state p = −ρ, and when the system is close to it the Universe
expands quasi-exponentially. As it is argued in Armendariz-Picon et al. (1999), all
the intersection points of the energy density with the line p = ρ are attractors of the
(future) evolution, if the function p(φ, X) is properly selected.

There is a model of inflationary expansion based on a modification of gravity at
large curvatures. It is called Starobinsky or R2 inflation (Starobinsky 1979). At first
sight, it has nothing in common with scalar inflaton models, though it is not exactly
so. In this model, we introduce an R2 term into the Einstein-Hilbert action
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S = − M2
Pl

16π

∫
d4x

√−gR → S = − M2
Pl

16π

∫
d4x

√−gR

(
1 − R

6m2

)
. (6.28)

This essentially changes the dynamic of the curvature scalar, R. In standard General
Relativity, R is not a dynamical quantity. It is algebraically determined by the trace
of the energy-momentum tensor

R = −8π T μ
μ

M2
Pl

. (6.29)

After the addition of R2, the equation of motion for the metric tensor becomes of
higher (4th) order and the curvature becomes a dynamical quantity satisfying (in the
homogeneous case) the Klein-Gordon equation for a scalar field with mass m, which
is often called “scalaron”,

R̈ + 3H Ṙ + m2

(
R + 8π

M2
Pl

T μ
μ

)
= 0 . (6.30)

The Hubble parameter is expressed through R as

R = −6Ḣ − 12H2 . (6.31)

One can check that in the absence of matter these equations have a solution with
an almost constant H describing an exponential cosmological expansion in the very
early Universe. The scalaron can later decay, producing elementary particles and
terminating inflation in the same way as it happens in other inflationary models, see
the next section.

6.4 Universe Heating

The evolution of the inflaton φ can be divided into two quite different regimes.
Initially, φ changes very slowly and its energy-momentum tensor has approximately
the vacuum form, as one can see from Eq. (6.13), where the derivatives of φ are
neglected. This is the period of inflation when the cosmological scale factor rose by
many orders of magnitude. It took place when the potential term U ′ in the equation
of motion can be nearly neglected. To this end, it is necessary that

U ′′(φ) < H2
I , (6.32)

where HI is the Hubble parameter during inflation. In particular, for the harmonic
potential U = m2φ2/2, this condition means that HI > m. Still φ is not exactly
constant because theweak force induced byU ′ slowly pushesφ to theminimumof the
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potential, which is usually taken at φ = 0. Correspondingly, the Hubble parameter
H ∼ √

U/MPl gradually drops down and the condition (6.32) ultimately fails to
fulfill. As it is shown in the previous section, for U = m2φ2/2 this happens when
φ = √

3/4π MPl, and for U = λφ4/4 the boundary value is φ = (3/
√
2π) MPl.

After it, the role of the expansion in the evolution of φ becomes less essential and
the field started oscillating with adiabatically decreasing amplitude. The decrease is
induced by the redshift due to the cosmological expansion (in other words, by the
Hubble friction) and due to the back reaction of particle production. This rather short
period would be proper to call big bang, because during that brief time interval an
empty, cold Universe filled only with the field φ exploded, creating hot relativistic
particles.

The simplest way to describe the particle production is with a perturbation
approach, which is valid when the coupling of the inflaton to the other fields/particles
is sufficientlyweak. Perturbative calculationswere first done inAlbrecht et al. (1982),
Dolgov and Linde (1982), Abbott et al. (1982). Later, it was understood (Dolgov and
Kirilova 1990; Traschen andBrandenberger 1990) that non-perturbative effects could
be quite essential. In the first of these papers, the possibility of a parametric resonance
excitation (see below) in the process of boson production was mentioned. However,
the conclusion was that in the model considered there the parametric resonance was
not efficient because of the fast redshift of the produced particles out of the res-
onance region and also due to their mutual scattering. However, sufficiently wide
resonances might strongly enhance the efficiency of particle production (Traschen
and Brandenberger 1990; Kofman et al. 1994, 1997).

6.4.1 Perturbative Production

Let us consider an example in which the inflaton is coupled to some other lighter
field through the trilinear coupling

Lint = gφ(t)χ†χ , (6.33)

where φ(t) is supposed to be a homogeneous classical field satisfying Eq. (6.12) with
the harmonic potential U = m2φ2/2. At this stage, we neglect the contribution of
the interaction with the field χ (6.33) into the inflation equation of motion. The back
reaction of the particle production to the evolution of φ is taken into account below,
Eqs. (6.42) and (6.43). In Eq. (6.33), χ is a fermionic field and g is the dimensionless
coupling constant of the interaction. In the case χ is a scalar field, the interaction
term would be f φ|χ |2 with f the coupling constant with the dimension of energy.

When the Hubble parameter becomes smaller than the mass of φ, the solution of
Eq. (6.12) is

φ(t) = MPl√
3πmφ

sin
[
mφ (t + t0)

]
t + t0

(6.34)
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At the lowest order, the amplitude of the production of pairs of, for simplicity mass-
less, fermions with momenta k1 and k2 is given by the matrix element of the inter-
action Lagrangian between the initial vacuum and final χ -particle-antiparticle states
integrated over the 4-dimensional volume (similar to perturbative calculations in
non-relativistic quantum mechanics)

A(k1, k2) = g
∫

d4xφ(t)〈k1, k2|χ†χ |0〉 , (6.35)

where |0〉 is the initial vacuum state and 〈k1, k2| is the final particle-antiparticle state
with momenta k1 and k2.

Using the expansion of the field operator χ in terms of its creation-annihilation
operators, see appendix C, Eqs. (C.2), (C.4), (C.8), (C.9), we find

A(k1, k2) = (2π)3g δ(k1 + k2)φ̃(ω1 + ω2) , (6.36)

where ω j = |k j | is the particle energy, and

φ̃(ω) =
∫

dteiωtφ(t) . (6.37)

In what follows, we will interchangingly use the notations E or ω for the particle
energy.

The probability of fermion production per unit volume is

N f ≡ W

V
= 1

V

∫
d3k1 d3k2
(2π)6 4E2 |A|2 = g2

8π2

∫
E>0

d E |φ̃(2E)|2 . (6.38)

The volume factor V , as usually, comes from the square of the δ-function

[δ(k1 + k2)]2 = V

(2π)3
δ(k1 + k2) . (6.39)

If ω 	 t−1, then the integration over time in the interval Δt 	 ω−1 in Eq. (6.37)
gives approximately π φ0δ(ω − 2E), where φ0 is the slowly changing amplitude of
the oscillating φ, as given by Eq. (6.34). The square of the δ-function, as we know,
is Δt δ(ω − 2E)/(2π). So the result for the rate of fermion production per unit time
and unit volume is

Ṅ f = N f

Δt
= g2φ2

0

32π
= g2M2

Pl

96π2m2
φ(t + t0)2

. (6.40)
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This corresponds to the following decay rate of the field φ

Γφ = Ṅ f

Nφ

= g2

32πmφ

. (6.41)

This, as one can expect, is the decay width of the φ-scalar into a pair of χχ̄ particles.
Because of the energy loss due to particle production, φ(t) should decrease faster

than what is given by Eq. (6.34). For Γφ � ω, this can be taken into account by the
substitution φ(t) → φ(t) exp(−Γφ t/2). However, this approximation is applicable
only for the harmonic potential. In this case, the back reaction from particle produc-
tion can be described by an additional term proportional to Γφ in the equation of
motion

φ̈ + (3H + Γφ/2) φ̇ + U ′ = 0 . (6.42)

In the general case of arbitrary potentialU (φ), the equation ofmotionwith an account
of back reaction of particle production becomes an integro-differential equation, non-
local in time. In the one loop approximation, it was derived in Dolgov and Hansen
(1999). For example, in flat spacetime the equation has the form

φ̈ + U ′(φ) = f 2

4π2

∫ t−tin

0

dτ

τ
φ(t − τ) , (6.43)

where now it is assumed that φ is coupled to a scalar field with the interaction term
f φχ2. It can be generalized to the FRW metric, as it is done in Dolgov and Freese
(1995) and Arbuzova et al. (2012).

Returning to the simple harmonic case, we note that the thermalization of the
produced fermions is usually faster than the expansion rate. In this case, the temper-
ature of the plasma can be simply evaluated as follows.We assume that φ completely
decayed, that the particles were produced instantly at the moment when the Hubble
parameter H = 2/(3t) became equal to the decay rate Γφ , and that t 	 t0, see
Eq. (6.34). The energy density of the produced fermions can be roughly estimated as

ρ f = Γ 2
φ M2

Pl

6π
= g4

96π3 M2
Plm

2
φ (6.44)

and, correspondingly, the temperature of the Universe heating would be

Th =
(
30ρ f

π2g∗

)1/4

=
(

30

96π5g∗

)1/4

g
√

MPlmφ . (6.45)

For amore accurate evaluation of Th , let us take into account the non-instantaneous
character of particle production and the decrease of the amplitude of the oscillations
of φ0(t), caused not only by the Universe expansion but also by the back reaction of
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particle production. With these factors taken into account, the energy densities of φ

and of the produced fermions satisfy the equation

ρ̇φ = −Γφρφ − 3Hρφ, ρ̇ f = Γφρφ − 4Hρ f , (6.46)

where Γφ is given by Eq. (6.41). The equations can be solved as

ρφ(t) = ρ
(in)
φ

a3(t)
e−Γφ t , ρ f (t) = ρ

(in)
φ

a4(t)

∫ t

0
dt ′a(t ′)e−Γφ t ′ . (6.47)

We assumed here that tin = 0 and a(tin) = 1. The time th when the particle produc-
tion was accomplished can be estimated from the condition ρφ(th) = ρ f (th). When
ρφ was larger than ρ f , the expansion regime in a good approximation can be taken as
a non-relativistic one, i.e. a(t) ∼ t2/3. Calculating numerically the integral, we find
Γφ th = 1.073. So for the energy density of relativisticmatterwe obtain essentially the
same result as (6.44) with the extra suppression factor 1/ exp(1.073) = 0.34. Corre-
spondingly, the heating temperaturewouldbe approximately 0.76 smaller than (6.45).

The mass of the inflaton is bounded by m < 10−6 MPl to avoid too large density
perturbations, and the coupling constant to fermions is natural to expect to be bounded
by g < 10−3. This bound follows from the condition that the quartic coupling λφ4

radiatively induced through fermionic loop gives λ ∼ g4 and λ is also bounded
by the density perturbations as λ < 10−13. Hence the heating temperature after
inflation would be rather low, Th ≤ 5 · 10−8 MPl ≈ 5 · 1011 GeV. However, there are
more efficient mechanisms of the Universe heating, which are discussed in the next
subsection.

6.4.2 Non-perturbative Phenomena

A rigorous theory of particle production by an external field is based on the
Bogolyubov transformation (Bogoliubov 1947, 1958). Let us consider again a clas-
sical scalar field φ(t) coupled to a quantum complex scalar χ , as described by an
interaction Lagrangian of the form gφ|χ |2, where g is the coupling constant with
dimension of mass. In this subsection, we consider a flat spacetime and we postpone
considerations of General Relativity effects to the next subsections. The equation of
motion for the Fourier modes of χ is

[
∂2t + k2 + m2 − gφ(t)

]
fk(t) = 0 . (6.48)

This equation is similar to Eq. (C.6), we have only added the term describing the
interaction with the external field φ.
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It is usually assumed, though it is not true in cosmology, that at early and late
times, t → ±∞, the interaction disappears, φ(t) → 0, so χ satisfies the free
equation of motion and its Fourier mode has the form fk(t) ∼ exp[±i(ωk t − ikx)]
and the complex conjugate one for the annihilation term. This particular choice of
the solution ensures positive energy of the quanta. At later times, when φ(t) �= 0,
the mode functions fk(t) are determined by Eq. (6.48) and can be found analytically
within a perturbation approach, in quasi-classical approximation (the so-calledWKB
approximation), or the equation can be solved numerically. At asymptotically large
times, when according to our assumption the field φ also disappeared, φ → 0, the
form of the solution is evident

fk(t → +∞) → αke−iωt + βkeiωt , (6.49)

so the mode expansion (C.2) evolves as

χ(t → +∞) =
∫

d̃k
[
e(−iωt+ik·x)(αkak + β∗

k b†−k)

+ e(iωt−ik·x)(α∗
k bk† + βka−k)

]
, (6.50)

where d̃k is defined in (C.10). The problem is analogous to the well known quantum
mechanical problem of calculation or reflection/transition coefficients in an external
potential. These coefficients satisfy the flux conservation condition |R|2 +|T |2 = 1.
There is a similar relation here

|αk |2 − |βk |2 = 1 . (6.51)

Now one can define new creation and annihilation operators for particles and antipar-
ticles

ãk = αkak + β∗
k b†−k, b̃k = αkbk + β∗

k a†
−k . (6.52)

It is important that, due to the relation (6.51), the commutators between the new
operators remain the canonical ones (C.4).

The operator of the final particle number is given by Ñk = ãk
†ãk/[2k0V ]. The

number of particles in the final state of momentum k is equal to Nk = 〈0|Ñk|0〉 =
|βk |2. The total number density of produced particles is

n = 1

V

V

(2π)3

∫
d3k Nk =

∫
d3k

(2π)3
|βk |2 . (6.53)

Let us calculate βk in perturbation theory. Expanding f = f0 + f1, we have
f0 = exp(−iωt) and the equation of motion (6.48) becomes

(∂2t + k2 + m2) f1 = gφ(t) exp(−iωt) . (6.54)
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Using the Green’s function method, we find

f1(t) = −g
∫

dω′

2π

φ̃(ω′ − ω)

ω′2 − k2 − m2 e−iω′t . (6.55)

Taking the residue at the pole ω′ = −√
k2 + m2 = −ω, we find that the coefficient

of exp(+iωt) is βk = ig[φ̃(2ω)]∗/2ω, in agreement with the results of Sect. 6.4.1.
Details on quasi-classical calculations can be found, for instance, in Dolgov and
Kirilova (1990), Dolgov (2002).

The Bogolyubov transformation technique allows the calculation of the number
density of the produced particles for an arbitrary external time-dependent field, but
only in the case when the external field disappears at t → ±∞. A more appropriate
quantity, especially in cosmology, is the energy density of the produced particles. The
point is that the particle number operator is not a local operator, as it is known from
the basics of quantum field theory, and hence the notion of particle depends upon
the definition of the vacuum state. It creates serious ambiguities in the interpretation.
For example, the well known Unruh effect (Fulling 1973; Davies 1975; Unruh 1976)
predicts that an accelerated observer moving in the vacuum observes a black body
radiation,while an inertial observer detects nothing.However, the total energydensity
of the system remains zero. Indeed, the energy-momentum tensor of the vacuum
is assumed to be zero and so it would remain zero in any coordinate frame. The
observation of the thermal bath of particles by an accelerated detector means that
the vacuum energy (defined in the accelerated frame) is non-zero and such that it
exactly compensates the non-vanishing energy-momentum tensor of the bath, so
the gravitational action of the system in the inertial and accelerated frames equally
vanish.

On the other hand, the consideration of the evolution of the energy density of the
system of interacting φ − χ fields allows to describe the particle production for any
value of φ(t) and not only for φ = const . The operator of energy density in the FRW
metric is equal to the time-time component of the energy-momentum tensor

Tμν(φ, χ) = ∂μφ∂νφ − gμν

[
1

2
∂αφ∂αφ − Uφ(φ)

]

+ 2∂μχ†∂νχ − gμν

[
∂αχ†∂αχ − Uχ (χ)

]
− gμνgφχ†χ . (6.56)

We assume, for simplicity, that φ(t) is a classical field and neglect quantum cor-
rections to its energy. Though they can be easily included, they are not important
for our results, while they are essential for χ quantum effects. We take the simplest
harmonic potentials Uφ(φ) = m2

χφ2/2 and Uχ (χ) = m2
χχ2/2. Let us calculate the

vacuum expectation value of ρ = T00 and study its evolution with time. The operator
of the total energy density consists of the following three parts. The energy density
of the field φ(t) is

ρφ = 1

2
(φ̇2 + m2

φφ2) . (6.57)
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The energy density of the interaction is

ρint = gφ〈0|χ†χ |0〉 = gφ(t)
∫

d̃k | fk(t)|2 , (6.58)

where the condition that the annihilation operator kills the vacuum ak |0〉 = 0 and
the commutator (C.4) (for bk) were used. This expression is quadratically divergent
at high k, but the difference between the initial and the final energy densities should
be finite, if the interaction is softly switched on. The last term is the most interesting.
In contrast to the other two, it remains non-zero in the limit of φ = 0. Following the
same procedure as above, we find

ρχ =
∫

d̃k
[(

m2
χ + k2

)
| fk(t)|2 + | ḟk(t)|2

]
. (6.59)

This expression is quadratically ultraviolet divergent. It is a known result for the
vacuum energy even for non-interacting fields.

It is instructive to check if the above result agreeswith the perturbative calculations
based on the Bogolyubov transformation. The solution of Eq. (6.48) is given by the
expression in (6.49). Substituting it into Eq. (6.59), we find

ρχ =
∫

d̃k
[(

m2
χ + k2

) (
|αk |2 + |βk |2 + α∗

k βk e−iωk t + αkβ
∗
k eiωk t

)

+ ω2
k

(
|αk |2 + |βk |2 − α∗

k βk e−iωk t − αkβ
∗
k eiωk t

)]
. (6.60)

The oscillating interference terms mutually cancel and, using the relation (6.51), we
find

Δρχ = ρχ(t → +∞) − ρχ(t → −∞) = 2
∫

d̃k ω2
k |βk |2 , (6.61)

in agreementwith (6.53). The factor twohere comes from the sumof the contributions
of particles and antiparticles. Note that for a |βk |2 decreasing faster than 1/k2, which
is usually the case if the fieldφ is switched on adiabatically, the result is not ultraviolet
divergent.

6.4.3 Parametric Resonance

As it was noted at the beginning of this section, a parametric resonance can be
excited in particle production processes and could strongly enhance the efficiency
of the Universe heating. Parametric resonance is a well known phenomenon of an
exponential rise of the amplitude of oscillations when the parameters of the oscillator
are periodically changed with the frequency, which is an integer fraction of the
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eigenfrequency of the oscillator (see below). This effect is well known to children all
over the world, as they use it to increase the swing amplitude by periodic squatting
up and down.

Let us now consider the Fourier mode of a real scalar field χ , which satisfies the
equation of motion (6.48), and assume that the field φ changes with time as φ(t) =
φ0 cos(mφ t). Such a behavior of φ is typical at the end of inflation. Substituting this
expression into Eq. (6.48), we come to the well-known Mathieu equation

χ̈ + ω2
0 (1 + h cosmt) χ = 0 , (6.62)

where ω2
0 = m2

χ + k2 and h = gφ0/ω
2
0. When h � 1 and the value of m is close to

2ω0/n (where n is an integer), Eq. (6.62) describes a parametric resonance, which
leads to oscillations of χ with an exponentially growing amplitude. For h � 1, the
solution of Eq. (6.62) can be presented as a product of a slowly (but exponentially)
rising amplitude by a quickly oscillating function with frequency ω0

χ = χ0(t) cos(ω0t + α) . (6.63)

The amplitude χ0 satisfies the equation

− χ̈0 cos(ω0t + α) + 2ω0χ̇0 sin(ω0t + α) = hω2
0χ0 cosmt cos(ω0t + α) . (6.64)

Let us multiply Eq. (6.64) by sin(ω0t +α) and average over the period of oscillation.
The right hand side would not vanish on the average if m = 2ω0. In this case, χ0
would exponentially rise if α = π/4

χ0 ∼ exp

(
1

4
hω0t

)
. (6.65)

In this way we recovered the standard result of the parametric resonance theory
for the lowest frequency mode. There are higher frequency modes of χ -oscillations
and they also resonate. Their existence can be established in a similar way. A more
detailed discussion of parametric resonances can be found, for instance, in Landau
and Lifshitz (1976) or in any mathematical book on the Mathieu equation.

In the quantum language, parametric resonances can be understood as an enhance-
ment of the particle production into the plasma already populated by such particles.
Clearly this enhancement exists only for bosons—this is the mechanism of laser
amplification. On the opposite, fermions are reluctant to be produced due to the
Fermi exclusion principle. Indeed, the equation of motion of quantum fermions does
not show a resonance behavior (Dolgov and Kirilova 1990).

In the cosmological case, there are two effects that are potentially dangerous for
a parametric resonance. First, there is the redshift of the momenta of the produced
particles, which pushed them out of the resonance mode. The effects of the cosmo-
logical expansion are taken into account by a proper modification of the equation of
motion for the Fourier modes of χ
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f̈k + 3H ḟk +
(

k2

a2(t)
+ m2

χ + gφ

)
fk = 0 . (6.66)

This equation can be easily solved numerically and the solution indeed demonstrates
the resonance behavior, if the resonance is sufficientlywide. The second phenomenon
that could inhibit the resonance is the possible scattering of the produced particles
off other particles in the cosmological plasma. This effect has not been properly
studied (to the best of our knowledge). However, it was evidently absent at the initial
stage of the production when the Universe was almost empty. More detail about the
Universe heating can be found, for instance, in Allahverdi et al. (2010). It is shown
that broad parametric resonances can convert a substantial fraction of the inflaton
energy density into matter in a time interval small compared to the Hubble time. The
inflaton field started oscillating and creating particles when φ dropped down to MPl.
Correspondingly, the energy density of the inflaton at the onset of particle production
was ρφ ∼ m2

φφ2 ∼ 10−12 M2
Pl and the temperature of the Universe at the beginning

of the big bang could be as high as T ∼ 10−3 MPl ∼ 1016 GeV or maybe an order
of magnitude below.

It has been recently found (Dolgov et al. 2015) that the efficiency of heating may
be enhanced up to an order of magnitude if the inflaton oscillates not as pure cosine
but closer to a periodic succession of θ -functions.

If gφ in Eq. (6.66) always remains smaller than (m2
χ + k2/a2), the square of

the effective eigenfrequency of χ -oscillations keeps to be positive. However, if gφ

is large, the square of the frequency would be negative and there appears a new
type of instability, generically leading to a faster rise of the χ amplitude than it
happens due to a parametric resonance. This is the case of the so-called tachyonic
heating (Felder et al. 2001a, b). Note that for another type of coupling λφχφ2χ2,
the tachyonic heating evidently does not appear. This mechanism is called tachyonic
because of the similarity of Eq. (C.5) to the equation of motion of tachyons, i.e. of
particles with negative mass squared

(∂2t − Δ + m2
ζ )ζ = 0 . (6.67)

Tachyons are particles that are supposed to propagate faster than light. However,
this is not the case. The group velocity of tachyonic waves can indeed be larger
than c, but the velocity of the wave front, which is determined by the asymptotics
of the refraction index at infinite energy, does not exceed the speed of light. The
vacuum state of tachyons is unstable, similar to the Higgs boson vacuum state, and
presumably an additional quartic self-interaction would stabilize the field. A similar
tachyonic instability was suggested earlier in Greene et al. (1997). It was assumed
that the coupling λφχ was negative, so the field χ rose exponentially, as the usual
tachyon and stabilization is achieved by some additional quartic coupling.
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6.4.4 Particle Production in a Gravitational Field

The production of particles by the inflaton field is accompanied by the simultaneous
production of particles by the cosmological gravitational field. This process could
be quite efficient at the end of inflation. Creation of particles by the isotropic FRW
metric was pioneered by Parker (1968, 1969) and by Bronnikov and Tagirov (1968,
2004) in an earlier, but unknown, paper in Russian, where the special case of de Sitter
spacetime was considered. It was shown (Parker 1968, 1969) that in general in a con-
formally flat metric, including the particular case of de Sitter spacetime (Bronnikov
and Tagirov 1968, 2004), massless conformally invariant particles are not created
(see below). A study of particle production was further developed in a series of
papers and books (Grib and Mamaev 1967, 1971; Chernikov and Shavokhina 1973;
Birrell and Davies 1982; Zeldovich and Novikov 1983; Grib et al. 1995). Massless
particles can be produced in a non-isotropic space (Zeldovich 1970; Zeldovich and
Starobinsky 1972; Hu et al. 1973; Hu 1974; Berger 1974; Lukash et al. 1974), leading
to a rapid isotropization of the space.

The FRW metric belongs to a special class of so-called conformally flat metrics,
which, after a redefinition of coordinates, can be presented as the product of the
Minkowsky type metric by a conformal factor

ds2 = a2(r, η)(dη2 − dr2) . (6.68)

For the spatially flat FRW metric, where ds2 = dt2 − a2(t)r2, one only needs to
redefine the time as dt/a(t) = dη and to express the scale factor in terms of the
conformal time η. The corresponding expressions are presented in Table6.1 for the
matter dominated (MD), radiation dominated (RD), and de Sitter (dS) expansion
regimes.

As we can see in what follows, it is convenient to rescale the metric as well as
scalar, spinor, and vector fields in the following way

gμν = a2 g̃μν , χ = χ̃/a , ψ = ψ̃/a3/2 , Aμ = Ãμ . (6.69)

Table 6.1 Scale factors as functions of the conformal time for different expansion regimes

Expansion regime Cosmological scale
factor a(t)

Conformal time η(t) Conformal scale factor
a(η)

MD a ∼ t2/3 η ∼ t1/3 a(η) ∼ η2

RD a ∼ t1/2 η ∼ t1/2 a(η) ∼ η

dS a ∼ exp(Ht) η ∼ −1/HeHt a(η) ∼ −1/(Hη)
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The matter action for complex scalars, spinors, and photons has the form

Stot =
∫

d4x
√−g

[
gμν∂μχ∗∂νχ − m2

χ |χ |2 − λχ |χ |4

+ψ̄
(
igμνΓμ∇ν − mψ

)
ψ − gμαgνβ Fμν Fαβ

]
. (6.70)

where Γμ is a generalization of the Dirac γμ matrices for curved spacetime. In the
FRWmetric, they have the form Γμ = aγμ, where γμ commutes as [γμ, γν] = ημν ,
[Γμ, Γν] = gμν , and ∇μ is the covariant derivative for the spin-1/2 field. In the FRW
metric, it has the form∇μ = ∂μ+3∂μ ln a/2. To derive it, one has to use the so-called
tetrad (vierbein) formalism, by which spinors are described in General Relativity.

One can easily check that the action (6.70) is invariant with respect to the transfor-
mation (6.69) (i.e. it has the same form in terms of the new fields) if mχ = mψ = 0
and a = const . Under this transformation, all the masses go into ma. However, in
what follows we should take a = a(t) �= const to transform the FRW metric into
the MInkowsky one: we need to redefine the metric in such a way that gμν goes
into ημν . This transformation can be done only if the rescaling factor depends upon
time, i.e. a = a(t). In this case, the action (6.70) for the scalar field is not invari-
ant, while massless spinors and electromagnetic fields remain scale invariant. The
Parker theorem, according to which massless particles are not produced in a FRW
gravitational field, is fulfilled for the latter, while massless scalars can be produced.
Indeed, the transformed electromagnetic and spinor fields satisfy free equations of
motion, so evidently the initial solution fk = exp(iωt) always remains such and the
Bogolyubov coefficients vanish, βk ≡ 0.

On the other hand, the equation of motion for the Fourier modes of χ̃ , derived
from the action (6.70), has the form

f ′′
k +

(
k2 + m2

χa2 − a′′

a

)
fk = 0 , (6.71)

where the prime means the derivative with respect to the conformal time. Clearly
this equation is not conformally invariant, even for m = 0, due to the presence of
the last term, with an exception for the radiation dominated regime when a′′ = 0.

A scalar field is conformally invariant if the non-minimal coupling to the curvature
scalar ξ R|χ |2, with ξ = 1/6, is added to the action. In this case, the term a′′/a
disappears from Eq. (6.71) andmassless scalars are not produced in the cosmological
background, but live there as free non-interacting fields. For arbitrary ξ , Eq. (6.71)
turns into

f ′′
k +

[
k2 + m2

χa2 + (6ξ − 1)
a′′

a

]
fk = 0 . (6.72)

In the case of radiation dominated expansion, a′′ = 0, so massless particles do
not feel the cosmological expansion. For the matter dominated and de Sitter cases,
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a′′/a = 2/η2. Moreover, at the de Sitter stage a2 ∼ 1/η2, so the equation can be
solved also for massive fields in terms of the Hankel functions as

fk = C1
√

y H (1)
ν (y) + C2

√
y H (2)

ν (y) , (6.73)

where ν =
(
9/4 − m2

χ/H2 − 12ξ
)1/2

and y = −kη. The coefficients C1,2 can be

determined from the condition that for short waves, i.e. k 	 H , the curvature effects
are not essential and the solution should approach that in flat spacetime. In the limit
y 	 1 but finite ν, the Hankel functions have the following asymptotic behavior

H (1,2)
ν (y) ≈

√
2

πy
exp [±i (y − πν/2 − π/4)] . (6.74)

Since for small Ht the conformal time is η ≈ −H−1 + t , the correct positive energy
mode is H (1)

ν (kη) ∼ exp(−ikt) and so we shall take C1 = √
π/2 and C2 = 0, see

Chap.5 in Birrell and Davies (1982). We should keep in mind, however, that this
result is justified for short waves only, which at the beginning of inflation were much
shorter than the horizon, 1/H , i.e. k � H . In other words, we consider only waves
with a length that was initially very small but in the course of the expansion they
went outside of the horizon, i.e. k exp(Ht) ≥ H .

It follows from Eq. (6.73) that in the course of the evolution, the positive energy
mode does not acquire an additional negative frequency mode and so during a pure
de Sitter expansion particles are not produced. Gravitational production of heavy
particles at the end of inflation was considered in Chung et al. (1998, 1999) and a
more general case, which includes post inflationary radiation dominated or matter
dominated stages, was studied in Kuzmin and Tkachev (1998, 1999). It was found
there that particleswere predominantly createdwhen theHubble parameterwas close
to their mass.

In conclusion, let us consider the production of photons in the FRW cosmol-
ogy. The electromagnetic field is conformally invariant and according to the Parker
theorem cannot be generated in a conformally flat gravitational field. This, how-
ever, is only true in classical electrodynamics. Quantum corrections are known to
break conformal invariance and the classical Maxwell equations acquire an addi-
tional term (Dolgov 1981), leading to the generation of electromagnetic waves in
the early Universe. At the end of inflation, this mechanism might create large scale
cosmological magnetic fields.

6.5 Generation of Gravitational Waves

The generation of gravitational waves at the end of inflation is essentially the same
process as the production ofmassless particle. However, this subject is very important
and deserves special attention. In particular, the possible detection of very long

http://dx.doi.org/10.1007/978-3-662-48078-6_5
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gravitational waves would be an unambiguous proof of inflation. Though gravitons
are massless, their equation of motion is not conformally invariant (Grishchuk 1975)
and so they are produced in theFRWspacetime.Thegenerationof gravitationalwaves
at the de Sitter (inflationary) stage was first studied by Starobinsky (1979) (see also
Rubakov et al. (1982), where the intensity of gravitational waves is calculated in
newer inflationary models). A review on gravitational waves produced in the early
Universe can be found in Maggiore (2000), Buonanno (2015).

The derivation of the equation ofmotion for gravitational waves is straightforward
but quite tedious. Gravitational waves are considered as tensor perturbations of the
metric

gμν = g(b)
μν + hμν , (6.75)

where g(b)
μν is the background metric and |hμν | � 1 is the amplitude of the grav-

itational wave. In the case under scrutiny, we introduce tensor perturbations to the
FRW metric in conformal time in the usual way as

ds2 = a2(η)
(
ημν + hμν

)
dxμdxν . (6.76)

Instead of hμν , it is common to consider the quantity

ψμν = hμν − 1

2
g(b)
μν h , (6.77)

where h = hμ
μ. Here and below, indices are raised with the background metric. By

an appropriate choice of coordinates, the following conditions can be imposed

h = 0, and ∇μhμ
ν = 0 . (6.78)

These conditions ensure that vector and scalar components are excluded. Due to the
vanishing mass of gravitons, three more conditions on plane gravitational waves can
be imposed, so only two components orthogonal to the wave propagation remain
independent. With such a choice of the gauge conditions, ψμν = hμν . After some
algebra, we find the wave equation for the propagation of the k-mode

h′′
μν + 2

a′

a
h′

μν + k2hμν = 0 . (6.79)

Rescaling the metric as hμν = h̃μν/a, we find that all the components of h̃μν satisfy
the same equation as a massless scalar field with the minimal coupling (ξ = 0) to
gravity, see Eqs. (6.71) and (6.72). Here and in what follows, we omit the subindex
k in hk .

We consider gravitational wave production in a simple model when the initial
de Sitter stage is instantly changed to a radiation domination expansion. It may be
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close to the realistic situation if inflation finished with a very fast Universe heating
through inflaton production of relativistic particles. At the de Sitter stage, Eq. (6.71)
has the solution (6.73) with ν = 3/2

h̃ = e−i z
(
1 − i

z

)
, (6.80)

where z = kη and the second solution is not taken according to the arguments
presented above, after Eq. (6.74). In a radiation dominated universe, a′′ = 0, and the
solution has the simple form

h̃ = αe−i z + βeiz . (6.81)

It is instructive to present the relation between the physical and the conformal
times more accurately than what is done in Table6.1, though some of these relations
are not necessary for the calculations of the intensity of the generated gravitational
waves. The conformal time is expressed through the physical time as

η − η0 =
∫ t

t0

dt ′

a(t ′)
. (6.82)

At the de Sitter epoch, which is assumed to last from t (in)
I till t ( f in)

I , the scale factor

is equal to a(t) = a(in)
I exp[HI (t − t (in)

I )]. So for t < t ( f in)
I we have

η − η0 = 1

t (in)
I HI

[
1 − e−HI (t−t (in)

I )
]

, (6.83)

where we took t0 = t (in)
I . We also chose η0 = 1/HI , t (in)

I = 0, and a(in)
I = 1, and

obtain the same relations as in Table6.1.
For t ≥ t ( f in)

I , the scale factor evolves as aR(t) = a(in)
R [(t + t1)/t2]1/2, where

evidently a(in)
R = a( f in)

I = exp(HI t ( f in)
I ). t2 can be determined from the condition

a(t ( f in)
I ) = a( f in)

I , so t2 = t1 + t ( f in)
I . At last, t1 can be determined from the

continuity of the cosmological energy density at the moment of the change of regime
t = t ( f in)

I from the de Sitter to the radiation dominated phase

ρI = 3H2
I M2

Pl

8π
= ρR = 3M2

Pl

32(t + t1)2
. (6.84)

Hence t1 = 1/(2HI ) − t ( f in)
I and

aR(t) = a( f in)
I (2HI )

1/2
(

t − t ( f in)
I + 1

2HI

)1/2

. (6.85)
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Correspondingly, for the radiation dominated regime the conformal time is

η = − 2

HI a( f in)
I

+ 2√
2HI a( f in)

I

(
t − t ( f in)

I + 1

2HI

)1/2

, (6.86)

and the scale factor as a function of the conformal time evolves as

aR(η) = (a( f in)
I )2HI η + 2a( f in)

I . (6.87)

For the matching, we demand the continuity of the solutions (6.80) and (6.81),
as well as that of their first derivatives at η = η

( f in)
I = −1/(Hi a

( f in)
I ). To simplify

the notation, we denote η
( f in)
I ≡ η1. The coefficients α and β are determined by the

equations

αe−i z1 + βeiz1 = e−i z1

(
1 − i

z1

)

αe−i z1 − βeiz1 = e−i z1

(
1 − i

z1
− 1

z21

)
, (6.88)

where z1 = kη1. We thus find

α = 1 − i

z1
− 1

2z21
, β = e−2i z1

2z21
. (6.89)

Clearly |α|2 − |β|2 = 1, as expected.
We can calculate the energy density of the gravitational radiation with frequency

k using properly modified Eq. (6.61). However, it is necessary to take into account
the effects of the cosmological expansion. The energy density of the field φ is equal
to the time-time component of its energy-momentum tensor

ρ = Ttt = Tηη

a2 = (φ′)2 + (∂ jφ)2

2a2 = ( f ′
k − a′ fk/a)2 + f 2k

2a4 , (6.90)

where the primemeans the derivative over η and at the last stepwemade the transition
to the conformally rescaled Fourier mode of φ = φ̃/a with the comoving wave
number k. Since a′/a = Ha, the energy density in the frequency interval dk can be
written as

ρk = 1

4π2

f 2k + (∂z f − Ha f/k)2

a4 , (6.91)
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where the cosmological scale factor is taken at the moment of matching η1 =
−1/(HI a( f in)

I ). Note that k/a = p, where p is the physical wave number or fre-
quency, which redshifts in the course of the cosmological expansion.

Using the arguments leading to Eq. (6.61), we eventually find

ρk = 1

4π2 k3dk|βk |2 = 1

16π2

dk

k
H4

I . (6.92)

The spectrum is frequency independent in logarithmic interval. The cosmological
energy fraction of inflationary gravitational waves in this simple model is

ΩGW = H2
I

6π M2
Pl

. (6.93)

This result is true for the waves with physical momenta that were stretched beyond
the Hubble horizon during inflation, i.e. the maximum frequency should be about
k ∼ HI , which becomes today HI /(zI + 1), where zI is the redshift of the end of
inflation. If we take HI = 10−5 MPl and the Universe heating temperature Theat ∼
10−3 MPl, then zI = Theat/2.7 K, so the maximum frequency today would be
about 10−2 TC M B . This leads to an abrupt cutoff in the frequency spectrum above
approximately 108 Hz. The minimum frequency corresponds to the wave with the
present day length of the order of the contemporary Hubble horizon.

If the length of a gravitational wave were shorter than the cosmological horizon
at redshift zeq ≈ 104, when the radiation dominated regime changed to the matter
dominated one, then the fraction of its cosmological energy density would drop by 4
orders ofmagnitude. So for HI = 10−5 MPl wewould expectΩGW ∼ 10−15. Longer
waves would not be so much redshifted and their energy fraction could be up to 4
orders ofmagnitude higher. Today suchwaves should be longer than 108 yrs and their
frequency smaller than 10−16 Hz. Let us note that in more realistic scenarios, which
include, in particular, possiblematter dominated regimes after the end of inflation, the
spectrum of inflationary gravitational waves is not exactly flat but depends upon the
inflaton potential. The fraction of the cosmological energy of gravitational waves also
depends upon the inflationary model and may considerably vary. Moreover, it could
be strongly suppressed if there existed an early stage of dominance of primordial
black holes (Dolgov et al. 2015; Dolgov and Ejlli 2011), which later evaporated
restoring a radiation dominated phase. If this regimewas realized, gravitationalwaves
of much higher frequencies could be generated by primordial black hole interactions.

6.6 Generation of Density Perturbations

The absence of a mechanism responsible for the creation of density perturbations on
cosmological scales was a fundamental unsolved puzzle in the old FRW cosmology.
Quantum or thermal fluctuations in the cosmological plasma might have sufficiently
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large amplitudes, but only on very small scales. Now we know that this problem
can be brilliantly solved by inflation. In short, the mechanism of the creation of
primordial density perturbations works as follows. The wavelength of quantum fluc-
tuations is exponentially stretched by the inflationary expansion from micro-scales
up to galactic, galaxy cluster, and even the present day horizon scales. Moreover, the
amplitude of these fluctuations is amplified by the process of expansion analogously
to the amplification of tensor perturbations considered in Sect. 6.5. The inflationary
mechanism for the creation of density perturbations and the prediction of its spec-
trum (Mukhanov and Chibisov 1981), which turns out to be in good agreement with
the data, is a great successes of the Standard Model of cosmology.

Let us start with a real quantum field φ in a FRW background. We assume that
the field satisfies the equation of motion (6.12). It is convenient to quantize the
conformally rescaled field, φ̃ = aφ, in conformal time, see Eqs. (6.68) and (6.69).We
expand the field, as usually, in terms of creation/annihilation operators, see Eq. (C.2)

φ̃ =
∫

d̃k
[
akeik·x fk(η) + a†

ke−ik·x f ∗
k (η)

]
, (6.94)

where the Fourier amplitudes satisfy the equation

f ′′
k +

[
k2 − a′′

a

]
fk + a3U ′( fk/a) = 0 , (6.95)

which is similar to Eq. (6.71). Here U ′ = dU/dφ, so:

1. a3U ′( fk/a) = m2a2 fk for a free massive field with U (φ) = m2φ2/2.
2. a3U ′( fk/a) = λ f 3k for a self-interacting field φ withU (φ) = λφ4/4. This result

is true if only one k-mode dominates.

We nowconsider the inflationary regimewith H2 	 m2 and/or H2 	 λ f 2. Equa-
tion (6.95) can be solved analytically if λ = 0. The solution is given by Eq. (6.73).
For vacuum quantum fluctuations,C2 = 0. In the limit of small mass, when ν = 3/2,
the solution simplifies to (6.80). The spectrum of vacuum quantum fluctuations of φ

can be calculated as

〈|φ2|〉vac = 1

a2

∫
d̃k d̃k′〈[akeik·x fk(η) + a†

ke−ik·x f ∗
k (η)

]
[
ak′eik′·x fk′(η) + a†

k′e−ik′·x f ∗
k′(η)

]〉vac

= 1

4π2

∫
dpp

(
1 + H2

p2

)
, (6.96)

where p = ke−Ht is the physical momentum and we use the condition ak |vac〉 = 0,
the commutation relation (C.4), the solution (6.80) for fk , and y = −kη =
ke−Ht/H . The first quadratically divergent term in this expression corresponds
to the infinitely large value of the quantum operators in coinciding space points.
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It is the same as that in flat spacetime and should be subtracted. The second term
describes the effect of the cosmological expansion and this is what we need. Note
that initially we assumed that k 	 H and the second term was much smaller than 1.
This describes quantum fluctuations in de Sitter spacetime with wavelengths smaller
than the cosmological horizon. However, the exponential cosmological expansion
pushes these waves beyond the horizon, where HeHt 	 1, and the second term rises
to be much larger than 1. It is noteworthy that H ∼ 1/t , with a ∼ t1/2 and t2/3

in the radiation dominated and matter dominated regimes, respectively, so the ratio
Ha/k drops down. In other words, quantum fluctuations strongly rise at inflation
but decrease in the radiation dominated or matter dominated regimes.

Despite the rising quantum fluctuations of the inflaton, its energy density does
not change (the Bogolyubov coefficients remain zero). Nevertheless, the fluctuations
create stochastic density perturbations in the following indirect way. We can see this
if we separate the inflaton field φ(x, t) into a classical homogeneous part φ0(t) and
a small quantum fluctuation δφ(x, t)

φ(x, t) = φ0(t) + δφ(x, t) . (6.97)

During the inflationary epoch, the quantum part satisfies the equation

δφ̈ + 3Hδφ̇ − e−2Ht∂2i δφ − ∂2V (φ0)

∂φ2 δφ = 0 , (6.98)

obtained from Eq. (6.12) by a first order expansion in δφ. For large Ht , the third
term in the equation is redshifted away and δφ satisfies the same equation as φ̇0(t),
as one can see differentiating Eq. (6.12) over time with constant H . Equation (6.98)
has two solutions. One of them decreases as exp(−3Ht) for ∂2V/∂φ2 � H2. The
second solution varies relatively slowly. At large t , the first solution can be neglected
and we can write

δφ(x, t) = −δτ(x)φ̇0(t) . (6.99)

If δφ is small, this is equivalent to an x-dependent retardation of the classical field
motion to the equilibrium point

φ(x, t) = φ0 (t − δτ(x)) . (6.100)

Correspondingly, inflation ends at different moments in different space points. This
is the physical reason for the generation of density perturbations. Since the energy
density in the Universe during inflation is dominated by the inflaton field φ, one
can write ρ(x, t) = ρ (t − δτ(x)), forgetting possible subtleties connected with the
freedom in the choice of coordinates. The problem of gauge freedom and fixation
of a convenient gauge is considered in Chap.12, where the evolution of the density
perturbations in the FRW background is discussed. Thus we come to

http://dx.doi.org/10.1007/978-3-662-48078-6_12
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δρ

ρ
= −δτ

ρ̇

ρ
= 4Hδτ(x) . (6.101)

At the last step, the relation ρ̇/ρ = −4H has been used. It is valid in the radiation
dominated stage, which, by assumption, was formed in the heated Universe when
inflation was over. The spectrum of the density perturbations is thus determined by
the spectrum of δt = −δφ/φ̇0. The spectrum of δφ can be read-off from Eq. (6.96)

〈δφ(x, t)2〉 =
(

H

2π

)2 ∫
dk

k
, (6.102)

and the power spectrum of density perturbations is given by

〈
(

δρ

ρ

)2

〉 = 4H4

π2 φ̇2
0

∫
dk

k
. (6.103)

If inflation is realized with a slow roll regime, as it is discussed in Sect. 6.3.1, then
φ̇ = U ′(φ)/(3H), H2 = 8πU/(3M2

Pl), and we can estimate the magnitude of the
density perturbations as

δρ

ρ
= 16

(
8π

3

)1/2 U 3/2

U ′M3
Pl

. (6.104)

For U = m2φ2/2, we obtain

(
δρ

ρ

)
m

= 16
(π

3

)1/2 (
mφ2

M3
Pl

)
, (6.105)

while for U = λφ4/4 we find

(
δρ

ρ

)
λ

= 2

(
8πλ

3

)1/2
(

φ3

M3
Pl

)
. (6.106)

Since, roughly speaking, δρ/ρ < 10−5 and at the end of inflation φ ∼ MPl, we
conclude that m ≤ 10−6 MPl and λ ≤ 10−12 to agree with observational data.

In the limit of constant H and φ̇, the flat Harrison-Zeldovich spectrum of pertur-
bations is obtained. However, we need to take into account the slow variations of
φ̇ and H and to estimate these quantities when the wavelength of the perturbations
became equal to the cosmological horizon, because after that the corresponding
modes remained constant. This leads to some small corrections to the flat spec-
trum. The discussion of this and a few more corrections can be found, for instance,
in Mukhanov (2005), Weinberg (2008), Gorbunov and Rubakov (2011).
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Chapter 7
Baryogenesis

7.1 Observational Data

The observed part of the Universe is practically 100 % populated by particles, despite
almost identical properties of particles and antiparticles. A small fraction of antipro-
tons in cosmic rays, at the level of 10−4 with respect to protons, can be explained by
their secondary origin in collisions of energetic cosmic particles. A similar situation
is with cosmic positrons, though there are some exciting data on a positron excess,
both at high and low energies (see below).

Quite strong bounds on the possible existence of cosmic antimatter arise from
observations of 100 MeV cosmic γ -rays, which may presumably be created by p̄ p
annihilations into pions and subsequent decays of π0 into photons (there could be also
energetic photons from the annihilation of positrons produced by pion decay). The
absence of an excessive γ radiation allows to conclude that the nearest antigalaxy
cannot be closer than ∼10 Mpc (Steigman 1976). However, we cannot say much
about galaxies outside of the Virgo Supercluster. The observed colliding galaxies
at any distance or the galaxies in common intergalactic gas clouds are of the same
kind of matter (or antimatter). In particular, the fraction of antimatter in the two
colliding galaxies in the Bullet Cluster is bounded by nB̄/nB < 3×10−6 (Steigman
2008). Very restrictive bounds are found for a baryon symmetric universe, namely a
universe consisting of an equal amount of (large) matter-antimatter domains (Cohen
et al. 1998). In this case, the annihilation would be so efficient that the nearest
antimatter domain should practically be at the cosmological horizon, namely at a
few Gpc distance (Cohen et al. 1998). Probably this bound could be relaxed in some
modifications of the standard scenario of spontaneous CP breaking.

According to the analysis of cosmic electromagnetic radiation, in particular of
∼100 MeV photons from p̄ p annihilation and of the 0.511 MeV line from e+e−
annihilation at low energies, the fraction of antistars in a galaxy should be gener-
ally below 10−5 – 10−6 of the total amount of stars there. In particular, for our
Galaxy, as it is shown in Ballmoos (2014), the amount of antistars is bounded by
N∗̄/N∗ < 4 · 10−5 within 150 pc from the Sun.
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128 7 Baryogenesis

An unambiguous proof for the existence of primordial antimatter would be an
observation of sufficiently heavy antinuclei, starting from 4He. According to the-
oretical estimates (Duperray et al. 2005), antideuterium could be created in ener-
getic cosmic ray reactions of p̄ p or p̄ He collisions with a flux of ∼10−7 m2/ s−1

/sr/(GeV/n), i.e. 5 orders of magnitude lower than the observed flux of antiprotons.
The fluxes of the secondary-produced 3He and 4He are predicted to be much smaller,
respectively 4 and 8 orders of magnitude below that of antideuterium (Duperray et al.
2005). On the other hand, the production of antinuclei was measured at LHC by the
Alice group (Martin 2013) and the results were reported at a seminar (Kalweit 2014).
Though the production rate looks significant, with a suppression factor of about 1/300
per each extra antinucleon added to a produced antinucleus, such events are quite
rare in cosmology and their contribution to the total cosmological production is
very small. At the present time, there is only an upper bound on the flux of cosmic
antihelium (Sasaki 2008):

He/He < 3 · 10−7 . (7.1)

In the near future, this bound is expected to be improved to He/He < 3 ·
10−8 (Boezio 2008; Picozza and Morselli 2008) and He/He < 10−9 (Alcaraz 1999).1

To summarize, the current situation is roughly the following. We have the observa-
tions p̄/p ∼ 10−4 and He/p ∼ 0.1, and the upper limit He/He < 3 · 10−7. The-
oretical predictions for secondary production are d̄ ∼ 10−5 p̄, 3He ∼ 10−9 p̄, and
4He ∼ 10−13 p̄.

There are also other types of limits emerging from considerations of the BBN
(Chap. 8), which exclude large fluctuations of the baryonic number density at dis-
tances larger than about 1 Mpc, and from the study of the angular fluctuations of the
CMB (Chap. 10), which forbids noticeable isocurvature fluctuations on scales larger
than about 10 Mpc.

The total amount of baryonic matter in the Universe can be determined from BBN
and CMB data under the assumption of negligible amount of antimatter. Before the
precise data on the angular fluctuations of the CMB became available, the only
measurements of ΩB and of the effective number of new light particle species, Nef f ,
came from the data on light element abundances, see Chap. 8. Now, both types of
measurements give closely coinciding results, though the BBN measures the amount
of baryons when the Universe was a hundred seconds old, while the CMB measures
the amount at tU ∼ 370,000 yrs. The agreement between the two different methods
is a very strong argument in favor of the correctness of the general cosmological
picture. It is interesting that the data on the amount of the directly visible baryons
in the contemporary Universe show a smaller baryonic density by a factor of a few.
The current CMB measurement (Ade 2014) gives the value

ΩBh2 = 0.02205 ± 0.00028 . (7.2)

1http://ams-02project.jsc.nasa.gov.

http://dx.doi.org/10.1007/978-3-662-48078-6_8
http://dx.doi.org/10.1007/978-3-662-48078-6_10
http://dx.doi.org/10.1007/978-3-662-48078-6_8
http://ams-02project.jsc.nasa.gov
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Very similar results follow from the analysis of the BBN. The observation of 4He
implies the baryonic density (Izotov et al. 2013)

ΩBh2 = 0.0234 ± 0.0019 (68 % C.L.) . (7.3)

Primordial deuterium is much more sensitive to the amount of baryons. The recent
measurement D/H = (2.53 ± 0.04) · 10−5 gives (Cooke et al. 2014):

ΩBh2 = 0.02202 ± 0.00045 , (7.4)

As we have already mentioned, before the accurate measurements of the spectrum
of the angular fluctuations of the CMB, ΩB was determined by the abundance of
the primordial deuterium, which by this reason was called “baryometer”. According
to the above presented data, the density of the baryonic number with respect to the
number density of CMB photons is

η = (nB − nB̄)/nγ = (6.1 ± 0.3) · 10−10 . (7.5)

7.2 General Features of Baryogenesis Models

7.2.1 Sakharov Principles

The predominance of matter over antimatter was beautifully explained by Sakharov
(1967) as dynamically generated in the early Universe due to three conditions, today
called Sakharov principles:

1. Non-conservation of baryon number.
2. Breaking of C and CP invariance.
3. Deviation from thermal equilibrium.

As we show below, none of these conditions is really obligatory, but baryogene-
sis models without them require some exotic mechanism. We first discuss normal
baryogenesis scenarios, in which the three Sakharov principles hold.

7.2.1.1 Non-conservation of Baryon Number

The non-conservation of baryons is theoretically justified. GUT scenarios, supersym-
metric models, and even the electroweak theory predict the violation of the baryon
number, namely processes with ΔB �= 0. However, at the present time this predic-
tion is not confirmed by direct experiments. Despite an extensive search, only lower
bounds on the proton lifetime and on the period of neutron-antineutron oscillations are
established. The only “experimental piece of data” in favor of the non-conservation
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of baryons is our Universe: we exist, ergo baryons are not conserved. Half a cen-
tury ago, from the same experimental fact, our existence, an opposite conclusion of
baryon conservation was deduced. Theory is an important input in understanding of
what we see.

Probably we should clarify the last statement. Inflation seems to be a necessary
ingredient to create a universe that is suitable for life. Moreover, the predicted infla-
tionary spectrum of the density perturbations well agrees with data. In this sense,
inflation may be seen as an experimental fact. On the other hand, inflation would be
impossible if the baryon number were conserved. For a successful solution of the
FRW cosmology problems, inflation should last at least 65 e-foldings, a ∼ e65. Let
us assume that the baryonic number is conserved. At the present time, the baryon
energy density is about 104 times the energy density of CMB photons. When we
travel backward in time, the baryon to photon energy density ratio drops as the cos-
mological redshift. At the moment of the QCD phase transition, which took place at
z ∼ 1012, the ratio ρB/ργ was about 10−8. Prior to the QCD phase transition, baryon
number carriers were relativistic quarks and at that early period ρB/ργ remained
constant. Hence we should conclude that at the end of inflation this ratio would be
approximately the same as at the QCD phase transition, namely ρB/ργ ∼ 10−8.
During inflation, all the matter of the Universe was in the form of the inflaton field
with constant energy density. If ρtot dropped down with time, inflation would have
been impossible. However, the energy density of matter with a conserved quantum
number cannot stay constant but drops as 1/a3 or 1/a4. Traveling backward in time,
it means that ρB rises and in less than 6 Hubble times becomes comparable to the
inflaton energy density. However, 6 Hubble times are not enough to create our good
old Universe.

7.2.1.2 Breaking of C and CP Invariance

C and CP violations were discovered and confirmed in direct experiments. In the first
part of the XX century, the common belief was that physics was invariant with respect
to the separate action of all the three transformations, namely mirror reflection, P,
charge conjugation, C, and time reversal, T. The weakest link in this chain of discrete
symmetries was P, found to be broken in 1956 (Lee and Yang 1956; Wu et al. 1957).

It was immediately assumed that the world was symmetric with respect to
the combined transformation from particles to mirror reflected antiparticles,
CP (Landau 1957). Both P and C are 100 % broken in weak interactions but still
some symmetry between particles and antiparticles was saved by this assumption.
This symmetry crashed down pretty soon, in 1964 (Christenson et al. 1964). After
this discovery, life in the Universe became possible.

At the present time, only the CPT symmetry has survived. It is the only one with a
rigorous theoretical justification, the CPT theorem (Luders 1954, 1957; Schwinger
1951; Pauli 1955), based on the solid grounds of Lorenz-invariance, canonical spin-
statistics relation, and positive definite energy. Still models without CPT are consid-
ered, e.g. for the explanation of some neutrino anomalies and for baryogenesis.
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7.2.1.3 Deviation from Thermal Equilibrium

Thermal equilibrium is always broken for massive particles, but usually very weakly.
To estimate the effect, let us approximate the collisional integral in the kinetic equa-
tion as Icoll = Γ ( feq − f ), see Eq. (5.26), where Γ is the interaction rate. Let us
assume that Γ is large, so that deviations from equilibrium are small, δ f/ feq � 1.
Substituting feq into the left hand side of the kinetic equation, as it is done in
Eq. (5.29), with T ∼ m and Γ ∼ αm we find

δ f

feq
≈ Hm2

Γ T E
∼ T m2

Γ E MPl
∼ m

αMPl
. (7.6)

Since the Planck mass is very large, deviations from equilibrium might be significant
only at large temperatures or tiny Γ . However, if the fundamental gravity scale were
in the TeV range (Arkani-Hamed et al. 1998), equilibrium could be strongly broken
even at the electroweak scale.

Another source of deviation from equilibrium in the cosmological plasma could
be a first order phase transition from, say, an unbroken to broken symmetry phase in
a non-abelian gauge theory with a spontaneous symmetry violation. There might be
a rather long non-equilibrium period of the coexisting two phases.

7.2.2 CP Breaking in Cosmology

There are many scenarios of baryogenesis, each performs a rather modest task to
explain only one number, the observed asymmetry (7.5). It is a great challenge
for astronomers to check if η is constant or it may vary at different space points,
i.e. η = η(x). A few questions in this connection deserve attention. What is the
characteristic scale lB of possible variations of the baryon number density? May there
be astronomically large domains of antimatter nearby or only very far away? Answers
to these questions depend, in particular, upon the mechanisms of CP violation realized
in cosmology, which are described below. For more details, see Dolgov (2005).

There are three possibilities to violate CP in cosmology:

1. Explicit CP violation. It is realized by complex coupling constants in the
Lagrangian of the theory, in particular by complex Yukawa couplings transformed
by the vacuum expectation value of the Higgs field 〈φ〉 �= 0 into a non-vanishing
phase in the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix. However, in
the MSM of particle physics based on UY (1) × SUL(2) × SU (3), CP violation
at T ∼ TeV is too weak, at least by 10 orders of magnitude, to allow for the
generation of the observed baryon asymmetry. Indeed, CP violation in the MSM
is absent for two quark families because the phase in a 2 × 2 quark mass matrix
can be rotated away. At least three families are necessary. It could be an anthropic
principle explanation to say that for this reason there are three generations.

http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
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If the masses of different up- or down-type quarks were equal, CP violation could
also be rotated away, because the unit matrix is invariant with respect to a unitary
transformation. If the mass matrix were diagonal, in the same representation as
the flavor matrix, CP violation could also be rotated away. Thus CP breaking is
proportional to the product of the mixing angles and to the mass differences of
all the up- and down-type quarks

A− ∼ sin θ12 sin θ23 sin θ31 sin δ (m2
t − m2

u)(m2
t − m2

c)(m
2
c − m2

u) (7.7)

(m2
b − m2

s )(m
2
b − m2

d)(m2
s − m2

d)/ M12 .

At high temperatures, namely T ≥ TeV, where the electroweak baryon
non-conservation is operative, the characteristic mass is M ∼ 100 GeV and
A− ∼ 10−19. For a successful baryogenesis, an extension of the Standard Model
is definitively necessary, because A− is too small.

2. Spontaneous CP violation (Lee 1974). It could be realized by a complex scalar
fieldΦ with a CP symmetric potential having two separated minima at 〈Φ〉 = ± f .
The Lagrangian is supposed to be CP invariant, but these two vacuum states have
opposite signs of CP violation. Such CP breaking is locally indistinguishable
from the explicit one, but globally leads to a charge symmetric universe with
an equal amount of matter and antimatter. As we mentioned at the beginning
of this section, antimatter domains, if they exist, should be very far from us, at
lB ≥ Gpc. Moreover, there is another problem with this mechanism, namely walls
between matter and antimatter domains could destroy the observed homogeneity
and isotropy of the Universe (Zeldovich et al. 1974). To avoid this problem, a
mechanism of wall destruction is necessary.

3. Stochastic or dynamical CP violation (Dolgov 1992; Balaji et al. 2004, 2005). If a
complex scalar field χ were displaced from its equilibrium point in the potential,
e.g. by quantum fluctuations at inflation, and did not relax down to the equilibrium
at baryogenesis, it would create a CP violation proportional to the amplitude of
the field but without the problems of a spontaneous CP violation. Later, after
baryogenesis is over, χ can relax down to zero. In this way, domain walls do
not appear. Inhomogeneous η(x) with domains of matter and antimatter can be
created with such a CP violation. The domain size depends upon the details of
the scenario.

7.3 Models of Baryogenesis

This is a long, but probably incomplete, list of baryogenesis scenarios:

1. Heavy particle decays (Sakharov 1967).
2. Electroweak baryogenesis (Kuzmin et al. 1985). It is too weak in the (minimal)

Standard Model of particle physics, but may work with TeV gravity.
3. Baryo-through-leptogenesis (Fukugita and Yanagita 1986).
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4. Supersymmetric condensate baryogenesis (Affleck and Dine 1985).
5. Spontaneous baryogenesis (Cohen and Kaplan 1987, 1988; Cohen et al. 1993).
6. Baryogenesis by primordial black hole evaporation (Hawking 1974; Zeldovich

1976a).
7. Space separation of B and B̄ at astronomically large distances (Omnes 1969,

1970), which is probably not effective. However, antibaryons might be moved to
higher dimensions (Dvali and Gabadadze 1999) and in this case the separation
would be microscopically small and might be even realistic.

8. Baryogenesis due to CPT violation (Dolgov 2010).

In all these scenarios, new physics beyond the Standard Model of particle physics is
necessary. In what follows, we will very briefly describe some of them. More details
can be found in Dolgov (1992, 1997), Rubakov and Shaposhnikov (1996), Riotto
and Trodden (1999), Dine and Kusenko (2003).

7.3.1 Baryogenesis by Heavy Particle Decays

This is the earliest scenario of baryogenesis proposed in the pioneering paper by
Sakharov (1967). Later it was understood that baryogenesis by heavy particle decay
is naturally realized in GUT scenarios through decays of heavy gauge or Higgs-like
bosons, X , with mass around 1015 GeV. These bosons can decay, for instance, into
qq and q̄l̄ pairs, so the baryon number is evidently not conserved. In this particular
example, the difference between the baryon and the lepton numbers, (B − L), is
conserved, which is true in GUT models based on the SU (5) symmetry group as
well as in the electroweak theory, see the next section.

Due to the large mass of X -bosons, deviations from equilibrium can be significant.
CP violation might also be sufficiently large: since we know nothing about it, we
are free to allow maximum CP violation. This mechanism could thus be efficient
enough to generate the observed asymmetry. The problem with GUT models is that
the temperature of the GUT scale might not be reachable after inflation. On the
other hand, baryogenesis might proceed with under-abundant X -bosons created out
of equilibrium.

Particles and antiparticles can have different decay rates into charge conjugated
channels if C and CP are broken, while the total widths are equal due to CPT invari-
ance. If only C is broken, but CP is not, then partial widths, summed over spins, are
the same because CP invariance implies the equality of the reaction rates between
particles and antiparticles with mirror reflected particle helicities, σ = s · p/p:

Γ (X → f, σ ) = Γ
(
X̄ → f̄ ,−σ

)
. (7.8)

If both C and CP are broken, partial widths would be different, but the differ-
ence appears only at higher orders in perturbation theory. At the lowest order, the
amplitudes of charged conjugated processes must be equal, A = Ā∗, because of the
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hermicity of the Lagrangian. The same would also be true for higher order contribu-
tions if they were real. An imaginary part is generated by re-scattering in the final
state (with non-conservation of B or L), as can be seen from the S-matrix unitarity
condition, SS† = I . Written in terms of the T -matrix defined as S = I + iT , it reads

i(Ti f − T †
i f ) = −

∑
n

TinT †
n f = −

∑
n

T †
inTn f . (7.9)

Here the summation is done over all the open reaction channels from the state i to the
state f , and integration of the intermediate states over the phase space is assumed.

Thus, at least at the second order in perturbation theory, the amplitudes acquire
non-vanishing imaginary parts, which are not reduced to the common but opposite
phase of the charge conjugated amplitudes. So the amplitudes of charge conjugated
processes stopped being complex conjugate and might have different absolute values.
To achieve this, there should not be less than three different particle states. Let
us assume that there are only two states, i and f , so the following reactions are
possible: elastic i ↔ i and f ↔ f , and inelastic i ↔ f . In this case, the unitarity
condition (7.9) is reduced to

2I mTii [λ] = −
∫

dτi |Ti f |2 −
∫

dτ f |Tii |2 , (7.10)

where [λ] denotes the set of polarization states of the participating particles and dτ

is the infinitesimal phase space volume.
CPT invariance demands equality of amplitudes of charge conjugated reactions

with opposite signs of particle helicities

Tii [λ] = Tī ī [−λ] , (7.11)

so, after summing over the polarization, we find Γi f = Γī f̄ . Hence to destroy the
equality of partial widths of charge conjugated processes, Γi f = Γī f̄ , at least three
interacting states are necessary with the following reaction channels open

i ↔ f, i ↔ k, k ↔ f . (7.12)

Let us consider an example of X -boson decaying into the channels

X → qq, X → q̄l̄,

X̄ → q̄q̄, X̄ → ql (7.13)

and assume that the partial widths are different due to C and CP violation

ΓX→qq = (1 + Δq)Γq , ΓX→q̄l̄ = (1 − Δl)Γl ,

ΓX̄→q̄q̄ = (1 − Δq)Γq , ΓX̄→ql = (1 + Δl)Γl . (7.14)
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The parameters Δ would be non-zero due to re-scattering in the final state qq ↔ q̄l̄
and their charge conjugated ones.

If X is a gauge boson, then Γ ∼ α and Δ ∼ α, where α ∼ 1/50 is the fine structure
constant at the GUT scale. The asymmetry is proportional to η ∼ (2/3)(2Δq − Δl).
Assuming that CP violation is not suppressed at all (sin δ− ∼ 1), we can roughly
estimate the magnitude of the cosmological baryon asymmetry as

η ∼ δ f

f

ΔΓ

Γ
∼ m

MPl
. (7.15)

Small numerical coefficients omitted here would somewhat diminish the result. For
example, the subsequent entropy dilution by about 1/100 is not included. For a suc-
cessful leptogenesis/baryogenesis, the mass of the decaying particles should be larger
than 1010 GeV, or the fundamental gravity force at short distances should be notice-
ably stronger than in standard General Relativity, namely M ( f und)

Pl � 1019 GeV.
Thus we see that GUT scenarios could naturally lead to the observed baryon

asymmetry of the Universe. The baryon number conservation is broken because
quarks and leptons belong to the same multiplet of the symmetry group. The mass
of the gauge bosons of GUT models, m X ∼ 1015 GeV, is high enough to ensure a
sufficiently large deviation from equilibrium, see Eq. (5.29) or (7.15). CP violation
can be easily unsuppressed at the GUT scale, T ∼ m X . So far so good, but the
problem is that such high temperatures may have never been reached in the Universe
after inflation. However, even if the Universe was not hot enough, always having
T < m X , X -bosons could be produced out of equilibrium at the end of inflation by
gravity, as is discussed in Sect. 6.4.4. Still one should take care of an overabundant
production of gravitinos (Khlopov and Linde 1984; Ellis et al. 1984) if Supergravity
is realized.

7.3.2 Electroweak Baryogenesis

It is remarkable that the Standard Model of particle physics has all the necessary
ingredients for a successful baryogenesis. It is known from experiments that the C
and the CP symmetries are broken. CP violation in the Standard Model is easily
introduced either by a complex quark mass matrix with at least three generations
(Kobayashi and Maskawa 1973) or, and it is essentially the same, by complex cou-
pling constants of the Higgs field. Even more surprisingly, the baryon number is not
conserved by electroweak interactions (Hooft 1976a, b). This is a rather complicated
phenomenon and is related to the so-called quantum chiral anomaly (Adler 1969;
Bell and Jackiw 1969). The classical electroweak Lagrangian conserves baryonic
charge. Quarks always enter in bilinear combinations q̄q, so a quark can disappear
only in a collision with an antiquark. The classical baryonic current is thus conserved

∂μ Jμ
B =

∑
j

∂μ(q̄ jγ
μq j ) = 0 . (7.16)

http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_6
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However, quantum corrections destroy this conservation law, and, instead of zero on
the right hand side, one gets

∂μ Jμ
B = g2

16π2 CGμν G̃μν , (7.17)

where C is a numerical constant, G̃μν = Gαβεμναβ/2, and the gauge field strength
Gμν in a non-abelian gauge theory is given by the expression

Gμν = ∂μ Aν − ∂ν Aμ + g[Aμ, Aν] . (7.18)

Here Aμ ≡ Aa
μ is a “vector” in the group space, which is indicated by the upper

index a, which we omitted for simplicity.
An important fact is that the anomalous current non-conservation is proportional

to the total derivative of a vector operator: Gμν G̃μν = ∂μK μ, where the anomalous
current K μ is

K μ = 2εμναβ

(
Aν∂α Aβ + 2

3
ig Aν Aα Aβ

)
. (7.19)

The last term in this expression does not vanish for non-abelian gauge theories only,
because the antisymmetric product of three vector potentials Aν can be non-zero
only due to different group indices (e.g. for the electroweak group it should contain
the product of W +, W − and the isospin one part of Z0).

A total derivative is usually unobservable because one can get rid of it integrating
by parts. However, this may not be true for K μ in (7.19). The gauge field strength Gμν

should indeed vanish at infinity, but the potential Aμ does not necessarily vanish. It
turns out that different vacuum states, which all have Gμν = 0, differ by the value of
K 0. Since the difference Jμ

B − K μ is conserved, transitions from one vacuum state to
another leads to a change in the baryonic charge. The path from one vacuum to another
is separated by a potential barrier, where Gμν �= 0. As we know from quantum
mechanics, the barrier penetration at small energies is exponentially suppressed,
and indeed the probability of processes with ΔB �= 0 contains the extremely small
factor exp(−16π2/g2) ∼ 10−160 (Hooft 1976a, b). However, at high energies or
high temperatures (comparable or above the barrier height), transitions between
different vacua can be achieved by classical motion over the barrier. The height
of the barrier, as calculated in Manton (1983), Klinkhamer and Manton (1984), is
about a few TeV. In fact the barrier disappears at high temperatures together with the
W - or Z -boson masses according to the law m2

W (T ) = m2
W (0)(1 − T 2/T 2

c ). This
also occurs in the same TeV region. So one may expect that at high temperatures
the non-conservation of the baryon number is not suppressed. It has been argued
that above the electroweak phase transition the processes with ΔB �= 0 are much
faster than the Universe expansion rate, so that any preexisting baryon asymmetry
would be washed out. To be more precise, electroweak interactions (even with the
chiral anomaly) conserve the difference between the baryonic and leptonic charges,



7.3 Models of Baryogenesis 137

(B − L). At high temperatures, only (B + L) could be erased, while a preexisting
(B − L) would survive.

To generate a baryon asymmetry, a deviation from thermal equilibrium is neces-
sary (below we demonstrate an example where it is not so, but generally this must be
fulfilled). Deviations from thermal equilibrium due to non-vanishing masses of the
intermediate W - and Z -bosons and of the Higgs boson are not sufficiently strong,
as we can be seen from Eq. (7.6). However, in gauge theories with a spontaneously
broken symmetry, there is another source of equilibrium breaking. The symmetry
is restored at high temperatures (Kirzhnits 1972; Kirzhnits and Linde 1972) and it
breaks in the course of the Universe cooling. The situation is very similar to the rota-
tional symmetry restoration in ferromagnets and its breaking at low temperatures
when spontaneously magnetized domains are created. The phase transition from the
unbroken to broken phase could be either first or second order. In the course of a
(delayed) first order phase transition, the two phases coexist in the cosmological
plasma: broken and unbroken ones. This is surely not an equilibrium state, so it
could be favorable for a baryon asymmetry generation. If the electroweak phase
transition is second order, then everything goes smoothly, thermal equilibrium is not
disturbed, and a charge asymmetry is not generated even below the phase transition.
The type of phase transition depends upon the mass of the Higgs boson (or bosons,
in extended models). For high masses, the transition is second order, while for low
masses it is first order. The boundary value of the mass is not well known even in
the MSM and different estimates give the critical value somewhere between 50 and
100 GeV. Now the Higgs boson mass is known, m H = 125.7 ± 0.4 GeV (Olive
2014), which excludes a first order phase transition at least in the minimal version
of the Standard Model of particle physics. If so, the electroweak interactions at high
temperatures could play the role of terminator of asymmetry and not be its creator
at lower temperatures.

However, the above picture may be incorrect for the following reason. Processes
of quark and lepton transformations with a non-vanishing change of baryonic (and
leptonic) charge at high temperatures are accompanied by a change in the structure of
the gauge and Higgs fields. Roughly speaking, classical field configurations, the so-
called sphalerons (Manton 1983; Klinkhamer and Manton 1984), should be present
in the course of the transition

Asph
k = iεklm xlτm

r2 f A(ξ),

φsph = iv√
2

τ i xi

r
(0, 1) fφ(ξ) , (7.20)

where ξ = gvr , v is the vacuum expectation value of the Higgs field, and the functions
f have the properties f (0) = 1 and f (+∞) = 0. The size of these objects is much
larger than their Compton wavelength, and for this reason they are called classical
field configurations. It is assumed that sphalerons are in thermal equilibrium, so
their number density is determined by the Boltzmann exponent, exp(−F/T ), where
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F is their free energy. In the broken symmetry phase, F = O(TeV), while in the
symmetric phase F ∼ T . If this is true, the processes with violation of the baryon
number are not suppressed at high temperatures. However, the rate of production
of classical field states in the collision of elementary particles is not known and,
strictly speaking, we cannot say if they are in equilibrium or not. The analogy with
magnetic monopoles in non-abelian gauge theories, which are also classical states
(see Sect. 6.2.6), suggests that the production of similar states in a two-body or a few-
body collision is exponentially suppressed. Nothing is known about the probability of
production of monopoles or sphalerons in, say, a hundred-particle collision. To create
a pair of monopole-antimonopole or a sphaleron, one presumably needs to create a
special coherent field configuration which is quite unlikely in the primeval plasma.
If this is true, then electroweak processes do not produce or destroy baryons in a
significant amount. No analytical way to solve this problem is known at the present
stage. These are non-perturbative and multi-particle processes. The only available
approach to the calculation of the sphaleron transition rates is via numerical lattice
simulations. Results of different groups show that the probability of the production
per unit volume and unit time is of the order αnT 4, where α ≈ 0.01 is the fine
structure constant and n = 4 or 5, depending upon the concrete simulations (Arnold
and McLerran 1987; Ambjorn et al. 1991). Such a probability is high enough to
ensure an abundant sphaleron formation. However, a similar probability is expected
if sphalerons have a finite number of degrees of freedom equal to the number of the
lattice cubics inside their volume, but not an infinitely large number as it is in reality.

7.3.3 Baryo-Through-Leptogenesis

The Baryo-through-leptogenesis is probably the most popular mechanism nowa-
days. The process of creation of a baryon asymmetry proceeds in two steps. First,
we have the creation of a lepton asymmetry by L non-conserving decays of heavy
(m ∼ 1010 GeV) Majorana neutrinos, N . Their existence was originally postulated
for the realization of the so-called see-saw mechanism (Minkowski 1977; Gell-Mann
et al. 1979; Yanagida 1979; Glashow 1979), which was suggested to explain the small
value of neutrino masses as a result of the mixing with very heavy Majorana neutrinos
with off-diagonal components of the mixing matrix. The decays of heavy Majorana
neutrinos do not conserve the leptonic number, so one of the Sakharov conditions is
naturally fulfilled. The leptogenesis part proceeds in a way very similar to the GUT
baryogenesis considered in Sect. 7.3.1.

CP violation is in a sense simpler to introduce into a Majorana fermion sector
than for Dirac fermions. As we have shown in Sect. 7.2.2, for the CP breaking in the
mass matrix of Dirac fermions, at least three generations of fermions with unequal
masses are necessary and there is only one CP-odd phase. For Majorana fermions,
there is much more freedom. The Majorana mass term is written as

LM = Mi jνi Cν j + h.c., (7.21)

http://dx.doi.org/10.1007/978-3-662-48078-6_6
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where C is the operator of charge conjugation and h.c. means the hermitian conjugate.
Now all the elements of Mi j , including the diagonal ones, may be complex. One can
kill three phases in Mii by three phase rotations of νi . No freedom is left after that, and
the three phases of M12, M23, and M31 remain arbitrary. In the Majorana case there
can thus be three independent CP-odd phases. If we add three more heavy Majorana
neutrinos, three more CP-odd phases would emerge. So finally the mass matrix of
three flavor light and heavy Majorana neutrinos has six independent phases: three
in the sector of light neutrinos and three in the sector of heavy neutrinos. They are
currently unknown and therefore allowed to be of order unity. The phases measured
in neutrino oscillations are not directly related to the phases in heavy neutrino decays,
and thus low energy measurements cannot teach us anything about the CP violation
in leptogenesis scenarios in a model independent way.

The next step can take place during the electroweak stage. The generated lep-
ton asymmetry is transformed into a baryon asymmetry by C and CP conserving
sphaleron processes in thermal equilibrium. Sphalerons do not individually conserve
the baryon, B, and the lepton, L , numbers, but they conserve (B−L). The initial non-
vanishing L may thus be redistributed in equilibrium in almost equal shares between
B and L . For a review of this scenario, see Buchmuller et al. (2004, 2005a, b), Paschos
(2004), Chen (2007). The mechanism clearly require that sphalerons are abundantly
created in the primeval plasma, see the discussion in Sect. 7.3.2.

The mechanism considered in this subsection looks very attractive. Leptonic and
baryonic charges are naturally non-conserved. Heavy particles (Majorana neutrinos)
to break thermal equilibrium are present. Three CP-odd phases of order unity might
be there. However, the magnitude of the asymmetry η is just of the right size in
the most favorable situation. Any deviation from the most favorable case would
destroy the successful prediction of the model. Maybe such a rigid framework is an
attractive feature of the model. On the other hand, an extra dilution of the asymmetry
through the entropy production by new massive particles or by phase transitions in
the primeval plasma would destroy the successful prediction of the model and might
demand a significantly larger mass for the heavy Majorana neutrinos.

7.3.4 Evaporation of Primordial Black Holes

This model does not require any violation of the baryonic charge in the particle
physics sector. However, in a sense, black hole evaporation violates the baryon num-
ber conservation. There is even a general statement that black holes break all global
symmetries. Indeed, if a conserved charge does not create any long-range field, as the
electric charge does, then such a charge could disappear inside a black hole without
trace. If, for instance, a black hole was formed solely out of baryons, nevertheless
it would evaporate into an (almost) equal number of baryons and antibaryons. For
an external observer, the baryonic number is not conserved. Such a process might in
principle create a cosmological baryon asymmetry if, for some reason, black holes
in the early Universe predominantly captured antibaryons with respect to baryons.
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An excessive capture of antibaryons might be induced, e.g., by a larger mobility of
antibaryons in the primordial plasma due to breaking of C and CP invariance. In this
way, it would be possible to generate an excess of baryons over antibaryons in the
space outside the black holes.

Another possibility discussed in Hawking (1974), Zeldovich (1976a) is that the
process of black hole evaporation (Hawking 1975; Carr and Hawking 1974; Page
1976) could be baryon asymmetric and small black holes in the process of their
evaporation would enrich the Universe with baryons. These black holes could either
completely disappear or evolve down to stable Planck mass remnants, but in both
cases the Universe outside black holes would have a non-vanishing baryon charge and
an equal amount of antibaryon charge would be buried inside the black holes, which
either completely disappeared or survived and became cosmological dark matter.

At first sight, thermal evaporation of black holes cannot create any charge asym-
metry by the same reason as no charge asymmetry can be generated in thermal
equilibrium. However, the spectrum of particles radiated by black holes is not black
but gray due to the distortion of the spectrum by the propagation of the produced
particles in the gravitational field of the black hole (Page 1976). Moreover, interac-
tions among the produced particles are also essential. These two facts allow black
holes to create an excess of matter over antimatter in the external space. As a possible
“realistic” model, let us consider the following case (Zeldovich 1976a; Dolgov 1980,
1981). Let us assume that there exists a heavy A-meson decaying into two charge
conjugated channels with unequal probabilities (due to C and CP violation):

A → H + L̄ and A → H̄ + L , (7.22)

where H and L are, respectively, heavy and light baryons, for instance t and u
quarks. If the temperature of the black hole is larger or comparable with the mass
of the A-boson, the latter would be abundantly produced at the horizon and decay
while propagating in the gravitational field of the black hole. There is a non-zero
probability of back capture of the decay products by the black hole and evidently the
back-capture of the heavy baryons, H and H̄ , is larger than that of the light ones, L
and L̄ . As a result, a net baryon asymmetry could be created outside the black hole.
According to the calculations of Dolgov (1980, 1981), the baryon asymmetry may
have the proper magnitude compatible with observations.

If at the moment of the black hole formation, which presumably took place at the
radiation dominated stage, primordial black holes represented a very small fraction,
say ε, of the total cosmological energy density, then at redshift z = 1/ε after their
formation, these black holes would dominate the cosmological energy density if their
lifetime were larger than the time interval necessary to survive till that redshift, tM D =
tin/ε2. If τevap is the black hole lifetime with respect to the process of evaporation,
then at τevap>tM D the evaporation would be recreated a radiation dominated universe,
but now with a non-vanishing baryon asymmetry.

For the convenience of the reader, we present some expressions for the quan-
tities describing the process of black hole evaporation. Numerical coefficients of
order unity are sometimes omitted. Precise expressions can be found in any modern
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textbook on black hole physics, e.g. Frolov and Novikov (1998). For a Schwarzschild
black hole, the only dimensional parameter is its gravitational radius

rg = 2MB H

M2
Pl

. (7.23)

The black hole temperature, just on dimensional grounds, is the inverse of the grav-
itational radius. The exact value is

TB H = 1

4πrg
= M2

Pl

8π MB H
. (7.24)

The luminosity can be easily estimated as

L B H ∼ σSB T 4r2
g ∼ σSB

M4
Pl

M2
B H

, (7.25)

where σSB is the Stefan-Boltzmann constant (in the natural units, discussed in
appendix A, σSB = π2/60) and ∼ r2

g is the black hole surface. Knowing the
black hole mass and its luminosity, it is straightforward to estimate its lifetime
τevap ∼ M3

B H /M4
Pl. The precise calculations give (Page 1976)

τevap = 10240 π

Nef f

M3

M4
Pl

, (7.26)

where Nef f is the number of particle species with masses smaller than the black hole
temperature (7.24). For example, a black hole with the mass MB H ∼ 1015 g would
have a radius approximately 10−13 cm and its temperature would be about 100 MeV.
They could survive till the present time, τevap ≈ tU .

According to the calculations of Dolgov (1980, 1981), the mass of the heavy
decaying particles A should be in the interval m ∼ 106 − 1010 GeV to create the
observed cosmological baryon asymmetry. Let us consider the following example.
Assume that primordial black holes were created when the temperature of the Uni-
verse was about 1014 GeV. Such a value corresponds to a Universe age tU ≈ 10−34 s.
The mass inside the cosmological horizon at that moment was

Mh = M2
Pl t ≈ 1038 g (t/s) ≈ 104 g . (7.27)

Primordial black holes with such masses might be in principle created. Their tem-
perature would be TB H = 109 GeV. For Nef f ∼ 100, their lifetime would be

τevap ∼ 3 · 10−15 s . (7.28)
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During this time, the Universe would have cooled down to T ∼ 104 GeV. The redshift
from the moment of the primordial black hole creation would have been about 1010.
If the black hole production efficiency was such that only in one per 1010 horizon
volumes a black hole was created, then their mass fraction at production was 10−10

and at the moment of their evaporation they would dominate the cosmological energy
density and could create the observed baryon asymmetry. As we mentioned above, the
Planck mass remnants of such primordial black holes, if stable, could be cosmological
dark matter, see e.g. Dolgov et al. (2000).

If the today baryon asymmetry were generated by the evaporation process of
classical (in contrast to quantum) black holes, then it would be natural to expect that
the baryonic charge might be also non-conserved in the decay of small quantum black
holes, since, as we have already mentioned, gravity breaks all global symmetries and
at the Planck scale the effects should be unsuppressed. This observation was first
done in Zeldovich (1976b, 1977), where it was stated that protons must decay due to
transformation into virtual black holes which subsequently decay into, say, a positron
and a meson. The probability of such a process can be estimated as follows. Let us
consider the process inside a proton

q + q → q̄ + l , (7.29)

which could be meditated by a virtual black hole. Here q (q̄) is a quark (antiquark)
and l is a lepton. The rate of this reaction is equal to

ṅ

n
= nσB H = σB H |ψ(0)|2 , (7.30)

where n ∼ m3
p is the number density of quarks inside the proton and σB H is their

interaction cross section through the formation of a virtual black hole. Since the
interaction arises from a dimension six operator, the amplitude has a factor 1/M2

Pl
and the cross section can be estimated as

σB H ∼ m2
p

M4
Pl

, (7.31)

or, even simpler, the cross section is equal to the square of the gravitational radius.
So we ultimately obtain that the proton lifetime with respect to the decay through
the formation of a virtual quantum black hole is

τp ∼ M4
Pl

m5
p

. (7.32)

Inserting the usual Planck mass MPl ∼ 1019 GeV into Eq. (7.32), we predict that
the proton lifetime is of the order 1045 yrs and there is no problem with the current
experimental bound.
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In models with large extra dimensions, the fundamental gravity scale is M∗ �
MPl and, replacing MPl with M∗ ∼ 1 TeV, leads to the quite short proton lifetime
τp ∼ 10−12 s. Hence, in order to avoid contradictions with the present experimental
constraints, it was required (Adams et al. 2001) M∗ ≥ 1016 GeV, much larger than
the TeV scale. In our work (Bambi et al. 2007), the assumption was done that black
holes lighter than the (effective) Planck mass must have zero electric and color
charge and zero angular momentum—this statement is true in classical General
Relativity and we made the conjecture that it holds in quantum gravity as well. If this
is correct, the rates for proton-decay, neutron-antineutron oscillations, and lepton-
violating rare decays would be suppressed to be below the existing experimental
bounds even for large extra dimensions with TeV-scale gravity. So the disagreement
with experimental limits could be avoided and, in principle, it is not excluded that a
successful baryogenesis could proceed in the frameworks of TeV-scale gravity, and,
in particular, in the minimal standard electroweak theory.

7.3.5 Spontaneous Baryogenesis

The spontaneous breaking of a U (1)-symmetry, which may be either related to the
baryon number conservation or to mixture of the some quantum numbers that includes
the baryonic one, would lead to the non-conservation of the baryonic number of phys-
ical particles. The baryon number of a Higgs-like field would be absorbed by the
vacuum, so the total baryon number is formally conserved, but since only physical
particles, which are excitations over the vacuum in the broken phase, are observed,
reactions between these particles would proceed with a non-conservation of the num-
ber of real baryons. As a result, a baryon asymmetry may be generated in the broken
symmetry phase. This kind of phenomenon may take place in some electroweak
scenarios with several Higgs fields if their relative phase plays the role of Goldstone,
or Nambu-Goldstone, boson, which appears after a spontaneous symmetry breaking
(explained just below).

Generically, the model of spontaneous breaking of a global symmetry is described
by a scalar field theory, with φ having the potential

U (φ) = λ(|φ|2 − v2)2 , (7.33)

where v is a constant c-number. In the lowest energy state in this potential (vacuum),
the field φ is non-vanishing, φ = v exp(iθ). A particular choice of the vacuum state
among many degenerate ones, corresponding to different values of θ , results in a
spontaneous symmetry breaking. The field θ(x) is called the Goldstone boson. If
there is no explicit symmetry breaking but only the spontaneous one, the theory is
invariant with respect to the transformation

θ(x) → θ(x) + const . (7.34)
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This means that the field θ is massless. In other words, the curve where the potential
U (φ) in Eq. (7.33) reaches its minimum is flat and θ can evolve along this curve
without changing energy. If the bottom of the potential is tilted, so that the degeneracy
in the potential energy of θ disappears, we speak about an explicit symmetry breaking
(as, for instance, in the axion case). In this case, the θ -field typically acquires a non-
vanishing mass and becomes a pseudo-Goldstone boson.

Let us consider the following toy model with the scalar field φ and two fermionic
fields, “quarks” Q and “leptons” L . The theory is supposed to be invariant with
respect to the “baryonic” U (1)-symmetry: φ → exp(iα)φ, Q → exp(iα)Q, and
L → L , where α is a constant phase. The corresponding Lagrangian has the form

L = (∂φ)2 − U (φ) + i Q̄γ μ∂μQ + i L̄γ μ∂μL + (gφ Q̄L + h.c.) , (7.35)

where U (φ) is given in Eq. (7.33). In the spontaneously broken phase, when φ =
v exp(iθ), the Lagrangian can be rewritten as

L = v2(∂θ)2 − V (θ) + i Q̄γ μ∂μQ + i L̄γ μ∂μL + [
gv exp(iθ)Q̄L + h.c.

] + · · · ,

(7.36)
where the potential V (θ) describes a possible explicit symmetry breaking, which is
not present in the original Lagrangian (7.35), and the radial degrees of freedom are
supposed to be very heavy and are neglected. Indeed, one can study perturbations near
the vacuum in the broken symmetry phase, introducing a new field ζ , the so-called
radial excitations φ = (v + ζ ) exp(iθ). Evidently, the mass of ζ is mζ = 2

√
λ v, so

ζ is not excited at low energies.
Another representation of the Lagrangian (7.36) may be useful in consideration

of the baryon asymmetry generation. Let us introduce the new quark field by the
rotation Q → exp(iθ)Q, so the Lagrangian turns into

L = v2(∂θ)2 + ∂μθ Jμ
B − V (θ) + i Q̄γ μ∂μQ + i L̄γ μ∂μL + (gvQ̄L + h.c.) ,

(7.37)
where Jμ

B = Q̄γ μQ is the baryonic currents of quarks. In this expression, the
interaction of θ with the matter fields enters only linearly. It is imperative that the
current Jμ

B is not conserved, otherwise the interaction term

Lint = ∂μθ Jμ
B (7.38)

can be integrated away. This current is indeed non-conserved. Combining the equa-
tions of motion for Q and L , one sees that ∂μ Jμ

B = igv(L̄ Q − Q̄L).
For the case of a homogeneous and only time-dependent field θ , the interaction

Lagrangian (7.38) can be written as Lint = θ̇nB , where nB is the density of the
baryonic charge. One is thus tempted to identify θ̇ with the baryonic chemical poten-
tial, as it was done in Cohen and Kaplan (1987, 1988), Cohen et al. (1993). If this
were so, the baryonic charge density would be non-zero even in thermal equilib-
rium, when the reaction rates are fast, while θ is not relaxed down to the dynamical
equilibrium point at the minimum of the potential, where θ̇ = 0. The charge density
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for small θ̇ would be equal to

nB = 1

6
BQ θ̇T 2 , (7.39)

where BQ is the baryonic charge of the quarks Q. However, this is not true, as can
be seen immediately from the equation of motion for the θ -field (Dolgov and Freese
1995)

2v2∂2θ = −∂μ Jμ
B . (7.40)

In fact this equation is just the law of the total current conservation, ∂μ Jμ
tot = 0, where

Jμ
tot is the total baryonic current, which includes the contribution from the scalar field

φ. Though the symmetry is spontaneously broken, the theory still “remembers” that
it was symmetric. In the case of space-point independent θ = θ(t), Eq. (7.40) is
reduced to 2v2θ̈ = −ṅB . It can be easily integrated, giving

ΔnB = −v2Δθ̇ , (7.41)

which is evidently incompatible with Eq. (7.39). One should definitely trust Eq. (7.41)
because this is simply the condition of the total current conservation, which is not
disturbed by thermal corrections. Below, we will discuss in some detail why θ̇ cannot
be interpreted as the baryonic chemical potential, and thus why Eq. (7.39) is incor-
rect, but let us first consider the generation of baryon asymmetry both in the pure
Goldstone and pseudo-Goldstone cases. We have seen that in the Goldstone case the
baryonic charge density is given by Eq. (7.41). The initial value of θ̇ is determined
by inflation and depends on whether the symmetry was broken before the end of
inflation or after that. We assume that the former is true, then the kinetic energy of
the θ -field is given by v2(∂θ)2 ∼ H4

I . This is the magnitude of quantum fluctua-
tions in de Sitter spacetime, as it is described by the so-called Gibbons-Hawking
temperature (Gibbons and Hawking 1977), TG H = H/(2π). So θ̇ ∼ H2

I /v, where
the Hubble parameter during inflation, HI , can be found by matching the energy
of the inflaton ρin f ∼ H2

I M2
Pl and the thermal energy after reheating ρreh ∼ T 4

reh .
Comparing these expressions we find that

η ∼ nB

T 3 ≈ vTreh

M2
Pl

. (7.42)

If the scale of the symmetry breaking v and the reheating temperature are not far from
the Planck scale, the asymmetry would be large enough to explain the observed value,
η ≈ 6 · 10−10. However, a serious problem emerges in this scenario. It is known that
all the regular classical motions during inflation are exponentially redshifted down to
zero. The initial non-vanishing θ̇ came from quantum fluctuations at the inflationary
stage. The characteristic size of the region with a definite sign of θ̇ is microscopically
small, lin f

B ∼ H−1, and even after the redshift zreh + 1 = Treh/3 K it remains much
smaller than the size of baryonic domains now, lB > 10 Mpc.
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Let us now turn to the pseudo-Goldstone case, when θ has a non-vanishing poten-
tial V (θ) = Λ4 cos θ . If θ is close to the minimum of this potential, it can be approx-
imated by the mass term, namely V (θ) ≈ −1+m2v2(θ −π)2/2 with m2 = Λ4/v2.
The equation of motion for θ now acquires an extra term related to the potential force

v2θ̈ + 3H θ̇ + V ′(θ) = ∂μ Jμ
B . (7.43)

Here we have also taken into account the Hubble friction term connected to the
expansion of the Universe. We assume that initially θ is away from its equilibrium
value θeq = π . It is natural to assume that θ can be found anywhere in the interval
(0, 2π) with equal probability. During inflation, when H � m, the magnitude of θ

remains practically constant due to the large friction term, 3H θ̇ . The region with a
constant θ is exponentially inflated, lB ∼ li exp(Ht), and may be large enough to
be bigger than the lower limit of the size of baryonic domains today. When inflation
is over and the Hubble parameter falls below m, we can neglect the Hubble friction
and the field θ starts oscillating in accordance with the equation

θ̈ + m2θ = −∂μ Jμ
B /v2 . (7.44)

The oscillation of θ would produce both baryons and antibaryons, but with different
number densities because the current jμB is not conserved. To calculate this asymme-
try, the following arguments have been used in the literature. The equation of motion
for θ with the back reaction of the produced particles was assumed to be

θ̈ + m2θ + Γ θ̇ = 0 . (7.45)

This equation has a solution correctly describing the decrease of the amplitude of θ

due to production of particles, namely

θ = θi exp(−Γ t/2) cos(mt + δ) . (7.46)

Comparing Eqs. (7.44) and (7.45), one may conclude that

∂μ Jμ
B = v2Γ θ̇ . (7.47)

However, this identification is not correct (Dolgov and Freese 1995; Dolgov et al.
1997). It can easily be seen that, if Eq. (7.47) were true, then the energy of the
produced particles would be larger than the energy of the parent field θ . This is
impossible, of course. Indeed, if the expression (7.47) were correct, then the energy
density of the produced baryons could be estimated as follows. The energy of each
quark produced by the field oscillating with the frequency m is equal to m/2. The
total number density of the produced quarks, nQ + nQ̄ , is larger than the density of
the baryonic charge, nB = nQ − nQ̄ . So the energy density of the produced baryons
is larger than mnB . From Eq. (7.47) it follows that nB is linear in θ , while the energy
density of the field θ is quadratic in θ . Thus in the limit of small θ the energy of
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the produced particles would be bigger than the energy of the field-creator. This
contradicts the energy conservation and proves that the identification made above is
wrong. In fact, the correct solution of the equation does not necessarily mean that
the equation itself is correct. For example, one can describe the decaying field by the
equation

θ̈ + (m − iΓ/2)2θ = 0 . (7.48)

This equation has the same solution (7.46), but does not permit to make the identifi-
cation (7.47).

In Dolgov and Hansen (1999), Dolgov and Freese (1995), we have derived in the
one loop approximation the equation of motion for θ with the account of the back
reaction of the produced fermions. It is a non-local non-linear equation which, in the
limit of small amplitudes of θ , has the same solution as Eqs. (7.45) and (7.48) but
does not permit to make the wrong identification (7.47). The direct calculation of the
particle production by the time-dependent field (7.46) gives the result (Dolgov et al.
1997)

nB ∼ η2ΓΔB(Δθ)3 , (7.49)

where Γ is the width of the θ -decay with the non-conservation of the baryonic charge
and Δθ is the difference between the initial and final values of θ . The asymmetry
is proportional to the cube of the initial value of θ and not just to the first power,
because the asymmetry oscillates as a function of time with alternating signs and
thus the net effect appears due to a non-complete cancellation of the integral of
the oscillating function with decreasing amplitude. The asymmetry in this case can
roughly be estimated as

η = g2(Δθ)3 v2m

T 3 . (7.50)

In this scenario, the size of the baryonic-antibaryonic domains, lB , depends upon
the model parameters and can be either larger than the present day horizon or much
smaller, inside our visibility.

Let us now turn to the possibility of the interpretation of θ̇ as the baryonic chemical
potential. It enters the Lagrangian as Lθ = θ̇nB , exactly in the same way as a
chemical potential should enter the Hamiltonian. However, from the relation between
L and H

H = ∂L

φ̇
φ̇ − L (7.51)

follows that the contribution from Lθ into the Hamiltonian formally vanishes. The
Hamiltonian depends upon nB through the canonical momentum, P = ∂L /∂θ̇ =
2v2θ̇ + nB . So from the kinetic term in the Lagrangian, v2(∂θ)2, one gets H =
(P − nB)2/4v2. However, if the field θ is external (let us denote it now with the
capital letter Θ), so that the Lagrangian does not contain its kinetic term, and Θ only
comes there as Θ̇nB , then we do not have any equation of motion for Θ: it is an
external “constant” variable. In this case, the Hamiltonian would beH = −Θ̇nB and
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this Θ̇ is the baryonic chemical potential. In this case, for sufficiently fast reactions,
the baryonic charge density would be given by the expression (7.39).

However, for our dynamical field θ the equation of motion, which governs its
behavior, does not permit θ to be an adiabatic variable that can change slowly with
respect to the reactions with ΔB �= 0. A change of the baryonic charge implies
a similar change in θ , so an equilibrium is never reached. In the pure Goldstone
situation, this is seen of course from the equation of motion (7.40). For the pseudo-
Goldstone case, the situation is slightly more complicated, but still the result is the
same. Let us consider the Dirac equation for quarks in the presence of the θ -field

(
iγ μ∂μ − θ̇

)
Q = −gvL . (7.52)

We neglected here a possible mass term, as it is not essential. In perturbation theory,
one is tempted to neglect the right hand side of this equation because it is proportional
to the small coupling constant g and to study the spectrum of the Dirac equation with
vanishing right hand side. The dispersion relation for this equation is E = p ± θ̇ ,
where the signs + and − stand, respectively, for quarks and antiquarks. Thus energy
levels of particles and antiparticles are shifted by 2θ̇ and in equilibrium their number
densities should be different. However, the point is that any change in the population
numbers proceeds with the same speed as the change in θ or, in other words, the
non-conservation of the current that can create a difference between Q and Q̄ is
proportional to the same coupling constant g entering the equation of motion (7.40)
and governing the behavior of θ(t) in the Goldstone case. In the pseudo-Goldstone
case, the variation of θ can be dominated by the potential term (7.43). Hence, it may
change (oscillate) faster than just in the limit of vanishing potential (Goldstone limit)
and one has even less ground to suppose that θ(t) is an adiabatic variable. In this
case, the situation is worse than in the Goldstone case, because the rate of variation
of the baryonic charge is much slower than the variation of θ and the system is even
further from equilibrium.

It may be instructive to see how different fermion/antifermion levels are populated
in the presence of the θ -field in the “rotated” fermion representation, Q → exp(iθ)Q,
when the Dirac equation has the form

iγ μ∂μQ = −gvL exp (−iθ) . (7.53)

This equation, in the limit of g = 0, has the same spectrum for particles and antipar-
ticles, E = p, but the levels would be differently populated because the interaction
term (in the right hand side) does not conserve energy. Assuming that θ(t) is a slowly
varying function of time, we can write θ(t) ≈ θ̇ t . Thus in the reactions with quarks
their energy is increased by θ̇ in comparison with the energy of the participating par-
ticles, while the energy of antiquarks would decrease by the same amount. One sees
from this example that the energies of particles and antiparticles are indeed getting
different but the process of differentiation is proportional to the coupling g.
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7.3.6 Baryogenesis by Condensed Scalar Baryons

Supersymmetric theories open new possibilities for baryogenesis. First, in high
energy scale supersymmetric models the baryonic charge is not conserved. This
usually happens at energies below the GUT scale. Second, there exist scalar partners
of baryons with a non-zero baryonic charge, for example, superpartners of quarks
(they are denoted χ in what follows). The potential for these fields generically has the
so-called flat directions, along which the field can evolve without changing energy.
This means, in particular, that the mass of χ is zero.

A massless scalar field is known to be infrared unstable in de Sitter background.
Its vacuum expectation value is singular at m = 0 (Bunch and Davies 1978)

〈φ2
m〉 = 3H4

8π2m2 . (7.54)

If the field is strictly massless, then its fluctuations rise as 〈φ2
0〉 = H3t/(2π)2, as

it was argued in Vilenkin and Ford (1982), Linde (1982), (though see Dolgov and
Pelliccia (2006) for a different result). If the mass is small but non-zero, the rise of the
field terminates when its potential energy becomes equal to the kinetic one, U (φ) ∼
H4. Wavelengths of quantum fluctuations are exponentially stretched up together
with the expansion and during the inflationary stage “classical” condensates of light
scalar fields can be developed. These condensates may store a baryonic charge (if the
field, like e.g.χ , possesses it) and when inflation is over, the decay ofχ would produce
a baryon asymmetry. The picture is slightly more complicated by the following
reasons. First, the field χ should not possess any conserved quantum number. The
current conservation condition

Dμ Jμ = ∂μ Jμ + 3H j0 = 0 (7.55)

makes any conserved current density vanish since J 0 ∼ exp(−3Ht). Thus only
colorless and electrically neutral combinations of the fields may condense. When,
after some symmetry breaking, the flat directions become curved (e.g. the mass
mχ became non-zero) and the Universe expansion rate becomes smaller than the
mass, H < mχ , the field can evolve down to the mechanical equilibrium point at
χ = 0. During this relaxation down to χ = 0, the field χ can decay into quarks,
most probably conserving the baryonic number B, and release the baryonic charge
stored in the condensate into the baryonic charge of quarks. This is the basic idea of
the Affleck-Dine scenario of baryogenesis (Affleck and Dine 1985). However, one
should keep in mind that the baryonic charge is not accumulated in the amplitude of
the scalar baryon field, but in its phase rotation analogous to a mechanical angular
momentum, see below Eq. (7.59).

As a toy model possessing these properties, we consider the scalar baryon, χ ,
with the self-interaction potential
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Uλ(χ) = (λ/2)
(

2|χ |4 − χ4 − χ4∗) = λ|χ |4 (1 − cos 4θ) , (7.56)

where χ = |χ | exp(iθ). There are four flat directions in this potential along the lines
cos 4θ = 1 in the complex χ -plane. The potential breaks the symmetry with respect
to the phase rotation χ → χ exp(iα). It means that the baryonic charge of χ is
not conserved, as expected. In addition to the quartic potential (7.56), we add the
following mass term

Um(χ) = m2|χ |2 [1 − cos (2θ + 2α)] . (7.57)

Here α is some unknown phase. If α �= 0, C and CP are explicitly broken.
“Initially” (at inflation), χ is away from the origin, due to quantum fluctuations as

discussed above, and when inflation is over, χ starts evolving down to the equilibrium
point, χ = 0, according to its equation of motion. For a homogeneous χ , the latter
coincides with the equation of motion of a point-like particle in Newtonian mechanics

χ̈ + 3H χ̇ + U ′(χ) = 0 . (7.58)

The baryonic charge of χ is

Bχ = θ̇ |χ |2 (7.59)

and it is analogous to a mechanical angular momentum. When χ decays, its baryonic
charge is transferred to that of quarks in a B-conserving process. Thus we can easily
visualize the process without an explicit solution of the equations of motion.

For massless χ , the B-charge is accumulated in its “rotational” motion, induced
by quantum fluctuations in a direction orthogonal to the valley. The space average
value of the baryonic charge is evidently zero and, as a result, a globally charge
symmetric universe is created. The size of the domain, lB , with definite sign of the
baryonic charge density, is determined by the size of the regions with a definite sign
of θ̇ . Normally, the size of the regions with definite θ̇ is microscopic and this leads to a
very small lB . However, if the Hubble parameter at inflation happens to be larger than
the second derivative of the potential Uλ in the direction orthogonal to the valley, the
field motion in the orthogonal direction is frozen during the exponential expansion
and the size of the domains with a fixed value of B may be large enough.

The situation would be different if m �= 0. In this case, the initial angular momen-
tum or, which is the same, the initial baryonic charge of χ could be zero, but the
rotational motion (or baryonic charge) may be created by a different direction of
the valley at low χ . At large χ , the direction of the valley is determined by Uλ(χ),
Eq. (7.56), while at small χ the quadratic part (7.57) dominates.

If the CP-odd phase in Eq. (7.57) is zero, namely α = 0, but the flat direction of
Uλ along which χ condenses is orthogonal to the flat directions of Um , the field χ can
rotate with 50 % probability clock-wise or anti-clockwise creating a baryonic or an
antibaryonic universe. If inflation helps, such regions could be sufficiently large. This
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is an example of baryogenesis without an explicit C and CP violation and without
the domain wall problem.

If the CP-odd phase α is small but non-vanishing, the rotation of χ when it
approaches the m-valley proceeds with different probabilities in different directions.
Hence, both baryonic and antibaryonic regions are possible with a dominance of one
of them. Matter and antimatter domains may exist, but globally B �= 0.

A very interesting picture appears if the field χ is coupled to the inflaton with the
general renormalizable coupling (Dolgov and Silk 1993)

LχΦ = λ|χ |2 (Φ − Φ1)
2 . (7.60)

In this case, the “gates” to the the valley can be open only for a short time, when the
inflaton field Φ is close to Φ1. The probability of penetration to the valley is thus small
and χ can acquire a large baryonic charge condensate, giving large η, up to η ∼ 1
only in a tiny fraction of space. This model would lead to a universe mostly having
the normal small homogeneous baryon asymmetry η = 6 × 10−10, which could be
created by one of the standard mechanisms described above, with relatively rare
compact high-B regions. Depending upon the concrete model, the high-B regions
may be symmetric with respect to baryons and antibaryons or dominated by one of
them. This scenario is discussed in more detail in the next section.

7.4 Cosmological Antimatter

The prediction of antimatter is justly prescribed to Dirac (1928), who found on the
basis of the Dirac equation the existence of a solution with an electric charge opposite
to that of electron. He initially assumed that this “electron” with positive electric
charge was the proton. At that time, physicists were rather reluctant to introduce new
particles, in drastic contrast to the present days. However, Oppenheimer criticized
such an interpretation, pointing out that in this case hydrogen would be very unstable.
This led Dirac to conclude in 1931 that the “antielectron” was a new particle, the
positron, with the same mass as the electron. Very soon after that, in 1933, Carl
Anderson discovered positrons. Dirac received his Nobel prize immediately after
this discovery, and Anderson got it three years later, in 1936.

In his Nobel lecture “Theory of electrons and positrons”, on December 12, 1933,
Dirac said about antimatter in the Universe: “It is quite possible that...these stars
being built up mainly of positrons and negative protons. In fact, there may be half
the stars of each kind. The two kinds of stars would both show exactly the same
spectra, and there would be no way of distinguishing them by present astronomical
methods”. However, we see in what follows that there are such ways and we can
conclude whether a star is made of antimatter making astronomical observations
from Earth.

It is surprising that in 1898, 30 years before Dirac and 1 year after the discovery
of electron by Thomson, Arthur Schuster (another British physicist) conjectured that
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there might be another sign of electricity. He called it antimatter and he supposed
that there might be entire solar systems made of antimatter and indistinguishable
from ours (Schuster 1898). Schuster made the wild guess that matter and antimatter
were capable of annihilating and producing energy. It happened to be ingenious and
true. He also believed that matter and antimatter were gravitationally repulsive, since,
according to his assumption, antimatter particles had negative mass and gravitation-
ally repelled from matter particles. Two such objects in close contact would have
vanishing mass! As we know now, this is not the case and matter and antimatter have
mutual gravitational attraction.

Presently, the common belief is that the Universe is populated only by matter
and meager antimatter is of secondary origin. Nevertheless, despite quite strong
observational restrictions on possible existence of antimatter domains and antimatter
objects, as it is discussed at the beginning of this chapter, it is still not excluded that
antimatter may be abundant in the Universe and even in the Galaxy, not too far
from us. For this reason, there is an active search for cosmic antimatter by several
instruments: BESS (Balloon Borne Experiment with Superconducting Solenoidal
Spectrometer) (Sasaki 2008), PAMELA (Payload for Antimatter Matter Exploration
and Light-nuclei Astrophysics) (Boezio 2008; Picozza and Morselli 2008), and AMS
(AntiMatter Spectrometer or Alpha Magnetic Spectrometer) (Alcaraz 1999). Some
new detectors are under discussion now. Existing and new missions could either
eliminate or strongly diminish the remaining room for antimatter objects such as
antistars. If we are lucky, we might discover antisolar systems, as was envisaged by
Schuster and Dirac.

There are many theoretical models leading to an abundant creation of antimatter
in the Universe. For example, if CP invariance is broken spontaneously (Lee 1974),
the Universe would be equally populated by matter and antimatter. At least two
scenarios of baryogenesis, discussed in Sects. 7.3.5 and 7.3.6, are quite favorable
for the creation of antiworlds. Unfortunately, in their simple forms such models are
strongly restricted either by astronomical observation or BBN and CMB data.

However, not all is that bad. We briefly describe below a scenario for which the
existing bounds are not applicable or much weaker, and which allows for abundant
antimatter even in the Galaxy, almost at hand. The scenario is based on the model
described in the previous subsection. As it is mentioned there, we need to intro-
duce the coupling (7.60) to close the gates to the flat directions for most of the time
of the χ evolution. To make the size of antimatter domains or stellar like objects
with high (anti)baryon density astronomically large, the gates should be open during
inflation but not too far from its end to make these objects inside the present day
horizon. This is the only tuning of the model. We also slightly modify the original
χ potential (7.56) and (7.57) including the well known Coleman-Weinberg correc-
tion (Coleman and Weinberg 1973), the last term in Eq. (7.61) below, which arises
as a result of summation of one-loop diagrams in scalar field theory with quartic
interaction

Uχ (χ) = [(m2
χχ2 + h.c.) + λχ(χ4 + |χ |4) + h.c.)] + λ2|χ |4 ln

|χ |2
σ 2 , (7.61)
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Fig. 7.1 Behavior of Uχ (χ)
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The coupling (7.60) in addition to this potential acts as a positive time-dependent
mass and thus it almost always keeps the gate to the valleys closed, except for a short
period when Φ is near Φ1.

There is a small chance for χ to reach a high value and create a large baryon
asymmetry. The behavior of the potential Uχ (χ) + Uint (χ,Φ) for different values
of the effective mass mef f (t) = λ[Φ(t) − Φ1]2 is shown in Fig. 7.1. The potential
evolves down from the upper to the lower curve, reaching the latter when Φ = Φ1,
and then the potential returns back practically to the higher curve, when Φ drops
below Φ1. Correspondingly, the field χ rolls down toward the deeper minimum,
oscillates there following the evolution of the minimum, rolls back to the origin, and
starts rotating around it, as shown in Fig. 7.2.
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Since the inflaton opens the gate to the deeper minimum only for a short time, the
probability for χ to reach a high value is low, so in most of the space baryogenesis
creates a normal tiny baryon asymmetry, but in some bubbles occupying a small
fraction of the whole volume, baryon asymmetry may be huge.

After the QCD phase transition, the contrast in baryonic charge density trans-
formed into perturbations of the energy/mass density and the bubbles with high B
could form primordial black holes or compact stellar-like objects. The mass distrib-
ution of these high-B bubbles has practically the model independent shape

d N

d M
= CM exp

[
−γ ln2 (M − M1)

2

M2
0

]
, (7.62)

with the model dependent parameters CM , γ , M1, and M0. The values of the para-
meters can be adjusted in such a way that superheavy black holes formed at the tail
of this distribution are abundant enough to be present in every large galaxy and in
some small ones. Such heavy primordial black holes could be the seeds for galaxy
formation. There is no satisfactory mechanism for the creation of superheavy black
holes in the framework of standard physics, but the mechanism considered here can
successfully fulfill this task.

The evolved chemistry in early quasars can be explained, at least to some extend,
by a more efficient production of metals during the BBN, due to a much higher value
of η = nB/nγ . The standard BBN essentially stops at the synthesis of 4He because of
the very low value of η. However, in the model considered here η can be much larger
than the canonical value, even close or larger than 1. In such conditions, much heavier
primordial elements can be produced (Nakamura et al. 2015; Matsuura et al. 2004,
2005; Matsuura 2007). It is possible that some stars initiated with more metals than
the usual ones and today they look older than they are, because their age is evaluated
by the standard nuclear chronology. They might even look older than the Universe.
This model readily explains the creation of several types of astronomical objects in
the very early Universe that are difficult or even impossible to create otherwise.

Recently, several stars have been discovered in the Galaxy with an unexpectedly
high age. Employing thorium and uranium abundances in comparison with each other
and with several stable elements, the age of the metal-poor halo star BD+17◦ 3248
has been estimated 13.8 ± 4 Gyr in Cowan (2002). For comparison, the estimated age
of the inner halo of the Galaxy is 11.4 ± 0.7 Gyr (Kalirai 2012). The age of the star
HE 1523-0901 in the Galactic Halo has been estimated to be about 13.2 Gyr (Frebel
et al. 2007). In that work, many different chronometers, such as the U/Th, U/Ir,
Th/Eu and Th/Os ratios have been employed for the first time to measure the star age.
Most puzzlingly, it is probably the determination of the age of the metal deficient
high velocity subgiant in the solar neighborhood HD 140283, which seems to be
14.46 ± 0.31 Gyr old (Bond et al. 2013). The central value of the age exceeds the
Universe age by two standard deviations, if H0 = 67.3 km/s/Mpc, and if H0 is larger,
H0 = 74 km/s/Mpc, as is shown by the direct astronomical determination, the star
would be older than the Universe by more than six standard deviations.
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Galaxies at high redshifts, z ∼ 10, cannot be observed with normal optical tele-
scopes, which are not sensitive enough for such distant objects. Fortunately, natural
gravitational lens telescopes allow to see them if the “telescope” happens to be on
the light ray from the galaxy to the terrestrial observers. In such a way, a galaxy at
z ≈ 9.6 was discovered in Zheng (2012). The galaxy was formed when the Universe
was about 500 Myr old. Even more striking, a galaxy at z ≈ 11 has been observed
(Coe 2013), which was formed before the Universe age was 0.41 Gyr (or even shorter
with larger H0).

Quoting Melia (2014): “Observations with WFC3/IR on the Hubble Space Tele-
scope and the use of gravitational lensing techniques have facilitated the discovery
of galaxies as far back as z ∼ 10 − 12, a truly remarkable achievement. However,
this rapid emergence of high z galaxies, barely 200 Myr after the transition from
Population III star formation to Population II, appears to be in conflict with the
standard view of how the early Universe evolved. This problem is very reminiscent
of the better known (and probably related) premature appearance of supermassive
black holes at z ∼ 6. It is difficult to understand how 109 M� black holes appeared
so quickly after the big bang without invoking non-standard accretion physics and
the formation of massive seeds, both of which are not seen in the local Universe”.
A quasar with z = 7.085 has been discovered (Mortlock 2011), i.e. it was formed
at t < 0.75 Gyr. Its luminosity is 6.3 · 1013 L� and its mass is 2 · 109 M�. Quasars
are supposed to be supermassive black holes and their formation in such a short time
looks problematic with conventional mechanisms.

There are strong indications that every large galaxy, as well as some relatively
small ones, contain a central supermassive black hole. The mass of the black hole
may be larger than 10 billions M� in giant elliptical and compact lenticular galaxies
and about a few millions M� in spiral galaxies like the Milky Way. The mass of
one of these object is typically 0.1 % of the mass of the stellar bulge of the host
galaxy, but some galaxies seem to have huge black holes: for instance, NGC 1277
has a supermassive black hole of 1.7 · 1010 M�, which corresponds to 60 % of the
bulge mass of the host galaxy (Bosch et al. 2012). Another interesting example is the
possible existence of a supermassive black hole in the ultra-compact dwarf galaxy
M60-UCD1 (Seth 2014) with a mass of about 20 millions M�, namely 15 % the total
mass of the object. According to the conclusion of the authors, the high black hole
mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy.
On the other hand, the authors observed that “M60-UCD1’s stellar mass is consistent
with its luminosity, implying that many other ultra-compact dwarf galaxies may also
host supermassive black holes. This suggests a substantial population of previously
unnoticed supermassive black holes”. These facts create serious problems for the
standard scenario of formation of central supermassive black holes by accretion of
matter in the central part of a galaxy. An inverted picture looks more plausible, when
first a supermassive black hole formed and then attracted matter serving as seeds for
the subsequent galaxy formation. The recent discovery (Strader 2013) of an ultra-
compact dwarf galaxy older than 10 Gyr, enriched with metals, and probably with a
massive black hole at its center seems to be at odds with the standard model as well.
The dynamical mass of this galaxy is 2 · 108 M� and its radius is R ∼ 24 pc, so
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the galaxy density is extremely high. There is a variable central X-ray source with
luminosity L X ∼ 1038 erg/s, which may be an active galactic nucleus associated
with a massive black hole or a low-mass X-ray binary.

Observations of high redshift gamma ray bursts (GBRs) also indicate a high
abundance of supernova at large redshifts, if GBRs are very early supernovae. The
highest redshift of the observed GBR is 9.4 (Cucchiara 2011) and there are a few
more GBRs with smaller but still high redshifts. The necessary star formation rate
to explain these early GBRs is at odds with the canonical star formation theory.

A natural byproduct of this scenario is an abundant antimatter creation because the
χ rotation can be in both directions, as explained in Sect. 7.3.6. Since the antiobjects
formed in this way would be usually compact, the upper bounds on their abundance
discussed in Sect. 7.1 are very much weakened, including the bounds from the BBN
and the CMB, as well. The phenomenology of similar antimatter objects is discussed
in Bambi and Dolgov (2007), Blinnikov et al. (2015).

Problems

7.1 How can the charge asymmetry generated in heavy particle decays vanish in
equilibrium? It is stated in the literature that the inverse decay does the job. However,
one can see that it is not so because, using CPT, one finds:

Γq̄q̄→X̄ = (1 + Δq)Γq , Γql→X̄ = (1 − Δl)Γl ,

Γqq→X = (1 − Δq)Γq , Γq̄l̄→X = (1 + Δl)Γl . (7.63)

Thus direct and inverse decays produce the same sign of baryon asymmetry!
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Chapter 8
Big Bang Nuclesynthesis

The big bang nucleosynthesis (BBN) is the production of light elements (deuterium,
helium-3, helium-4, and lithium-7) in the early Universe, a few minutes after the
big bang, when the temperature of the primordial plasma was between 1 MeV and
10 keV.Heavier elementswere not produced for lack of time, because the temperature
dropped down quickly, and those in the Universe today are mainly produced in stellar
processes and supernovae explosions.

The calculation of the primordial abundances of light elements is governed by the
Friedmann equations, the matter content of the Standard Model of particle physics,
the properties of elementary particles, especially those of neutrinos, and nuclear
reaction rates that can be measured in laboratory. Two very important features of the
BBN are the freeze-out of the weak interactions, which occurred when the Universe
temperaturewas around 1MeV, and the deuteriumbottleneck,which took place at the
temperature T ≈ 70 keV and determined the onset of the synthesis of light elements.
In this framework, the abundances of deuterium (X D), helium-3 (X3), helium-4 (Y4),
and lithium-7 (X7) are computed as functions of the baryon to photon number ratio,
η, at the end of the nucleosynthesis (after the e−e+ annihilation). The latter is the only
free parameter in the standard BBN. From the comparison of theoretical predictions
and observational data, it is possible to infer η. While the primordial abundances of
light elements could potentially vary bymany orders of magnitude for different η, the
fact that all they converge to the values which correspond to the same η in the range
10−10 − 10−9 supports the hypothesis of the same mechanism of their production.
This is seen as a great success of the theoretical framework, and as a milestone of
the Standard Model of cosmology. Today, we can obtain a more accurate and precise
measurement of η from the study of the anisotropies of the CMB and its value turns
out to be consistent with that inferred from the BBN. The BBN provided also the first
indication for the existence of non-baryonic dark matter. From the estimate of η, we
can determine the contemporary value of the ratio of the energy density of baryons to
the critical energy density,ΩB .We findΩB ≈ 0.05, which is substantially lower than
the contribution from the gravitating matter,Ωm ≈ 0.30, inferred from the rotational
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162 8 Big Bang Nuclesynthesis

curves of galaxies, cosmological large scale structure, baryon acoustic oscillations,
and more. The current interpretation is that most of the matter in the contemporary
Universe may be made of weakly interacting massive particles beyond the Minimal
Standard Model (MSM) of particle physics.

8.1 Light Elements in the Universe

As shown in Sect. 1.2.2, nuclear reactions inside stars have produced only a small
fraction of the helium-4 present today in the Universe. Most of the helium-4 was
produced in the early Universe during the BBN. However, if we want to test the pre-
dictions of the Standard Model of cosmology, it is necessary to be able to measure
the primordial abundance of helium-4, as well as those of the other light elements.
This is not easy, in general, because the primordially produced elements are contami-
nated by their production or destruction in the course of the subsequent cosmological
evolution till the present time. The strategy is to find specific astrophysical sites in
which the light element abundances may be close to the primordial ones. The present
situation can be summarized as follows:

1. Deuterium can be easily burnt in many stellar processes, so the measurement of
its abundance can be likely considered as a lower limit of the primordial one.
The current best approach to estimate X D seems to be the observation of quasar
absorption line systems, namely high redshift clouds seen along the line of sight
of a quasar. The light emitted by the quasar is partially absorbed by the cloud and
themeasurement of the deuterium absorption line provides an estimate of the deu-
terium abundance in the high redshift cloud. The latter is thought to be close to the
deuterium abundance after the BBN. Current astronomical observations suggest
a deuterium to hydrogen number density ratio at the level of 2−4 ·10−5 (Kirkman
et al. 2003). However, the dispersion among different measurements is usually
not consistent with the errors in the single measurements. This may be prescribed
to peculiar velocities in the cloud.

2. The abundance of helium-4 is traditionally expressed in terms of mass abundance
and indicated by the symbol Y4, while for the other light elements it is common
to use the nucleus number abundance. Helium-4 is a very stable nucleus and it
is produced inside stars, so the measurement of its abundance can be assumed to
be an upper bound of the primordial one. The abundance of helium-4 is usually
measured in the so called HII extragalactic regions, which are the extragalactic
regions where most of the hydrogen is neutral. The abundance of helium-4 in
these regions is a monotonically increasing function of the metallicity, namely
the abundance of elements heavier than helium-4. The metallicity reflects the
activity of stellar processes: lower is the metallicity, less nuclear reactions have
taken place. The primordial abundance of helium-4 is inferred by extrapolating
the measurements of low metallicity HII extragalactic regions to zero metallicity.
Current observations suggest Y4 ≈ 0.25 (Aver et al. 2013; Izotov et al. 2007;
Olive and Skillman 2004).

http://dx.doi.org/10.1007/978-3-662-48078-6_1
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3. Measurements of the primordial abundances of helium-3 and lithium-7 are more
uncertain. Helium-3 measurements only come from high metallicity regions, and
for this reason they cannot be compared with the BBN predictions. In the case
of lithium-7, the measurements are based on observations of metal-poor stars in
the spheroid of our Galaxy. Stars with a metallicity lower than about 0.03 of the
Solar metallicity have similar values of X7, which is usually interpreted as an
indication in favor of the hypothesis that their lithium-7 abundance is close to the
primordial one. Current estimates suggest X7 ≈ 2 ·10−10 (Melendez et al. 2010).
However, these measurements may be affected by systematic effects related to
the model adopted to describe the stellar atmosphere.

8.2 Freeze-Out of Weak Interactions

In the Standard Model of cosmology, the Universe expands and the temperature of
the primordial plasma drops down. According to the Standard Model of particle
physics, when the temperature of the plasma is around 10 MeV, the relativistic par-
ticles in thermal equilibrium are photons, electrons, positrons, and all the neutrinos
and antineutrinos. The non-relativistic particles in thermal equilibrium are protons
and neutrons, and there are probably out-of-equilibrium dark matter particles. One
could expect that the energy density of non-relativistic particles is exponentially
suppressed, as it is argued in Sect. 5.2.1. However, this is not so because, due to the
cosmological baryon asymmetry, the proton and neutron densities are much higher
than the equilibrium oneswith vanishing chemical potentials. The same is true for the
darkmatter particles, whichwere frozen atmuch higher temperatures, see Sect. 5.3.2.
Nevertheless, the energy density of non-relativistic species is negligible at the BBN,
because today the ratio between the energy density of non-relativistic and relativistic
matter is approximately 104. Hence at the redshift z ∼ 109 this ratio is about 10−5.
The energy density of the Universe is essentially given by that of relativistic particles,
namely ρ ≈ ρrel . Hence the first Friedmann equation can be written as

H =
√

8π

3M2
Pl

ρrel =
√

8π

3M2
Pl

π2

30
g∗T 4 , (8.1)

where g∗ is the effective number of degrees of freedom and T is the photon temper-
ature. For T = 10 MeV, the Standard Model of particle physics predicts

gSM∗ (T = 10 MeV) = gγ + 7

8

[
ge− + ge+ + NF (gν + gν̄ )

]

= 2 + 7

8
[2 + 2 + 3 (1 + 1)] = 10.75 , (8.2)
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where NF indicates the lepton generation number, assuming that all the neutrino
species are light. To constrain the possible existence of additional degrees of freedom
coming from new physics, say the existence of light neutrinos/antineutrinos from
a hypothetical forth generation or the presence of some light particle beyond the
Standard Model, we can write

g∗ = gSM∗ + 7

4
ΔNν , (8.3)

where ΔNν would indicate the effective number of extra neutrino species, but it is
commonly used to denote any kind of particles keeping this notation. ΔNν can be
treated as a free parameter capable of altering the primordial abundances of light
elements and to be determined from the comparison of theoretical predictions and
observational data.

Though the energy densities of protons and neutrons are negligible in the Fried-
mann equations, their presence in the primordial plasma is very important for the
light element formation. Neutrons and protons remain in thermal (kinetic) equilib-
rium with the primordial plasma through the following processes

n + e+ ↔ p + ν̄e ,

n + νe ↔ p + e− ,

n → p + e− + ν̄e . (8.4)

It is known from the charge neutrality of the cosmological plasma that the chemical
potential of electrons and positrons at the BBN temperatures is negligible. As for
neutrinos, observations allow for a rather high value, μν/T � 0.1, but this demands
rather exotic scenarios of leptogenesis. So in what follows we neglect the chemical
potential of relativistic particles. Thus the equilibrium with respect to the above
processes implies μn ≈ μp. From Eq. (5.10), we find that the ratio of the neutron to
proton number densities is

nn

n p
≈ eΔm/T , (8.5)

where Δm = mn − m p = 1.29 MeV is the mass difference between neutrons and
protons. Neutrons and protons are maintained in thermal equilibrium by the weak
interactions (8.4). The reaction rate of the first two processes is Γ ∼ σnv, where
σ ∼ G2

F T 2 is the cross section (see Sect. 3.5), n ∼ T 3 is the number density of the
relativistic particles involved, and v ∼ 1 is the particle’s velocity. The temperature
of freeze-out of the weak interactions, T f , is found by equalling the reaction rate
Γ ∼ G2

F T 5 with the expansion rate of the Universe H . We find

Γ

H

∣∣∣
T =T f

= 1 ≈
√
10.75

g∗

(
T f

0.8 MeV

)
. (8.6)
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The assumption of the instant freeze-out at a well-defined temperature is clearly an
approximation, but it works fairly well. More precise calculations demand the use
of the kinetic equation specified in Sect. 5.2.2 with the collision integrals for all the
three processes (8.4). In the limit of zero electron mass and Boltzmann statistics, the
collision integrals can be taken analytically and the resulting first order differential
equation for the n/p ratio allows for an approximate analytical solution and, of
course, it can be easily solved numerically. The precise calculations of the n/p ratio
can be, and are done, numerically without any approximation.

The neutron to baryon number density before the freeze-out of the weak interac-
tions (8.4) is given by

Xn(t < t f ) = nn

n p + nn
= 1

n p/nn + 1
= 1

eΔm/T + 1
, (8.7)

which is a function of the temperature only. After the freeze-out of the weak interac-
tions, neutrons and protons are not in thermal equilibrium any more. The processes
in (8.4) are thus frozen, except for the free neutron decay. For this reason, at later
times we have

Xn(t > t f ) = e−t/τn

eΔm/T f + 1
. (8.8)

Wenote that a variation of the freeze-out temperature, for instance due to newphysics,
can quite significantly change Xn , because Δm/T f ∼ 1.

8.3 Electron-Positron Annihilation

When the temperature of the Universe drops below me = 0.5 MeV, electrons and
positrons become non-relativistic and their abundances start decreasing exponen-
tially. As described in Sect. 5.2.3, the e± energy density is transferred to the cosmo-
logical plasma. However, at these temperatures neutrinos are not in thermal equilib-
rium any more, so the electron-positron annihilation only heats the photon gas. So
after the e+e− annihilation the temperature of photons becomes higher than the tem-
perature of neutrinos. The entropy conservation allows to find the relation between
the photon and the neutrino temperatures (5.37)

Tγ =
(
11

4

)1/3

Tν , (8.9)

as already discussed in Sect. 5.3.1. The temperature of neutrinos is lower simply
because neutrinos cannot benefit of the electron-positron annihilation. The expansion
rate of the Universe now requires the following g∗ factor

http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
http://dx.doi.org/10.1007/978-3-662-48078-6_5
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Fig. 8.1 Baryon to photon number ratio as a function of the temperature of the primordial plasma
for the case η = 6.1 · 10−10

gSM∗ (T = 100 keV) = gγ + 7

8

(
4

11

)4/3

NF (gν + gν̄ ) = 3.36 . (8.10)

We also note that this alters the baryon to photon number ratio η. Figure8.1 shows
the result of the numerical calculations of the evolution of baryon to photon number
ratio as a function of the temperature of the Universe.

8.4 Deuterium Bottleneck

The first step to produce light elements is the synthesis of deuterium. When the
reaction n + p ↔ D +γ is in thermal equilibrium, the relation between the chemical
potential of protons, neutrons, and deuterium is

μn + μp = μD + μγ = μD , (8.11)

and the deuterium number density is

nD = gD

(
m DT

2π

)3/2

e−m D/T e(μn+μp)/T . (8.12)
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Equation (8.12) can be rewritten as

nD = nnn p
nD

nnn p
= nnn p

gD

gngp

(
m D

mnm p

)3/2 (
2π

T

)3/2

e(mn+mn−m D)/T

= nnn p
gD

gngp
23/2

(
2π

m N T

)3/2

eW/T , (8.13)

where m N ≈ mn ≈ m p ≈ m D/2 is the nucleon mass and W = mn + mn − m D =
2.225MeV is the deuteriumbinding energy. The deuterium to baryon number density
ratio is thus

X D = nD

nB
= nn

nB

n p

nB
nB

gD

gngp
23/2

(
2π

m N T

)3/2

eW/T , (8.14)

where nB is the baryon number density. If we use the neutron to baryon number
density ratio, Xn = nn/nB , and the proton to baryon number density ratio, X p =
n p/nB , we can write X D as

X D = Xn X pηnγ

gD

gngp
23/2

(
2π

m N T

)3/2

eW/T . (8.15)

Here η = nB/nγ is the baryon to photon number density ratio, which is the only free
parameter in the standard BBN. Since gD = 3, gn = gp = 2, and nγ ≈ 0.24T 3,
Eq. (8.15) becomes

X D ≈ 8Xn X pη

(
T

m N

)3/2

eW/T . (8.16)

The synthesis of deuterium effectively starts when its abundance is not negligible any
more. At first approximation, we can demand that in Eq. (8.16) X D ∼ Xn ∼ X p ∼ 1.
This determines the temperature of the production of deuterium

TD ≈ W

− ln η − 3
2 ln

TD
m N

. (8.17)

For η ≈ 6 · 10−10, the temperature is TD ≈ 70 keV. This is roughly the correct
value, as can be checked by a comparison with numerical calculations. We note
that TD � W ; that is, the production of deuterium becomes possible only when
the temperature of the plasma is significantly lower than the deuterium binding
energy. The reason is that η � 1, namely there are many photons with respect to
baryons, and therefore even when the temperature of the plasma is lower than the
deuterium binding energy, there are still many photons with energy higher than W
and they can thus destroy deuterium nuclei. It is necessary to wait that the photon
temperature becomes much lower than W , so the photons with such an energy would
be sufficiently rare. At that point, the production of deuterium turns to be efficient.
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8.5 Primordial Nucleosynthesis

The production of light elements can only start at the temperature TD , when the
abundance of deuterium is not negligible any more. The synthesis of deuterium is
indeed the necessary first step for that of heavier elements and therefore the BBN
is inhibited by the difficulty to form deuterium. At lower temperatures, energetic
photons in the primordial plasma are not abundant any more, and the deuterium syn-
thesis becomes efficient. However, deuterium is immediately burnt to form heavier
elements. At first approximation, we can assume that all the neutrons survived till the
deuterium synthesis eventually form helium-4, while only a very small fraction of
them goes to form other nuclei.Within this approximation, the primordial abundance
of helium-4 is

Y4 = 2nn

nn + n p

∣∣∣
T =TD

≈ 0.25 . (8.18)

Helium-4 is very stable, being a doubly magic nucleus with two protons and two
neutrons. Moreover, the production of heavier elements during the BBN is difficult
because of lack of time (the temperature of the Universe is dropping down quickly)
and the absence of stable nuclei with atomic number between 5 and 8. For instance,
two nuclei of helium-4mayproduce a nucleus of beryllium-8, but the latter is unstable

4He +4 He →8 Be →4 He +4 He . (8.19)

Helium-5 produced by the reaction

4He + n →5 He (8.20)

is also very unstable, and its lifetime is τ ∼ 10−23 s. Helium-3 is not very abundant,
so the reaction

4He +3 He→7Be + γ (8.21)
7Be →7 Li + e+ + νe (8.22)

producing lithium-7 cannot be efficient.
Except for helium-4, the abundances of the other light elements (deuterium,

helium-3, lithium-7) has to be computed numerically. At the end, one obtains the pri-
mordial abundances as functions of the baryon to photon ratio η, shown in Fig. 8.2.
The primordial abundance of helium-4 rather weakly depends upon η, only loga-
rithmically. On the contrary, deuterium is exponentially sensitive to η and before
the accurate CMB data became available, measurements of the deuterium abun-
dance were the best method to determine η, that is why deuterium got the name
“baryometer”.

The fact that all the observations are consistent with the baryon to photon ratio at
the level of η ∼ 5−7 · 10−10 is a great success of the standard BBN and a milestone
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are unstable and eventually decay, respectively, into helium-3 and lithium-7



170 8 Big Bang Nuclesynthesis

of the Standard Model of cosmology. Today, CMB data provide a more accurate
measurement of η: the accepted value is η = 6.1 · 10−10 (Olive et al. 2014) and this
is consistent with the estimate of η from the BBN.

Figure8.3 shows the abundances of deuterium, tritium, helium-3, helium-4,
lithium-7, and beryllium-7 as functions of the temperature of the Universe. As
we can see, the first element to be produced is the deuterium, and only when
the latter is relatively abundant the production of the other elements is possible.
Tritium and beryllium-7 are unstable and decay, respectively, into helium-3 and
lithium-7. We note that Fig. 8.3 shows the evolution of the primordial abundances
for η = 6.1 · 10−10. For different values of η, there may be some qualitative differ-
ences. For instance, with η = 6.1·10−10 most of the primordial lithium-7 comes from
the decay of beryllium-7.With a slightly lower value of η, for instance η = 2 ·10−10,
the contribution from the decay of beryllium-7 to the final abundance of lithium-7 is
negligible.

8.6 Baryon Abundance

From the BBN measurement of η, it is possible to determine the present day ratio of
the baryon energy density to critical energy density,Ω0

B = ρ0
B/ρ0

c . The contemporary
baryon energy density ρ0

B is given by

ρ0
B = m N n0

B = m N ηn0
γ , (8.23)

where n0
γ ≈ 400 photons/cm3 is the present day number density of CMB photons.

We assume that there have been no influx of energy into the CMB from the BBN
epoch till today and thus η = nB B N

B /nB B N
γ = n0

B/n0
γ .

The absence of extra heating is expectedwithin the StandardModel of cosmology,
but it may not be true in the presence of new physics. An analysis of observational
data shows no signs of that, so one can put rather restrictive bounds on possible new
physics.

As follows from the first Friedmann equation, the value of the critical density
today can be written as ρ0

c = 3M2
PlH

2
0 /(8π) and therefore

Ω0
Bh2

0 = 8π

M2
Pl

m N ηn0
γ

30, 000
(

km
s·Mpc

)2 , (8.24)

where we have used Eq. (1.8). Adopting the value η = 6 · 10−10, we find Ω0
Bh2

0 ≈
0.02. The value of h0 inferred from different observations, namely the CMB Planck
data, the study of type Ia supernovae, and the traditional astronomical measurements,
is around 0.7. There is some tension between different measurements at the level of
less than 10%.

http://dx.doi.org/10.1007/978-3-662-48078-6_1
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Using these results, we conclude that the amount of baryonic matter in the con-
temporary Universe is Ω0

B ≈ 0.04. This is significantly lower than the amount of
all the clustered gravitating matter, Ω0

m ≈ 0.30, which is found from multiple inde-
pendent astronomical data: study of the rotational curves of galaxies, gravitational
lensing, abundances of galactic clusters, angular fluctuations of the CMB tempera-
ture, baryon acoustic oscillations and other data on the large scale structure of the
Universe.

8.7 Constraints on New Physics

The BBN is a powerful tool to constrain new physics. Sometimes it is even called
a vacuum cleaner eliminating extension of the MSM. Theoretical predictions of the
primordial abundances of light elements depend on the magnitude of the cosmolog-
ical parameters and, in particular, on the expansion rate of the Universe and on the
reaction rates in particle and nuclear physics. New physics can easily alter the final
result.

The BBN has provided the first indications in support for the existence of only
three generations of fermions and in this sense made an essential contribution in
favor of the MSM. If there were a fourth generation and the neutrino associated to
the new charged lepton were light, in the sense that it would have been relativistic
at the beginning of the BBN, the effective number of degrees of freedom would be
(ΔNν = 1)

g∗(T = 10 MeV) = 10.75 + 7

4
ΔNν = 12.5 . (8.25)

This would alter the expansion rate of the Universe and thus change the freeze-out
temperature of the weak reactions of p → n transformations (8.4), see Eq. (8.6). A
fourth generation with a light neutrino would increase T f , so the neutron abundance
Xn would be higher, and eventually the BBN would produce a larger amount of
helium-4. Figure8.4 shows the theoretical prediction of the abundance of primordial
helium-4Y4 as a function of the number of neutrinos Nν . From themeasurement of the
primordial abundance of helium-4, we can argue that there are only three generations
of fermions, with the caveat that such a conclusion assumes that the neutrino of the
possible new generation is light and with properties similar to those of the three
generations of the Standard Model (Cyburt et al. 2005). Still there are indications
both from the BBN and the CMB that the effective number of the neutrino species
is larger than three, though it is compatible with three at one or two sigma level.

We can use the same ideas to constrain the abundances of other light particles
predicted in theories beyond the MSM of particle physics. If these particles interact
very weakly with ordinary matter, their presence only alters the expansion rate of
the Universe through a contribution to ΔNν . Since the baryon to photon ratio can
be determined today with a very good precision from the angular fluctuations of the
CMB, the comparison between theoretical predictions and observations can be used
to constrain ΔNν .
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Fig. 8.4 Theoretical prediction of the abundance of primordial helium-4 Y4 as a function of the
number of neutrinos Nν for the case η = 6.1 · 10−10

The expansion rate of the Universe during the BBN epoch may also deviate from
the one expected fromGeneral Relativity in the case of alternative theories of gravity
or in models with extra dimensions. For instance, in the case of one extra dimension
compactified on a circle, the effective 4-dimensional first Friedmann equation takes
the form (Cline et al. 1999)

H2 = 8π

3M2
Pl

ρ
(
1 + ρ

2σ

)
, (8.26)

where ρ is the energy density of ordinary matter on the brane, while σ is the brane
tension. Here the study of the primordial abundances of the light elements provide a
lower bound to σ .

The list of models that can be constrained, or even ruled out, by the BBN is long
and any new scenario beyond the Standard Model of particle physics or beyond
General Relativity must pass the BBN test to be seriously taken in consideration as a
viable framework. The BBN has also been used to constrain possible time variations
of fundamental constants (expected inmany extensions ofGeneral Relativity), lepton
asymmetries (introducing non-vanishing lepton chemical potentials), new particles
that may decay and destroy the nuclei produced during the BBN, inhomogeneities
during the BBN, etc. For a review, see e.g. Dolgov (2002); Malaney and Mathews
(1993).
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Problems

8.1 What is the effect on the abundance of primordial helium-4 in the following
cases?

(a) The lifetime of neutrons is longer/shorter.
(b) The tauon neutrino has a mass mντ ≈ 10 MeV.
(c) The deuterium binding energy is higher/lower.
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Chapter 9
Dark Matter

The fact that a significant fraction of the matter in the contemporary Universe cannot
be inside stars was already noted by Fritz Zwicky in 1933. Using the virial theorem,
Zwicky estimated the total mass of the Coma cluster from the motion of some of its
galaxies. He measured a mass much higher than that obtained from the brightness
of the galaxies. Subsequent studies of galaxies and galaxy clusters confirmed that
the main contribution to their masses was done by some invisible matter. This was
the first indication that most of the matter in the Universe was not in the form of
ordinary baryonic matter. However, at that time the cosmological fraction of the
energy density of matter, Ωm , was very poorly known.

Now we know that the BBN data fix the present day fraction of the baryon energy
density at the level of ΩB ≈ 0.05, see Chap.8, while the total energy density of non-
relativistic matter is approximately five times larger, Ωm ≈ 0.3, as it is found from
the analysis of the large scale structure of the Universe and the angular fluctuations
of the CMB. These data provide very strong support to the idea that most of the
matter in the Universe is not the usual baryonic one.

At the beginning of the 1990s, it was believed thatΩtot < 1 and that the Universe
was open, in contradiction with the inflationary prediction of a 3D flat universe.
There were even attempts to modify the inflationary scenario in such a way that it
could naturally lead to Ωtot < 1, but they were not particularly successful. On the
other hand, there was an accumulation of data indicating the inconsistencies of the
open universe model with lowΩtot . In particular, the calculated Universe age in such
models was smaller than the estimates obtained by the nuclear chronology and by the
ages of old stellar clusters. All such problems were eliminated after the discovery of
the accelerating expansion of the Universe. Now it is established that the Universe is
practically flat with Ωtot = 1, where the necessary 0.7 comes from the contribution
of a quite mysterious form of energy, currently called dark energy.

More details on this topic can be found in Bergstrom (2000), which provides an
extended review on the observational evidence of dark matter and possible detection
methods.
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9.1 Observational Evidence

The amount of matter in a galaxy can be inferred from the study of the rotational
velocity curve of the gas clouds around the galaxy. The velocity v as a function of
the radial distance from the galactic center r can be measured from the Doppler shift
of spectral lines. In Newtonian mechanics, we have

v(r)2

r
= GNM(r)

r2
⇒ v(r) =

√
GNM(r)

r
, (9.1)

where M(r) is the total mass within the radius r . If the stars provided the main
contribution to the mass of a galaxy, at large radii, beyond the visible galaxy, one
should expect v ∼ r−1/2. However, this is not what we observe: at large radii v ∼
const , which implies M(r) ∼ r , namely a galaxy extends to larger radii with respect
to that is seen by optical observations.

Systematic and accurate measurements of galactic rotation curves started in the
1970s (Freeman 1970) with spiral galaxies. Spiral galaxies are a class of galaxies
consisting of a central bulge and a thin disk. In the case of spiral galaxies, we find that
v increases linearly at small radii until it reaches a typical value of about 200 km/s,
and then it remains constant. On the contrary, the surface luminosity of the disk falls
off exponentially. Today we know the rotational curves of thousands of galaxies.
The measurements suggest the existence of a dark matter halo surrounding every
galaxy and with the mass about ten times larger than the mass of the visible stars
in the disk. It is worth noting that other types of galaxies seem also to be dark
matter dominated with even larger fraction of dark matter. For instance, this is the
case of dwarf spiral galaxies. Their rotational curve continues rising well beyond
the radius of the luminous disk. Figure9.1 shows the rotational curve of the galaxy
M33, which belongs to the Local Group. v does not reach a constant value but
continues rising. The dark matter contribution to the total galaxy mass is higher than
in the case of normal spiral galaxies. Strictly speaking, these methods only measure
local density inhomogeneities. Moreover, the observational identification of the dark
matter halo is difficult. Eventually, an estimate of the cosmological fraction of the
matter density suggests Ωm ≈ 0.2 − 0.4. The study of virial velocities in galaxy
clusters demonstrates the same features and provides similar results.

The measurement of Ωm inferred from the study of galactic rotation curves is
supported by a combination of independent results. The study of the supernovae Ia
at high redshift provides the strongest evidence for the present accelerating expansion
of theUniverse. If we assume that theUniverse is onlymade of non-relativisticmatter
and with a non-vanishing cosmological constant, these data can be used to constrain
the allowed area on the (ΩΛ,Ωm) plane. The analysis of the CMB anisotropies
leads to the conclusion that the Universe is almost flat, namely ΩΛ + Ωm ≈ 1. The
combination of supernovae and CMB data leads to Ωm ≈ 0.30.

All the above methods can provide an estimate of the total gravitating matter
in the Universe. They do not really tell us anything about its nature. The stellar
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Fig. 9.1 Sketch of the observed HI rotation curve of the dwarf galaxy M33 (red solid line) and of
that expected from the stellar distribution (blue dashed line)

contribution isΩstars ∼ 0.003−0.01, which is thus a small fraction ofΩm . A much
larger contribution to the mass can be made by the gas in the interstellar medium or
non-luminous bodies like planets. As shown in Chap.8, the study of the primordial
abundances of light elements requires that the fraction of baryons is ΩB ≈ 0.05
while any other form of gravitating matter does not make any contribution into it.

While there are scenarios in which only a fraction of the total amount of baryons
were available for the nucleosynthesis in the early Universe, they definitively require
exotic mechanisms. The most natural interpretation is that most of the dark matter is
not made of baryons. Non-baryonic dark matter is also required to explain the for-
mation of large scale structures (see Chap. 12). The combination of measurements of
the CMB temperature fluctuations, which probe very large scales, and measurements
of the galaxy power spectrum, which probe smaller scales, proves that non-baryonic
matter is necessary to explain observational data, because baryons were locked in
with photons until recombination, which prevented a quick growth of fluctuations.

Themost convincing evidence for the existence of non-baryonic darkmatter prob-
ably comes from the Bullet Cluster (Clowe et al. 2004). This is a system consisting
of a subcluster that passed through a cluster about 150 Myr ago. The key-point is
that the collision between the two clusters seems to have caused a separation of the
dark matter component from the baryonic one. Observations show that stars, bary-
onic matter in the form of gas, and dark matter have different collision properties
and seem to rule out the possibility of explaining dark matter as a modification of
gravity at kpc scale. Using optical observations, we can study the distributions of the
stars, which are not strongly affected by the cluster collision. X-ray measurements
track the distribution of the hot gas, which represents the main component of the
baryonic matter. Because of electromagnetic interactions among the particles of the

http://dx.doi.org/10.1007/978-3-662-48078-6_8
http://dx.doi.org/10.1007/978-3-662-48078-6_12
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gas, the cluster collision made the baryonic matter concentrate at the center of the
system. Lastly, gravitational lensing studies map the distribution of gravitating mat-
ter. Observations show that most of the mass in the cluster was not affected by the
collision. The interpretation of these observations is that most of the mass consists
of weakly interacting dark matter and, unlike the galaxy curves, it is independent of
possible modifications of Newton’s law at kpc scales. We note that in the past there
was a controversial issue concerning the initial infall velocity of the clusters, which
seemed to be beyond that expected within the Standard Cosmological Model. If so,
a modification of gravity might have been necessary. However, this tension seems to
be solved by more recent studies (Lage and Farrar 2015).

9.2 Dark Matter Candidates

After it was realized that most matter in the Universe is not luminous, astronomical
observations focused on the search for objects such as black holes, neutron stars,
faint old white dwarfs, planets, and similar bodies, collectively called massive astro-
physical compact halo objects (MACHOs). In the 1970s, the BBN studies pointed
out the discrepancy between baryonic matter, ΩB ≈ 0.05, and gravitating matter
inferred by dynamical methods, Ωm ≈ 0.2 − 0.4. While there could be scenarios
in which only a small fraction of the total baryons in the Universe were available at
the BBN, they definitively require quite exotic mechanisms. Astronomical surveys
for gravitational microlensing attempting to find MACHOs (Afonso 2003; Alcock
2000; Tisserand 2007) have succeeded in the discovery of such objects with masses
of the order of the Solar mass, but their amount is very small, and definitively too
small to make all the necessary invisible matter. The current data on the abundance
of MACHOs in the Galactic Halo are shown in Fig. 9.2.

Darkmatter candidates can be grouped into three classes, namely cold darkmatter
(CDM), warm dark matter (WDM), and hot dark matter (HDM). The key-point to
belong to one or another group is the distance that the particle travelled during
the Universe history. By definition, CDM particles have the free-streaming length
much shorter than the typical size of a protogalaxy. WDM candidates have the free-
streaming length of the order the typical size of a protogalaxy, while in the HDMcase
the free-streaming length is much larger than the size of a protogalaxy. The particles’
free-streaming length is a crucial parameter in structure formation theory, because
primordial density fluctuations with wave length shorter than the free-streaming
length are washed out by the particle motion from the overdense regions to the
underdense ones.

The free-streaming length of darkmatter particles thatwere in thermal equilibrium
in the early Universe is determined by the ratio of their decoupling temperature to
their mass, T f /m. The process of decoupling (or freezing) is described in Chap.5.
For example, neutrinos decoupled at T f ∼ 1 MeV, so the length of their travel in the
FRW background till they became non-relativistic is equal to

http://dx.doi.org/10.1007/978-3-662-48078-6_5
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Fig. 9.2 Sketch of the constraints on the halo mass fraction of MACHOs as a function of the
MACHO mass

� f s = a(t)
∫ t f s

t f

dt ′

a(t ′)
+ (nonrel) ≈ 2t f s , (9.2)

where the second term is the length of the neutrino propagation after it became non-
relativistic, which is small and can be neglected. It is assumed that the cosmological
expansion regime is relativistic with a(t) ∼ √

t . The upper limit of the integration is
taken at the moment when neutrinos became non-relativistic, i.e., their temperature
dropped down e.g., to mν/3.

The mass inside the free streaming radius can be estimated as

M f s = 32π

3
ρt3f s = M2

Plt f s , (9.3)

where we took for ρ the radiation dominated stage expression ρ = 3M2
Pl/(32π t2).

The free streaming time can be roughly estimated as t f s ∼ 0.1MPl/T 2 ≈ MPl/m2
ν .

see Eq. (5.14). Thus finally we obtain for particles (not necessarily neutrinos) that
were relativistic at decoupling

M f s ∼ M3
Pl

m2
ν

≈ 1018M�
(
eV

m

)2

. (9.4)

Evidently, for neutrinos with mν < 1 eV, the free streaming mass is much larger
than the galactic mass. So neutrinos for sure make HDM. Particles with m ∼ 1 keV
would make WDM, while heavier ones would form CDM.

On the other hand, models with dark matter particles produced in non-thermal
processes are also possible and an example of that is the axion, which is briefly

http://dx.doi.org/10.1007/978-3-662-48078-6_5
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presented in Sect. 9.2.2. Despite a very small mass, axions form CDM because they
were created at rest.

CDM, WDM, and HDM predict different scenarios for the large scale structure
formation in the Universe, namely for the formation of galaxies, galaxy clusters, and
superclusters. In the case of CDM, smaller structures are formed first and then they
congregate to form larger structures. In the case ofHDM, density fluctuations at small
scales are washed out and therefore the first structures are large. The latter must then
fragment into galaxies. Observations favor CDM candidates, because looking at high
redshift we see that galaxies formed first, while clusters and superclusters formed
later. There is recent accumulated evidence in favor of some fraction of WDM as
well.

An interesting class of dark matter candidates are the so-called weakly interacting
massive particles (WIMPs). All these candidates interact through the weak nuclear
force or through a force with a similar strength. They weakly interact with ordinary
matter, but not too weakly to make a direct detection impossible. Moreover, they
may have a mass in the GeV or TeV range, which makes also their number density
around us not too low for a direct detection. Such dark matter candidates may be
produced in particle physics colliders, because their mass is not too high. Lastly, they
are an appealing class of candidates even because of the so-called “WIMP miracle”.
If we consider particles with a mass of order 100 GeV−1 TeV subject to the weak
nuclear force in the primordial plasma, we see that they should have decoupled
at a temperature of order 10 GeV. Interestingly, their abundance today would be
consistent with Ωm ∼ 0.3, which is the value requested by observations.

9.2.1 Lightest Supersymmetric Particle

As discussed in Sect. 3.4.1, Supersymmetry is mainly motivated by the hierarchy
problem, namely the necessity to protect the Higgs mass from quantum corrections
that would make it huge. Supersymmetric models have the appealing feature of
having potentially good dark matter candidates.

In the minimal supersymmetric extension of the Standard Model of particle
physics, the Lagrangian of the theory admits dangerous terms that would predict
the non-conservation of the baryon and lepton numbers. For instance, these terms
would make proton unstable, in disagreement with the experimental constraints. The
problem can be fixed by imposing a new symmetry called R-parity. With such a sym-
metry, the lightest supersymmetric particle, or LSP, is stable. If the LSP is electrically
neutral, it would be a good dark matter candidate. In many supersymmetric models,
the LSP is the lightest neutralino, which is a superposition of the bino, i.e., the fermi-
onic super-partner of the Standard Model gauge boson associated with the UY (1)
field, the neutral wino, i.e., the fermionic super-partner of the electrically-neutral
Standard Model gauge boson associated with the SUL(2) field, and the neutral hig-
gsinos, i.e., the fermionic super-partners of the supersymmetric Higgs scalars. The

http://dx.doi.org/10.1007/978-3-662-48078-6_3
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lightest neutralino is often considered one of the best dark matter candidates, even
though supersymmetric particles at LHC have not been so far discovered.

In other models, the LSP dark matter candidate may be the axino, fermionic
super-partner of the axion, or the gravitino, spin-3/2 super-partner of the graviton in
Supergravity models where gravity is also taken into account and supersymmetrized.
The lightest sneutrino (the scalar super-partner of the Standard Model neutrinos) is
not a good dark matter candidate in the minimal supersymmetric extension of the
Standard Model, because of its large cross section with nucleons, which is today
experimentally excluded. However, sneutrinos can still be good dark matter candi-
dates in more sophisticated models.

9.2.2 Axion

Asbrieflymentioned inSect. 3.4.4, the strongCPproblem inQCDmaybe solvedwith
the introduction of a new global U (1) symmetry, which is spontaneously broken at
low energies, about 100 MeV. The theory predicts the existence of a spin-0 particle
called axion, which gets a non-vanishing mass after the formation of the vacuum
condensate of gluon fields at the QCD phase transition. Above this phase transition,
axions would be massless Goldstone bosons, see Sect. 7.3.5 for some explanation,
but below it an explicit symmetry breaking is induced by the condensate and axions
acquire a small mass due to non-perturbative QCD effects:

ma ≈ 0.62

(
107 GeV

fa

)
eV , (9.5)

where fa is the U (1) symmetry breaking scale. Constraints on the axion mass come
from direct laboratory search and astrophysical observations (stellar cooling and
supernova dynamics) (Raffelt 1997). Axions with a mass at the level of a few μeV
might still be viable dark matter candidates. Despite such a low mass, they would
be CDM particles, because they would have been produced at rest and never been in
thermal equilibrium.

9.2.3 Super-Heavy Particles

In the Standard Model of particle physics, fermions, quarks, and some gauge bosons
get a mass after the electroweak symmetry breaking. The masses generated in this
way should be of the order of the electroweak symmetry breaking scale, which is
about a few hundred GeV, multiplied by the coupling constants of their interaction
with the Higgs boson. In particular, that is how the masses of the intermediate bosons
∼100 GeV are generated. In the same way, the GUT scenarios naturally predict

http://dx.doi.org/10.1007/978-3-662-48078-6_3
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super-heavy gauge or Higgs-like bosons with masses of the order of the GUT scale
MGUT ∼ 1014 − 1016 GeV. In principle there could be other super-heavy particles,
which happen to be stable or very much long-lived due to some (quasi) conserved
quantum number. If these particles do not have long range electromagnetic and
strong interactions, they could be good dark matter candidates. Their direct and
indirect detections may be extremely difficult, if not impossible, since their large
mass implies a very low cosmological number density. Moreover, it is not clear if so
heavy particles can be stable against gravitational decay. While we do not have any
reliable quantum gravity theory to describe particle processes at the Planck scale,
from heuristic arguments we may expect the possibility of a decay via a virtual black
hole (Bambi et al. 2007) with the lifetime

τ ∼ M4
Pl

M5
GUT

∼ 10−13 s , (9.6)

see the discussion at the end of Sect. 7.3.4. The decay may be forbidden by some
unknown symmetry, but broken symmetries or global symmetries cannot do it, which
makes difficult to have these particles stable.

9.2.4 Primordial Black Holes

Primordial black holes have been considered for a long time as viable dark mat-
ter candidates. They may have been produced in the early Universe, well before the
advent of the first stars, from the collapse of overdense regions, gravitational collapse
of cosmic strings or domain walls, during first or second order phase transitions, etc.
For a review, see e.g., Carr (2003). In most scenarios, relative energy perturbations
of order unity stopped expanding and recollapsed as soon as they crossed the cos-
mological horizon. In this case, the maximum mass of primordial black holes is set
by the total mass within the cosmological horizon, namely Mhor = M3

Pl/E2 where
E is the energy scale at which primordial black holes formed, and it turns out to be

MB H ≈ M2
Pl tf ≈ 5 · 1026 1√

g∗

(
1 TeV

Tf

)2

g , (9.7)

where g∗ is the effective number of relativistic degrees of freedom at the time tf of
the formation of primordial black holes, when the temperature of the Universe was
Tf . In this way, MB H may range from the Planck mass MPl, for black holes formed
at the Planck epoch, to M�, for black holes formed at the QCD phase transition.
Primordial black holes formed after the QCD phase transition may have much larger
masses, as it is argued in Sect. 7.4, Eq. (7.62).

Low mass black holes are extremely compact objects. For example, a black hole
with the mass MB H = 1015 g has the radius rg ≈ 10−13 cm. Because of that,

http://dx.doi.org/10.1007/978-3-662-48078-6_7
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they behave as super-heavy particles possessing only gravitational interactions. This
makes their possible detection very difficult.

However, this is true only in the limit of classical physics. At semiclassical level,
black holes are not really black and stable, but emit thermal radiation with the equi-
librium black body spectrum1 and temperature TB H = M2

Pl/8π MB H , see Eq. (7.24).
This expression for the temperature is true for a non-rotating and electrically neutral
black hole. This process is called the Hawking radiation. The evaporation timescale
is τevap ∼ M3

B H /M4
Pl; more accurate expression is given by Eq. (7.26). Primordial

black holes with the initial mass MB H ∼ 5 · 1014 g would have the lifetime of the
order of the Universe age. Primordial black holes with larger masses could survive to
our time and may be registered by their Hawking radiation. However, the black hole
temperature quickly decreases with the black hole mass and the Hawking emission
for macroscopic black holes become completely negligible.

While primordial black holes may still represent a fraction of dark matter, their
cosmological abundance is strongly constrained. Primordial black holes with an
initial mass MB H � 5 · 1014 g would have already evaporated (τevap is shorter than
the age of the Universe). However, it is possible that quantum gravity effects make
Planck mass black holes stable (Adler et al. 2001), and in this case they may form
the whole dark matter in the Universe. For MB H ∼ 1015 − 1016 g, there is a strong
bound on their possible abundance, at the level of ΩB H � 10−8 (Page and Hawking
1976), derived from the observed intensity of the diffuse γ -ray background. So they
may contribute only a tiny fraction of the non-relativistic matter in the Universe.
The abundance of primordial black holes in the mass range 1017 − 1026 g might
be constrained from the observations of old neutron stars in regions in which the
density of dark matter is supposed to be high (Pani and Loeb 2014). For higher
mass, MB H � 1026 g, the most stringent constraints come from the search for
MACHOs (Afonso 2003; Alcock 2000; Tisserand 2007).

9.3 Direct Search for Dark Matter Particles

Direct detection experiments look for signals from thepassageof darkmatter particles
through specially designed very sensitive detectors. Most of these experiments are
aimed at the detection of WIMPs scattering off nuclei of the detector. They typically
operate in deep underground laboratories to reduce the cosmic ray background. A
partial list of past, present, and future direct detection experiments is presented in
Table9.1. For a recent overview on the status of direct searches for dark matter, see
e.g., Schumann (2015).

The interaction rate of WIMPs with a detector mainly depends on their masses
and cross section. For this reason, the results of experiments are commonly expressed

1In fact the spectrum is not really black but is distorted by the effects of the particle propagation
in the gravitational field of the black hole after the emission from the horizon. For more detail see
Sect. 7.3.4.

http://dx.doi.org/10.1007/978-3-662-48078-6_7
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Table 9.1 Partial list of direct detection experiments

Experiment Target Location

ADMX Axion University of Washington (Washington)

CDMS WIMPs Soudan Underground Laboratory (Minnesota)

CoGeNT WIMPs Soudan Underground Laboratory (Minnesota)

COUPP WIMPs Fermilab (Illinois)

CRESST WIMPs Gran Sasso National Laboratory (Italy)

DAMA WIMPs Gran Sasso National Laboratory (Italy)

DarkSide WIMPs Gran Sasso National Laboratory (Italy)

DEAP WIMPs SNOLAB (Canada)

DRIFT WIMPs Boulby Underground Laboratory (UK)

EDELWEISS WIMPs Modane Underground Laboratory (France)

EURECA WIMPs Modane Underground Laboratory (France)

LUX WIMPs Sanford Underground Laboratory (South Dakota)

PICASSO WIMPs SNOLAB (Canada)

PVLAS Axion Legnaro National Laboratory (Italy)

SIMPLE WIMPs Laboratoire Souterrain à Bas Bruit (France)

WARP WIMPs Gran Sasso National Laboratory (Italy)

XENON WIMPs Gran Sasso National Laboratory (Italy)

ZEPLIN WIMPs Boulby Underground Laboratory (UK)

as constraints in the WIMP mass-cross section plane. The WIMP interaction rate is
Γ = nvσ , where n is the WIMP number density, v is the WIMP velocity, and σ

is the cross section of WIMP scattering off nucleus. The local dark matter energy
density is estimated to be ρ ≈ 0.4 GeV/cm3 and therefore n = ρ/m depends on the
unknown WIMP mass m. The WIMP velocity distribution is usually assumed to be
of Maxwellian form with the mean velocity close to the velocity of the stars in the
Galaxy, namely around 200 km/s in the Solar System. Cross sections can be grouped
into two classes, spin-independent and spin-dependent cross sections. Theoretically
motivated scenarios usually have WIMPs with spin-independent cross sections, but
generally speaking models with spin-dependent cross sections cannot be excluded.

A possible observational signature of dark matter is an annual modulation of
the signal due to the variation of the relative velocity of Earth and WIMPs. The
Solar System moves with a velocity of about 220 km/s with respect to the Galactic
rest-frame and the motion of the Earth around the Sun is along the same direction
in June and in the opposite direction in December. As a result, we should expect
the variation of the WIMP scattering rate by about 3%, with the maximum rate in
June and the minimum rate in December. The daily rotation of Earth may cause a
daily forward/backward asymmetry of the nuclear recoil direction, which can also
be used as an experimental signature. Another interesting signature would be the
measurement of the propagation direction of the colliding particles. In this case,
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we exploit the relative motion of the Sun with respect to the Galaxy. The signal
should be stronger in the direction of the motion of the Solar System, which could
be distinguished from the background noise, since the latter is produced on Earth
and should be isotropic.

Figure9.3 shows the current status of theWIMP search.Most experiments provide
limits on the WIMP detection in the mass-cross section plane. The shape of the
constraints can be easily explained. At low masses, the sensitivity of the detector is
limited by the detector energy threshold. For a WIMP mass in the range 10 GeV to
10 TeV, the expected nuclear recoil energies are usually in the range 1 − 100 keV.
At high masses, the sensitivity decreases because of the decreasing WIMP number
flux, since ρ is fixed and n = ρ/m.

There are not only upper bounds but also statements of WIMP detection, which
are however difficult to reconcile with the negative results of other experiments. The
strongest claim comes from theDAMA/LIBRAcollaboration: they have observed for
several years an annual modulation in the event rate which would be consistent with
the expected signal from WIMPs (see Fig. 9.4). More recently, CDMS, CRESST,
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Fig. 9.4 Residual signal measured by DAMA/LIBRA 2− 4, 2− 5, and 2− 6 keV energy intervals
as a function of time. From Bernabei (2010), under the terms of the creative commons attribution
noncommercial license
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and CoGeNT reported evidence of possible detections of WIMPs in their detectors,
but there is no common consensus on the interpretation of these results, which seem
also to be in conflict with the limits from other collaborations.

Direct search for axion dark matter proceeds in a completely different way. The
idea is to observe the axion-photon transformation, a → γ , in a strongmagnetic field.
The only running experiment is ADMX at the University of Washington Seattle. It
is providing upper bounds on the aγ γ coupling constant gaγ γ for μeV mass axions.

9.4 Indirect Search for Dark Matter Particles

Indirect quest for dark matter particles are performed by astronomical observations
of possible products of their annihilation or decay. For instance, if there are equal
densities of dark matter particles and antiparticles or if particles and antiparticles are
the same, as expected in some scenarios, they may annihilate and produce γ -rays or
e+e− and p̄ p pairs. However, in the case of the so-called asymmetric dark matter,
there is a dominant excess of particles over antiparticles (or vice versa) and these
effects are absent.

Anyhow, an observation of an excess of γ -rays, antiprotons, positrons, or high
energy neutrinos-antineutrinos in the cosmic ray background or from specific sources
(e.g., the Sun or the Center of the Galaxy, where the dark matter density is expected
to be higher) may be an indication of dark matter. Such a detection clearly requires
a very good knowledge of the contribution from astrophysical processes and of the
propagation of cosmic rays in the Galaxy, which is not usually the case. Indirect
search for dark matter particles can be seen as complementary to direct detection
experiments, since they may test different regions of the parameter space, where
dark matter particles have different masses and coupling constants.

Some astronomical observations might have already registered dark matter sig-
nals, but systematics effects, in particular the contributions from astrophysical
processes, are not really under control and there is no consensus on the interpre-
tation of these data. In 2009, the PAMELA collaboration reported the observation of
an excess of positrons in cosmic rays in the range 10−100GeV (see Fig. 9.5) (Adriani
2009). Their measurement was confirmed by other experiments. The observations by
ATIC, FERMI/LAT, and H.E.S.S. also reported an excess of electrons and positrons
in the range 100− 1000 GeV. However, the origin of these positrons is not yet clear.
The required cross section to explain this excess is not consistent with that expected
for thermal WIMPs. Some specific WIMP scenarios have been proposed in the liter-
ature to do it, but they seem now to be ruled out by the FERMI/LAT measurements
of the flux of high energy photons. On the contrary, some astrophysical explanations,
like positron production from pulsars of the Galaxy (Profumo 2011), appear more
convincing.
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Fig. 9.5 The PAMELA positron fraction compared with a theoretical model (black solid line).
Reprinted by permission from Macmillan Publishers Ltd: O. Adriani et al., Nature 458, 607–609,
copyright 2009. http://www.nature.com/

Problems

9.1 The dark matter energy density in the Solar System is estimated to be around
0.4 GeV/cm3. Let us assume that dark matter consists of particles with a mass
of 100 GeV, that they only interact via the weak nuclear force (exchange of
W - and Z -bosons), and that their typical velocity is v/c ∼ 10−3.

(a) Estimate the dark matter particle flux (number of particles/cm2/s) on Earth.
(b) Estimate the interaction rate of dark matter particles with a human being.
(c) How do the previous estimates change in the case of super-heavy dark matter

particles with a mass of 1015 GeV?
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Chapter 10
Cosmic Microwave Background

As we know, the temperature and density of the primeval plasma dropped down in
the course of the cosmological expansion. About 370,000 years after the big bang,
protons and electrons bound together forming neutral hydrogen. So charged parti-
cles disappeared from the plasma and photons decoupled from matter and started
freely propagating through the whole Universe. These photons are observed today
as the so-called cosmic microwave background (CMB) radiation. This radiation is
an inevitable prediction of the big bang theory. The discovery of the CMB was a
milestone in the establishment of the Standard Model of cosmology. At the decou-
pling, the temperature of the Universe was about 3000 K, but the Universe expansion
has made these photons redshift and the CMB temperature measured today is around
2.7 K. The CMBwas predicted by Gamow and collaborators in the 1940s. The calcu-
lations were repeated later by other groups, obtaining controversial estimates for the
present day CMB temperature because of the poor knowledge of the cosmological
parameters at that time.

The CMBwas discovered accidentally by Penzias andWilson in 1964. They were
performing some satellite communication experiments at the Bell Laboratories, in
NewJersey. Theyobserved anunexpected isotropic background signal corresponding
to a black body temperature of about 3.5 K. For this discovery, Penzias and Wilson
received the Nobel Prize in 1978.

The next important step in CMB physics has been done by the COBE satellite,
whichwas launched in 1989 andmeasured theCMB temperaturewith high precision.
Temperature anisotropies at the level of one part in 105 were detected for the first
time and this was the beginning of modern cosmology as a precise science. Better
and better measurements have been possible with some balloon-borne experiments,
the WMAP satellite, and more recently the Planck satellite. The last 20 years have
really been a golden age for CMB physics, thanks to which most of the cosmological
parameters are nowmeasured with a precision at the percent level. In particular, there
is robust evidence in support of the so-called ΛCDM model, in which about 5% of
the energy density of the Universe is made of ordinary matter (protons, neutrons,
electrons), about 25% is made of non-baryonic dark matter, and 70% is made of
dark energy. The latter may possibly be a tiny but non-zero positive vacuum energy,
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or, what is the same, the cosmological constant. Note, however, that the ΛCDM
model encounters nowadays some problems that might demand a modification of
the minimal standard scenario.

The subject of CMB physics is quite complicated technically and for this reason
we provide here only a very simple overview without many details. The interested
reader can find more material on the subject in advanced textbooks, like Dodelson
(2003); Weinberg (2008), or specialized review articles, like Hu et al. (2002); White
et al. (1994).

10.1 Recombination and Decoupling

After the BBN, the primordial plasma predominantly consisted of photons, protons,
helium-4 nuclei, and electrons. The abundance of other light nuclei was quite low.
Neutrons had either been bound in nuclei or decayed. Neutrinos had decoupled from
the primordial plasma at the freeze-out of the weak interactions, when the Universe
temperature was about 1 MeV. Dark matter particles were presumably present, but
they also did not interact with the primordial plasma. The Universe continued its
expansion and the temperature decreased. Electrons and protons could eventually
form neutral hydrogen: this event is called recombination. The ionization fraction of
electrons Xe as a function of the plasma temperature T can be described by the Saha
equation (Saha et al. 1921) (compare with analogous Eq. (8.12) at the BBN)

1 − Xe

Xe
= 4

√
2 ζ(3)√
π

η

(
T

me

)3/2

exp

(
Eion

T

)
, (10.1)

where ζ(3) ≈ 1.20206 is the Riemann zeta function, η is the baryon to photon ratio,
and Eion ≈ 13.6 eV is the hydrogen ionization energy. The Saha equation is valid in
the case of thermal equilibrium and takes into account only the reaction

p + e− ↔ H + γ. (10.2)

It works around the epoch of recombination, while at later times it is necessary to
consider even the 2-photon reaction p + e− → H∗ + γ and H∗ → H + 2γ , where
H∗ is an excited state of the hydrogen atom.

In the Standard Model of cosmology, the baryon to photon ratio appearing in
Eq. (10.1) is the same as the η at the end of the BBN, but in extensions of the
standard theory this may not be true. In the case of new physics, the primordial
plasma may have been reheated by the decay/annihilation of new particles, like the
electron-positron annihilation after the freeze-out of the weak interactions reheated
photons but not neutrinos.

The moment of recombination may be defined as the time at which Xe = 0.5,
but the exact definition is not very important, because the transition from Xe ∼ 1

http://dx.doi.org/10.1007/978-3-662-48078-6_8
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to Xe � 1 was very fast. From Eq. (10.1), we find the recombination temperature
Trec ≈ 0.26 eV. We note that Trec is significantly smaller than Eion because η =
6.1 ·10−10 � 1. At higher temperatures, the population of high energy photons with
E � Eion was still quite abundant and these energetic photons were able to destroy
neutral hydrogen. A similar situation was found for the onset of the synthesis of
light elements in Sect. 8.4. Since the present day CMB temperature is 2.7 K, the
recombination redshift is 1 + zrec = Trec/T0 ≈ 1100.

Before recombination, photons and matter were in thermal equilibrium through
elastic Thomson scattering of photons off free electrons, because of the large Thom-
son cross section σTh = 8πα2/3m2

e ≈ 7 · 10−25 cm2. The photon interaction rate
is Γ = σThne, where ne = Xeηnγ is the number density of free electrons and
nγ ≈ 0.24T 3 is the number density of photons. The decoupling temperature can
be estimated from the condition Γ = H or, equivalently, from the optical depth for
Thomson scattering, namely the Thomson scattering probability of a photon from
the time t till today

τ =
∫ t0

t
neσTh dt =

∫ 0

z
neσTh

(
dt

dz

)
dz ≈ 0.37

( z

1000

)14.25
. (10.3)

After recombination, the optical depth drastically rose, because the cross section
of the photon elastic scattering on a neutral atom is by far smaller than the Thomson
cross section. The photon decouplingmarks the transition from an opaque (τ 	 1) to
a transparent (τ � 1) Universe. The events of recombination and photon decoupling
are strongly related and occurred more or less at the same time, so the decoupling
temperature and redshift are Tdec ≈ Trec and zdec ≈ zrec, with a minor dependence
on the cosmological model, which is encoded in dt/dz in Eq. (10.3). Of course, both
events are not instantaneous, but they last for a finite time Δzrec ≈ Δzdec ≈ 100.
However, the transition is rapid. After that, the photons of the CMB started freely
propagating in the Universe. The CMB photons reaching us today decoupled at
the so-called last scattering surface, which is an ideal spherical surface around us,
situated at z ≈ 1100.

10.2 Formalism for the Description of Fluctuations

The CMB is almost ideally isotropic over the sky. It has almost precise black body
spectrumwith the temperature 2.725K.However, accuratemeasurements show small
fluctuations of the temperature and of the polarization. Since these fluctuations are
seen on a 2-dimensional spherical surface, our sky, they are conveniently described
by spherical harmonics. We define the temperature fluctuation in the direction n̂ =
(θ, φ) as

Θ(n̂) = T (n̂) − T0
T0

, (10.4)

http://dx.doi.org/10.1007/978-3-662-48078-6_8
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where T0 = 2.725 K is the average temperature. Θ can be expanded in spherical
harmonics as

Θ(n̂) =
+∞∑
l=0

l∑
m=−l

almYlm(θ, φ) , (10.5)

Ylm(θ, φ) =
√

(2l + 1)

4π

(l − m)!
(l + m)! Pm

l (cos θ) eimφ, (10.6)

where alms are the amplitudes of the corresponding harmonics, Ylms, and Pm
l s are the

Legendre polynomials. alms can be determined by exploiting the fact the spherical
harmonics Ylms form a complete orthonormal set on the unit sphere and thus

alm =
∫ 2π

0
dφ

∫ π

−π

dθ cos θΘ(n̂)Y �
lm(θ, φ). (10.7)

Since alm is real, a∗
lm = al −m .We also note that anymultipole l represents an angular

scale on the sky of about π/ l.
It should be clear that the fluctuation map we observe in the sky is a particular

realization of a stochastic function that depends on our position.We cannot predict the
precise form of such a particular realization, but only its statistical properties in terms
of a specific cosmological model. We assume the validity of the ergodic hypothesis,
which means that an average over all spatial positions within a given realization is
equivalent to an average over the ensemble. These averages are commonly denoted
by 〈. . .〉. For instance, 〈alm〉 = 0. Cosmological data should thus be compared with
average values of the proper quantities found from the explored cosmologicalmodels.
Assuming an isotropic sky (no preferred axis) and aGaussian statistics (no correlation
among modes), the power spectrum completely characterizes the anisotropies. The
power spectrum of the temperature fluctuations, or TT power spectrum, is given by

Cl = 1

2l + 1

l∑
m=−l

〈|alm |2〉, (10.8)

and the sum over m is done because there is no preferred direction. Since we are
considering the TT power spectrum, Cl is sometimes indicated by CT T

l or CΘΘ
l . The

typical shape and features of the TT power spectrum are shown in Fig. 10.1, while
current measurements are reported in Fig. 10.2. Since we have only our Universe,
there is an intrinsic statistical error in the estimate of these coefficients. This is
given by

ΔCl

Cl
=

√
2

2l + 1
, (10.9)
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Fig. 10.1 Example of TT power spectrum for the standard ΛCDM model and its main features.
From Olive et al. (2014)

Fig. 10.2 TT power spectrum data from the Planck, WMAP, ACT (Atacama Cosmology Tele-
scope), and SPT (South Pole Telescope) experiments. From Olive et al. (2014)
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and it is refereed to as cosmic variance. Cosmological models predict their Cl and it
is possible to measure Cl from the average of alm over m.

In most theoretical models, alms are nearly Gaussian random fields. A small level
of non-Gaussianity should be expected, both of primordial origin and fromsomepost-
recombination effects, like non-linear growth of fluctuations on small scales. How-
ever, there are inflationary models that predict a significant level of non-Gaussianity,
and, since current observations are consistent with no primordial non-Gaussianity,
thesemodels can be either ruled out or constrained. The temperature 2-point function
is the expectation value of the correlation of the temperature fluctuations between
two points in the sky, which is related to the power spectrum by

C(ϑ) = 〈Θ(n̂)Θ(n̂′)〉 = 1

4π

+∞∑
l=0

(2l + 1)Cl Pl(cosϑ), (10.10)

where cosϑ = n̂ · n̂′, namely ϑ is the angle between the two directions. We note
that C(ϑ) only depends on the the angular separation ϑ , and not on the orientation
of n̂ and n̂′, because it is assumed that there is no preferred direction. If the tem-
perature fluctuations are Gaussian, all the higher-point correlation functions vanish.
In the last years, there has been a lot of interest in the possibility of detecting non-
Gaussianity, but current measurements only provide an upper bound on it. A popular
way to constrain a non-Gaussian signal is through the temperature 3-point function.
The interest in the search for primordial non-Gaussianity is motivated by the quite
appealing possibility of getting information on the physics during or even before
inflation.

As a consequence of the Thomson scattering of an anisotropic radiation field, the
CMB is polarized at the level of∼5% of the temperature anisotropies, corresponding
to a few μK. The CMB polarization field can be divided into two types, which
are usually called E-modes and B-modes (Kamionkowski et al. 1997; Zaldarriaga
et al. 1997). They are defined in terms of the second derivatives of the polarization
amplitude, as it is explained below.

The 2 × 2 polarization density matrix (in the direction orthogonal to the photon
propagation) can be expanded in the full set of 2 × 2 matrices

ρi j = J (I/2 + ξkσk) , (10.11)

where I is the unit matrix, σk (k = 1, 2, 3) are the Pauli matrices, and the coefficients
ξi are the so-called Stokes parameters. Such a matrix has two well known algebraic
invariants: the trace, which is equal (or proportional) to the radiation intensity

J = δi jρi j = |Ex |2 + |Ey |2, (10.12)

and the helicity

V = εi jρi j . (10.13)
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The parity conservation in electromagnetic interactions demands that circular polar-
ization (or helicity) vanishes, which implies ξ2 = 0.

There are two more (now differential) invariants of the polarization matrix: the
scalar S = ∂i∂ jρi j (E-mode) and the pseudoscalar P = εik∂i∂ jρ jk (B-mode). For
purely scalar perturbations, the only way to write the polarization matrix is

ρi j =
(
2∂i∂ j − δi j∂

2
)

Ψ, (10.14)

where Ψ is a scalar function. Correspondingly, P = 0. P �= 0 is an indication for
something extra beyond scalar perturbations.

Apart from scalars, there could be:

1. Vector perturbations created by photon scattering in magnetized
interstellar/intergalactic medium created, e.g., by large scale magnetic fields,

ρi j = ∂i V j − ∂ j Vi , P = εi j∂
2∂i V j . (10.15)

2. Tensor perturbations, e.g. gravitational waves,

ρi j ∼ ∂−2(∂i h3 j − ∂ j h3i ), P ∼ εik∂i h3k . (10.16)

3. Second order scalar perturbations, e.g. for Ψ2 = ∂tΨ1,

ρi j ∼ ∂iΨ1∂ jΨ2 − ∂iΨ2 ∂ jΨ1, P = εik∂i (ΔΨ1∂kΨ2 − ΔΨ2∂kΨ1). (10.17)

All such types of perturbations result in P �= 0 and thus they can create B-mode of
polarization.

In analogy with the power spectrum of the temperature fluctuations, we can intro-
duce cross power spectra of temperature and polarizationfluctuations. SinceE-modes
have (−1)l parity and B-modes have (−1)l+1 parity, some cross power spectra iden-
tically vanish. In addition to the TT-spectrum, the non-vanishing spectra are the
TE-spectrum, the EE-spectrum, and the BB-spectrum. Their 2-point functions are

〈Θ E〉 = 1

4π

+∞∑
l=0

(2l + 1)CT E
l Pl(cosϑ),

〈E E〉 = 1

4π

+∞∑
l=0

(2l + 1)C E E
l Pl(cosϑ),

〈B B〉 = 1

4π

+∞∑
l=0

(2l + 1)C B B
l Pl(cosϑ), (10.18)

where here E and B indicate, respectively, the polarization fluctuations in the E- and
B-modes.
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10.3 Anisotropies of the CMB

The temperature fluctuations inEq. (10.5) are formally expanded in terms of spherical
harmonics, from l = 0 to l = +∞. However, the monopole term (l = 0) just
provides the average temperature over the whole sky and it is affected by the cosmic
variance: we can measure the average value at our position, not the average value in
the Universe. We find T0 = 2.7255 ± 0.0006 K (Olive et al. 2014), which implies

n0
C M B = 411 photons/cm3,

ρ0
C M B = 4.64 · 10−34 g/cm3 = 2.60 · 10−10 GeV/cm3,

Ω0
C M Bh2

0 = 2.47 · 10−5. (10.19)

The dipole term (l = 1) represents temperature fluctuations with an angular scale in
the sky of order π . Here, the dominant contribution comes from our proper motion
with respect to the CMB reference frame: photons are blueshifted on the one side and
redshifted on the other side. The amplitude of the dipole term is 3.355 ± 0.008 mK
and it corresponds to the Solar System velocity v ≈ 370 km/s. Eventually, infor-
mation on the cosmological parameters can be extracted from the power spectrum
from l = 2 to some l = lmax, where lmax is determined by the resolution of the
observations.

Temperature fluctuations are usually grouped into primary and secondary. Pri-
mary anisotropies are produced at redshifts z ≥ zdec, namely at or before the last
scattering surface, and they clearly carry information on the pre-recombination Uni-
verse. Secondary anisotropies are produced later, at redshift z < zdec, and they carry
information on the physics of the post-recombination Universe. We note that the
mechanism responsible for the primordial perturbations may generate scalar, vector,
and tensor modes. However, vector modes decay due to the expansion of the Uni-
verse. Tensor modes decay as soon as they enter the cosmological horizon, so their
contribution should be strongly suppressed for angular scales smaller than the one
associated to the last scattering surface, which is about 1◦ (see Fig. 10.1). Tensor
modes may be produced by primordial gravitational waves, but their detection in
the TT power spectrum seems unlikely, because of both their small contribution and
the cosmic variance affecting the spectrum at low ls. Tensor modes may instead be
detected in the BB power spectrum.

10.3.1 Primary Anisotropies

The main feature in the TT power spectrum is the presence of acoustic peaks for
l � 100, as clearly shown in Fig. 10.1. They were created by acoustic oscillations of
the photon-baryon fluid. Before recombination, photons were tightly coupled to the
proton-electron plasma. Because of perturbations in the gravitational field caused
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by the dark matter component, the baryon component tended to collapse, forming
rising inhomogeneities, while the photon component provided the pressure to oppose
to it. The result was an oscillation of this photon-baryon fluid. The amplitude of
these perturbations was small, at the level of δρ/ρ ∼ 10−5, and therefore they
evolved linearly and everymodewas independent from the others. Oscillation started
as soon as the inhomogeneity of a certain wave length entered the cosmological
horizon. Since the Universe is homogeneous and isotropic at first approximation,
inhomogeneities of the same wave length entered the cosmological horizon at the
same time and thus they were in phase.

The first acoustic peak (the highest peak in Fig. 10.1) was generated by perturba-
tions that entered the cosmological horizon at the photon decoupling. The second and
higher-orders peaks were produced by perturbations that entered the cosmological
horizon at earlier times. For the flat spectrum of the primordial perturbations, see
Sect. 12.2.6, the amplitudes of the density perturbations were the same when they
entered the cosmological horizon. However, the amplitude of the observed higher
peaks in the temperature fluctuations typically drops down with larger l. The reason
for that is the redshift of the oscillations inside the horizon because of the expansion.

Of course, no peaks could be produced after recombination, because photons
decoupled from matter and therefore oscillations of the photon-baryon fluid were
not possible any more. The location and the height of the peaks depend on the
cosmological parameters and therefore their measurement can be used to determine
the latter. The first acoustic peak is particularly important. The height of the first
peak can be used to determine ΩB , while its position to infer the geometry of the
Universe (open, flat, closed), since

lpeak ≈ 220√
Ω0

tot

. (10.20)

Current CMB data require an almost flat Universe, namely Ω0
tot ≈ 1. The sensitivity

of the first peak position to the geometry of the Universe can be understood by the
following simple arguments. The physical size of the wave length corresponding to
the first peak is known: it is equal to the cosmological horizon (more accurately to the
sound horizon) at recombination. The angle under which the peak is observed at the
present day depends upon the space geometry: in an open geometry, a fixed length is
observed at smaller angle than that in a closed geometry. The angle at which the first
highest peak is observed corresponds to the flat geometry with a percent precision.

The even peaks correspond to underdense regions and in general have smaller
height than the odd peaks, corresponding to overdense regions (with a proper account
of the redshift). The ratio of the heights of neighboring peaks allows the determination
of the cosmological baryon to photon ratioη. In the acoustic “oscillators”, the baryons
play the role of mass, while the photon pressure is a kind of a spring. Thus a larger
baryon density leads to a larger enhancement of the odd peaks over the even peaks.

http://dx.doi.org/10.1007/978-3-662-48078-6_12
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As shown in Fig. 10.1, at l � 1000 the acoustic peaks are exponentially sup-
pressed. This is due to the so-called Silk damping. The latter is a consequence of
the photon diffusion, which caused damping of small scale anisotropies after the
corresponding fluctuation entered the cosmological horizon. The photon mean free
path is determined by the Thomson scattering and is equal to

lγ = 1

σThne
. (10.21)

The effect of diffusion damping is strongly amplified by the finite duration of the
decoupling (see discussion after Eq.10.3) when the number density of electrons
drastically dropped down.

10.3.2 Secondary Anisotropies

Secondary anisotropies were produced after the photon decoupling and they thus
carry information about the Universe at lower redshift. Three secondary signals of
particular importance are associated to the Sachs-Wolfe effect, reionization, and the
Sunyaev-Zeldovich effect.

The Sachs-Wolfe effect is responsible for temperature fluctuations at large angu-
lar scales, say l � 100. The intrinsic Sachs-Wolfe effect is induced by the photon
redshift/blueshift due to the gravitational potential at the last scattering surface. The
integrated Sachs-Wolfe effect is due to the passage of photons through time varying
gravitational potentials.

The first stars formed at redshift z ≈ 10 and provided new high energy photons
capable of separating protons and electrons bound in neutral hydrogen atoms. For
this reason, this epoch is called reionization. The new free electrons reopened the
possibility of Thomson scattering of CMB photons. The interaction of CMB photons
with free electrons inevitably affects pre-recombination small scale anisotropies and
produces polarization anisotropies at large angular scales.

The Sunyaev-Zeldovich effect is a distortion in the CMB spectrum created by the
inverse Compton scattering e− +γ → e− +γ of the CMB photons off hot electrons.
The magnitude of the effect is independent of the redshift of the source. The effect
allows the study of the properties of galaxy clusters and the measurement of the
cosmological parameters, in particular the Hubble parameter.

10.3.3 Polarization Anisotropies

E-modes are mainly generated by Thomson scattering in an inhomogeneous plasma.
Its magnitude is proportional to the quadrupole asymmetry of the CMB. E-mode
must inevitably exist in the standard CMB theory.
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Fig. 10.3 TE power spectrum data from the WMAP, BICEP, BOOMERANG, CBI, DASI, and
QUAD experiments. From Olive et al. (2014)

The existence of B-mode is questionable and this makes it especially interest-
ing. B-modes may be generated by weak gravitational lensing of E-modes or by
gravitational waves.

Since only a small fraction of the CMB radiation is polarized, an accurate mea-
surement of the polarization power spectra is quite challenging. The TE and EE
power spectra were detected for the first time in 2002 by the DASI experiment and
they are now measured with relatively good accuracy. Both spectra exhibit a series
of acoustic peaks produced by the oscillation of the primordial photon-baryon fluid
before decoupling, see Figs. 10.3 and 10.4. A direct measurement of the BB power
spectrumwas obtained in 2014 by POLARBEARandBICEP2. The results are shown
in Fig. 10.5. The recent interest in the B-modes was created by the announcement of
the BICEP2 collaboration inMarch 2014 of the discovery of primordial gravitational
waves in the BB power spectrum (Ade et al. 2014a). They found a ratio of tensor to
scalar perturbation amplitude r ≈ 0.2. This result has been strongly criticized and
it seems that the observed signal comes neither from primordial gravitational waves
nor from lensed E-modes, but it is induced by the foreground created by dust in the
interstellar medium (Flauger et al. 2014).
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Fig. 10.4 EE power spectrum data from the WMAP, BICEP, BOOMERANG, CAPMAP, CBI,
DASI, QUAD, and QUIET experiments. From Olive et al. (2014)

Fig. 10.5 BB power spectrum data from the BICEP, SPT, and POLARBEAR experiments. In the
case of SPT, the measurements are derived from a lensing correlation analysis. Previous measure-
ments were only able to report upper limits. From Olive et al. (2014).
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10.4 Primordial Perturbations

Primordial perturbations can be decomposed in scalar, vector, and tensor modes.
Scalar modes can be of different types, but the most important ones are adiabatic and
isocurvature perturbations.Adiabatic density perturbations describe fluctuations that
do not alter the comoving entropy per unit mass, which can be taken as s ∼ T 3/ρm ∼
ρ
3/4
γ /ρm because the entropy is carried almost entirely by photons and the mass is

carried by non-relativistic matter. In this case

δs

s
= 3

4

δργ

ργ

− δρm

ρm
= 0. (10.22)

If δγ = δργ /ργ is the fluctuation of the radiation component and δm = δρm/ρm is
that of the matter component, an adiabatic perturbation requires

δm = 3

4
δγ . (10.23)

Most of the inflationary models generate adiabatic perturbations. Isocurvature per-
turbations correspond to fluctuations that do not alter the local spatial curvature.1

This is possible, for instance, in the case the density perturbation of a component,
say δρ1, is compensated by that of another component, namely δρ2 = −δρ1, so that
the total energy density is unperturbed. Thus isocurvature perturbations can be con-
sidered as perturbations in chemical content with constant total energy density. Such
perturbations could be generated, e.g., in inhomogeneous scenarios of baryogenesis.
If primordial perturbations were generated by topological defects like cosmic strings,
they would also be of isocurvature type.

The nature of the primordial perturbations can be inferred from the position of the
acoustic peaks in the TT power spectrum. Adiabatic density perturbations predict a
series of acoustic peaks at the l-positions with the ratio 1:2:3, while in the case of
isocurvature perturbations the ratio is 1:3:5. CMBdata clearly favor adiabatic primor-
dial perturbations, but a contribution at the level of a few percent from isocurvature
perturbations is still allowed. Inflation may thus be the mechanism responsible for
the creation of the primordial perturbations. Models of structure formation involving
cosmic strings are not consistent with observations. Multi-field inflationary models
predicting a mixture of adiabatic and isocurvature perturbations can also be ruled
out, or at least strongly constrained.

In the case of perfect adiabatic perturbations, the variation of comoving curvature
perturbationsR does not change with time. The variance of these perturbations can
be rewritten in Fourier space

1The spatial curvature 3R is the scalar curvature computed from the 3-metric γi j . In terms of the
line element of the FRW metric, ds2 = dt2 − γi j dxi dx j .
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Δ2
R = 1

2π2

∫
PR(k) k2 dk. (10.24)

The power spectrum PR(k) is commonly cast in the following form

PR(k) = As

(
k

k0

)ns−1

, (10.25)

where As and ns are, respectively, the amplitude and the spectral index of scalar
perturbations, and k0 is a reference wavelength. The so-called Harrison-Zeldovich
spectrum, or scale-invariant spectrum, has ns = 1, see alsoChap.12. If the primordial
perturbationswere produced by inflation, themeasurement of As and ns can constrain
the inflationary potential V (φ).

Tensor perturbations can be treated in a similar way. The associated power spec-
trum Ph(k) can be written in terms of a tensor amplitude At and a tensor spectral
index nt . Since it seems unlikely to have high quality data capable of measuring nt

in the near future, one usually simplifies the picture and, instead of considering the
cosmological parameters nt and At , data are fitted with the ratio r of the tensor to
scalar power at some small value of k.

10.5 Determination of the Cosmological Parameters

The existing excellent measurements of the TT power spectrum allow the determi-
nation of the basic cosmological parameters with a precision at the level of percent.
The other power spectra have been measured: there is now the effort to improve
these data and it is a promising research field for the future. The cosmological para-
meters affect these power spectra since they enter the equations of the evolution
of linear perturbations on the FRW background. CMBFAST2 (Seljak et al. 1996)
and CAMB3 (Lewis et al. 2000) are two publicly available codes to numerically
compute the CMB temperature and polarization power spectra over a wide range of
cosmological parameters.

From the comparison of theoretical predictions and CMB data, it is possible
to measure some cosmological parameters that determine the evolution of the
anisotropies. The “basic” set of these parameters includes the amplitude of scalar
perturbations As , the spectral index of scalar perturbations ns , the tensor to scalar
perturbation ratio r , the dimensionless Hubble constant h0, the baryon density of
the Universe Ω0

Bh2
0, the cold dark matter density of the Universe Ω0

C DM h2
0, the total

energy density of the Universe Ω0
tot , and the reionization optical depth τ . However,

the set of cosmological parameters may change according to the physics we want
to explore. For instance, we may set Ω0

tot = 1 and infer the cosmological constant

2http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm.
3http://camb.info/.

http://dx.doi.org/10.1007/978-3-662-48078-6_12
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
http://camb.info/
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contribution from Ω0
Λ = 1 − Ω0

m , where Ω0
m = Ω0

C DM + Ω0
B . The contribution

from radiation Ω0
γ is always ignored, because the radiation energy density is negli-

gible at the present time. Still, it is possible to consider other free parameters, like
the contribution from neutrinos, Ω0

ν h2
0, to derive a very precise upper bound on the

neutrino mass, or the dark energy equation of state, wDE .
Eventually, from the study of the CMB we learn that the Standard Model of

cosmology works fairly well. Recombination occurred at zrec ≈ 1100 and the Uni-
verse was reionized by the first stars at zrei ≈ 10. The Universe is almost flat,
namely Ω0

tot ≈ 1, with a small amount of baryonic matter, a larger fraction of cold
dark matter, and the dominant contribution comes from a mysterious vacuum-like
energy, which is cosmologically significant but tiny for particle physics standards,
see Sect. 11.2. Primordial perturbations are almost Gaussian and purely adiabatic,
and this supports the inflationary paradigm, while the non-detection of isocurvature
perturbations strongly constrains the presence of topological defects, which are ruled
out as the main mechanism for structure formation. Current data support the standard
ΛCDM model with (Ade et al. 2014b)

Ω0
B ≈ 0.05 Ω0

C DM ≈ 0.27 Ω0
Λ ≈ 0.68. (10.26)

The dimensionless Hubble constant is h0 ≈ 0.67, thought there is a tension between
the CMB (Planck) data and the traditional astronomical measurements, and there is
strong evidence that ns < 1, which is predicted by some inflationary models.

Problems

10.1 Derive n0
C M B , ρ

0
C M B , and Ω0

C M B in Eq. (10.19).

10.2 Compute nC M B , ρC M B , and ΩC M B at the time of photon decoupling.
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Chapter 11
Dark Energy

11.1 Cosmological Acceleration

One of the most impressive discoveries in astronomy, made during approximately
the last two decades, was an accumulated evidence proving that the cosmological
expansion is not slowing down, as one would expect for the motion of matter moving
in a self-gravity field. On the opposite, the expansion speed is growing and this
increase started at a relatively recent cosmological epoch, at a redshift of order unity.
The astonishment created by this discovery can be better understood if we use the
following, though not precise, analogy. Let us consider the motion of a stone thrown
vertically up from the Earth surface. As everybody knows, the stone moves up with
a decreasing velocity, then at some stage stops and falls down, now with rising
velocity. If the initial stone velocity were larger than a certain value, it would never
come back but still would move with smaller and smaller speed. This picture very
closely describes the main features of the Universe expansion. However, the recently
established character of the cosmological expansion corresponds to the picture in
which the stone initially moving with deceleration later starts accelerating, as if
a rocket engine, attached to it, was switched on. So the stone would never return,
independently on the initial velocity. In the cosmological case, a small initial velocity
of the stone corresponds to a geometrically closed universe,while a high speed,which
allows the stone to reach infinity, corresponds to an open universe.

It was believed until recently that the final destiny of the Universe and its 3-
dimensional geometry were rigidly connected. An open universe will expand forever
and a closed universe with the geometry of a 3-dimensional sphere at some future
moment will stop expanding and will start contracting to a hot singularity, as it is in
the example with a stone with a small initial velocity. With dark energy, the Universe
behaves as a stone equipped with a rocket and will never collapse, independently of
its geometry. However, let us keep in mind that a change of the equation of state of
dark energy is possible and itmay restore the old one-to-one correspondence between
the universe geometry and its destiny.

© Springer-Verlag Berlin Heidelberg 2016
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The analogy between the stone flight and the Universe expansion can be extended
further to the initial push. It is practically established that at the very beginning the
Universe expanded with acceleration very probably induced by the inflaton field,
which created something analogous to the contemporary dark energy but operating
at a much higher energy scale and during a much shorter time. After this initial push,
the subsequent motion, both of the stone and of the Universe expansion, is simply
an inertial one.

On the other hand, this antigravitating expansion is not unreasonable from the
point of view of General Relativity. According to the second Friedman equa-
tion (4.11)

ä

a
= − 4π

3M2
Pl

(ρ + 3P), (11.1)

not only energy density but also pressure gravitates and since pressure may be nega-
tive, the cosmological acceleration becomes positive if P < −ρ/3. Of course, if the
energy density is allowed to be negative, an antigravity force inducing the accelerated
expansion might also arise, but theories with ρ < 0 are pathological and usually are
not considered.

Note that life is possible only due to such an antigravity induced by negative
pressure, because otherwise the Universe would have never expanded and would
have remained very small, with a curvature of the order of the Planck value. In
Newtonian theory, antigravity does not exist and life would not be possible. So
we need antigravity at the beginning to create the initial push (inflation), but “who
ordered antigravity now”?

To avoid misunderstanding, let us note that antigravity in General Relativity is
possible only for infinitely large objects. Any finite object with positive energy den-
sity can create only gravitational attraction. This is essentially the Jebsen-Birkhoff
theorem (Birkhoff 1923; Jebsen 1921), well known in General Relativity. However,
in infrared modified gravity, considered in Sect. 11.1.3, this theorem is invalid and
finite objects may be able to create gravitational repulsion.

An accelerated expansion will be eternal for any 3-dimensional geometry if the
equation of state of dark energy is not changed in the future. This is in contrast
with the inflationary prediction for a non-accelerated universe at late time. Inflation
says that our part of the Universe will eventually collapse back to a singularity,
because the density perturbations δρ/ρ with increasing scale would inevitably lead
to Ω > 1 and thus this part of the Universe, which may be far outside of the present
day horizon, would be geometrically closed. Hence, the accelerated cosmological
expansion will save us from burning. Maybe this is the reason for its existence.
The source that creates the accelerated expansion is unknown. Two mechanisms are
mainly discussed. Firstly, it could be the so-called dark energy, which has negative
pressure: with a sufficiently large absolute value of P , i.e. |P| > ρ/3, we have ä > 0.
A possible form of dark energy could be the vacuum energy (or, which is the same, a
cosmological constant orΛ-term) with P = −ρ. Another form of dark energy could
be a quasi-constant scalar field φ analogous to that responsible for inflation. In this

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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case, the difference between the exponential expansions at the dawn of the Universe
and today is only in the energy and time scales, but it is huge.

The density of the vacuum energy remains constant as the Universe expands.
Thus if dark energy is some vacuum energy, the expansion will last forever for any
3-dimensional geometry, as it is mentioned above. However, if dark energy is the
energy of a very light scalar field or of a field with very flat potential, then in a distant
future, when the Hubble parameter drops down becoming comparable with the mass
of the field or with the slope of its potential, the expansion will become decelerated
again and the field will evolve down to zero because of the cosmological redshift
or production of very light or massless particles. So ultimately the Universe destiny
will be again determined by its geometry as it is in the good old FRW cosmology.

An accelerated expansion could be also induced if the gravitational interaction is
modified at small curvature. Instead of the usual General Relativity action, which is
linear in the scalar curvature R, an additional non-linear term may be introduced, so
the Lagrangian turns into L → R + F(R). In principle, more complicated scalars
can also be considered, as e.g. those constructed from the square of the Ricci or
Riemann tensors, Rμν Rμν , Rμναβ Rμναβ , or more complicated invariants. However,
due to the non-linearity of the Lagrangian, the emerging equations of motion become
of higher order and may have tachyonic or ghost type solutions, or the solutions may
be strongly unstable or singular. The version with F(R) is safer but the condition
of stability and/or of absence of singularities impose some obligatory restrictions on
the form of F(R), see Sect. 11.1.3.

11.1.1 Astronomical Data

Phenomenologically, dark energy can be described by an antigravitating substance
with the equation of state P = wρ and w = −1.10+0.08

−0.07 (Olive et al. 2014). There
are several independent pieces of data, based on completely different cosmological
and/or astrophysical phenomena, proving that the speed of expansion indeed started
growing with time at the redshift zacc ≈ 0.65. The observational data proving the
existence of the cosmological acceleration include:

1. The Universe age crisis, which arose in the 1980s. With H0 ≥ 70 km/s/Mpc, the
Universe would be too young, tU < 10 Gyr, while stellar evolution and nuclear
chronology demand tU ≥ 13 Gyr. The necessity of dark energy is seen from the
expression for the Universe age which can be calculated by integration of the first
Friedmann equation (4.9)

tU = 1

H

∫ 1

0

dx√
1 − Ω0

tot + Ω0
m x−1 + Ω0

r x−2 + x2Ω0
Λ

, (11.2)
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where we used the notations Ω0
m = Ω0

C DM + Ω0
B for the density of non-

relativisticmatter,Ω0
Λ for the density of vacuum energywithw = −1, or vacuum-

like energy with w ≈ −1, andΩr for the density of relativistic matter. The values
of all the parameters are taken at the present time, as indicated by the upper index
0. For Ω0

tot = 1, Ω0
m ≈ 0.3, and Ω0

Λ ≈ 0.7, the calculated Universe age well
agrees with the observationally deduced value. There is some contributions of
semi-relativistic neutrinos if their mass is non-zero and larger than 1.6 · 10−4 eV.
According to neutrino oscillation data, at least two neutrino mass eigenstates may
have that large mass, but the neutrino impact on tU is minor.

2. The low magnitude of the matter density parameter, Ω0
m = 0.3. It was measured

by several independent methods: through themass-to-light ratio of galaxies, grav-
itational lensing of distant objects, galactic clusters evolution (number of clusters
for different redshifts z), spectrum of the angular fluctuations of the CMB, etc.

3. On the other hand, inflation predicts Ω0
tot = 1 and it is indeed proven by the

position of the first highest peak in the spectrum of the angular fluctuations of the
CMB. The position of the first peak quite accurately determinesΩ0

tot = 1±0.03.
4. The data on the large scale structure formation and on the angular fluctuations

of the CMB well fit the theory if Ω0
Λ ≈ 0.7. In an accelerated universe, the

fluctuations of thematter density and of temperature at large scales are suppressed
and this effect is clearly observed.

5. Last but not least, there are direct measurements of acceleration by the dimming
of high z supernovae of type Ia. There exist persuasive arguments that these super-
novae are so-called standard candles, namely sources with known luminosity. If
this is true, then being dimmermeans that these supernovae are at a larger distance
than they would be if the expansion was the normal decelerated one. So a possible
conclusion is that the Universe expands faster than expected. The dimming could
be created by a light absorption on the way from the supernovae to the observer
due to some unknown agent. However, the observed non-monotonic dependence
on z excludes this explanation of the dimming. Indeed, if the dimming is induced
by the accelerated expansion, then at higher z the observed dimming should
decrease, because ρm ∼ 1/a3, while ρΛ = const and equilibration between cos-
mological repulsion and attraction take place at z ≈ 0.65, while at larger z the
usual attractive gravity operated. Hence the brightness of supernovae observed at
these higher z would tend to the normal value expected in the standard decelerated
cosmology. Evidently if the dimming is explained by some absorptive medium,
the effect would increase with rising z, but this is not observed.

For the discovery of this striking effect, in 2011 Saul Perlmutter, Brian Schmidt,
and Adam Riess received the Nobel Prize in physics, as stated: “for the discov-
ery of the accelerating expansion of the Universe through observations of distant
supernovae”.
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11.1.2 Acceleration by a Scalar Field

The simplest form of dark energy can be represented by a scalar field with the
canonical kinetic term and a very small mass or, more precisely, with a very slowly
varying potential. Such a field satisfies Eq. (6.12), which, in the homogeneous limit,
i.e. φ = φ(t) independent of the space coordinates, is reduced to

φ̈ + 3H φ̇ + U ′(φ) = 0 . (11.3)

This is equivalent to the equation of motion of a point-like body in Newtonian
mechanics with the potential U (φ) and the liquid friction term H φ̇. If the Hubble
parameter is large, as it is specified below, then the Newtonian “acceleration” φ̈ can
be neglected and Eq. (11.3) reduces to the first order equation

φ̇ = −U ′(φ)

3H
. (11.4)

This is the so-called slow-roll approximation, see also Sect. 6.3 about this approxima-
tion for the description of inflation. If the cosmological energy density is dominated
by a slowly varying φ, then ρφ ≈ U (φ)/2, see Eq. (6.13), and according to the
expression (4.9) we have H2 = 4πU/3M2

Pl. Note that, for a slowly varying φ, the
vacuum-like condition P = −ρ is approximately fulfilled. As we know, such an
equation of state leads to an accelerated quasi-exponential expansion.

The slow roll approximation is valid if φ̈ � 3H φ̇ and φ̇2 � 2U (φ). These
conditions are realized if U ′′/U � 8π/3M2

Pl, which, in turn, demands a very large
magnitude ofφ. For example, for the harmonic potentialU = m2φ2/2, the amplitude
of φ should be larger than the Planck mass: φ2 > (4π/3) M2

Pl. If we demand that the
energy density of φ is of the order of the present day cosmological energy density,
the mass of φ should be tiny, mφ < 1/tU ≈ 10−42 eV.

It is usually assumed that the field φ, though slowly, is dropping down. A constant
φ = φ0 with U (φ0) �= 0 is equivalent to a cosmological constant, which is a viable
candidate as a driving force of the cosmological acceleration, but the idea of the quasi-
dynamical phenomenology with a scalar field is to invent something that is not just a
trivial subtraction constant of the vacuum energy. By construction, the potentialU (φ)

is chosen in such a form that it vanishes at the equilibrium point, whereU ′ = 0. This
condition eliminates a trivial vacuum energy. There are several suggestions forU (φ)

smoothly tending to zero when φ → ±∞. For such potentials, U ′ automatically
tends to zero in this limit. Simple examples of such potentials are U ∼ 1/φq or
U ∼ exp(−φ/μ), whereμ is a constant parameter with dimension of mass (Lucchin
andMatarrese 1985; Sahni et al. 1992). These potentialswere specially introduced for
a phenomenological description of the accelerated expansion. As for the fundamental
reasons for their existence, they are rather vague.

The motion of φ(t) in such potentials is quite different from those with minima at
a finite φ = φ0, for instanceU (φ) = m2

φ(φ−φ0)
2/2 orU (φ) = λ(φ−φ0)

4/4. Such

http://dx.doi.org/10.1007/978-3-662-48078-6_6
http://dx.doi.org/10.1007/978-3-662-48078-6_6
http://dx.doi.org/10.1007/978-3-662-48078-6_6
http://dx.doi.org/10.1007/978-3-662-48078-6_4
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potentials are natural in quantum field theory, because they lead to renormalizable
theory. When φ is sufficiently close to φ0 that the square of the Hubble parameter
H2 becomes comparable or smaller than m2

φ , or λ(φ − φ0)
2, the quasi-exponential

accelerated expansion turns into the good old decelerated one. At the onset of this
regime, φ starts oscillating around its minimum, producing massless elementary
particles, and the expansion turns back into a decelerated regime. On the other hand,
e.g. for an exponential potential, the cosmological scale factor would evolve as

a ∼ t16πμ/MPl , (11.5)

and for μ > MPl/16π the expansion regime would always be accelerated.

11.1.3 Modified Gravity

A competing description of the accelerated expansion might be through a gravity
modification at large scales. As we have already mentioned, this can be done by
adding a non-linear function of curvature F(R) to the usual Einstein-Hilbert action

S = M2
Pl

16π

∫
d4x

√−g[R + F(R)] + Sm, (11.6)

where Sm is the matter action. The function F(R) is chosen in such a way that the
gravitational equations of motion, which replace the usual Einstein equations, have
an accelerated de Sitter-like solution with a constant curvature R even in the absence
of matter. The choice of F(R) is by no way unique and several possibilities are
explored in the literature.

The equations of motion in such a theory have the form

(
1 + F ′) Rμν − 1

2
(R + F) gμν + (

gμν∇α∇α − ∇μ∇ν

)
F ′ = 8π

M2
Pl

Tμν, (11.7)

where F ′ = d F/d R and ∇μ is the covariant derivative. It is often sufficient to
consider only the equation for the trace of Eq. (11.7)

3∇2F ′
R − R + RF ′

R − 2F = 8π

M2
Pl

T μ
μ , (11.8)

where ∇2 ≡ ∇μ∇μ is the covariant D’Alember operator. A second order equation
for the metric appears only in the classical Einstein theory, when the action is linear
in R. A non-linear function F(R) leads to a higher order equation of motion. Such
an equation may give rise to undesirable consequences for the theory: emergence
of ghosts, tachyons, singular behavior of solutions, instability, etc., so special care
should be taken to avoid these problems.
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In thefirst papers inwhich gravitymodificationswere proposed for a description of
the accelerated expansion (Capozziello et al. 2003; Carroll et al. 2004), the function
F(R) was taken as F(R) = −μ4/R. However, it was shown in Dolgov et al. (2003)
that a similar F(R) leads to an exponential instability in the presence of matter, so the
usual gravitational interactions would be strongly distorted. To cure this “disease”,
further modifications have been suggested. There are several proposals (Appleby
and Battye 2007; Hu and Sawicki 2007; Starobinsky 2007) of F(R) with similar
properties. For instance, the proposal of Starobinsky (2007) is

F(R) = λR0

[(
1 + R2

R2
0

)−n

− 1

]
− R2

6m2 . (11.9)

The last term is added to prevent a past singularity in cosmology. It can also eliminate
the future singularity in systems with rising energy/mass density found in Frolov
(2008), Arbuzova and Dolgov (2011).

The suggested theories of modified gravity possess some peculiar features. It was
found in Arbuzova and Dolgov (2011), Arbuzova et al. (2012, 2013) that, in systems
with rising mass/energy density, high frequency and large amplitude oscillations of
the curvature are induced. These oscillations lead to the production of elementary
particles, which may be observable in the spectra of energetic cosmic rays. In the
background of this oscillating solution, gravitational repulsion between objects of
finite size is possible (Arbuzova et al. 2014). Such a repulsion might be responsible
for the creation of the observed cosmic voids.

11.2 Problem of Vacuum Energy

The problem of vacuum energy is quite a unique example of disagreement between
theoretical expectations and data by 50–100 orders of magnitude. The story began
almost a century ago, when Einstein introduced into his equations an additional term
proportional to the metric tensor (Einstein 1918)

Rμν − 1

2
gμν R − Λ gμν = 8π

M2
Pl

Tμν . (11.10)

The coefficientΛmust be constant to satisfy the constraints of general covariance and
energy-momentum conservation, namely∇μGμν = 0,∇μgμν = 0, and∇μTμν = 0
(see Chap.2). Λ is usually called cosmological constant. The Λ-term is evidently
equivalent to the energy-momentum tensor of vacuum

T (vac)
μν = ρ(vac)gμν. (11.11)

http://dx.doi.org/10.1007/978-3-662-48078-6_2


214 11 Dark Energy

There are several theoretically expected natural contributions into ρ(vac) and there is
one among them,which is not just theory but practically an experimental fact. Though
this term is not the largest but still huge. It is 45 orders of magnitude larger than the
cosmological energy density. There aremany reviews (Binetruy 2000; Burgess 2004;
Dolgov 1989, 1998; Fujii 2000; Kim 2004; Martin 2012; Peebles and Ratra 2003;
Sahni 2002; Sahni and Starobinsky 2000; Straumann 2002; Vilenkin 2001;Weinberg
1989, 2000) on the problem and suggestions for its solution, not very successful so
far, so we will not dwell on the theoretical constructions but we will only describe
this most striking contribution to ρ(vac). QCD certainly demonstrates that something
mysterious happens in the vacuum. u- and d-quarks making protons, p = uud, and
neutrons, n = udd, have very small masses, around 5 MeV. So the nucleon mass
should be 15MeVminus its binding energy, instead of approximately 940MeV. The
solution to this problem suggested by QCD is that the vacuum is not empty but filled
with a quark (Gell-Mann et al. 1968) and a gluon (Shifman et al. 1979) condensates,
〈q̄q〉 �= 0 and 〈GμνGμν〉 �= 0, which have altogether the negative vacuum energy

ρ(QC D)
vac ≈ −0.01GeV4 ≈ −1045ρ0 , (11.12)

where ρ0 is the present day energy density of the Universe. The vacuum condensates
turn out to be destroyed around quarks, and the result is that the protonmass becomes

m p = 2mu + md − ρ(QC D)
vac l3p ∼ 1GeV, (11.13)

where l p ∼ a few GeV−1 is the proton size.
The value of the vacuum energy of the quark and gluon condensates (11.12) is

practically established by experiments. To adjust the total vacuum energy down to
the observed magnitude, ∼10−47 GeV4, there must exist another contribution to the
vacuum energy of the opposite sign and equal to the QCD one with the precision of
one part to 1045. This new field cannot have any noticeable interactions with quarks
and gluons, otherwise it would be observed in direct experiments, and though it
does not know (almost) anything about QCD, it must have the same vacuum energy
density as the condensates mentioned above. This is one of the greatest mysteries of
Nature.

The problems of vacuum and dark energies are surely closely connected and
there is little hope to understand the nature of dark energy without the solution of the
vacuum energy problem. There is another mystery, namely why the energy den-
sities of matter and vacuum are so close to each other at the present time despite
different laws of their evolution in the course of the cosmological expansion:
ρm ∼ 1/t2 and ρvac = const . All these problems may be solved by a dynamical
adjustment mechanism, but unfortunately a satisfactory model is not yet found, see
e.g. Dolgov (1982), the reviews Binetruy 2000; Burgess 2004; Dolgov 1989, 1998;
Fujii 2000; Kim 2004; Martin 2012; Peebles and Ratra 2003; Sahni 2002; Sahni and
Starobinsky 2000; Straumann 2002; Vilenkin 2001; Weinberg 1989, 2000, or the
lectures Dolgov 2008.
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Chapter 12
Density Perturbations

The behavior of instabilities of self-gravitating systems was first investigated in the
case of non-relativistic Newtonian gravity by Jeans (1902). It was later extended to
General Relativity by Lifshitz (1946). Nowadays, this theory is widely used in cos-
mology to study the rise of perturbations in the Universe (Zeldovich and Novikov
1983; Mukhanov 2005; Weinberg 2008; Gorbunov and Rubakov 2011). The com-
parison between theoretical calculations and astronomical data is a very powerful
tool for testing the Standard Model of cosmology.

12.1 Density Perturbations in Newtonian Gravity

The original Jeans approach is based on the well known Poisson equation, which
relates the Newtonian potential Φ to the matter density ρ

ΔΦ = 4π

M2
Pl

ρ . (12.1)

The evolution of the matter density ρ, the pressure P , and the velocity v in a self-
created gravitational field is governed by two hydrodynamic equations, namely the
Euler equation and the continuity equation, given, respectively, by

∂t (ρv) + ρ(v∇)v + ∇ P + ρ∇Φ = 0 , (12.2)

∂tρ + ∇(ρv) = 0 . (12.3)

At this stage, there are three equations and four unknowns: ρ, P , v, andΦ. To obtain
one more necessary equation, we need a physical input, namely an information about
the properties of matter, which are specified below by the equation of state (12.5).
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This system of equations is usually solved perturbatively under the assumption
of infinitesimally small fluctuations over the known background quantities:

ρ = ρb + δρ, v = vb + δv, P = Pb + δP, Φ = Φb + δΦ. (12.4)

The result is a system of three linear differential equations for the perturbations δρ,
δv, δP , and δΦ. To close the system, one usually imposes the “acoustic” equation
of state

δP = c2s δρ , (12.5)

where cs is the speed of sound.
In the Jeans theory, it is assumed that the backgroundmass density is homogeneous

and time independent and that the background pressure and the background velocity
vanish, namely Pb = 0 and vb = 0. One can immediately see that these assumptions
are nor self-consistent. FromEq. (12.2), it follows that the background potential must
be spatially constant, ∇Φb = 0, but this contradicts the Poisson equation (12.1) at
the zeroth order, i.e. for the background quantities.

This problem is discussed in Zeldovich and Novikov (1983), who argued that
in a time dependent but spatially constant background, ρb(t), the theory can be
formulated in a self-consistent way. Physically, such a case is realized in cosmology.

On the other hand, to cure this shortcoming in flat spacetime, Mukhanov (2005)
suggested the addition of an artificial antigravitating substance, such as a vacuum-like
energy, that can counterbalance the gravitational attraction of the background. In this
wayEq. (12.1) can be satisfied at the zeroth order.An alternative possibility employed
inEingorn et al. (2014) is that the background density vanishes, soEq. (12.1) becomes
a relation between first order quantities.

We note that this problem is absent in relativistic cosmology, where the zeroth
order background equations are satisfied, see e.g. Zeldovich and Novikov (1983),
Gorbunov and Rubakov (2011). Contrary to the case of perturbations in flat space-
time, the background quantities in cosmology are solutions of the equations ofmotion
at the zeroth order approximation. If we neglect this problem and assume that the
background energy/mass density is homogeneous and time independent and that the
background gravitational potential vanishes, or it is constant, we arrive at the clas-
sical Jeans result. These two conditions, ρb = const and Φb = const , are in clear
contradiction with Eq. (12.1).1 Nevertheless, we proceed further, make the Fourier
transformation, ∼exp(−iμt + ikr), and expand Eqs. (12.1)–(12.3) up to the first
order in terms of the Fourier amplitudes of the δ quantities, such as δρk , etc. (to
simplify the notation, we omit the sub-k indices below):

1The assumption that ρb = const is technically essential because it allows to reduce the differential
equations governing the evolution of perturbations to algebraic ones by Fourier transformation. For
time dependent ρ(t), as it takes place in cosmology, one has either to find analytical solutions of an
ordinary differential equation for δρk(t) or to solve it numerically.
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−k2δΦ = 4π

M2
Pl

δρ , (12.6)

−iμρbδv + ikc2s δρ + ikδΦ = 0 , (12.7)

−iμδρ + ρb(kδv) = 0 . (12.8)

This system is reduced to a single equation for δρ

δρ

(
−μ2 + k2c2s − 4π

M2
Pl

ρb

)
= 0 , (12.9)

which has a non-trivial solution if

μ = ±
√

k2c2s − 4π

M2
Pl

ρb . (12.10)

If k2c2s > 4πρb/M2
Pl, the pressure force dominates over the gravity force and the

density perturbations oscillate propagating as sound waves. In the opposite case,
gravity is stronger and the density perturbations exponentially rise

δρ/ρb ∼ exp

[
t

√
4π

M2
Pl

ρb − k2c2s

]
. (12.11)

The Jeans wave vector

kJ =
√
4πρb

MPlcs
(12.12)

is the boundary value of the wave number separating acoustic oscillations and rising
perturbations.

The corresponding wavelength λJ = 2π/kJ is called the Jeans wavelength. The
mass inside the Jeans radius λJ is

MJ = 4πρbλ
3
J

3
= 4π5/2c3s M3

Pl

3ρ1/2
b

(12.13)

and it is called the Jeans mass. Objects with M > MJ continue collapsing until, and
if, the equation of state becomes more rigid. If this never happens, they turn into a
black hole.

We may suggest a more accurate approach to the problem in such a way that the
zeroth order equations for the background are satisfied (Arbuzova et al. 2014). As
an example, we consider a spherically symmetric cloud of particles with initially
vanishing pressure and velocities, and we study the classical non-relativistic Jeans
problem in Newtonian gravity. We will not confine ourselves to the case of a time
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independent background. We want instead to consider the time dependent scenario
taking as initial condition that of a homogeneous distribution ρb(t = 0) ≡ ρ0 =
const inside a sphere of radius rm , while outside this sphere ρ = 0. The initial values
for the particle velocities and pressure are taken to be zero and the initial potential
Φ at t = 0 is supposed to be solution of the Poisson equation (12.1)

Φb(t = 0, r > rm) = − M

r M2
Pl

,

Φ0 ≡ Φb(t = 0, r < rm) = 2π

3M2
Pl

ρ0r2 + C0, (12.14)

where the total mass of the gravitating sphere is

M = 4π

3
ρ0r3m (12.15)

and C0 = −2πρ0r2m/M2
Pl to make the potential continuous at r = rm (the value of

C0 is not important for us).
In what follows we are interested in the internal solution r < rm . Now we can

find how the background quantities ρ, v, and P evolve with time for small t . From
Eq. (12.2), it follows that

vb(r, t) = −∇Φ0 t = − 4π

3M2
Pl

ρ0 t r . (12.16)

From the continuity equation, we find

ρb(t, r) = ρ0 + ρ1 = ρ0

(
1 + 2π

3M2
Pl

ρ0t2
)

. (12.17)

It is interesting that ρ rises with time in such a way that it remains constant in space.
Because of the homogeneity of ρ, the pressure remains zero, P1 = 0. The time
variation of the background potential is found using Eq. (12.1)

Φb(r, t) = Φ0 + Φ1 = 2π

3M2
Pl

r2ρ0

(
1 + 2π

3M2
Pl

ρ0t2
)

. (12.18)

Now we can study the evolution of perturbations over this time dependent back-
ground. We proceed as usually, writing ρ = ρb(r, t) + δρ, Φ = Φb(r, t) + δΦ,
v = v1(r, t) + δv, and δP = c2s δρ, where cs is the speed of sound. Here all the
δ quantities are infinitesimal and are neglected beyond the first order. At the first
step, we also neglect the products of small sub-one quantities with the infinitesimal
delta’s, i.e. such terms as, for instance, the product of ρ1 = 2π ρ2

0 t2/(3M2
Pl) by δρ,

assuming that the time elapsed is sufficiently short. Thus we obtain
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Δ(δΦ) = 4π

M2
Pl

δρ , (12.19)

∂tδv + ∇δΦ + δρ

ρ0
∇Φb + ∇δP

ρ0
= 0 , (12.20)

∂tδρ + ρ0∇(δv) = 0 . (12.21)

Within this approximations, the time dependence of the coefficients disappears. Later
we will include time dependent corrections to the background.

The problem of the perturbation evolution is usually studied for the Fourier trans-
formed quantities, which allows to reduce a system of partial differential equations
containing time and space derivatives to a system of ordinary differential equations
for functions of time only. Moreover, if the coefficients of the latter are constant,
making the Fourier transformation with respect to time we come to a system of
algebraic equations, as it is done in the standard Jeans analysis performed above.

Equation (12.20) contains the term (δρ/ρ0)∇Φb, which explicitly depends on the
coordinate r through the background potential ∇Φb = (4π/3)rρ0/M2

Pl. So, strictly
speaking, the spatial Fourier transformation would not lead to a system of ordinary
differential equations with respect to time for the Fourier amplitudes such as, e.g.,
δρk(t)with an algebraic dependence of its coefficients on thewave number,k. Instead
the term containing r j Fourier-transforms as

∫
d3rr j e

ikrδX (r) = −i
∂δX (k)

∂k j
, (12.22)

where δX is one or other infinitesimal perturbation. As a result, we obtain a differ-
ential equation in terms of derivatives over k, which is by no means simpler than the
original equations in the coordinate space. However, in the two opposite limits of
very small r and large kr , the Fourier transformation makes sense and the equations
can be practically reduced to the case of the coordinate independent situation.

To see if such terms are essential, we need to compare the Fourier transform of
the last term in Eq. (12.20), namely

∫
d3k

(2π)3

∇δP

ρ0
e−iλt+ikr ∼ kc2s

δρ(λ, k)

ρ0
, (12.23)

with the second term in the same equation. In other words, we have to compare kc2s
with ∇Φb = (4π/3)r ρ0/M2

Pl, see Eq. (12.18). For a homogeneous matter sphere
with radius rm , this term is equal to

4πrρ0
3M2

Pl

= rgr

2r3m
, (12.24)
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where rg = 2M/M2
Pl is the gravitational (Schwarzschild) radius and M = (4π/3)ρ0r3m

is the total mass of the spherical cloud under scrutiny. This term would be subdomi-
nant for r < 2c2s r3mk/rg .

We should keep in mind, however, that the wave number k cannot be arbitrary
small. For an object with size rm the treatment is valid for the wave lengths smaller
than rm . It means that k > 2π/rm . Still there is quite a large parameter space if, as
it is usually true, rg � rm .

We have also to check if the Jeans wave length satisfies the condition λ j < rm . It
would be fulfilled if

3c2s
8π2

rg

rm
< 1 . (12.25)

In this parameter range, we can neglect the r dependent term, (δρ/ρ0)∇Φb, in
comparison to∇δP/ρ0.Within this approximation, the system (12.19)–(12.21) coin-
cides with the classical system (12.1)–(12.3). Thus we obtain the usual Jeans result,
which justifies the original approach. The case of non-negligible dependence on r,
which occurs for large r , is considered in Sect. 12.3, where the evolution of pertur-
bations in modified gravity is studied.

Let us now estimate the effect of time variations of the background potential,
velocity, and energy density. The characteristic rising time of small perturbations
is of the order (4πρ0/M2

Pl)
−1/2. It is the same as the time of the classical rise of

ρ1 (12.17). Hence an account of time variation of the background quantities would
noticeably change the evolution of perturbations. We can estimate the impact of a
rising background energy density on the rise of perturbations in adiabatic approxi-
mation replacing the exponent in Eq. (12.11) with the integral

δρJ1

ρ0
∼ exp

⎧⎨
⎩

∫ t

0
dt

[
4π

M2
Pl

ρb(t, r) − k2c2s

]1/2
⎫⎬
⎭ . (12.26)

where ρb(t, r) is given by Eq. (12.17). Estimating the above integral for small k, we
find that the enhancement factor δρJ1/δρJ is equal to 1.027 after a time t = tgrav,
where tgrav = MPl/

√
4πρ0, while for t = 2 tgrav it is 1.23, for t = 3 tgrav it is 1.89,

and for t = 5 tgrav it is 11.9. Here δρJ is the classical Jeans perturbation in the time
independent background (12.11). Note that to derive (12.11) and (12.26) we assume
that t ≤ tgrav, so we should not treat these factors as numerically accurate. Still
we can interpret them as an indication that the rise of fluctuations is indeed faster
then in the usual Jeans scenario. For more precise evaluation, one can solve the
Fourier transformed ordinary differential equations numerically in time dependent
background.
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12.2 Density Perturbations in General Relativity

In this section, we consider the evolution of scalar perturbations in General Relativ-
ity. We study the perturbation rise in a spherically symmetric and asymptotically flat
spacetime and in the cosmological FRW background. First, we present the necessary
expressions for the metric, the curvature tensors, and the energy-momentum tensor
of matter. The latter is assumed to have the form of that of a perfect fluid. Second, we
discuss the choice of gauge for perturbations in the coordinate dependent background.
We then study the rise of perturbations in a spherically symmetric and asymptotically
flat background, which may depend on both time and space coordinates. This is a
generalization of the classical Jeans problem with an account of General Relativity
effects.We follow here our paper (Arbuzova et al. 2014). Lastly, we describe the den-
sity evolutions in the cosmological FRW background. More detailed considerations
of perturbation evolutions in cosmology can be found in Zeldovich and Novikov
(1983), Gorbunov and Rubakov (2011).

12.2.1 Metric and Curvature

As in the previous section, we consider a spherically symmetric cloud of matter with
an initially constant energy density inside the boundary radius r = rm . We choose
isotropic coordinates in which the line element takes the form

ds2 = Adt2 − B δi j dxi dx j , (12.27)

where the functions A and B may depend upon r and t . The correspondingChristoffel
symbols are

Γ t
t t = Ȧ

2A
, Γ t

j t = ∂ j A

2A
, Γ

j
t t = δ jk∂k A

2B
, Γ t

jk = δ jk Ḃ

2A
,

Γ k
j t = δk

j Ḃ

2B
, Γ k

l j = 1

2B
(δk

l ∂ j B + δk
j ∂l B − δl jδ

kn∂n B) . (12.28)

For the Ricci tensor, including terms quadratic in Γ s, we obtain

Rtt = ΔA

2B
− 3B̈

2B
+ 3Ḃ2

4B2 + 3 Ȧ Ḃ

4AB
+ ∂ j A∂ j B

4B2 − ∂ j A∂ j A

4AB
, (12.29)

Rt j = −∂ j Ḃ

B
+ Ḃ∂ j B

B2 + Ḃ∂ j A

2AB
, (12.30)
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Ri j = δi j

(
B̈

2A
− ΔB

2B
+ Ḃ2

4AB
− Ȧ Ḃ

4A2 − ∂k A∂k B

4AB
+ ∂k B∂k B

4B2

)

−∂i ∂ j A

2A
− ∂i ∂ j B

2B
+ ∂i A∂ j A

4A2 + 3∂i B∂ j B

4B2 + ∂i A∂ j B + ∂ j A∂i B

4AB
. (12.31)

Here and in what follows, the upper space indices are raised with the Kronecker
delta, namely ∂ j A = δ jk∂k A. The curvature scalar is

R = ΔA

AB
− 3B̈

AB
+ 2ΔB

B2 + 3 Ȧ Ḃ

2A2B
− ∂ j A∂ j A

2A2B
− 3∂ j B∂ j B

2B3 + ∂ j A∂ j B

2AB2 . (12.32)

The Einstein tensor Gμν = Rμν − 1/2 gμν R is

Gtt = − AΔB

B2 + 3Ḃ2

4B2 + 3A∂ j B∂ j B

4B3 , (12.33)

Gt j = Rt j , (12.34)

Gi j = δi j

(
ΔA

2A
+ ΔB

2B
− B̈

A
+ Ḃ2

4AB
+ Ȧ Ḃ

2A2 − ∂k A∂k A

4A2 − ∂k B∂k B

2B2

)

−∂i∂ j A

2A
− ∂i∂ j B

2B
+ ∂i A∂ j A

4A2 + 3∂i B∂ j B

4B2 + ∂i A∂ j B + ∂ j A∂i B

4AB
. (12.35)

12.2.2 Energy-Momentum Tensor

The energy-momentum tensor is taken with the form of that of a perfect fluid without
dissipative corrections

Tμν = (ρ + P)UμUν − Pgμν , (12.36)

where ρ and P are, respectively, the energy and pressure densities of the fluid, and
the 4-velocity is

Uμ = dxμ

ds
and Uμ = gμαUα . (12.37)

The infinitesimal physical (or proper) distance is dl2 = Bdr2. Correspondingly, we
define the vector of the physical velocity as v j = √

B dr/dt . We assume that the
3-velocity is small and we thus neglect terms quadratic in v. The result is

U j = − Bv j√
A
√
1 − v2/A

≈ − Bv j√
A

, (12.38)
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where v j = v j . From the condition

1 = gμνUμUν = 1

A
U 2

t − 1

B
δk jUkU j ≈ 1

A
U 2

t , (12.39)

we find Ut ≈ √
A. Now we can write

Ttt = (ρ + P)U 2
t − P A ≈ ρ A, (12.40)

Tjt = (ρ + P)UtU j ≈ −(ρ + P)v j B/
√

A, (12.41)

Ti j = (ρ + P)UiU j − Pgi j ≈ P Bδi j . (12.42)

12.2.3 Choice of Gauge

In a cosmological situation, the spatially flat FRW metric only depends on time, but
not on space coordinates

ds2cosmo = dt2 − a2(t)dr2. (12.43)

As shown in several textbooks, see e.g. Mukhanov (2005), Weinberg (2008),
Gorbunov and Rubakov (2011), this allows to impose the Newtonian gauge con-
dition on the perturbed metric. For scalar perturbations, the line element takes the
form

ds2pert = (1 + 2Φ)dt2 − a2(t)(1 − 2Ψ ) δi j dxi dx j , (12.44)

where Φ and Ψ are the metric perturbations or, in other words, stochastic deviations
from the cosmological background metric.

We consider a spherically symmetric and asymptotically flat background metric
in isotropic coordinates, with the line element equal to (see e.g. Chap. 16 in Lightman
et al. (1975) or Sect. 12.3)

ds2sph = A dt2 − B δi j dxi dx j , (12.45)

where A and B are functions of space and time in the form

A(t, r) = 1 + A1(t)r
2 , B(t, r) = 1 + B1(t)r

2 . (12.46)

Calculations are greatly simplified if we assume that deviations from the Minkowski
metric are sufficiently weak and so A ≈ 1 and B ≈ 1. The dependence of the
background on the space coordinates creates serious problems when one tries to
impose the Newtonian gauge condition, as we illustrate in what follows.
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For scalar fluctuations, the general form of the perturbed metric is

ds2scalar = (A + 2Φ)dt2 + (∂ j C)dt dx j − [
(B − 2Ψ )δi j − ∂i∂ j E

]
dxi dx j .

(12.47)

The Newtonian gauge condition implies C = E = 0, which can be easily realized in
cosmology by a proper change of coordinates. Under the coordinate transformation
x̃α = xα + ξα , the metric tensor transforms as

g̃αβ(x̃) = gb
αβ(x̃) + δgαβ − gb

αμ∂βξμ − gb
βμ∂αξμ , (12.48)

where gb
αβs are the “old” background metric coefficients at the point x̃ and the δgαβs

are the fluctuations around thismetric. Fluctuations around the newmetric are defined
as δg̃αβ = g̃αβ(x̃)−gb

αβ(x̃). Taking into account that gb
αβ(x̃) = gb

αβ(x)+(∂μgb
αβ)ξμ,

we finally find

δg̃αβ = δgαβ − (∂μgb
αβ)ξμ − gb

αμ∂βξμ − gb
βμ∂αξμ . (12.49)

This gives

δg̃00 = δg00 − (ξ t∂t A + ξ k∂k A) − 2A∂tξ
t , (12.50)

δg̃0 j = δg0 j − A∂ jξ
t + Bδ jk∂tξ

k , (12.51)

δg̃i j = δgi j + δi j (ξ
t∂t B + ξ k∂k B) + B(δk j∂iξ

k + δki∂ jξ
k) . (12.52)

For scalar perturbations, we restrict ourselves to “longitudinal” coordinate changes,
that is

ξ i = ∂ iζ = −
(

∂ jζ

B

)
. (12.53)

To eliminate δg̃0 j , we have to impose the following condition

∂ j C − A ∂ jξ
t − B ∂t

(
∂ jζ

B

)

≡ ∂ j

[
C − B ∂t

(
ζ

B

)
− A ξ t

]
+ ∂ j B ∂t

(
ζ

B

)
+ ξ t∂ j A = 0 . (12.54)

The sum of the last two terms in this equation vanishes if we choose

ξ t = B ′

A′ ∂t

(
ζ

B

)
, (12.55)

where the prime denotes the derivative with respect to r . Evidently, the term in square
brackets can be cancelled out with a proper choice of ζ .
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Now we need to get rid of the gradient terms in Eq. (12.47), i.e. to impose the
condition

∂i∂ j E − 2∂i∂ jζ + ∂i B

B
∂ jζ + ∂ j B

B
∂iζ = 0 . (12.56)

Unfortunately, there is no way to satisfy this equation. Firstly, we have already used
all the freedom to eliminate gt j and, secondly, there are terms of two different kinds.
The first two terms are purely longitudinal ones, while the last two contain both
transverse and longitudinal contributions and it is impossible to eliminate both with
a single function ζ .

Let us note that with the “scalar” coordinate change there appear vector and tensor
metric perturbations due to the dependence of the backgroundmetric functions on the
spatial coordinates. This is an artifact of the coordinate choice. Probably these vector
and tensor modes could be eliminated if one allows for a “transverse” coordinate
transformation ξ j = ξ

j
⊥ + ∂ jζ . We will not pursue this issue further and in what

follows we will assume, as we have mentioned above, that deviations from the flat
metric are small and thus A ≈ B ≈ 1. In this approximation the problems with the
gauge do not appear.

12.2.4 Evolution of Perturbations in Asymptotically
Flat Spacetime

Usually the relativistic equations are taken in the weak field limit, so the terms
proportional to Γ 2 in the expressions for the Ricci tensor are omitted. Differentiating
the equation for Gtt over time and that for G jt over x j , we derive the continuity
equation, while taking the time derivative of the equation for G jt and the derivative
over xi of the equation for Gi j we obtain the Euler equation. However, if we restrict
ourselves to the first order in Γ in the Ricci tensor, we do not obtain self-consistent
equations. So, the second order terms in Rμν are necessary and we derived the
continuity and Euler equations with this procedure. On the other hand, one can
take a simpler path, deriving the Euler and continuity equations from the conditions
∇μT μ

j = 0 and ∇μT μ
t = 0. Since we have four unknown functions, we need two

more equations. We can take the equation for Gtt and the ∂i∂ j -component of the
equation for Gi j at linear order in Γ s. Correspondingly, we only keep terms linear
in the derivatives of A and B and take A = B = 1 otherwise.

The Einstein equations written in terms of the Einstein tensor Gμν = Rμν −
gμν R/2 have the form

Gμν = 8π

M2
Pl

Tμν ≡ T̃μν, (12.57)
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where we introduced T̃μν , which will be convenient in the future. The equations for
Gtt and for the ∂i∂ j -component of the equation for Gi j are

−ΔB = ρ̃ , (12.58)

∂i∂ j (A + B) = 0 . (12.59)

The continuity and Euler equations are, respectively,

ρ̇ + ∂ j [(ρ + P)v j ] + 3

2
ρ Ḃ = 0 , (12.60)

ρ v̇ j + ∂ j P + 1

2
ρ ∂ j A = 0 . (12.61)

We assume that the background metric changes slowly as a function of space and
time and we study small fluctuations around the background quantities: ρ = ρb +δρ,
δP = c2s δρ, v = δv, A = Ab + δA, B = Bb + δB. The corresponding linear
equations for the infinitesimal perturbations are

−ΔδB = δρ̃ , (12.62)

∂i∂ j (δA + δB) = 0 , (12.63)

δρ̇ + ρ ∂ jδv j + 3

2
ρ δ Ḃ = 0 , (12.64)

ρ δv̇ j + ∂ jδP + 1

2
ρ ∂ jδA = 0 . (12.65)

Equations (12.62)–(12.65) coincide with the corresponding equations in Weinberg
(2008), Mukhanov (2005), Gorbunov and Rubakov (2011) for a static universe, i.e.
for a(t) = 1 and H = 0.We note that with our definitions δA ≡ 2Φ and δB ≡ −2Ψ .

We look for a solution in the form∼exp[−iλt +ik ·x] andwe obtain the following
expressions for the frequency eigenvalues

λ2 = c2s k2 − ρ̃/2

1 + 3ρ̃/(2k2)
. (12.66)

This result almost coincides with the Newtonian one (12.11). An extra term in the
denominator is induced by the relativistic volume variation, and it is small for k ∼ kJ .

12.2.5 Evolution of Perturbations in Cosmology

The description of perturbations in cosmology is simpler than in the previous case,
because the background metric and the energy density do not depend on the spatial
coordinates xi s (in the 3-dimensional flatmetric) and because the background quanti-
ties satisfy the zeroth order equations. Belowwe essentially repeat the considerations
of the previous section with the concrete form of the metric and ρb.
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The perturbed metric is written as

gμν = g(b)
μν + hμν , (12.67)

where g(b)
μν is the flat FRW background

g(b)
t t = 1 , g(b)

t j = 0 , g(b)
i j = −a2(t)δi j , (12.68)

while hμν describes small perturbations. It turns out that any perturbation can be
decomposed into three parts that evolve independently and they are called, respec-
tively, scalar, vector, and tensor perturbations (Lifshitz 1946). In what follows, we
will consider the simplest and cosmologically most interesting case of scalar pertur-
bations.

The time-timecomponent of themetric perturbation is a scalar in the3-dimensional
space and we write it as

gtt = 1 + 2Φ , or htt = 2Φ , (12.69)

Inwhat follows,we see thatΦ becomes theNewtonian potential in the non-relativistic
limit. The space-time components of the metric make a 3-vector and so, as the
components of any vector, they can be written as the sum of a gradient and of a
transversal vector

ht j = a(t)
(
∂ j f + W j

)
, (12.70)

where the factor a(t) is separated for convenience, f is a scalar function, and ∂ j W j =
0 by definition of transversal vector. The index contraction here and below is done
with δi j . Since we are only interested in scalar perturbations, we will not consider
W j in what follows. The space-space components of the metric can be written as

gi j = −a2(t)
[
δi j (1 − 2Ψ ) + ∂i∂ j S + ∂i Q j + ∂ j Qi + Yi j

]
, (12.71)

where, as we see below, Ψ coincides with the Newtonian potential Φ in the non-
relativistic limit, S is a scalar function, Q j is a transversal vector (i.e. ∂ j Q j = 0),
and Yi j is a symmetric, transversal, and traceless tensor (i.e. Yi j = Y ji , ∂ j Yi j = 0,
and Yii = 0). The vector Q j and the tensor Yi j describe, respectively, vector and
tensor perturbations and will be disregarded in what follows.

Using the freedom of the choice of coordinates, we can impose the conditions
f j = 0 and S = 0, see Sect. 12.2.3, so the perturbedmetric due to scalar perturbations
becomes

gtt = 1 + 2Φ , gt j = 0 , gi j = −a2δi j (1 − 2Ψ ) . (12.72)
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This is the so-called Newtonian gauge. In cosmology, sometimes the so-called syn-
chronous gauge is employed, where instead of (12.72) the conditions gtt = 1,
gt j = 0, and S �= 0 are imposed, or the gauge invariant approach (Mukhanov
2005; Mukhanov et al. 1992) is used.

As we can see from Eq. (12.42), the space-space components of the energy-
momentum tensor are proportional to δi j , so the terms with the derivatives ∂i and ∂ j

in the equation for Gi j (12.35) must vanish, and we obtain

Φ = Ψ . (12.73)

From the equation for Gtt (12.33), using the expressions (12.44) or (12.72) for the
metric coefficients and Eq. (12.41) for Ttt , we find

ΔΨ

a2 − 3H Ψ̇ − H2Ψ = −1

2
δρ̃ . (12.74)

This equation is the cosmological counterpart of the Poisson equation (12.1). Of
course, they coincide if a ≡ 1.

At this point, we have two equations and four unknowns: Ψ , Φ, δρ and v. To
close the system, we can use the Euler and the continuity equations, which can be
derived from the covariant conservation of the energy-momentum tensor∇μT μ

ν = 0,
respectivelywith ν = j and ν = t . In the derivation of these equationswe should keep
inmind that, in contrast to the non-relativistic problem, the backgroundpressure is not
necessarily zero. Writing the the covariant conservation of Tμν with the Christoffel
symbols (12.28), we find the hydrodynamic continuity equation

δρ̇ + (ρb + Pb)
∂kvk

a
+ 3H(δρ + δP) − 3ψ̇(ρb + Pb) = 0 . (12.75)

In the same way, we can obtain the Euler equation from ∇μT μ
j = 0 and we find

a∂t
[
v j (ρ + P)

] + 4Ha v j (ρb + Pb) + ∂ j P + (ρb + Pb)∂ jΦ = 0 . (12.76)

Since here we are talking about scalar perturbations, the velocity vector should be
a gradient of some scalar velocity potential, say v j = ∇σ . This allows to eliminate
the derivative ∂ j in Eq. (12.76), excluding modes with zero wave number. It is done
below in conformal time in Eq. (12.92).

Even if we have already all the necessary equations, it is technically simpler if,
instead of one of the above equations, we use the equations for the space-space com-
ponents of the Einstein tensor, Gi j . More precisely, we consider the part proportional
to δi j in (12.35)

ΔA

2A
+ ΔB

2B
− B̈

A
+ Ḃ2

4AB
+ Ȧ Ḃ

2A2 = B P̃ , (12.77)
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where we neglected the terms proportional to ∂k A ∂k A and ∂k B ∂k B, as they are of
the second order in the perturbations. From the expansions

A = Ab(1 + 2Φ) = 1 + 2Φ,

B = Bb(1 − 2Ψ ) = a2(t)(1 − 2Ψ ),

P = Pb + δP, (12.78)

we find, after some simple but rather tedious algebra, the expression for the back-
ground pressure

P̃b = −3H2 − 2Ḣ (12.79)

and the equation for the first order perturbations

Ψ̈ + 4H Ψ̇ +
(
3H2 + 2Ḣ

)
Ψ = 1

2
δ P̃ , (12.80)

where we used Φ = Ψ .
For what follows, it is convenient to write all the equations in conformal time.

The spatially flat FRW metric in conformal time takes the simple form

ds2 = a2(η)(dη2 − dr 2) , (12.81)

where the conformal time is defined by

dη = dt

a(t)
. (12.82)

In conformal time, the background metric satisfies the first Friedmann equation

H2 = 8π

3M2
Pl

ρ , (12.83)

which is formally the same as Eq. (4.9), but the Hubble parameter is now

H = a′

a2 . (12.84)

Here and in what follows, the prime means differentiation over η.
According to the discussion above, we also need the equation for the

i j-components of the background Einstein tensor. In conformal time, this equation is

(a′)2

a2 − 2a′′

a
= 8π a2Pb

M2
Pl

. (12.85)

http://dx.doi.org/10.1007/978-3-662-48078-6_4
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Examples of expansion laws for typical cosmological regimes in conformal time
have already been reported in Sect. 6.5, but here we present them again to make the
chapter self-contained

a(η) ∼ η in radiation dominated regime, (12.86)

a(η) ∼ η2 in matter dominated regime, (12.87)

a(η) ∼ −1/η in de Sitter regime. (12.88)

Equations (12.73)–(12.76) govern the density perturbations and can be rewritten
in conformal time as

Φ − Ψ = 0, (the same as above), (12.89)

ΔΨ − 3
a′

a
Ψ ′ − 3

(
a′

a

)2

Ψ = 1

2
a2δρ̃, (12.90)

δρ′ + (ρb + Pb)Δσ + 3
a′

a
(δρ + δP) − 3(ρb + Pb)Ψ

′ = 0, (12.91)

[σ(ρb + Pb)]
′ + 4

a′

a
σ(ρb + Pb) + δP + (ρb + Pb)Φ = 0. (12.92)

We have thus four equations for five unknowns (Ψ , Φ, δρ, δP , and σ ). The system
can be solved if we add an equation of state, which is usually taken as δP = c2s δρ,
where cs is the speed of sound in the matter under scrutiny. In this way, we implicitly
assumed that perturbations are adiabatic, namely entropy perturbations vanish.

As we have already mentioned above, it is more convenient to use the equation
for Gi j (12.80). In conformal time, it becomes

Φ ′′ + 3a′

a
Φ ′ +

[
2a′′

a
−

(
a′

a

)2
]

Φ = 1

2
a2δ P̃ . (12.93)

Note that Eqs. (12.57), (12.90) and (12.93) contain the total energy-momentum
tensor, namely the sum of all the matter components. In the case in which the cosmo-
logical plasma consists of several independent components, and every component is
independently conserved, the continuity and Euler equations are fulfilled for every
component. If different components are interactingwith an exchange of energy and/or
momentum, then one has to include their total energy-momentum tensor with the
interaction term included.

Equations (12.93) and (12.90) lead to the following equation containing only one
unknown function

Φ ′′ + 3a′

a

(
1 + c2s

)
Φ ′ − c2s ΔΦ +

[
2a′′

a
−

(
1 − 3c2s

) (
a′

a

)2
]

Φ = 0 . (12.94)

Since the coefficients of the system of the linear differential Equations (12.89)–
(12.93) and, in particular, of Eq. (12.94) do not depend on the space coordinates,

http://dx.doi.org/10.1007/978-3-662-48078-6_6
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we can make the Fourier transformation without any problem and find a system of
ordinary differential equations in which the Laplacian Δ is replaced by −k2, where
k is the comoving momentum. The Fourier amplitude of the metric perturbations in
a cosmological background obeys an ordinary differential equation in time and can
be easily analyzed.

Let us first consider the case of non-relativistic matter, which is characterized by
negligible pressure, Pb = 0, and therefore cs = 0. The expansion law for a spatially
flat matter dominated universe is a ∼ η2, and Eq. (12.94) turns into the very simple
form

Φ ′′ + 6Φ ′

η
= 0 . (12.95)

The solution is

Φ(x, η) = Φ1(x) + Φ2(x)

η5
. (12.96)

Density perturbations can be found from Eq. (12.90)

δρ

ρb
= 1

6

(
η2ΔΦ1 + ΔΦ2

η3

)
− 2Φ2 + 3Φ2

η5
. (12.97)

Note that we have calculated the initial expression for a2δρ, so we have to normalize
it to a2ρb. In a spatially flat universe a2ρ̃b = 3a2H2 = 3(a′/a)2. The evolution
of perturbations is very much different for long and short wavelengths. If kη � 1,
namely the physical wavelength λ ∼ a/k is much larger than the Hubble length
H−1 ∼ aη, we can neglect the first term proportional to the Laplacian in Eq. (12.97),
and see that the density fluctuations stay essentially constant, δρ/ρb ≈ −2Φ1. In
the opposite limit of waves shorter than the Hubble horizon, i.e. kη � 1, the density
perturbations evolve as

δρ

ρb
≈ −k2

(
Φ1η

2 + Φ2

η3

)
∼ t2/3 + C

t
. (12.98)

The second term can be neglected and we conclude that, in a matter dominated
regime, the short wave density perturbations rise as the cosmological scale factor.

In a radiation dominated universe, Pb = ρb/3 and the speed of sound is c2s = 1/3.
The cosmological expansion goes as a(η) ∼ η. Now Eq. (12.94) for the Fourier
modes Φk is

Φ ′′
k + 4

η
Φ ′

k + 1

3
k2Φk = 0 . (12.99)

This is a Bessel equation and it is solved as a linear superposition of J±3/2

(
kη/

√
3
)
.

It is reduced to the elementary functions
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Φk = Ck1

z

(
sin z

z
− cos z

)
+ Ck2

z

(
cos z

z
+ sin z

)
, (12.100)

where z = kη/
√
3. In this case, the fractional density contrast is

δρk

ρb
= 2Ck1

[
cos z

(
1 − 2

z2

)
− 2 sin z

z

(
1 − 1

z2

)]

+2Ck2

[
sin z

(
2

z2
− 1

)
− 2 cos z

z

(
1 − 1

z2

)]
. (12.101)

Density perturbations in relativistic matter during a radiation dominated regime do
not rise but form sound waves. This is intuitively evident since fast particles are
reluctant to clump.

Let us consider now the evolution of density perturbations in subdominant non-
relativistic matter during a radiation dominated regime with the expansion law a ∼
η. The fluctuations of non-relativistic matter over the relativistic background are
described by Eqs. (12.91) and (12.92), which now become

k2σρmb = δρ′′
m + 3a′

a
δρm − 3Φ ′ρmb , (12.102)

(
k2ρmbσ

)′ + 4a′

a
k2ρmbσ + k2ρmbΦ = 0, (12.103)

where ρmb is the energy density of the background non-relativistic matter which, by
assumption, is much smaller than that of the relativistic one, ρmb � ρrb. In these
equations, all the δ quantities above are the Fourier mode amplitudes. Excluding σ ,
we get

δρ′′
m + 7a′

a
δρ′

m +
[
3a′′

a
+

(
3a′

a

)2
]

δρm

= 3ρmb

(
Φ ′′ + 4a′

a
Φ ′

)
+ 3Φ ′ρ′

mb − ρmbk2Φ . (12.104)

Here the potential Φ is given by Eq. (12.100) and it is a decreasing function of time.
Moreover, it always enters with a small factor ρmb. So this term is not essential for a
possible risingmode of δρm . The latter is determined by the free part of this equation,
which has only a logarithmically rising solution

δρm

ρmb
∼ ln η . (12.105)

So matter fluctuations during a radiation dominated expansion are essentially con-
stant.
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12.2.6 Concluding Remarks

First, we would like to stress the role of a proper choice of the coordinate system.
Even in the ideal homogeneous and isotropic FRW background, there is an infinite
number of coordinate frames in which equal time surfaces have energy densities that
dependent on the space coordinates. In this case, the density perturbations are ficti-
tiously created by a space dependent choice of the equal time surfaces. An opposite
statement is also true, that real density perturbations can be formally removed by
a coordinate freedom. To avoid this problem, we have to consider a full set of the
relevant quantities, i.e. density, metric, and velocity perturbations, as it is done in the
previous subsections. An unambiguous approach is based on the use of gauge (coor-
dinate) independent (physical) quantities, see e.g.Mukhanov et al. (1992),Mukhanov
(2005).

In this section, we have studied density perturbations of matter made of a single
component or of matter consisting of some non-interacting components, as in the
case of the subdominant non-relativistic matter in a radiation dominated universe
discussed in the previous section. In a realistic cosmological scenario, this is not
true. Non-relativistic electrons can strongly interact with the background photons.
Protons are strongly coupled to electrons and so structures in a baryon dominated
universe could not be developed due to large resistance from the photon pressure.
The first structures could indeed develop in the dark matter sector, because dark
matter particles do not interact with light. The onset of the structure formation in
dark matter started at redshift z ≈ 104, corresponding to the transition from the
radiation dominated to the matter dominated stage of the Universe. Only later, after
hydrogen recombination at redshift zrec ≈ 1100, the baryo-electron fluid essentially
stopped interacting with the CMB and hydrogen and helium atoms were captured in
the potential wells pre-created by dark matter. Since we know from the data on the
angular fluctuations of the CMB temperature that δρ/ρ ∼ 10−4 and that the density
perturbations rose after that as the scale factor, see Eq. (12.98), we must conclude
that the existence of dark matter is indeed obligatory for the structure formation in
the Universe

Only adiabatic perturbations have been considered up to this point. There may
exist entropy perturbations as well. Current CMB data provide strong constraints on
entropy perturbations, though it is not excluded that they may be non-negligible at
small scales.

It is alsoworth saying a fewwords about the spectrum of the density perturbations.
The initial spectrum of perturbations is parametrized by a simple power law form.
For the dimensionless perturbations of the FRW metric (i.e. for the gravitational
potential of perturbations), it is taken in the form

〈φ(k)φ(k′)〉 = P(k)

(2π)3
δ(3)(k + k′) ∼ kn−4δ(3)(k + k′) , (12.106)
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where the left hand side is the statistical average of the Fourier transformed perturba-
tions of the metric (the correlation function). Note that for n = 1 the power spectrum
P(k) is dimensionless, so it may not contain any dimensional parameter. Indeed we
define the Fourier transformation as

φ(x) =
∫

d3k exp(ikx) φ(k) , (12.107)

and hence the Fourier amplitude of the dimensionless potential has dimension
k−3. This spectrum is called flat or Harrison-Zeldovich spectrum (Harrison 1970;
Zeldovich 1972), since Harrison and Zeldovich were the first to suggest that the
primordial density fluctuations may have this form to avoid too much power at small
and large scales.

The fluctuations of the energy density are expressed through the gravitational
potential by the Poisson-like equation (12.90). Neglecting the cosmological expan-
sion, we can conclude that a−2Δδφ ∼ 4πδρ/M2

Pl and obtain

〈δρ(x, t)δρ(x ′, t)〉 ∼
∫

d3kkneik(x−x′) . (12.108)

It can be shown that, for the flat spectrum with n = 1, the perturbations with wave-
length λ would have equal magnitude δρ/ρ = const at the horizon crossing λ ∼ t .

12.3 Density Perturbations in Modified Gravity

12.3.1 General Equations

Let us consider the gravity theory described by the action (11.6). Since theLagrangian
is a non-linear function of R, the equation of motion is of higher (fourth) order and
the evolution of perturbations may be different from that in General Relativity. In
cosmology, this problem has been considered for different forms of F(R), see e.g.
Zhang (2006), Song et al. (2007), Tsujikawa (2007), Cruz-Dombriz et al. (2008),
Ananda et al. (2011, 2009), Motohashi et al. (2009), Matsumoto (2015). An analysis
of the Jeans instability for stellar-like objects in modified gravity was performed in
Capozziello et al. (2011, 2012), Eingorn et al. (2014). In those papers, a perturbative
expansion of F(R) was performed around either R = 0 or R = Rc, where Rc is the
present cosmological scalar curvature. Below we expand F(R) around the curvature
of the backgroundmetric Rb, which is typically much larger than Rc. It leads to some
quantitative difference. Moreover, we study the associated instabilities not only in a
quasi-stationary background, as it is usually done, but also in a quickly oscillating
one. As it wasmentioned in Sect. 11.1.3, such high frequency oscillations are induced
in contracting systems with rising energy density.

http://dx.doi.org/10.1007/978-3-662-48078-6_11
http://dx.doi.org/10.1007/978-3-662-48078-6_11
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We assume that the background spacetime weakly deviates from the Minkowski
metric, while the corrections due to gravity modifications may be significantly dif-
ferent from those of General Relativity. In particular, R may be very different from
RG R = −T̃ . We consider astronomical systems with |R| � |Rc|, but R � m2. It
is expected that in this limit F(R) � R and F ′(R) � 1. This is surely fulfilled for
F(R) given by Eq. (11.9), for which at R � Rc we have

F(R) ≈ −λRc

[
1 −

(
Rc

R

)2n
]

− R2

6m2 . (12.109)

In this modified gravity model, the new equations for the gravitational field have the
form (11.7). For the particular choice of F(R) (11.9), under the conditions specified
above, the equations take the form

Gμν + 1

3ω2

(
∇μ∇ν − gμν∇2

)
R = T̃μν , (12.110)

where Gμν = Rμν − gμν R/2 is still the usual Einstein tensor and ω−2 = −3F ′′
R R .

As usually, the metric and the curvature tensor are expanded around their back-
ground values to the first order in infinitesimal perturbations

A = Ab + δA ,

B = Bb + δB ,

R = Rb + δR .

(12.111)

The background internalmetric for a spherically symmetric distribution ofmatter, the
analog of the Schwarzschild-type solution in modified gravity, has been studied by
several authors. Here we use the form for the internal solution obtained in Arbuzova
et al. (2014) (references to other papers can be found there)

Bb(r, t) = 1 + 2M(r, t)

M2
Plr

≡ 1 + B1 , (12.112)

Ab(r, t) = 1 + Rb(t) r2

6
+ A1(r, t) , (12.113)

where

M(r, t) =
∫ r

0
d3r T00(r, t) = 4π

∫ r

0
dr r2 T00(r, t) , (12.114)

A1(r, t) = rgr2

2r3m
− 3rg

2rm
+ πρ̈m

3M2
Pl

(r2m − r2)2 , (12.115)

http://dx.doi.org/10.1007/978-3-662-48078-6_11
http://dx.doi.org/10.1007/978-3-662-48078-6_11
http://dx.doi.org/10.1007/978-3-662-48078-6_11
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and rg = 2M/M2
Pl with M being the total mass of the object under scrutiny. The

functions A1 and B1 are the same as in standard General Relativity and the only
deviation fromGeneral Relativity in this approximation comes from the second term
in Eq. (12.113).

The evolution of the perturbations are studied in the approximation of constant
ω. This is a good approximation if Rb ≈ RG R = −T̃ , which is a slowly changing
function of time. In the example (12.109)

ω2 =
[

1

m2 + 6λn(2n + 1)

|Rc|
(

Rc

R

)2n+2
]−1

. (12.116)

Cosmological perturbations start rising at the onset of the matter dominated epoch,
corresponding to the redshift zeq = 104, when Rc/Req ∼ 1012. So for m = 105

GeV, which is the lower limit from the BBN (Arbuzova et al. 2012),ω may be treated
as a constant if n ≥ 3. If ω rises with time, the perturbations would rise even faster
than it is obtained below. If Eq. (12.116) is dominated by the second term, then

ω2 = |Rc|
6λn(2n + 1)

(
R

Rc

)2n+2

. (12.117)

InArbuzova et al. (2012, 2013), a high frequency oscillating solutionwith R strongly
deviating from RG R was found. In this case, the frequency (12.117) might crucially
depend on time and the approximation of constant frequency would not be valid
[though R � RG R diminishes the second term in Eq. (12.116). Nevertheless, in
what follows we assume that ω = const and we study the development of instabil-
ities described by the fourth order differential equation governing the evolution of
perturbations in this model. In this case, the evolution of instabilities is quite differ-
ent from the standard situation described by the second order equation of General
Relativity. We will not dwell on a particular choice of the F(R)-function, but we will
assume that the high frequency oscillations of the curvature are a generic phenom-
enon in such models. Indeed all known F(R) scenarios would lead to a singularity
with R → +∞, if the R2/m2-term is not purposely added to prevent from that. This
term creates a repulsive effective potential for the evolution of R and so leads to an
oscillatory behavior.

Equation (12.110) for the t t-component can be written as

− ΔB

B2 + 1

3ω2

(
ΔR

B
− 3Ḃ Ṙ

2AB

)
= ρ̃ , (12.118)

because, according to (12.33) and (12.41), Gtt = −AΔB/B2 and T̃t t = ρ̃ A.
Since the background quantities Rb and, according to Eq. (12.113), Ab are quickly

oscillating functions of time with possibly large amplitude (“spikes”), which were
found inArbuzova et al. (2012, 2013), their timederivatives are large andwewill keep
the terms of the second order in ∂t , such as ∂2t A, ∂t A ∂t R, and so on. Correspondingly,
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the equation for fluctuations takes the form

− ΔδB − 2ρ̃b δB + 1

3ω2

(
ΔδR − 3

2
δ Ḃ Ṙb

)
= δρ̃ , (12.119)

where the curvature fluctuation δR is [see Eq. (12.32)]

δR = ΔδA − 3δ B̈ + 2ΔδB + 3

2
Ȧbδ Ḃ . (12.120)

We assume that Ḃb is small in comparison with Ȧb and Ṙb, see Eqs. (12.112) and
(12.113), and put Ab = Bb = 1 in the denominators of Eq. (12.119).

Analogously, we find the ∂i∂ j -component of the equation for Gi j

∂i∂ j (δA + δB − 2ω−2δR) = 0 . (12.121)

The continuity equation, derived from ∇μT μ
t = 0, takes the form

δρ̇ + ρb ∂ jU
j + 3

2
ρb δ Ḃ = 0 , (12.122)

while the Euler equation, ∇μT μ
j = 0, becomes

ρb δU̇ j + ∂ j P + 1

2
ρb ∂ jδA + 1

2
Ȧb ρb U j = 0 . (12.123)

Introducing U j = −U j = −∂ jσ , P = c2s δρ and looking for a solution in the form
∼ exp[−ik · x], we obtain the following system of equations for the five unknown
functions of time, δA, δB, δR, δρ̃, and σ , which are the Fourier amplitudes of the
original functions in the space coordinates

3ω2(k2 − 2ρ̃b)δB − 3

2
δ Ḃ Ṙb − k2δR − 3ω2δρ̃ = 0 , (12.124)

δR = 3

2
ω2(δA + δB) , (12.125)

δR = −k2δA − 3δ B̈ − 2k2δB + 3

2
Ȧbδ Ḃ , (12.126)

δ ˙̃ρ + ρ̃b k2σ + 3

2
ρ̃b δ Ḃ = 0 , (12.127)

ρ̃bσ̇ − c2s δρ̃ + 1

2
ρ̃b( Ȧbσ − δA) = 0 . (12.128)

At this point, it is proper to comment on the application of the Fourier transforma-
tion in the derivation of Eqs. (12.124)–(12.128). The use of Fourier transformations
is typically applied if the coefficients in the equations to solve are space independent.
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In our case, the metric function Ab explicitly depends upon the space coordinates,
A = 1 + r2R(t)/6, and the approach of the Fourier amplitudes may thus look
valid only in the limit in which (kr)2 is small, see the discussion in Sect. 12.1, after
Eq. (12.21). This is the truth, but not the whole truth. The description of perturbations
in terms of Fourier transformed quantities is applicable also in the limit of large kr .
We make Fourier transformation of the equations multiplying them by exp(ikr) and
integrating over d3k. If the coefficients of the linear equations for infinitesimal δA
and δB do not depend upon the coordinates, we come to an algebraic system of linear
equations for the Fourier modes of the fluctuations. Let us assume now that some
coefficients in the original differential equations depend upon r . Still in this case we
can transform our equations taking the integral d3r exp(ikr) not in the infinite limit
but in some finite limit around a fixed value r = r0 with the linear size of the volume
Δr . If Δrk � 1, then such integral is close to the real Fourier transformation with
the infinite integration limit. If the cloud under scrutiny permits separation into some
pieces with kΔr � 1 and such that Δr/r0 � 1, we can thus make the approximate
Fourier transformation taking r0 out of the integral. Such adiabatic limit can be of
practical interest. Moreover, there may be examples of time-oscillating but spatially
homogeneous backgrounds.

Keeping this in mind, we can derive from the system of five low order equa-
tions (12.124)–(12.128) the fourth order equation for the function δB

δ
....

B − δ
...

B

(
1 + 2k2

3ω2

)
Ṙb

2k2

+δ B̈

[
ω2 − ρ̃bω

2

2k2

(
1 + 8k2

3ω2

)
+ k2(1 + c2s ) − Äb

− 1

k2

(
1 + 2k2

3ω2

)(
R̈b + Ȧb Ṙb

4

)
− Ȧ2

b

4

]

+δ Ḃ

[
−

...

Ab

2
− 1

4k2

(
1 + 2k2

3ω2

)(
2

...

Rb + Ȧb R̈b + 2Ṙbc2s k2
)

− Äb Ȧb

4

+ Ȧb

2

(
ω2 + k2(1 − c2s ) + 2ρ̃b

3
− ρ̃bω

2

2k2

)]

+δB

[
c2s k2(k2 + ω2) − 2c2s ρ̃bω

2
(
1 + 2k2

3ω2

)
− ρ̃bω

2

2

(
1 + 4k2

3ω2

)]
= 0 . (12.129)

One can see that in this example Ȧ2
b � Äb, Ȧb Ṙb � R̈b, Ȧb Äb � ...

Ab, and Ȧb R̈b �
...

Rb, so the corresponding terms in Eq. (12.129) can be neglected. In accordance with
Eq. (12.113) we take Ab = 1 + Rb r2/6.

Let us now estimate the factor (kr)2 near its Jeans value k = kJ = √
ρ̃/(2c2s ).

The mass of the object under scrutiny is Mtot = 4πρr3m/3, where rm is the maximum
radius. So
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(rkJ )2 = 3

2c2s

rgr2

r3m
� 1 , (12.130)

where rg = 2M/M2
Pl = ρ̃r2m/3.

Now we introduce the dimensionless time τ = ωt , the dimensionless parameters

a ≡ ρ̃b

k2
, b ≡ k2

ω2 , c ≡ c2s , (12.131)

and

α = a

2

(
1 + 2b

3

)
, (12.132)

Ω2 = 1 − a

2

(
1 + 8b

3

)
+ b(1 + c) , (12.133)

μ = b

[
c(1 + b) − a

2

(
1 + 4b

3

)
− 2ac

(
1 + 2b

3

)]
. (12.134)

Denoting δB ≡ z, Rb = −ρ̃b y, and taking the limit (kr)2 � 1, we rewrite
Eq. (12.129) in the following very simple form

z′′′′ + αy′z′′′ + (Ω2 + 2αy′′)z′′ + α(y′′′ + bcy′)z′ + μz = 0 . (12.135)

Since the physically interesting quantity is themagnitude of the density perturbations,
we present δρ/ρb expressed through z ≡ δB

δρ

ρb
= z

[
1 + b

a(1 + 2b/3)
− 2

]
+ 1

2
z′ y′ + z′′

a(1 + 2b/3)
. (12.136)

According to Eqs. (12.12) and (12.131), when k is close to its Jeans value a ∼
ρ̃b/k2J ∼ c2s and, correspondingly, the first term in the square brackets dominates if
c2s < 1/2, which is true in practically all the physically realizable cases.

12.3.2 Modified Jeans Instability

For very small amplitudes of curvature oscillations, we can neglect y(τ ) in
Eq. (12.135), which is thus reduced to a simple equation with constant coefficients.
It can be solved by employing the substitution z = exp(iλτ). The eigenvalue λ is
determined by the algebraic equation

λ4 − Ω2λ2 + μ = 0 , (12.137)
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which gives

λ2± = Ω2

2
±

√
Ω4

4
− μ . (12.138)

If μ < 0, λ2+ > 0 and therefore one of the eigenvalues is negative imaginary.
It corresponds to the usual exponential Jeans instability, though the values of the
Jeans wave vector in modified gravity and in General Relativity are different. The
magnitude of the Jeans wave number is found from the equation μ = 0, which, in
the case of small speed of sound, gives

a = 2c(1 + b)

1 + 4b/3
, (12.139)

where a and b depend upon k according to the definitions (12.131). So it is a quadratic
equation with respect to the square of the Jeans wave number in modified gravity,
k MG

J . We present an explicit solution for large ω

(k MG
J )2 = (kG R

J )2

[
1 + (kGRJ )2

3ω2

]
, (12.140)

which turns into the result of General Relativity in the limit ω → +∞. Equa-
tion (12.140) shows that in modified gravity the Jeans wave number is larger than
in General Relativity. This corresponds to a reduced minimum length scale associ-
ated to structure formation. The correction is typically quite small, but, for models in
which kGRJ /ω is non-negligible, it could lead to a significant deviations fromGeneral
Relativity.

Ifμ is positive, butμ < Ω4/4, the eigenvaluesλ2 in (12.138) are real and positive,
so all λs are real, which corresponds to acoustic oscillations with constant amplitude.
So these two cases of negative and positive μ are in one-to-one correspondence to
the usual Jeans analysis. For a very largeμ, namely forμ > Ω4/4, there exists a new
type of unstable oscillating solution with exponentially rising amplitude. Indeed, in
this case the solutions for λ2 become complex conjugate numbers and two out of
the four eigenvalues λ would have negative imaginary part, so the factor exp(iλt)
would rise with time. This is a new phenomenon, present only in modified gravity.
However, in the model based on F(R), given by Eq. (11.9), the parameter μ cannot
exceed Ω4/4. It is unclear if this is a general property of all reasonable models of
modified gravity and hence this new type of gravitational instability is always absent
or models possessing such exciting property can be found. There is another unusual
possibility for instability in modified gravity, which would appear if Ω2 < 0. In the
frameworks of the chosen model (11.9), the acceptable values of the parameters do
not allow to realize such an unusual possibility, but the above question remains, if
this is possible with further gravity modifications.

http://dx.doi.org/10.1007/978-3-662-48078-6_11
http://dx.doi.org/10.1007/978-3-662-48078-6_11
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12.3.3 Effects of Time Dependent Background

If y(τ ) is non-negligible, quite new interesting effects can show up. The function
y(τ ) entering Eq. (12.135) is an oscillating function of the “time” τ . It can induce
an analogue of the parametric resonance instability resulting in a very fast rise of
perturbations at a certain set of frequencies. Another new effect can be called “anti-
friction”. It appears at sufficiently large amplitudes of oscillations of y such that the
coefficients in front of the odd derivative terms in Eq. (12.135) become periodically
negative. This phenomenon leads to an explosive rise of z in a wide range of fre-
quencies. Both effects do not exist in standard General Relativity and, if discovered,
would be a proof of modified gravity. On the contrary, the non-observation of these
effects would allow to put stringent restrictions on the parameters of F(R) theories.

The anti-friction behavior can be demonstrated in the limit of large derivatives of
y(τ ), when Eq. (12.135) can be solved analytically. In this case, this equation turns
into

z′′′′ + αy′z′′′ + 2αz′′y′′ + αz′y′′′ = 0 . (12.141)

The last three terms in this equation can be written as α(z′y′)′′, so the equation is
easily integrated

z′′ + αz′y′ = C1 + C2τ , (12.142)

leading, in turn, to the solution

z′ = C0e−αy(τ ) + C1e−αy(τ )

∫ τ

0
dτ ′eαy(τ ′) + C2e−αy(τ )

∫ τ

0
dτ ′τ ′eαy(τ ′) . (12.143)

We take for illustration y(τ ) = y0 cos(Ω1τ). From Eq. (12.143) it is clear that the
derivative z′ is small when αy < 0, while z′ is positive and large for αy > 0. So the
function z remains constant during the first period and rises during the second one.

The effect of parametric resonance can be observed for smaller y(τ ) and only for
frequencies close to an integer fractionΩ/n. The theoretical description of this effect
is quite similar to that of the usual parametric resonance exhibited by the Matheau
equation, see Sect. 6.4.3.

Problems

12.1 Evaluate numerically the evolution of perturbations in the time dependent back-
ground (12.17) and (12.18).

12.2 Check that for Pb = wρb, with w = 0, 1/3, and −1, ρb indeed satisfies the
first Friedmann equation (4.9).

http://dx.doi.org/10.1007/978-3-662-48078-6_6
http://dx.doi.org/10.1007/978-3-662-48078-6_4
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12.3 Check that the covariant conservation of Tμν (4.12) in conformal time becomes

ρ′ = −3
a′

a
(ρ + P) . (12.144)

12.4 Show that during a quasi-de Sitter regime, namely in a period dominated by a
vacuum-like energy, matter fluctuations decrease as the cube of the scale factor.

12.5 Solve Eq. (12.135) numerically for y = y0 cos(Ω1τ) for different y0 and
Ω1 to observe the effects of parametric resonance and anti-friction (mentioned in
Sect. 12.3.3).
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Appendix A
Natural Units

In particle physics, it is common—and very convenient—to use the so-called natural
units. The three fundamental dimensional quantities are energy, action, and velocity.
Energy is measured in eV or keV (103 eV), MeV (106 eV), GeV (109 eV), TeV
(1012 eV), etc. Action is measured in units of � and velocity is measured in units in
of c, where � = h/(2π) is the reduced Planck constant and c is the speed of light.
Setting � = 1 and c = 1, we can simplify many equations.

In fact, the system of units with c = 1 is used in astronomy for a long time.
Distances can be measured in units of time needed for the light propagation along
the distance. It is a matter of convention and convenience to measure distances in
centimeters or in seconds.

The relation between the particle energy and the wave frequency of a quantum
mechanical, or even classical, electromagnetic wave is E = �ω. It is again a matter
of convention: one can set � = 1 and measure energy in units of inverse time or,
vice versa, measure time in units of inverse energy. In this units, an electromagnetic
plane wave can be written as exp(−i Et + ikx).

The relation between the average particle energy and the temperature in a thermal
bath is E ∼ kT , where T is the temperature and k is the Boltzmann constant. The
numerical value of k is determined by our definition of the unit of temperature. Taking
k = 1, we measure temperature in units of energy, and so the unit of temperature
would be eV or GeV or any other energy unit.

Eventually, all dimensional quantities have dimensions of a power of energy. For
instance, masses have dimensions of energy, lengths and times have dimensions
of 1/E :

M = E

c2
, L = �c

E
, T = �

E
. (A.1)

The numerical values of � and �c in one of the usual systems of units are

� = 6.582 · 10−25 GeV · s,
�c = 1.973 · 10−14 GeV · cm, (A.2)
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and therefore the conversion factors GeV ↔ cm and GeV ↔ s are

1

GeV
= 6.582 · 10−25 s,

1

GeV
= 1.973 · 10−14 cm. (A.3)

From the Newton gravitational constant GN, we can obtain the Planck mass MPl, the
Planck length LPl, and the Planck time TPl

MPl =
√

�c

GN
= 1.222 · 1019 GeV,

LPl =
√

�GN

c3
= 1.615 · 10−33 cm,

TPl =
√

�GN

c5
= 0.539 · 10−45 s. (A.4)

In cosmology, it is common to write 1/M2
Pl instead of GN. For instance, the Einstein

equations becomes

Gμν = 8π

M2
Pl

T μν instead of Gμν = 8πGN

c4
T μν. (A.5)



Appendix B
Gauge Theories

A group is a set G with an operation m : G × G → G such that:

1. m(x, m(y, z)) = m(m(x, y), z) ∀ x, y, z ∈ G (associative property).
2. ∃ u ∈ G such that m(u, x) = m(x, u) = x ∀ x ∈ G (existence of the identity

element).
3. ∀ x ∈ G, ∃ x−1 such that m(x, x−1) = m(x−1, x) = u (existence of the inverse

element).

Moreover,G is called abelian group if m(x, y) = m(y, x)∀ x, y ∈ G (commutative
property). The unitary group of degree n is usually indicated by U (n) and it is the
group of n × n unitary matrices with the group operation of matrix multiplication.
In the case n = 1, the group is U (1) and its elements are all complex numbers with
norm 1, so they have the form eiα with α real.

Let us now consider a complex scalar field φ. Its Lagrangian is

L = 1

2
ημν∂μφ∗∂νφ + m2φ∗φ. (B.1)

Such a Lagrangian is clearly invariant under the “global” U (1) transformation

φ → φ′ = eiαφ, (B.2)

where α is a real constant. The name global is because α does not depend on the
spacetime coordinates. However, the Lagrangian in (B.1) is not invariant under a
“local” U (1) transformation, namely a transformation in which α = α(x). We can
anyway “promote” the global U (1) symmetry in the Lagrangian (B.1) to a local
symmetry by introducing an auxiliary field Aμ

L = 1

2
ημν Dμφ∗ Dνφ + m2φ∗φ, (B.3)
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where

Dμ = ∂μ + ig Aμ. (B.4)

The auxiliary field Aμ must transform as

Aμ → A′
μ = Aμ − 1

g
∂μα. (B.5)

In this way, the Lagrangian (B.1) is invariant under a local U (1) transformation and
there is a conserved current

Jμ = i
(
∂μφ∗) φ, ∂μ Jμ = 0. (B.6)

In order to preserve the symmetry, the kinetic term of the field Aμ must have the
form Fμν Fμν , where Fμν = ∂μ Aν − ∂ν Aμ and no mass-term m2A2 is allowed (the
auxiliary field must be associated to massless particles).

The procedure to introduce the new field Aμ is called gauge principle and Aμ is
a gauge field. In the case of the U (1) symmetry, we can introduce the electromag-
netic force in the Standard Model of particle physics, Uem(1). The approach can be
extended to more complicated groups and the Standard Model of particle physics is
described by UY (1) × SUL(2) × SU (3). We note that not all the global symmetries
can be promoted to local symmetries and only experiments can tell us if a symmetry
is global or local. The Standard Model of particle physics has two global symmetries
associated to the baryon and lepton numbers. There is thus a conserved current and
(classically) the baryon and lepton numbers cannot be violated. However, there is no
force associated with these symmetries and therefore no gauge theory.



Appendix C
Field Quantization

The transition from classical field theory to quantum field theory is similar to the
transition from classical to quantummechanics. In the case of mechanics, we assume
that the classical coordinates and momenta are no more just numbers (the so-called
C-numbers), but operators satisfying certain commutation relations, such as [x, px ] =
i�. Instead of the 3-dimensional coordinate x, in field theory a multi-dimensional
quantity χ(x, t) plays the role of coordinate, where x labels continuous number of
χ . In other words, χ(x, t) for fixed x plays the role of the coordinate x(t) in classical
or quantum mechanics, while x in field theory is just a label, like j = 1, 2, 3 for the
3-dimensional coordinate x j in mechanics.

To quantize a field, one needs to introduce an analogue of the particle momenta
and postulate the corresponding commutation relations. In the case of scalar field
theory, the analogue of the momentum is χ̇ and the canonical commutator takes the
form

[χ̇(x, t), χ(x′, t)] = (2π)3δ(x − x′). (C.1)

Usually the proper field operators satisfying the commutation relation (C.1) are
introduced through an expansion in terms of creation-annihilation operators:

χ(x, t) =
∫

d̃k
[
ak fk(t) exp(ik · x) + b†k f ∗

k (t) exp(−ik · x)
]
, (C.2)

where

d̃k = d3k

2ωk(2π)3
. (C.3)

Here ωk = √
k2 + m2, which reduces to ωk = |k| for massless particles. The

creation-annihilation operators commutes as

[ak1, a†
k2

] = 2ωk1 (2π)3δ(3)(k1 − k2), (C.4)
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and a similar relation holds for the antiparticle creation and annihilation operators
bk. All the other pairs of the operators have zero commutators.

Note that, by construction, the creation operator a†
k acting on the vacuum state

|0〉 creates the one-particle state with momentum k, |k〉. The annihilation operator
ak acting on the one-particle state with momentum k creates the vacuum state |0〉. If
the annihilation operator acts on the vacuum state, it kills it.

This quantization procedure is usually done for a free, non-interacting field, while
interactions are taken into account perturbatively. Correspondingly, in flat spacetime
the operator χ satisfies the free Klein-Gordon equation

χ̈ − Δχ + m2
χχ = 0. (C.5)

Its Fourier amplitudes, which are C-numbers, obey the simple harmonic oscillator
equation

f̈k +
(

k2 + m2
χ

)
fk = 0. (C.6)

Equation (C.6) has the following two linear independent solutions

fk = exp(−iωk t), f ∗
k = exp(iωk t). (C.7)

Note that in the expansion (C.2) the coefficients in front of ak and b†k are, respectively,
fk and f ∗

k . This ensures positive definiteness of energy.
The vacuum state is defined as a no-particle state, so, as we have already men-

tioned, the annihilation operator acting on this state “kills” it

ak|0〉 = bk|0〉 = 0. (C.8)

The vacuum state is normalized as 〈0|0〉 = 1. The one-particle (antiparticle) state
with momentum k is defined as

|k〉 = a†
k|0〉

(
|k̄〉 = b†k|0〉

)
. (C.9)

In themore general case,when the fieldχ evolves in a time dependent background,
e.g. in curved spacetime, the measure of integration instead of (C.3) is taken as

d̃k = d3k

|Wk | (2π)2
, (C.10)

where Wk is the Wronskian of the equation of motion obeyed by fk(t), in particular
of Eq. (6.48)

Wk = ḟ ∗
k fk − f ∗

k ḟk . (C.11)

http://dx.doi.org/10.1007/978-3-662-48078-6_6
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Using the equation ofmotion, we find that Wk = const . The choice of theWronskian
as a normalization factor ensures that the equal time commutator of χ and χ̇ has the
canonical form

[
χ̇ (t, x′), χ(t, x)

] = (2π)3δ(x − x′). (C.12)

Sometimes a different form of the measure is taken, with (2π)3/2
√

Wk instead of
(2π)3Wk . In this case, the creation-annihilation operators are renormalized in such
a way that the factor in front of the δ-function becomes also (2π)3/2

√
Wk . The

first choice is probably preferable, because the factor d3k/ωk is Lorenz invariant.
Anyhow, both definitions lead to the same canonical commutator (C.12).
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