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“The black holes of nature are the most perfect macroscopic objects
there are in the universe: the only elements in their construction are
our concepts of space and time. And since the general theory of
relativity provides only a single unique family of solutions for their
descriptions, they are the simplest objects as well.”

Subrahmanyan Chandrasekhar, The Mathematical Theory of
Black Holes

“Anyone who fights with monsters should take care that he does not
in the process become a monster. And if you gaze for long into the
abyss, the abyss gazes back into you.”

Friedrich Nietzsche, Aphorism 146, Beyond Good and Evil
(tr. M. Faber)

“angelheaded hipsters burning for the ancient heavenly connection
to the starry dynamo in the machinery of night,”

Allen Ginsberg, Howl
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Preface

The rapid advances in high-energy astronomy have, over the past few decades,
given us a new view of the universe—a universe filled with luminous, compact,
and highly variable sources best explained by the hypothesis that they are powered
by black holes. Visible to great distances and early times, understanding their high-
energy emissions and spectral energy distributions requires a broadband, multi-
wavelength effort. Because our knowledge of black holes increasingly intersects
ultrahigh-energy cosmic-ray and high-energy neutrino research, the best under-
standing furthermore requires a multimessenger approach.

The observational results on black holes have been accompanied by correspond-
ing theoretical developments. Much of this research is found dispersed throughout
the scientific literature. Here we attempt to organize some of the common themes
in the field of nonthermal black-hole astrophysics and strong gravity by presenting
a systematic study of the high-energy radiation physics and general relativity of
black holes and their jets.

This book can serve as a reference to ongoing research in black-hole physics
and particle and nonthermal astrophysics for graduate students, high-energy astro-
physicists, astroparticle physicists, general relativists, and the interested reader who
is not deterred by our attempt at a mathematical description of black holes and their
high-energy radiations. First-year graduate study in physics, with emphasis on gen-
eral relativity, astrophysics, and cosmology, should provide sufficient background
to follow the exposition.

NOTE ON NOTATION

For clarity, we explain some conventions used here. The inequality symbols ∼=, ≈,
�, and ∼ correspond to estimates within a factor of tens of percent, 2, 5, and order
of magnitude, respectively, though ∼ can also represent generic uncertainty. The
symbol O(xn) represents the order of the next highest term in an expansion.

In quantities written as f (x; a) or f (x, y; a, b) and so on, the semicolon sep-
arates differential variables x, y, . . . from parameters a, b, . . . . Thus f (x; a) =
df (x; a)/dx and f (x, y; a, b) = ∂2f (x, y; a, b)/∂x∂y. Two forms of the Heav-
iside function are defined such that H(x − a) = 1 if x ≥ a and H(x − a) = 0
otherwise, and H(x; a, b) = 1 if a ≤ x ≤ b and H(x; a, b) = 0 otherwise.

The quantity ⊗ denotes tensor product, and raised and lowered repeated indices
in tensors denote summation, i.e., AµBµ ≡ 
µAµBµ.
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xx PREFACE

Gaussian cgs units are mainly used, so e2/r is an energy when e is charge and
r is length, and B2 is an energy density when B stands for magnetic field. One
megaparsec, Mpc, is equal to 3.086× 1024 cm.
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Chapter One

Introduction

1.1 BLACK HOLES IN NATURE

Because of their brilliance, black holes give us a unique view of our uni-
verse at both the smallest and largest scales. Masses of candidate black
holes associated with astrophysical sources include1 ∼ (3–10)M� black
holes found in our Galaxy, intermediate-mass (∼(102–104)M�) black holes
observed in nearby galaxies, massive (∼(105–107)M�) black holes found
in the centers of relatively nearby (redshift z � 1) galaxies, and super-
massive (∼(108–109)M�) black holes at all redshifts (from z � 1 to z > 7).
Moreover, newly formed black holes are thought to power the intense emis-
sions from gamma-ray bursts2 (GRBs) that occur in galaxies at all distance
scales, from relatively nearby galaxies within 102 Mpc to structures at
redshifts z > 8.

A supermassive black hole found at the center of an active galaxy can
shine more brightly than all the stars in the galaxy. Whereas the total
starlight power from a large spiral galaxy like the Milky Way may reach
≈1045 ergs s−1, the total luminous powers of the nuclei of active galaxies,
called active galactic nuclei (AGNs), commonly exceed∼1044 ergs s−1. The
very brightest AGNs can have apparent isotropic bolometric powers
exceeding 1049 ergs s−1; apparent because the radiation may be directed into
a small fraction of the full sky, so that the actual luminosity is reduced by
a beaming factor related to the solid angle into which the emission is radi-
ated. Apparent isotropic GRB powers can exceed∼1052 ergs s−1. Jet sources
from candidate black holes are often most luminous at γ -ray energies, and a
variety of phenomena supports a picture of relativistic bulk plasma outflow
powered by a black-hole engine.

A fundamental question is the power source of the luminous, energetic
emissions from black holes. The energy sources are essentially limited to
accretion and black-hole rotation. For matter accretion, dissipation of

1One Solar mass M� ∼= 2 × 1033 g. The Solar luminosity L� ∼= 4 × 1033 ergs s−1. See
Appendix E.

2A glossary and acronym list is given in Appendix F.
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2 CHAPTER 1

Table 1.1 Electron and Proton Rest Mass Energies, and Units of Energy

mec
2 = 8.187× 10−7 ergs = 1.236× 1020 Hz = 5.93× 109 K

mec
2 = 5.11× 105 eV = 511 keV = 0.511 MeV ∼= 0.5× 10−3 GeV
∼= 0.5× 10−6 TeV

1 eV = 2.418× 1014 Hz = 1.602× 10−12 ergs
1 MeV ∼= 1.6× 10−6 ergs = 2.418× 1020 Hz � 1010 K
1 TeV ∼= 2.4× 1026 Hz ∼= 1.6 ergs
mpc

2 = 1.5032× 10−3 ergs = 2.27× 1023 Hz � 1013 K

gravitational potential energy releases � 5–30% of the rest-mass energy,
depending on the spin of the black hole and how the angular momentum is
deposited at the disk inner edge. The diversity of black-hole spectral states
suggests that a parameter at least as important as the total black-hole mass
accretion rate, Ṁ , also plays a role. This could be the spin parameter of the
black hole. Rather than describe emissions formed by quasi-spherical accre-
tion or disk accretion onto black holes, which are likely to be quasi-thermal
and are well reviewed in a number of books [1–3], here we concern our-
selves with the high-energy radiation from black holes associated with rel-
ativistic jetted outflows. We consider whether the electromagnetic process
can effectively extract energy from a rotating black hole to make luminous
black-hole jet emissions, and other high-energy cosmic-ray and neutrino
radiations. For this purpose, a formulation of general relativity is developed
to understand black-hole electrodynamics and the Penrose process operating
near black holes.

The theory of γ -ray emission in black-hole sources cannot be separated
from the theory of synchrotron radiation, because the same electrons that
Compton-scatter soft photons to γ -ray energies also radiate synchrotron
photons at radio and optical frequencies. The lepton acceleration process
would likewise accelerate baryons. Ultra-high-energy cosmic ray nucleons
are subject to photohadronic losses, accompanied in some cases by the for-
mation of baryonic resonances that decay into photons, leptons, neutrons,
and neutrinos. To understand the underlying connections between the accel-
erated particles that radiate γ rays and neutrinos and those particles that
become cosmic rays requires knowledge of the underlying astrophysical
processes.

The goal of this monograph is to provide a systematic presentation of the
theory of black-hole physics and nonthermal, high-energy radiation mech-
anisms. We investigate the hypothesis that the most luminous and highest-
energy radiations in nature are powered by rotating black holes.
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INTRODUCTION 3

The high-energy universe of nonthermal particles and radiations begins
where the hot universe leaves off: when the concept of temperature breaks
down. Thermal processes involve particle distributions that are described by
the Maxwell-Boltzmann form. The relativistic Maxwell-Boltzmann distrib-
ution is given by

dnMB(p)

dp
≡ nMB(p) = n0

p2 exp(−γ /�)
�K2(1/�)

(1.1)

[4], where the dimensionless temperature � = kBT/mec
2, me is the rest

mass of the electron (table 1.1), n0 is the particle number density (particle
number and energy densities are generally denoted by lower-case symbols),
and K2(x) is a modified Bessel function of the second kind of order 2 (see
Appendix B). Throughout we write the total energy E of a particle of mass
m in terms of the particle Lorentz factor γ = E/mc2, so that the particle’s
kinetic energy is (γ − 1)mc2, and the particle’s (dimensionless) momentum
p = βparγ , where βpar =

√
1− γ−2.3 Because relativistic particles are

mainly considered, we will frequently take the γ � 1, βpar→ 1 asymptote.
The particle Lorentz factor will be denoted by γ in the fluid frame, except
when we consider problems involving multiple species of particles, where
the Lorentz factors of the different species must be distinguished.

At relativistic temperatures,�� 1, the electron-positron pair production
rate increases in proportion to the square of the particle density while the
pair annihilation rate declines. Pairs begin to multiply without limit above
some fixed temperature ≈20 MeV [5,6], requiring ever-increasing energy
input. Steady thermal plasmas therefore cannot exist at tens of MeV temper-
ature and higher. Moreover, gases with temperatures �10 MeV cannot relax
to a Maxwell-Boltzmann distribution, because the bremsstrahlung energy-
loss rate dominates the Coulomb thermalization collision rates [7]. (Though
both are proportional to the particle number densities, bremsstrahlung
energy losses increase with particle energy and elastic Coulomb processes
decrease with particle energy.) Thus there is no demonstrated way for the
gas to thermalize. Plasma processes are often invoked to achieve rapid ther-
malization on a timescale related to the inverse of the plasma frequency,
but special properties of the waves are required to give a quasi-thermal par-
ticle distribution. If a system of characteristic size R containing electrons
with density ne has Thomson depth τT = neσTR � 1, which is required
to obtain large luminosities from small regions, then no steady, thermal plas-
mas with temperatures � 1 MeV can exist. Allowed system luminosities
and total Thomson depths, including pairs, bifurcate into a normal and pair-
dominated branch below a maximum critical temperature for fixed

3The term β = √1− �−2 is preserved for the β factor of bulk plasma outflow.
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Figure 1.1 Photon and relativistic particle energy spectrum. Shown are photon
or particle energies in units of Hz, eV, and electron rest mass (ε =
hν/mec

2), and some important astronomical lines and features. The
mean energy of a cosmic microwave background (CMB) photon at the
present epoch, in units of electron rest mass, is ≈10−9.

temperature and proton Thomson depth [8]. Photons exceeding many tens
of MeV, or hundreds of MeV from pionic emissions of thermalized pro-
tons, must therefore originate from nonthermal processes. The existence of
cosmic rays and GeV–TeV γ -ray sources attests to the importance of non-
thermal processes throughout the universe.

The Electromagnetic Spectrum

During the past ∼75 years,4 the cosmic electromagnetic spectrum outside
the visual domain has been explored using telescopes with different lim-
iting sensitivities and imaging capabilities over the range of frequencies
ν (Hz) extending from ≈ 30 kHz to ν � 1027 Hz (i.e., photon energies
E � 10 TeV); see figure 1.1. Absorption by interplanetary plasma lim-
its observations from space-based radio detectors below ≈30 kHz, and the
Earth’s ionosphere hampers observations of cosmic radio emission below
≈10–30 MHz frequencies. The sky is transparent at higher radio frequen-
cies and in the optical waveband. Space research overcomes the limitations
of the obscuring atmosphere in many wavelength ranges.

Ultraviolet and X-ray fluxes from compact sources are often attenuated by
photoelectric absorption from intervening neutral or ionized matter,

4Karl Jansky discovered radio emission from the Galaxy in 1932.
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including absorption by Milky Way gas. At TeV energies, the universe
becomes opaque to pair production attenuation of very high-energy photons
(γ ) on cosmic infrared photons (γ ′). This process, represented by the reac-
tion γ γ ′ → e+e−, prevents us from seeing extragalactic sources of multi-
TeV radiation at distances �1 Gpc (redshifts z � 0.2). The highest-energy
cosmic photon yet detected was at ≈90 TeV from a Milagro source [9]. At
�100 TeV energies and higher, telescopes yet lack sufficient sensitivity to
detect cosmic sources or the plane of our Galaxy.

It is convenient to express the total energy Eγ of a photon in units of the
electron rest-mass energy mec2. The dimensionless energy of a photon with
frequency ν is denoted by

ε ≡ Eγ

mec2
= hν

mec2
. (1.2)

The units of mec2 give the energy units (table 1.1) of Eγ . The term ε

in eq. (1.2) can also denote the dimensionless energy of highly relativis-
tic (γ � 1) particles, such as cosmic rays or neutrinos. At nonrelativistic
(γ − 1 � 1) and transrelativistic (γ − 1 ≈ 1) particle energies, the total
energy, kinetic energy, and momentum must be more carefully related than
in the ultrarelativistic regime, where p =

√
γ 2 − 1→ γ when γ � 1. Fig-

ure 1.1 illustrates the energy scale of astronomical photon observations in
Hz, eV, and dimensionless units.

The Astroparticle Spectrum

Cosmic rays consist of nonthermal protons, ions, electrons, positrons, pho-
tons, and antiprotons. Intensities of various cosmic-ray ionic components,
multiplied by E2.75, are shown in the left panel in figure 1.2. The dashed
line gives the approximation Ip(E) = 2.2E−2.75 protons/(cm2 s GeV sr)
multiplied by E2.75 (therefore a straight line in this plot) to the demodu-
lated flux of cosmic-ray protons, valid from E � 1 GeV to ≈1014 eV. Note
that α-particles and heavier nuclei make an increasing contribution to to the
cosmic-ray flux near the knee of the cosmic ray spectrum at ≈3 PeV.

At the lowest energies of the nonthermal particle spectrum, Solar ener-
getic particles accompanying Solar flares and coronal mass ejections have
been measured with energies ranging from keV/nucleon to GeV/nucleon.
Cosmic rays from outside our Solar system range in energy from directly
detected ∼GeV/nucleon cosmic-ray ions, at lower energies, to air shower
and fluorescence events with energies exceeding �1020 eV at high energies.
For energies � few GeV/nucleon, the cosmic-ray flux varies with the phase
of the 11-year Solar sunspot cycle. This Solar modulation of the low-energy
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Figure 1.2 Left panel: Cosmic-ray number intensity multiplied by E2.75 for
cosmic-ray ions with energy E � 1014 eV/nucleon. Right panel:
Cosmic-ray number intensity multiplied byE2.5 for all cosmic rays with
total energy E� 1014 eV. Features of the high-energy cosmic-ray all-
particle spectrum are identified.

cosmic-ray flux results from adiabatic losses of the cosmic rays as they pen-
etrate the heliosphere and diffuse through the outflowing Solar wind.

The heliosphere does not significantly perturb trajectories of cosmic rays
with E � 10 GeV/nucleon, and these cosmic rays sample the interstellar
cosmic-ray flux. In a magnetic field with intensity B, the Larmor radius of
a particle with mass m, atomic mass A, and charge Z is

rL ∼= mc2βparγ

QB
−→
γ�1

E

ZeB
∼= 1.1

E (PeV)

ZB (µG)
pc ∼= A

Z

(
m

mp

)
mpc

2

eB
γ

∼=




1706

B (G)
γ cm, electrons,

3.13× 106A

ZB (G)
γ cm ∼= A/Z

B (µG)

( γ

106

)
pc

∼= E (1020 eV)

ZB (10−10 G)
Gpc, protons or ions.

(1.3)

Particles with rL � R will escape from or penetrate into a region of size R
with mean magnetic field B, and will do this on the light crossing timescale
R/c. Cosmic-ray protons with energies E � 1017 eV, well above the knee
energy at ≈3 PeV, have Larmor radii comparable to the ≈180 pc thickness
of the Galaxy’s disk. At such energies, cosmic-ray protons originating in
the disk of the Galaxy will escape into the halo of the Galaxy and escape
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to intergalactic space. If formed beyond the Galaxy, such energetic cosmic
rays can pass through the Galactic halo and into the Galaxy’s disk.

The intensity of all cosmic-ray particles, irrespective of type, multiplied
by E2.5, is shown for E � 1014 eV cosmic rays in the right panel of
figure 1.2. Features of the high-energy spectrum are labeled. At the high-
est particle energies, extending from ultrahigh energies (UHE; �1018 eV) to
super-GZK energies (�1020 eV),5 the different signatures of the air show-
ers formed by a photon and a particle are not clear cut, and depend on the
particle physics model used to interpret air show data [12]. The Auger col-
laboration report [13] that the photon fraction of the UHECR (ultrahigh-
energy cosmic ray) flux at E ∼= 1019 eV is �2%. The Auger result [14]
on clustering of arrival directions of � 6 × 1019 eV UHECRs rules out a
Galactic origin, and the large gyroradii and near isotropy of cosmic rays
with E � 4 × 1019 eV also suggest an extragalactic origin. The energy of
the transition from a Galactic disk or halo component to an extragalactic
component, assuming there is a definite transition energy, could be at the
second knee or at the ankle, and is an open question.

High-energy neutrinos make up another important component of the
astroparticle spectrum.6 The high-energy nonthermal neutrino window is
being opened in this decade with observations from ∼TeV to 1020 eV. Var-
ious estimates [16] suggest that detection of 100 TeV–100 PeV neutrinos
from cosmic sources is probable with neutrino telescopes at the km scale,
such as the IceCube experiment at the South Pole or a northern hemisphere
neutrino telescope in the Mediterranean Sea. High-energy neutrino observa-
tions will be crucial to identify cosmic-ray accelerators and buried nonther-
mal sources.

The Gravitational-Wave Spectrum

The gravitational-wave spectrum offers a new window into the universe
of high-energy activity. Distortions in spacetime induced by extreme
events involving, for example, the coalescence of Solar mass neutron stars
and black holes, induce minute strains on underground bars like those in
the Laser Interferometer Gravitational Wave Observatory (LIGO). Relative
displacements of the three-detector space-based array that forms the pro-
posed Laser Interferometer Space Antenna (LISA) will be used to monitor

5GZK stands for Greisen, Zatsepin, and Kuzmin, an American and two Russian scien-
tists who first pointed out that � 1020 eV cosmic rays would rapidly lose energy due to
photohadronic interactions with the photons of the cosmic microwave background radiation
(CMBR) [10,11]. See chapter 9.

6MeV neutrinos formed by nuclear burning in stars [15] or in dense collapsed cores of
exploding stars are not treated here.
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coalescence of massive black holes. LIGO is now taking data at its design
sensitivity, and LISA may be developed as a NASA mission in the
2010–2020 time frame or later. Template gravitational waveform studies of
merging compact objects and coalescing black holes will be a crucial tool to
compare with data from these detectors. This subject, though of potentially
great importance to black-hole physics, will not be treated here (see, e.g.,
Ref. [17]).

1.2 ENERGY FLUXES

Flux density Fν is usually reported by radio astronomers in units of Jan-
sky (1 Jy = 10−23 ergs cm−2 s−1 Hz−1), so that the quantity νFν is an en-
ergy flux 
 (units of ergs cm−2 s−1, or Jy Hz, noting that 1010 Jy Hz =
10−13 ergs cm−2 s−1). The luminosity distance dL for a steady, isotropically
emitting source is defined so that the energy flux 
 is related to the source
luminosity L∗ (ergs s−1) according to the Euclidean expression


 = L∗
4πd2

L

(1.4)

(see chapter 4).
If φ(ε) is the measured spectral photon flux (units of photons

cm−2 s−1ε−1), then νFν = mec2ε2φ(ε). Henceforth we use the notation

fε = νFν (1.5)

for the νFν flux. From the definitions of 
 and fε ,


 =
∫ ∞

0
dε

fε

ε
. (1.6)

From eq. (1.4), the luminosity radiated by a source between measured pho-
ton energies ε1 and ε2, or between source frame photon eneriges ε1(1 + z)
and ε2(1+ z), is given by

L∗[ε1(1+z), ε2(1+z)] = 4πd2
Lmec

2
∫ ε2

ε1

dε ε φ(ε) = 4πd2
L

∫ ln ε2

ln ε1

d(ln ε)fε.

(1.7)

Equation (1.7) shows that if the νFν spectrum is flat with value f 0
ε , corre-

sponding to a photon flux φ(ε) ∝ ε−2, then the apparent power of the
source over one decade of energy is ≈ (ln 10)L0 ≈ 2.30L0, where L0 =
4πd2

Lf
0
ε .
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Long-duration GRBs are thought to be powered by the core collapse of
massive stars to black holes [18]. A large fraction is detected at cosmolog-
ical distances, that is, at mean redshifts 〈z〉 � 1; thus their mean apparent
isotropic γ -ray energy releases are

E∗ = 4πd2
L
〈t〉
(1+ z) ≈ 1051 d2

28

(1+ z)/2
(




10−7 ergs cm−2 s−1

) (〈t〉
20 s

)
ergs,

(1.8)

where dL = 1028d28 cm, d28 ≈ 2 for a GRB at z = 1, and the mean duration
〈t〉 ≈ 20 s. The factor 1 + z relates the observer time to the source frame
time.

Blazars are thought to be supermassive black-hole sources with jets, ori-
ented such that we are viewing nearly along the jet axis. The jet emission
is strongly amplified by Lorentz-boosting of relativistic outflows, so that
we can see such sources to high redshift. One such blazar is the bright
flat-spectrum quasar PKS 0528 + 134 at z = 2.06 (d28

∼= 5). During
bright γ -ray states discovered with the Energetic Gamma Ray Experiment
Telescope (EGRET) on the Compton Gamma Ray Observatory, its appar-
ent isotropic γ -power exceeded ∼1049 ergs s−1 [19]. The bright blazar 3C
279 at z = 0.538 (d28

∼= 1) also flares with apparent γ -ray luminosity
�1049 ergs s−1 [20]. Such flares, lasting for hours to days, involve apparent
isotropic energy releases �1053 ergs.

The relative magnitude of two sources with magnitudes m1 and m2 is
defined as

m1 −m2 = −5

2
log

(

1


2

)
, (1.9)

where 
(ν) = L∗(ν)/4πd2
L is the (spectral) energy flux, and 
(ν) and L∗(ν)

are in cgs units of ergs cm−2 s−1 (Hz−1) and ergs s−1 (Hz−1), respectively.
Five magnitudes correspond to a factor 102 in relative energy fluxes.

Table 1.2 gives a reference optical magnitude scale [21] and the spec-
tral energy flux 
ν(0) of a zeroth magnitude star, converted to νFν energy
fluxes fε(0) at that photon frequency. The energy flux of a zeroth magni-
tude star in the V band is about 1011 times fainter than the Solar constant
(∼=1 kW m−2; see Appendix E) and ≈1010 times brighter than a 25th mag-
nitude galaxy (in V), which has an energy flux 
 ≈ 10−15 ergs cm−2 s−1.
The largest optical telescopes detect galaxies with m = 30, and therefore
reach sensitivities 
 � 10−17 ergs cm−2 s−1. The Hubble Space Telescope
only reaches R magnitudemR ∼= 25 because of its smaller mirror compared
to ground-based telescopes, but its imaging is magnificent at ∼0.1′′.
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Table 1.2 Reference Optical Magnitude Scalea


ν(0)
ν Eγ ε (kJy = 10−20 fε(0)

Filter λ0 (µ) (1014 Hz) (eV) (10−6) ergs/cm2 s Hz) (ergs/cm2 s)

U 0.365 8.22 3.40 6.78 1.9 1.56× 10−5

B 0.44 6.82 2.82 5.52 4.27 2.91× 10−5

V 0.56 5.40 2.24 4.38 3.54 1.91× 10−5

R 0.7 4.28 1.77 3.47 2.84 1.21× 10−5

J 1.25 2.40 0.99 1.94 1.60 3.83× 10−6

L 3.45 0.87 0.36 0.70 0.29 2.52× 10−7

M 4.8 0.62 0.257 0.50 0.163 1.02× 10−7

aFlux density 
ν(0) and νFν flux fε(0) for a zeroth magnitude star;
the precise scale depends on the photometry system, filter, and
bandwidth. For instance, Johnson V magnitude has central wavelength
λ0 = 0.545µm = 5450 Å and a bandwidth of 880 Å.

1.3 TIMING STUDIES AND BLACK-HOLE MASS ESTIMATES

The Schwarzschild radius of a black hole of mass M is

RS = 2GM

c2
∼= 3.0× 105

(
M

M�

)
cm, (1.10)

and RS ≈ 2 AU for a 108M� black hole. To resolve the nuclear region of a
cosmologically distant black hole within≈102RS requires an imaging capa-
bility of ≈10−14 rad, which is beyond present technical ability. The mass of
the black hole at the Galactic Center, inferred from analysis of stellar orbits,
isMGC ≈ 4× 106M� [22,23]. The Very Large Baseline Array (VLBA) has
an imaging capability of≈10−9 rad, sufficient to establish the source size of
42 GHz radio emission to 24(±2)RS [24]. The Galaxy’s central black hole
is the best candidate to directly image the inner regions of a black hole.

Lack of sufficient angular resolution to resolve the different radiating
regions near a black hole can in principle be remedied through analysis of
time histories of count or photon data. Variations in the source flux by a
large factor (�2) over a time scale t must, from causality arguments for
stationary sources, originate from an emission region of size R � ct/(1+
z). If the radiation were emitted from larger size scales, incoherent super-
position of emissions from regions that are not in causal contact would
smooth large-amplitude fluctuations. For high-quality data from bright
flares, large-amplitude variations in source flux on timescalet would, from
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this argument, imply a black-hole mass

M

109M�
� t

(1+ z)104 s
. (1.11)

The measured size scale R � ct/(1 + z) reflects the physical dimen-
sions of the energy generation region, but not necessarily the distance of the
emission site from the source. For emission regions in relativistic motion
with bulk Lorentz factor �, the actual location of the emission region can be
as far as≈�2ct/(1+z) from the explosion center (see chapter 5). High En-
ergy Stereoscopic System (HESS) detection of rapid∼0.2–2 TeV flares from
PKS 2155-304 on timescales ∼300 s, much shorter than the light crossing
time across a black hole of≈109M� thought to be found in this system [25],
is therefore surprising [26].

There are a wide range of methods to determine the masses of Galac-
tic and extragalactic black holes. The most reliable methods employ direct
measurements of stellar or gaseous velocities in the vicinity of the black
hole, or reverberation mappping of emission lines of surrounding gas in
response to changes in the UV flux of the central nucleus [3]. The mass of
the black hole and the mass of the bulge of the host galaxy are found to
correlate in the ratio of ≈1 : 500 with small, factor-of-2 scatter [27].7 For
supermassive black holes at large redshifts where the host galaxy cannot
be resolved, timing studies could offer the best hope to measure black-hole
mass. Black-hole masses have been determined from analysis of X-ray data,
but how precisely to determine the black-hole mass from variability data at
γ -ray energies remains unclear.

1.4 FLUX DISTRIBUTION

A valuable tool for studying properties of steady or flaring sources is the
statistical distribution of fluxes or fluences, called the flux (or logN– log S)
distribution. The observable quantity could be peak flux within a given pho-
ton waveband, flux averaged over a long observing timescale, or fluence
of a blazar flare or GRB. Expressing the sensitivity of a high-energy radi-
ation detector in terms of a threshold flux 
thr imposes the condition that

 ≥ 
thr. For unbeamed sources with luminosity L∗ and distance d (∼=dL
at low redshifts), 
 = L∗/4πd2, and the maximum source distance for a
give source flux 
 is

d(
) =
√
L∗

4π

.

7A later study [28] shows a ratio of ≈1 : 800 for black holes in 72 AGNs, with more than
50% of the sample within a factor of 3 of the best-fit relation.
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Hence the flux distribution for sources that are uniformly distributed with
density n0 in flat space is

N(>
) = N(<d) = 4πn0

∫ d(
)

0
dx x2 ∝ 
−3/2, (1.12)

as is well known.
The 〈V/Vmax〉 statistic [29]

〈V/Vmax〉 = 1

N

N∑
i=1

(

i


thr

)−3/2

(1.13)

expresses the deviation from 0.5 expected for a uniform Euclidean distribu-
tion of sources. Here V stands for volume, and Vmax is the maximum volume
from which a source with flux 
 could be detected. Values of 〈V/Vmax〉 >
0.5 represent positive evolution of sources, that is, either more sources and/or
brighter sources at large distances or earlier times. Values of 〈V/Vmax〉 <
0.5 represent negative source evolution, i.e., fewer or dimmer sources in the
past. Detailed treatments of the statistical properties of black hole sources
must consider cosmological effects and evolution of source properties.

Analysis of the statistics of the sources of UHECRs, needed for charged
particle astronomy [14], is complicated by the unknown strength and geom-
etry of Galactic and intergalactic magnetic fields.

1.5 THE NIGHTTIME SKY

Intergalactic space is permeated by a background glow made up of stel-
lar and black-hole radiations, and the remnant CMBR left over from the
big bang (figure 1.3). The mean intensity of light in intergalactic space is
referred to here as the extragalactic background light, or EBL. In terms of
energy density, the CMBR represents the dominant radiation field of the
EBL in intergalactic space (see figure 1.3). The present temperature of the
CMBR is 2.728 ± 0.004 K [31]. Other than the ∼0.1% dipole anisotropy
due to the Galaxy’s proper motion, the CMBR shows deviations at �10−5

from a perfect blackbody due to acoustical imprints from the big bang.
The intensity of the diffuse background IR radiation field is difficult to

measure directly because of foreground radiations, such as Galactic elec-
tron synchrotron radiation and zodiacal light scattered by dust in our Solar
system. The optical component of the diffuse EBL traces, primarily, stellar
radiation from spiral and elliptical galaxies. The IR component is primarily
radiation from stars and black holes that has been reprocessed through large
column densities of cold dust. The energy density of the dust and stellar
components of the EBL is≈10% of the CMBR energy density at the present
epoch.
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Figure 1.3 Spectral energy densities in intergalactic space of various radiations,
including the CMB, the infrared (IR) and optical, X-ray, γ -ray, the ex-
tragalactic cosmic ray, and the predicted maximum energy density of
cosmogenic neutrinos from photopion interactions of UHECRs with
photons of the extragalactic background light (EBL) [30]. Also shown
is the energy density of cosmic rays measured near Earth; the transition
energy between the galactic and extragalactic components is uncertain.

The X-ray background is resolved from analysis [32] of observed popula-
tions into, primarily, Seyfert galaxies, which are star-forming (usually disk)
galaxies with strong blue/UV excesses from central nuclei. Also making
up the X-ray background is a significant contribution from “buried” black
holes, namely accreting black holes with masses ∼105–108M� that are sur-
rounded by material with column densities exceeding ∼1024 H atoms cm−2.

The identified extragalactic γ -ray sources in the EGRET (∼100 MeV–
10 GeV) range are blazars and GRBs. The superposition of faint blazar
sources probably makes a significant contribution to the diffuse extragalactic
γ -ray background [33,34] shown in figure 1.3. There are additional
uncertain contributions from γ rays formed by cosmic rays accelerated in
structure formation shocks, or in star-forming galaxies.
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Chapter Two

Relativistic Kinematics

In this chapter, the framework of Einstein’s special theory of relativity is pre-
sented. Transformations that render the spacetime interval ds2 = −c2dt2 +
dx2+dy2+dz2 unchanged define the category of physical theories that are
Lorentz invariant. Further relativistic invariants, used to transform particle
and photon distributions, are derived. The kinetic theory of reaction rates
and secondary spectra occupies the final sections of this chapter.

2.1 LORENTZ TRANSFORMATION EQUATIONS

Consider two coordinate systems K and K ′ in uniform relative motion,
defining an inertial reference system. The reference frames are aligned along
the x̂ and x̂ ′ axes, with frame K ′ moving at speed v = βc in the positive
x̂ direction with respect to frame K (figure 2.1). Assume that a ruler and
a clock are used to measure location and time in each frame. According to
the postulates of special relativity, the laws of physics are the same in iner-
tial reference systems, and the speed of light c is the same in both frames.
Satisfaction of these conditions requires that the interval

−c2t2 + x2 + y2 + z2 = −c2t ′2 + x ′2 + y ′2 + z′2 = 0. (2.1)

Assuming homogeneity and isotropy of space, one can easily show that
the Lorentz transformation equations are the simplest linear equations satis-
fying eq. (2.1) that connect location �x at time t measured inK with location
�x ′ at time t ′ measured in K ′. They are

t ′ =�(t − βx/c),
y′ = y,
z′ = z,
x′ =�(x − βct), (2.2)

where � = 1/
√

1− β2. The reverse transformations are

t =�(t ′ + βx ′/c),
y= y ′,
z= z′,
x=�(x ′ + βct ′). (2.3)
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Figure 2.1 Bulk frame K ′ moving with speed v = βc in the x̂ direction with
respect to frame K . The photon or relativistic particle, with dimension-
less energy ε, moves in a direction making an angle θ with respect to the
x̂ axis. The azimuth φ is the angle between the projection of this vector
on the ŷ-ẑ plane and the ŷ axis, and similarly for primed quantities in
the K ′ frame.

The set of four numbers xµ = (ct, �x) = (ct, x, y, z) defines a space-
time event. Events in two inertial reference frames are related by eqs. (2.2)
and (2.3).

Suppose the length of an object is measured in frameK . At the same time
t , one measures the length �x = x2 − x1 of an object in motion. In the K ′
frame, x ′2 = �(x2 − βct) and x ′1 = �(x1 − βct), from eq. (2.2), so that
�x′ = x ′2 − x′1 = ��x. Hence �x = �x′/�, so that

dx = dx ′

�
. (2.4)

The length of a moving object measured along its direction of motion is
shorter than its length as measured in the proper frame of the object. This is
the phenomenon of length contraction.

Now consider a clock at rest in the K ′ coordinate system, so x ′ remains
constant inK ′. The relationship between the time measured in the stationary
frame K and that in the comoving frame K ′ is, from eq. (2.3), simply �t =
t2 − t1 = �(t ′2 + βx′/c)− �(t ′1 + βx ′/c) = �(t ′2 − t ′1) = ��t ′, so that

dt = �dt ′. (2.5)

This is the phenomenon of time dilation.
In the general case, the K ′ frame does not travel along the x̂ axis. The

Lorentz transformation equations for the coordinate r‖ along the direction
of motion and the coordinate r⊥ transverse to the direction of motion can
then be written as

t ′ = �(t − vr‖/c), r ′‖ = �(r‖ − vt), and r ′⊥ = r⊥. (2.6)

Here θ = arccosµ is the angle between the direction of motion of the
K ′ system and the x̂-axis of frame K , so that r‖ = rµ = (�v · �r)/v,
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r⊥ =
√

1− µ2|�r|, and vr‖ = �v · �r = vrµ. The reverse transformation
equations are

t = �(t ′ + vr ′‖/c), r‖ = �(r ′‖ + vt ′), and r⊥ = r ′⊥. (2.7)

The invariance of the interval, eq. (2.1), also implies that the spacetime
interval

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt ′2 + dx′2 + dy ′2 + dz′2
is invariant. Consider a particle at rest in the origin of K ′. Therefore

dt ′2 = dt2
(

1− dx
2 + dy2 + dz2

c2dt2

)
= dt2(1− v2/c2).

Thus the proper time

dt ′ = dt

�
= dt

γ
(2.8)

as measured in the rest frame of a particle is invariant because, in this case,
the particle Lorentz factor γ equals the bulk Lorentz factor �. Hence dt =
γ dt ′, in agreement with the time dilation formula, eq. (2.5).

2.2 FOUR-VECTORS AND MOMENTUM

The four-vector spacetime coordinate xµ = (ct, �x) = (x0, x1, x2, x3) trans-
forms according to the Lorentz transformations, eqs. (2.2) and (2.3). A four-
vector is defined as a set of four quantities that transform according to

x ′0=�(x0 − βx1),

x ′1=�(x1 − βx0),

x ′2= x2,

x ′3= x3. (2.9)

Four-vectors can be constructed from the spacetime four-vector and in-
variants that are unchanged by Lorentz transformations. The four-vector
momentum

pµ = −mcdx
µ

ds
= mcγ (1, �βpar) = mc(γ, �ppar), (2.10)

where �βpar = d�x/dt and �ppar = �βparγ , and we use the invariant ds =
−cdt ′ = −cdt/γ , eq. (2.8), associated with the proper time of a particle

moving with Lorentz factor γ = 1/
√

1− β2
par in the K frame. The time

component of eq. (2.10) is equal to E/c, where the total particle energy

E = γmc2.
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The quantity m is the invariant particle rest mass.
Because eq. (2.10) is a four-vector, it transforms according to eq. (2.9).

Thus one obtains the Lorentz transformation equations

γ ′ =�(γ − βpx) = �γ (1− ββpar,x),

p′x =�(px − βγ ) or γ ′β ′par,x = γ�(βpar,x − β),
p′y =py,
p′z =pz (2.11)

for the particle Lorentz factor and dimensionless momentum, with the re-
verse transformation obtained by letting β → −β and switching primed
and unprimed quantities. These equations can be derived, in analogy with
the Lorentz transformation equations for the spacetime event, from the
invariance of −(mc)2 = −(E/c)2 + (mcppar)

2 = −(mc)2(γ 2 − β2
parγ

2).
Because the x-component of dimensionless momentum can be written

as px = γβpar,x = γβparµ, where θ = arccosµ is the angle between the
direction between the particle momentum and the x̂-axis,

γ ′ = �γ (1− ββparµ) (2.12)

and
β ′parγ

′µ′ = �γ (βparµ− β). (2.13)

The ratio of eqs. (2.13) and (2.12) is

β ′parµ
′ = βparµ− β

1− βparβµ
. (2.14)

For massless photons or highly relativistic particles with βpar→ 1 and γ �
1, we let γ → ε. Thus

ε′ = �ε(1− βµ), (2.15)

µ′ = µ− β
1− βµ, (2.16)

φ′ = φ, (2.17)

now writing the energy in terms of cosine angle µ and azimuth angle φ (fig-
ure 2.1). The reverse transformation equations for photons and relativistic
particles are

ε = �ε′(1+ βµ′), (2.18)

µ = µ′ + β
1+ βµ′ , (2.19)

φ = φ′. (2.20)
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Equations (2.15)–(2.20) can be derived for photons by considering the pho-
ton four-vector momentum kµ = (h̄/mec2)(ω, c�k). In dimensionless form,
the four-vector momentum of a photon is pµ = ε(1, k̂/k).

If a photon in the bulk comoving frame is emitted at right angles to the
direction of motion, then θ ′ = π/2 and µ′ = 0. The cosine angle of the
photon in frame K is µ = β, from eq. (2.19). For highly relativistic bulk
speeds, �� 1 and β = µ ≈ 1 − (1/2�2) ≈ 1 − (θ2/2), so that θ ≈ 1/�.
All photons emitted in the forward direction inK ′ are therefore beamed into
a narrow range of angles θ � 1/� inK . This illustrates the phenomenon of
relativistic beaming.

2.3 RELATIVISTIC DOPPLER FACTOR

Equation (2.15) shows that the photon energy in frame K is related to the
photon energy in frame K ′ according to the relation

ε

ε′
= δD ≡ [�(1− βµ)]−1, (2.21)

where δD is the Doppler factor. In the limit of large bulk Lorentz factors and
small observing angles along the line of sight,

δD
��1, θ	1

→ 2�

1+ �2θ2
. (2.22)

It is useful to derive the Doppler factor by considering an observer receiv-
ing photons emitted at an angle θ with respect to the direction of motion of
frame K ′ in the stationary frame K (figure 2.2). During time �t∗, as mea-
sured in stationary frame K , the bulk system moves a distance

�x = βc�t∗ = β�c�t ′,
where the last expression relates the change in distance to the comoving
time element using the time dilation formula, eq. (2.5).

A light pulse emitted at stationary frame time t∗ and location x is received
at observer time

t = t∗ + d
c
− x cos θ

c
, (2.23)

where d is the distance of the observer from the origin of stationary frame
K . At a later time t∗ + �t∗, a second pulse of light is emitted, which is
received by the observer at time

t +�t = t∗ +�t∗ + d
c
− (x +�x) cos θ

c
. (2.24)
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K
∆x

K�

βc,Γ

∆x cosθ

  θ

d

Figure 2.2 Geometry of the Doppler effect.

Subtracting eq. (2.23) from eq. (2.24) and taking the limit of differential
quantities gives

dt = dx

βc
(1− β cos θ) = �dt ′(1− βµ) = dt ′

δD
. (2.25)

Because ε = hν/mec2 and ν ∝ 1/�t ,

dt ′

dt∗
= ε

ε′
, (2.26)

and ε′ = ε/δD, eq. (2.15). Effects from the expansion of the universe on
energy and time interval are treated in chapter 4.

2.4 THREE USEFUL INVARIANTS

The invariance of the four-volume dtdV = dtd3�x is demonstrated. Without
loss of generality, align the coordinate axes along the direction of relative
motion, as in figure 2.1. The quantity

dtdV = dtdxdydz = J
(
t x y z

t ′ x′ y′ z′
)
dt ′dx′dy′dz′, (2.27)
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where the Jacobian of the transformation, from eq. (2.3), is

J

(
t x y z

t ′ x′ y′ z′

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂t

∂t ′
∂t

∂x ′
∂t

∂y′
∂t

∂z′

∂x

∂t ′
∂x

∂x ′
∂x

∂y′
∂x

∂z′

∂y

∂t ′
∂y

∂x ′
∂y

∂y′
∂y

∂z′

∂z

∂t ′
∂z

∂x ′
∂z

∂y′
∂z

∂z′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

� β/c 0
�βc � 0 0

0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
= �2(1− β2) = 1. (2.28)

Thus

dV dt = dV ′dt ′ = inv. (2.29)

We now examine the transformation quantities of the momentum volume
element

d3 �p ′ = dp′xdp
′
ydp
′
z =

∣∣∣∣∂p
′
x

∂px

∣∣∣∣ dpxdpydpz, (2.30)

and show that the phase-space element d3 �p/E is an invariant, noting that
the perpendicular momentum components dpy and dpz are unchanged by a
boost along the x̂-axis. From eqs. (2.11) and (2.12),

∣∣∣∣∂p
′
x

∂px

∣∣∣∣ = � − β�
∣∣∣∣ ∂γ∂px

∣∣∣∣ = �(γ − βpx)
γ

= γ ′

γ
= E′

E
. (2.31)

Note that γ =
√

1+ p2=
√

1+ p2
x + p2

y + p2
z , so that ∂γ /∂pi =pi/γ and

∂γ /∂p=p/γ . Thus

d3 �p
E
= d3 �p ′

E′
= inv (2.32)

and

d3 �p
E
= p2dpd

E
→ εdεd (2.33)
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Figure 2.3 Sketch used to derive reaction rate between interacting particles or pho-
tons with stationary frame densities n1 and n2.

is invariant, with the final expression applying to photons and relativistic
particles.

Finally, we establish the invariance of the phase-space volume dV =
d3�xd3 �p. Consider the invariant d3�xdtd3 �p/E = dVdt/E. From eq. (2.3),
dt = �dt ′(1 + ββ ′par,x). The reverse transformation of eq. (2.11) is dE =
�E′(1+ ββ ′par,x). Thus dt/E = dt ′/E′, which follows because dt/E is the
ratio of parallel four-vectors [35].

2.5 RELATIVISTIC REACTION RATE

The relativistic reaction (or scattering) rate ṅsc = dN/dV dt is defined as the
number of collisions per unit volume per unit time between particle species
“1” and “2” with masses m1 and m2, respectively. Because the number of
collisions dN and the product dV dt are separately invariant quantities, the
ratio ṅsc is also an invariant quantity.

Let the densities of species 1 and 2 in system K be denoted by n1 and n2,
respectively, as shown in figure 2.3. Due to length contraction, the densities
in the proper system in which the particles are at rest are given by ni = γin0

i ,
i = 1, 2, where γi = (1− β2

i )
−1/2 are the Lorentz factors of particles in K .

Note that the density of particles is least in the proper frame. We consider for
the moment particles of type i that all move with the same Lorentz factor.
Transforming to the rest system of particle species 2 implies that the reaction
rate in that system is

ṅsc = cβrσn0
2n
′
1, (2.34)

where cβr is the relative speed of particles of type 1 in the rest system of
particles of type 2, and σ = σ(γr) is the scattering cross section. The quan-
tity σ(γr) is a function of the quantity γr = (1 − β2

r )
−1/2, which is simply
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the relative Lorentz factor of a particle of one type in the rest system of the
other particle type, and as defined is obviously invariant. From our preced-
ing considerations, γr = pµ1 ·pµ2 /(m1m2) = γ1γ2(1− �β1 · �β2), where pµi is
the four-momentum of particles of type i (eq. [2.10]). Thus

βr =
(
(p
µ

1 · pµ2 )2 −m2
1m

2
2

(p
µ

1 · pµ2 )2
)1/2

. (2.35)

Note that βr = 1 if either (or both) species are photons.
Let n′1 be the density of species 1 as seen in the rest system of species

2. Therefore n′1 = γrn
0
1 = γrn1/γ1 and n0

2 = n2/γ2, implying ṅsc =
cβrσ (γr)(1 − �β1 · �β2)n1n2. This expression applies to two monoenergetic
particle species each traveling in specific directions. In the general case,
particles will have a distribution of directions and energies, so that it is nec-
essary to integrate over the various directions and energies to calculate the
total reaction rate. If the particle distributions are self-interacting, then the
reaction rate must be multiplied by a factor of 1/2 to correct for double
counting. Thus the reaction rate for two interacting distributions of particles
is given by

ṅsc = c

(1+ δ12)

∫
. . .

∫
βr (1− �β1 · �β2)σ (γr)dn1dn2 (2.36)

[36,37], where δ12 = 1 for self-interacting particle distributions and δ12 = 0
for interactions of different types of particles. Because of the invariance of
ṅsc, eq. (2.36) equally gives the reaction rate in frameK , even though it was
derived in the proper frame of particle species 2. Equation (2.36) is also valid
for photon-particle interactions with βr → 1 and γr → γ1ε(1− β1 cos θ12),
and for photon-photon interactions with γr → ε1ε2(1− cos θ12).

The differential spectral density

n( �p) = dn

d3 �p =
dn

p2dpd
, (2.37)

so that dn = n( �p)p2dpd and d = dµdφ. The momentum of a particle
or photon of species i is denoted by �pi . For particles, pi = βiγi , whereas
pi = hνi/mec

2 = εi for photons. The general expression for the reaction
rate is therefore given by

ṅsc= c

(1+ δ12)

∮
d1

∫ ∞
0

dp1 p
2
1 n1( �p1)

×
∮
d2

∫ ∞
0

dp2 p
2
2 n2( �p2) βr(1− β1β2 cosψ)σ(γr). (2.38)

The invariant energy defining the collision strength is the relative Lorentz
factor γr = γ1γ2(1−β1β2 cosψ), and ψ is the angle between the directions
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�

θ2

φ2 φ1

θ1

Figure 2.4 Angles in spherical geometry.

of the interacting particles or photons, given by

cosψ = µ1µ2 + (1− µ2
1)

1/2(1− µ2
2)

1/2 cos(φ1 − φ2) (2.39)

(figure 2.4), with µ1 = cos θ1 and µ2 = cos θ2.
Now consider the scattering rate Ṅsc of a particle traversing a photon

field. The distribution function for a single particle is n1( �p1) = n1δ(p −
p1)δ(µ1 − 1)δ(φ1)/(4πp2

1), and eq. (2.38) implies

Ṅ sc(p1) = ṅsc

n1
= c

∫ 2π

0
dφ

∫ 1

−1
dµ (1− β1µ)

∫ ∞
0

dε nph(ε,) σ(εr),

(2.40)
where nph(ε,) = dN/dV dεd is the photon distribution function and
εr = γ1ε(1 − β1µ) is the invariant energy of the scattering event, which is
also the photon energy in the rest frame of the particle. For photon-photon
(γ γ ) interactions of a photon with energy ε1 passing through a gas of pho-
tons with energy ε, β1→ 1 and γr → εr = εε1(1−µ). Thus the interaction
rate of a photon with energy ε1 passing through a background photon field
n(ε,) is

Ṅγ γ (ε1) = c
∫ 2π

0
dφ

∫ 1

−1
dµ (1− µ)

∫ ∞
0

dε nph(ε,) σ(εr). (2.41)

2.6 SECONDARY PRODUCTION SPECTRA

The calculation of secondary production spectra with momenta �ps =
(ps,s) depends on knowledge of the differential cross section dσ(p1, 1,

p2, 2)/dpsds . In terms of differential densities, the results in the
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previous section imply the number emissivity

ṅs(ps,s)= dNs

dV dtdpsds
= c

1+ δ12

∮
d1

∫ ∞
0

dp1 n1(p1, 1)

×
∮
d2

∫ ∞
0

dp2 n2(p2, 2) βr · (1− β1β2 cosψ)
dσ(γr)

dpsds

(2.42)

for the secondary production spectra.
The most common type of problem encountered in black-hole studies

involves scattering of photons by relativistic (p ≈ γ � 1) particles, for
example, in treatments of Compton scattering and photomeson interactions.
In this case, eq. (2.42) can be written as

ṅs(ps,s)= c
∮
d

∫ ∞
0

dε nph(ε,)

∮
dpar

×
∫ ∞

1
dγ (1− βpar cosψ) npar(γ,par)

dσ (ε,, γ,par)

dpsds
.

(2.43)

If the particle distribution function npar(γ,par) is assumed to be isotropic,
then npar(γ,par) = npar(γ )/4π .

The emissivity for electron-photon scattering is given by the expression

j (εs,s)= dE
dV dtdεsds

=mec2εsṅs(εs,s) = cεs
∮
d

∫ ∞
0

dε
u(ε,)

ε

×
∮
de

∫ ∞
1

dγ (1− βe cosψ) ne(γ,e)
dσ (ε,, γ,e)

dεsds
,

(2.44)

where the subscript “e” refers to the electron distribution. The specific spec-
tral photon energy density u(ε,) = mec2εnph(ε,) and scattering cosine
angle

cosψ = µµe +
√

1− µ2
√

1− µ2
e cos(φ − φe), (2.45)

from eq. (2.39).
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Chapter Three

Introduction to Curved Spacetime

After a review of aspects of special relativity relevant to the discussion in
this chapter, the notions of curved spacetime and geodesic motion are intro-
duced. Schwarzschild spacetime and gravitational redshift are considered as
examples. While we do rely heavily on the topics covered in Appendix A,
the covariant derivative involved in geodesic motion is independently de-
rived here from a variational principle. Good introductions to special and
general relativity can also be found in [38], [39], and [40].

3.1 SPECIAL RELATIVITY

In relativity there is no unique way to separate space from time. Unlike clas-
sical physics, where we have three-dimensional vectors, in special relativity
we consider four-vectors of the type

Aµ = (A0, A1, A2, A3) (3.1)

in a particular Minkowski coordinate system {x0 = ct, x1, x2, x3}. Here c is
the speed of light. The vector Aµ is traditionally called a contravariant vec-
tor. The “dot” products of vectors are taken with the help of the Minkowski
metric ηµν .

A · B = ηµνAµBν ≡ η (A,B), (3.2)

where

ηµν =



−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 . (3.3)

Here Aµ and Bµ are the components of vectors A and B. We will also
employ the following Einstein summation convention through out this book:

AµB
µ ≡

3∑
µ=0

AµB
µ (3.4)
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for any two repeated indices with one index subscripted and the other super-
scripted. Consequently,

A · B = −A0B0 +
3∑
i=1

AiBi. (3.5)

In tensor notation,1 the Minkowski metric becomes

η = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3. (3.6)

The canonical map between a tangent (contravariant) vector and its dual
(covariant vector) is given by

A0 = η0µA
µ = −A0 and Ai = ηiµAµ = Ai. (3.7)

Now consider a particle with mass m tracing out a curve

α(τ) = {x0(τ ), x1(τ ), x2(τ ), x3(τ )}
in Minkowski spacetime. Its four-velocity is the tangent vector along the
curve given by

uµ = dxµ

dτ

such that u2 = η(u, u) = −1. Therefore,

−1 = dt2

dτ
(−c2 + v2). (3.8)

Here v2 = �v · �v where the three-vector

vi = dxi

dt

for i = {1, 2, 3} is the usual three-velocity of the particle. Consequently,

γ ≡ c dt
dτ
= 1√

1− β2
(3.9)

where �β = �v/c is the dimensionless velocity. The four-velocity uµ now
takes the form

uµ = γ (1, �v/c). (3.10)

1The tensor product ⊗ creates multilinear maps, for example,

dxi ⊗ dxj (A,B) = Ai Bj ,
for vectors A and B. For more details, see Appendix A.
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The four-momentum pµ of a particle with mass m is given by

pµ = m c2 uµ = (mγ c2, mγ �v c) = (E, �p c). (3.11)

Here E ≡ mγc2 and �p ≡ mγ �v are the energy and the three-momentum of
the particle.

Massless particles such as photons, in quantum electrodynamics, have en-
ergy ε = hν and momentum �p = h̄�k such that 0 = −ε2 + c2p2. Therefore,
the photon’s four-momentum

kµ = (ε, c �p) (3.12)

is a constant null vector, since, while a photon may be created or annihilated,
in its lifetime, the photon moves along a straight path at the speed of light
with constant values of energy and momentum. Here, h is Planck’s constant
and h̄ ≡ h/2π . Also, ν and �k are the frequency and the wave vector of
the photon. The observer who uses the Minkowski frame that we are in
measures the energy of the photon to be

ε = −η(k, ∂t ). (3.13)

Here ∂t is the four-velocity of the observer measuring the energy of the
photon. Let us denote the four-velocity of an arbitrary observer by u; then
the energy ε of a photon with four-velocity kµ as measured by this observer
is given by

ε = −η(k, u) = −ηµν kµuν. (3.14)

It is easy to verify that the Minkowski metric is invariant under the fol-
lowing transformation:

x̄µ = xµ + aµ. (3.15)

Here, aµ = {a0, a1, a2, a3} is any constant four-tuple. In addition to these
space-time translations, there are other sets of transformations that leave
eq. (3.6) invariant. The ordinary rotations of three-space represent one such
set. Consider, for example, a rotation about the x3-axis given by

x̄µ = Rµν xν, (3.16)

where Rµν is the matrix 


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


 . (3.17)

Throughout the book we use the convention that the upper indices refer to
rows, and the lower indices refer to columns. Equation (3.16), and, in gen-
eral, rotation about any arbitrary spatial axis will leave eq. (3.6) invariant.



chapter03 July 15, 2009

28 CHAPTER 3

In a similar manner, the usual Lorentz transformations leave the Minkowski
metric invariant as well. In the case of a Lorentz boost along the x3-axis,

x̄µ = �µν xν, (3.18)

where

�µν =



� 0 0 −�β
0 1 0 0
0 0 1 0
−�β 0 0 �


 . (3.19)

Here

� = 1√
1− β2

.

Clearly, we want 0 ≤ β2 ≤ 1. The inverse of the above transformation is
given by

[�−1]µν =



� 0 0 �β

0 1 0 0
0 0 1 0
�β 0 0 �


 . (3.20)

Coordinate transformations of tangent vectors are obtained from eq. (A.8),
and under Lorentz transformations become

∂x̄µ

∂xν
= �µν . (3.21)

Similarly, the coordinate transformations of dual vectors are given by the
inverse map

∂xµ

∂x̄ν
= [�−1]µν . (3.22)

We conclude our discussion of special relativity by writing down the covari-
ant form of Maxwell’s equations. In rationalized Heaviside-Lorentz units,
Maxwell’s equations are

∇ ·D = ρc, (3.23)

∇ · B = 0, (3.24)

∂tB + ∇ × E = 0, (3.25)

−∂tD + ∇ ×H = J, (3.26)



chapter03 July 15, 2009

INTRODUCTION TO CURVED SPACETIME 29

where ρc is the charge density and J is the electric three-current. Unless
there are electric and magnetic susceptibilities, E = D and B = H . The
above equations can be written in a covariant form by defining the Maxwell
tensor

Fµν =




0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0


 (3.27)

and its dual,

∗Fµν =




0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


 . (3.28)

It is easily see that the four Maxwell’s equation can now be written in the
form

∂β ∗Fαβ = 0 (3.29)

and

∂βF
αβ = Iα. (3.30)

Here I = (ρc, J 1, J 2, J 3). It is important to note that

∗Fαβ ≡ 1

2
εαβµνFµν, (3.31)

where εαβµν is the completely antisymmetric tensor such that ε0123 = −1.
Consequently, E, B, D, and H transform as the components of a tensor of
type (0,2); we can think of these objects as three-vectors only after we fix a
coordinate system.

3.2 CURVED SPACE/SPACETIME

Let us consider the simplest case of �2 with coordinates {x, y} and metric

g = dx ⊗ dx + dy ⊗ dy. (3.32)

Let

α(s) = (x(s), y(s))
be a curve from the point p1 to p2. If we wished to compute the length of α,
we would simply consider incremental lengths of the form

�l =
√
�x2 +�y2 = �s

√
�x2

�s2
+ �y

2

�s2
. (3.33)
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The total, exact length of the curve can be obtained from the integral

l =
∫
ds

√
ẋ2 + ẏ2. (3.34)

Here, the overdot refers to the ordinary derivative with respect to s. The
above expression for the length of the curve can be written in the form

l =
∫
ds

√
gij ẋi ẋj . (3.35)

Here, x1 = x and x2 = y. While eq. (3.34) is applicable only in a Cartesian
coordinate system, eq. (3.35) is a general expression valid in any coordinate
system. The tangent vectors ẋi will transform according to eq. (A.8), while
the metric gij will transform as a tensor of type (0,2) as given in eq. (A.25).

Now consider an arbitrary space with a given positive definite metric. The
distance between any two points along a curve

α(τ) = (x1(τ ), x2(τ ), . . . , xn(τ )) (3.36)

parameterized by τ is given by

l =
∫
dτ

√
gµνẋµẋν, (3.37)

where µ, ν takes on values 1, 2, . . . , n. This is nothing more than a general-
ization of eq. (3.35) to higher-dimensional spaces. The curve that minimizes
the distance between two fixed points is referred to as a geodesic. It will be
important for us to understand the nature of such curves. Clearly, such a
curve would minimize the length in eq. (3.37). Minimizing eq. (3.37) is
equivalent to minimizing

1

2

∫
gµνẋ

µẋνdτ.

In the usual formulation of variational mechanics, this is equivalent to
choosing

L(x, ẋ) = 1

2
gµν(x) ẋ

µẋν (3.38)

as the Lagrangian. Geodesics are then curves generated by the
Euler-Lagrange equation

d

dτ

∂L
∂ẋµ
− ∂L
∂xµ
= 0.

Consequently, along geodesics

d

dτ
gµνẋ

ν − 1

2
(∂µgαβ)ẋ

αẋβ = 0. (3.39)
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But

d

dτ
gµνẋ

ν = gµνẍν + (∂αgµν)ẋαẋν.

Therefore, from eq. (3.39) and above we get

gµνẍ
ν + (∂αgµν)ẋαẋν − 1

2
(∂µgαβ)ẋ

αẋβ = 0.

This can be written in a more symmetric form as

gµνẍ
ν + 1

2
{∂αgµβ + ∂βgµα − ∂µgαβ}ẋαẋβ = 0.

Therefore,

ẍλ + �λαβẋαẋβ = 0 (3.40)

since gλµgµν = δλν . Here, by definition, the Christoffel symbol

�λαβ =
1

2
gλµ{∂αgµβ + ∂βgµα − ∂µgαβ}. (3.41)

Equation (3.40) is the geodesic equation. The parameter τ is referred to as
an affine parameter.

Geodesic tangent vectors satisfy the important property that

d

dτ
[gµν(x) ẋ

µẋν] = 0. (3.42)

Therefore gµν(x) ẋµẋν = const along geodesics. To see this, note that

d

dτ
[gµν(x) ẋ

µẋν]= ẋµẋν ẋα∂αgµν + gµνẋν ẍµ + gµνẋµẍν

= ẋµẋν ẋα∂αgµν + gµν[−�µαβẋαẋβ ẋν − �ναβẋαẋβ ẋµ]

= ẋµẋν ẋα∂αgµν +−2gλν�
λ
αβẋ

αẋβ ẋν.

Here we have changed a dummy variable in the last term above. The expres-
sion for �λαβ can be substituted in from above to obtain

d

dτ
[gµν(x) ẋ

µẋν]= ẋµẋν ẋα∂αgµν − 2gλνẋ
αẋβ ẋν

1

2
gλµ

×{∂αgµβ + ∂βgµα − ∂µgαβ}
= ẋµẋν ẋα∂αgµν− ẋαẋβ ẋν{∂αgνβ+∂βgνα−∂νgαβ} = 0,

as required.
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In general relativity, the expression for the metric is not fixed, and is
obtained by solving the Einstein equation. Suppose we know the metric.
In a fixed background geometry, the motion of a particle can be described
by a curve α in a general four-dimensional spacetime. Explicitly,

α(τ) = (x0(τ ), x1(τ ), x2(τ ), x3(τ )). (3.43)

Here, as τ varies, the curve α traces out the path taken by the particle. We
use a coordinate label like x0, to indicate that it is a time coordinate, i.e.,

g00 < 0,

just as in special relativity. The tangent vector to the curve α is given by

uµ(τ) = ẋµ(τ ),
where the overdot represents the derivative with respect to τ . When grav-
itation is the only interaction affecting a particle, we refer to it as a free
particle. The equation of motion of a free particle is given by the geodesic
equation (eq. [3.40]). Free particles with mass must have speed less than c,
and are therefore represented by timelike geodesics. In contrast, massless
particles travel along null geodesics. For null geodesics

gµν(x) ẋ
µẋν = 0.

Therefore, in general relativity, we will treat a massless particle as an object
with a worldline along null geodesics such that its momentum four-vector
kµ (as in special relativity) is the tangent vector

kµ = ẋµ. (3.44)

Also, the energy ε of a photon with four-velocity kµ as measured by an
observer with four-velocity uν is

ε = −g(k, u) = −gµνkµuν. (3.45)

This is the general relativistic version of eq. (3.14). The only modification
is in the explicit form of the metric. General particle motions are described
by curves in spacetime. For particles with mass, we will pick the parameter
τ so that the tangent uµ = dxµ/dτ of its worldline α satisfies

gµνu
µuν = −1.

We further require that uµ is future pointing. The resulting tangent vector is
the four-velocity of the particle. The parameter τ measures the proper time
elapsed. The acceleration aµ of a particle that is subject to a “nongravita-
tional” force is given by

aµ = ẍµ + �µαβẋαẋβ . (3.46)

Clearly, a free particle has aµ = 0. The force Fµ on a particle is defined in
the usual way,

Fµ = maµ. (3.47)



chapter03 July 15, 2009

INTRODUCTION TO CURVED SPACETIME 33

3.3 THE SCHWARZSCHILD METRIC

In the presence of a massive, static, nonrotating object, the spacetime
geometry deforms to

ds2=−
(
1− 2M

r

)
dt ⊗ dt + 1

(1− 2M/r)
dr ⊗ dr

+ r2(dθ ⊗ dθ + sin2 θdϕ ⊗ dϕ). (3.48)

Here we have set c and the gravitational constant G to unity. This is the
famous Schwarzschild solution [41]. For a modern derivation and analy-
sis of this solution, see [42]. The coordinates are (t, r, θ, ϕ). The parame-
ter M represents the mass of the black hole and is solely responsible for
“curving” the spacetime. As M → 0, the Schwarzschild metric reduces to
the Minkowski metric in a spherical coordinate system. At r = 2M , the
Schwarzschild metric is singular since grr becomes undefined. It turns out
that this singularity is unphysical as can be shown by a change in coordinate
system. However, r = 2M locates the position of the event horizon. The re-
gion r < 2M is the interior region of the black hole that the Schwarzschild
metric describes. The singularity at r = 0 is the true physical singularity
of the spacetime and cannot be removed by a coordinate transformation. As
we shall see below, the Schwarzschild metric can be obtained from the Kerr
metric in the limit that the angular momentum parameter a → 0. All of
the singularity properties of the Schwarzschild geometry mentioned above
will be explained in the context of the Kerr geometry (which is more gen-
eral than the present case). For now, let us focus on the exterior geometry,
i.e., r > 2M . In order to understand the geodesic motion of a particle in
Schwarzschild geometry, we will compute the nontrivial Christoffel sym-
bols. From eq. (3.41) we find that

�0
10 =

1

2
g00∂rg00.

Therefore

�0
10 =

1

2
f ′, (3.49)

where

f (r) = ln

(
1− 2M

r

)
and f ′ = df

dr
.
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In a similar manner we see that the nonzero, independent Christoffel sym-
bols are

�1
00 =

1

2
f ′e2f , �1

11 = −
1

2
f ′, �1

22 = −ref , �1
33 = −r sin2 θef ,

�2
12 =

1

r
= �3

13, �2
33 = − sin θ cos θ, and �3

23 = cot θ.

(3.50)
The geodesic equation of motion for the t-coordinate is given by

ẗ + �0
01 ṫ ṙ + �0

10ṙ ṫ = 0, (3.51)

i.e.,
ẗ + f ′ ṫ ṙ = 0. (3.52)

The equations of motion for the other coordinates can be found in the same
way. They are

r̈ + 1

2
f ′e2f ṫ2 − 1

2
f ′ṙ2 − ref θ̇2 − r sin2 θef ϕ̇2 = 0, (3.53)

θ̈ + 2

r
θ̇ ṙ − cos θ sin θ ϕ̇2 = 0, (3.54)

and

ϕ̈ + 2

r
ϕ̇ ṙ + 2 cot θ ϕ̇ θ̇ = 0. (3.55)

Just as in the classical mechanics of the two-body problem, if initially θ =
π/2 and θ̇ = 0, then from eq. (3.54) we see that θ̈ = 0, and so the geodesic
continues to stay in the θ = π/2 plane. But, due to spherical symmetry, any
plane can be relabeled as θ = π/2. Therefore, for convenience, and without
any loss of generality, we will consider geodesics in only the equatorial
plane. Then, eq. (3.52) and eq. (3.55) can be easily integrated to give

ṫ = E

1− 2M/r
(3.56)

and

ϕ̇ = L

r2
. (3.57)

Here E and L are integral constants of motion proportional to the energy
and angular momentum of the particle moving along such geodesics as
measured by an observer at infinity. This inference is made by looking at
the behavior of the geodesics at large values of r , and comparing it to its
counterpart in classical mechanics.
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Consider a static observer near the black hole at some fixed r = r1. Such
an observer has four-velocity

u1 = 1√
(1− 2M/r1)

∂t .

Suppose this observer were to send a photon (along a null geodesic) with
four-momentum kµ, then from eq. (3.45), the frequency of the emitted pho-
ton is

hν1 = −g(k, u1) = −g00 u
0
1 ṫ =

E√
1− 2M/r1

. (3.58)

Here, ν1 is the photon frequency at r = r1. This photon, if received by
another observer at r = r2, has a frequency

hν2 = E√
1− 2M/r2

(3.59)

since E is constant along the geodesic. Therefore,

ν1

ν2
=
√

1− 2M/r2√
1− 2M/r1

. (3.60)

Thus, the frequency of the received photon decreases as it moves away from
the black hole. This is an example of gravitational redshift.
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Chapter Four

Physical Cosmology

In this chapter, we forsake rigor in the interests of brevity [43]. The
Robertson-Walker metric for an isotropic, homogeneous universe is derived
from simple arguments. A Newtonian derivation of the motion of a gravi-
tating fluid element leads to equations for Friedmann cosmologies relating
proper-frame emission time t∗ to redshift z. We deduce the luminosity and
angular-diameter distances for flat cosmological models, yielding equations
suitable for analyzing the statistics of cosmological black-hole sources, and
for deriving the intensity from unbeamed and beamed sources.

4.1 ROBERTSON-WALKER METRIC

In flat or Minkowski spacetime, a photon follows a null geodesic defined by
ds2 = 0, where the invariant interval is

ds2= ηµνdxµdxν = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 + d �r 2

=−c2dt2 + dr2 + r2(dθ2 + sin2 θdφ2) = −c2dt2 + dr2 + r2d�.

(4.1)

In the final two expressions of this equation, the metric is expressed in
polar coordinates. Consider a homogeneous, isotropic universe. In this case,
the angular dependence of the metric can be neglected, and the metric can
be treated in a 3 + 1 geometry of three spatial dimensions and one tem-
poral dimension representing constant proper-frame time. For these time-
orthogonal coordinates, the coefficients of the metric tensor are g00 =−1,
and the off-diagonal elements g0i = gi0 = 0 for i = 1, 2, 3.

Because of the assumptions of homogeneity and isotropy, we can without
loss of generality consider a radial geodesic given by ds2 = −c2dt2 +
dr2 = c2dt ′2. Here t ′ is equal to the proper time of a particle that follows
a timelike path with ds2 < 0; such paths apply to events connected by
time within the light cone (see figure 4.1). Material particles follow timelike
world lines. Events with ds2 > 0 are spacelike, that is, events that are not
causally connected. Particles at rest have dt ′ = dt , and dt then represents
the proper-frame time interval.



chapter04 July 15, 2009

PHYSICAL COSMOLOGY 37

Lightcone

ds2 < 0

ds2 > 0 spacelike

timelike
x = ct

event

t

x

Figure 4.1 Light cone in Minkowski spacetime.

The Robertson-Walker metric for an isotropic, homogeneous world
model can be derived for three-dimensional curved space by considering
the analogous situation in two dimensions. Light follows a null geodesic
defined by ds2 = −c2dt2 + dx2 + dy2 = 0 on a two-dimensional (2d)
surface. If the surface is curved, then the equation for photon propagation
is subject to the auxiliary condition x2 + y2 + z2 = R2, where R(t) is the
radius of curvature of the surface at time t (and cannot depend on x, y, z by
the homogeneity assumption).

By analogy, photon propagation in 3 + 1 spacetime satisfies ds2 =
−c2dt2 + dx2 + dy2 + dz2 = 0, subject to the auxiliary condition x2 +
y2 + z2 + ω2 = r2 + ω2 = R2, where ω is a fourth spatial dimension. This
condition implies ω = √R2 − r2, so that dω = −rdr/√R2 − r2 and the
squared distance interval

d�2 = dx2 + dy2 + dz2 + dω2 = d �r 2 + r2dr2

R2 − r2
. (4.2)

From eq. (4.1),

d�2 = dr2

1− r2/R2
+ r2d�,

so that

ds2 = −c2dt2 +
(

dr2

1− (r/R)2 + r
2d�2

)
. (4.3)

The Robertson-Walker metric can be rewritten in the form

ds2 = −c2dt2 + R2(t)

(
dχ2

1− kχ2
+ χ2d�2

)
, (4.4)
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where the comoving radial coordinate χ = r/R(t), which has physical
units, is introduced. Objects such as stars and galaxies reside on comoving
coordinates. Variations in the distance between objects fixed in the Hubble
flow are a consequence of changes in the dimensionless expansion scale
factor R(t). If we establish the convention that R(t) = R = 1 at the present
epoch, then χ is the physical (proper) distance between objects at the present
epoch t .

Particles or galaxies with fixed χ are separated by a distance that is
determined only by the time variation of the scale factor R(t). The curvature
of space is determined by the curvature index k; k = +1/R2

0 is a space of
positive (spherical) curvature or a closed universe; k = −1/R2

0 is a space of
negative (hyperbolic) curvature or an open universe; and k = 0 in flat space.
HereR0 is the radius of curvature at the present epoch.

Photons cannot be confined to a fixed comoving coordinate. By choosing
coordinates with the radial vector outward from the observer, the proper-
frame time element dt∗ in spacetime for a photon traveling from comoving
coordinate χ = r at time t∗ to χ = 0 at the present epoch t is given by
cdt∗ = −R(t∗)dχ ≡ R∗dχ (as the distance between the photon and the
observer decreases, time increases; thus the negative sign). The proper-frame
time required for transit from emission (starred) to reception (unstarred)
coordinates in expanding spacetime is therefore

c

∫ t

t∗

dt̄

R(t̄)
= −

∫ 0

r

dχ√
1− kχ2

. (4.5)

Now imagine an event taking place	t∗ later. This event is detected at a later
time t + 	t where, for emission and reception occurring from a source on
fixed comoving coordinates,

c

∫ t+	t

t∗+	t∗

dt ′

R(t ′ )
= −

∫ 0

r

dχ√
1− kχ2

. (4.6)

Because R(t∗) hardly changes between the two events separated by a small
interval of time (for example, the times between two wave crests), eq. (4.6)
implies

	t

R(t)
= 	t∗
R(t∗)

or 	t = R

R∗
	t∗ = (1+ z)	t∗.

Making use of the definition

z = λ− λ∗
λ∗

= ν∗
ν
− 1

for the redshift (obviously, this z is different from the coordinate z), we have

R

R∗
= 1+ z (4.7)
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and

ν∗
ν
= ε∗
ε
= 	t

	t∗
= 1+ z (4.8)

(e.g., [44]). Combined with eqs. (2.15) and (2.25),

ε = δDε
′

1+ z (4.9)

and

dt = (1+ z)dt ′
δD

. (4.10)

4.2 FRIEDMANN MODELS

A cosmological model giving the time dependence of the scale factor R(t)
is needed to give an expression from which fluxes and intensities of cosmo-
logical sources can be derived. Models for homogeneous and isotropic static
and expanding universes are known as Friedmann world models. Although
a rigorous derivation of these equations finds solutions of Einstein’s field
equations, we give here simplified derivations that recover the important
relations. For more detail, see Refs. [45–47].

4.2.1 Hubble Relation from the Cosmological Principle

The cosmological principle is that the universe is isotropic and homoge-
neous on sufficiently large scales, and that there is no preferred location.
This principle is sufficient to obtain the Hubble relation that velocity is pro-
portional to distance [48], treating the universe as a moving fluid.

Consider two observers atO andO ′ who measure the fluid speed of mat-
ter in the universe, as shown in figure 4.2. The two observers will measure
the same speed of the fluid at P ; thus

�v(�r ) = �v′(�r ′ ), (4.11)

where the unprimed and primed quantities �v and �v′ refer to observations
made at O and O ′, respectively. The cosmological principle of isotropy
means that measurements of the velocity of the flow at O in the direction �r ′
will give the same result as measurements at O ′ in the direction �r ′. Thus

�v(�r ′ ) = �v′(�r ′ ) = �v(�r − �u), (4.12)
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P

O

O�

u

r�

r

Figure 4.2 Geometry for deriving the Hubble relation from the cosmological
principle.

using the relation �r ′ = �r − �u. Taking the time derivative of this vector
relation gives d �r ′/dt = d �r/dt − d�u/dt . Therefore

�v′(�r ′ ) = �v(�r )− �v(�u) = �v(�r ′ ) = �v(�r − �u). (4.13)

This expression implies a linear relation between velocity and distance of
the form �v(�r ) = H(t)�r = d �r/dt . Hence

H(t) = 1

�r
d �r
dt
= dR(t)/dt

R(t)
, (4.14)

recalling the definition of �r = R(t)χr̂ in terms of the scale factor R(t) and
the comoving coordinate χ . The Hubble “constant” at time t∗ is H(t∗) =
Ṙ(t∗)/R(t∗) = Ṙ∗/R∗, and H0 is the Hubble constant of the present epoch.

The variation of fluid density ρ(t) in a homogeneous, isotropic universe
satisfies the mass conservation ρ̇ + ∇ · (ρ�v) = 0. With �v = H(t)�r , ρ̇ =
−3ρH(t),

ρ(t) = ρ0

R3(t)
, (4.15)

and ρ0 is the fluid density at the present epoch.

4.2.2 Expansion of the Universe

We provide a Newtonian derivation for the expansion of the universe. Con-
sider the motion of a fluid element in our universe. Assuming that the fluid
element is large enough that the universe is homogeneous and isotropic on
this size scale, Euler’s equation for the motion of the fluid is

D�v
Dt
+ 1

ρ
�∇p − �F = 0, (4.16)
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where p and �F are the pressure and force on the fluid element, respectively.
Employing Eulerian coordinates, with �r fixed in space and therefore time-
independent, D�v/Dt = ∂�v/∂t + �v · ∇�v = Ḣ �r + H(x∂/∂x + y∂/∂y +
z∂/∂z)H(xx̂ + yŷ + zẑ) = (Ḣ + H 2)�r . Contrariwise, we could employ
Lagrangian coordinates that move with the fluid, namely, comoving coordi-
nates �r = Rχr̂ . In this case, the total derivative becomes the time derivative,
so thatD�v/Dt = d�v/dt = d(HRχr̂)/dt = ḢRχr̂+HṘχr̂ = (Ḣ+H 2)�r ,
giving the same result.

In a homogeneous universe, �∇p = 0. The expansion of the universe is
counteracted by gravitational force on the expanding fluid that comprises
the universe. The gravitational force per unit mass �Fg = −GMr̂/r2, where
G is the gravitational constant. The mass contained within radius r is M =
4πr3ρ(t)/3, and ρ(t) is the mean mass density of the universe at epoch t .
Hence

�Fg = −4πG

3
ρ(t)�r = (Ḣ +H 2)�r (4.17)

in a pressureless universe. Taking the divergence of both sides gives Ḣ +
H 2 = −4πGρ(t)/3. The relations Ḣ + H 2 = R̈/R and ρ(t) = ρ0/R

3,
where ρ0 is the mean density at the present epoch, imply

R2R̈ = −4π

3
Gρ0. (4.18)

All time dependence is found in the left-hand side of eq. (4.18).
An examination of eq. (4.18) shows that a steady-state solution can be

found by adding a force term of the form

�F = −4πG

3
ρ(t)�r + 1

3
��r, (4.19)

where the cosmological constant � = 4πGρ0 in order to get ρ(t) = ρ0,
independent of time. This reasoning suggests that we add a term to the den-
sity to give a repulsive force by letting ρ → ρ − �/4πG. Hence R̈/R =
−4πGρ0/(3R3)+�/3, which can be integrated to give

(
Ṙ

R

)2

= 8πGρ(t)

3
+�− kc

2

R2
. (4.20)

The additive constant k in the integration defining the curvature of space
was introduced in eq. (4.4).

The expansion scale factor R(z) = R0/(1 + z); thus R−1(dR/dz) =
−1/(1 + z), and H = Ṙ/R = R−1(dR/dz)(dz/dt) = −(dz/dt)/(1 + z),
so that

dt

dz
= −1

(1+ z)H(z) . (4.21)
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Equation (4.20) can be rewritten [46] as

Ṙ

R
= H(t) = H(z) = H0

√
�m(1+ z)3 +�k(1+ z)2 +��, (4.22)

where H0 = 100h km s−1 Mpc−1 is Hubble’s constant, and the dimension-
less density parameter associated with the mass density ρ0 at the present
epoch is given by

�m = 8πGρ0

3H 2
0

. (4.23)

This term takes into account baryonic mass, cold and hot dark matter, and
neutrinos. The terms

�� = �

3H 2
0

(4.24)

and

�k = −kc
2

H 2
0

(4.25)

define dimensionless density parameters for the cosmological constant and
curvature densities. The dimensionless densities obey the relation �m +
�� +�k = 1.

The condition �m = 1 defines a critical density

ρcr =
3H 2

0

8πG
= 1.88× 10−29h2 g cm−3, (4.26)

where the Hubble constant

H0 = 100h km s−1 Mpc−1 = 3.2404× 10−18h s−1 ∼= h

10 Gyr
. (4.27)

If uniformly distributed as hydrogen atoms, the critical density would be
nH = 1.1 × 10−5h2 H atoms per cm3. If the normal matter content of the
universe is only ≈5% of the critical density, than the volume-averaged den-
sity of hydrogen would be proportionately smaller (compare eq. [4.23]).

From eq. (4.22), we have that

dt∗
dz
= −1

H0(1+ z)
√
�m(1+ z)3 +�k(1+ z)2 +��

. (4.28)

Here we have replaced t by t∗, because we will be using this equation to
define the relation between proper-frame time t∗ and z.
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4.2.3 Einstein–de Sitter Universe

The simplest expanding-universe cosmology is the flat Einstein–de Sitter
universe with no cosmological constant; thus �� = �k = 0 and �m = 1.
From eq. (4.20), Ṙ/R ∝ R−3/2 or R1/2dR ∝ dt . Hence R(t) ∝ t2/3. The
Hubble constant H(t) = Ṙ/R = 2/3t , so that H0 = 2/3t0. Thus R0/R =
1 + z = (t0/t)

2/3, and t = t0/(1 + z)3/2. Differentiating this expression,
noting that dt/dz = −3t0/[2(1+ z)5/2] = −1/[H0(1+ z)5/2], gives

dt∗
dz
= −1

H0(1+ z)5/2 (4.29)

for the Einstein–de Sitter universe. Equation (4.29) can also be obtained
directly from eq. (4.28).

4.2.4 Universe with Zero Cosmological Constant

This universe was favored before evidence for acceleration of the universe
was discovered. In this cosmology, �� = 0 and �m +�k = 1, so that

dt∗
dz
= −1

H0(1+ z)2
√

1+�mz
. (4.30)

Equation (4.20) for R(t) can be written in the form

Ṙ2 = H 2
0

[
�m

(
1

R
− 1

)
+ 1

]
. (4.31)

In the future R� 1, this expression becomes Ṙ2→H 2
0 (1−�m). If�m < 1,

the universe is open and continues to expand. If �m > 1, then expansion
stops when R = 1/(1 − �−1

m ), eventually causing the universe to collapse
to a point. When �m = 1, we recover the Einstein–de Sitter universe.

4.2.5 Flat Universe

A flat universe (�k = 0) satisfies a number of fundamental problems, requir-
ing that the universe went through an episode of rapid exponential inflation
early in the history of the universe. For a flat universe,�m+�� = 1. Hence
eq. (4.28) becomes

dt∗
dz
= −1

H0(1+ z)
√
�m(1+ z)3 +��

(4.32)

for a flat cosmology, with �� = 1 − �m. Note that �m(1 + z)3 + �� =
(1 + �mz)(1 + z)2 − ��(2z + z2). The Wilkinson Microwave Anisotropy
Probe (WMAP) results show that h = 0.72±0.05 [49] and�� = 0.73 [50].
The measurements are consistent with a flat universe.
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4.3 LUMINOSITY AND ANGULAR-DIAMETER DISTANCES

To avoid unnecessary complications, only a flat universe is considered. The
proper distance, though not directly measurable, is the distance between two
objects that would be measured at the same time t . The proper distance at
the present epoch is therefore just the comoving coordinate, so

dprop = χ = ct = c
∫ χ/c

0
dt = c

∫ z

0
dz′

∣∣∣∣dt∗dz′
∣∣∣∣ (1+ z′). (4.33)

The propagation distance

dppgn = c
∫ t∗2

t∗1
dt∗ = c

∫ z

0
dz′

∣∣∣∣dt∗dz′
∣∣∣∣ (4.34)

gives the distance traveled by an UHECR to reach us at the present epoch
for comparison with energy-loss distances.

The energy flux for a source isotropically radiating luminosity L= dE/dt
at proper distance dprop is related to the energy flux from a source with
isotropic luminosity L∗ = dE∗/dt∗ at luminosity distance dL through the
relation

� = dE
dAdt

= dE/dt
4πd2

prop
= dE∗/dt∗

4πd2
L

. (4.35)

The fluence Fγ =
∫ t2
t1
dt�(t) measured over some time interval t1 − t2 is

therefore related to the apparent isotropic energy release through the
expression

E∗ = 4πd2
LFγ

1+ z . (4.36)

For an expanding universe, dE∗ = ε∗dN = ε(1+ z)dN = (1+ z)dE and
dt∗ = dt/(1+ z). Thus dE/dt = (1+ z)−2(dE∗/dt∗), and

dL = dL(z) = (1+ z)dprop = c

H0
(1+ z)

∫ z

0
dz′

1√
�m(1+ z′)3 +��

(4.37)

for a flat universe. For a flat universe with zero cosmological constant,�m =
1 and �� = 0, so

dL = 2c

H0

(
1+ z −√1+ z )

. (4.38)

The lowest-order redshift correction to eq. (4.37), with H0 =
72 km s−1 Mpc−1, is

dL ∼= cz

H0

[
1+ z

(
1− 3�m

4

)
+O(z2)

]
, (4.39)
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so

dL ∼= 4160z(1+ 0.8z)Mpc, z � 1.

This approximation is within 2% of the numerical result for z ≤ 0.25.
Expressions for dL in a Friedmann universe with positive and negative
curvature are given in [51]. The expansion of the universe reduces the
energy flux by two powers of the scale-factor ratio R/R∗ = (1 + z)

related to changes of time and energy between emitter and receiver. This has
the effect of increasing the luminosity distance dL by one power of (1+ z)
over the proper distance.

We now obtain the relation between the angular diameter distance dA and
dL. Consider a physical object at redshift z with transverse proper dimension
D. The measured angle ϑ of the source is given in terms of D and the dis-
tance R∗χ , referred to emission time t∗. Thus dA = D/ϑ = R∗χ . Suppose
a cosmological source radiates with isotropic luminosity L∗ = dE∗/dt∗.
From the definition of dL, the energy flux

� = dE
dAdt

= L∗
4πd2

L

= dA

4πd2
L

∣∣∣∣dE∗dE
∣∣∣∣

∣∣∣∣ dtdt∗
∣∣∣∣ dE
dAdt

= (1+ z)2dA
4πd2

L

�.

(4.40)

Therefore dA = R2χ2d� = 4πd2
L/(1 + z)2. At emission time t∗, dA∗ =

R2∗χ2d�∗, and dA = R2χ2d�, so that dA∗/dA = 1/(1+ z)2. This implies
from the definition of the luminosity distance, letting d� = d�∗, that

dL =
(
R

R∗

)2

(R∗χ) = (1+ z)2dA. (4.41)

Figure 4.3 shows dL and dA as a function of z for the flat � cold dark
matter (�CDM) universe with parameters from WMAP.1 In this model, dA
reaches a maximum and then declines with increasing z. Thus the angular
diameters of objects with fixed D may become larger with increasing dL.

4.4 EVENT RATE OF BURSTING SOURCES

The directional event rate, or event rate per sr, is

dṄ

d�
= 1

4π

∫
dV∗ ṅ∗(t∗)

∣∣∣∣dt∗dt
∣∣∣∣ = c

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ (R∗χ)

2ṅ∗(z)
(1+ z) , (4.42)

where the burst emissivity ṅ∗(z) gives the rate density of events at redshift
z. From eq. (4.41),

(R∗χ)2 = d2
L(z)

(1+ z)4 , (4.43)

1See Ned Wright’s cosmology calculator at www.astro.ucla.edu/∼wright/CosmoCalc.html.
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Figure 4.3 Luminosity distance dL (eq. [4.41]), angular-diameter distance dA
(eq. [4.41]), propagation distance dppgn (eq. [4.34]), and event rate dis-
tance devt (eq. [4.46]) as a function of redshift z for standard �CDM
cosmological parameters.

and we use eq. (4.32) for a flat �CDM universe. By considering the vol-
ume element in physical and comoving coordinates, one sees that constant
comoving density implies that the proper density increases with redshift pro-
portionally to (1 + z)3. Hence the volume density in comoving and proper
coordinates is related by the expression

ṅ∗(ε∗; z) = ṅco(ε∗; z)(1+ z)3. (4.44)

In terms of the comoving event rate ṅco(z), the directional event rate,
eq. (4.42), becomes

dṄ

d�
= c

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ d

2
L(z)ṅco(z)

(1+ z)2 ≡ c

H0

∫ ∞
0

dz d2
evt(z)ṅco(z), (4.45)

where the event-rate distance

devt(z) = dL(z)

1+ z

√
H0

∣∣∣∣dt∗dz
∣∣∣∣ = dL(z)

(1+ z)3/2[�m(1+ z)3 +��]1/4
(4.46)

is plotted as a function of z in figure 4.3.
If separability between the emission properties and the rate density of

sources can be assumed, then ṅco,i(z) = ṅi�i(z), where �i(z) is the struc-
ture formation history (SFH) of sources of type i. This is defined so that
�i(z � 1) = 1, and ṅi is the local (z � 1) rate density of bursting sources
of type i.
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The comoving density can be formally expanded as

ṅco(z) =
∮
d�̄

∫ ∞
0

dα N(α; z)
∫
d · · · ṅco(�̄, α, · · · ; z) (4.47)

[52,53]. The direction �̄ = (µ̄ = cos θ̄ , φ̄) specifies the orientation of
the system with respect to the direction to the observer, and N(α; z) is a
normalized distribution function for parameter α. For example, α could rep-
resent the bulk Lorentz factor �, the total energy radiated, the comoving-
frame power, or the spectral index of the radiation. For sources oriented at
random, ṅco(�̄, α, . . . ; z) = ṅco(α, . . . ; z)/4π . For two-sided jet sources,
−1 ≤ µ̄ ≤ 1 and ṅco(�̄, α, . . . ; z) = 2ṅco(α, . . . ; z)/4π .

If one considers persistent rather than bursting sources, an analogous
derivation gives the directional number count of sources of the type i as

dNi

d�
= cni

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ d

2
L(z)�i(z)

(1+ z) . (4.48)

After substituting eq. (4.47) into eq. (4.45) and placing limits on the
integrals in accordance with detector specifications, model distributions of
source properties can be derived.

4.5 FLUX AND INTENSITY FROM DISTRIBUTED SOURCES

Consider the problem of the intensity of radiation received from sources dis-
tributed uniformly in space and time, though with an emissivity that could,
in general, depend on cosmic time t∗ or redshift z. This problem applies to
truly diffuse sources, or when the emissions from many sources are super-
posed as a result of the large field of view and limited imaging capabilities
of a detector. The intensity of electron-positron annihilation or dark matter
annihilation radiation is an example of this type of problem, though it could
also apply to the intensity arising from the superposition of the radiation
from many sources.

The photon number flux (units of cm−2 s−1 ε−1) from a cosmologically
distant point source is given by φ(ε) = dN/dAdtdε, where ε represents the
frequency or energy of the radiation, and dN = φ(ε)dAdtdε is the differen-
tial number of photons or relativistic particles with dimensionless energies ε
between ε and ε+ dε that pass through differential area dA oriented normal
to the source during the reception time interval between t and t + dt . The
invariant differential number of photons or neutrinos radiated by a source at
redshift z is given by

dN = ṅ∗(ε∗, �̄∗; z)dε∗dt∗dV∗d�̄∗,
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∆Ω = ∆Ω*

∆Ω*

θ*

Figure 4.4 Calculation of intensity within opening angle 	� = 	�∗ for cosmo-
logical sources. If the sources are beamed, then an integration over
direction �̄∗ of the source emissivity is required.

where ṅ∗(ε∗, �̄∗; z) (cm−3 s−1 ε−1∗ sr−1) is the directional photon emissivity
as illustrated in figure 4.4. (The overdot always refers to the differential of
proper-frame time, that is, d/dt∗.) This flux can be normalized to the mean
luminosity density

Ė(z) = dE∗
dV∗dt∗

= mec2
∮
d�̄∗

∫ ∞
0

dε∗ ε∗ ṅ∗(ε∗, �̄∗; z) (4.49)

of sources at redshift z.
For a spatial distribution of optically thin, isotropically emitting sources,

the differential unattenuated radiation flux is therefore given by

dφ(ε) = ṅ∗(ε∗, �̄∗; z)dε∗dt∗dV∗d�̄∗
dAdtdε

. (4.50)

The volume element dV =dr(rdθ)(r sin θdφ). Because r=R(t)χ , we can
therefore write, using the Robertson-Walker metric, eq. (4.4), specialized
to a flat universe, the differential volume element at the present epoch as
dV = R3χ2dχd�, where d� = sin θdθdφ. The volume element at emis-
sion time t∗ is dV∗ = R3∗χ2dχd�∗. The area element at reception time t
is dA = R2χ2d� with R = 1. Note also that cdt∗ = R∗dχ . In a
homogeneous isotropic expanding universe, d� = d�∗. Thus

dφ(ε) = ṅ∗(ε∗; z)
∣∣∣∣dε∗dε

∣∣∣∣
∣∣∣∣dt∗dt

∣∣∣∣
(
R∗
R

)2

dt∗ = ṅ∗(ε∗; z)
(
R∗
R

)2

dt∗.

(4.51)
Therefore

φ(ε) = c
∮
d�̄∗

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ ṅ∗(ε∗, �̄∗; z)(1+ z)2 . (4.52)
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If the sources are unbeamed, ṅ∗(ε∗, �̄∗; z) = n∗(ε∗; z)/4π , and

φ(ε) = c
∫ ∞

0
dz

∣∣∣∣dt∗dz
∣∣∣∣ ṅ∗(ε∗; z)(1+ z)2 (4.53)

for isotropically emitting sources. The principal cosmological unknown in
this expression is the relation between proper-frame time t∗ and z, which
depends on the assumed cosmology. The factor (1 + z)−2 represents the
decreased flux due to the increased area that the photons pass through as the
universe expands.

The intensity

Iε = mec2ε
dφ(ε)

d�
= mec

3

4π

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ ε∗ṅ∗(ε∗; z)(1+ z)3 , (4.54)

and the “νFν” energy intensity

εIε = mec
3

4π

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ ε

2∗ ṅ∗(ε∗; z)
(1+ z)4 . (4.55)

The photon emissivity ṅ∗(ε∗; z), the energy emissivitymec2ε∗ṅ∗(ε∗; z), and
the (spectral) luminosity density mec2ε2∗ṅ∗(ε∗; z) are related to the lumi-
nosity density given by eq. (4.49). From eq. (4.44), ṅ∗(ε∗; z) = ṅco(ε∗; z)
(1 + z)3, where ṅco(ε∗; z) is the photon emissivity per unit comoving
volume. The same dependence ∝ (1 + z)3 holds for the energy emissivity
and luminosity density when referred to density expressed in physical and
comoving coordinates. For sources where beaming is important, eq. (4.55)
becomes

εIε = mec
3

4π

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣
∮
d�̄∗

ε2∗ṅco(ε∗, �̄∗; z)
1+ z . (4.56)

The “νFν” intensity εIε = mec2ε2φ(ε)/4π for unbeamed sources is given
by

εIε = mec
3

4π

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ ε

2∗ṅco(ε∗; z)
1+ z . (4.57)

These equations give the intensity of truly diffuse emissions, or the inten-
sity from the superposition of unresolved sources. The source emissivity
can be assumed to follow the star formation rate history of the universe, as
considered for UHECRs in chapter 9.
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Chapter Five

Radiation Physics of Relativistic Flows

Elementary concepts to analyze and transform radiation fields are intro-
duced. The properties of the Planck blackbody function are derived. The
results are applied to two geometries used to treat relativistic outflows from
black-hole jet sources, namely, the blob geometry consisting of a relativistic
spherical ball of radiating plasma, and a relativistic spherical shell geome-
try. The essential equivalence of the two geometries to infer properties of
relativistic flows is demonstrated.

5.1 RADIATION PRELIMINARIES

The intensity Iε is defined such that IεdεdAdtd� is the infinitesimal
energy dE in photons with energy between ε and ε + dε lying within solid
angle element d� that pass through area element dA oriented normal to the
direction �� during differential time dt . The intensity is a local quantity;
thus Iε = Iε(�x, t). Other than polarization, Iε provides a complete descrip-
tion of the radiation field. The specific spectral energy density u(ε,�) =
dE/dV dεd�. By following a pencil beam of rays contained within dif-
ferential volume dV = cdtdA, we see that dE = u(ε,�)dV dεd� =
u(ε,�)cdtdAdεd� = IεdAdtdεd�, so that

Iε = cu(ε,�). (5.1)

Consider a pencil beam of radiation, as shown in figure 5.1, passing
through area elements dA1 cos θ1 and dA2 cos θ2 separated by distance d and
oriented at angles θ1 and θ2, respectively, to the direction of the rays [54]. If
there is no absorption or emission of photons during propagation, then en-
ergy conservation of the radiation beam passing through dA1 and dA2 during
time dt means that dE=Iε,1dA1 cos θ1dtd�1dε1=Iε,2dA2 cos θ2dtd�2dε2.
The bundle of rays passing through dA2 lies within solid angle element
d�1 = dA2 cos θ2/d

2 as seen from the location of dA1; likewise, the rays
passing through dA1 lie within the solid angle element d�2 = dA1 cos θ1/d

2

as seen from the location of dA2. For constant energy rays (no cosmological
redshifting, which can be treated separately), ε1 = ε2 = ε. Thus Iε,1 = Iε,2
or dIε/ds = 0.
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A1

A2

θ1

θ2

Figure 5.1 Pencil beam of rays passing through area elements A1 and A2 separated
by distance d and oriented at angles θ1 and θ2 with respect to the photon
direction, defined by the limit of infinitesimal area elements dA1 and
dA2.

Effects of absorption or emission on the evolution of the intensity over
differential path length ds are described by the equation of radiative transfer,
given by

dIε

ds
= −κεIε + j (ε,�) or

dIε

dτε
= −Iε + Sε. (5.2)

Here j (ε,�) = dE/dV dtdεd� is the emissivity, and the differential opti-
cal depth τε = κεds is defined in terms of the spectral absorption coefficient
κε (units of inverse length). The source function

Sε = j (ε,�)

κε
. (5.3)

The quantity F(ε) = ∫
�s
µIεd� is the spectral energy flux (dE/dAdtdε)

of radiation measured from a source subtending solid angle element �s .
This quantity describes the net rate of energy flow through area element dA
with normal n̂ oriented at an angle µ = n̂· ��with respect to rays traveling in
the direction ��. The net energy flux F(ε) = ∮

d�µIε vanishes for radiation
fields that can be expanded in even powers of µ. The net flux of an isotropic
radiation field is zero.

Because the momentum of a photon is hν/c, the differential momentum
flux on an area element with normal n̂ is pε (dynes cm−2 ε−1) =
c−1

∮
d� µ2Iε . One factor of µ is from the projection of the area element,

and the second is from the component of momentum along n̂. Although Iε is
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R

d

θmax

Figure 5.2 Flux received at distance d from a sphere with radius R and uniform
brightness B.

a positive quantity, pε can be negative if the net momentum flux is directed
opposite to n̂. The total radiation pressure is

p = c−1
∫ ∞

0
dε

∮
d� µ2Iε.

The mean intensity Ī ε = (4π)−1
∮
d� Iε = cu(ε)/4π , and u(ε) =∮

d� u(ε,�) is the spectral energy density of radation. Thus u(ε)=4πĪ ε/c.
The total radiation energy density u = ∫∞

0 dε u(ε) = (4π/c)
∫∞

0 dε Ī ε .
The radiation pressure for an isotropic radiation field with mean intensity
Ī iso
ε is p = c−1

∫∞
0 dε

∮
d�µ2Ī iso

ε = (4π/3c)
∫∞

0 dε Ī iso
ε . From the defini-

tion of u, we have

p = u/3 (5.4)

for an isotropic radiation field, valid also for the relation between the pres-
sure and energy density of an isotropic relativistic particle distribution.

The νFν energy flux (dE/dAdt , cgs units of ergs cm−2 s−1) is

fε = ε F (ε) = ε
∫
�s

d�µIε, (5.5)

where the integration is over the solid angle subtended by the source. The
bolometric energy flux is

� =
∫ ∞

0
dε F (ε) =

∫ ∞
0

dε

∫
�s

d�µIε, (5.6)

where the integration is over the solid angle �s subtended by the source.
Consider the case of the energy flux from a uniform brightness sphere of

radius R (figure 5.2). Here Iε = Bε , independent of �, and B = ∫∞
0 dε Bε .

The total energy flux at distance d from the sphere is

� =
∫ ∞

0
dε

∫
�s

d� µBε = 2πB
∫ 1

√
1−R2/d2

µ dµ = π BR
2

d2
.

Thus the energy flux at the surface of a uniform brightness sphere is πB.
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5.2 INVARIANT QUANTITIES

The elementary invariants are the invariant four-volume d3�xdt = dV dt ,
the invariant phase-space element d3�p/E, and the invariant phase volume
dV = d3�xd3�p (chapter 2). Because the number N of particles or photons is
invariant,

dN

dV =
1

p2

dN

dV dpd�
⇒ 1

ε2

dN

dV dεd�
= 1

mec2ε3

dE
dV dεd�

≡ 1

ε3

u(ε,�)

mec2
,

(5.7)

where the latter three expressions apply to photons and relativistic particles.
From eq. (5.7), we see that

u(ε,�)

ε3
= u′(ε ′, �′)

ε′3
= inv. (5.8)

Because u(ε,�) = Iε/c, Iε/ε3 is also invariant.
The function

E
dN

d3�xdtd3 �p =
1

ε2

dE
dV dtdεd�

≡ 1

ε2
j (ε,�) (5.9)

is invariant, noting that the last two expressions apply to photons and rel-
ativistic particles. The invariance of ε−3Iε and ε−2j (ε,�) shows, from
eq. (5.2), that εκε is invariant.

Let N(ε,�)dεd� represent the differential number of photons or
relativistic particles with dimensionless energy between ε and ε + dε that
are directed into differential solid angle interval d� in the direction �� of
some physical volume. Because the total number of photons or particles is
invariant, so also is the quantity

dN

εdεd�
= N(ε,�)

ε
, (5.10)

using eq. (2.33).

5.3 BLACKBODY RADIATION FIELD

By enumerating wave modes in a blackbody cavity populated according to
Boltzmann statistics, one obtains the Planck blackbody radiation formula. It
is worthwhile to recall its derivation.
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The average energy in wave modes populated according to Boltzmann
statistics is, letting x = e−h	U/kBT ,

〈U〉=
∑∞

n=0 n	Ue
−n	U/kBT∑∞

n=0 e
−n	U/kBT

= 	U
∑∞

n=0 nx
n∑∞

n=0 x
n
= 	U(1− x)x

∞∑
n=0

nxn−1

=	Ux(1− x) d
dx

(
1

1− x
)
= 	U

x−1 − 1
= hν

ehν/kBT − 1
, (5.11)

where the energy	U = hν in a mode of frequency ν, according to Planck’s
quantum hypothesis.

The wavenumber k = 2π/λ = 2πν/c for a wave with wavelength λ and
frequency ν. The density of modes of wavenumber k is

dNk

dV
= 2

4πk2dk

(2π)3
= 8πν2dν

c3
(5.12)

imposing periodic boundary conditions on the volume of a cube, and mul-
tiplying by a factor of 2 for two polarization modes. The energy density of
the standing waves in a blackbody is therefore

	E
dV
= 〈U〉dNk

dV
= 8πhν3

c3

dν

exp(−hν/kBT )− 1
. (5.13)

Hence the blackbody intensity (dE/dAdtdνd�) is

I bb
ν (T ) =

2hν3

c2[exp(hν/kBT )− 1]
. (5.14)

Rewritten using dimensionless photon energy, the blackbody intensity is

cubb(ε,�;�) = I bb
ε (�) =

2mec3ε3

λ3
C[exp(ε/�)− 1]

→ 2mec3

λ3
C

{
ε2�, ε 
 �, Rayleigh-Jeans regime,

ε3 exp(−ε/�), ε��, Wien regime,

(5.15)

where λC = h/mec = 2.42×10−10 cm is the electron Compton wavelength,
and � = kBT/mec

2 is the dimensionless temperature of the radiation field.
The spectral photon density (dN/dV dε) of blackbody radiation is

nbb(ε;�) = 4πubb(ε,�)

mec2ε
= 4π

mec3ε
I bb
ε =

8π

λ3
C

ε2

exp(ε/�)− 1
. (5.16)
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For the CMBR,

� = �(z) = kBT (z)

mec2
= �0(1+ z) ∼= 4.58× 10−10 (1+ z)

(
T

2.72 K

)
,

(5.17)

and the temperature of the CMBR at the present epoch is 2.72 K. The density
of photons of a blackbody radiation field is

nCMB(�)=
∫ ∞

0
dε nCMB(ε;�)

= 8π�3

λ3
C

�(3)ζ(3) ∼= 407(1+ z)3
(

T

2.72 K

)3

cm−3, (5.18)

where �(n) is the Gamma function and ζ(n) is the Riemann zeta function
(Appendix B). The mean photon energy of a blackbody radiation field is

〈εCMB(�)〉=
∫∞

0 dε ε3/[exp(ε/�)− 1]∫∞
0 dε ε2/[exp(ε/�)− 1]

= �(4)ζ(4)
�(3)ζ(3)

� ∼= 2.70� ∼= 1.24× 10−9(1+ z)
(

T

2.72 K

)
,

(5.19)

so that the mean frequency of a CMBR photon at the present epoch is
≈150 GHz.

The energy density of a blackbody radiation field is

uCMB(�)= 4π

c

∫ ∞
0

dε ICMB
ε (�) = 8π5

15

mec
2

λ3
C

�4

= 4.14× 10−13(1+ z)4
(

T

2.72 K

)4

ergs cm−3

∼= 0.26(1+ z)4
(

T

2.72 K

)4

eV cm−3. (5.20)

Note also that uCMB(�) = mec2〈εCMB(�)〉nCMB(�).
Because the blackbody radiation field is strongly peaked at photon

energies ε ∼= �, a monochromatic δ-function approximation oftentimes
provides sufficient accuracy for calculations. A convenient approximation
for the CMBR field is

nCMB(ε; z) = 407(1+ z)3 δ[ε − 1.24× 10−9(1+ z)]. (5.21)
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5.4 TRANSFORMED QUANTITIES

In this section, expressions for blackbody, isotropic, or point source photon
distribution functions are derived in reference systems moving with Lorentz
factor � with respect to the frame in which the photon distribution is char-
acterized.

5.4.1 Transformation of Total Distribution and Energy

Consider the beaming pattern of radiation in frame K from a source that
radiates isotropically in K ′. Equation (5.10), describing the total photon or
particle distribution in some volume, becomes

N(ε,�) = δDN
′(ε/δD)
4π

= 1

�(1− βµ)
N ′[�ε(1− βµ)]

4π
. (5.22)

Furthermore, suppose that the spectrum of photons or particles is monochro-
matic in the comoving frame. In this case, N ′(ε′, �′) = N0δD(ε

′ − ε′0)/4π ,
and the total photon or particle energy in the comoving frame, in units of
the electron rest mass, is E ′ = N0ε

′
0. The differential photon spectrum in the

stationary frame is therefore

N(ε,�)= δDN0

4π
δ(ε/δD − ε′0)/4π =

N0

4π�2(1− βµ)2 δ
(
ε − ε′0

�(1− βµ
)
.

Examination of the µ-dependence of this expression shows that the photon
distribution is highly beamed in frame K when � � 1, with the highest-
energy photons or particles directed along the direction of motion of
frame K ′.

The total energy in frame K is

E =
∮
d�

∫ ∞
0

dε ε N(ε,�) = Noε
′
0

2

∫ 1

−1
dµ δ3

D = �E ′. (5.23)

The Lorentz boost simply adds a factor � to the total energy content, which
is obvious by noting the symmetry of the transformation equation ε =
�ε′(1 + βµ′) with respect to µ′. This example illustrates how the photon
distribution or total energy of a distribution of particles or photons can be
calculated when dealing with more complicated angular distributions.

5.4.2 Transformation of Differential Distributions

The photon energy ε and angle θ = cos−1 µ in frameK are given in terms of
the comoving photon energy ε ′ and direction cosine µ′ through the relations
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ε = �ε ′(1+βµ′), µ = (µ′+β)/(1+βµ′), and φ = φ′. From the invariance
of u(ε,�)/ε3, eq. (5.8), we have

u′(ε ′, �′) = u(ε,�)

�3(1+ βµ′)3 . (5.24)

Assuming azimuthal symmetry of the radiation field about the axis of the
boost to frame K ′, which moves with bulk Lorentz factor � with respect to
the frame K , then u(ε,�) = u(ε, µ)/2π . For an isotropic external pho-
ton field in the stationary frame, u(ε,�) = u(ε)/4π and u′(ε ′, �′) =
u(ε)/[4π�3(1+ βµ′)3].

External Isotropic Monochromatic Radiation Field

For an external isotropic monochromatic radiation field, u(ε,�) =
u0δ(ε − ε0)/4π . The comoving energy density

u′0=
∫ ∞

0
dε ′

∮
d�′ u′(ε ′, �′)= u0

2�4

∫ 1

−1

dµ′

(1+ βµ′)4 = u0�
2
(
1+ β

2

3

)

(5.25)

[55]. The angle-dependent specific energy density u′(µ′) = u0/[2�4(1 +
βµ′)4]. The four powers of δD originate from the solid angle transformation,
energy transformation, and volume transformation.

For � � 1, the specific energy density ranges in value from ∼8�4u0

at µ′ = −1 to ∼u0/(32�4) at µ′ = 1. The function plummets in value
when µ′ � −β. Multiplying u′(µ′ = −β) ∼= �4u0/2 by the characteristic
solid angle element δ�′ ∼ πθ ′2 ∼ π/�2 gives u′0 ∼= (π/2)�2u0, which
approximately recovers eq. (5.25) when � � 1. The function

u′(ε′, �′) ∼= 2

3π
�2u0δ

(
ε′ − 4

3
�ε0

)
δ(µ′ + 1) (5.26)

provides a useful approximation for the aberrated comoving-frame photon
distribution in the limit � � 1, noting that u′0/n

′
0 = (1+β2/3)�ε0mec

2. For
isotropic external photons, the hardest and most intense radiation is directed
opposite to the direction of motion of the jet plasma in the comoving frame.

Blackbody Radiation Field

From the invariance of Iε/ε3, it is easy to show that the intensity of an
external blackbody radiation field like the CMBR in frame K ′ is

I ′bb
ε′ =

2mec3ε′3

λ3
C{exp[�ε′(1+ β cos θ ′)/�]− 1} . (5.27)
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Thus the blackbody intensity remains blackbody, though with an effective
temperature �eff = �/[�(1 + β cos θ ′)] that depends on direction. In par-
ticular, �eff/� = 2�,�, 1/�, and 1/(2�) at cos θ ′ = −1,−β, 0, and 1,
respectively, when � � 1.

External Isotropic Power-Law Radiation Field

Consider the transformation of an isotropic, power-law radiation field
described by the function

u(ε, µ) = kαu0ε
−αH(ε; ε�, εu); (5.28)

α is the energy spectral index. Normalization to the total radiation energy
density u0 =

∫∞
0 dε

∫ 1
−1 dµu(ε, µ) gives

kα =
{
(1− α)/[2(ε1−α

u − ε1−α
� )], α �= 1

[2 ln(εu/ε�)]−1, α = 1.
(5.29)

Equations (5.24) and (5.28) imply

u′(ε′, µ′) = kαu0ε
′−α

�3(1+ βµ′)3+α H [�ε′(1+ βµ′); ε�, εu], (5.30)

which is easily shown to be normalized to u′ext given by eq. (5.25).

Point Source Monochromatic Radiation Field Behind Jet

For a jet traveling radially outward, a compact source of radiation will
appear as a point source at sufficiently large distances. If the compact source
radiates isotropic monochromatic emission with luminosity L0, then the
specific spectral energy density

u(ε,�) = L0

4πr2c

δ(µ− 1)

2π
δ(ε − ε0). (5.31)

Equations (5.24) and (5.31) imply

u′(ε′, �′) = L0

8π2r2c

δ(µ′ − 1)δ[ε′ − ε0/�(1+ β)]
�2(1+ β)2

−→
��1

L0

32π2r2�2c
δ(µ′ − 1)δ

(
ε′ − ε0

2�

)
. (5.32)

Writing the transformed radiation field in the form u′(ε ′, �′) =
u′0δ(µ

′ − 1)δ(ε′ − ε′0)/2π , then

u′0 =
L0

4πr2c

1

�2(1+ β)2 .
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Due to radial motion away from a point source of radiation, the energy den-
sity is reduced by a factor proportional to 1/4�2 when � � 1 compared
to the energy density measured by a source at rest. In contrast, the energy
density of a surrounding external isotropic radiation field is enhanced by a
factor proportional to 4�2/3 when � � 1 (eq. [5.25]).

Stellar Blackbody Radiation Field Intercepted by Relativistic Jet

The spectral energy density at a distance d from a star, when treated as a
point source of emission from a spherical blackbody with radius R, is

u∗(ε,�; d) = πR2

d2

I bb
ε

c
δ(�−�∗) = u∗0 ε3

exp(ε/�∗)− 1
δ(�−�∗),

(5.33)
using eqs. (5.1) and (5.15). Here

u∗0 = 15L∗
4π5c�4∗d2

, (5.34)

using the relations L∗ = 4πR2σSBT
4∗ for the stellar luminosity, the stellar

temperature T∗ = mec2�∗/kB, and the definition of the Stefan-Boltzmann
constant σSB = π2k4

B/(60h̄3c2). The νFν flux of a star is therefore

f ∗ε =
15L∗
4π5d2

(ε/�∗)4

exp(ε/�∗)− 1
. (5.35)

5.5 FLUXES OF RELATIVISTIC COSMOLOGICAL SOURCES

Quantities in the stationary frame at rest in the Hubble flow are starred,
comoving (or proper-frame) quantities are primed, and observed quantities
are unscripted. The energy flux �, eq. (5.6), is related to the luminosity
L∗,iso (ergs s−1) of an isotropically emitting source in the stationary frame
according to eq. (4.35),

� = L∗,iso
4πd2

L

. (5.36)

Considering a source with a directional luminosity L∗(ε∗, �∗), comparison
with eq. (5.36) means that

F(ε)dε = L∗(ε∗, �∗)
d2
L

dε∗. (5.37)

As previously derived, the energies in the three frames are related by

ε = ε∗
(1+ z) =

δDε
′

(1+ z) . (5.38)
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For a homogeneous, isotropic universe, the direction vector in the cosmo-
logical frame is equal to the direction vector in the observer frame, so that
�∗ = � (this would not be true if a gravitating mass deflected the light rays
during propagation). Hence

F(ε;�) = (1+ z)
d2
L

L∗(ε∗, �). (5.39)

The differential directional luminosity

dL∗(ε∗, �∗) = dV∗j∗(ε∗, �∗), (5.40)

where dV∗ is a differential volume element and j (ε,�)/ε2 is invariant.
Hence

j∗(ε∗, �∗) =
(ε∗
ε′

)2
j ′(ε′, �′). (5.41)

Because of the invariance of the four-volume dV dt , dV∗ = δDdV ′. Equa-
tions (5.37) and (5.40) imply

dF(ε;�) = (1+ z)
d2
L

δ3
DdV

′j ′(ε ′, �′) (5.42)

and

d[εF (ε;�, t)] = dfε(t) = δ4
D

d2
L

ε′j ′(ε ′, �′; �r ′, t ′)dV ′, (5.43)

where the reception time t and emission time t ′ have to be properly related,
and eq. (5.5) defines the νFν flux fε .

5.5.1 Blob Geometry

The simplest geometry to consider, as shown in figure 5.3, is a uniform
blob that is spherical in the comoving frame with comoving radius r ′b and
comoving volume V ′b = 4πr ′3b /3. To avoid temporal integrations over
different portions of the blob, the timescale for variation in the radiation,
t ′var, is assumed to be longer than the light-crossing time t ′lc ≈ r ′b/c. Thus

r ′b � ct ′var = cδD	tvar/(1+ z), (5.44)

making use of eq. (2.25). The measured variability timescale is 	tvar, and
eq. (5.44) gives an upper limit to the size r ′b of the emission region given a
value for the Doppler factor.

With these simplifications, and furthermore assuming that the blob moves
with constant speed, we have from eq. (5.43) that

fε(t) ∼=
δ4

DV
′
b

d2
L

ε′j ′(ε′�′; t ′). (5.45)
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Γ
θ j

(b) Blast Wave Geometry

(a) Blob Geometry

Γ

Figure 5.3 Geometries used to calculate emission properties of relativistic jets. (a)
Blob geometry: θj � 1/�. (b) Blast-wave geometry: θj � 1/�.

Assuming that the blob radiates isotropically in the comoving frame,

fε(t) ∼= δ4
DV
′
b

4πd2
L

ε′j ′(ε′; t ′) ∼= δ4
Dε
′L′(ε ′; t ′)
4πd2

L

, (5.46)

where the comoving spectral luminosity L′(ε ′; t ′) ∼= V ′bj ′(ε′; t ′).
The mean spectral energy density within the blob can be inferred from

observable quantities, given the assumption of isotropic emission in the co-
moving blob frame. The spectral energy density u′(ε′) ∼= t ′lcj ′(ε′). Because
V ′b = 4πr ′3b /3,

u′ε′ = ε ′u′(ε′) = mec2ε′2n′(ε′) ∼= 3d2
Lfε

δ4
Dcr
′2
b

� 3d2
L(1+ z)2fε
c3δ6

D	t
2
var

. (5.47)

Consequently the relation between the total internal photon energy density
u′ and the total measured energy flux � is

u′ � 3d2
L(1+ z)2�
c3δ6

D	t
2
var

. (5.48)

Beaming Factors for Blob Geometry

The dependence of the received radiation on Doppler factor for a blob that
radiates an isotropic, power-law emission spectrum in the comoving blob
frame is easily derived from eq. (5.46). In this case, j ′(ε ′; t ′) ∝ ε′−α, where
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α is the energy spectral index (eq. [5.28]), and ε ′ = (1+ z)ε/δD. Thus

fε(t) ∝ δ4
Dε
′1−α ∝ δ3+α

D ε1−α. (5.49)

The beaming factor characterizing the dependence of the received flux on
Doppler factor δD for radiation that is isotropically emitted in the comoving
frame by a discrete blob is therefore 3+ α.

For a continuous jet rather than a discrete blob, V ′b → dV ′b = πr2
⊥dr

′,
and the emission from different radiating elements along the jet radius r is
integrated to obtain the received spectrum. The invariance of dr ′dt ′ implies
that dr ′ = (1 + z)dr/δD. Substituting this expression into eq. (5.46) im-
plies that the beaming factor for radiation that is isotropically emitted in the
comoving frame by a uniform jet is 2+ α [56].

Superluminal Motion

An unusual feature of relativistically moving ejecta is the phenomenon of
apparent transverse superluminal motion, predicted by Rees [57]. An angu-
lar separation rate, dϑ/dt , is measured by charting the motions of radio-
emitting features that are found mostly to move outward from a radio core.
In the case of 3C 273 at redshift z = 0.158, Unwin et al. [58] measured
two epochs of component separation with proper motion dϑ/dt = 0.79 ±
0.03 mas yr−1 and dϑ/dt = 0.99 ± 0.24 mas yr−1. At this redshift, dA =
1.7 × 1027 cm. Because 1 mas/yr = 1.536 × 10−16 rad/s, the measured
transverse velocity in the stationary frame (thus the factor of 1+ z) is

cβob
⊥ = (1+ z)dA

(
dϑ

dt

)
. (5.50)

For 3C 273, βob
⊥ ∼= 10[(dϑ/dt)/(mas yr−1)], so that the radio-emitting

blobs are apparently moving faster than the speed of light.
This behavior is simply explained within a blob geometry, where the

radio-emitting component follows a radial path outward from the core with
constant
speed. From figure 2.2, the differential distance traveled by the blob is dr =
βcdt∗, and the transverse distance is dr⊥ = βc sin θdt∗. The time that it
takes the blob to travel the distance dr⊥, as measured by an observer in the
local frame, is dt = (1− β cos θ)dt∗. Thus

β⊥ = 1

c

dr⊥
dt
= β sin θ

(1− β cos θ)
. (5.51)

Consider the properties of this function in the limit � � 1, θ 
 1.
Because (1− β cos θ)−1→ 2�2/(1+ �2θ2) in this limit (see eq. [5.22]),

β⊥ → 2�

�θ + 1/(�θ)
. (5.52)
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From the symmetry of the final expression, it is obvious that this function
reaches a maximum value when observing at θ = 1/�, with maximum
apparent transverse speed given by cβmax

⊥ ∼= c�.
It is a simple matter to find βmax

⊥ for general �. From eq. (5.51),

βmax
⊥ = β� =

√
�2 − 1, (5.53)

when cos θ = β or sin θ = 1/�. Apparent superluminal motion is possible
when βmax

⊥ > 1, which occurs when β > 1/
√

2 or � >
√

2. The transverse
speed β⊥c exceeds the true speed βc for all angles defined by

0 < cos θ <
2β

1+ β2
.

The minimum value of � or β that gives a measured value of β⊥ is obtained

from eq. (5.52). In this case, �min=
√

1+β2
⊥ and βmin= β⊥/

√
1+β2

⊥ [59].

5.5.2 Spherical Shell Geometry

An explosive release of energy will create a fireball that expands spherically,
or as a portion of a spherical surface, as illustrated in figure 5.3. Multiple
explosions can form shells moving with different speeds. Collisions between
shells will convert some of the directed kinetic motion of the shells into
internal energy to be radiated. This is the basis of the colliding shell model,
often used to model highly variable emissions from gamma-ray bursts and
blazars.

Writing eq. (5.43) as an integration over volume element dV =
dφdµdrr2 and using eq. (2.29), one obtains the νFν flux measured at di-
mensionless photon energy ε and time t , given by

fε(t) = 1

d2
L

∫ 2π

0
dφ

∫ 1

−1
dµ

∫ ∞
0

dr r2 δ3
D(r) ε

′j ′(ε′, µ′, φ′; r, t ′) (5.54)

[60], where primes refer to comoving quantities, the integration is over vol-
ume, and ε′ = ε(1 + z)/δD. The comoving emissivity j ′(ε ′, �′; �r ′, t ′) may
be anisotropic in the comoving frame. The angle transformations for the
directional vector �� = (µ, φ) are given by µ′ = (µ − β)/(1 − βµ) and
φ′ = φ, eqs. (2.16) and (2.17).

Variability and Location

Consider a relativistic spherical shell that is impulsively illuminated at some
value of stationary time t∗. An observer receives emission from various
portions of the spherical shell. The time delay between regions of the shell
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located at an angle θ with respect to the line of sight to the observer, com-
pared to emission from the part of the shell directed to the observer, is

	t(µ) = (1+ z)
c

r(1− µ),
from eqs. (2.25) and (4.10).

Suppose that the shell radiates uniformly in the comoving frame, that is,
the comoving emissivity is the same throughout the shell volume. Because
of strong Doppler beaming, radiation emitted by portions of the shell lying
outside the Doppler cone defined by the Doppler angle θD = 1/� is signif-
icantly reduced in intensity. Indeed, when � � 1 and θ 
 1, δD ∝ θ−2

when θ � θD (eq. [2.22]).
We therefore neglect emission outside the Doppler cone. For an impulsive

release of energy by the spherical shell, the resultant limiting variability
timescale due to shell curvature is

	tcrv
∼= (1+z)r

c
(1−cos θD)

��1, θ
1
→ (1+z)rθ

2
D

2c
∼= r(1+ z)

2�2c
. (5.55)

If source radiation is observed to vary on a timescale 	tvar, then eq. (5.55)
shows that the radiating site can be located at a distance

r ≈ η	 2�2c	tvar

1+ z , η	 ∼= 1. (5.56)

For a stationary emitting region, causality arguments imply that the region
has to be smaller than	r ∼ c	tvar(1+ z); otherwise causally disconnected
regions larger than c	tvar(1+ z) would superpose and wash out strong vari-
ability. Due to relativistic motions of the emission region, the location and
transverse extent of the emission region can be much greater than the size
scale implied by causality arguments, as seen from eqs. (5.55) and (5.56).

Curvature Relation

If a relativistic spherical shell is impulsively illuminated, the flux received
by an observer will decline with time as off-axis, high-latitude emissions
reach the observer. Suppose the shell, moving with speed βc, is illuminated
at stationary time t∗0 when it has reached radius r0 = βct∗0. An observer
measures emission from angle θ at time t given by

t

1+ z =
(
r0

βc

)
(1− β cos θ)

=
(
r0

β�c

)
δ−1

D
��1, θ
1

→
(

r0

2β�2c

)
(1+ �2θ2); (5.57)

later emission come from higher latitudes.
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The differential energy flux received from angular range dθ is, from
eq. (5.54), given by

dE(θ) ∝ δ3
Dε
′j ′(ε ′) r2drθdθ, (5.58)

for emission radiated isotropically in the comoving frame. For a flash of
radiation produced at r0 with spectral emissivity ε ′j ′(ε′) ∝ ε′a , we have
from eq. (5.57) that

fε(t) ∝ dE
dt
∝ εaδ3−a

D ∝ εat−3+a. (5.59)

Hence fε ∼ εFε ∼ νFν ∝ εat−3+a. Using the notation Fν ∝ t−αν−β , so
a = 1− β, gives the curvature relation [61, 62]

α = 2+ β. (5.60)

If colliding shells radiate as uniform, instantaneously illuminated portions of
a spherical surface, the curvature relation also implies that the decay profile
of the νFν spectrum should vary as fεpk ∝ ε3

pk, where εpk is the peak photon
energy of the νFν spectrum [63].

Kinematic Model for Spherical Shell

A finite-width spherical shell that is uniformly illuminated over a finite co-
moving interval and assumed to emit isotropically in the comoving frame
produces characteristic kinematic pulses that are relevant to analyses of data
from black-hole jet sources. In this idealization, the emissivity is related to
the internal energy density through the relation

ε′j ′(ε′; �r ′, t ′) ∼= cuε′(r
′, t ′)

	r ′
, (5.61)

where	r ′ is the proper shell width. For shell illumination during comoving
time t ′0 ≤ t ′ ≤ t ′0+	t ′, and approximating the spectrum by a broken power
law with peak νLν flux at energy ε′pk that is uniform throughout the shell,

uε′(r
′, t ′) = u′0H(t ′; t ′0, t ′0 +	t ′)[xaH(1− x)+ xbH(x − 1)] (5.62)

within the shell volume, where a (>0) and b (<0) are the νLν indices, and

x = ε′/ε′pk,0 = ε/εpk,0 = (1+ z)ε/δDε′pk,0. (5.63)

Establishing constraints on the integrations over r and µ from this model
gives kinematic pulse profiles as shown in figures 5.4 and 5.5. This fig-
ure shows the appearance of kinematic pulses for parameters ηr , defined in
eq. (5.56),

η	 = 	r ′

2�c	tvar/(1+ z) (5.64)
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Figure 5.4 Light curves of kinematic pulses at different dimensionless observing
energies ε as labeled. For the causal pulse, η	 = ηt = 1 and ηr = 0.1
and 1.0 for the light and medium curves, respectively. The heavy curves
are for the thin-shell case with ηr = ηt = 1 and η	 = 0.1.

and

ηt = 	t ′

2�	tvar/(1+ z) (5.65)

characterizing the shell location, duration of emission, and shell width, re-
spectively [63].

Three kinematic pulse profiles follow from this analysis:

1. causal pulse, with ηr ∼= η	 ∼= ηt = 1;
2. thin-shell pulse, with ηr ∼= ηt ∼= 1, η	 
 1;
3. curvature pulse, with ηr ∼= 1, η	, ηt 
 1.

A causal pulse has a characteristic rounded and weakly asymmetrical light
curve, as shown in figure 5.4. The asymmetrical pulse shape is even more
pronounced for a thin-shell pulse, where the asymmetry originates from the
duration of the radiation and light-travel-time effects.

Pulses in the curvature limit are shown in figure 5.5, and are very asym-
metrical, with a sharp leading edge. The bottom panel in figure 5.5 shows,
in a log-log relation, that the flux decays as t−3+b at ε > εpk. When ε < εpk,
the flux decays as t−3+a at early times, breaking to a t−3+b behavior at late
times due to curvature effects.

In the limit η	 
 1 and ηt 
 1, corresponding to an impulsive radiation
pulse in the comoving frame, variability arises principally from curvature
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Figure 5.5 Light curves of a curvature pulse at different dimensionless observing
photon energies for a model with ηr = 1 and ηt = η	 = 0.1.

effects, and the pulse profile is analytic, given by

fε(t)∼=
4ηtcu′0r

2
0�

2

d2
L

[xau−3+aH(x−1 − u)+xbu−3+bH(x−u−1)]H(u−1)

(5.66)

[63], where

u = 2�2ct

(1+ z)r0 =
t

tvar
.

At the peak of the νFν spectrum, a = 0, and

fεpk =
4cu′0r

2
0�

2

d2
L

ηtu
−3. (5.67)
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Equations (5.66) and (5.67) relate fε(t) and u′0 in the curvature limit. The
curvature limit gives the relation between the minimum internal energy den-
sity that could produce a pulse with a measured brightness and variability,
for constants r0, �, and z.

Beaming Factors for Shell Geometry

The beaming factors for a shell geometry are given in terms of the � depen-
dence of the received radiation. The solid angle dependence in the Doppler
factor in eq. (5.54) is canceled out by the angular integration over different
portions of the blast wave surface when calculating the received flux.

Consider a shell that has a constant comoving luminosity L′ = dE ′/dt ′.
The received flux

� = dE∗/dt∗
4πd2

L

∼= �2

4πd2
L

dE ′
dt ′

, (5.68)

because E∗ ∼= �E ′ and dt∗ ∼= dt ′/�. The �2 dependence of the received flux
for constant internal energy density u′0 is also found in eqs. (5.66) and (5.67).

5.5.3 Equivalence of Blob and Blast Wave Geometries

If the variability time scale 	tvar is equated with the full width at half max-
imum (FWHM) photon or count fluxes in a specified energy window, then
observations can be related to model calculations. For the blast wave model
in the curvature limit, 	tvar = t1/2 − tv , where t1/2 = tv21/(3−b) from
eq. (5.66) when the blast wave spectrum is described by a single power
law with index b (<3). Thus

	tvar = tv [21/(3−b) − 1] = (1+ z)r0
2�2c

[21/(3−b) − 1]. (5.69)

For the blast wave model in the curvature limit, eq. (5.66) gives

f bw,curv
ε = 24�6c3

(1+ z)2d2
L

ηt	t
2
var

[21/(3−b) − 1]2
u′ε ′ . (5.70)

In comparison, we consistently relate the variability timescale 	tvar to tf
for a blob geometry, from eq. (5.47), to get

f blob
ε → 26�6c3(δD/2�)6

3(1+ z)2d2
L

	t2var u
′
ε′ . (5.71)
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The curvature limit is realized when ηt ∼ 0.1, which value effectively
cancels out the denominator in brackets of eq. (5.70). By comparing
eqs. (5.70) and (5.71) for ηt ≈ 0.1, one sees that, to within a factor of
order unity, the inferred spectral energy densities in the blob and blast wave
geometries are the same. Consequently, we can even use the (simpler-to-
apply) blob geometry when calculating opacity for various processes, for
example, γ γ and synchrotron self-absorption. The curvature limit gives
the least intense internal radiation field that could produce a variable flux
with given measured apparent isotropic luminosity and FWHM variability
timescale 	tvar.
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Chapter Six

Compton Scattering

The astrophysics of the Compton scattering process for relativistic particles
is treated in this chapter, specialized to relativistic electrons. After deriving
the elementary Compton scattering formula, the behavior of the Comp-
ton cross section in the Thomson and Klein-Nishina regimes is examined.
Compton scattering regimes are determined by the value of the invariant
ε̄ = γ ε(1 − βparµ), which is the photon energy in the electron rest frame
(ε̄ = ε for electrons at rest). In the Thomson regime, ε̄ � 1, and in the
Klein-Nishina regime, ε̄ � 1. For isotropic photon fields, analysis of the
Compton energy-loss rate shows that the two regimes are characterized by
the value of the parameter �e = 4γ ε.

Expressions for the differential cross section that are useful for calcu-
lations of Compton-scattered spectra are derived in the head-on approxi-
mation, and the accuracy of the different forms is examined. Applications of
this process to γ -ray production from black-hole jet sources are considered.
Compton scattering of surrounding target radiation fields by relativistic jet
electrons is treated.

6.1 COMPTON EFFECT

Consider a photon with dimensionless energy ε = λC/λ and wavelength λ
scattering an electron at rest (figure 6.1). After scattering, a photon with
energy εs = λC/λs travels in a direction that makes an angle χ with respect
to the direc-tion of the incident photon. The scattered electron acquires
Lorentz factor γe = 1/

√
1− β2

e and is scattered in the direction θe with
respect to the incident photon direction.

Energy conservation requires

1+ ε = εs + γe, (6.1)

and conservation of momenta parallel and transverse to the initial photon
direction can be expressed as

ε= εs cosχ + βeγe cos θe, (6.2)

εs sinχ =βeγe sin θe, (6.3)
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Figure 6.1 The Compton effect. In the electron rest frame (ERF), a photon with
energy ε is scattered by a stationary electron. The scattered photon has
energy εs and is scattered at angle χ with respect to the direction of the
incident photon. The scattered electron has Lorentz factor γe.

respectively. Solving the y-momentum equation for cos θe and substitut-
ing into the x-momentum equation, using β2

e γ
2
e = (γe + 1)(γe − 1) =

(ε − εs)(ε − εs + 2) from eq. (6.1), gives

cosχ = 1+ 1

ε
− 1

εs
= 1− 1

λC
(λs − λ). (6.4)

Equation (6.4) can be rewritten as

εs = ε

1+ ε(1− cosχ)
. (6.5)

Due to electron recoil, the energy of the scattered photon ranges from
ε/(1 + 2ε), when scattering in the backward direction, to ε for forward
scattering. When ε�1, then εs ≈ ε irrespective of the direction of scatter-
ing. The condition ε � 1 defines the Thomson regime, and the condition
ε � 1 defines the Klein-Nishina regime.

6.2 THE COMPTON CROSS SECTION

The polarization-averaged differential Compton cross section in the ERF is
given by

dσC

dεsd	s
= r

2
e

2

(εs
ε

)2
(
εs

ε
+ ε

εs
− 1+ cos2 χ

)
δ

(
εs − ε

1+ ε(1− cosχ)

)

(6.6)

[64], and d	s = dφsd cosχ . The classical electron radius re = e2/mec
2

and the Thomson cross section σT = 8πr2
e /3. The integration of the differ-

ential cross section over scattered photon energy gives the angle-dependent
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Figure 6.2 Angle-dependent Compton cross section. The differential cross section
dσC/d cosχ as a function of the cosine of the scattering angle, cosχ ,
is plotted for different values of incident photon energy ε. The lim-
iting Thomson form of the differential cross section is shown by the
heavy solid curve, and the isotropic cross section in the Thomson limit
is shown by the light solid line.

Compton cross section

dσC

d	s
= r

2
e

2

[
1+ε(1−cosχ)2

]( 1

1+ε(1−cosχ)
+cos2 χ+ε(1−cosχ)

)
,

(6.7)

plotted in figure 6.2. In the Thomson regime ε � 1, eq. (6.7) becomes

dσT

d	s
= r2

e

2

(
1+ cosχ2). (6.8)

Approximating the Thomson cross section as isotropic, then

dσT,iso

d	s
= σT

4π
. (6.9)

Integrating eq. (6.6) over direction and scattered photon energy gives the
total Compton cross section

σC(ε)=
∫ ∞

0
dεs

∮
d	s

dσC

dεsd	s

= πr
2
e

ε2

(
4+ 2ε2(1+ ε)

(1+ 2ε)2
+ ε

2 − 2ε − 2

ε
ln(1+ 2ε)

)
(6.10)
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Figure 6.3 Compton cross section, approximations, and mean scattered photon
energy. The total Compton cross section σC(ε) divided by the Thom-
son cross section σT is shown by the heavy solid curve. Dotted curves
give asymptotes in the Thomson (ε � 1) and Klein-Nishina (ε � 1)
regimes (eq. [6.11]) The light dashed curve gives the mean scattered
photon energy 〈ε1

s 〉 divided by γ ε (eq. [6.40]). The dot-dashed curve
shows the function (1+ ε)−1.

[65], with asymptotes

σC(ε)→



σT

[
1− 2ε + 26

5
ε2 +O(ε3)

]
for ε � 1,

πr2
e

ε

[
ln(2ε)+ 1/2+O(ε−1)

]
for ε � 1.

(6.11)

Figure 6.3 shows the dependence of σC on the photon energy ε in the ERF,
and asymptotes (6.11) in the Thomson and Klein-Nishina regimes.

6.3 TRANSFORMING THE COMPTON CROSS SECTION

Having examined the properties of the Compton cross section, we now con-
sider calculations of Compton-scattered spectra from a distribution of pho-
tons and electrons. The upper panel of figure 6.4 illustrates a system where
an electron with Lorentz factor γ scatters a photon with energy ε to produce
a scattered photon with energy εs . These quantities are defined not in the
ERF, as in the previous section, but rather in a scattering frame where the
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Figure 6.4 Geometry of a Compton scattering event. In the scattering frame shown
in the upper panel, an electron with Lorentz factor γ scatters a photon
with initial energy ε to final energy εs . The incident and scattered pho-
ton energies in the electron rest frame are ε and εs , respectively. The
differential cross section in the scattering frame is obtained by trans-
forming the differential Compton cross section dσC/dε̄sd	̄s in the ERF
to dσC/dεsd	s in the scattering frame. The head-on approximation has
θ̄ → π in the ERF, that is, the incident photon is directed opposite to
the boost direction to the ERF.

distributions of photons and electrons are most conveniently described, for
example, the comoving frame of relativistic plasma ejected by a black hole.

In the ERF, the incident photon has energy ε̄ and the scattered photon has,
from eq. (6.5), energy ε̄s = ε̄/[1 + ε̄(1 − cos χ̄)]. In the Thomson regime,
ε̄s ∼= ε̄, and transformation back to the scattering frame gives a photon
with energy εs = γ ε̄(1 + βeµ̄s). Thus photons scattered in the Thomson
regime have energy εs = γ 2ε(1− βe cosψ)(1+ βe cos θ̄s), and, in the limit
γ � 1, βe → 1, have energies as large as εs ∼= 4γ 2ε. To ensure that the
scattered photon’s energy is less than the energy of the scattering electron,
that is, εs < (γ − 1) ≈ γ , then 4γ ε � 1, the Thomson condition.

In the limit γ � 1, the incident photon is directed opposite to the boost
direction in the ERF, so that cos θ̄ →−1 and cos χ̄ ∼= − cosµs (lower right
panel in figure 6.4). In this head-on approximation, discussed in more detail
below, the scattered photon energy

εs ≈ γ ε̄(1+ µ̄s)
1+ ε̄(1+ µ̄s) , (6.12)

and εs < γ , as required.
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Equation (2.44) gives the Compton-scattered emissivity

jC(εs,	s)=mec3εs

∮
d	

∫ ∞
0

dε nph(ε,	)

×
∮
d	e

∫ ∞
1

dγ (1− βe cosψ) ne(γ,	e)
dσC(ε̄)

dεsd	s
, (6.13)

where cosψ = µµe +
√

1− µ2
√

1− µ2
e cos(φ − φe) is the cosine of the

angle between the electron and target photon directions. The invariant
quantity

ε̄ = γ ε(1− βe cosψ) (6.14)

defines the collision strength; this is simply the photon energy in the ERF.
The differential Compton cross section dσC(ε̄)/dεsd	s used in eq. (6.13)
is related to the differential Compton cross section dσC/dε̄sd	̄s defined in
the ERF and discussed in the previous section by a simple Lorentz transfor-
mation. The Compton spectral luminosity of a one-zone system defined by
the Compton emissivity, eq. (6.13), is

εsLC(εs,	s) = VbεsjC(εs,	s).

Denoting quantities in the ERF by overbars, the invariance of dσ/εdεd	
for photons implies

dσC

dεsd	s
= εs

ε̄s

dσC

dε̄sd	̄s
. (6.15)

From the bottom two panels of figure 6.4, we see that the scattered photon
energy and angle in the ERF, expressed in terms of quantities in the scatter-
ing frame, are

ε̄s = γ εs(1− βeµs) and µ̄s = µs − βe
1− βeµs , (6.16)

where µs = cos θs and µ̄s = cos θ̄s .

6.3.1 Differential Thomson Cross Section

The transformation of the differential Compton cross section is best
illustrated using the isotropic Thomson approximation, eq. (6.9), written as

dσT,iso(ε̄)

dεsd	s
= σT

4π
δ(ε̄s − ε̄) = σT

4πγ 2(1− βeµs)2 δ
(
εs − ε̄

γ (1− βeµs)
)
.

(6.17)
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Integration over εs gives the angle dependence of the scattered spectrum,

dσT,iso(ε̄)

dµs
= σT

2γ 2(1− βeµs)2 γ�1, θs�1
→ 2σTγ

2

(1+ γ 2θ2
s )

2
. (6.18)

Even for mildly relativistic electrons with γ � 3–10, this function is highly
peaked along the initial electron direction [66]. Integration of eq. (6.17) over
	s gives the energy dependence of the scattered spectrum,

dσT,iso(ε̄)

dεs
= σT

2βeγ ε̄
H

[
εs; γ ε̄(1− βe), γ ε̄(1+ βe)

]
. (6.19)

For highly relativistic electrons, γ � 1, eqs. (6.18) and (6.19) show that the
following expression gives a good approximation to the transformed differ-
ential isotropic Thomson cross section:

dσT,iso(ε̄)

dεsd	s

∼= σT

2γ ε̄
H(εs; ε̄/2γ, 2γ ε̄) δ(	s −	e)H(1− ε̄). (6.20)

The final Heaviside function ensures that the scattering remains in the
Thomson regime.

The same procedure can be followed for the angle-dependent Thomson
cross section, eq. (6.8), written in the form

dσT

dε̄sd	̄s
= 3σT

16π

(
1+ cos χ̄2) δ(ε̄s − ε̄), (6.21)

where now cos χ̄ = µ̄µ̄s +
√

1− µ̄2
√

1− µ̄2
s cos(φ̄ − φ̄s) and µ̄ =

(cosψ − βe)/(1− βe cosψ). Integration over d	s gives

dσT

dεsd	s
= 3σT

16βeγ ε̄

{
3− µ̄2 + (3µ̄

2 − 1)

β2
e

[(
εs

γ ε̄

)2

−
(

2εs
γ ε̄

)
+ 1

]}

×H [εs; γ ε̄(1− βe), γ ε̄(1+ βe)]. (6.22)

Taking the limit γ � 1, βe → 1, µ̄→−1, we find

dσT

dεsd	s

∼= 3σT

4γ ε̄

[
1− εs

γ ε̄
+ 1

2

(
εs

γ ε̄

)2
]
H(εs; 0, 2γ ε̄) δ(	s−	e)H(1− ε̄).

(6.23)
for the transformed differential Thomson cross section when the scattered
photons are approximated as traveling in the same direction as the scattering
electron.
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6.3.2 Head-on Approximation

The derivation of eq. (6.23) employed the limit γ � 1, βe → 1. In this
limit, the incident photon travels nearly opposite to the direction of the elec-
tron when viewed in the ERF, except for those few photons lying within a
solid angle element ∼ 1/γ 2 sr of the direction of the relativistic electron.
This is due to photon aberration, expressed by the condition that cos θ̄ =
(cosψ − βe)/(1 − βe cosψ) → −1 in the limit γ � 1. In this case, the
scattered photon angle θ̄s ∼= π − χ̄ , or cos χ̄ ≈ − cos θ̄s = −µ̄s . This is
the head-on approximation [35, 67], which greatly simplifies derivations of
the transformed Compton cross section. In this approximation, the Compton
cross section in the ERF takes the form

dσC(ε̄)

dε̄sd	̄s cos χ̄→−µ̄s
→ r2

e

2

(
ε̄s

ε̄

)2 (
ε̄s

ε̄
+ ε̄

ε̄s
− 1+ µ̄2

s

)

× δ
(
ε̄s − ε̄

1+ ε̄ (1+ µ̄s)
)
. (6.24)

The transformation equations relating scattered photon energies and angles
in the ERF to the scattering frame are ε̄s ∼= γ εs(1− βeµs) and µ̄s = (µs −
βe)/(1 − βeµs). (Here we are not allowed to let βe → 1 if we are to set
µs → 1.) The reverse transformations are εs ∼= γ ε̄s(1 + µ̄s) and µs =
(µ̄s + βe)/(1+ βeµ̄s)→ 1.

When γ � 1 and βe → 1, which is the condition for the head-on
approximation, the scattered photon travels essentially in the direction of the
scattering electron. In this limit, the differential Compton-scattering cross
section is well approximated by the expression

dσC

dεsd	s

∼= δ(	s −	e)dσC

dεs

∼= δ(	s −	e)
∮
d	̄s

(
εs

ε̄s

)
dσC(ε̄)

dε̄sd	̄s
. (6.25)

The brightest emission of electrons with Lorentz factor γ is spread over
solid angle πγ−2; angular effects of the scattered photon beaming pattern
need only be taken into account if variations on angular scales � 1/γ are
important.

6.3.3 Differential Compton Cross Section

Equation (6.25) can be most conveniently solved using the differential
Compton cross section in the head-on approximation, eq. (6.24), by
rewriting the integral in terms of u = (1 − βeµs). Thus ε̄s = γ εsu,
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dµs = −du/βe, µ̄s ∼= (1− γ 2u)/γ 2u for γ � 1, and we have

dσC

dεs

∼= πr
2
e

βeγ

∫ 1+βe

1−βe

du

u

(
ε̄s

ε̄

)2(
ε̄s

ε̄
+ ε̄
ε̄s
− 2

γ 2u
+ 1

γ 4u2

)
δ

(
ε̄s− ε̄

1+ ε̄/γ 2u

)
.

(6.26)

The δ-function can be rewritten as

δ

(
γ εsu− ε̄

1+ ε̄/γ 2u

)
= 1

γ εsy
δ

(
u− yε̄

γ εs

)
, (6.27)

defining

y ≡ 1− εs
γ
= ε̄s

ε̄
. (6.28)

Solving the δ-function in eq. (6.26) using eq. (6.27) gives, in the limit
γ � 1,

dσC

dεs

∼= πr2
e

γ ε̄
�C H

(
εs; ε̄

2γ
,

2γ ε̄

1+ 2ε̄

)
, (6.29)

recalling that ε̄ = γ ε(1− cos ψ̂), from eq. (6.14), with

cos ψ̂ = µµs +
√

1− µ2
√

1− µ2
s cosφ.

Here we define the Compton kernel

�C ≡ y + y−1 − 2εs
γ ε̄y
+

(
εs

γ ε̄y

)2

. (6.30)

Because εs/γ = 1− y, eq. (6.29) can also be written as

dσC

dεs

∼= πr2
e

γ ε̄3

(
yε̄2+1+2ε̄+ 1

y

(
ε̄2−2ε̄ − 2

)+ 1

y2

)
H [y; (1+ 2ε̄)−1, 1].

(6.31)
The Compton spectral luminosity is given in the head-on approximation by
the expression

εsLC(εs,	s)= cπr2
e ε

2
s

∫ 2π

0
dφ

∫ 1

−1
dµ

∫ 2εs/(1−cos ψ̂)

0
dε

u(ε,	)

ε2

×
∫ ∞
γlow

dγ Ne(γ,	s) �C, (6.32)



chapter06 July 15, 2009

COMPTON SCATTERING 79

with u(ε,	) = mec
2εnph(ε,	). The lower limit on the electron Lorentz

factor γlow implied by the kinematic limits on y is

γlow = εs

2

(
1+

√
1+ 2

εεs(1− cos ψ̄)

)
. (6.33)

6.3.4 Moments of the Compton Cross Section

The average energy of a Compton-scattered photon can be found by taking
moments of the cross section. The nth moment of the cross section with
respect to εs is defined as

〈εns σ 〉 ≡
〈
εns

(
dσ

dεsd	s

)〉
=

∮
d	s

∫ ∞
0

dεs ε
n
s

(
dσ

dεsd	s

)
. (6.34)

The n = 0 moment is the total cross section, and the n = 1 moment is the
cross section weighted by the scattered photon energy, so that the average
scattered photon energy

〈ε1
s 〉 =

〈ε1
s σ 〉
〈ε0
s σ 〉

(6.35)

is the ratio of the first to the zeroth moment.
The nth moment of the differential Thomson cross section, eq. (6.23), is

〈εns σ 〉T =
3σT

4
(γ ε̄)n 2n+2

(
1

2(n+ 1)
− 1

n+ 2
+ 1

n+ 3

)
. (6.36)

Therefore the n = 0 moment of the differential Thomson cross section is
〈ε0
s σ 〉T = σT. The n = 1 moment 〈ε1

s σ 〉T = σTγ ε̄, so that the mean scat-
tered energy in the Thomson limit is

〈ε1
s 〉T =

〈ε1
s σ 〉T
〈ε0
s σ 〉T

= γ ε̄ = γ 2ε(1− cosψ). (6.37)

The nth moment of the differential Compton cross section in the head-on
approximation is

〈εns σ 〉C=
∫ ∞

0
dεs

∮
d	s ε

n
s

(
dσC

d	sdεs

)
= πr2

e γ
n

ε̄3

∫ 1

(1+2ε̄)−1
dy(1−y)n

× [
yε̄2+ (1+2ε̄)+y−1(ε̄2 − 2ε̄ − 2)+y−2].

(6.38)

The n = 0 moment is

〈ε0
s σ 〉C = σC(ε̄), (6.39)



chapter06 July 15, 2009

80 CHAPTER 6

namely, the Compton cross section, eq. (6.10). The n = 1 moment of the
differential Compton cross section is

〈
ε1
s σ

〉
C= γ σC(ε̄)− 3γ σT

8ε̄3

×
[
ε̄2

3

(
(1+ 2ε̄)3 − 1

(1+ 2ε̄)3

)
+ 2ε̄(ε̄2 − ε̄ − 1)

(1+ 2ε̄)
+ ln(1+ 2ε̄)

]
. (6.40)

The ratio 〈ε1
s 〉C/〈ε1

s 〉T of the mean scattered photon energy in Compton scat-
tering to the Thomson-limit mean scattered photon energy goes roughly as
(1 + ε̄)−1, as shown in figure 6.3. Simple energy conservation arguments
restrict the Thomson relation εs ∼ γ 2ε to γ ε � 1.

The nth moment of the Compton cross section in the extreme Klein-
Nishina limit ε̄ � 1 is, from eq. (6.38), given by

〈εns σ 〉KN = πr2
e γ

n

ε̄

∫ 1

1/2ε̄
dy(1− y)n

(
y + 1

y

)
. (6.41)

The n = 0 moment is just the asymptotic Klein-Nishina cross section,
eq. (6.11), given by

〈ε0
s σ 〉KN→ πr2

e

ln 2ε̄ + 1/2

ε̄
. (6.42)

The n = 1 moment is

〈
ε1
s σ

〉
KN → γ

〈
ε0
s σ

〉
KN −

4γπr2
e

3ε̄
. (6.43)

The mean scattered photon energy in the limit ε̄ � 1 is therefore

〈ε1
s 〉KN = 〈ε

1
s σ 〉KN

〈ε0
s σ 〉KN ε̄�1

→ γ

(
1− 4

3(ln 2ε̄ + 1/2)

)
∼= γ.

6.3.5 Compton Scattering in the δ-Function Approximation

A simpler form for Thomson scattering is obtained by replacing the range
of scattered photon energies resulting from monoenergetic, monodirectional
electrons scattering a monochromatic beam of photons by a scattered photon
with fixed energy that travels in the same direction as the incident electron.
The δ-function approximation to Thomson scattering is given by

dσT,δ

dεsd	s

∼= σTδ(	s −	e)δ(εs − γ ε̄)H(1− ε̄). (6.44)
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The expression

dσC,δ

dεsd	s

∼= σT

(
δ(εs − γ ε̄)H(1− ε̄)

+ 3

8ε̄
ln(2e1/2ε̄)δ(εs − γ )H(ε̄ − 1)

)
δ(	s −	e) (6.45)

extends the δ-function Thomson cross section, eq. (6.44), to the KN regime
[68].

6.4 ENERGY-LOSS RATES IN COMPTON SCATTERING

The general expression for the rate of change of an electron’s Lorentz factor
in a frame where the target photon distribution is described by nph(ε,	) is
given by

−γ̇ =−dγ
dt
= c

∮
d	

∫ ∞
0

dεnph(ε,	)(1− βeµ)

×
∮
d	s

∫ ∞
0

dεs(εs − ε) dσ (ε̄)
dεsd	s

= c
∮
d	

∫ ∞
0

dεnph(ε,	) (1− βeµ)
(〈
ε1
s σ

〉− ε 〈
ε0
s σ

〉)
, (6.46)

taking µe = 1 and φe = 0. In a scattering, the electron loses energy equal
to the mean scattered photon energy 〈ε1

s σ 〉, given by eq. (6.34), from which
the initial photon energy ε is subtracted.

6.4.1 Thomson Energy-Loss Rate

In the Thomson limit ε̄ � 1, 〈ε1
s σ 〉T → γ ε̄σT = γ 2ε(1 − βeµ)σT. Substi-

tuting this expression into eq. (6.46) gives

−γ̇T = cσT

∫ ∞
0

dε ε

∫ 2π

0
dφ

∫ 1

−1
dµ [γ 2(1− βeµ)2 − 1] nph(ε,	).

(6.47)
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For isotropic photon fields,

−γ̇T= 1

2
cσTγ

2
∫ 1/γ

0
dε ε nph(ε)

∫ 1

−1
dµ [(1− βeµ)2 − 1]

= 4

3
cσTβ

2
e γ

2
∫ 1/γ

0
dε ε nph(ε)

= 4

3
cσTβ

2
e γ

2
∫ 1/γ

0
dε u(ε)

γ�1
→ 4

3
cσTuTγ

2. (6.48)

The upper limit on the integration over ε restricts the target photons to the
Thomson regime. Defining UT = mec

2uT = mec
2
∫ 1/γ

0 dε εnph(ε), the
relativistic electron energy-loss rate due to Thomson scattering is therefore

−
(
dE

dt

)
T
= −mec2γ̇T = 4

3
cσTUTγ

2, (6.49)

as is well known.
For particles with mass m and charge Ze, the Thomson loss rate is

−γ̇T =
(me
m

)3
Z2 4

3
cσT

(
UT

mec2

)
γ 2. (6.50)

The replacement of the Thomson cross section with (me/m)2Z2σT, and the
Compton effect, eq. (6.5) with ε replaced by ε(me/m), gives the scaling of
the Compton process for particles other than electrons.

The scattering rate of photons in the Thomson limit is, from eq. (2.40),

ṄT= cσT

4π

∫ 1/γ

0
dε

∮
d	(1−βeµ)nph(ε)= cσT

∫ 1/γ

0
dε nph(ε)= cσTuT

mec2ε0
,

(6.51)

where the last expression approximates the target photons as monochro-
matic with energy ε0. Thus the mean energy of scattered photons when an
isotropic monochromatic photon distribution is scattered by relativistic
electrons in the Thomson limit is

〈ε〉T = 4

3
ε0γ

2. (6.52)

6.4.2 Klein-Nishina Energy-Loss Rate

Substitution of eqs. (6.42) and (6.43) into eq. (6.46) for an isotropic target
photon field gives

−γ̇KN = cπr2
e

∫ ∞
1/γ

dε
nph(ε)

ε

(
ln 4γ ε − 11

6

)
. (6.53)
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Integration of eq. (6.53), using eq. (5.16) for the blackbody spectral photon
density, gives [35]

−γ̇KN,bb = π3

2

cσT

λ3
C

�2
(

ln 4γ�− 5

6
− CE − Cl

)
, (6.54)

where CE = 0.5772 . . . is Euler’s constant and

Cl = 6

π2

∞∑
n=2

ln k

k2
= 0.570 . . . .

Note the slow logarithmic increase of −γ̇ ∝ ln γ versus the quadratic de-
pendence, −γ̇ ∝ γ 2, in the Thomson regime (eq. [6.50]).

The energy-loss mean free path (MFP) due to Compton losses off the
CMBR in the extreme Klein-Nihsina regime, 4γ� � 1 or γ � 5 ×
108/(1+ z), is

λKN,CMBR= c
∣∣∣∣ γ

γ̇KN,CMBR

∣∣∣∣∼= 4.2EEeV

(1+ z)2(In[3590(1+ z)]EEeV]− 1.98)
Mpc

so λKN,CMBR(EEeV, z � 1) ≈ 0.67 Mpc. EeV photons from GZK processes
made beyond a Mpc will inevitably induce a cascade γ -ray spectrum
(section 10.8).

6.5 DIFFERENTIAL COMPTON CROSS SECTIONS

AND SPECTRA

Equation (6.44) gives a simple form for the differential Compton scattering
cross section by restricting all scattering to the Thomson regime and making
a δ-function approximation for the scattered photon energy. These formulae
can be compared with the differential Thomson scattering cross section, eq.
(6.23), the isotropic Thomson approximation, eq. (6.20), and the differential
Compton scattering cross section in the head-on approximation, eq. (6.31),
accurate throughout the Thomson and Klein-Nishina regimes. We compare
the accuracy of these four approximations for the problem of an isotropic,
power-law distribution of electrons scattering an isotropic monochromatic
photon source.

6.5.1 Comparison of Scattered Spectra for Different ERF
Photon Energies

Because the scattered photon is assumed to have the same direction as the
incident electron in the head-on approximation, we write

dσ

dεsd	s
= dσ

dεs
δ(	s −	e). (6.55)
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The Thomson cross section, eq. (6.23) can be written as

dσT

dx
∼= σT

3

2
(1− 2x + 2x2) H(x; 0, 1)H(1− ε̄), (6.56)

where
x = εs

2γ ε̄

is the ratio of scattered photon energy εs to maximum scattered photon en-
ergy in the Thomson limit, and we have added the restriction to the Thomson
regime. The isotropic Thomson approximation, eq. (6.20), is

dσT,iso

dx
∼= σTH(x; 0, 1) H(1− ε̄). (6.57)

The δ-function Thomson approximation, eq. (6.44), reads

dσT,δ

dεs
� σTδ(εs − γ ε̄) H(1− ε̄). (6.58)

The full Compton cross section in the head-on approximation, eq. (6.31),
becomes

dσC

dx̂
∼= 3σT

4

1

1+ 2ε̄

[(
y + 1

y

)
+ 2

ε̄

(
1− 1

y

)
+ 1

ε̄2

(
1− 1

y

)2
]
H(x̄; 0, 1),

(6.59)
where y = 1 − εs/γ = 1 − 2ε̄x̂/(1 + 2ε̄). For the Compton cross section,
the term x is generalized to

x → x̂ = εs

2γ ε̄/(1+ 2ε̄)
.

Figure 6.5 compares the scattered photon spectra as a function of x for
different approximations to the Compton cross section. When ε̄ � 1, the
scattered spectrum begins to approach a δ-function spectrum with εs ≈ γ .
The δ-function Thomson approximation, eq. (6.58), would be represented
by a δ-function spectrum at x = 1/2 on this figure.

6.5.2 Spectral Comparisons for Isotropic Monochromatic Photons
and Power-Law Electrons

We solve for the scattered photon emissivity when an isotropic photon gas
described by u(ε,	) = mec

2εnph(ε,	) = u(ε)/4π is scattered by an
isotropic, relativistic electron distribution described by ne(γ,	e) =
ne(γ )/4π . In this geometry, the scattered photon distribution is also
isotropic, so j (εs,	s) = j (εs)/4π . From eqs. (6.13) and (6.55),

j (εs) = cεs

2

∫ ∞
0

dε
u(ε)

ε

∫ ∞
1

dγ ne(γ )

∫ 1

−1
dµ (1− µ) dσ

dεs
. (6.60)
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Figure 6.5 Comparison of expressions for scattered photon spectrum as a function
of x, the ratio of the scattered photon energy to the maximum scattered
photon energy. Solid curve gives the Thomson spectrum, eq. (6.56), the
dashed curve gives the isotropic Thomson spectrum, eq. (6.57), and the
dotted curves give the Compton spectra, eq. (6.59), for different values
of the ERF photon energy ε̄, as labeled.

For a monochromatic photon source, u(ε,	) = u0δ(ε − ε0)/4π , and
eq. (6.60) becomes

εsj (εs) = cu0ε
2
s

2ε3

∫ ∞
1

dγ
ne(γ )

γ 2

∫ 2γ ε

0
dε̄ ε̄

dσ

dεs
. (6.61)

Later equations for monochromatic distributions of photons can be con-
verted to integrations over a spectral photon distribution by letting

εn u0→
∫
dε εn u(ε).

For a power-law electron distribution described by the function

ne(γ ) = keγ−pH(γ ; γ1, γ2), (6.62)

the total energy density in nonthermal electrons is given by

ue = mec2
∫ ∞

1
dγ γ ne(γ ), (6.63)

so that the normalization coefficient

ke = (p − 2)ue

mec2(γ
2−p
1 − γ 2−p

2 )
. (6.64)
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Substituting the δ-function approximation, eq. (6.58), in eq. (6.61) gives

εsjT,δ(εs) = 1

2
cσTu0

(εs
ε

)3
∫ ∞

max(εs ,
√
εs/2ε)

dγ
ne(γ )

γ 4
. (6.65)

Restriction to the Thomson regime is provided by the condition γ >√
εs/2ε, which follows from the conditions ε̄ < 2γ ε and εs = γ ε̄. For

the power-law electron distribution given by eq. (6.62),

εsjT,δ(εs)= cσTu0

2(p + 3)

(εs
ε

)3
ke

{[
max

(
γ1, εs,

√
εs

2ε

)]−(3+p)
− γ−(3+p)2

}
.

(6.66)

The solution to eq. (6.61) for the Compton-scattered emissivity in the
head-on approximation is

εsjC(εs) = 3

4
cσTu0

(εs
ε

)2
∫ ∞

1
dγ

ne(γ )

γ 2
F(εs, γ, 4γ ε). (6.67)

Here F(εs, γ, 4γ ε) is a scattering kernel for different approximations to the
Compton process.

For the Thomson cross section, eq. (6.56),

εsjT(εs) = 3

4
cσTu0

(εs
ε

)2
∫ ∞
√
εs/4ε

dγ
ne(γ )

γ 2
FT(ε̂), (6.68)

where
FT(ε̂) = 1+ ε̂ − 2ε̂2 + 2ε̂ ln ε̂, (6.69)

and
ε̂ = εs/4γ 2ε (6.70)

is the ratio of the scattered energy to the maximum scattered energy. For the
isotropic Thomson cross section, eq. (6.57),

FT,iso(ε̂) = 2

3
(1− ε̂). (6.71)

No restrictions on γ have been made to ensure that scattering takes place
only in the Thomson regime. Figure 6.6 compares these two expressions as
a function of ε̂.

If restriction to the Thomson regime is made, then substitution of the
isotropic Thomson cross section, eq. (6.57), into eq. (6.61) gives

εsjT,iso(εs)= 1

2
cσTu0

(εs
ε

)2
∫ ∞

max
(
εs
2 ,

1
2

√
εs/ε

) dγ
ne(γ )

γ 2

[
min

(
1,

1

2γ ε

)
− ε̂

]
.

(6.72)
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Figure 6.6 Comparison of expressions FT(ε̂), eq. (6.69), and FT,iso(ε̂), eq. (6.71),
with FT,C(ε̂), eq. (6.75).

Solving this for an electron distribution given by eq. (6.62) gives

εsjT,iso(εs)= kecσT

4

(εs
ε

)2
(

2

p + 1

(
A−p−1 − B−p−1)

+ 1

ε(p + 2)

(
C−p−2 − γ−p−2

2

)

− εs

2ε(p + 3)

(
A−p−3 − B−p−3 + C−p−3 − γ−p−3

2

))
,

(6.73)

where A = max(γ1,
1
2

√
εs/ε), B = min(γ2, 1/2ε), and C = max(γ1, εs/2,

1/2ε) in this equation. When the target radiation field is synchrotron
radiation from the same electrons that Thomson-scatter the radiation, the
synchrotron self-Compton spectrum has a simpler form, as considered in
the next chapter.
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For the head-on approximation employing the full Compton cross
section, eq. (6.59), the solution to eq. (6.61) for isotropic nonthermal elec-
trons scattering photons of an isotropic external radiation field is

εsjC(εs) = 3

4
cσTu0

(εs
ε

)2
∫ ∞

1
dγ

ne(γ )

γ 2
FC(q, �e) H

(
q; 1

4γ 2
, 1

)
,

(6.74)

where

FC(q, �e)=FT(q)+ 1

2

(�eq)
2

(1+ �eq) (1− q)

= 2q ln q + (1+ 2q)(1− q)+ 1

2

(�eq)
2

(1+ �eq)(1− q), (6.75)

q ≡ εs/γ

�e(1− εs/γ ), �e ≡ 4γ ε, (6.76)

and q is restricted to the range (4γ 2)−1 ≤ q ≤ 1 [35, 67]. Restriction to
the Thomson regime occurs when �e � 1 or 4εγ � 1. The final term in
eq. (6.75) dominates for scattering in the KN regime. In deriving eq. (6.75),
note that y = 1 − εs/γ = 1/(1 + �eq), q�ey = 1 − y, and y + y−1 =
2 + [(q�e)2/(1 + q�e)]. Solving for the Heaviside function in eq. (6.74)
gives the results considered in section 6.6.2, below.

The general expression for the Compton emissivity when relativistic,
isotropic electrons Compton-scatter an isotropic target photon distribution
is

εsjC(εs) = 3

4
cσTε

2
s

∫ ∞
εs

dγ
ne(γ )

γ 2

∫ εs/(1−εs/γ )

εs/4γ 2(1−εs/γ )
dε

u(ε)

ε2
FC(q, �e).

(6.77)

Figure 6.7 compares the spectral energy emissivity εsj (εs) derived using
the differential Compton cross sections in the head-on approximation
(eq. [6.74]; thick curves) with the emissivity derived using various Thomson
approximations (thin curves). Here we consider an isotropic distribution of
electrons with γ1 = 102, γ2 = 107, and p = 2.2, and nonthermal electron
energy density ue = 1 ergs cm−3. The photon distribution is assumed to be
isotropic with energy density ue = 1 erg cm−3, and monochromatic with
dimensionless energies ε0 as labeled on the curves.

Figure 6.7a shows that the δ-function approximation, eq. (6.66) (thin
curves), gives a good fit in the Thomson regime of scattering, as it was
designed to do, but gives very poor approximations in the low- and high-
energy regimes. The νFν spectral slopes are easily derived from the analytic
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Figure 6.7 Comparison of the results obtained using the accurate Compton cross
section (thick curves), given by eq. (6.74), with different approxima-
tions (thin curves) to the cross sections. All cross sections are derived in
the head-on approximation. In the calculations, the electron distribution
is isotropic and has a power-law spectrum with number index p = 2.2
and minimum and maximum Lorentz factors of 102 and 107, respec-
tively. The curves are labeled by the dimensionless soft photon energy
ε0. Thin curves give results for the (a) δ-function Thomson approxima-
tion, eq. (6.66); (b) isotropic Thomson approximation, eq. (6.73); (c)
average-angle Thomson approximation, eq. (6.80); and (d) δ-function
approximation for isotropic photons and electrons, eq. (6.82).

form for the spectral energy emissivity, eq. (6.66). One finds that

εsjT,δ(εs) ∝




ε3
s , ε � εs � 2γ 2

1 ε,

ε
(3−p)/2
s , 2γ 2

1 ε � εs �
1

2ε
,

ε
−p
s ,

1

2ε
� εs.

(6.78)



chapter06 July 15, 2009

90 CHAPTER 6

The low-energy (εs � ε) νFν (or εsj (εs)) slope αν ∝ ε3
s from the analytic

δ-function approximation, rather than αν ∝ ε2
s as implied by the Compton

result, eq. (6.74). At the lowest energies, the scattered photons are domi-
nated by low-energy photons in large-angle scattering events rather than by
low-energy scattering from tail-on events. It is these low-energy scattering
events, however, that are required in the δ-function approximation to make
low-energy scattered photons.

Due to kinematic effects from the range of incident photon energies in the
ERF, εsj (εs) ∝ ε3

s at energies ε � εs � γ 2
1 ε. This follows by noting that

dṄs

dεs
dεs ∝ dṄs

dµ
(1− µ)dµ,

and recalling the relation εs ∝ εγ 2(1 − µ) between the electron energy,
scattering direction µ, and scattered photon. The presence of the rate factor
introduces an additional factor of εs , so that

dNs

dεs
∝ εs and εsj (εs) ∝ ε3

s .

Comparison of low-energy results obtained using the isotropic Thomson
cross section in figure 6.7b shows agreement with the accurate Compton-
scattering result when ε � εs � γ 2

1 ε. The inclusion of the low-energy
portion of the Thomson scattered spectrum corrects the δ-function approxi-
mation. The low-energy scattered photons have the distribution

dṄs

dεs
∝ const , so that εsj (εs) ∝ ε2

s ,

as found in the more accurate treatment. There still remain large discrepan-
cies in the Klein-Nishina regime for the isotropic Thomson cross section.

Both the δ-function and isotropic Thomson cross sections correctly
describe the spectral behavior in the Thomson regime γ 2

1 ε � εs � 1/2ε.

Equation (6.78) implies that εsj (εs) ∝ ε(3−p)/2s , so that

j (εs) ∝ ε−αs , where α = p − 1

2
(6.79)

is the energy index. The νFν index in the Thomson regime is αν = (3−p)/2,
and the number index α� = (p + 1)/2.

The relation between photon energy index α and electron steady-state
number index p can be obtained by elementary means. Target photons with
energy ε are Thomson-scattered to εs by electrons with Lorentz factor γ ∼=√
εs/ε. Because f T

ε ∝ γ 3Ne(γ ) ∝ ε1−α , (3− p)/2 = 1− α, so

α = p − 1

2
.



chapter06 July 15, 2009

COMPTON SCATTERING 91

In the Klein-Nishina regime εs � 1/2ε, the δ-function approximation
under estimates the actual scattered flux by having no scattering for events
in the Klein-Nishina regime. The isotropic Thomson cross section in the
Klein-Nishina regime is not much better. Due to residual Thomson scat-
tering, the scattered photon spectrum in the Klein-Nishina regime varies
roughly as εsj (εs) ∝ ε−ps in these two approximations. The full Compton
cross section gives a more rounded spectrum in the Klein-Nishina regime,
with asymptotic spectral slope approaching εsj (εs) ∝ ε1−p

s .
We consider a further “average-angle” approximation where the typical

scattering angle is µ = 0. Substituting the δ-function approximation eq.
(6.58) into eq. (6.61) with the rate factor (1 − µ) set equal to unity, one
obtains for the power-law electron distribution (6.62) the result

εsjaa(εs)= cσTu0

4

(εs
ε

)2 ke

p + 1

{[
max

(
γ1, εs,

√
εs

2ε

)]−(1+p)
− γ−(1+p)2

}
.

(6.80)

Figure 6.7c compares the average-angle approximation with the more ac-
curate Compton result. The slopes are

εsjaa(εs) ∝




ε2
s , ε � εs � 2γ 2

1 ε,

ε
(3−p)/2
s , 2γ 2

1 ε � εs �
1

2ε
,

ε
1−p
s ,

1

2ε
� εs.

(6.81)

The low-energy slope is in good agreement with the low-energy slope
obtained with the full Compton cross section, though larger deviations now
appear in the central part of the Thomson regime γ 2

1 ε0 � εs � 1/2ε
where most of the photon energy is radiated, compared to results obtained
using the δ-function and isotropic Thomson cross sections. Although the
scattered spectrum is discrepant in the Klein-Nishina regime by a factor of
≈10, the average-angle approximation gives roughly the correct asymptotic
slope.

The appropriate approximation depends on the accuracy needed in
different problems or regimes of scattered emission. The δ-function ap-
proximation leads to the simplest analytic results, but is accurate only in
the regime γ 2

1 ε � εs � 1/2ε. This is, however, often the most important
regime, because the νFν peaks of Compton-scattered photon spectra, which
are the brightest parts of the spectrum, are usually found in this regime.
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6.6 THOMSON SCATTERING: ISOTROPIC PHOTONS AND

ELECTRONS

In this section, a δ-function approximation for the scattered spectrum from
isotropic electrons and isotropic target photons is derived in the Thomson
limit. Comparison is made with an accurate calculation.

6.6.1 Thomson-Scattered Radiation Spectrum in the δ-Function
Approximation

We consider scattering in the Thomson regime ε̄ ∼= γ 2ε � 1 in the average-
angle approximation, which leads to an expression involving the photon and
electron distributions alone. In the ERF, ε̄ = γ ε(1− µ) ≈ γ ε. Because the
mean scattered photon energy in Thomson scattering is εs = γ ε̄ ∼= γ 2ε for
Thomson scattering, εsε = (γ ε)2 � 1, and ε � 1/εs . Also, because we are
considering “upscattering” and not “downscattering,” εs > ε and therefore
ε � min(εs, ε−1

s ).
For systems where the electron Lorentz factor distribution ne(γ ) and tar-

get photon distribution nph(ε) are isotropic, we adopt an approximation for
the Thomson-scattered spectrum consistent with the Thomson energy-loss
rate, eq. (6.50), and the mean scattered photon energy εs ∼= γ 2ε that also
restricts scattering to the Thomson regime. This approximation is

ṅT(εs) ∼= 2

3
cσTε

−1/2
s

∫ min(εs ,ε−1
s )

0
dε ε−1/2 nph(ε) ne

(√
εs

ε

)
. (6.82)

If the photon field is monochromatic, then nph(ε) = n0
phδ(ε − ε0). For a

single electron with Lorentz factor γ̄ , the electron distribution function takes
the form ne(γ ) = δ(γ − γ̄ ). It is easy to verify from eq. (6.82) that∫ ∞

0
dεs εs ṅT(εs) = 4

3
cσTn

0
phγ

2ε0 = −γ̇T, (6.83)

noting that u0 = mec
2ε0n

0
ph for the monochromatic radiation field. The

Thomson regime of scattering holds in eq. (6.83) when ε0 � 1/γ .
The comoving νLν luminosity εsL(εs) = VbεsjT(εs) = mec2Vbε

2
s ṅT(εs),

where Vb is the volume of the emitting region. The Thomson-scattered pho-
ton spectrum from a monochromatic photon source in this approximation is
given by

εsL
T(εs)∼= 2

3
cσTu0

(εs
ε

)3/2
Ne

(√
εs

ε

)
= 2

3
cσTu0γ

3
TNe(γT), γT=

√
εs

ε
,

(6.84)
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noting that restiction to the Thomson regime implies ε � min(εs, ε−1
s ).

The energy emissivity mec2ε2
s ṅT(εs), with ṅT(εs) given by eq. (6.82), is

compared to results obtained with the accurate Compton cross section in
figure 6.7d.

6.6.2 Spectral Comparisons for Isotropic Power-Law Photons and
Electrons

Expression (6.82) is used to derive an approximation for the Compton-
scattered photon spectrum from isotropic power-law distributions of
nonthermal electrons and photons. The electron spectrum and normaliza-
tion is given by eqs. (6.62)–(6.64). For a power-law photon distribution,

nph(ε) = n0
phε
−1−αH(ε; ε1, ε2), (6.85)

and normalization to the total photon energy density u0 = mec
2
∫∞

0 dε ε

nph(ε) implies

n0
ph =

(1− α)u0

mec2(ε1−α
2 − ε1−α

1 )
. (6.86)

Substituting these expressions into eq. (6.82) and solving gives

εsjpl(εs) = 4

3
mec

3σTken
0
ph

(
ε
(p−2α−1)/2
u − ε(p−2α−1)/2

�

p − 2α − 1

)
, (6.87)

where

ε� = max

(
εs

γ 2
2

, ε1

)
and εu = min

(
εs

γ 2
1

, ε2, εs, ε
−1
s

)
. (6.88)

This expression provides a simple analytic form for the scattered photon
spectrum when a power-law distribution of electrons with number index p
Compton scatters a target photon spectrum with energy index α; it is plotted
in figure 6.8.

Figure 6.8 shows electron distributions calculated with the accurate
Compton-scattered spectrum, eq. (6.74). The two-fold integration that is
solved is

εsjC(εs) = 3

4
cσTε

2
s

∫ ∞
0

dε
u(ε)

ε2

∫ γmax

γmin

dγ
ne(γ )

γ 2
FC(q, �e), (6.89)

where FC(q, �e) is given by eq. (6.75), and the limits

γmin = εs

2

(
1+

√
1+ 1

εεs

)
(6.90)



chapter06 July 15, 2009

94 CHAPTER 6

10–4

10–6

10–8

10–10

10–12

10–14

10–16

1012 1014 1016 1018 1020 1022 1024 1026 1028

 �
sj

(�
s)

ν (Hz)

(�1,�2) = (10–9,10–6)

(10–6,10–3)

(10–3,1)

Figure 6.8 Comparison of expressions obtained using the δ-function approxima-
tion for the Thomson cross section (thin curves), and the accurate
Compton (thick curves) cross sections, given by eqs. (6.87) and (6.89),
respectively. The electron distribution is isotropic and has a power-law
spectrum with number index p = 2.2 and minimum and maximum
Lorentz factors of 102 and 107, respectively. The target photon spec-
trum is given by a power law with energy index α = 0.5 and soft photon
energies between energies ε1 and ε2, as labeled in the figure.

and

γmax = εεs

ε − εs H(ε − εs)+ γ2H(εs − ε) (6.91)

on γ are derived from the restriction

1

4γ 2
≤ q = εs/γ

�e(1− εs/γ ) ≤ 1.

The energy densities of both the nonthermal electrons and target photons
are normalized to 1 erg cm−3.

6.7 EXTERNAL PHOTON FIELDS COMPTON-SCATTERED BY

JET ELECTRONS

This process was proposed to explain the intense γ radiation detected from
the jets of blazar active galactic nuclei [69, 70]. Theoretical treatments of
scattered spectra have analyzed this problem in two ways: (i) the external
radiation field is transformed to the comoving frame where the scattered
spectrum is calculated and then transformed to the observer frame [68, 69];
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and (ii) the electron distribution is transformed to the stationary frame, and
then the external photon field is Compton-scattered [71]. The second
approach can be simpler if the electron distribution is fixed. When the
electrons evolve through injection, energy losses, and pitch-angle scattering,
however, one must consider the electron evolution and energy losses in the
comoving frame. The second approach has been limited to isotropic exter-
nal radiation fields. Recent work extends this method to arbitrary anisotropic
external radiation fields.

Approach (i): Transform Target and Scattered Photon Spectra

In this approach, the comoving target photon emissivity is angle dependent
even if the comoving electron distribution is isotropic, because the target
photon distribution is highly aberrated in the comoving frame. The emissiv-
ity for Compton scattering in the head-on approximation is, from eqs. (2.44)
and (6.55), given by

ε′sj
′(ε′s, 	

′
s)= cε′2s

∮
d	′ (1− cos ψ̄)

∫ ∞
0

dε′
u′(ε′, 	′)

ε′

×
∫ ∞

1
dγ ′ n′e(γ

′, 	′s)
(
dσ

dε′s

)
, (6.92)

and cos ψ̄ = µsµ +
√

1− µ2
√

1− µ′2 cos(φ′s − φ′). The received νFν
spectrum, given by eq. (5.46), is

fε ∼=
δ4

DV
′
b

d2
L

ε′sj
′(ε′s, 	

′
s), (6.93)

with ε′s = (1+ z)ε/δD, µ′s = (µ− β)/(1− βµ), and φ′s = φ.

Approach (ii): Transform Electron Spectrum to Stationary Frame

In this approach, due to Georganopoulos, Kirk, and Mastichiadis [71],
limited in their paper to isotropic radiation fields in the stationary frame,
the stationary-frame photon luminosity is calculated from the transformed
stationary-frame electron distribution Ne(γ,	), using as a scattering ker-
nel the elementary emissivity derived for a relativistic electron scattering
isotropic target photons [67]. The specific spectral luminosity

εsL(εs,	s) =
∫
dε∗

u∗(ε∗, 	∗)
mec2

∫
dγ Ne(γ,	s)

dE(γ, ε∗)
dtdεsd	s

, (6.94)
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where the scattering kernel dE/dtdεsd	s = Vbεsj (εs)/4π is accurately
given in the head-on approximation by the Compton emissivity, eq. (6.77)
or eq. (6.89) [72]. The νFν spectrum is simply given by

fε = εsL(εs,	s)

d2
L

(6.95)

with

εs = (1+ z)ε ≡ εz and 	s = 	∗. (6.96)

The external Compton-scattered radiation field can be obtained by adapt-
ing this approach for arbitrary external radiation fields [73]. The basic
equation giving the scattered νFν flux from relativistic jet electrons
Compton-scattering photons of an external radiation field described by
u∗(ε∗, 	∗) at some location �r is, from eqs. (6.13), (6.25), and (6.29),

f EC
ε =

cπr2
e

4πd2
L

ε2
s δ

3
D

∮
d	∗

∫ ε∗,high

0
dε∗

u∗(ε∗, 	∗)
ε2∗

∫ ∞
γlow

dγ
N ′e(γ /δD)

γ 2
�C.

(6.97)

The lower limit on the electron Lorentz factor, γlow, and the upper limit
ε∗,high implied by the kinematic limits on y are

γlow = εs

2

(
1+

√
1+ 2

ε∗εs(1− cosψ)

)
(6.98)

and

ε∗,high = 2εs
1− cosψ

. (6.99)

Results obtained using approach (i), giving analytic results for scattering
in the Thomson regime, are reviewed first.

6.7.1 Thomson-Scattered Spectrum for an External Point Source of
Radiation from Behind

A point source of radiation impinging from behind the outflowing plasma jet
is of interest because of the intense accretion-disk radiation fields at the base
of supermassive black-hole jets. At sufficiently far distances, the accretion
disk can be approximated as a point source of radiation impinging from
behind, though the radial extent of the accretion disk, as described in the
next section, must also be considered over a wide range of jet heights.
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We derive the flux for the case of a point source behind the jet using the
δ-function approximation for the Thomson cross section. The point-source
approximation for the spectral energy density of a monochromatic radiation
field is given in the stationary frame by eq. (5.31) and in the comoving frame
of a jet streaming radially away from the point radiation field by eq. (5.32).
Substituting these equations into eq. (6.92) gives

j ′pt(ε
′
s, 	

′
s) =

σTLd(1− µ′s)
32π2r2ε0�(1+ β) γ̂

′n′e(γ̂
′), γ̂ ′ =

(
�ε′s(1+ β)
ε0(1− µ′s)

)1/2

,

(6.100)

so that with eq. (6.93) we have

f pt
ε = δ6

D
σT(1− µ)2

8πd2
L

(
Ld

4πr2

)
γ̃ ′3N ′e(γ̃

′) H
(

1

ε0(1− µ) − εz
)
,

γ̃ ′ ≡ δ−1
D

√
εz

(1− µ)ε0
(6.101)

[69], and the Heaviside function restricts the scattering to the Thomson
regime.

6.7.2 Thomson-Scattered Spectrum for External Isotropic Radiation
in the δ-Function Approximation

The Compton-scattered γ -ray spectrum for an external isotropic,
monochromatic radiation field is derived for scattering restricted to the
Thomson regime.

Spectrum in the Limit � � 1, β → 1

Substituting eq. (5.26) for an external isotropic monochromatic radiation
field in the limit � � 1, β → 1 into eq. (6.92) gives, using the δ-function
Thomson cross section, eq. (6.58),

ε′sj
′(ε ′s, 	

′
s)
∼= cσTu0

6π
�2(1+ µ′s)2 γ̄ ′3 n′e(γ̄ ′, 	′s) H(1− ε̄),

γ̄ ′ =
√

3ε′s
4�ε0(1+ µ′s)

. (6.102)
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Here ε̄ = γ ′ε′(1 + µ′s) = 4γ ′�ε0(1 + µ′s)/3. Substituting eq. (6.102) into
eq. (6.93), using the Lorentz transformation equations, gives

f ext,T
ε
∼= δ6

D
cσTu0(1+ µ)2

24πd2
L

γ̄ ′3 N ′e(γ̄
′) H

(
1

ε0(1+ µ) − εz
)
,

γ̃ ′ ≡ δ−1
D

√
3εz

2(1+ µ)ε0
(6.103)

for electrons isotropically distributed in the comoving frame. Because the
brightest fluxes are observed nearly on-axis, it is generally a good approxi-
mation to let µ→ 1 in this expression.

For a power-law electron distribution, eq. (6.62),

N ′e(γ
′) = V ′bn′e(γ ′) = K ′γ ′−pH(γ ′; γ ′1, γ ′2), (6.104)

and eq. (6.103) becomes

f ext,T
ε
∼= K ′

6πd2
L

cσTu0 δ
3+p
D

(
3εz
4ε0

)(3−p)/2
for γ ′21 �

εz

δ2
Dε0
� γ ′22 .

(6.105)

Spectrum for General β, �

This result can be derived [74, 75] using the general transformation of the
external radiation field given by eq. (5.24), so that the result is applicable
even when �− 1, β � 1. Again use of the δ-function Thomson approxima-
tion gives

ε ′sj
′(ε′s, 	

′
s)
∼= cσTu0

2�(β + µ′s)
(
ε′s
ε0

)3 ∫ γ ′+−

max(γ ′−+,ε′s )
dγ ′ γ ′−4 n′e(γ

′, 	′s),

(6.106)
where

γ ′−+ =
√
�ε′s(1− β)
ε0(1+ µ′s)

and γ ′+− =
√
�ε′s(1+ β)
ε0(1− µ′s)

. (6.107)

The νFν flux for an isotropic, power-law electron distribution is found to be

f ext,T
ε
∼= K

′(1+ µ)2+α
16πd2

L(2+ α)
cσTu0δ

4+2α
D

(
εz

ε0

)1−α
for γ ′21 �

εz

δ2
Dε0(1+µ)

�γ ′22 ,

(6.108)

which holds when 0 < µ ≤ 1, recalling that α = (p − 1)/2.
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The expression

f T
ε
∼= δ6

D

6πd2
L

cσTu0γ
′3
T N

′
e(γ
′
T) with γ ′T =

1

δD

√
εz

2ε0
(6.109)

provides a simple analytic approximation for the νFν spectrum when
nonthermal electrons Thomson-scatter photons from an external isotropic
monochromatic radiation field. Restriction to the Thomson regime, from
eq. (6.103), means that ε(1 + z) � 1/2ε0. For UV soft photons with ε0 =
10−4ε−4, this means that Klein-Nishina effects are important already when
Eγ (GeV) � 2/ε−4(1 + z). By comparison, scattered photons remain in
the Thomson regime until Eγ (TeV) � (�/10)2/[(1 + z)ε−4] for photons
entering from behind (eq. [6.101]).

For comparison with the monochromatic expression in the δ-function
approximation, eq. (6.109), we write

fε = C(p)K
′cσTu0

4πd2
L

δ
3+p
D

(
εs

ε0

)(3−p)/2
. (6.110)

In the asymptotic, power-law portion of the Compton-scattered spectra, the
coefficients Cp are given by

Ci
T,iso(p) =

1

2

(
3

4

)(1−p)/2

for the δ-function expression, eq. (6.105),

Ci
T(p) = 2(p−1)/2/(p + 1)

for the Thomson expression, eq. (6.108), and

C i
T,δ(p) = 2(p−1)/2/3

for the δ-function approximation, eq. (6.109), for the Thomson cross
section. Values of the coefficients for the three approximations are given
in table 6.1.

The range of scattered photons is determined by the range of electron
energies. Because εs � 4γ ′2ε0, γ ′ ∼= √εs/ε0, and

δ2
Dγ

2
1 �

εs

ε0
� δ2

Dγ
2
2

(compare eq. [6.105]).

6.7.3 External Isotropic Photons Compton-Scattered by Jet Electrons

We now employ approach (ii) [71], restricting the treatment first to external
isotropic radiation fields.
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Table 6.1 Factors for Compton-Scattered Monochromatic Target Photons from
Isotropic, Power-Law Electrons in the Thomson Regime

p

Cp 0 1 2 3 4

Ci
T,iso(p) 0.433 1/2 0.577 2/3 0.769

Ci
T(p) 0.707 1/2 0.471 1/2 0.565

Ci
T,δ(p) 0.23 1/3 0.471 2/3 0.943

Cii
T,iso(p) 2/3 1/2 0.533 2/3 0.914

Cii
T(p) 0.733 1/2 0.525 2/3 0.936

Treating the relativistic leptons as massless particles, the invariant phase
volume (5.7) for relativistic particles is given by

dN

dV =
dN

dV d3 �p = inv ⇒
1

γ 2

dN

dγ d	dV
= inv,

implying that

N(γ,	) = γ 2

γ ′2
dV

dV ′
N ′(γ ′, 	′) = δ3

DN
′(γ ′, 	′), (6.111)

noting that dV/dV ′ = dt ′/dt = δD, and γ = δDγ
′. The measurement of

flux from the emitting volume at the appropriate retarded times gives the
physical basis for the change in effective volume with Doppler factor.

The directional luminosity from electrons with Lorentz factor and angular
distribution N ′e(γ ′, 	′) in a uniform blob is

εsL(εs,	s)= εsVbj (εs,	s)

= 3

4
cσTε

2
s δ

3
D

∫ ∞
0
dε∗

u∗(ε∗)
ε2∗

∫ ∞
1
dγ
N ′e(γ ′, 	′)

γ 2
F(ε̂)H(1− ε̂),

(6.112)

where F(ε̂) is given for the various approximations to the Compton cross
section. For the Thomson and isotropic Thomson cross sections, F(ε̂) =
FT(ε̂)H(1− γ ε) and F(ε̂) = FT,iso(ε̂)H(1− γ ε) given by eqs. (6.69) and
(6.71), respectively, with ε̂ = εs/4γ ′2ε0 (eq. [6.70]). The factor H(1− γ ε)
crudely restricts us to Thomson scattering.

For the full Compton cross section, F(ε̂) is replaced by FC(q, �e), given
by eq. (6.75), and ε̂ → q, given by eq. (6.76). For isotropically distributed
electrons in the comoving frame, eq. (6.112) becomes

fε = 3

4

cσTε
2
s

4πd2
L

δ3
D

∫ ∞
0

dε∗
u∗(ε∗)
ε2∗

∫ γmax

γmin

dγ
N ′e(γ ′)
γ 2

FC(q, �e), (6.113)
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where γ = δDγ
′, FC(q, �e) is given by eq. (6.75) and γmin and γmax are

given by eqs. (6.90) and (6.91), respectively, with ε → ε∗, and (1+z)ε = εs .
Assuming a power-law isotropic pitch-angle electron distribution given

by eq. (6.104), the νFν spectrum (eq. [6.113]) for the isotropic external
target field with monochromatic energy ε0, has dependence f C

ε =
εsL(εs,	s)/d

2
L ∝ δ

3+p
D . Thus the beaming factor of Compton-scattered

radiation is ∝ δ3+p
D ∝ δ4+2α

D in the Klein-Nishina as well as the Thomson
regime [71].

Isotropic Monochromatic Target Photons Thomson-Scattered by
Power-Law Jet Electrons

The νFν spectrum for a blob containing relativistic electrons with an
isotropic pitch-angle distribution that are entrained in a randomly oriented
magnetic field is given through approach (ii) as

f T,iso
ε = 3K ′

4

cσTu0

4πd2
L

(
εs

ε0

)2

δ
p+3
D

∫ γ ′2

γ ′1
dγ ′ γ ′−(2+p) F (ε̂). (6.114)

For the Thomson cross sections, ε̂ = εs/4γ 2
� ε0, γ� =

√
εs/4ε0ε̂, and

dγ�=− 1

2ε̂3/2

√
εs

4ε0
dε̂ ⇒ dγ ′γ ′−(2+p) = −2p

(
εs

ε0

)(3−p)/2
ε̂(p−1)/2 dε̂.

Thus

f T,iso
ε = 2p−2 · 3K ′

4πd2
L

cσTu0

(
εs

ε0

)(3−p)/2
δ
p+3
D [I (ε̂1)− I (ε̂2)], (6.115)

where

I (x) =
∫ x

dε̂ ε̂(p−1)/2 F(ε̂),

ε̂1 = εs

4γ 2
1 ε0

, γ1 = max

(
δDγ

′
1,

√
εs

4ε0

)
, ε̂2 = εs

4γ 2
2 ε0

, γ2 = δDγ ′2.

For the Thomson cross section, eq. (6.69), the integral

IT(x)=
∫ x

dε̂ ε̂(p−1)/2(1+ ε̂ − 2ε̂2 + 2ε̂ ln ε̂)

= 2

[
x(p+1)/2

p + 1
+ x

(p+3)/2

p + 3

(
1+2 ln x− 4

p + 3

)
− 2x(p+5)/2

p + 5

]
. (6.116)
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For the isotropic Thomson cross section, eq. (6.71), the integral

IT,iso(x) = 2

3

∫ x

dε̂ ε̂(p−1)/2(1− ε̂) = 4

3

(
x(p+1)/2

p + 1
− x

(p+3)/2

p + 3

)
.

(6.117)

In the asymptotic power-law portion of the Thomson spectrum, γ ′1 ≤√
εs/4ε0 � γ ′2, and in this regime ε̂1 → 1 � ε̂2. Note that the Thomson

regime criterion can be expressed as εεs � 1, using the relations εs ∼= γ 2ε

and γ ε � 1. In the notation of eq. (6.110), the coefficients Cp from ap-
proach (ii) are given by

Cii
T,iso(p) =

2p+1

(p + 1)(p + 3)
,

and

C ii
T(p) = 3 · 2p−1

(
3− p

(p + 1)(p + 5)
+ p − 1

(p + 3)2

)
.

Values for these quantities are given in table 6.1. Note the good agreement
between the two approaches for randomly distributed, power-law jet elec-
trons scattering external, isotropic photons in the Thomson regime.

Blackbody Photons Thomson-Scattered by Power-Law Jet Electrons

Substituting the blackbody photon distribution ubb(ε;�) = 8πmec2ε3/

{λ3
C×[exp(ε/�)−1]}, eq. (5.16), into eq. (6.113) gives, with Ucr = B2

cr/8π
and different approximations for FC(q, �e), the result

f ECMB
ε → 2p−3 · 3K ′IT

4πd2
L

cσT

(
8αf
π2

)
Ucr ε

(3−p)/2
s δ

p+3
D �(5+p)/2 IECMB

p .

(6.118)
Here

IECMB
p =

∫ ∞
0

dx
x(3+p)/2

exp(x)− 1
= �

(
5+ p

2

)
ζ

(
5+ p

2

)
, (6.119)

IT = IT,iso(p) = 8

3(p + 1)(p + 3)
,

and

IT = IT(p) = 2

(
3− p

(p + 1)(p + 5)
+ p − 1

(p + 3)2

)
.

Returning to the monochromatic form, eq. (6.115), it is simple to see that

f ECMB
ε ∝

{
δ2

D (εs/ε0)
2 , εs � 4δ2

Dγ
′2
1 ε0,

δ
3+p
D (εs/ε0)

(3−p)/2 , 4δ2
Dγ
′2
1 ε0 � εs � 4δ2

Dγ
′2
2 ε0.

(6.120)



chapter06 July 15, 2009

COMPTON SCATTERING 103

Compton-Scattered External Isotropic Radiation Field for General
Nonthermal Electron Distribution

From eq. (6.89), but allowing the electron distribution to have an arbitrary
comoving angular distribution, we have

fε = 3

4

cσTε
2
s

d2
L

δ3
D

∫ ∞
0

dε∗
u∗(ε∗)
ε2∗

∫ γmax

γmin

dγ
N ′e(γ ′, 	′)

γ 2
FC(q, �e).

(6.121)
Here γ ′ = γ /δD, µ′ = (µ− β)/(1− βµ), and φ′ = φ.

6.7.4 Cosmic Microwave Background Radiation Compton-Scattered
by Jet Electrons

Because of the importance of this process, and because it provides us a way
to summarize the results of external Compton processes, we derive the flux
when jet electrons Compton-scatter CMB photons or quasi-monochromatic
photon sources. The analysis also applies to stationary synchrotron sources,
e.g., the lobes of radio galaxies, by taking the limit δD→ 1.

From eq. (6.89),

εsLC(εs,	s)= 3

4
cσT

(
εs

ε∗

)2

u0

∫ ∞
1

dγ
Ne(γ,	s)

γ 2
FC(q, �e)H

(
q; 1

4γ 2
, 1

)
.

(6.122)

From eqs. (6.95) and (6.113),

f C,iso
ε = 3

4

cσTε
2
s

d2
L

∫ ∞
0

dε∗
u∗(ε∗)
ε2∗

∫ ∞
γmin

dγ
Ne(γ,	s)

γ 2
FC(q, �e), (6.123)

considering only upscattering. Here, from eqs. (6.76) and (6.90),

q ≡ εs/γ

�e(1− εs/γ ), �e = 4γ ε∗,

and

γmin = εs

2

(
1+

√
1+ 1

εsε∗

)
ε∗εs�1
→

√
εs

2ε∗
.

For the standard jet, from eq. (6.111),

Ne(γ,	s) = δ3
D
N ′(γ /δD)

4π
. (6.124)

The different approximations to the Compton cross section are the full
Compton cross section, eq. (6.75),

FC(q, �e) = FT(q)+ 1

2

(�eq)
2

1+ �eq (1− q), (6.125)
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the Thomson cross section, eq. (6.69),

FT(ε̂) = 1+ ε̂ − 2ε̂2 + 2ε̂ ln ε̂, ε̂ = εs

4γ 2ε∗
, (6.126)

and the isotropic Thomson cross section, eq. (6.71),

FT,iso(ε̂) = 2

3

(
1− ε̂). (6.127)

The CMBR spectrum, eq. (B.15), is

u∗,CMB(ε∗) = 2mec2

λ3
C

ε3∗
exp(ε∗/�)− 1

. (6.128)

Approximating the CMBR as an isotropic, monochromatic radiation field,
or for such fields in general, u∗(ε∗) = u0δ(ε∗ − ε0). For the CMBR, u0 =
4 × 10−13(1 + z)4 ergs/cm3 and ε0 = 1.24 × 10−9(1 + z). The condition
q < 1 implies εs < γ/(1+ �−1

e ). The differential Compton-scattered spec-
trum when isotropic, monoenergetic electrons Compton-upscatter isotropic,
monochromatic target photons is therefore given, for the full Compton cross
section, by

df C
ε =

3

4

cσTu0

d2
L

(
εs

ε∗

)2
Ne(γ,	s)dγ

γ 2
FC(q, �e)H

(
γ

1+ (1/4γ ε∗) − εs
)
,

(6.129)
for the Thomson cross section by

df T
ε =

3

4

cσTu0

d2
L

(
εs

ε∗

)2
Ne(γ,	s)dγ

γ 2
FT(ε̂)H

(
1− ε̂), (6.130)

and for the isotropic Thomson cross section by

df T,iso
ε = cσTu0

2d2
L

(
εs

ε∗

)2
Ne(γ,	s)dγ

γ 2
(1− ε̂)H (

1− ε̂), (6.131)

where integration over γ is implied by the form of the expression.
Integration over the photon spectrum is accomplished, as noted earlier,

by replacing u0/ε
2∗ with

∫
dε∗u∗(ε∗)/ε2∗ , given by eq. (6.128) in the case

of CMBR. Because the low-energy asymptote of the blackbody spectrum is
proportional to ε2∗ , like the Compton-scattered spectra, eqs. (6.129)–(6.131),
the behavior fε ∝ ε2 sets a hardness limit on this process. A spectrum this
hard is unlikely to be realized, however, because of limits on the electron
spectra imposed by acceleration processes and electron cooling.
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Figure 6.9 Geometry of the system of the black-hole accretion disk and jet, with
magnetic field lines formed by currents in the accretion disk (top) or
black-hole magnetosphere (bottom).

6.8 ACCRETION-DISK FIELD COMPTON-SCATTERED BY JET

ELECTRONS

Radiation from accretion disks powering AGNs is remarkably luminous and
provides a source of target photons to be scattered by nonthermal jet elec-
trons. The target photons could originate from a cool, optically thick ther-
mal disk or from hot, optically thin plasma formed by matter accreting onto
black holes, as shown in figure 6.9.

We consider the radiation field formed by an optically thick, geometri-
cally thin accretion disk originally considered by Shakura and Sunyaev [76].
This choice is not unique, and a quasi-spherical hot inner coronal plasma
[77] could also be considered. Indeed, the choice of accretion-disk field
is a matter of preference in the absence of a clear understanding of the
relationship between jet and accretion state. Jets from supermassive black
holes may be most active when the accretion power is low, though here the
standard Shakura-Sunyaev accretion disk is treated.

A useful quantity in black-hole accretion-disk physics is the Eddington
ratio

�Edd = ηf ṁc
2

LEdd
, (6.132)

where ηf is the efficiency to transform the gravitational potential energy of
accreting matter to escaping radiation. By balancing the gravitational force
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�Fg = −(GMm/r2)r̂ with the radiation force

�F rad =
(
dNph

dAdt

)
σT

(
hν

c

)
r̂ =

(
L

4πr2hν

)
σT

(
hν

c

)
r̂

on protons and electrons in an optically thin plasma, one obtains the
Eddington luminosity

LEdd = 4πGM(mp +me)c
σT

∼= 1.26× 1038 M

M�
ergs s−1. (6.133)

The Eddington luminosity of a 109M9 Solar mass black hole is
≈1047 ergs s−1. Power of this magnitude requires that matter is accreting on
the black hole at the rate ṁ = �EddLEdd/(ηf c

2) = 1.4 × 1026(�EddM9/ηf )

g s−1 ≈ 2.2(�EddM9/ηf ) Solar masses per year. Because the forces of grav-
ity and radiation are proportional to r−2, super-Eddington luminosities halt
the accretion of optically thin matter. Super-Eddington accretion powers
may still be possible for episodic accretion, when the accreting matter is
optically thick, or when the escaping radiation is collimated.

6.8.1 Optically Thick Shakura-Sunyaev Disk Spectrum

For steady flows where the energy is derived from the viscous dissipation of
the gravitational potential energy of the accreting matter, the radiant surface-
energy flux

dE
dAdt

= 3GMṁ

8πR3
ϕ(R) (6.134)

[76], where R is the disk radius,

ϕ(R) = 1− βi(Ri/R)1/2 (6.135)

for a Schwarzschild black hole, and βi gives the fraction of angular mo-
mentum captured by the black hole at the radius Ri of the innermost stable
orbit. Thus 0 ≤ βi ≤ 1, and βi ∼= 1 for zero stress at Ri if the accreting
matter does not have time to radiate a significant fraction of its energy [78].
The innermost stable orbit of a Schwarzschild black hole, written in terms
of gravitational radii Rg = GM/c2 = 1.48× 1014M9 cm, is Ri = 6Rg . The
unusual feature in eq. (6.134) at large radii, where a Newtonian formulation
can be applied, is that the energy flux is a factor of 3/2 larger than obtained
when the energy dissipated by particles in Keplerian motions at different
radii is considered. This is due to energy transport from the inner regions.

If the accretion energy is dissipated as radiation, then the disk radiant
luminosity is

Ld = 2× 2π ×
∫ ∞
Ri

dR · R · dE
dAdt

= 3GMṁ

2Ri

(
1− 2βi

3

)
, (6.136)
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where the extra factor of 2 is for a two-sided disk. When βi = 1, the accre-
tion efficiency for a Schwarzschild black hole is ηf = 1/12. A monochro-
matic approximation for the mean photon energy gives

T (R) =
(

3GMṁϕ(R)

8πR3σSB

)1/4

,

so that the mean photon energy radiated by an optically thick disk is

ε̄(R̃) ∼= 2.70kBT (R̃)

mec2
∼= 1.51× 10−4

R̃3/4

(
�Eddϕ(R̃)

ηfM9

)1/4

≡ C

R̃3/4
. (6.137)

Here the lengths are scaled to the gravitational radius; thus the scaled disk
radius R̃ = R/Rg , and the scaled jet height r̃ = r/Rg (see figure 6.10). This
can also be written as

mec
2ε̄ ∼= 77

R̃3/4

(
�Edd

ηfM9

)1/4

eV. (6.138)

6.8.2 Integrated Emission Spectrum from Shakura-Sunyaev Disk

From eqs. (6.134) and (6.137), the intensity of the Shakura-Sunyaev disk at
radius R = R̃Rg is approximated by the expression

ISS
ε (	; R̃) ∼=

3GMṁ

16π2R3
ϕ(R̃) δ

(
ε − C

R̃3/4

)
. (6.139)

Along the axial symmetry axis of the black-hole system, the νFν flux, from
eq. (5.5), is given by

f SS
ε = εs

∮
d	 µ I SS

εs
(	;R) ∼= εs 3GMṁ

8π
r2

×
∫ ∞
Ri

dR
ϕ(R)

R2(R2 + r2)2
δ(εs − C/R̃3/4), (6.140)

noting that µdµ = −r2RdR/(r2 + R2)2. In the event that r reaches such
large values that cosmologically redshift effects are important, then r → dL
and εs = (1+ z)ε.

A photon emitted from a geometrically thin accretion disk at radius R
that passes through the jet axis at height r = R/

√
µ−2 − 1 makes an angle

θ = arccosµ with respect to the jet axis, as shown in figure 6.10. Letting
ϕ→ 1 for simplicity, eq. (6.140) can be easily solved to give

f SS
ε
∼= �EddLEdd

2πd2
Lηf

(εs
C

)4/3
H(εmax − εs)

∼= �EddLEdd

2πd2
Lηf R̃min

(
εs

εmax

)4/3

exp(−εs/εmax). (6.141)
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R
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θ

Rmin

Figure 6.10 Geometry of the accretion-disk/jet system. The minimum radius Rmin

of the accretion disk around a Schwarzschild black hole must be
greater than Ri = 6Rg , the innermost stable orbit.

Here

εmax ≡ ε̄(R̃min) ∼= 0.048

R̃
3/4
min

(
�Edd

mBHηf /(1/12)

)1/4

, (6.142)

where the black-hole mass mBH is in Solar masses. The superposition of
blackbodies in the Shakura-Sunyaev disk solution produces the character-
istic spectral index fε ∝ ε4/3 with a cutoff energy εmax ∝ m−1/4

BH . Typical

maximum disk temperatures are ≈ 2 keV × (�Edd/0.01)1/4/m1/4
BH ∼ 10 eV

(�Edd/0.01)1/4/M1/4
9 . The optically-thick disk emission is thought to make

the soft high-state X-ray emission in galactic black-hole candidates and the
UV “blue-bump” emission in Seyfert galaxies. If the accretion disk is ori-
ented at an angle θobs with respect to the line of sight to the observer, the
flux is reduced by the factor cos θobs.

6.8.3 Transformed Accretion-Disk Radiation Field

The target photon density from a Shakura-Sunyaev disk follows from the
invariance properties of intensity. Thus,

u′(ε ′, 	′) =
(
ε′

ε

)3

u(ε,	) = u(ε,	)

[�(1+ βµ′)]3
, (6.143)

implying total comoving frame energy density

u′ext =
∫ µ′max

−β�
dµ′u′(µ′) = 3GMṁ

8πcr3�

∫ µ′max

−β�
dµ′

(µ′ + β)3
(1− µ′2)3/2(1+ βµ′)4 .

(6.144)
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Figure 6.11 The directional or angle dependence of the photon energy density for
a jet with bulk Lorentz factor � traveling outward along the axis of an
accretion disk that radiates a Shakura-Sunyaev disk spectrum. Angle is
measured with respect to axially outward. This quantity is represented
by the integrand on the right-hand side of eq. (6.144).

Figure 6.11 shows the integrand of the rightmost integral in eq. (6.144).
When � � 1, two dominant components of the differential energy density
make up the total energy density: a component from the disk radiation field
at disk radii R ≈ r , called the near-field (NF) component; and a far-field
(FF) component coming directly from behind, which dominates the disk
contribution at large radii [68]. The accretion-disk radiation field, when ap-
proximated as a point source that illuminates the ejecta blob directly from
behind, presents a total comoving energy density

u′b =
1

�2(1+ β2)2

3GMṁ

8πcr2Ri

(
1− 2

3
βi

)
, (6.145)

using eq. (5.32).
The point-source approximation improves as the accretion disk becomes

more like a point source following the flow in the comoving frame, that is,
when

µ′max =
µmax − β
1− βµmax

→ 1.

With µmax → 1− R2
min/2x

2,

µ′max
∼= 1− (R2

min/2r
2)− β

1− β(1− R2
min/2r

2)
∼= 1− 2

(
�Rmin

r

)2

→ 1. (6.146)

Consider eq. (6.144),

u′ext =
3GMṁ

8πc�r3

∫ µ′max

−β�
dµ′

(µ′ + β)3
(1− µ′2)3/2(1+ βµ′)4 =

3GMṁ

8πcr3�
(INF+IFF),

(6.147)
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Figure 6.12 The integrand (N2 − 1)3/[N2(N2 + 1)4] of eq. (6.149).

valid in the case βi = 0, implying an efficiency of 25% for this metric.
We have divided the comoving energy density into a NF component, with
−β ≤ µ′ < 0, and a FF component with 0 ≤ µ′ < µ′max.

Near-Field Integral

The expansion µ′ = −1 + (N2/2�2) in the near-field integral gives, in the
limit � � 1,

INF =
∫ 0

−β�
dµ′

(µ′ + β)3
(1− µ′2)3/2(1+ βµ′)4 ⇒ 2�3cd, (6.148)

where

cd ≡
∫ ∞

1
dN

(N2 − 1)3

N2(N2 + 1)4
∼= 0.023. (6.149)

This result agrees with the estimate cd ∼= 2×33/(22 ·54) = 0.0216, using the
value of the integrand at N = �θ ∼= 2 (the integrand peaks at θ ′ ∼= 1.9/�
in the limit � � 1). Figure 6.12 presents the integrand of equation (6.149).

Far-Field Integral

The far-field integral is

IFF =
∫ µ′max

0
dµ′

(µ′ + β)3
(1− µ′2)3/2(1+ βµ′)4 , (6.150)

and µmax
∼= 1− (R2

min/2r
2) in the limit r � Rmax. Hence

µ′max =
µmax − β
1− βµmax

= 1− 2a2 +O(a2/�2), (6.151)
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in the limit a ≡ �Rmin/r � 1. Therefore

IFF
a�1
→ 1

4a
= r

4�Rmin
. (6.152)

Near-Field/Far-Field Transition Radius

From eqs. (6.147), (6.148), and (6.152),

u′ext =
3GMṁ

8πcr3�

(
2�3cd + r

4�Rmin

)
, (6.153)

implying for a Schwarzschild metric with βi = 0, the NF/FF transition
radius

R̃NF/FF
∼= �4, (6.154)

in normalized units r̃ = r/Rg.

Near-Field/Scattered Field Transition Radius

The location rNX where the NF equals the external scattered radiation field
is given by the condition

3GMṁ

8πcr3�
× 2�3cd = u′NF = u′sc =�2(1+ β2/3)u∗ =�2(1+ β2/3)

Ldτsc

4πr2
scc
,

(6.155)

where τsc is the characteristic scattering optical depth (section 6.9). Recall-
ing eq. (6.136), we find

r̃NX = rNX

Rg
= c1/3

d 3(2+βi)/3
r̃

2/3
sc

τ
1/3
sc

∼= (0.59− 0.85)
r̃

2/3
sc

τ
1/3
sc

, (6.156)

where the coefficient varies in value as βi ranges from 0 to 1, and rsc = Rgr̃sc
is the characteristic size of the scattering region, which we identify with the
broad-line region. Hence

r̃NX ≈ r̃
2/3
sc

τ
1/3
sc

. (6.157)

Equation (6.157) holds when r̃NX < r̃sc for the simplified geometry of the
scattering region assumed here, requiring that r̃sc > 1/τsc. If rsc = 0.5 pc
around a 109 Solar mass black hole, then r̃sc = 104. The scattered radiation
will dominate the NF radiation beyond ≈ 2000(τsc/0.01)−1/3Rg from the
black hole.
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6.8.4 Thomson-Scattered Shakura-Sunyaev Disk Spectrum
in the Near Field

From the analysis of the integrand of eq. (6.148) in the NF regime, we see
that the NF photons originate from θ ′ ∼= 1.9/�, or from r ≈ R in the sta-
tionary frame. From eqs. (6.136), (6.147), and (6.148), the comoving energy
density in the NF regime is

u′ 0NF =
Ld

4πr2c
4 · 31+βi cd

(
Rg

r

)
�2, (6.158)

and 4 · 31+βi cd = 0.28, 0.83 when βi = 0, 1, respectively. Taking the peak
contribution from the disk atµ = 1/2, we have the following approximation
for the comoving energy density:

u′NF =
u′ 0NF

2π
δ(ε ′ − �ε∗/2)δ(µ′ + 1). (6.159)

The comoving emissivity can be derived from expression (2.44) or eq.
(6.92), assuming isotropy of the comoving electron distribution function
n′e(γ,	e) = n′e(γ )/4π . For the cross section, we take the δ-function Thom-
son approximation, eq. (6.58). Solving gives

j ′(ε′s, 	
′
s) =

cσTu
′ 0
NF

2π

(1+ µ′s)2
4ε′s

γ 3
NFn
′
e(γNF), γNF =

√
2ε ′s

�ε∗(1+ µ′s)
.

(6.160)

Making the transformation to observer frame quantities using the relation
1+ µ′s → δ(1+ µs)/2�, valid when � � 1, we obtain

f NF
ε
∼= δ6

DcσTu
′ 0
NF

32πd2
L�

2
(1+ µ)2γ 3

NFN
′
e(γNF), γNF = 2

δD

√
εz

ε̂∗(1+ µ),

(6.161)

where ε̂∗ is evaluated at R ∼= r . The NF νFν flux can also be written as

f NF
ε � δ6

D
σT

12πd2
L

(
LdRg

4πr3

)
γ 3

NFN
′
e(γNF), γNF = 1

δD

√
2εz

ε̄(
√

3r)
,

(6.162)

where Ld = GMṁ/2Rmin, and ε̄ is given by eq. (6.138).
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6.8.5 Thomson-Scattered Shakura-Sunyaev Disk Spectrum
in the Far Field

This problem was solved earlier, eq. (6.101), with the result

f FF
ε � δ6

D
σT(1− µ)2
32π2r2d2

L

∫ [(1−µ)εz]−1

0
dε0 L(ε0)γ

3
FFN

′
e(γFF),

γFF= 1

δD

√
εz

ε0(1− µ), (6.163)

which can be applied to either the thermal accretion-disk or hot plasma mod-
eled as a point source of radiation from behind. The FF νFν flux for the
Shakura-Sunyaev disk can also be approximated by the expression

f FF
ε � δ6

D
σT(1− µ)2

8πd2
L

(
Ld

4πr2

)
γ 3

FFN
′
e(γFF),

γFF= 1

δD

√
εz

(1− µ)ε̄(Rmin)
. (6.164)

6.8.6 Beaming Patterns

The beaming pattern for a relativistic blob of jet plasma scattering mono-
chromatic photons of an external isotropic radiation field is, from
eq. (6.105), given by

f T
ε ∝ δ3+p

D

(
εz

ε0

)(3−p)/2
∝ δ4+2α

D

(
εz

ε0

)1−α
. (6.165)

Thus the beaming factor for Thomson-scattered external isotropic radia-
tion is 4 + 2α [79], which can be compared with the beaming factor 3 +
α (eq. [5.49]) for radiation that is isotropically emitted in the comoving
frame of the blob. This behavior is also followed when jet electrons scat-
ter accretion-disk photons in the near-field limit, using a mean photon den-
sity from a point where the disk radius is about equal to the jet height (eq.
[6.161]). Equation (6.165) also gives the beaming factor for scattering in the
KN regime, though with a different spectral dependence, namely,

f KN
ε ∝ δ3+p

D

(
εz

ε0

)1−p
. (6.166)

The beaming pattern produced by an external point-source radiation field
that enters the jet from behind, eq. (6.101), has the dependence

f pt
ε ∝ (1− µ)2δ3−p

D

(
εz

(1− µ)ε̄
)(3−p)/2

. (6.167)
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This is the same beaming-factor dependence as for scattered accretion-disk
radiation in the far-field regime, eq. (6.164), which becomes valid when the
jet height is� �4Rg (eq. [6.154]).

6.9 BROAD-LINE REGION SCATTERED RADIATION

The accretion-disk radiation can be scattered by material in the broad-line
region (BLR) and then be intercepted by the jet [70, 80, 81]. The BLR is
thought to consist of dense clouds with a specified covering factor that
can be determined from AGN studies. These clouds intercept central-source
radiation to produce the broad lines [82]. In addition, diffuse gas will
Thomson-scatter the central-source radiation. This scattered radiation field
provides important target photons for jet electrons to make γ -rays. The scat-
tered radiation field also attenuates γ -rays produced deep within the BLR
(chapter 10).

The Thomson-scattered spectral photon density can be estimated by
noting that a fraction ≈ rne(r)σT of the central-source radiation with ambi-
ent photon density nph(ε∗; r) = Ṅph(ε∗)/4πr2c is scattered, giving a target
scattered radiation field

nsc(ε∗; r) ≈ ne(r)σTṄph(ε∗)
4πrc

. (6.168)

Here Ṅph(ε∗) = L(ε∗)/(mec2ε∗) is the central-source photon production
rate, and L(ε∗) is its spectral luminosity.

For the simple case of a spherically symmetric shell of scattering gas, the
density is given for a power-law radial density distribution by the expression

ne(R) = n0

(
R

Ri

)ζ
H(R;Ri, Ro) (6.169)

extending from inner radius Ri to outer radius Ro. The shell density can be
normalized to radial Thomson depth τT = σT

∫ Ro
Ri
dR ne(R). By evaluating

an expression of the form

nph(ε∗;R) =
∫
dV

ṅ(ε∗; �R)
4πx2c

, x2 = R2 + r2 − 2rR cos θ,

one obtains [73, 83], after solving,

nph(ε∗, µ∗; r) = σTṄph(ε∗)
8πcr

N (µ∗, r), (6.170)

where

N (µ∗, r) = N [µ∗, n(r)] ≡
∫ 1

−µ∗
dµ ne(ȳr)

√
1+ ȳ2 − 2ȳµ

ȳ(1− µ2)
(6.171)
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Figure 6.13 Angle-dependent density of Thomson-scattered radiation at height r
along the jet axis. The radial Thomson depth of the spherically sym-
metric scattering medium is τT = 0.01, and the scattering shell is
assumed to extend from 102 to 105 Schwarzschild radii for a 109M�
black hole. The index ζ of the density distribution is labeled in the
figure, and the values of r are labeled on the curves. The luminosity of
the photon source is 1044 ergs s−1.

(units of N are 1/L3) and

ȳ = ȳ(µ, µ∗) ≡ −µ(1− µ
2∗)+ µ∗

√
(1− µ2)(1− µ2∗)

µ2∗ − µ2
. (6.172)

The Compton-scattered radiation spectrum is given, in general, by
eq. (6.97). Substitution of eq. (6.170) for the target photon source gives,
for a monochromatic photon source

Ṅph(ε∗) = L0δ(ε∗ − ε∗0)
mec2ε∗

, (6.173)

the νFν flux

f EC,scat
ε (r)= (πr

2
e )

2L0δ
3
D

12π2d2
Lr

(
εs

ε∗

)2 ∫ 1

max(−1,1−2εs/ε∗)
dµ∗N (µ∗, r)

×
∫ ∞
γ̃low

dγ
N ′e(γ /δD)

γ 2
�C. (6.174)

In this expression,

γ̃low ≡ εs

2

(
1+

√
1+ 2

ε∗εs(1− µ∗)

)
(6.175)
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(compare eq. [6.33]). Equation (6.175) gives [73] the Compton-scattered
γ -ray νFν flux when the target photon field is central-source radiation
Thomson-scattered by surrounding gas and dust.

Figure 6.13 shows the angle dependence of the scattered radiation field as
a function of r for this idealized geometry. The scattering region is
assumed to extend from 102 to 105 Schwarzschild radii for a black hole with
mass equal to 109M�. The radial Thomson depth of the scattering medium
is τT = 0.01, and the index of the radial distribution, eq. (6.169), is ζ = 0
and−2, as shown in the legend. As can be seen, the scattered radiation field
is nearly isotropic when r � Ri , and starts to display increasing asymmetry
peaked in the outward direction at greater heights. When r ≥ Ro, all scat-
tered radiation is outwardly directed. When ζ = −2, most of the scattering
material is near the inner edge, so that the scattered radiation field is very
luminous at r ∼= Ri .
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Chapter Seven

Synchrotron Radiation

Relativistic charged particles emit synchrotron radiation when they are
accelerated in the presence of a magnetic field. When both electric and mag-
netic fields are present, the electromagnetic force on a charged particle is
given by the Lorentz force equation

�F L = d

dt
(γm�v) = Q

(
�E + 1

c
�v × �B

)
. (7.1)

Here �E is the electric field vector, Q is the charge of the particle, and �v =
�βparc is its velocity, so βpar is the particle beta factor.

In most astrophysical plasmas, the mobility of free charges causes the
electric field to be shorted out. We assume this to be the case and take �E = 0.
When a particle does not experience significant energy losses in a single
gyration, γ can be treated as constant, and eq. (7.1) becomes

d�v
dt
= Q �v ×

�B
γmc

≡ ωL

(
�v ×
�B
B

)
, (7.2)

where the Larmor angular frequency

ωL = 2πνL = QB

γmc
= �

γ
(7.3)

is independent of pitch angle ψ (see figure 7.1). The symbol � represents
the nonrelativistic gyrofrequency. The Larmor radius rL, defined as the ra-
dius of gyration, is given by

ωLrL = β⊥c = βparc sinψ, (7.4)

so that

rL = βparγmc
2 sinψ

QB
→ E

QB
, (7.5)

where the last expression applies to an ultrarelativistic particle with ψ =
π/2 and particle energy E (compare eq. [1.3]). Particles with the same
Larmor radii have the same rigidity (momentum per charge); therefore the
rigidity of a relativistic particle with a 90◦ pitch angle is E/|Ze|.
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p⊥

p||

�

B̂

Figure 7.1 Dynamics of a particle with mass m, charge Q, pitch angle ψ , Lorentz
factor γ , and dimensionless momentum p = βγ in a uniform magnetic
field �B = Bẑ. Note that tanψ = p⊥/p‖, so that sinψ = p⊥/p.

7.1 COVARIANT ELECTRODYNAMICS

A covariant description of particle dynamics requires that the force law be
cast in four-vector form. The ratio of two four-vectors is a four vector; thus
we construct the 4-vector force

Fµ = dpµ

dτ
, (7.6)

where the 4-vector momentum pµ = muµ = mγ (c, �v), and dτ = dt/γ is
the proper time. The Lorentz force is given in manifestly covariant form by
the expression

dpµ

dτ
= Q

mc
Fµνpν. (7.7)

The field-strength tensor in Euclidean space with negligible electric permit-
tivity and magnetic permeability (so that D ∼= E,B ∼= H ; see eq. [3.27])
is

Fµν =




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


 . (7.8)

Consider the simplest case of particle motion in the presence of zero elec-
tric field and uniform magnetic field. Thus �E = 0 and we set, without loss
of generality, �B = Bẑ. For this system,

dpµ

dτ
= mc




dγ /dτ

d(γβx)/dτ

d(γβy)/dτ

d(γβz)/dτ


 =

Q

mc
Fµνpν = QB




0
γβy
−γβx

0


 . (7.9)
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Because dt = γ dτ , the Lorentz force equation for particle motion in a
uniform magnetic field, eq. (7.2), is recovered in the form

dγ

dt
= 0,

dpx

dt
= QB

γmc
py = ωLpy,

dpy

dt
= −QB
γmc

px = −ωLpx, and
dpz

dt
= 0, (7.10)

with solution

γ (t) = γ0, px(t) = p⊥ sinωLt, py(t) = p⊥ cosωLt, and pz(t) = p‖.
(7.11)

The Larmor frequency ωL is given by eq. (7.3).

7.2 SYNCHROTRON POWER AND PEAK FREQUENCY

The acceleration of charged particles is accompanied by radiation which
causes the particle to lose energy. The energy loss during a single gyration
is assumed in classical synchrotron radiation theory to be a small fraction of
the particle’s original energy. Electrons with γ � 107/

√
B(G) begin to lose

a large fraction of their energy during a single gyration period, as can be seen
by comparing the synchrotron energy-loss timescale ∼ (σTB

2γ /6πmec)−1

(see below, eq. [7.15]) with the gyration period ν−1
L = (2πmecγ /QB). In

this regime, the radiation reaction forces must be considered.
We are interested in deriving the total particle energy-loss rate per unit

time per steradian, Larmor’s formula, which has the form

dE

dtd�
= dP

d�
= −2

3

Q2�a2

4πc3
. (7.12)

The last expression follows from dimensional analysis, noting that the
quadratic dependence onQ and acceleration rate ensures net negative parti-
cle energy loss to radiation. A factor 2/3 has been introduced to agree with
more rigorous treatments [84]. A 4-vector acceleration composed of four
vectors and invariant particle masses is aµ = (dpµ/dτ)/m, where τ is the
particle proper time. Hence the instantaneous particle energy-loss rate due to
synchrotron losses for a particle with pitch angle ψ in an ordered magnetic
field of strength B is

−
(
dE

dt

)
syn
= 2Q2

3m2c3

∣∣∣∣dp
µ

dτ
· dpµ
dτ

∣∣∣∣ = 2Q2

3m2c3

(
QBp⊥
mc

)2

= 16π

3

(
Q2

mc2

)2

c

(
B2

8π

)
β2

parγ
2 sin2 ψ. (7.13)
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In order for an isotropic particle pitch-angle distribution to be estab-
lished and maintained, pitch-angle scattering processes that cause particle
isotropization should operate on a timescale shorter than the energy-loss
timescale. Assuming rapid pitch-angle scattering, which allows a single par-
ticle to sample uniformly all directions in pitch-angle space, the particle
loses energy at a rate found by averaging eq. (7.13) over pitch angle. The
sin2 ψ term in eq. (7.13) is replaced by the factor 1

2

∫ 1
−1 d cosψ sin2 ψ =

2/3. Hence

−
(
dE

dt

)
syn
= 4

3

8π

3

(
Q2

mc2

)2

c UB β
2
parγ

2 with UB = B2

8π
, (7.14)

from which we see that −dE/dt |syn ∝ m−2, or −γ̇syn ∝ m−3.
This can also be expressed in the form

−
(
dγ

dt

)
syn
= −γ̇syn = 4

3
cσT UBZ

4
(me
m

)3
β2

parγ
2.

The electron synchrotron energy-loss rate, expressed in terms of the rate of
change of the electron Lorentz factor, is therefore

−γ̇syn = 4

3
cσTuBβ

2
parγ

2

γ�1
→ 4

3
cσTuBγ

2, (7.15)

where

uB ≡ UB

mec2
= B2

8πmec2
. (7.16)

The peak observed synchrotron frequency νsyn
pk ≈ 1/
tsyn from a charged

particle in relativistic circular motion can be derived qualitatively by con-
sidering the timescale 
tsyn during which an observer receives emission.
For a particle in circular motion with Larmor timescale tL = 2π/ωL, most
radiation will be detected when the particle direction is within an angle
θsyn ∼ γ−1 of the line of sight to the observer. Because the particle is trav-
eling in the direction of the observer, the received radiation is compressed
in time by a factor ∼ (1 − βpar) along the electron’s motion into a pulse of
duration


tsyn ≈ (2θsyn)tL(1− βpar) ≈ 2πmc

QBγ 2
≈ 1

ν
syn
pk

. (7.17)

Thus

ν
syn
pk ≈

QB

2πmc
γ 2. (7.18)
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For electrons,

ν
syn
pk
∼= eB

2πmec
γ 2 ≡ νB γ 2 = 2.79× 106B(G)γ 2 Hz. (7.19)

This frequency can be written in dimensionless notation as

ε
syn
pk = εBγ 2, (7.20)

where

εB ≡ B

Bcr
, (7.21)

and the critical magnetic field

Bcr = m2
ec

3

eh̄
= 4.414× 1013 G, (7.22)

defined by setting the Larmor cyclotron energy hνL equal to the electron
rest-mass energy.

The quantum synchrotron regime, which is primarily of interest in pulsar
studies, is encountered when the energy of the radiated synchrotron photon
is a large fraction of γmec2. The quantum synchrotron regime is defined by
the condition that hνsyn � γmec2, so that quantum synchrotron effects must
be considered [85] when

γB � Bcr. (7.23)

7.3 ELEMENTARY SYNCHROTRON RADIATION FORMULAE

The Larmor formula for radiated power in the direction n̂ is given by

dP

d�
= Q2

4πc

|n̂× [(n̂− �βpar)× �̇βpar]|2
(1− n̂ · �βpar)5

. (7.24)

Because the derivation of the elementary synchrotron spectral power and
polarization from eq. (7.24) is performed in several other works [35,86–88]
we refer the interested reader to these references for details. The particle
dynamics are best treated in the frame with pitch angle ψ = π/2, followed
by a boost to give the result for different pitch angles. Consider a charged
particle in circular motion with 90◦ pitch angle in a uniform magnetic field
of strength B. The particle’s velocity is then given by

�βpar = βpar(x̂ cosωLt + ŷ sinωLt). (7.25)
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Solving eq. (7.24) leads to the spectral energy radiated per revolution at
(radial) frequency ω = 2πν, averaged over both polarization modes, given
by

I syn(ω) = 2e2ω√
3γ 2ωLc

∫ ∞
2ω/3ωLγ 2

dξ K5/3(ξ). (7.26)

The radiated power at frequency ν is ωL/2π times this energy, and is there-
fore

P syn(ν)= dE

dtdν

∣∣∣∣
syn

= 2πP syn(ω) = ωLI
syn(ω)

=
√

3e3B

mc2

(
ν

νc

) ∫ ∞
ν/νc

dξ K5/3(ξ), (7.27)

where, for electrons,

mec
2εc

h
= νc = 3

2

(
eB

2πmec

)
γ 2 ≡ 3

2
νBγ

2. (7.28)

The total instantaneous power emitted by an electron spiraling with pitch
angle ψ = π/2 around a uniform magnetic field with strength B is

P syn(ε)= dE

dtdε

∣∣∣∣
syn

=
√

3e3B

h

(
ε

εc

)∫ ∞
ε/εc

dξ K5/3(ξ)≡
√

3e3B

h
Fsyn(x).

(7.29)
Here x ≡ ε/εc and

Fsyn(x) ≡ x
∫ ∞
x

dξK5/3(ξ) →




4πe3B

�(1/3)h

(
ε

εc

)1/3

, ε  εc,

√
3π

2

e3B

h

√
ε

εc
exp(−ε/εc), ε � εc.

(7.30)
The low-energy slope of the emissivity,

P syn(ε) ∝ ε1/3, ε  εc, (7.31)

so that f syn
ε ∝ ε4/3.

Figure 7.2 shows the elementary electron synchrotron spectral emissivity
from eq. (7.30), along with the small x and large x asymptotes. The dotted
curve gives the approximation [89]

Fap(x) ∼= 1.78x0.297 exp(−x),
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Figure 7.2 Elementary synchrotron spectral emissivity Fsyn(x), given by eq. (7.30),
of a particle with 90◦ pitch angle in a uniform magnetic field of
strength B.

which has an error of less than 5% over the range 10−3.5 < x < 100.5. The
mean photon energy of F(x) is

ε̄ = εc
∫∞

0 du u2
∫∞
u
dx K5/3(x)∫∞

0 du u
∫∞
u
dx K5/3(x)

= 4�(17/6)�(7/6)

3�(7/3)�(2/3)
εc ∼= 1.32εc ∼= 2εBγ

2.

(7.32)

7.3.1 Relations between Emitted, Received, and 90◦ Pitch-Angle
Powers

We obtain the emitted synchrotron spectral power P syn
em (ν) from the expres-

sion, eq. (7.27), for the synchrotron spectral power in the frame in which
the pitch angle ψ = π/2, which is rewritten in the 90◦ pitch-angle (K ′)
frame as

P ′ syn(ν ′) = P ′ syn(ν ′;ψ = π/2) =
√

3e3B

mec2

(
ν′

ν ′c

) ∫ ∞
ν ′/ν ′c

dξ K5/3(ξ),

(7.33)
where

ν′c =
3

2

(
eB

2πmec

)
γ ′ 2. (7.34)
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Figure 7.3 Power in stationary emission frame K∗, frame K ′ with electron pitch
angle ψ = π/2, and reception frame K . The relationship between the
electron Lorentz factor γ inK∗ and the electron Lorentz factor γ ′ in the
90◦ frame is γ = γ ′/ sinψ for γ ′ � 1.

Relations between the stationary or emission frame K∗, the 90◦ pitch-
angle frame K ′, and the reception frame K are illustrated in figure 7.3. The
instantaneous power from electrons in theK ′ andK frames is invariant, pro-
vided that electrons radiate with forward-backward symmetry. Specifically,
ν = γ‖ν ′(1 + β‖ cos θ ′), so that the mean photon emission frequency aver-
aged over θ ′ is 〈ν〉 = γ‖ν ′, where γ‖ is the Lorentz factor relating framesK ′
and K∗. From figure 7.3, γ = γ ′/ sinα. Time dilation relates the stationary
emission frame time dt = γ‖dt ′. Hence

P ′ syn = dE

dt ′
= hν′ dN

dt ′
= h〈ν〉 dN

dt ′
= dE

dt
= P syn, (7.35)

and P syn(ν)dν = P ′ syn(ν ′)dν ′, so that

P syn(ν) = P syn
em (ν;ψ) =

∣∣∣∣dν
′

dν

∣∣∣∣ P ′ syn(ν ′) ∼= sinψ P ′ syn(ν′), (7.36)

noting that ν ′ = 〈ν〉/γ‖ = sinψν, and

γ‖ = 1√
1− β2

‖
= 1√

1−β2 cosψ2
∼= 1

sinψ
, valid when γ �1, ψ�1/γ.

This gives the emitted synchrotron spectral power for an electron with pitch
angle ψ spiraling in an ordered magnetic field

P syn
em (ν;ψ) =

√
3e3B

mec2

(
ν

ν̄c

)
sinψ

∫ ∞
ν/ν̄c

dξ K5/3(ξ), (7.37)

where

ν̄c = νc sinψ = 3

2
νBγ

2 sinψ, νB = eB

2πmec
. (7.38)
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We now consider the relations between K ′ and the reception frame K .
Start first with the expression for specific spectral power,

P(ν,�) = dE

dtdνd�
= hν2

(
dN

νdνdtd�

)
. (7.39)

The term (dN/νdνd�) is invariant due to the invariance of EdN/d3 �p →
ε−1(dN/dεd�) for photons or relativistic particles. Also, ν = δDν

′ and
dt = dt ′/δD, so that νdt = ν′dt ′. For relativistic electrons,

δD = [γ‖(1− β‖µ)]−1 = γ‖(1+ β‖µ′) ∼= γ‖,
because

µ′ = π

2
+O

(
1

γ ′

)
.

Thus

P syn
rec (ν,�) = δ3

DP
′ syn(ν ′, �′).

Averaging this expression over angle removes two powers of δD, giving

P syn
rec (ν) = δDP

′ syn(ν′) = P ′ syn(ν ′)
sinψ

. (7.40)

Equations (7.36) and (7.40) imply

P syn
rec (ν) =

P
syn

em (ν)

sin2 ψ
. (7.41)

Thus we see that the received power differs from the emitted power due
to the changing average distance between the electron and observer. The
emitted and received powers are equal for distributions of electrons confined
within a given region when the average distance between the electrons and
observer does not change with time [35,86].

From these considerations,

Lsyn
ν =

dE

dνdt
=
√

3e3B

mec2

∮
d�ψ sinψ

∫ ∞
1

dγ Ne(γ,�ψ) F (x) (7.42)

for the spectral luminosity from the random component of a synchrotron-
emitting region. In this expression,

x = ν

ν̄c
= ν

3
2νBγ

2 sinψ
= 2ε

3εBγ 2 sinψ
.

This is the form applicable for calculations of synchrotron radiation from
relativistic electrons with general pitch-angle distribution in randomly or-
dered magnetic field.
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An analytic expression for the pitch-angle-averaged synchrotron spectral
power of a single electron randomly spiraling in a magnetic field of total
strength B, in units of ergs s−1 Hz−1, is given by

〈P syn(ν)〉=
〈
dE

dtdν

〉
syn
= 4
√

3πremecνBx
2
c

×
(
K4/3(xc)K1/3(xc)− 3

5
xc[K

2
4/3(xc)−K2

1/3(xc)]

)
(7.43)

[90], where xc ≡ ν/2νc. This result can be written in the form

〈P syn(ν)〉 =
√

3e3B

mec2

∫ ∞
1

dγ Ne(γ ) R(x) (7.44)

[91], where x = ν/νc (see eq. [7.28]), and

R(x)= x
2

∫ π

0
dθ sin θ

∫ ∞
x/ sin θ

dt K5/3(t)

= 1

2
πx

[
W0, 4

3
(x)W0, 1

3
(x)−W 1

2 ,
5
6
(x)W− 1

2 ,
5
6
(x)

]
(7.45)

is expressed in terms of the Whittaker functionsWκ,µ(x) (see Appendix B).
The asymptotes of R(x) are

R(x)→




3
√

2

5
[�(1/3)]2x1/3 ∼= 1.80842x1/3 for x  1,

π

2
exp(−x)

(
1− 99

162x

)
for x � 1

(7.46)

[91]. A fit to R(x) with better than 1% accuracy, useful for numerical in-
tegration, is given in [72]. The synchrotron flux from a relativistic blob is,
with eq. (5.46), given by

νF syn
ν = f syn

ε = δ4
Dν
′〈P ′ syn(ν ′)〉
4πd2

L

, (7.47)

and the primed quantities now refer to the comoving frame, so ν = δDν
′/

(1+ z).

7.3.2 Particle Synchrotron Radiation

We outline general synchrotron formulae for particles of mass m (= Amp
for ions), charge Ze, Lorentz factor γ , and pitch angle ψ spiraling in a
randomly ordered field of mean strength B. The inverse of the timescale for
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synchrotron energy losses for a particle with pitch angle ψ is given from
eq. (7.13) by

t−1
syn(ψ) =

Z4

(m/me)3
2cσTuBβ

2
parγ sin2 ψ. (7.48)

Averaging over pitch angles for an isotropic particle distribution gives

t−1
syn =

Z4

(m/me)3

4

3
cσTuBβ

2
parγ. (7.49)

The peak synchrotron frequency

ν̄c = Z

(m/me)

3

2
νBγ

2 sinψ. (7.50)

The frequency-dependent synchrotron power from isotropic particles in a
randomly ordered field is

νLsyn
ν =

√
3e3B

mc2
ν

∫ ∞
1

dγ N(γ )R(x) (7.51)

(see eqs. [7.44] and [7.45]). Here x = 2ν(m/me)/(3νBγ 2) [91].

7.3.3 Synchrotron Spectrum from a Power-Law Electron Distribution

Now assume that the electron distribution takes the form

Ne(γ,�ψ) = Ke g(ψ)
4π

γ−pH(γ ; γ1, γ2) (7.52)

(cf. eqs. [6.62] and [6.104]), where the function g(ψ) = 1 for an isotropic
distribution in pitch angle ψ . From eq. (7.42),

Lsyn
ν (p) =

√
3Kee3B

4πmec2

∫ γ2

γ1

dγ γ−p
∮
d�ψ g(ψ) sinψ F(x). (7.53)

The integrals can be performed analytically for an isotropic pitch-angle
distribution, g(ψ)= 1, for photon frequencies far away from the endpoints
of the spectrum [35,87,91]. The result is

Lsyn
ν (p) = 4πKee3B(p+1)/2

mec2

(
3e

4πmec

)(p−1)/2

a(p) ν−(p−1)/2 , (7.54)

where

a(p) = 2(p−1)/2
√

3�[(3p − 1)/12]�[(3p + 19)/12]�[(p + 5)/4]

8
√
π(p + 1)�[(p + 7)/4]

.

(7.55)
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Table 7.1 Factors for Synchrotron, Synchrotron Self-Absorption, and Synchrotron
Self-Compton Radiation from Isotropic, Power-Law Electrons in a Ran-
domly Ordered Magnetic Field

p a(p) ρδ b(p) 35b(p)/27π2 c(p) cδ(p) tp

1.0 0.2833 2.55 7.456 1.43 1.191 0.74
1.5 0.1490 1.48
2.0 0.1032 1.137 3.498 0.67 1.396 1.396 0.49
2.5 0.08311 1.014
3.0 0.07408 1.00 3.899 0.74 2.093 2.45 0.88
3.5 0.07117 1.063
4.0 0.07255 1.20 6.567 1.260 3.673 4.19 1.2

The relation∫ ∞
0

dx xµF(x) = 2µ+1

2+ µ �

(
µ

2
+ 7

3

)
�

(
µ

2
+ 2

3

)
(7.56)

is used to derive eq. (7.55). Values of a(p) are given in table 7.1. From
eq. (7.54),

νLsyn
ν (p) = 3(p+3)/2

2(p+1)/2
a(p)

4

3
cσTUB Ke

(
ν

νB

)(3−p)/2
. (7.57)

The use of eq. (7.54) is illustrated by estimating the synchrotron flux den-
sity from relativistic electrons accelerated by strong shocks (p ∼= 2) of a
supernova remnant (SNR) in the Sedov-Taylor deceleration phase. Equa-
tion (7.54) can be recast as

Lsyn
ν (p) = 4πEee3B

�e(mec2)2

(
3

2

)(p−1)/2

a(p)

(
ν

νB

)−(p−1)/2

. (7.58)

For p ∼= 2, B−5 = B/10µG, νB = 28B−5 Hz, νGHz = ν/GHz, nonthermal
electron energy Ee = 1048E48, and bolometric factor �e = 10�1,

Lsyn
ν (p ∼= 2) ∼= 4× 1022E48B

3/2
−5

�1
√
νGHz

ergs

s Hz
. (7.59)

In the Sedov-Taylor phase, the SNR shell speed vs is given by the kinetic
energy of the swept-up material from an explosion releasing Eexp = 1051E51

ergs of kinetic energy. For a fraction εB (�= εB = B/Bcr) of swept-up kinetic

energy converted to magnetic field energy, B ∼=
√

6EexpεB/R3, and

Lsyn
ν (p ∼= 2) ∼= 2× 1024E48E3/4

51 (εB/0.1)
3/2

(R/10 pc)9/4�1
√
νGHz

ergs

s Hz
. (7.60)
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By comparing eq. (7.60) with observations of SNRs in the galaxy M33,
Katz and Waxman [92] estimate that the minimum energy in relativistic
hard-spectrum electrons accelerated in shell-type SNRs is ∼1047 ergs.

Formula (7.54) can be rewritten in the form of a νL(ν) or εL(ε) spectrum
(units of ergs s−1), giving

εLsyn(ε)= 4παfKehν
2
B a(p)

(
3

2

)(p−1)/2(
ε

εB

)−(p−3)/2

H(ν; γ 2
1 εB, γ

2
2 εB),

(7.61)
where αf = e2/h̄c ∼= 1/137 is the fine structure constant. Taking into
account the form of the electron spectrum, eq. (7.52), we can rewrite
eq. (7.61) as

εLsyn(ε) = 6cσTUB a(p)

(
3

2

)(p−1)/2

γ 3
s Ne(γs), γs =

√
ε

εB
, (7.62)

where UB = Ucrε
2
B = B2/8π , and

Ucr = B2
cr/8π = 7.75× 1025 ergs cm−3

is the critical magnetic field energy density. Noting that νj syn(ν,�) =
εj syn(ε,�), the synchrotron emissivity can therefore be written as

νj syn(ν,�) = a(p)

π

(
3

2

)1+α
cσTUBke

(
ν

νB

)(3−p)/2
H(ν; γ 2

1 νB, γ
2
2 νB),

(7.63)

with ke = Ke/Vb, which is valid away from the endpoints of the spectrum
in the energy range γ 2

1 εB  ε  γ 2
2 εB . The power-law approximation for

the nonthermal synchrotron emissivity can also be written as

εj syn(ε,�) = a(p)

π

(
3

2

)(p+1)/2

cσTUcrε
2
Bγ

3
s ne(γs). (7.64)

7.4 δ-FUNCTION APPROXIMATION FOR SYNCHROTRON

RADIATION

As for Thomson scattering, a simple δ-function approximation can be em-
ployed to estimate the synchrotron radiation in problems involving isotropic
electron pitch-angle distributions in a randomly oriented magnetic field with
mean intensity B. In terms of the photon emissivity ṅsyn(ε) (ph cm−3 s−1

ε−1), the δ-function approximation for synchrotron emission is given by

ṅsyn(ε) ∼= 2

3
cσTuB ε

−1/2ε
−3/2
B ne

(√
ε

εB

)
, (7.65)
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recalling definition (7.16) for uB . Note that, if ne = δ(γ − γ̄ ) (i.e., a density
of 1 electron cm−3), then

−γ̇syn=
∫ ∞

0
dε ε ṅsyn(ε)

= 2

3
cσTuB

∫ ∞
0

dx
√
x δ(
√
x − γ̄ ) = 4

3
cσTuB γ̄

2, (7.66)

so the synchrotron energy-loss rate for electrons with isotropic pitch-angle
distributions is recovered. For a uniform-emitting region of volume Vb, the
εL(ε) spectrum in the δ-function synchrotron approximation is, from
eq. (7.65), given by

εL
syn
δ (ε) = mec2Vbε

2ṅsyn(ε) ∼= 2

3
cσTUB γ

3
s Ne(γs), γs =

√
ε

εB
.

(7.67)

The δ-function approximation for the synchrotron emissivity can be written
as

εj
syn
δ (ε,�) = cσTUcrε

2
B

6π
γ 3
s ne(γs). (7.68)

The ratio of the accurate synchrotron spectrum, eq. (7.62), to the
synchrotron spectrum derived in the δ-function approximation, eq. (7.67), is

ρδ = εLsyn(ε)

εL
syn
δ (ε)

= 6a(p)

(
3

2

)(p+1)/2

. (7.69)

Table 7.1 also gives values of ρδ for various values of p. As can be seen, the
δ-function approximation is accurate to better than 14% for 2.0 ≤ p ≤ 3.5
in the asymptotic power-law portion of the spectrum.

For the simple one-zone blob model, here called the standard one-zone
(blob) model, a randomly oriented magnetic field with intensity B is as-
sumed to fill the volume of a spherical plasmoid-type emitter with radius r ′b
and comoving volume V ′b = 4πr ′3b /3. Nonthermal relativistic electrons are
assumed to be uniformly distributed throughout the blob with an isotropic
pitch-angle distribution and Lorentz-factor distribution N ′e(γ ′), where
N ′e(γ ′)dγ ′ is the differential number of electrons with comoving Lorentz
factors γ ′ between γ ′ and γ ′ + dγ ′.

From eqs. (5.46) and (7.67), the νFν synchrotron radiation spectrum can
be approximated by the expression

f syn
ε
∼= δ4

D

6πd2
L

cσTUBγ
′3
s N

′
e(γ
′
s ), γ ′s =

√
ε(1+ z)
δDεB

. (7.70)
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Figure 7.4 Synchrotron and synchrotron self-Compton νFν fluxes for an optically
thin relativistically jetted blob with a nonthermal electron distribution
described by a single power law with number index p = 2.8. Other
parameters are � = δD = 10.0 (i.e., µ = β), dL = 1027 cm, B = 1 G,
blob radius rb = 1016 cm, nonthermal electron energy W ′e = 1048 ergs,
γ1 = 102, γ2 = 105, and γ2 = 107, as labeled. The solid curves show
the numerical integration of eqs. (7.44) and (7.47) for synchrotron ra-
diation, and for SSC radiation as calculated in section 7.7.3. The dotted
curves show the δ-function approximation for synchrotron radiation,
eq. (7.70), and SSC radiation, eqs. (7.98) and (7.99).

Figure 7.4 compares the calculation using the δ-function approximation
with an accurate calculation of synchrotron radiation, for a standard one-
zone blob containing a power-law electron distribution with number index
p = 2.8. The comoving electron distribution, N ′e(γ ′), can be found by
inverting eq. (7.70) (section 7.7.3).

7.5 EQUIPARTITION MAGNETIC FIELD

The total energy contained in radiating plasma consists of particle and field
energy. The energy in particles consists of their rest mass and kinetic
energy. The particle kinetic energy can be described by the heat content
of the thermal component, and by the nonthermal kinetic energy for the
suprathermal and relativistic particle components. Under the assumption of
a specific particle pitch-angle distribution, usually assumed to be isotropic
in the comoving fluid frame, and a magnetic-field geometry, one can



chapter07 July 15, 2009

132 CHAPTER 7

calculate the kinetic energy associated with the bulk motion of the ther-
mal and nonthermal particles. For isotropically distributed particles, the total
kinetic energy is simply increased by the boost factor � (see eq. [5.23]).

Field energy consists of the energy in the large-scale magnetic, mag-
netohydrodynamic (MHD) wave energy, and photon radiation. Poynting
flux refers to the field energy carried by electromagnetic radiation formed,
for example, from a powerful magnetic inductor, such as is expected in
electromagnetic models of black holes. Relativistic outflows have additional
kinetic power from the bulk motion of the plasma, which is not considered
in the qualitative derivation.

7.5.1 Equipartition Magnetic Field: Qualitative Estimate

The equipartition magnetic field and related Poynting power can be
estimated by treating the black hole magnetospheric system as a magnetic
dipole produced by a current flowing near the black hole, analogous to the
magnetic dipole radiation produced by a pulsar [93]. The magnetized accre-
tion disk of the black hole rotates at the rate �(R0) at radius R0 from the
center of the black hole. R0 may coincide with the radius where energy dis-
sipation is largest, the innermost radius defined by the spin of the black hole,
or the inner edge of the accretion disk. Energy is lost when the magnetic-
field lines are disrupted at the light cylinder radius RLC = c/�LC. For a
dipole magnetic field, B(RLC) � B0(R0/RLC)

3 with B0 = B(R0), so that
the energy-loss rate in Poynting flux is

PP
∼= 4πR2

LC
B2

0

8π
c

(
R0

RLC

)6
∼= c

2
B2

0R
6
0R
−4
LC, (7.71)

where the light-cylinder frequency is identified with the Keplerian orbital
frequency at radius R0; thus �LC ≈ �K(R0) =

√
GM/R3, and R̃LC =

R̃
3/2
0 . (Recall that the tildes mean that the distances are rescaled in units of

gravitational radii Rg = GM/c2.)
The magnetic field is defined with respect to the observed radiant lumi-

nosity Lrad = �EddLEdd (eq. [6.133]) and size R0 using the equipartition
magnetic field which we define here through the Eddington relation

B2
0

8π
= Lrad

4πR2
0c
∼= �EddLEdd

4πR2
0c

. (7.72)

Normalization to supermassive black holes with masses M = 109M9M�
gives a magnetic-field estimate

B0(G) ∼= 2× 104

R̃0

√
�Edd

M9
. (7.73)
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This suggests that the inner magnetized regions surrounding supermassive
black holes should haveO(kG) magnetic fields. Equations (7.71) and (7.72)
together imply

PP � 1047 M9�Edd

R̃2
0

ergs s−1. (7.74)

For accretion at �Edd ∼ 1–10% and energy dissipation at R̃0 � 10, the
Poynting power as estimated here could be compatible with supermassive
black-hole jet power.

These arguments illustrate a common approach to estimating the equipar-
tition magnetic field of a stationary emitting region. Now we treat the prob-
lem more comprehensively, considering also bulk relativistic motion.

7.5.2 Equipartition Magnetic Field: Quantitative Treatment

By using a magnetic field obtained from equipartition arguments, one can
precisely derive the penalty in energy or power that must be paid when
assuming a magnetic field away from equipartition. The equipartition mag-
netic field Beq is defined by equating the magnetic field energy density
UB = B2/8π with the total particle energy density through the expression

W ′par

V ′b
= (1+ ζpe)W

′
e

V ′b
= keqUB, (7.75)

where W ′par and W ′e represent the total energy in particles and nonthermal
leptons (primarily electrons and positrons), respectively, in the comoving
frame, and keq is the ratio of total particle energy density to UB . The particle
energy density W ′par = (1+ ζpe)W

′
e, where ζpe is the ratio of total energy in

hadrons compared to the lepton energy. Thus ζpe = 0 for a plasma contain-
ing negligible ion content.

From eq. (7.75),

W ′e = k̂eqV
′
bUB, where k̂eq ≡ keq

1+ ζpe
,

and k̂eq is the ratio of nonthermal lepton energy density to UB .
If radiation observed at energy ε is nonthermal synchrotron radiation from

a power-law electron distribution described by

N ′e(γ
′) = V ′bn′e(γ ′) = K ′eγ ′−pH(γ ′; γ ′1, γ ′2), (7.76)

then normalizing to the total comoving electron energy W ′e = mec2
∫∞

1 dγ ′

γ ′N ′e(γ ′) = K ′emec2(γ
′2−p
1 − γ ′2−p2 )/(p − 2) implies that

K ′e =
(p − 2)W ′e

mec2(γ
′2−p
1 − γ ′2−p2 ) p>2,γ ′2�γ ′1

→ (p − 2)W ′eγ
′p−2
1

mec2
. (7.77)
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Figure 7.5 Diagram illustrating the energetics of the nonthermal lepton spectrum
and the radiated synchrotron photon spectrum. Most of the particle en-
ergy is found on the fε ∝ ε1/2 branch of the spectrum. Thus a = α =
1/2 is a critical value defining classes of sources.

We now relate the measured synchrotron νFν flux f syn
ε to comoving quan-

tities. Substituting eq. (7.77) into eq. (7.70), we obtain

f syn
ε
∼= δ4

D

6πd2
L

cσTUB
(p − 2)W ′e
mec2γ

′2−p
1

(
εz

δDεB

)(3−p)/2

= (δDεB)
(5+p)/2

6πd2
L

cσTU
2
crk̂eqV

′
b

ε
(3−p)/2
z (p − 2)

mec2γ
′2−p
1

, (7.78)

recalling that εz = (1 + z)ε, from eq. (6.96). Solving for δDεB = δDB/Bcr

gives

δDεB =
(

9mec2d2
Lf

syn
ε γ

′2−p
1 ε

(p−3)/2
z

2cσTU2
cr(p − 2)k̂eqr

′ 3
b

)2/(5+p)
. (7.79)

The equipartition value of the quantity yeq = δDεB is given when keq = 1
and k̂eq = 1/(1+ ζpe).

Figure 7.5 illustrates the electron spectrum and radiated synchrotron spec-
trum. Most of the nonthermal lepton energy is bound up in the electrons and
positrons that radiate synchrotron emission in the α = 1/2 portion of the
spectrum (i.e., Fν ∝ ν−1/2 and νFν ∝ ν1/2). The equipartition magnetic
field is given when keq = 1, p = 2, or α = 1/2, with (p − 2)γ ′p−2

1 →
[ln(γ ′2/γ

′
1)]
−1 = [(1/2) ln(ε2/ε1)]−1 in eq. (7.79), where ε1 and ε2 are the

photon energies bounding the α = 1/2 portion of the synchrotron spectrum.
In this case,

B

Bcr
δD =

(
3πmec2d2

Lf
syn
εpk ln(ε2/ε2)

V ′bcσTU2
crk̂eq
√
ε2(1+ z)

)2/7

, (7.80)
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where V ′b is the comoving volume of the synchrotron source described by
the spectrum fε = f syn

εpk (ε/ε2)
1/2 for ε1 ≤ ε ≤ ε2.

For a flaring source that is not resolved, the size scale of the emitting
region can be estimated through the relation rb � cδDtvar/(1 + z). This
gives the magnetic field

B (G) ∼= 130
d

4/7
28 f

2/7
−10[(1+ ζpe) ln(ν2/ν1)]2/7(1+ z)5/7

k
2/7
eq [tvar(d)]6/7δ

13/7
D ν

1/7
13

, (7.81)

which gives the equipartition comoving magnetic field Beq when keq = 1.
Note that this field depends on the value of ζpe. Here ν13 ≡ ν/1013 Hz is
the frequency where the peak flux f syn

εpk ≡ 10−10f−10 ergs cm−2 s−1 is mea-
sured, and we use values typical of bright blazar flares as measured with
EGRET [20].

An alternative estimate of B can be derived from the ratio of the syn-
chrotron self-Compton (SSC) γ -ray and synchrotron peak fluxes f pk

SSC/f
pk
s
∼=

u′s/u
′
B [81,94]. Thus u′B = Au′s = Af

pk
s (2d2

L/R
′2cδ4

D), where A ≡
(f

pk
s /f

pk
SSC). This gives

B = 4
√
π(1+ z)dL
c3/2δ3

Dtvar

√
Af

pk
s
∼= 1.6

d28(1+ z)
√
Af−10

(δD/10)3 tvar(d)
G. (7.82)

This equation assumes that Klein-Nishina effects for the SSC γ -rays are
unimportant, because the Compton process occurs on softer (radio-optical)
photons as compared to the UV photons for external Compton scattering. In
both equations (7.81) and (7.82), the strongest dependence of B is through
the unknown Doppler factor. Equating these two equations gives [95] the
Doppler-factor estimate

δD ∼= 8.9
d

3/8
28 (1+ z)1/4 f 3/16

−10 A
7/16 η1/4 ν

1/8
13

[(1+ ζpe) ln(ν2/ν1)]1/4 [tvar(d)]1/8
. (7.83)

7.6 ENERGETICS AND MINIMUM JET POWERS

Measurements of resolved sources of synchrotron radiation offer a method
to evaluate the minimum energy associated with the mean magnetic-field
and particle energy in synchrotron sources, from which minimum jet pow-
ers can be derived. As before, the magnetic-field value B is referred to the
comoving frame.

Imagine a particle and plasma outflow from a stationary source. The sta-
tionary frame density n∗ of the outflow at radius R is related to the total
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outflow (jet) power P ∗j according to the relation

n∗ =
P ∗j

2�jR2(�mec2)βc
= �n′ (7.84)

for a two-sided jet, where �j is the characteristic opening angle, in sr, of
one of the jets. The jet power is of course proportional to the bulk Lorentz
factor of the plasma outflow. The final relation means that the blob density
is larger in the stationary frame than in the proper frame of the blob due to
length contraction. Equation (7.84) implicitly assumes that electrons carry
the jet power, and are cold in the comoving plasma frame. When generalized
to particle distributions that consist of thermal and nonthermal components,

n′ → (1+ ζpe)
1

V ′b

∫ ∞
1

dγ ′ γ ′N ′e(γ
′),

where the factor ζpe takes into account the power in nonthermal hadrons.
Thus the total particle kinetic jet power in the directed rest mass and co-

moving nonthermal energy is

P ∗j,ke = 2�jR
2β�2mec

3 (1+ ζpe)

V ′b

∫ ∞
1

dγ ′ γ ′N ′e(γ
′). (7.85)

To this we add the power required to expel magnetic-field-laden plasma,
given by

P ∗B = 2�jcR
2β�2

(
B2

8π

)
. (7.86)

The total jet power, referred to the stationary black-hole reference frame,
is then

P ∗j ∼= 2πr ′2b βc�
2

(
B2

8π
+mec

2(1+ ζpe)

V ′b

3πd2
Lfεpk

cσTUBδ
4
D

√
δDεB

εpk(1+ z) ln(εpk/ε0)

)

(7.87)

[96], taking πr2
b = �jR

2; if rb refers to the transverse width, then rb
= r ′b. In the final term in this expression, the synchrotron spectrum is ap-
proximated by f syn

ε
∼= fεpk(ε/εpk)

1/2H(εpk − ε). The magnetic field energy
density B2/8π = Ucrε

2
B , and we switch from a continuous outflow model

to a one-zone model.
Having switched to a blob scenario, we let � → δD to derive the mini-

mum jet power Pj,min for a synchrotron source model [97]. The jet power

P ∗j = πr2
bβcUcr

(
k̂eqy

(5+p)/2
eq y−(1+p)/2 + y2

)
(7.88)
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for a synchrotron model depends only on the product

y ≡ δDεB,

and so is degenerate. This degeneracy in δD and εB can be broken with
additional observations, for example, joint X-ray/γ -ray observations. The
value of δDεB that minimizes the jet power is given by

ymin =
(
(p + 1)k̂eq

4

)2/(5+p)
yeq.

The term yeq, composed entirely of observational quantities and equiparti-
tion parameters, is defined following eq. (7.79). Because most of the energy
is contained in the electrons with p = 2, we take p = 2, giving

ymin =
(

27mec2d2
L(1+ ζpe) ln(ε2/ε1)f

syn
εpk

16cσTU2
crr
′3
b

√
ε2(1+ z)

)2/7

. (7.89)

When the emitting region is spatially resolved, as for VLBI radio obser-
vations at GHz frequencies, this expression can be written as

B (G) ∼= 7.0× 10−3

δD

(1+ z)11/7

d
2/7
28 ϑ

6/7
masε

1/7
−10

[
(1+ ζpe)λ1f−14

]2/7
, (7.90)

where λ1= ln(ε2/ε1)/10 is a bolometric factor, fi = fε/(10i ergs cm−2 s−1)
at ε = 10−10ε−10, and ε−10

∼= 1 corresponds to ≈12 GHz. The measured
half-angular extent, in milliarcseconds, of the emitting region is denoted
ϑmas. The minimum jet power in a pure synchrotron model, when keq

∼= 1,
is

P ∗j,min=P ∗j (ymin) ∼= 2πr ′2b βcUcry
2
min

∼= 1.3× 1045β
d

10/7
28 ϑ

2/7
mas

(1+ z)6/7ε2/7
−10

[
(1+ ζpe)λ1f−14

]4/7
ergs s−1. (7.91)

By characterizing the size scale r ′b = cδDtvar/(1 + z) in terms of the
measured variability timescale tvar = 1000t3 s, the magnetic field BminL

giving minimum jet power is found to be

BminL = BcrεBminL
∼= 346

(1+ z)5/7
δ

11/7
D

d
4/7
27 [(1+ ζpe)f−12λ1]2/7

t
6/7
3 ε

1/7
−5

G. (7.92)

The minimum jet power is

P ∗j (εBminL)=
14

3
πcβ�2r ′2b UBcr ε

2
BminL

∼= 2× 1042β
t
2/7
3 d

8/7
27 (1+ ζpe)

4/7(f−12λ1)
4/7

(1+ z)4/7δ8/7
D ε

2/7
−5

ergs s−1. (7.93)
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The penalty paid in jet power for departures from equipartition is given by
the expression

P ∗j (εB) =
3

7
P ∗j (εBminL)

(
u2 + 4

3u3/2

)
, u ≡ εB

εBminL

. (7.94)

Although the jet power can be made arbitrarily small by choosing suffi-
ciently large values of the Doppler factor, this freedom is restricted when
fitting correlated observations of sources at optical/X-ray energies and at
γ -ray energies and by γ γ absorption (chpt. 10).

7.7 SYNCHROTRON SELF-COMPTON RADIATION

The synchrotron self-Compton (SSC) process refers to the mechanism
whereby nonthermal electrons Compton-scatter the synchrotron photons
that they radiate. The size scale of a synchrotron emission region can be
directly measured in resolved synchrotron sources, and can be inferred from
the variability timescale of the synchrotron emission. The synchrotron
power and size scale imply the energy density of target synchrotron
photons, which in turn implies the SSC flux.

7.7.1 SSC in the Thomson Regime

A simple expression for SSC emission from a uniform spherical emitting
region is derived in the Thomson regime for a single power-law electron
distribution, using δ-function approximations for the synchrotron and
Thomson processes. The internal photon target is assumed to be quasi-
isotropic synchrotron radiation with comoving spectral density

n′syn(ε
′
i)
∼= r ′b
c
ṅ′syn(ε

′
i)
∼= 2

3
σTr
′
buB ε

′−1/2
i ε

−3/2
B n′e



√
ε′i
εB


 , (7.95)

from eq. (7.65). Substituting this into the δ-function approximation (6.82)
for Thomson scattering gives

ṅ′SSC(ε)
∼= 4

9

cσ 2
Tr
′
buB

ε′1/2ε3/2
B

∫ min(ε′,1/ε′)

0
dε′i ε

′−1
i n′e

(√
ε′

ε′i

)
n′e



√
ε′i
εB


.
(7.96)

Substituting eq. (7.76) into eq. (7.96) gives the comoving power ε′L(ε′) =
mec

2ε′2V ′bṅSSC(ε
′).

Transforming to the observer frame using relation (5.46) in the form fε ∼=
δ4

Dε
′L′(ε′)/4πd2

L gives the SSC νFν flux in the δ-function approximation,
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namely,

f SSC
ε
∼= δ4

D
cσ 2
T r
′
bUBV

′
b

12πd2
L

(
ε

εB

)3/2∫ min(ε′,1/ε′)

0
dε ′iε

′−1
i n′e

(√
ε′

ε′i

)
n′e



√
ε′i
εB


.

(7.97)

The only provision made in this approximation to account for scattering in
the KN regime is to terminate the scattering when γ ε ′i ≥ 1. For the power-
law electron distribution, eq. (7.76), eq. (7.97) gives

f SSC
ε
∼= δ4

D

12πd2
L

cσ 2
Tr
′
bUBK

′2
e

V ′b
γ̂ ′ 3−ps �C, γ̂ ′s =

√
(1+ z)ε
δDεB

(7.98)

[74]. Here the Compton-synchrotron logarithm

�C = ln

(
min(εBγ ′22 , ε

′/γ ′21 , ε
′−1)

max(εBγ ′21 , ε
′/γ ′22 )

)
(7.99)

[98,99], ε′ = (1+ z)ε/δD, and limits in the Compton-synchrotron logarithm
restrict Compton scattering to the Thomson regime. This expression applies
to nonthermal electrons scattering their own nonthermal synchrotron emis-
sion. When the electrons are described by a broken power law, one must
sum a number of scattered segments (section 7.7.2). If the electrons have a
low-energy cutoff in the distribution, there will be another power-law com-
ponent with photon energy index α ∼= −1/3 associated with the low-energy
portion of the synchrotron emissivity spectrum, and this emission will also
be scattered. Figure 7.4 gives a comparison of the δ-function approxima-
tion to the SSC spectrum with an accurate calculation. Note that, even when
γ2 = 107, the lowest-energy photons are scattered in the Thomson regime
by the highest-energy electrons. This SSC approximation breaks down with
increasing γ1, when scattering in the KN regime is important.

By comparing eq. (7.98) with more detailed results [98], one finds that in
the asymptotic quasi-power-law portion of the SSC spectrum, the coefficient
4/9 in eq. (7.96) should be replaced by 33b(p)/25π2. Values of b(p) and the
ratio (33b(p)/25π2)/(4/9) = 35b(p)/27π2 are given in table 7.1. Equation
(7.98) is accurate to better than 50% when 2 � p � 3.5 in the power-law
portion of the spectrum, compared to more precise treatments.

The ratio � of the νFν SSC and synchrotron fluxes from a power-law
electron distribution can be obtained by taking the ratio of eq. (7.70) to
eq. (7.98). The result is

� ∼= 2

3
(σTker

′
b�C)

(
εSSC

εsyn

)(3−p)/2
, (7.100)
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where εSSC and εsyn are the dimensionless SSC and synchrotron photon
energies. The SSC-to-synchrtron flux ratio � ∝ W ′e/r ′ 2b increases with de-
creasing blob radius.

7.7.2 SSC in the Thomson Regime for Broken Power-Law
Electron Distribution

For a broken power-law distribution for the nonthermal electrons, given by

N ′e(γ ) = Kbr[γ
q−p
1 γ−qH(γ ; γ0, γ1)+ γ−pH(γ ; γ1, γ2)], (7.101)

normalizing to the total comoving nonthermal electron energy

W ′e ∼= mec2
∫ ∞

1
dγ γ N ′e(γ )

gives

Kbr = W ′e
mec2

(
γ
q−p
1 (γ

2−q
1 − γ 2−q

0 )

2− q + γ
2−p
1 − γ 2−p

2

p − 2

)−1

. (7.102)

The SSC νFν flux from the broken power-law distribution is given by

f SSC
ε
∼= δ4

D
cσ 2
T u
′
B

16π2d2
Lr
′2
b

K2
br

(
ε ′

εB

)3/2 [
γ

2(q−p)
1 I1+γ q−p1 (I2+I3)+I4],

(7.103)
where

I1=
(
ε′

εB

)−q/2
ln

[
min(ε′−1, ε′/γ 2

0 , εBγ
2
1 )

max(ε ′/γ 2
1 , εBγ

2
0 )

]
,

I2= 2εq/2B ε′−p/2

p − q
{[

min(ε′−1, ε′/γ 2
1 , εBγ

2
1 )
](p−q)/2

− [
max(ε′/γ 2

2 , εBγ
2
0 )
](p−q)/2}

,

I3= 2εp/2B ε′−q/2

q − p
{[

min(ε′−1, ε′/γ 2
0 , εBγ

2
2 )
](q−p)/2

− [
max(ε′/γ 2

1 , εBγ
2
1 )
](q−p)/2}

,

and

I4 =
(
ε′

εB

)−p/2
ln

(
min(ε′−1, ε′/γ 2

1 , εBγ
2
2 )

max(ε′/γ 2
2 , εBγ

2
1 )

)

[94]. In deriving this expression, we assume that the mean escape time of a
synchrotron photon from the uniform spherical emitting region is 3r ′b/4c.
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7.7.3 Accurate SSC for General Electron Distribution

The νFν synchrotron radiation spectrum can be approximated by the
expression

f syn
ε
∼= δ4

D

6πd2
L

cσTUBγ
′3
s N

′
e(γ
′
s ), (7.104)

where

γ ′s =
√
ε(1+ z)
δDεB

,

from eq. (7.70), recalling that εB = B/Bcr, as measured in the comoving
frame. Inverting this expression gives the comoving electron distribution

N ′e(γ
′
s ) = V ′bn′e(γ ′s ) ∼=

6πd2
Lf

syn
ε

cσTUBδ
4
Dγ
′3
s

, ε = δDεBγ
′2
s

1+ z . (7.105)

Equation (7.105) gives a good representation of the net electron energy dis-
tributions whenever the νFν spectral index a < 4/3 (softer than a = 4/3),
adopting the convention fε ∝ εa .

In terms of the photon emissivity ṅsyn(ε) (ph cm−3 s−1 ε−1), the
δ-function approximation for synchrotron emission is given by

ṅ′syn(ε
′)∼= 2

3
cσTuBε

′−1/2ε
−3/2
B n′e

(
γ ′s
) ∼= 2cσTUBcr

3V ′bmec2

N ′e(γ ′s )
γ ′s

, γ ′s =
√
ε′

εB
,

(7.106)

with uB = UB/mec
2. The target synchrotron radiation field is therefore

given by

n′syn(ε
′) ∼= r ′b

c
ṅ′syn(ε

′) ∼= 3d2
Lf

syn
ε

mec3r ′2b δ
4
Dε

2
Bγ
′4
s

. (7.107)

Jones’s formula [67], eq. (6.74), with definitions given in eqs. (6.75) and
(6.76), gives the Compton-scattered synchrotron self-Compton emissivity

ε ′sJSSC(ε
′
s) =

3

4
cσTε

′2
s

∫ ∞
0

dε′
u′(ε′)
ε′2

∫ γ ′max

γ ′min

dγ ′
N ′e(γ ′)
γ ′2

FC(q
′, �′e),

(7.108)
where

FC(q
′, �′e)=

(
2q ′ ln q ′ + (1+ 2q ′)(1− q ′)+ 1

2

(�′eq ′)2

(1+ �′eq ′)
(1− q ′)

)

×H
(
q ′; 1

4γ ′2
, 1

)
, (7.109)
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q ′ ≡ ε′s/γ ′

�′e(1− ε′s/γ ′)
, and �′e = 4ε′γ ′ (7.110)

[35,67]. From the limits on the integration over γ ′ implied by the limits on
q, we find

γ ′min =
1

2
ε′s

(
1+

√
1+ 1

ε′ε′s

)
(7.111)

and

γ ′max =
ε′ε′s
ε′ − ε′s

H(ε′ − ε′s)+ γ ′2H(ε ′s − ε′). (7.112)

Here the maximum lepton Lorentz factor in the radiating fluid is γ ′2.
The νFν SSC spectrum is therefore given by

f SSC
ε =

(
3

2

)3
d2
Lε
′2
s

r ′2b cδ
4
DUB

∫ ∞
0

dε′
f

syn
ε̃

ε′3

∫ γ ′max

γ ′min

dγ ′
FC(q

′, �′e)f
syn
ε̂

γ ′5
,

(7.113)
where

ε̃ = δDε
′

1+ z (7.114)

and

ε̂ = δDεBγ
′2

1+ z (7.115)

[72,73]. The only remaining uncertainties in a complete synchrotron/SSC
blazar model are γ γ attenuation and pair reinjection, considered in
chapter 10.

7.7.4 Synchrotron/SSC Model

Any leptonic jet model will have a synchrotron and and an associated SSC
component. For a standard relativistic jet model, the synchrotron and SSC
components, accurately accounting for Compton scattering in the
self-Compton component, are [72]

f syn
ε = δ4

Dε
′J ′syn(ε

′)

4πd2
L

=
√

3δ4
Dε
′e3B

4πh

∫ ∞
1

dγ ′ N ′e(γ
′) R(x) (7.116)

and

f SSC
εs
= 9

16

(1+ z)2σTε
′2
s

πδ2
Dc

2t2v,min

∫ ∞
0

dε ′
f

syn
ε

ε′3

∫ γ ′max

γ ′min

dγ ′
N ′e(γ ′)
γ ′2

FC(q, �).

(7.117)



chapter07 July 15, 2009

SYNCHROTRON RADIATION 143

7.7.5 SSC Electron Energy-Loss Rate

The energy-loss rate of electrons Compton-scattering synchrotron radiation
with spectral energy density u(ε) = mec

2εnph(ε) is given by (dropping
primes),

−mec2γ̇SSC = 3

4

cσT

γ 2

∫ ∞
0

dε
u(ε)

ε2

∫ �eε/(1+�e)

γ ε/(γ+ε)
dεs εs FC(q, �e).

(7.118)
The solution takes the form

−γ̇SSC = 4

3
cσT

∫ ∞
0

dε
nph(ε)

ε
G(�e),

where
32

9
G(�e)= 2�e

3

1+ 5�e/4

(1+ �e)2 −
2�e

1+ �e

(
1

3
+ 1

�e
+ 1

�2
e

)

+ ln(1+ �e)
(

1+ 12

�e
+ 12

�2
e

+ 2 ln(1+ �e)
�e

− 4 ln�e
�e

)

− 10

�e
+ 4

�e

∞∑
n=1

(1+ �e)−n
n2

− 2π2

3�e
− 2 (7.119)

[67,100].1 In the limit �e  1,

G(�e)→ γ 2ε2
[
1− 63

40
�e + 3272

2352
�2
e +O(�3

e )

]
. (7.120)

This expression applies to arbitrary radiation fields that are isotropic in
the comoving frame in which the electron distribution is quasi-isotropic.
In practice, the internal synchrotron field is usually the most important, and
cascade radiation fields induced by ultrarelativistic electrons, generally scat-
tered in the Klein-Nishina regime, make higher-energy emissions. External
radiation fields are highly aberrated in the comoving frame of relativistic
jets, and so have to be treated differently (chapter 6).

7.8 SYNCHROTRON SELF-ABSORPTION

The synchrotron flux density from a homogeneous spherical source with
radius rb is [98]

Sν = j (ν)

2κ

(
rb

dL

)2

u(τ) = j (ν)Vb

4πd2
L

3u(τ)

τ
, (7.121)

1This can also be written in terms of the dilogarithm function Li2(z) =
∫ 0
z
(dt/t) ln(1−

t) =∑∞
k=1 (z

k/k2).
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ρ

rb

(rb
2 – ρ2)1/2

Figure 7.6 A sphere divided into shells.

where j (ν) (units of ergs s−1 Hz−1) is the nonthermal synchrotron emissiv-
ity, the frequency-dependent optical depth

τ ≡ 2κrb,

κ = κSSA
ν (�r) (cm−1) is the frequency-dependent synchrotron self-absorp-

tion coefficient, and

u(τ)= 1

2
+exp(−τ)

τ
−1− exp(−τ)

τ 2
= 1

2

(
1− 2

τ 2

[
1− (1+ τ) exp(−τ)]

)
,

(7.122)
with asymptotes

u(τ)→




τ

3
− τ

2

8
+O(τ 3), τ  1, optically thin,

1

2
− τ−2 +O(e−τ /τ ), τ � 1, optically thick.

(7.123)

In the slab approximation, the term 3u(τ)/τ in eq. (7.121) is replaced
with [1−exp(−τ)]/τ . As is easily seen from eqs. (7.121) and (7.123), Sν =
j (ν)Vb/4πd2

L in the optically thin limit.
It is worth taking a moment to derive eq. (7.122). The volume element

of a sphere separated into cylindrical shells (figure 7.6) is dV = 2πρdρd�.
The flux density when observing a spherical volume at large distances
dL � rb is

Sν = 1

4πd2
L

∫
d3 �r j (ν; �r) exp

(
−
∫
κ(�r ′)ds ′

)
. (7.124)
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The uniformity assumption j (ν; �r ) = j (ν) and κ(�r ) = κ for r ≤ rb implies

Sν = j (ν)
2d2
L

∫ rb

0
dρ ρ

∫ 2
√
r2
b−ρ2

0
d� exp(−κ�)

= j (ν)

8d2
Lκ

3

∫ 2κrb

0
dx x (1− e−x) = j (ν)

8d2
Lκ

3
τ 2u(τ) = j (ν)

2κ

(
r2
b

d2
L

)
u(τ),

(7.125)

which recovers eq. (7.122).
The synchrotron radiation flux from a standard model jet, with effects of

synchrotron self-absorption taken into account, is given by

f syn
ε = 3u(τ)

τ

δ4
Dj
′(ν′)V ′b

4πd2
L

, (7.126)

where τ = τ(ν′) = 2κ ′νr
′
b, and ν = δDν ′/(1+ z).

Because κ is a locally defined property of a magnetoactive plasma, spa-
tially dependent values of κ can be derived for idealized geometries with
different values of B and electron spectrum [98]. To derive the synchrotron
self-absorption coefficient κSSA

ν , we first review Einstein’s A and B coeffi-
cients.

7.8.1 Einstein Coefficients

Consider a two-level atom with electron energy states W1 and W2, W2 >

W1, and populationsN1 andN2. Populations of states in thermal equilibrium
follow the Boltzmann distribution

N1

N2
= g1

g2
exp

(
hν21

kBT

)
, hν21 = W2 −W1, (7.127)

where g1 and g2 are the occupancy numbers of states 1 and 2, respectively.
In steady state (no time dependence), the sum of the spontaneous and stim-
ulated rates from state 2 to state 1 must equal the absorption rate from state
1 to state 2. Thus

N2[A21 + Iν(�)B21] = N1B12Iν(�), (7.128)

and A21, B21, and B12 are the Einstein coefficients. In thermal equilib-
rium, where the states are illuminated by a Planck blackbody radiation field,
I bb
ν (T ) (eq. [5.14]), the population of states follows eq. (7.127), and one

finds

B12I
bb
ν (T ) =

g2

g1

[
A21 + I bb

ν (T )B21
]

exp

(−hν12

kBT

)
. (7.129)
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In the limit of high temperatures kBT � hν12 and I bb
ν (T )B21 � A21,

B12 = g2

g1
B21. (7.130)

Hence

I bb
ν (T ) =

A21/B21

exp(hν12/kBT )− 1
,

implying

A21

B21
= 2hν3

c2
. (7.131)

Spontaneous rates and transition probabilities are derived using the quan-
tum theory of radiation. For a dipole transition with matrix element 〈2|�r|1〉,
Einstein’s A coefficient

A21 ∼ αf
ν3

21

c2
|〈2|�r|1〉|2. (7.132)

The quantum theory of radiation is dealt with in many places [37,64,101,
102].

7.8.2 Brightness Temperature and Self-Absorbed Flux:
Qualitative Discussion

Consider a source of nonthermal radiation whose spectral flux Sν at fre-
quency ν is measured, and whose size rb is directly imaged or is inferred
from the measured variability timescale tvar. As written, rb refers to the
transverse size scale, which does not change through Lorentz transforma-
tion. For a stationary spherical emitting region (i.e., no bulk relativistic
motion of the radiating plasma), causality considerations imply

rb � tvar

(1+ z)c ,

where, for definiteness, tvar is a measure of the time for a factor-of-2 change
in flux. From this information, the source intensity Iν is inferred.

A thermal plasma cannot radiate above the blackbody limit. The intensity
of a plasma in thermal equilibrium is uniform, so that dIν/ds = 0, implying
from the equation of radiative transfer, eq. (5.2), that the thermal emission
and absorption coefficients are related according to Kirchhoff’s law,

jth(ν,�)

κ th
ν

= I bb
ν

hν/kBT1
→

(
2ν

c

)2

kBT . (7.133)
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One can show that Kirchhoff’s law holds for the relativistic thermal distrib-
ution function, eq. (1.1).

For nonthermal emissions, an effective temperature can be assigned to an
observed source by relating the measured intensity Iν to the Rayleigh-Jeans
limit of the blackbody intensity for frequencies hν  kBTb, where Tb is
the brightness temperature of the source. From eq. (5.14), the brightness
temperature

Tb = c2

2ν2

Iν

kB
. (7.134)

The intensity is simply related to the spectral energy flux, or flux density
Sν = dE/dAdνdt , according to

Iν ∼= Sν


�
, 
� ∼= R2

4d2
A

,

where dA = dL/(1+ z)2 is the angular diameter distance (eq. [4.41]). Thus

Tb = 2

(
dA

rb

)2 ( c
ν

)2 Sν

kB
. (7.135)

As an example, consider a νGHz GHz radio measurement of a radio source.
If the source is imaged to the milliarcsecond scale, then

rb

dA
= ϑ ∼= 4.85× 10−9ϑmas.

For this source,

Tb (K) � 5× 1012ϑ−2
mas ν

−2
GHz SGHz (Jy). (7.136)

It is interesting that 1012 K � mec
2/kB = 5.93 × 109 K, so that the

radiations originate from highly relativistic electrons with effective temper-
ature kBTb ∼ γmec

2. Observation show sources with Tb exceeding MeV
(Tb ∼ 1010 K) and even GeV (Tb � 1012 K) energies, justifying the use of
the Rayleigh-Jeans limit of the blackbody intensity.

Electrons with γmec2 ∼ kBTb are highly relativistic, and radiate their
power at frequencies ν ≈ γ 2νB ; see eq. (7.28). Hence

Sν ∼
(
rb

dA

)2 (ν
c

)2
kBTb ∼ ϑ2 ν

5/2

√
νB
∝ ν5/2 . (7.137)

Thus a heavily self-absorbed spectrum from synchrotron radiation radiated
by a power-law nonthermal isotropic relativistic electron distribution forms
a flux density Sν ∝ ν5/2 for the idealized magnetized plasma considered
here. This can be compared with Sν ∝ ν2, so in principle thermal emission
components can be spectrally distinguished from nonthermal synchrotron
radiation.
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7.8.3 Derivation of the Synchrotron Self-Absorption Coefficient

The absorption coefficient results from “true” absorption, proportional to
Iν(�)B12N(W1), and stimulated emissions proportional to Iν(�)B21N(W2),
W2 > W1 (eq. [7.128]). Thus it follows that

κν = hν

4π

∑
W1

∑
W2

[
n(W1)B12 − n(W2)B21]φ21(ν), (7.138)

where the line profile function φ21(ν) (units of Hz−1) ensures hν = W2 −
W1, and there is no restriction to W1 and W2 in the summation.

From the definition

P(ν,W2) = hν
∑
W1

A21φ21(ν) = 2h2ν4

c2

∑
B21φ21(ν) (7.139)

for the average power per unit frequency from levels W2 to level W1

(eq. [7.27]), we have

κν = hν
4π

∑
W2



(
g2

g1
n(W2 − hν)− n(W2)

)∑
W1

B21φ21(ν)




= c2

8πhν3

∑
W2

P(ν,W2)

(
g2

g1
n(W2 − hν)− n(W2)

)
. (7.140)

For the elementary quantum states (including polarization), g1 = g2, and∑
i

n(Wi)→
∫
d3 �p f ( �p), W2 − hν → p∗2,

and we use a particle distribution function formulation, where f ( �p) =
dN/dV d3 �p. Thus

κν = c2

8πhν3

∫
d3 �p2

[
f ( �p ∗2 )− f ( �p2)] P(ν,W2),

noting that f (W2 − hν) − f (W2) = −hν∂f/∂p for processes involving
continuous energy losses. Hence

κν = − 1

8πmeν2

∫
dγ P (ν, γ )

[
γ 2 ∂

∂γ

(
n(γ )

γ 2

)]
. (7.141)

7.8.4 δ-Function Approximation for Synchrotron Self-Absorption

We now revert to dimensionless notation. Thus P(ν; γ )dν = P syn(ε; γ )dε.
Use of the relation ν = mec2ε/h gives

κε = − 1

8πmeε2

(
λC

c

)3 ∫
dγ P syn(ε; γ )

[
γ 2 ∂

∂γ

(
n(γ )

γ 2

)]
. (7.142)
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The δ-function approximation for the pitch-angle-averaged synchrotron
emissivity can be written as

P syn(ε) = 4

3
cσT

B2

8π
γ 2 δ(ε − 2εBγ

2) = cσTUcr

6

ε

γ
δ

(
γ −

√
ε

2εB

)
.

(7.143)

Substituting eq. (7.143) in eq. (7.142) gives

κε = σTUcr

48πmec2

λ3
C

ε

[
γ
∂

∂γ

(
n(γ )

γ

)] ∣∣∣∣
γ=√ε/2εB

= π

36

λCre

ε

[
γ
∂

∂γ

(
n(γ )

γ

)] ∣∣∣∣
γ=√ε/2εB

, (7.144)

which in terms of frequency is

κν = π

36

cre

ν

[
γ 2 ∂

∂γ

(
n(γ )

γ

)]∣∣∣∣
γ=√ν/2νB

. (7.145)

For the power-law electron distribution given by eq. (6.62), the self-
absorption coefficient is found for the δ-function approximation, eq. (7.145),
to be

κδν = cδ(p)
creke

ν

(νB
ν

)(p+2)/2
for γ 2

1 � ν/νB � γ 2
2 , (7.146)

where

cδ(p) ≡ 2p/2(p + 2)π

18
.

We can also write

κδε = cδ(p)
λCreke

εB
γ−(p+4)
s for γ 2

1 � ε/εB � γ 2
2 . (7.147)

7.8.5 Synchrotron Self-Absorption Coefficient for
Power-Law Electrons

In detailed treatments [98], the SSA coefficient for the power-law distribu-
tion of electrons given by eq. (6.62) is

κν = c(p)creke
ν

(νB
ν

)(p+2)/2
, (7.148)

Table 7.1 compares coefficient c(p) with the coefficient cδ(p) = π(p +
2)2(p−2)/2/9.
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From eq. (7.148) we see that, including effects of SSA, the synchrotron
flux from a homogeneous spherical ball of radiating plasma with isotropic
relativistic electrons and random tangled magnetic field is

f syn
ν = 3

8π

ν�Lν�

rbκνd
2
L

u(τ)
τ1
→ ν�Lν�

4πd2
L

. (7.149)

This expression can be generalized to give the SSA frequency in cases
of relativistically moving homogeneous spheres of radiating plasma at cos-
mological distances. For a power-law distribution of electrons with spectral
density ne(γ ) = Ne(γ )/V ′b given by eqs. (7.76) and (7.77), the SSA opacity

τ SSA
ε′ = 2κSSA

ε ′ rb = 3c(p)K

αf

r2
e

r2
b

ε
(p+2)/2
B

ε′(p+4)/2
, (7.150)

where αf = e2/h̄c, re = e2/mec
2, and c(p) is given in table 7.1 [98]. For a

spherical knot with half-angle extent ϑ , rb = dLϑ/(1 + z)2. The SSA fre-
quency νSSA=mec2εSSA/h, when defined where dFν/dν = 0, is given by

εSSA =
(

18πc(p)r2
e f

s
εs

αf tpcσTUcr

)2/(p+4)(
εB(1+ z)
δDϑ4ε

3−p
s

)1/(p+4)

, (7.151)

where tp is given in table 7.1 [98].
The good agreement with the detailed results for a power-law electron dis-

tribution indicates that the δ-function expression, eq. (7.144), also provides a
reasonable approximation for the SSA coefficient for a homogeneous sphere
of radiating magnetized plasma.

7.9 MAXIMUM BRIGHTNESS TEMPERATURE

The self-absorbed spectrum implies an upper limit on the brightness tem-
perature Tb for a stationary source, as estimated in eq. (7.136). An improved
derivation of the maximum brightness temperature of a spherical radiating
plasma blob in bulk relativistic motion is now derived.

The solution to the equation for radiative transfer, eq. (5.2), which we
write in the form

dIν

ds
= −κνIν + j (ν,�), (7.152)

is given, from inspection of the intensity emerging from a magnetized slab
of plasma of thickness L, by

Iν =
∫ L

0
ds j (ν,�; �r ) exp

(
−
∫ s

0
ds̃ κν(�r )

)
. (7.153)
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(For the case of a uniform spherical source, see eqs. [7.121] and [7.122].)
Making the assumption of uniformity in this slab, then

Iν = j (ν,�)

κν

(
1− e−κνL) = j (ν,�)L

(
1− exp(−τν)

τν

)

→
{
j (ν,�)L, τν ≡ κνL 1,
j (ν,�)/κν, τν � 1.

(7.154)

Consider the nonthermal emissivity and self-absorbed spectrum for an
isotropic power-law electron distribution away from the endpoints of the
spectrum. From eqs. (6.62) and (7.63), we can write

j syn(ν,�) = j0y−αH(y; γ 2
1 , γ

2
2 ), (7.155)

where

y = ν/νB
and

j0 = a(p)

π

(
3

2

)1+α
cσTUBke

νB
.

The synchrotron self-absorption coefficient can be written, from eq. (7.148),
as

κsyn
ν = κ0y

−(p+4)/2H(y; γ 2
1 , γ

2
2 ) = κ0y

−(α+5/2)H(y; γ 2
1 , γ

2
2 ), (7.156)

where κ0 = c(p)creke/νB .
The nonthermal synchrotron intensity from a radiating slab, using

eqs. (7.154), (7.155), and (7.156), is

Iν = j0

κ0
y5/2

(
1− e−τ0y−(α+5/2)

)
<

j0

κ0
y5/2 , (7.157)

where τ0 = κ0L = c(p)crekeL/νB and j0/κ0 = 4(3/2)αa(p)reUB/c(p).
The transition between the optically thin and thick regimes occurs at y ≈
τ

2/(p+4)
0 . Figure 7.7 shows the spectral behavior of the nonthermal

synchrotron spectrum for different values of τ0 and α.
The final inequality in eq. (7.157) must be satisfied for nonthermal

synchrotron emission. This condition implies a limiting intensity for fixed
values of B and ν, namely,

Iν < d(p) mec
2 ν

2

c2

√
ν

νB
, (7.158)

defining d(p) = 2π(3/2)αa(p)/c(p). The effects of bulk relativistic
motion of the intensity, using the invariance of Iν/ν3, eq. (5.7), means that
the limiting measured intensity is

Iν <

√
δD

1+ z d(p) mec
2 ν

2

c2

√
ν

νB
, (7.159)



chapter07 July 15, 2009

152 CHAPTER 7

101

100

10–1

10–2

10–2 10–1 100 101 102 103 104

10–3

10–4

τ0 = 0.01

y5/
2 [

1–
ex

p(
–

τ 0y
–(

α+
5/

2)
)]

/τ
0

y = ν/νB

α = 0.5

α = 1

α = 1.5

τ0 = 1

τ0 = 102

Figure 7.7 Principal frequency dependence of the analytic self-absorbed syn-
chrotron intensity from a magnetized plasma slab with different values
of τ0 and α.

which implies an upper limit on B. Alternately, we could measure the in-
tensity IT at peak synchrotron frequency νT using high-resolution VLBA
observations to assign the magnetic field within the uncertain knowledge of
the Doppler factor δD, so that we have

IT ≡ IνT ∼=
√

δD

1+ z d(p) mec
2 ν

2
T

c2

√
νT

νB
, (7.160)

giving the magnetic field

B ∼=
(
δD

1+ z
) (

2πmec

e

)
d2(p)(mec

2)2ν5
T

I 2
T c

4
(7.161)

of the radiating plasma, which can be written for a VLBI/VLBA radio
source with intensity IT in units of Jy/mas2= 4.25×10−17 ergs/cm2 s sr Hz.
The implied magnetic field intensity is

B (mG) ∼= 1.6
δD

1+ z
d2(p)ν5

T (GHz)

I2
T

. (7.162)

The Doppler factor of the radio-emitting plasma can be estimated from
multi-wavelength observations of black-hole jet sources, so the system of
equations is closed. These results precisely specify the model parameters
and minimum powers.

Suppose a coordinated campaign on a black-hole jet source from radio
to γ -ray energies clearly identified the synchrotron and synchrotron self-
Compton components from detailed spectral modeling (a Compton compo-
nent from scattered external radiation would have to be subtracted in many
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cases). From these observables, we define the ratio of the νFν fluxes at the
peak of the Compton and synchrotron components by

� = (νF SSC
ν )max

(νF
syn
ν )max

≡ f SSC
εSSC

f
syn
εsyn

∼=
∫
dν ′ u′(ν ′)
UB

, (7.163)

with the final expression holding for scattering in the Thomson regime [81].
For an isotropic comoving nonthermal synchrotron radiation field,

u′(ν ′) = 4πI ′ν′/c. Approximating the peak synchrotron intensity by a power
law with index α, that is, I ′ν′ = I ′0ν ′ −αH(ν′; ν′1, ν′2), we have

� ∼= 4π

cUB

(
1+ z
δD

)3
Iν ν

′α(ν′ 1−α2 − ν ′ 1−α1 )

1− α . (7.164)

Eliminating the magnetic field between eqs. (7.161) and (7.164) fixes the
Doppler factor through the intermediate expression

8re
d4(p)(1− α)c ν

′α(ν ′ 1−α2 − ν ′ 1−α1 )

[
Iνc

2

mec2ν2

(1+ z)
δD

]5
∼= �. (7.165)

Replacing the bracketed term by the Rayleigh-Jeans expression gives an
effective thermal brightness temperature

Tb∼= mec
2

2kB

δD

1+ z

(
c(1− α)d4(p)�

8reν ′α(ν ′ 1−α2 − ν ′ 1−α1 )

)1/5

∼= 1.2× 1012
(
δD

1+ z
)6/5

5

√
�(1− α)d4(p)

ν̄ (GHz)
K for α < 1. (7.166)

In practice, a maximum brightness temperature is measured when the self-
absorption frequency is not well known. In the next section, the values of δD

are worked out in the Thomson limit.

7.10 COMPTON LIMITS ON THE DOPPLER FACTOR

The ratio of the fluxes in the Compton and synchrotron portions of the
spectral energy distribution (SED) give important information about black-
hole jet parameters. We solve three equations to obtain δD from observables.
Without precise knowledge of νT and IT , however, this test—comparing the
level of the SSC X-rays to the radio synchrotron emission—gives a mini-
mum value of δD that allows the jet emission to be modeled in a nonthermal
synchrotron/SSC scenario.



chapter07 July 15, 2009

154 CHAPTER 7

First it is necessary to measure the synchrotron and SSC νFν fluxes f syn
εsyn

and f SSC
εSSC at photon energies εsyn and εSSC, respectively. From eq. (7.70),

with a power-law electron distribution,

f
syn
εsyn = 2δ(p+5)/2

D

9d2
L

cr3
bσTUBcrkeε

syn (3−p)/2
z ε

(p+1)/2
B . (7.167)

Taking the ratio of f SSC
εSSC , from eq. (7.98), to eq. (7.167), gave eq. (7.100).

The magnetic field is obtained from eq. (7.161), rewritten as

εB ∼=
(
δD

1+ z
)
d2(p)(mec

2)2ν5
T

I 2
T c

4
. (7.168)

Solving these three equations gives the Doppler factor

δD

1+ z
∼=
(

3f syn
εsyn�C

cϑ2UBcr�

)1/(4+2α)
(

I 2
T c

4

d2(p)hmec2ν5
T

)(1+α)/(4+2α)

×
(
εSSC

εsyn 2

)(1−α)/(4+2α)

(7.169)

in terms of measurable quantities. For a specific value of α = 0.5 (p =
2), and using fiducial values for f syn

εsyn = 10−12f−12 ergs cm−2 s−1, εsyn =
10−8ε−8, eq. (7.169) gives

δD

1+ z
∼= 1.9

(
f−12�C

ϑ2
mas�

)1/5
(
IT (Jy/mas2)

d(p)

)3/5

[νT (GHz)]3/2

(
εSSC

ε2
−8

)0.1

.

(7.170)
A lower limit to the Doppler factor is derived if the self-absorption fre-
quency is not measured. Note that, as the ratio � of the SSC to synchrotron
flux increases, the value of δD decreases, because smaller Doppler factors
mean larger internal target photon densities for the SSC process [103].

Resolved or variable radio sources, if assumed stationary, have such
intense internal radiation fields that the higher-order Compton scatterings
should produce an intense X-ray and γ -ray emission signature while
catastrophically cooling the electrons. Development of synchro-Compton
theory to understand the Compton catastrophe by Burbidge, Jones, O’Dell,
and Stein [104,105] helped pave the way for the acceptance of nonstationary
and relativistic sources.

7.11 SELF-ABSORBED SYNCHROTRON SPECTRUM

For a uniform spherical ball of magnetized plasma ejected with relativistic
speed from the central engine of a black hole, the νFν synchrotron spectrum
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can, after examining the invariance properties of eq. (7.121), be written as

f syn
ε
∼= δ4

D
ε′j ′(ε ′, �′)V ′b

d2
L

3u(τε′)

τε′
. (7.171)

In this equation, ε′ = εz/δD = (1 + z)ε/δD, the invariant τε′ = 2κε′rb, and
3u(τ)/τ → 1 in the optically thin limit τ  1, and 3u(τ)/τ → 3/2τ when
τ � 1 (eq. [7.123]).

For a power-law electron distribution with the low-energy electrons radi-
ating synchrotron photons below the self-absorption frequency,

ε′j ′(ε′, �′) ∼= 6σTUcrε
2
Bkeγ

3−p
s

6π
, γs =

√
ε′

εB
, (7.172)

and κ ′ε is given by eq. (7.147). Thus

ε′j ′(ε′, �′)
κ ′ε

∼= 3

π2(2+ p)2p/2
cσTUcr

λCre
ε3
Bγ

7
s . (7.173)

In the optically thin limit,

f syn
ε (τ  1)→ 2cσTUcr

9

(
rb

dL

)2

(kerb) δ
4
Dε

2
Bγ

3−p
s ∝ ε1−α, (7.174)

recalling that γs =
√
ε(1+ z)/δDεB . In the optically thick limit,

f syn
ε (τ � 1)→ 3cσTUcr

π(2+ p)2p/2λCre

(
rb

dL

)2

δ4
Dε

3
Bγ

7
s ∝ ε7/2. (7.175)

Suppose that a source radio spectrum is well-enough sampled that the
measured energy flux fεT = 10−14f−14 ergs cm−2 s−1 and self-absorption
frequency εT = 8.093 × 10−12νT (GHz) are found. Defining the self-
absorption frequency as the interception of the optically thin and optically
thick asymptotes, eqs. (7.174) and (7.175), then

kerb = 27

2π(2+ p)2p/2
εB

λCre
γ
p+4
sT , γsT =

√
ε′T
εB
. (7.176)

From this, the half-angular size of the source ϑ , and the value of fεT at
τ = 1, the magnetic field can be obtained through the relation

εB ∼= δD

1+ z



(
(6e−1 − 3/2) mec3

2π2(2+ p)2p/2λ3
CfεT

)2

ϑ4ε7
T


, (7.177)

noting that 6e−1 − 3/2 = 0.7072 . . . . Thus

B (G) ∼= 0.13

(
δD

1+ z
)

ϑ4
masν

7
T (GHz)

2p(2+ p)2f 2
−14

. (7.178)
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7.12 HYPER-RELATIVISTIC ELECTRONS

Electrons with Lorentz factor γ , traveling in a region with ordered magnetic
field strength B, lose energy through synchrotron radiation at the rate

−γ̇syn = σTB
2

4πmec
γ 2 sin2 ψ, (7.179)

where ψ is the electron pitch angle (eq. [7.13]). The corresponding syn-
chrotron energy-loss timescale tsyn = γ /|dγ /dt |. The gyration frequency
ωB = eB/γmec, and is independent of pitch angle. When ωBtsyn  1, the
electron loses almost all of its energy into synchrotron radiation in a time
less than the gyroperiod. We use the term “hyper-relativistic” to refer to elec-
trons in this radiation-reaction regime of synchrotron emission [106,107].

Electrons that cool before being deflected by an angle θ equal to the jet
opening angle θj will emit most of their energy within θj . The pitch angle
ψ does not change due to synchrotron losses in the limit γ � 1. Then
cos θ = cos2 ψ + sin2 ψ cosφ, where φ = ωBt is the rotation angle. In the
limit of small θ and φ, θ ∼= φ sinψ . The condition θ ≤ θj for times t ≤ tsyn

then results in the condition

γ � γhr(θj ) =
√

4πe

θjσTB sinψ
∼= 3× 108√

(θj /0.1)[B (G)] sinψ
(7.180)

defining hyper-relativistic electrons. Lower-energy electrons with
γ < γhr(θj ) and small-pitch-angle electrons radiate their energy over a
much larger solid angle and longer time.

The characteristic synchrotron photon energy Eγ = mec
2ε radiated by

electrons that lose their energy within the jet opening angle θj is indepen-
dent of ψ , and is given by

Ej ∼= h̄eB sinψ

mec

γ 2
hr(θj )

(1+ z)
∼= 500

(θj /0.1)[(1+ z)/2]
MeV. (7.181)

This is closely related to the maximum mean energy of synchrotron pho-
tons radiated by electrons that start to lose a large fraction of energy every
Larmor cycle, which is independent of magnetic field [108,109] (see section
11.2.1).

Hyper-relativistic electrons with γ > γhr(θj ) rapidly lose energy through
synchrotron losses and deposit all of their energy along the direction of the
jet. Electrons at lower energies are deflected to angles θ > θj , and their
emission is not seen by an on-axis observer. Hence the distribution of elec-
trons along the jet direction always has an effective low-energy cutoff at
γhr(θj ).
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The production spectrum of the electrons can have an intrinsic cutoff
γco due to the low-energy cutoff in the ultrarelativistic hadron spectrum,
when photohadronic processes are responsible for the origin of the hyper-
relativistic leptons. If ρ ≡ γco/γhr(θj ) ≥ 1, then the observed synchrotron
spectrum is a power law with −1.5 index for Ej � Eγ � ρ2Ej , and a pho-
ton spectrum with the same spectral index as the accelerated protons and
escaping neutrons at photon energies Eγ � ρ2Ej [106]. If ρ < 1, then the
observed photon spectrum at Eγ � Ej has the same spectral index as the
primary hadrons.

At photon energies Eγ  Ej , the observed spectrum is produced by the
same hyper-relativistic electrons with γ � γhr(θj ), but at energies ε well
below the peak energy 3γ 2εB , where εB ≡ B/Bcr. The differential energy
radiated per dimensionless energy interval dε per differential solid angle
element d� in the direction θ with respect to the direction of an electron
moving with Lorentz factor γ is given by

dE

dεd�
= e2

3π2λC

(
ε

γ εB

)2

(1+ γ 2θ2)2(�‖ +�⊥), (7.182)

where �‖ = K2
2/3(ξ) and �⊥ = (γ θ)2K2

1/3(ξ)/[1 + (γ θ)2] are factors
for radiation polarized parallel and perpendicular to the projection of the
magnetic field direction on the plane of the sky defined by the observer’s
direction [84]. The factor ξ = ε/ε̂, where ε̂ = 3εBγ 2/(1 + γ 2θ2)3/2, and
Kn(x) is a modified Bessel function of the second kind, with asymptotes
given in Appendix B.

The condition ξ  1 corresponds to ε  ε̂ where Kn(ξ) are in their
power-law asymptotes, and ξ � 1 or ε � ε̂ is where Kn(ξ) are in exponen-
tial decline. The characteristic energy ε̂ approaches 3εBγ 2 when γ θ  1,
and ε̂ declines with θ according to the relation ε̂ ∼= 3εBγ 2/(γ θ)3 when
γ θ � 1. When ε  ε̂, then �‖ � �⊥ and dE/dεd� = (dEsyn/dεd�) �
31/3(1.07e/π)2(γ ε/εB)2/3/ -λC ∝ ε2/3. For a fixed value of ε, this emis-
sivity exponentially cuts off when ε � 3εB/γ θ3, or when θ � θmax =
(3εB/γ ε)1/3.

The synchrotron emission spectrum in the limit Eγ  Ej , integrated
over solid angle, is thus

dE

dε
� 2π

∫ (3εB/γ ε)1/3

0
dθθ

(
dEsyn

dεd�

)
� 3e2

π -λC
∝ ε0. (7.183)

This differs from the energy index +1/3 for synchrotron radiation radi-
ated by electrons in the classical regime, because in this case one integrates
over a complete orbit of an electron [86], so that the solid angle element
d� → dθ sin θ → dθ sinψ in the integration in eq. (7.183). Mechanisms
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for producing hyper-relativistic electrons, with synchrotron emission ex-
tending to GeV and TeV energies, were proposed by [95,110].

7.13 JITTER RADIATION

When averaging over pitch angles to derive the synchrotron formulae, we
have implicitly assumed that the magnetic field is randomly oriented on size
scales much smaller than the physical dimensions of the system, but that
the field is unidirectional compared to the Larmor radius of the radiating
particle.

An interesting limit to consider is the synchrotron “jitter” regime [111],
which was motivated by spectral observations and mechanisms for magnetic
field generation in the relativistic shocks of GRBs [112].

Consider a relativistic electron with γ � 1. Its beaming cone


θ ∼ 1

γ
 1. (7.184)

In conventional synchrotron radiation, the superposition of harmonics
formed from electrons traveling at various angles gives the peak synchrotron
frequency

ωc = 3

2
γ 2 eB sinψ

mec
, (7.185)

eq. (7.28). The averaging used to obtain the synchrotron emissivity
function, eq. (7.27), does not apply if deflection of the electron while travel-
ing through a magnetic domain is smaller than the beaming cone, eq. (7.184),
of the electron. A magnetic domain is here roughly equated with a region on
the size scale of the coherence length λB of the magnetic field, that is, the
mean distance for the magnetic field to change in direction by π/2.

The deflection angle when passing through a magnetic domain is

θdfl ≡ λB

rL
, (7.186)

and the ratio
θdfl


θ
= λBeB

mec2
∼= 5.8× 10−4[B (G)][λB (cm)] (7.187)

is independent of γ . The limit θdfl  
θ is the jitter radiation regime, and
the opposite limit, θdfl � 
θ , is the normal synchrotron regime.

The electron passing through these magnetic domains sees an electro-
magnetic wave at frequency ω′ ∼= ck′ ∼ c/λ′B ∼ cγ /λB ≈ ckBγ , which is
scattered to a characteristic jitter radiation frequency

ωjit ∼ γ 2kBc. (7.188)
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When viewed face on, the synchrotron spectra from jitter radiation

P syn(ε) ∝ ε1, ε  εjit, (7.189)

so that f jit
ε ∝ ε2, ε  εjit, which can be compared with standard syn-

chrotron rela-tion f syn
ε ∝ ε4/3 for ε  εc, eq. (7.31). This is the same index

as for the hyper-relativistic synchrotron emission, eq. (7.183).
From eq. (7.187), we see that the jitter regime could be relevant for mag-

netic domains with coherence lengths λB ∼ 102 cm that could be formed
with ∼(1–103) G magnetic fields in GRBs, but is unlikely to be important
for the transport of UHE electrons and positrons formed as secondaries,
unless the intergalactic medium hosts ∼ pc-scale magnetic-domain struc-
ture. The jitter mechanism can explain very hard, 4/3 � a � 2 spectra of
GRBs.
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Chapter Eight

Binary Particle Collision Processes

This chapter considers binary particle collision processes, including

1. Coulomb interactions and ionization losses;
2. bremsstrahlung;
3. secondary nuclear production and spallation;
4. thermal electron-positron annihilation radiation; and
5. nuclear γ -ray line radiation.

The rate of thermalization and energy transfer between ionic and lep-
tonic species is determined in the first approximation by the rate of binary
collision processes. In a magnetized plasma, collective effects may be as
important as binary collisions to transfer energy, and so could increase the
thermalization and energy-exchange rate. Elastic binary particle collisions
between electrons, positrons, and protons involve the Møller (e+e→ e+e),
Bhabha (e++e− → e++e−), and Coulomb (e+Z→ e+Z) cross sections
[64]. Elastic scattering between two protons proceeds through Coulomb and
nuclear contributions.

Bremsstrahlung has a cross section smaller by a factor ∼αf than
Thomson scattering. To efficiently emit bremsstrahlung, sites of rapidly
varying radiation may have to be very Thomson thick, contrary to non-
thermal, optically thin power-law radiations often observed from luminous,
highly variable sources. Secondary radiations can be made through inelas-
tic nuclear p + p reactions, but in the relativistic jet plasma expelled from
black holes, this require large additional amounts of power to provide suf-
ficient target density for effective energy extraction by this process. For the
luminous black-hole environments in which we are most interested, binary
particle processes are therefore generally less important than particle
processes involving photons and fields. These processes are, however, of
primary interest in cosmic-ray physics [113–115].

High-energy particles energized by black-hole engines can escape to large
distances from their sources where binary particle processes become
increasingly important for heating the surrounding medium through
Coulomb and ionization processes, and for making pion-decay radiations
from inelastic nuclear interactions. Radioactive nuclei formed by nuclear
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m1, Q1 = Z1e

m2, Q2 = Z2e

b, impact parameter

b 2+ v 2t 2r =

v

Figure 8.1 The stopping power of cold plasma. The minimum impact parameter
defines the regime of validity of the Born approximation.

excitation and spallation can also reveal sites of nonthermal cosmic-ray pro-
duction. For galactic black holes, positrons escaping from a compact region
can annihilate with surrounding electrons to make variable e+−e− annihila-
tion radiation. Only a steady Galactic annihilation glow has, however, been
found with the Oriented Scintillation Spectrometer Experiment (OSSE) on
CGRO, and the INTErnational Gamma Ray Astrophysics Laboratory
(INTEGRAL) [116,117].

In the vicinity of Solar-mass black holes formed in stellar collapse events,
secondary nuclear γ rays from radioactive species formed by the progeni-
tor star would also be found, but may be difficult to be distinguished from
radioactivities of a normal core-collapse supernova forming a neutron star.

8.1 COULOMB ENERGY LOSSES

An electron slowing down in a sea of mobile electrons and stationary pro-
tons loses energy through Coulomb processes at the rate

Ėe,Coul ∼ mec2 npcσT ln�, (8.1)

where np is the proton number density of the medium in which the electron
slows down, and the Coulomb logarithm ln� ∼ 20–40 is the logarithm of
the ratio of maximum and minimum impact parameters.

The functional dependences of particle energy losses in a plasma on mass
and charge can be easily derived for Coulomb scattering in the Born approx-
imation.

8.1.1 Stopping Power of Cold Plasma

Consider the energy lost as a fast charged particle passes through a plasma
consisting of ionized protons and electrons (figure 8.1). In the Born straight-
line approximation for the trajectory of the fast particle, energy is lost as the
fast particle perturbs the locations of the cold particles in its path, imparting
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a momentum impulse �p = �p(b) in the transverse direction to the cold
plasma particles passed at impact parameter b.

Let the fast particle “1” (with speed v1) and cold plasma particles “2”
have charges Q1 and Q2 and masses m1 and m2, respectively. The number
density of the cold plasma particles is n2. The energy loss in time �t is
given in the Born straight-line approximation (�py/p � 1) by

�E1 = −
∫
db 2πb

|�p(b)|2
2m2

n2v1�t. (8.2)

The perturbation of the speeds, and therefore the energies, of the particles
in the cold plasma can be estimated from the transverse momentum impulse

d �p = �Fdt ⇒ �py =
∫
Fy�t,

where the force is just the Coulomb force

�FC = Q1Q2

r2
r̂ . (8.3)

Hence

|�py | = 2Q1Q2

∫ ∞
0

bdt

r3
= 2bQ1Q2

v1

y

b2
√
b2 + y2

∣∣∣∣
∞

0

= 2Q1Q2

bv1
.

Use of |�py|2/2m2 = 2Q2
1Q

2
2/b

2v2
1m2 gives, from eq. (8.2), the result

−dE1

dt
= 4πZ2

1Z
2
2e

4n2

m2v1

∫ bmax

bmin

db = 4πZ2
1Z

2
2e

4n2

m2v1
ln�. (8.4)

Because dx = v1dt = β1cdt , we can also write this as

−dE1

dx
= 4π

Z2
1Z

2
2e

4n2

m2v
2
1

ln�. (8.5)

One sees from eq. (8.5) that the lightest particles are most affected by the
passage of the fast particle, and contribute most to the stopping power of the
plasma. For a cold electron plasma, eq. (8.5) can be written as

−dE1

dx
= 3

2

npσTZ
2(mec

2)

β2
1

B, (8.6)

where B is the stopping power and the target gas is neutral or ionized H with
proton density np. The maximum impact parameter is defined by the energy
required to excite a plasmon with energy h̄ωp, where

ωp =
√

4πnpe2/me = 5.64× 104
√
np (cm−3) rad s−1

is the electron plasma frequency (see chapter 14).
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Defining the maximum fractional energy loss �st = [(�Elab)max/

(m1v
2
1/2)], Gould [118] derives the following expressions for the stopping

power of nonrelativistic electrons and positrons:

B(electron) = ln

(
2
√
�st(1−�st)×mev2

1/2

h̄ωp

)
+ 1

2

�st

(1−�st)
(8.7)

and

B(positron) = ln

(
2
√
�st ×mev2

1/2

h̄ωp

)
. (8.8)

For distinguishable particles, �st = 1, and for indistinguishable particles,
�st = 1/2. For the stopping powers of relativistic electrons and positrons,

Brel(electron) = ln

(√
γmec

2

h̄ωp

)
(8.9)

and

Brel(positron) = ln

(√
2γmec2

h̄ωp

)
. (8.10)

The stopping power for a relativistic ion in plasma is

Brel(ion) =
[
ln

(
2γmec2

h̄ωp

)
− 1

2
β2

1

]
(8.11)

[119], and β1 =
√

1− γ−2. Gould also derives stopping powers for atomic
matter [120]; in this case the energy losses are referred to as ionization
losses.

Equation (8.6) implies that the Coulomb energy-loss rate varies as

−γ̇Coul
∼= cσTnp

β

(
3

2
ln�

)
, (8.12)

displaying only a weak logarithmic increase with energy for relativistic elec-
trons and protons. The np-dependent stopping power ranges from values of
20 to 40, and varies according to

ln

(
mec

2

h̄ωp

)
= 37.2− 1

2
ln[np (cm−3)]. (8.13)

8.1.2 Thermal Relaxation

The thermalization timescale for nonrelativistic particles 1 thermalizing
with a cold background test plasma 2 is defined through the relation

−dE1

dt
= m1v

2
1

τ1(2)
. (8.14)



chapter08 July 17, 2009

164 CHAPTER 8

The Born-approximation expression, eq. (8.4), for the Coulomb energy-loss
rate implies the relaxation timescale

τ1(2) =
m1m2v

3
1

8πZ2
1Z

2
2e

4n2 ln�
∝ v3

1; (8.15)

thus the tail of the Maxwellian is the last to thermalize. The timescales for
electrons to thermalize with ions, for ions thermalizing with themselves, and
for electrons to thermalize with themselves, are, for nonrelativistic temper-
atures, related by the ratios

τe(Z) : τZ(Z) : τe(e) = Z−2
(
mz

me

)(
ne

nz

)
: Z−4

√
mz

me

(
ne

nz

)
: 1.

Thus in plasmas at nonrelativistic temperatures, electrons thermalize first
with themselves, and then ions with themselves, and then electrons with
ions. The long timescale for electron-ion thermalization allows two-
temperature electron-ion plasmas to be a plausible source model for the hot
emission regions found in the vicinity of black holes [121,122].

Analytic and numerical treatments of Coulomb energy losses often
employ the systematic energy-loss rate expression eq. (8.12). In
(bremsstrahlung) models, where the lower-energy electrons could make a
significant contribution to the emission, an accurate treatment of energy
losses is required during the thermalizing process. A diffusion simulation
of thermalization in relativistic plasmas is given in Ref. [7].

8.1.3 Stopping Power of Thermal Plasma

Electrons gain energy when they have thermal energies less than the thermal
energy of the plasma. An expression taking this into account is

Ėe,Coul(Ee) = −ηe np
(

4πe4Bth

βemec

)(
�− d�

dx

)
, (8.16)

where np is the proton or hydrogen density of the surrounding medium,

� = �(x) ≡ 2π−1/2
∫ x

0
dy y1/2 exp(−y), (8.17)

Bth = 24− ln

(√
ηe [np (cm−3)]

Te (eV)

)
, (8.18)

and

x = mev
2
e

2kBTe
(8.19)
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[123]. The quantity ve = βec is the electron velocity, Te is the plasma
electron temperature, and ηe = ∑

Z2(nZ/nH ) ∼= 1.5 is a correction factor
for heavier ions, primarily He, in the interstellar medium (ISM). Nonthermal
electrons diffuse in energy space with Coulomb diffusion coefficient [124]

De,Coul(Ee) = ηe np
(

8πe4Bth

βemec

)
kBTe �. (8.20)

For ions, the energy-loss rate of a nonrelativistic test ion with mass A
and charge Z in a background thermal plasma is normally dominated by
Coulomb losses to electrons, and given by the asymptotic bridging formula
[113]

−
(
dE

dt

)
Coul,ion

∼= 3× 10−7Z2[ne (cm−3)
] β2

x3
m + β3

(
ln�

20

)
eV s−1,

(8.21)
where

xm = 3

√
3
√
π

4
βe and βe ∼= 0.026

(
Te

2× 106K

)1/2

. (8.22)

The Coulomb energy-loss rate for protons with energy Ep = mpv
2/2 is

given by

Ėp,Coul(Ep) = −ηe np
(

4πe4Bth

βpmpc

)[(
mp

me

)
�− d�

dx

]
. (8.23)

Due to Coulomb scattering, the protons diffuse in energy space with diffu-
sion coefficient [123]

Dp,Coul(Ep) = ηe np
(

8πe4Bth

βpmpc

)
kBTe �. (8.24)

8.1.4 Knock-On Electrons

Nonthermal protons knock electrons out of the thermal pool through
Coulomb forces to produce a population of nonthermal knock-on electrons.
The knock-on electron emissivity ṅko(γe), in units of cm−3 s−1 γ−1

e , is
given by

ṅko(γe) = 1.75× 4πnp(r)
∫ ∞
γ1

dγp �k(γe, γp) Jp(γp,p) (8.25)

[125] where ρ(r) is the density of the ISM, 1.75 accounts for the pres-
ence of heavier elements, γe is the Lorentz factor of the electron, γp is the
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Lorentz factor of the proton, and Jp(γp,p) is the differential cosmic-ray
proton number intensity. The differential probability for the production of
an electron having a total energy per unit rest-mass energy in dγe in γe by
the collision of a cosmic ray is

�k(γe, γp) dγe= 2πr2
e

(1− γ−2
p )


 1

(γe − 1)2
−
me

(
γp+ m2

e+m2
p

2mpme

)

mp(γe−1)γp
+ m2

e

2m2
pγ

2
p


dγe

(8.26)

[125]. The maximum transferable energy is given by

γmax = 1+ γ 2
p − 1

me
mp

(
γp + m2

e+m2
p

2memp

) . (8.27)

The lower bound of the integration in eq. (8.25) is determined by solving
the inequality γe ≤ γmax for a given value of γp. The result is

γ1 = mp

2me
(γe − 1)+

[
1+ 1

2

(
1+ m

2
p

m2
e

)
(γe − 1)+ m2

p

4m2
e

(γe − 1)2
]1/2

.

(8.28)

The spectra of knock-on electrons at relativistic energies are usually soft
and weak in comparison with those of directly accelerated electrons. Like
suprathermal proton/inverse bremsstrahlung (p+e→ p+e+γ ), where the
ion is energetic and the electron is at rest [126], these processes are generally
not important in black-hole environments. See [127,128] for more details.
Other minor processes from the standpoint of black-hole astrophysics are
direct pair production, N + e → N + e + e+ + e−, where N can be an
electron, positron, proton, or ion [129,130], double (or radiative) Compton
scattering, e+ γ → e+ γ ′ + γ ′′, which can provide an additional source of
soft photons [37], and higher-order pair production processes, e.g., γ+γ →
e+ + e− + e+ + e− [131].

8.2 BREMSSTRAHLUNG

The cross section for electron bremsstrahlung (“braking” radiation, also
called free-free “ff” radiation), deoted by e + p → e + p + γ , having
an additional vertex in the Feynmann scattering diagram, has a lowest-order
cross section that is one power of αf smaller than the lowest-order Coulomb
cross section [37,64].
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8.2.1 Electron Bremsstrahlung Energy-Loss Rate

The relativistic bremsstrahlung energy-loss rate can be roughly approxi-
mated by the expression

−γ̇ff,e ∼ αf cσTnpγ. (8.29)

The bremsstrahlung photon number spectrum Ṅ ff(ε) ∝ ε−1 for ε � mec
2γ ,

and the mean bremsstrahlung photon energy 〈ε〉ff ≈ mec2γ /3.
For a fully ionized medium, the relativistic electron bremsstrahlung

energy-loss rate [35] is given by the expression

−γ̇ff,ion = 3

2π
αf cσTγ

(
ln 2γ − 1

3

)(∑
Z

nZZ(Z + 1)

)
. (8.30)

Effects of the shielding of the nucleus by the atomic-electron Coulomb
fields must be taken into account for neutral or partially ionized gases. In
this case,

−γ̇ff,neutral = 3

8π
αf cσTγ

∑
s

naφ̄s(�eff), (8.31)

where na is the number density of atomic species a,

φ̄s = 4

3
φ1 − 1

3
φ2, (8.32)

and φ1 and φ2 are slowly varying transcendental functions given in Ref. [35].
The argument

�eff = (4αf γZeff)
−1, (8.33)

and Zeff is the effective nuclear charge felt by the atomic electrons. For
H, Zeff = 1, whereas Zeff

∼= 1.7 for He. The relativistic bremsstrahlung
energy-loss rate can be about twice as great in ionized as in neutral plasma.
See Refs. [35,132] for more details.

8.2.2 Electron Bremsstrahlung Production Spectra

The bremsstrahlung emissivity from two interacting particle distributions
n1(p1, 1) and n2(p2, 2) is given by eq. (2.42),

ṅff(εs,s)= c

1+ δ12

∮
d1

∫ ∞
0

dp1n1(p1, 1)

×
∮
d2

∫ ∞
0
dp2 n2(p2, 2) βr · (1−β1β2 cosψ)

dσff(εs; γr)
dεsds

.

(8.34)
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The general solution for the bremsstrahlung emissivity from two interacting
isotropic particle distributions is given by a three-fold integral. Haug derived
the most generally useful and accurate expressions for the electron-electron
[133] and electron-positron [134] differential bremsstrahlung cross sections.

Except in plasmas at relativistic temperatures where the electron-electron
and electron-positron bremsstrahlung powers can be comparable [135],
electron-ion bremsstrahlung is generally the dominant bremsstrahlung emis-
sion process. For isotropic electrons interacting with protons and ions at rest,
eq. (8.34) becomes

ṅff,eZ = cnZ
∫ ∞
√
εs(2+εs)

dpe ne(pe)
dσff,eZ(εs;pe)

dεs
; (8.35)

the lower limit derives from the requirement that εs < γ − 1. When the
electron Lorentz factor γ � mZ/me, where mz is the mass of an ion with
charge Z, then ion recoil is small. The differential relativistic electron-ion
cross section in this limit is

dσff,eZ(εs)

dεs
= 4Z2αf r

2
e

εs

(
1+ y2 − 2y

3

) [
ln

(
2γ 2y

εs

)
− 1

2

]
, (8.36)

where y = 1− εs/γ , and y → 1 in the soft photon limit [35]. The electron-
ion bremsstrahlung emission spectrum for cold ions and thermal electrons
is given by eq. (8.35), with the thermal electron distribution

ne(p;�e) = ne p
2 exp(−γ /�e)
�eK2(1/�e) p�1

→ neβ
2
e

√
2

π�3
e

exp(−β2
e /2�e),

(8.37)
recalling eq. (1.1) with �e = kBTe/mec

2.
At nonrelativistic temperatures, the electron-ion thermal bremsstrahlung

production spectrum is, using the electron-ion bremsstrahlung cross section
in the nonrelativistic Born limit,

ṅff,eZ(ε;�e) = 2

(
2

3π�e

)1/2

αf cσT Z
2nenZ

exp(−ε/�e)
ε

Gff(ε/�e).

(8.38)

The Gaunt factor in the nonrelativistic Born limit is given by Gff(ε/�e) =√
3 exp(ε/2�e)K0(ε/2�e)/π . The nonrelativistic thermal bremsstrahlung

energy emissivity is

dEff,eZ(�e)

dV dt
= 2

(
2

π

)3/2

�1/2
e Z2nenZαf cσTmec

2G(Te)

∼= 1.57× 10−27T 1/2
e Z2nenZG(Te) ergs cm−3 s−1, (8.39)
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Figure 8.2 Two secondary nuclear production models from black-hole jet sources.
(Upper) Beam-on-target model. (Lower) Mass-loaded jet model.

where the thermal averaged bremsstrahlung Gaunt factorG(Te) ∼= 1.2 in the
nonrelativistic Born limit [86]. For corrections to the thermal bremsstrahlung
emission spectrum and emissivity at relativistic temperatures, see Refs.
[136,137].

Although bremsstrahlung emission processes are very important in
cosmic-ray and Solar flare physics, nonthermal bremsstrahlung is generally
not very effective in the luminous jets of black holes, because such systems
would be optically thick to Thomson scattering.

8.3 SECONDARY NUCLEAR PRODUCTION

There are two classes of black-hole jet models where binary nuclear
processes are important. One class is the beam-on-target models, so named
because they resemble accelerator experiments (figure 8.2). Directed par-
ticle beams strike a target and generate high-energy radiation secondaries.
This model faces the problem of requiring a large column density of tar-
get material for good energy conversion efficiency, and this model also has
difficulty agreeing with time variability data of black-hole sources.

A second class is a mass-loaded jet model, where the density of the source
is large enough that secondary nuclear production can make luminous γ -
ray and neutrino emissions. This model faces energetic difficulties to have
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sufficient target material in a relativistic jet in order to have good conversion
efficiency of the nonthermal particles to radiation [95].

Consequently, binary nuclear processes do not seem to be especially
important for making the high-energy radiation from black holes. Yet be-
cause they make secondary γ -rays and neutrinos, and because of their in-
trinsic interest, we review this process.

Secondary nuclear production refers to the inelastic production of pions,
kaons, hyperons, baryonic resonances and baryons, and baryon-antibaryon
pairs. Secondary nuclear production can also refer to spallation production,
for example, when a cosmic-ray carbon ion is broken up as when it strikes
the nucleus of a helium atom to produce light ions, including Li, Be, and
B. The spallation cross section for proton-ion interaction and breakup can
be approximated well above threshold by a simple geometrical shadowing
correction factor A2/3 to the proton-proton strong interaction cross section.
A simple expression for the high-energy asymptote of the spallation cross
section is [138]

σsp(E) ∼= 50A2/3 mb. (8.40)

and the characteristic spallation timescale is tsp ∼ 1/(npσspc). Nuclear
decay γ -radiation due to the production of secondary radioactive nuclides
from cosmic ray/energetic particle interactions has been observed in Solar
flares [139], but not yet from the plane of the Galaxy, nor from supernova
remnants (SNRs).

We outline a formalism to calculate accurate spectra of secondaries pro-
duced in the simplest inelastic nuclear process,

p + p→ π0 +X→ 2γ +X,
where X is anything else created in the collision. Equation (2.42) gives
the secondary production spectrum (or number emissivity) for two inter-
acting particle distributions. For a stationary proton target, n2(p2, 2) =
npδ(p2)δ(µ2 − 1)/2π , giving

ṅs(ps,s) = cnp
∮
d1

∫ ∞
0
dp1 n1(p1, 1) β1(1− β1µ1)

dσ (p1, 1)

dpsds
.

(8.41)

If the particle distribution is isotropic, then n1(p1, 1) = n1(p1)/4π . Inte-
grating both sides over s gives

ṅs(ps) = cnp
∫ ∞

0
dp1 n1(p1) β1

dσ(p1)

dps
, (8.42)

where
dσ(p1)

dps
=

∮
ds

dσ(p1)

dpsds
.
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We calculate the production spectrum of secondaries ṅ(Ts) = dN/

dV dtdTs , where Ts is the kinetic energy of secondary s. The relations
dpsṅs(ps,s) = ṅ(Ts)dTs/4π and β1cn1(p1)/4π = Jp(Tp,p) follow,
where the subscripts in the last expression refer to the cosmic-ray proton.
Hence

ṅ(Ts) = 4πnp

∫ ∞
0

dTp Jp(Tp,p)
dσ(Tp)

dTs
. (8.43)

Now consider π0 production from interactions of cosmic rays with gas
and dust in the Galaxy. The dominant constituent of the ISM is H, and we
consider only the dominant proton component of the galactic cosmic rays. A
reasonable representation of the demodulated cosmic-ray proton spectrum
observed in the Solar neighborhood is

Jp(Tp,p) = 2.2

E2.75
p

CR p cm−2 s−1 GeV−1 sr−1 (8.44)

[140,141], namely a power-law in total energy Ep = Tp +mp.
The spectral number emissivity for π0 production from cosmic ray pro-

tons colliding with target protons or H nuclei is

ṅpH→π0(Tπ) = 4πnp

∫ ∞
0

dTp Jp(Tp,p)
dσpH→π0(Tp)

dTπ
. (8.45)

The γ -ray emissivity from π0 decay is

ṅπ0→2γ (ε) =
2

επ0

∫ ∞
T min
π

dTπ
ṅpH→π0(Tπ)√
Tπ(Tπ + 2mπ)

, (8.46)

where T min
π (ε) = mπ [γmin

π (ε)− 1], επ0 = mπ0/me ∼= 264, and

γmin
π (ε) = ε

επ0
+ επ0

4ε
= 1

2

(
2ε

επ0
+ επ0

2ε

)
, (8.47)

as we now demonstrate.

8.3.1 γ Rays from π 0 Decay

A π0, in its rest frame, decays into two γ -rays with energy ε ′ = επ0/2 =
γπε(1− βπµ). If the π0 decays isotropically in its own rest frame, then the
γ -ray decay spectrum in the proper frame of the π0 is

dN

dε ′d′
= 2

δ(ε ′ − επ0/2)

4π
. (8.48)
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For a π0 produced with Lorentz factor γπ , the transformation properties of
N(ε,) imply from eq. (5.10) that

dN

dεd
= δ(ε′ − επ0/2)

2πγπ(1− βπµ), (8.49)

so that

dN

dε
= 2

βπγπεπ0
H

(
ε; 1

2
γπεπ0(1− βπ), 1

2
γπεπ0(1+ βπ)

)
. (8.50)

The factor of 2 arises because two photons are produced per interaction.
Substituting eq. (8.50) into eq. (8.46) gives

ṅπ0→2γ (ε) =
2

επ0

∫ ∞
γmin
π (ε)

dγπ
ṅpH→π0(γπ)

βπγπ
, (8.51)

where γmin
π (ε) is given by eq. (8.47).

8.3.2 Cross Section for p + p→ π +X Production

The cross section for π production from p+p interactions can be written as

dσpp→π(Tp)
dTπ

= dσπ(Tp)

dTπ
= 〈ξσπ(Tp)〉 dNπ(Tp)

dTπ
. (8.52)

The term 〈ξσπ(Tp)〉 is the inclusive cross section for the production of
pions, irrespective of the remaining content of the secondary beam, and

∫ ∞
0

dTπ
dNπ(Tp)

dTπ
= 1.

By contrast, exclusive cross sections are the cross sections for a specific
decay channel [142]. Figure 8.3 shows the inclusive cross sections for the
production of neutral and charged pions [141,143]. The pions decay accord-
ing to the scheme

π0→ 2γ, π+ → µ+ + νµ, π− → µ− + ν̄µ, (8.53)

µ+ → e+ + ν̄µ + νe, µ− → e− + νµ + ν̄e (8.54)

(see Appendix E for masses and lifetimes).
The inclusive cross section of particle i in reaction Y is the product of

the inelastic cross section for reaction Y and the multiplicity ζi of particle
i. Consequently the inclusive cross section is much larger than the inelastic
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Table 8.1 Coefficients for the High-Energy Asymptotic Inclusive Cross Sections
for Pion Production in p-p Collisions

X aπ bπ cπ pmin (GeV/c)
π+ 32 48.5 59.5 8
π0 27 57.9 40.9 4
π− 28.2 74.2 69.3 5.5

cross section well above threshold energy for the production of a given sec-
ondary. The inclusive cross sections for the production of π+, π0, and π−
in p-p collisions are fit by the function

σπX (mb) = aπ ln γ + bπ√
γ
− cπ . (8.55)

Coefficients for the high-energy asymptotes with proton momenta greater
than pmin(GeV/c) in fits to the inclusive pion-producing reactions are given
in table 8.1 and shown in figure 8.3. Fits accurate above threshold are given
in Ref. [137].

The ratio of the inclusive cross section to the inelastic cross section is the
π multiplicity. The high-energy, Ep > 10 GeV, asymptote of the p − p
inelastic cross section is given by

σpp,inel(Ep) ∼= 30
[
0.95+ 0.06 ln(Ep/GeV)

]
mb (8.56)

[144], and a δ-function approximation for π production at relativistic ener-
gies can be written as

dσpp,inel(Ep)

dEπ
� σpp,inel(Ep) δ(Eπ − 0.17Ep). (8.57)

A simple δ-approximation for γ -rays formed in the p + p → πo → 2γ
reaction is

dσpp,inel(Ep)

dEγ
� 2σpp,π0(Ep) δ(Eγ − χEp). (8.58)

Here χ ∼ 0.05 is the ratio of the mean energy of the produced γ -ray to
the energy of the incident proton. The value of χ must be adjusted at suffi-
ciently high energies so that the total energy produced in secondaries does
not exceed the inelasticity of the reaction.

Equation (8.58) is useful for making rough approximations to γ -ray
production when Ep � 10 GeV. For even simple estimates, the inelastic
nuclear cross section for p-p and p-A collisions is

σpp(Ep) ∼= 30 mb, σpA(Ep) ∼= 30A2/3 mb for Ep � 1 GeV.
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Figure 8.3 Inclusive cross sections for the production of pions in proton-proton
collisions as a function of incident proton momentum. Inset in the p +
p→ π++X diagram shows the cross section for the exclusive channel
p+p→ π+ + d. References to the data points, expressions for the fits
(dashed lines) to the inclusive cross sections, and additional details are
found in Refs. [137,143].

The inelasticity Kpp giving the fraction of energy lost in an inelastic p +
p→ π producing collision is ∼0.5, so only a few collisions are required to
extract most of the cosmic ray proton’s original kinetic energy.

Nonthermal protons collide with ambient protons and hydrogen nuclei to
produce secondaries through a number channels. The five dominant chan-
nels are (1) p+p→ π0+X; (2) p+p→ π++X; (3) p+p→ π−+X;
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(4) p + p → K+ + X; (5) p + p → K− + X. Here “X” refers to any
other by-products produced in the reaction other than the particle indicated,
and K+ and K− refer to kaons. It is also understood that channel 2 does
not include the contribution resulting from the production of deuterium in
the reaction p + p → π+ + d , which can be treated separately as a two-
body process with cross section shown in figure 8.3 [145]. Secondary e±
and γ -ray production are dominated by the first three pion channels. Our
calculation technique follows the method described in [137,141] and [146];
see also [147]. This model combines the isobaric model [148] at energies
< 3 GeV and the scaling model [149] for energies > 7 GeV, with a linear
combination to join the two models in the transition region between 3 and
7 GeV.

Isobaric Model

Stecker [148] developed this model for application to cosmic γ rays. For
proton energies below 3 GeV, the production of pions by proton-proton col-
lisions is mediated by the excitation of a �3/2 isobar. Assuming that the
outgoing direction of the �3/2 isobar with mass m� is colinear with the
initial direction of the incident protons in the center-of-momentum (CM)
system, and that the decay products of the isobaric resonance are isotropi-
cally produced in the frame of the baryonic resonance, the pion distribution
in the laboratory system (LS) of the isobaric model is given by

f (Tπ ; Tp,m�)= 1

4mπγ ′πβ ′πγ
+
� β
+
�

(
H [γπ ; ℵ+(−),ℵ+(+)]

+ γ+� β
+
�

γ−� β
−
�

H [γπ ; ℵ−(−),ℵ−(+)]
)
, (8.59)

where the function ℵ±(∓) = γ±� γ ′π(1 ∓ β±�β ′π ) and s = 2mp(Tp + 2mp).
The Lorentz factors of the forward (+) and backward (−) moving isobars
are γ±� = γcγ

�
�(1 ± βcβ��), where γc = √s/2mp is the Lorentz factor of

the CM with respect to the LS, and γ �� = (s + m2
� + m2

π)/2s
1/2m� is the

Lorentz factor of the isobar in the CM. The pion Lorentz factor in the rest
frame of the � isobar is γ ′π = (m2

� +m2
π −m2

p)/2m�mπ .
The pion spectrum resulting from the pp collisions is calculated by eval-

uating the following integral over the isobar mass spectrum:

dN(Tπ, Tp)

dTπ
=

∫ √s−mp
mp+mπ

dm� BW(m�)f (Tπ ; Tp,m�). (8.60)
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BW(m�) is the normalized isobar mass spectrum given by the Breit-Wigner
distribution

BW(m�) = wr(Tp)��

(m� − 〈m�〉)2 + �2
�

(8.61)

with average isobar mass 〈m�〉 and normalization factor

wr(Tp)=
[
arctan

(√
s −mp − 〈m�〉

��

)
−arctan

(
mp +mπ −〈m�〉

��

)]−1

.

(8.62)

The�3/2(1232) isobar, which has a resonance width �� = 1/2×115 MeV
[150], is the dominant resonance near threshold. More accurate treatments
consider additional baryonic resonances.

Scaling Model

When exclusive descriptions are not feasible because of the large number
of decay channels, an inclusive formalism with a scaling behavior is best
suited to describe secondaries formed in nuclear production. For protons
whose energies are greater than 7 GeV, we adopt a scaling model [148]
to demonstrate. The Lorentz-invariant cross section given by Badhwar and
Stephens [149,151] for neutral and charged pion production is written in the
form

Eπ
d3σ

d3pπ
= AGπ(Ep)(1− ζπ)Q exp[−Bp⊥/(1+ 4m2

p/s)], (8.63)

where we define

Gπ±(Ep) = (1+ 4m2
p/s)

R, (8.64)

Gπ0(Ep) = (1+ 23E−2.6
p )(1− 4m2

p/s)
R, (8.65)

Q = (C1 − C2p⊥ + C3p
2
⊥)/

√
1+ 4m2

p/s, (8.66)

ζπ =
√
x�‖ + (4/s)(p2

⊥ +m2
π), (8.67)

and

x�‖ =
2mπγπγc

√
s(βπ cos θ − βc)√

(s −m2
π −m2

X)
2 − 4m2

πm
2
X

. (8.68)

Here θ is the pion LS polar angle and the constants A, B, C1,2,3, and R are
given in table 8.2 [148,149]. The quantitymX depends on the channel under
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Table 8.2 Adopted Values for Constants Defining the Invariant Cross Section for
p + p→ π +X Reactions

Constanta 1 2 3
A 140 153 127
B 5.43 5.55 5.3
C1 6.1 5.3667 7.0334
C2 −3.3 −3.5 −4.5
C3 0.6 0.8334 1.667
R 2 1 3

aChannels 1, 2, and 3 refer to the production of π0, π+,
and π−, respectively.

consideration and are (1) mX = 2mp, (2) mX = mp + mn, and (3) mX =
2mp + mπ for inclusive p-p interactions leading to the production of π0,
π+, and π−, respectively. Examination of the equation for the dimensionless
parallel momentum reveals the Feynman scaling limit x�‖ → p‖/p‖,max →
2p‖/
√
s when s � m2

p .
To calculate the LS energy distribution of pions, we integrate the follow-

ing over the pion LS polar angle:

Qπ(Eπ,Ep) = 2πpπ
〈ξσπ(Ep)〉

∫ 1

cos θmax

d cos θ

(
Eπ

d3σ

d3pπ

)
, (8.69)

where −1 ≤ cos θmax ≤ 1 and is defined as

cos θmax = 1

βcγcpπ

(
γcEπ − s −m

2
Xm

2
π

2
√
s

)
. (8.70)

The pions will decay to produce muons. These muons are created fully
polarized, resulting in an e± decay asymmetry. The muons created by pion
decay are made in the rest frame of the pion with Lorentz factor γµ = (m2

π+
m2
µ)/2mπmµ ≈ 1.039, and βµ ≈ 0.2714. In the rest frame of the muons,

the resulting electron decay spectrum is given by [152,153]

d2N

dE�e d cos θ�
= 2ε2(3− 2ε)

mµ

[
1+ ξ

(
1− 2ε

3− 2ε

)
cos θ�

]
, (8.71)

where E�e is the electron energy in the muon rest frame and helps to de-
fine the quantity ε = 2E�e/mµ. The angle between the polarization angle of
the parent muon and the resulting electron momentum is θ�. The quantity
ξ = ±1 for µ± → e±.
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For a given electron energy Ee, the normalized electron decay energy
distribution in the frame where the pions are isotropic is [137]

dN(Ee; yπ)
dEe

=



φ(ς−)− φ(ς+), ς+ < ς− < ω−,
ψ(ς−)− ψ(ω−)+ φ(ω−)− φ(ς+), ς+ < ω− < ς− < ω+,
ψ(ω+)− ψ(ω−)+ φ(ω−)− φ(ς+), ς+ < ω− < ω+ < ς−,
ψ(ς−)− ψ(ς+), ω− < ς+ < ς− < ω+,
ψ(ω+)− ψ(ς+), ω− < ς+ < ω+ < ς−,
0, ω+ < ς−,

(8.72)

where we have introduced the following definitions:

ς± = Ee

γµγπmµ(1± βπ)
ω± = (1± βµ)/2

φ(x)= 8γ 5
µx

2

dE�e d cos θ�

[
(3− uβ2

µ)(1− β2
µ)

2
− 4x(3+ β2

µ − 4uβ2
µ)

9

]

ψ(x)= 1

6βµγµβπγπmµ

[
(5+ u) ln x − 6(u+ 2uβµ + 3)x2

(1+ βµ)2

+16(u+ 3uβµ + 2)x3

3(1+ βµ)3
]
. (8.73)

Here u = ξ/βµ, and ξ = 1 for positrons and ξ = −1 for electrons.
Figure 8.4 shows the energy distributions of electrons and positrons formed
through pp collisions by mono-energetic protons with a variety of energies
for channels 1 and 2 [154] (see also [143]). Figure 8.5 shows a calcu-
lation of the cosmic-ray induced diffuse π0-decay γ -ray spectrum of the
Galaxy [141].

The resulting electron or positron spectrum formed by the decay of iso-
tropically produced pions, modifying the notation from eq. (8.51), is

Qe(Ee) =
∫ ∞
γ̄π (Ee)

dγπ Qπ(γπ)
dN(Ee; γπ)

dEe
, (8.74)

whereQπ(γπ) is given by eq. (8.69), and γ̄π = (Ee/Emax
e +Emax

e /Ee)/2 if
Ee > Emax

e = mµ(1+ βµ)γµ/2 ≈ 69.8 MeV; otherwise, γ̄π = 1.
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Figure 8.4 Differential cross section for the production of γ -rays, positrons, and
electrons from secondary neutral and charged pions produced in p-p
collisions by monoenergetic isotropic protons undergoing nuclear in-
teractions with protons at rest [143,154]. Kinetic energies of the non-
thermal protons are labeled.
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Figure 8.5 Left: The cosmic-ray spectrum observed during Solar minimum is la-
beled M, and the demodulated spectrum used in the calculation on the
right is shown by the heavy solid line [140]. The demodulated spectra
used in other calculations are denoted S, CG, LG, and BS (for details,
see [142]). The boundaries of the region denoted by SB correspond to
the curves BS and Mu of Ref. [151]. Right: The secondary π0 and γ -ray
emissivities from the interaction of the local demodulated cosmic-ray
proton spectrum with unit density of atomic hydrogen.

More detailed treatments based on high-energy physics interaction
models [155], inclusion of diffractive processes in scattering [156], and
better-tested scaling representations [157] are also available to treat this
process. Simple functional forms for use in astrophysical applications have
also been developed and tested against nuclear interaction models [158].

8.4 ELECTRON-POSITRON ANNIHILATION RADIATION

Much interest in time-variable annihilation radiation as a marker of galactic
black holes was generated in the 1980s due to low-significance detection of
time-variable annihilation radiation toward the galactic center (see [159] for
review). The annihilation itself would take place in a thermal environment
after escape and transport. High Energy Astronomical Observatory HEAO-3
reports [160] of Cygnus X-1 with enhanced hard X-ray/soft γ -ray emission
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led to the application of thermal pair cloud models to γ -ray data [8,161] in
order to explain these results.

8.4.1 Annihilation in a Thermal Medium

In a sufficiently high-temperature (T � 105 K) phase of the ISM, or in the
hot accretion plasma surrounding the black hole, target gas would be ionized
plasma. In this case, positrons directly annihilate with electrons. The cross
section for electron-positron annihilation in the frame of reference in which
one of the particles is at rest and the other has Lorentz factor γr is

σa(γr) = πr2
e

(γr + 1)

[(
γ 2
r + 4γr + 1

γ 2
r − 1

)
ln

(
γr +

√
γ 2
r − 1

)
− γr + 3√

γ 2
r − 1

]

(8.75)

[64], with asymptotes

σa(γr)→



πr2

e /βr , γr − 1� 1,

πr2
e

(
ln 2γr − 1

γr

)
, γr � 1.

(8.76)

The thermal Doppler-broadened annihilation spectrum in a high-
temperature (107 K � T � 1010 K) thermal plasma was calculated numeri-
cally by Ramaty and Mészáros [162].

When positrons flow into the ISM and annihilate there, atomic effects,
including positronium (Ps) formation, must be considered. Early calcula-
tions of positron annihilation in the ISM were treated by [163], and in Solar
flares by [164]. Updated cross sections and processes related to the annihi-
lation of positrons [165,166] are briefly summarized here.

Positrons injected into the ISM will annihilate directly or thermalize.
Thermalization is more important than annihilation for positrons injected
at MeV energies, and direct annihilation of higher-energy positrons pro-
duces a feature that is generally too broadened and weak to be easily de-
tected. Positrons thermalize through Coulomb losses with free electrons,
and through excitation and ionization energy losses with bound electrons.
When a positron’s energy reaches a few hundred eV, the energy-loss
processes compete primarily with the formation of Ps through charge
exchange in flight, as the rate of direct annihilation-in-flight is small. Ther-
mal positrons either annihilate directly with free or bound electrons, or
form Ps through radiative (re)combination and charge exchange. Charge
exchange with neutral hydrogen has a 2430 Å threshold, so this process
is suppressed in sufficiently low-temperature gases.
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Ps is formed in the triplet (3S1) ortho-Ps and singlet (1S0) para-Ps ground
states in a 3 : 1 ratio, with decay lifetimes of 1.4 × 10−7 s and 1.25 ×
10−10 s, respectively. Cascading to the ground state can produce a Ly-α
line at 6.8 eV and other lines that are very weak but, in principle, detectable
[167,168]. Ps can be quenched if the density is �1013 cm−3, though this is
not relevant for annihilation in the ISM. Annihilation of thermalized
positrons on dust [169,170] is also an important quenching process for Ps,
leading to a suppression of the 3γ continuum. These calculations are
complicated by grain properties, including their sizes, charges, and com-
positions. The presence of dust in the warm envelopes around cold molecu-
lar cloud cores can reduce the Ps fraction, but dust is unlikely to affect the
annihilation line and continuum properties in the uniform ISM.

8.4.2 Thermal Annihilation Line and Continuum Spectra

Calculating the 0.511 MeV line spectrum and relative strength of the 3γ
continuum accurately requires a numerical simulation. The thermally aver-
aged rates for the most important binary interactions involving positrons,
and results of a Monte Carlo code to simulate the thermalization and Ps pro-
duction of∼MeV positrons are summarized in [171]. Charge exchange with
neutral and singly ionized helium is included. Processes involving dust and
H2 are not considered in this simplified treatment (see [172]).

For the formation of Ps, we include radiative recombination with free
electrons and charge exchange with hydrogen and neutral He. For Ps
quenching, we include breakup of Ps by neutral hydrogen, ortho-Ps quench-
ing via free electrons and via electrons bound in H, inverse charge exchange
with H and He, and ionization of ortho-Ps atoms by free electrons. This
last reaction, already mentioned as important in ionized gases at densities
�1013 cm−3, must be considered in positron annihilation in Solar flares.

The Ps formation, quenching, and energy-loss processes along with the
positron annihilation processes treated in our calculations are shown in
table 8.3. The important diagnostic spectral features of annihilation
radiation are the ratioQ3γ /Q2γ and the FWHM width�E of the line. These
two quantities depend upon the conditions of the medium where the annihi-
lation occurs. The medium can be characterized by the temperature T , the
total (neutral + ionized) hydrogen density nH, and the ionization fractions
XH+ , XHe+ and XHe++ . We use the nonthermal and thermally averaged rates
discussed above to solve a system of continuity equations for pair equi-
librium and provide rates for positron annihilation from all of the various
processes. These rates then directly give Q3γ /Q2γ . The total line spectrum
is the sum of several components, some having Gaussian shapes, others not.
Hence, the total line shape will not, in general, be Gaussian.
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Table 8.3 Binary Interactions Involving Positrons

Energy redistribution Positronium (Ps) formation

e+ H→ e+ H∗ e+ e− → γ Ps

e+ H→ e+e− H+ e+ H→ H+ Ps

e+ He→ e+ He∗ e+ He→ He+ Ps

e+ He→ e+e− He+

Positronium quenching annihilation

e− 3Ps→ e−e−e+ e+ e− → 2γ

H 3Ps→ H e−e+ e+ H→ H+ 2γ

e− 3Ps→ e− 1Ps e+ He→ He+ 2γ

H 3Ps→ H 1Ps 1Ps→ 2γ

H+ Ps→ H e+ 3Ps→ 3γ

He+ Ps→ He e+

Figure 8.6 shows calculations of the annihilation line and Ps continuum
for different phases of the ISM [173] with temperatures and densities given
by table 8.4. The quantities Q3γ /Q2γ , giving the relative number of pho-
tons in the 3γ Ps continuum to the 0.511 MeV line, and the FWHM line
width �E, from figures 8.6 and 8.7, are shown in the legend of figure 8.6.
In the limit of a fully neutral medium, all annihilation takes place through
the formation of Ps. Consequently, Q3γ /Q2γ → 9/2, because 3/4 of the
annihilations take place via ortho-Ps, giving three photons per annihilation,
whereas 1/4 of the annihilations take place via para-Ps, giving two photons
per annihilation. Annihilation occurs before thermalization in a fully neu-
tral medium, so the calculated 9 keV line width for the neutral medium is
broader than for partially ionized media where the positrons generally ther-
malize before annihilating.

As the temperature increases, the relative number of 3γ continuum to 2γ
line photons decreases. This is because the Ps formation processes involving
charge exchange with neutrals become less important at higher temperatures
due to the fewer available neutral or partially ionized ions. The line width
increases at high temperatures due to thermal broadening, and approaches
the limit �EFWHM = 11.0T 1/2

6 keV [164,165], where T6 is the temperature
in units of 106 K. Ps formation can be quenched in high-temperature gas.
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Figure 8.6 Calculations of annihilation line and Ps continuum from the injection of
MeV positrons into regions with different temperatures and ionization
fractions. (Figure courtesy of Ronald J. Murphy.)
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Table 8.4 Temperatures and Densities, in units of cm−3, of Different Phases of the
ISM Used in Calculations of Annihilation Radiation

Cold Warm Warm Hot
neutral neutral ionized

T (K) 80 8000 8000 4.5× 105

nHI 38 0.31 0.06 0.0
ne 0.0 0.055 0.17 3.5× 10−3

nHI 0.0 0.055 0.17 2.9× 10−3

nHeI 3.8 0.036 0.023 0.0
nHeII 0.0 0.0 0.0 0.0
nHeIII 0.0 0.0 0.0 0.6× 10−3

8.5 NUCLEAR γ -RAY LINE PRODUCTION

MeV telescopes have detected nuclear line emission from Solar flares,
diffuse nuclear line emissions from the Galaxy, and nuclear γ -ray line
photons from SNRs and SN 1987A. Freshly synthesized nuclei formed
in stellar explosions or as secondary spallation products in cosmic ray col-
lisions may be radioactive, and decay with the emission of a γ ray on a
characteristic timescale. Positron production often accompanies γ -ray
production in radioactive emitters made by novae and supernovae and by
low-energy (≈10–100 MeV/nucleon) cosmic rays.

With OSSE and INTEGRAL finding no signs of time-variable annihi-
lation radiation [116,117], hopes for black-hole detection via radioactive
tracers have faded. Nevertheless, nuclear γ -ray line astronomy reveals, most
dramatically through maps of the 0.511 MeV annihilation line and the
1.809 MeV 26Al (≈106 yr decay lifetime), the nuclear history of our Galaxy.
Synthesis of radioactive nuclei in our Galaxy is confirmed by observations
of 56Co and 57Co nuclear decay lines from SN 1987A, the 26Al 1.809 MeV
line found in clumped structure along the Galactic plane, observed in great
deal with the Compton Telescope (COMPTEL) on CGRO and with INTE-
GRAL, and the 44Ti nuclear decay line from Cas A [174,175]. (The mean
lifetimes of the 56Ni→ 56Co and 56Co→ 56Fe decays in the 56Ni→ 56Co→
56Fe chain are 8.8 and 111.4 days, respectively, with a positron emitted 19%
of the time in the latter reaction.)

The flux of γ -ray line emission reflects the number of SNe in the recent
past, and the mass of isotopes produced in the explosion. More than a Solar
mass of 56Ni can be manufactured in a Type Ia SN involving white dwarf
detonation or deflagration. For core-collapse Type II SNe, only ∼ 0.08M�
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Figure 8.7 Calculations of 3γ /2γ ratios and FWHM line widths in different phases
of the ISM.

of 56Ni is synthesized per SN. The mean lifetime of the 44Ti→ 44Sc→
44Ca chain is 78 yr, and the synthesized mass of 44Ti in a SN is not great,
so recent supernova activity is required for detection of these nuclear lines.
Calculations of masses of synthesized elements in stellar interiors are de-
scribed in, e.g., Ref. [176].

Identification of sites of black-hole formation by a distinguishing nuclear
line signature could be important for models of gamma-ray bursts related
to a specific type of SN (specifically, SN Ib/c). Experimental advances to
search for the nuclear signatures of specific types of SNe, for the radioac-
tive decay signature of Type Ia SNe, and for the spallation nuclear γ -ray
lines from low energy cosmic rays [177], will probably have to wait for an
advanced nuclear γ -ray telescope. The significant bulge component of
the annihilation glow suggests an origin in an old stellar population, e.g.,
low-mass X-ray binary neutron-star or black-hole systems.
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Chapter Nine

Photohadronic Processes

In this chapter, three fundamental photohadronic processes are considered,
each involving high-energy protons or ions N with atomic charge Z and
atomic mass A interacting with target photons. They are the reactions

1. N+γ → N+π (denoted φπ ), photopion or photomeson production;
2. N + γ → N + e+ + e−, photopair (φe) production; and
3. N + γ → N ′ +N ′′, photodisintegration, for ions.

In addition, particles in intergalactic space lose energy adiabatically as the
universe expands.

Charged pions formed by the photopion process decay into leptons and
neutrinos, and neutral pions decay into γ rays. The secondary neutrino fla-
vor ratio from φπ processes at production is

νe : νµ : ντ = 1 : 2 : 0,

because the products of the decay schemes, eqs. (8.53) and (8.54), for
charged pions are

π+ → e+ + νe + ν̄µ + νµ, π− → e− + ν̄e + νµ + ν̄µ, (9.1)

and are the same in photopion production as for pions formed as secon-
daries in nuclear production. For UHECR protons, the photopion produc-
tion inelasticity Kφπ , is ∼ 0.2–0.5, so only a few interactions are required
for an UHECR proton to lose a large fraction of its initial energy. By con-
trast, the photopair inelasticity Kφe ∼ 2me/mp, so hundreds of scatterings
are needed for an UHECR proton to lose most of its energy through this
process.

The photopion process becomes less important for UHECR nucleons as
an energy-loss process because of the higher threshold energy for large-A
nuclei, but the photopair process, with energy-loss rates proportional to Z2,
still remains strong. More important for ions though is photodisintegration,
where nuclear resonances cause escape of protons, neutrons, and light nuclei
from the nucleus.
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Photopion and secondary nuclear production, examined in the previous
chapter, are the two processes usually considered for high-energy (�GeV)
neutrino production. The flavor ratio of neutrinos formed through photopion
and secondary nuclear production can be changed through different mecha-
nisms, including neutrino oscillations. In sufficiently strong magnetic fields,
a secondary muon loses its energy through synchrotron processes before
decaying, thereby reducing the energy output in neutrinos and the electron
neutrino content [178]. Subsequent acceleration following production can
enhance neutrino energy output [179].

Neutrino detection depends on the high-energy particle physics cross sec-
tions, which are not known with certainty, and detector physics [180].
Analysis of data from optical modules placed deep in ice or water is
used to discriminate the few upward-going neutrino-induced muon, elec-
tron, and τ events from the intense background of cosmic-ray-induced
downward-going muons. Detection sensitivity for neutrino-induced events
and opacity of the Earth to � 1015 eV neutrinos [181] are central issues
that must be considered in a complete high-energy astrophysical neutrino
model.

Only the source and cosmic propagation problems are considered here,
specialized first to the problem of UHECR protons in the CMBR. The
physics of the system is illustrated by working through, in specified
approximations, a central problem in cosmic-ray and high-energy neutrino
astrophysics, namely, the energy spectrum of diffuse cosmogenic or GZK
neutrinos formed by UHECR protons interacting with photons of the CMBR
(see footnote 5, chapter 1 for the definition of GZK). Photonuclear reactions
are considered in the final section of the chapter.

This analysis treats

1. scattering and energy loss timescales through photohadronic and
inelastic processes;

2. the photopion (φπ ) process, including energy-loss rates of UHECR
protons in the CMBR;

3. an approximate analytic treatment of the photopair (φe) process, in-
cluding approximate and accurate UHECR ion energy-loss rates in the
CMBR;

4. adiabatic losses from universal expansion;
5. formation of cosmogenic secondaries from photopion and photopair

interactions between UHECR protons and CMB photons;
6. evolution of the UHECR proton spectrum and normalization to the

local luminosity density and star formation rate (SFR) function of
the sources of UHECRs;
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7. the Waxman-Bahcall bound limiting the diffuse neutrino intensity
given the measured intensity of UHECRs;

8. calculations of the diffuse neutrino background from photopion reac-
tions between UHECRs and photons of the CMBR, for different SFRs;
and

9. photodisintegration of ions.

By extending these ideas to UHECR ions, we can construct a model to
confront HiRes and Auger data on the UHECR spectrum, including the
GZK cutoff which was observed with the HiRes observatory in Utah [182]
and the Pierre Auger Observatory (PAO) in Argentina [183]. We can also
make flux predictions for high-energy neutrino astronomy, both at PeV
energies from source neutrinos and at EeV energies from cosmogenic neu-
trinos [184].

9.1 SCATTERING AND ENERGY-LOSS TIMESCALES

Let the cross section for a photohadronic process be denoted σγp(εr). The
cross section depends only on the invariant energy of the interaction,

√
sint = εr = γpε(1− βpµ), (9.2)

which is equal to the energy of the photon in the proton’s rest frame. Here
the proton has Lorentz factor γp = Ep/mpc2 = (1−β2

p)
−1/2, ε = hν/mec2,

µ = cos θ , and θ is the angle between the directions of the interacting
photon and proton.

The photohadronic interaction rate (and therefore the inverse of the scat-
tering timescale) for ultrarelativistic hadrons in a radiation field described
by the spectral number density nph(ε,
) = dNph/dεd
dV , which is in
general anisotropic, is given by

Ṅ sc(γp) = c
∮
d


∫ ∞
0

dε (1− βpµ) nph(ε,
) σγp(εr), (9.3)

from eq. (2.40).
In an inelastic collision leading to electron-positron pair or pion

production, an ultrarelativistic proton loses, on average, a fraction K(εr)
of its original energy, hence K(εr) is the inelasticity of the collision. The
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inverse of the photohadronic energy-loss timescale is therefore given by

t−1
γp (γp)=

1

γp

∣∣∣∣dγpdt
∣∣∣∣
γp

= c
∫ ∞

0
dε

∫ 2π

0
dφ

∫ +1

−1
dµ nph(ε,
)(1− βpµ)σγp(εr)Kγp(εr ).

(9.4)

The scattering timescale tsc(γp)= [Ṅ sc(γp)]−1 is generally shorter than the
energy-loss timescale tγp(γp), as it takes∼2–5 scatterings in photopion pro-
duction, or hundreds of scatterings in photopair production, for the UHECR
proton to lose a large fraction of its initial energy.

For an isotropic radiation field, nph(ε,
) = n(ε)/4π , and eq. (9.4) gives

t−1
γp (γp)

∼= c

2γ 2
p

∫ ∞
0

dε
nph(ε)

ε2

∫ 2γpε

0
dεr εr σγp(εr)Kγp(εr ) (9.5)

in the limit γp � 1, βp → 1 [185].
The CMBR is considered here as the target background radiation field.

The photon distribution of the CMBR is given, from eq. (5.16), by

nCMB(ε; z) = 8π

λ3
C

ε2

exp[ε/�(z)]− 1
, (9.6)

where �(z) ∼= 4.6 × 10−10(1 + z) is, in units of mec2, the temperature of
the CMBR at redshift z (eq. [5.17]).

9.2 PHOTOPION PROCESS

The photopion process pγ → Nπ has a threshold photon energy εthr =
mπ +m2

π/2mp (mπ0 = 135.0 MeV, mπ± = 139.6 MeV). The π0 threshold
is therefore ∼= 145 MeV, and only the γp → + → π0p is kinematically
allowed. At energies between the π+ threshold, ∼= 0.150 GeV, and
≈0.25 GeV, the direct pion channel γp→ π+n is dominant [186].

The simplest photohadronic process involves an exchange of a meson
between an electromagnetic vertex for the photon interaction and a strong
interaction vertex for the baryon interaction (see figure 9.1). Besides direct
processes, single or multiple resonant excitations followed by decay are im-
portant at

√
sint � 0.25 GeV.
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Figure 9.1 Feynman diagram for reactions p+γ → p+π0 and p+γ → n+π+.
Labels u and d denote up and down quarks, respectively.

9.2.1 Photopion Cross Section

Four separate contributions to the total photopion cross section [187] are
shown in figure 9.2:

1. Resonance Production

The most important resonance in photopion and secondary nuclear pro-
duction is the +(1232) resonance (m+(1232) = 1.232 GeV, Lorentzian
width �+(1232) = 0.115 GeV). For +(1232) resonance production and
decay, the charge-changing reaction pγ → nπ+ occurs in the ratio 1 : 2
compared to the reaction pγ → nπ0 where an outgoing proton is pro-
duced. More massive resonances also contribute (the usual convention is
that resonances refer to isospin 3/2 particles, andN resonances to isospin
1/2 particles). The suite of baryonic resonances in pγ reactions include
the N+(1440), N+(1520), N+(1535), N+(1650), N+(1680), +(1700),
+(1905), and +(1950) resonances [189]. Higher-mass resonances, such
as � and �, contribute less significantly in astrophysical calculations.

2. Direct Production

This channel refers to residual, nonresonant contributions to direct two-body
channels consisting of outgoing charged pions. These include the
reactions pγ → nπ+, pγ → ++π−, and pγ → 0π+. This chan-
nel contributes nearly 30% to the total photohadronic cross section for ≈
0.25 GeV � √sint � 1 GeV. Channels with no change of the isospin I3 vec-
tor are strongly suppressed, so that pγ → nπ+ entirely dominates for this
channel. This enhances the conversion of the protons to neutrons, and also
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Figure 9.2 Data show the total inelastic pγ photomeson production cross
section [186,187] as a function of the photon’s energy in the pro-
ton rest frame, and light curves show separate contributions of baryon
resonances, the direct single-pion channel, diffractive scattering, and
multipion production (1µbarn = 10−30 cm−2; data from Ref. [188]
and references therein). (Cross section figure courtesy of Anita Reimer.)
Also shown by thick lines is the two-step-function approximation used
in the analysis, consisting of a single-pion near-threshold channel be-
tween 200 and 500 GeV, and a multipion channel at energies

√
sint =

εr ≥ 980mec2 = 500 MeV. The inelasticities of the two channels are
labeled.

increases the amount of energy in neutrinos compared to + excitation and
decay.

3. Multipion Production

Multipion production may be treated as a statistical process or expressed
in terms of a scaling function, and is simulated in the SOPHIA code [187]
using QCD fragmentation models.

4. Diffraction

Diffractive scattering couples photons to heavier vector mesons ρ0 and ω.

9.2.2 Analytic Expression for Photopion Cross Section

To derive analytic expressions for total and secondary production cross sec-
tions, we follow the approach of Ref. [95] where the photopion process is
approximated by the sum of two channels. In the (i) single-pion resonance
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channel, the proton loses 20% of its energy on average through the reactions

p + γ → + →
{
p + π0→ p + 2γ,

n+ π+ → n+ e + 3ν → p + 2e + 4ν,

with the two decay channels occuring at roughly the same rate in single-pion
production.1 In the (ii) multipion channel, the proton loses on average 60%
of its initial energy, which is assumed to be equally divided into secondary
π 0, π+, and π− particles. In the p + γ → p + π0 channel, the neutral
pion decays into two γ rays, each with ≈10% of the energy of the initial
proton. Following production, the γ rays can materialize into e+-e− pairs
through the γ γ → e+-e− absorption process, initiating an electromagnetic
synchrotron/Compton/pair-production cascade.

In the p+ γ → n+ π+ channel, the decay of the charged pion produces
three neutrinos and a positron in the reaction chain

π+ → µ+ + νµ, followed by the decay µ+ → e+ + νe + ν̄µ
(eqs. [8.53] and [8.54]). The neutron decays with a mean life tn ∼= 886
s [190] through the β-decay reaction

n→ p + e− + ν̄e. (9.7)

The β-decay electron and neutrino have energies ≈1 MeV in the neutron’s
rest frame. In a single pγ interaction leading to the production of a single
π+, four neutrinos and two leptons are formed, with one of the neutrinos
and one of the leptons having ≈50 times less energy than the others. As-
sociated with electron β-decay is the less frequent channel known as inner
bremsstrahlung, where radiation is produced from an abrupt transition in the
nucleus. This energy, taken at the expense of the neutrino, produces weak
secondary radiation.

We adopt a two step-function approximation [95,191] for the photopion
cross section, given by

σφπ(εr) =
{

340 µb, εthr = 390 ≤ εr ≤ 980,

120 µb, εr ≤ 980,
(9.8)

and inelasticity

Kφπ(εr) =
{

0.2, 390 ≤ εr ≤ 980,

0.6, εr ≤ 980; (9.9)

1Isospin statistics for this reaction give a ratio of 1:2 for the pγ→ nπ+ to pγ→pπ 0 rate;
addition of the direct production channel increases the rate of the charge-changing reaction.
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see figure 9.2. Hence

σ̂φπ ≡ σφπ(εr )Kφπ(εr)≡ σ1K1H(εr−390) ∼= 70H(εr − 390) µb, (9.10)

so σ1K1
∼= 70µb. Equation (9.10) provides a very versatile expression for

estimating photopion energy losses for a wide range of problems.
In this approximation, the lower-energy step function approximates

(1232) resonance production and direct single-pion production processes,
and the higher-energy step function approximates the multiphoton produc-
tion process. For the  resonance, isospin statistics imply [192] a charge-
changing ratio of 1/3 for single resonance production, but the addition of
the single-pion channel, which favors the charge-changing reaction pγ →
nπ+, adds so that the net charge-changing probability is about equal to half
of the total single-pion cross section. Thus the net resonance and single-
pion channels cross sections for the pγ process leading to a nπ+ final state
is about equal to that leading to a pπ0 final state. In the multipion limit,
π+, π−, and π0 are assumed to be produced in equal numbers, with the
energy losses being equally distributed into the decay products consisting
of leptons, neutrinos, and γ quanta.

9.2.3 Numerical Calculation of Photopion Cross Section

The cross section shown in figure 9.2 can be represented by a superposition
of resonance structures, expressed as a Breit-Wigner function in the form

σ(s;m,, J ) = πbγ (2J + 1)

m2


2s2

ε′2 [(s −m2
)

2 + s2]
, (9.11)

where ε ′ is the photon energy,

s = m2 + 2mε′,

m is the mass of the proton or ion, bγ is the branching ratio, J is the an-
gular momentum of the resonance, m is the resonance mass, and  is the
resonance width. See Ref. [186] for tables of resonance masses and widths.

9.2.4 Photopion Energy-Loss Rate

Using approximation (9.10) and the CMB photon spectrum, eq. (9.6), in eq.
(9.5) gives the photopion energy-loss timescale

t−1
φπ (γp)

∼= 8πcσ1K1�
3

λ3
C

∫ ∞
ω

dy
y2 − ω2

exp(y)− 1
, (9.12)
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which is the inverse of the photopion energy-loss rate. The parameter

ω = εthr

2γp�
= 4.0

E20(1+ z) (9.13)

characterizes the different regimes of interactions of an ultrarelativistic
cosmic-ray proton with energy Ep = γpmpc

2 = 1020E20 eV with the
low- and high-energy regimes of the target blackbody photons. The sub-
GZK regime, where most φπ interactions are with the exponentially declin-
ing number of photons in the Wien regime, is defined by the condition
E20 � 4/(1 + z) or ω � 1. The super-GZK regime involving the highest-
energy UHECR protons interacting with the target CMBR photons in the
Rayleigh-Jeans portion of the spectrum is defined by E20 � 4/(1 + z) or
ω � 1, where E20 ≡ Ep/1020 eV.

The asymptotes of the integral in eq. (9.12) in the ω � 1 and ω � 1
regimes (protons primarily interacting with the Rayleigh-Jeans and Wien
portions of the CMBR, respectively) are

I =
∫ ∞
ω

dy
y2−ω2

exp(y)− 1
→

{
�(3)ζ(3)+ ω2[ln(1− e−ω)− 1

2 ], ω � 1,

2(1+ ω)e−ω, ω � 1,

(9.14)

where ζ(x) and �(x) are Riemann’s zeta function and the Gamma function,
respectively, and �(3)ζ(3) = 2.4041 . . . (see Appendix B).

Substituting the ω � 1 (γp � εthr/2�) asymptote into eq. (9.12), and
rewriting the result in terms of the mean energy-loss length rφπ = ctφπ for
a proton with energy 1020E20 eV, gives the result

rφπ(E20) ∼= 13.7 exp[4.0/E20(1+ z)]
(1+ z)3[1+ 4.0/E20(1+ z)] Mpc, E20 � 4

1+ z . (9.15)

In the opposite regime,

rφπ (E20)∼= 27.4 Mpc

(1+ z)3{�(3)ζ(3)+ω2[ln(1−e−ω)− 1
2 ]} , E20 � 4

1+ z .
(9.16)

Figure 9.3 shows the low-energy asymptote for photopion losses on
the CMBR at z = 0, compared with detailed calculations [193] of the
photohadronic energy-loss pathlength. Equation (9.15) gives an excellent
approximation in the regime E20 � 4/(1 + z), which is most relevant for
the energy losses of UHECRs in intergalactic space and for production of
GZK neutrinos [194]. The ω � 1 asymptote is found to provide a rea-
sonable approximation even at ω � 1. Also shown are numerical calcula-
tions of photopair energy losses of UHECR protons with CMB photons, and
photopion and photodisintegration energy-loss rates of Fe in the CMBR,
as described below.
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Figure 9.3 Photohadronic mean free paths for scattering, energy loss, and photo-
disintegration of UHECR protons and Fe in the CMBR at z = 0 as
a function of total particle energy. The analytical approximations, eq.
(9.15) and eqs. (9.30)–(9.34) for the photopion, rφπ , and and photopair,
rφe (with kφe = 1) energy-loss pathlengths, of UHECR protons are
shown by the dashed and light-dotted curves, respectively. Numerical
results for rφe of UHECR protons and Fe are shown by the heavy dot-
ted and shaded dotted curves, respectively. Open circles show numerical
results [193] for the UHECR proton pathlength rφπ . Shaded dot-dashed
and shaded dashed curves show the photodisintegration and photopion
energy loss mean free path of UHECR Fe in the CMBR. Solid curve
shows the total UHECR proton energy-loss length in the CMBR. Dot-
dashed curve shows the photopion scattering MFP for UHECR protons.

9.2.5 GZK Energy

UHECR protons accelerated by distant sources lose a large fraction of their
energy due to photopion interactions with photons of the CMB. For UHECR
protons, we define the GZK energy by equating the Hubble radius

c/H0
∼= (3× 105/72) Mpc ∼= 4170 Mpc ∼= 1.3× 1028 cm
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with the asymptotic form of the GZK photopion energy-loss mean free path
in the low-redshift z � 1 limit, eq. (9.15),

rφπ(E20) ∼= 13.7 exp(4.0/E20)

(1+ 4.0/E20)
Mpc. (9.17)

The resulting transcendental equation eu/(1 + u) = 4170/13.7 = 304 has
solution 4/E20 = 7.9 . . . . The cosmic-ray proton GZK energy is therefore

EGZK
∼= 5× 1019eV. (9.18)

Even when the full extragalactic background radiation field, effects of
photopair production [195], a more precise definition of the horizon
(chapter 17), and photodisintegration of UHECR ions are considered, a
similar value is obtained for the GZK radius. This led Greisen [10] and
Zatsepin and Kuzmin [11] to argue for the end to the cosmic-ray spectrum
at E ≈ 1020 eV.

9.2.6 Stochastic and Continuous Energy Losses

When the fractional energy loss per collision is large, as in photomeson
production, bremsstrahlung, and Compton scattering in the Klein-Nishina
regime, there are large deviations in the energy evolution of any given parti-
cle. In photomeson production, where the multipion inelasticityKφπ ≈ 0.6,
this introduces an additional stochastic scatter broadening of the evolving
cosmic-ray proton flux beyond that given by a continuous energy-loss treat-
ment. A Monte Carlo simulation is required for the most reliable calcu-
lations (see Appendix D). The semi-analytic model presented here gives
reasonably accurate results of calculations of the UHECR spectrum and the
energy distributions of outgoing secondaries.

When fractional energy loss per interaction is small, as in photopair
production or Compton scattering in the Thomson limit, the energy evo-
lution of a given particle can be accurately characterized analytically and
numerically. Even for stochastic energy losses, the average energy lost can
still be modeled reasonably well with an analytic approach employing aver-
age energy-loss rates [196].

9.3 PHOTOPAIR PROCESS

Now we consider the photopair reaction

p + γ → p + e+ + e−,
which is a specific case of Bethe-Heitler pair production by a photon in the
field of a charged nucleus, in this case, a singly ionized proton. In the field
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of an ion, the energy-loss rate is proportional to Z2. This process is closely
related to triplet pair production e+γ → e+e++e− [197]. Accurate treat-
ments of the photopair process are given in Refs. [198] and [199], to which
we return at the end of this section. Here we provide an alternative semiana-
lytic treatment for the photopair process that yields asymptotic expressions
for the rate and energy-loss behavior, following a simplified approach to
triplet pair production [200].

9.3.1 Photopair Cross Section

Fits to the derived [201] cross section σφe(εr) for photopair production are
given in Ref. [202]. The high-energy (εr � 1) asymptote is

σφe(εr) ∼= 7

6π
αf σT

(
ln 2εr − 109

42

)
. (9.19)

This suggests that we use the approximation

σφe(εr ) ≈ 7

6π
αf σT ln

(
εr

kφe

)
, (9.20)

where kφe is an adjustable constant. To obtain the correct high-energy as-
ymptote, ln 2kφe = 109/42, implying kφe ∼= 6.70. For the cross section to
vanish at threshold, kφe = 2. Thus we expect 2 � kφe � 6.7 to give a good
approximation, though we even consider a larger range of kφe to provide an
adjustable parameter to improve the fit (see the inset to figure 9.4).

9.3.2 Photopair Energy-Loss Timescale

Consider a proton with Lorentz factor γp traveling in the +x̂ direction that
interacts with a photon with dimensionless energy ε directed at an angle θ
with respect to the proton’s momentum, as shown in figure 9.4. The invariant
energy of the collision εr = γpε(1− βpµ), eq. (9.2).

The e+-e− pair is assumed to be formed at rest in the equal x-momentum
frame of the collision [200]. The proton’s dimensionless x-momentum, when
transformed to the equal-momentum (K ′) frame found by boosting by the
Lorentz factor γ = (1 − β2)−1/2 and speed βc along the x̂-axis, is simply
px = γ γp(1 − ββp). In the K ′ frame, the photon x-momentum is ε′µ′ =
γ ε(µ−β), using the Lorentz transformation equations ε′ = γ ε(1−βµ) and
µ′ = (µ−β)/(1−βµ). In theK ′ frame, therefore, βpγp−βγp = βε−µε,
so that

γ = ε + γp√
(ε + γp)2 − (βpγp + εµ)2

and β = βpγp + εµ
ε + γp . (9.21)
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Figure 9.4 Geometry of the proton photopair process pγ → p + e+ + e−. In
system K , a proton with Lorentz factor γp interacts with a photon to
produce an electron-positron pair. The proton-photon system is boosted
by Lorentz factor γ to the equal-x-momentum frame K ′. Inset shows
the photopair cross section as a function of the invariant photon energy
ε ′ (solid curve), and approximation (9.20) to the cross section for
kφe = 1, 2, and 6.70, as labeled.

Equation (9.21) implies

γ = ε + γp√
1+ 2εr + ε2(1− µ2)

→ γp√
1+ 2εr

(9.22)

in the regime ε � εr considered here.
Assuming that the e+-e− pair is formed at rest in the equal-momentum

frame, the mean Lorentz factor of the produced pair is

〈γ 〉 = γp√
1+ 2εr

. (9.23)

The threshold condition εr ≥ 2 implies γpε(1 − βpµ) ≥ 2, so that µ ≤
µth ≡ (εγp − 2)/βpγpε. In this approximation, the energy-loss rate of a
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proton due to photopair production is

Lφe(γp)∼= c
∫ ∞

0
dε

∮
d
 nph(ε,
) (1− βpµ) σφe(εr ) · 2mec2〈γ 〉

∼= mec
3

γp

∫ ∞
γ−1
p

dε
nph(ε)

ε2

∫ 2γpε

2
dεr εr

σφe(εr)√
1+ 2εr

, (9.24)

where the last expression holds for isotropic photon targets. Note that the
conditions εr ≥ 2 and µth ≥ −1 imply ε ≥ γ−1

p .
Substituting eq. (9.19) into eq. (9.24), and considering the high-energy

regime εr � 1 so that
√

1+ 2εr ≈
√

2εr , we obtain the inverse of the
timescale for photopair energy loss, namely the φe energy-loss rate, given
by

t−1
φe (γp)=

(
Lφe(γp)

mpc2γp

)
∼= 7meαf cσT

9
√

2πmpγ 2
p

∫ ∞
γ−1
p

dε
nph(ε)

ε2

×
{
(2γpε)

3/2
[
ln

(
2γpε

kφe

)
− 2

3

]
+ 2

3
k

3/2
φe

}
. (9.25)

Substituting eq. (9.6) for the CMBR field into eq. (9.25) gives the result

t−1
φe (γp)

∼= 112

9

me

mp

αf cσT

λ3
C

�5/2

γ
1/2
p

×
{
I�+

[
ln

(
2γp�

kφe

)
− 2

3

]
I3/2+ 2

3

(
kφe

2γp�

)3/2

I0

}
. (9.26)

Defining

b ≡ 1

γp�
, (9.27)

then

I� ≡
∫ ∞

b
dx

x3/2 ln x

exp(x)− 1
→

{
0.74, b� 1,

b3/2 ln b exp(−b), b� 1,
(9.28)

I3/2 ≡
∫ ∞

b
dx

x3/2

exp(x)− 1
→

{
�(5/2)ζ(5/2) ∼= 1.783, b� 1,

b3/2 exp(−b), b� 1,
(9.29)

and

I0 ≡
∫ ∞

b
dx[exp(x)− 1] = − ln[1− exp(−b)]. (9.30)
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Expressions bridging the low- and high-energy asymptotes in eqs. (9.28)
and (9.29) are

I� ∼= (0.74+ b3/2 ln b) exp(−b) (9.31)

and

I3/2 ∼= [�(5/2)ζ(5/2)+ b3/2] exp(−b), (9.32)

respectively.
Equation (9.26) can also be expressed in terms of energy-loss length

rφe = ctφe for photopair losses, noting that 7 ·24meαf cσT/9mpλ3
C = 6.90×

1010 s−1, γp� = 0.488E18(1+ z), and E18 = Ep/1018 eV. The result is

rφe(E20) =
1.02E1/2

18

(1+ z)5/2Fφe(E18)
Gpc, (9.33)

where

Fφe(E18) = I�+I3/2 ln

(
E18(1+ z)

2kφe

)
+0.69I0

(
kφe

(1+ z)E18

)3/2

. (9.34)

The principal energy dependence of the photopair energy-loss length in the
b � 1 or γp � �−1 regime is rφe ∝ E

1/2
18 , which applies when E18 �

[(1+ z)/kφe]2/3. The principal redshift dependence of rφe in the γp � �−1

regime is rφe ∝ (1 + z)−5/2, though rφe ∝ (1 + z)−3 at the dip or trough
energy at E18 ≈ 20/(1+ z).

A comparison of this analytic expression for rφe at z = 0 with the more
detailed results [193,199] is shown in figure 9.5 with kφe = 1, and with I0,
I�, and I3/2 given by eqs. (9.30)–(9.32). The pair production trough is at (2–
3)×1019 eV when z→ 0. The deviation of the analytic approximation from
the accurate calculation at energies above the minimum photopair length is
unimportant because there photopion losses dominate.

9.3.3 Accurate Expression for Photopair Energy-Loss Rates of Ions in
an Isotropic Radiation Field

The energy-loss rate due to photopair production of UHECR ions with
charge Ze, mass Amp, and Lorentz factor γ is given by

−
(
dE

dt

)
φe

= −Ampc2 dγ

dt

∣∣∣∣
φe

= αf r2
e cZ

2mec
2
∫ ∞

2
dε nph

(
ε

2γ

)
ϕ(ε)

ε2

(9.35)
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Figure 9.5 Total energy-loss mean free paths of UHECR protons interacting with
photons of the CMBR, as a function of proton energy for different red-
shifts z = 0, 0.3, 1, 3, and 10. The total energy-loss MFP is shown
by the solid curves, and is comprised of effects of adiabatic expansion,
photopion (dashed curves), and photopair (dotted curves) energy losses.
The analytic expression for the mean photopion energy-loss MFP, rφπ ,
eq. (9.15), and numerical values of rφe, section 9.3.3, are used to derive
the total energy-loss MFP. Analytic expressions for photopair losses,
given by eq. (9.26) and eqs. (9.30)–(9.34), are shown by the dot-dashed
curves as a function of proton energy at different redshifts. Expansion
losses are obtained from eq. (9.42). The energy-loss trough formed by
the three loss processes is at ≈1019/(1+ z) eV. The solid line gives the
decay MFP of relativistic neutrons as a function of energy.

[198] when traveling through an isotropic radiation field denoted by nph(ε).
To accuracy better than 1.5× 10−3, the fitting functions

ϕ(ε) ∼= π

12

(ε − 2)4

1+∑4
i=1 ci(ε − 2)i

for 2 ≤ ε < 25, (9.36)

where c1 = 0.8048, c2 = 0.1459, c3 = 1.137× 10−3, c4 = −3.879×10−6,
and

ϕ(ε) ∼= ε
∑3

i=0 di(ln ε)
i

1−∑3
i=1 fiε

−1
for ε ≥ 25, (9.37)

where d0
∼= −86.07, d1

∼= 50.96, d2
∼= −14.45, d3 = 8/3, f1 = 2.910,

f2 = 78.35, and f3 = 1837, are convenient to use [199].
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The characteristic energy-loss pathlength for ions losing energy through
photopair losses with photons of a surrounding isotropic radiation field is

rφe = ctφe = c
∣∣∣∣∣

1

E

(
dE

dt

)
φe

∣∣∣∣∣
−1

. (9.38)

9.3.4 Relative Importance of Photopion and Photopair Losses

From eq. (9.23), the photopair inelasticity is

Kφe ∼= 2me
mp
√

1+ 2εr
� me

mp
(9.39)

for reactions near threshold. The product of the inelasticity and the cross
section for photopair production is Kφeσφe ∼= (me/mp)αf σT

∼= 2.6µb,
which can be compared with σ̂ = 70µb for photopion losses. Hence the
relative photopion and photopair energy-loss rates for protons interacting
with the peak of the νFν spectrum of the target photon distribution is

Kφπσφπ

Kφeσφe
≈ 100.

Considering the different threshold behaviors, this explains the relative
energy-loss rates at Ep ∼= 4 × 1020/(1 + z) eV for photopion production
and at Ep ∼= 2 × 1019/(1 + z) eV for photopair production, as can be seen
from figure 9.5.

9.4 EXPANSION LOSSES

Radiation undergoes adiabatic energy losses from the expansion of the uni-
verse, as do particles coupled with the background radiation in intercluster
space. However, particles found in regions decoupled from the Hubble flow,
like clusters of galaxies, will experience losses that depend on the behavior
of this flow. Thus universal expansion losses need not apply to a particle
during certain episodes of its life history, as UHECRs may become trapped
in the cluster environment for a long time before escaping to intercluster
space.

From the first law of thermodynamics for an adiabatic system, namely, a
closed expanding system with no addition of heat energy Q,

dQ = 0 = dU + pdV, (9.40)

where U = uV is the total internal energy, u is the energy density, p
in this section is pressure (not momentum), and V is the volume. Hence
(u + p)dV = −V du. For a relativistic gas consisting of either particles or
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photons, p = u/3 (eq. [5.4]), so that u ∝ V −4/3 or U ∝ V −1/3 ∝ R−1,
where R is the size (or scale factor) of the universe. Thus the energy of par-
ticles in a relativistic gas changes according to the relation dU → dγ ∝
−R−2dR, and

− γ̇
γ
= 1

R

dR

dt
= 1

3

d lnV

dt
. (9.41)

In eq. (9.41), the result dV/V = dx/x+dy/y+dz/z = 3dR/R is used,
implying that the characteristic cosmic expansion timescale is ≈1/(3H0) ≈
4.5× 109 yr. If one solves a continuity equation for the evolution of particle
spectra defined in terms of proper differential density n∗(γ∗), then a term
−3H0n∗(γ∗), representing the change in the volume element due to volume
expansion must be included; this term is omitted if the density is defined in
terms of comoving coordinates [132].

From eqs. (4.32) and (9.41), the energy-loss rate of a particle of mass m
due to the expansion of the universe is given by mc2γ̇exp, where

−γ̇exp(z) = (1+ z)−1

∣∣∣∣dzdt
∣∣∣∣ γ = H0

√

m(1+ z)3 +
� γ. (9.42)

Figure 9.5 shows the analytic expression for the loss lengths rφπ and rφe at
various redshifts, with the total including adiabatic energy losses, for H0 =
72 km s−1 Mpc−1, 
� = 0.73, and 
m = 0.27.

9.5 COSMOGENIC NEUTRINO FLUX

Following section 4.5, we define the photon or neutrino emissivity by the
expression ṅi∗(ε∗, 
∗; z), where the quantity ṅi∗(ε∗, 
∗; z)dε∗dt∗d
∗dV∗ is
the differential number of secondaries of type i with energies between ε∗
and ε∗ + dε∗ that are emitted from differential volume dV∗ during differen-
tial time dt∗ and directed into differential solid angle d
∗ in the direction
of 
∗. The starred quantities refer to proper frame emission. The function
ṅi∗(ε∗, 
∗; z) is described in the proper frame at rest in the Hubble flow
at redshift z (measured using meter sticks and clocks) and is related to the
comoving emissivity (yardsticks expand with the universe) through the re-
lation ṅico(ε∗, 
∗; z) = (1+ z)−3ṅi∗(ε∗, 
∗; z), where ε∗ = (1+ z)ε, and ε
is the measured photon or particle energy.

The energy intensity of secondaries of type i, for example, neutrinos, lep-
tons, or photons, from a distribution of sources described by this emissivity
function is given by

εI iε =
c

4π

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣
∮
d
∗

ε2∗ ṅico(ε∗, 
∗; z)
(1+ z) , (9.43)
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from eq. (4.56). In this expression, the independent energy variable ε∗ can
just as well have photon or particle energies in physical units, e.g., ergs or
GeV.

Let the differential density of UHECR protons at redshift z be given by
the function

np(γp,
p; z) = dNp(γp,
p; z)
dγpdV d
p

. (9.44)

From eq. (2.42), the emissivity of secondary i, where i refers to neutrinos
(ν), electrons and positrons (e), γ rays (γ ), neutrons (n), and protons (p), is

ṅi∗(ε∗, 
∗; z)= c
∮
d


∫ ∞
0

dεγ nph(εγ ,
; z)

×
∮
d
p

∫ ∞
1

dγpnp(γp,
p; z) (1− βp cosψ)
dσi(ε

′)
dε∗d
∗

,

(9.45)

where cosψ = µµp +
√

1− µ2
√

1− µ2
p cos(φ − φp), ε′ = γpεγ (1 −

βp cosψ) is the invariant collision energy, and [dσi(ε ′)/dε∗d
∗)]dε∗d
∗ is
the differential cross section for producing secondaries with energies
between ε∗ and ε∗ + dε∗ into the solid angle element d
∗ in the direc-
tion
∗. Here we let the secondary energy be given in physical units and the
target photon energy εγ be described in dimensionless units.

Following the description of photohadronic interactions, we approximate
the secondary production cross section for the single-pion (s) and multipion
(m) channels by the expression

dσ
s,m
i (ε ′)

dε∗d
∗
∼= ζ s,mi σ

s,m
φπ H(ε ′; ε′�, ε′u) δ(
∗ −
p) δ(ε∗ − χs,mi mpc

2γp),

(9.46)
where ζ s,mi is the multiplicity of secondary i, and χs,mi is the mean frac-
tional energy of the produced secondary compared to the incident primary
proton. For secondaries formed in single-pion production, σ sφπ = 340 µb,
ε ′� = 390, and ε′u = 980, whereas for neutrinos produced in multipion pro-
duction, σmφπ = 120 µb, ε′� = 980, and ε′u →∞. In both cases, χν = 1/20.
Table 9.1 gives the mean multiplicities and fractional energies of secon-
daries formed in the single- and multipion channels, consistent with the
assumed inelasticity and number of decay products. These channels also
include neutron β-decay electrons and neutrinos. This assumes that neu-
trons will decay before undergoing a further photohadronic interaction. For
the propagation of UHECRs in galaxy cluster fields or interstellar space, this
is a good approximation for�1020 eV neutrons when z � 3 (figure 9.5), but
begins to break down for �3× 1020 eV neutrons even when z � 1.
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Table 9.1 Multiplicities ζ and Mean Fractional Energies χ of Secondaries Formed
in Photomeson Production

Species Single π Multi-π

Neutrinos ζ sν = 3/2 χsν = 0.05 ζmν = 6 χmν = 0.05
Leptons ζ se = 1/2 χse = 0.05 ζme = 2 χme = 0.05
γ -rays ζ sγ = 1 χsγ = 0.1 ζmγ = 2 χmγ = 0.1
Neutrons ζ sn = 1/2 χsn = 0.8 ζmn = 0.5 χmn = 0.4
Protons ζ sp = 1/2 χsp = 0.8 ζmp = 0.5 χmp = 0.4
β-electrons ζ sβ,e = 1/2 χsβ,e = 10−3 ζmβ,e = 1/2 χmβ,e = 10−3

β-neutrinos ζ sβ,ν = 1/2 χsβ,ν = 10−3 ζmβ,ν = 1 χmβ,ν = 10−3

Substitution of eq. (9.46) into eq. (9.45) gives

ṅi∗(ε∗, 
∗; z)=
cσ iφπζi

8π

∫ ∞
0

dεγ nph(εγ )

∫ 1

−1
dµ (1− βpµ)

×
∫ ∞

1
dγp np(γp; z) H(ε′; ε′�, ε′u)δ(ε∗ − χimpc2γp),

(9.47)

assuming isotropy of the photon and UHECR proton spectra. Equation (9.47)
can be simplified to the form

ṅi∗(ε∗, 
∗; z)=
ζicσ

i
φπnp(γ̄p; z)

16πχimpc2γ̄ 2
p

∫ ∞
ε′�/2γ̄p

dεγ
nph(εγ ; z)

ε2
γ

×
{[

min(2γ̄pεγ , ε
′
u)

]2 − ε′2�
}
, (9.48)

where

γ̄p ≡ ε∗/χimpc2.

For the CMBR spectrum, eq. (9.6), eq. (9.48) becomes

ṅi∗(ε∗, 
∗; z)=
2ζicσ iφπnp(γ̄p; z)�3(z)

λ3
Cχimpc

2

× [
I0 (y�, yu)+y2

� ln
(
1−e−y�)−y2

u ln
(
1−e−yu)] , (9.49)

where

y�,u ≡
ε′�,u

2γ̄p�(z)
= χiε

′
�,umpc

2

2ε(1+ z)�(z) (9.50)
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and

I0(y�, yu) ≡
∫ yu

y�

dy
y2

ey − 1
. (9.51)

Substitution of eq. (9.49) for the evolving neutrino emissivity into eq. (9.43)
gives the diffuse background intensity

εI i,φπε = 2ζic2σ iφπ

λ3
Cχi

(
ε

mpc2

)
ε

∫ ∞
0

dz

∣∣∣∣dt∗dz
∣∣∣∣ np(γ̄p; z)�

3(z)

(1+ z)2

× [I0(y�, yu)+ y2
� ln(1− e−y�)− y2

u ln(1− e−yu)] (9.52)

of neutrinos produced from channel i (single- and multipion channels, and
β-decay neutrinos) formed in photopion interactions of UHECRs with the
CMBR. The units of εI iε are given by the units of ε.

Approximate behaviors of I0(y�, yu) can be obtained by examing asymp-
totes of the associated function

∫ ∞
x

dy
y2

ey − 1
→

{
(x2 + 2x + 2) exp(−x), x � 1,

2ζ(3)− x2/2, x � 1,
(9.53)

noting also for the evaluation of eq. (9.52) that ln(1 − e−y) → ln y when
y � 1 and ln(1− e−y)→−e−y when y � 1.

After deriving the form of the temporally evolving UHECR proton spec-
trum, which we do in the next section, the neutrino and lepton emissiv-
ity can be obtained numerically by evaluating eq. (9.52), using multiplici-
ties and fractional energy production values given in table 9.1. Four chan-
nels of neutrino production are treated in this way: two photopion channels
associated with single-resonance-π and multiple-π production, and two
more from the β-decay neutrinos created by decaying neutrons formed in
photopion processes.

These expressions can also be used to derive the unobserved injection
emissivity of electromagnetic secondaries (leptons and γ rays) from pho-
topion production using the appropriate entries from table 9.1. This is un-
observed because leptons and γ -rays injected at such high energies cascade
through synchrotron and Compton processes through interactions with am-
bient photons, so that the injection spectrum of photons is not preserved, as
generally is the case for neutrinos. In this case, a full cascade calculation
must be done, as considered in the next chapter.

An important quantity to consider for energy deposition in electromag-
netic secondaries from photopion processes is the bolometric intensity of
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secondary channel i, given by

I i =
∫ ∞

0
dε I iε =

∫ ∞
0

dz
dI i
dz
. (9.54)

The bolometric injection rate of secondaries of type i formed in photopion
processes of UHECR protons with CMBR photons, differential in redshift,
is given by

dIi,φπ
dz
= 2ζic2σ iφπ

λ3
C

∣∣∣∣dt∗dz
∣∣∣∣ �3(z)χi(1+ z)mpc2

∫ ∞
1

dγ̄p γ̄p np,co(γ̄p; z)

× [I0(y�, yu)+ y2
� ln(1− e−y�)− y2

u ln(1− e−yu)], (9.55)

using eq. (9.50). An approximate calculation of the diffuse cosmogenic γ -
ray intensity can be made by employing eq. (9.55) and assuming that all
electromagnetic secondaries emerge with photon energies where the uni-
verse becomes transparent to γ rays.

The bolometric injection rate of e+-e− pairs formed in photopair
processes of isotropically distributed target photons with comoving photon
number density nph(ε) and comoving UHECR ion spectrum nZ,co(γ ;p) of
ion Z, differential in redshift, is given by

dIφe
dz
= αfmec

4r2
e Z

2

4π(1+ z)
∣∣∣∣dt∗dz

∣∣∣∣
∫ ∞

0
dγ nZ,co(γ ;p)

∫ ∞
2

dεnph

(
ε

2γ

)
ϕ(ε)

ε2
,

(9.56)

using eqs. (9.36) and (9.37) for ϕ(ε). The subsequent reprocessing by
Compton-synchrotron cascades with the CMBR is weakly dependent on the
pair injection energy for � PeV injection (see next chapter). The strongly
increasing energy losses at high redshifts means that all UHECR protons
originate from a maximum depth of a few hundred Mpc, and even from
closer distances if the diffusion mean free path is a small fraction of the
energy-loss mean free path.

The secondary neutrino and lepton emissivity depends on photopion, pho-
topair, and cosmological expansion energy-loss rates. We have yet only
derived the φπ losses for protons, and have not considered ion breakup
through photo-erosion. The main unknown for calculating secondary
neutrinos and γ rays is the evolving UHECR proton spectrum np,co(γp; z).

9.6 ULTRAHIGH-ENERGY COSMIC-RAY EVOLUTION

The comoving differential UHECR proton density np,co(γp; z) at redshift z
is related to the proper frame differential UHECR proton density np∗(γp; z)
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through the relation np,co(γp; z) = (1+ z)−3np∗(γp; z) (eq. [(4.44)]. These
differential densities are the superposition of cosmic rays emitted at red-
shifts z′ ≥ z, and

np,co(γp; z) =
∫ ∞
z

dz′
∣∣∣∣dt∗dz

∣∣∣∣ ṅp,co(γp∗; z)
∣∣∣∣dγp∗dγp

∣∣∣∣. (9.57)

If the comoving UHECR emissivity ṅp,co(γ
∗
p ; z) is assumed to be described

by a power-law injection spectrum with discrete low-energy and exponential
high-energy cutoffs, then

ṅp,co(γ
∗
p ; z)=

dNp

dγ ∗pdt∗dVco
=K(s)γ ∗−sp exp(−γ ∗p /γmax)�(z)H(γ

∗
p−γmin).

(9.58)

Implicit in this expression is that sources accelerate UHECRs with similar
spectra throughout time (this assumption is easily relaxed, but introduces
parameters unconstrained by available data), though the comoving UHECR
source rate density described by the star-formation rate function�(z) could
vary (see below). Moreover, eq. (9.57) gives the emissivity averaged over
a volume containing many sources, and does not describe inhomogeneous
matter and star formation activity within ≈100 Mpc, which is important for
super-GZK cosmic ray production.

9.6.1 Normalization to Local Luminosity Density

The UHECR emissivity is normalized to the local (z → 0) luminosity den-
sity through the relation

mpc
2
∫ ∞
γmin

dγ ∗p γ
∗
p ṅco(γ

∗
p ; 0) = Ėp ≡ 1044Ė44 ergs Mpc−3 yr−1. (9.59)

The normalization coefficient K(s) is then given by

K(s) = Ėp
mpc2



(s − 2)γ s−2

min , s > 2, 1� γmin � γmax,

γ s−2
max /�(2− s), s < 2, 1� γmin � γmax,

E1(γmin/γmax), s = 2,

(9.60)

for the injection spectrum, eq. (9.58). The properties of the exponential in-
tegral E1(x) are briefly described in Appendix B.
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Figure 9.6 (a) Evolution of a cosmic-ray proton’s energy with redshift z due to
cosmic expansion and to photopair and photopion losses on the CMBR.
(b) Boundary redshift zosc(Ep) separating the universe from which pro-
tons with energy 2, 4, 10, and 100 times their measured energy Ep
could originate. The analytic forms of the rφπ and rφe are used in this
calculation.

9.6.2 Energy Evolution of Cosmic-Ray Protons

The differential change dγ ∗p in the Lorentz factor of UHECR protons at
epoch z during the proper time interval dt∗ = dz|dt∗/dz| is given by

γ ∗p (z +z) = γ ∗p (z)
[
1+z

(
1

1+ z + c
∣∣∣∣dt∗dz

∣∣∣∣ [r−1
φπ (γ

∗
p )+ r−1

φe (γ
∗
p )]

)]
,

(9.61)

where rφπ and rφe are given analytically by eqs. (9.15) and (9.33), respec-
tively. The Jacobian |dγ ∗p /dγp| is solved numerically by calculating the
energy evolution of two cosmic ray protons with nearly the same Lorentz
factors.

Figure 9.6a shows the evolution of cosmic-ray proton enegy with red-
shift, calculated from eq. (9.61). If an UHECR proton with a given energy
is detected, then the source of higher-energy cosmic rays, which have since
evolved to the measured energy at the present epoch, must be found within
an obscuration redshift zosc; otherwise the UHECR protons would have lost
too much energy to be presently observed. The redshift zosc separating the
visible universe from the obscured, or veiled universe is not sharp, due
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also to the stochastic nature of photopion energy losses (section 9.2.3). For
UHECR protons, zosc is a function only of the presently measured proton
energy.

Figure 9.6b shows the obscuration redshift zosc from which UHECR pro-
tons with measured energy Ep were produced by a source at z = zosc with
energy a factor µF = 2, 4, and 10×Ep. As is clear from figure 9.6b, detec-
tion of UHECR protons with E ≈ 6 × 1019 eV means that sources capable
of producing UHECRs with E ≈ 6 × 1020 eV must be found within a few
hundred Mpc, and even closer if the UHECRs propagate diffusely. Sources
accelerating UHECR protons with energies up to ≈1021 eV must be found
within ≈100 Mpc, and the source of the 3 × 1020 eV cosmic ray event, if
a proton, must likely be within ≈ 40 Mpc. A model-independent definition
of the horizon radius is obtained by choosing µF = e. See Ref. [203] for a
model-dependent calculation of the cosmic ray horizon.

9.6.3 Rate Density Evolution and the Star Formation Rate

Astronomical observations restrict the evolving comoving density or rate-
density evolution of UHECR sources connected to the hypothesized astro-
nomical source class of UHECRs, for example, GRBs, blazars and radio
galaxies, or clusters of galaxies. One possibility is that the rate density of
UHECRs follows the star formation rate (SFR) history derived from the blue
and UV luminosity density of distant galaxies [204], which is reasonable if
GRBs are the sources of UHECRs. The SFR activity can be approximated
by an analytic fitting profile given by [205]

�(z) = 1+ a1

(1+ z)−a2 + a1(1+ z)a3
. (9.62)

Two model SFRs that bracket the uncertainty in the extinction corrections
for the SFR are the lower SFR (LSFR) and upper SFR (USFR) rate factors
shown in figure 9.7. The lower optical/UV curve shown here is in accord
with a lower limit to the SFR evolution, while a much stronger evolution
of the SFR is found [216] after correcting for dust extinction. Also shown
in figure 9.7 is the rate function �(z) = (1 + z)4 used by Berezinsky and
his colleagues [217] to model hypothetical sources of UHECRs. The cor-
responding “SFR” activity for producing UHECRs from AGNs could be
much steeper than in the star formation activity associated with spiral and
star-forming galaxies.

A variety of models for the SFR factor—which are not strictly “star for-
mation rates,” but rather fueling or growth rates of explosive events—are
shown in figure 9.7. These SFR factors �i(z), i = 1, . . . , 7, are assumed
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Figure 9.7 Model star formation rates (SFRs) and data as a function of redshift.
The line labeled “CCSFR” is the constant comoving rate, the LSFR and
USFR curves bound the inferred SFR densities (normalized with re-
spect to a SFR of 0.09M�Mpc−3 yr−1), the curve “SFR HB” is the SFR
from Hopkins and Beacom’s study [206], curve “SFR IR” is eq. (9.64)
with n = 8 that is used to fit IR luminosity density data from IR lumi-
nous galaxies [207], and curves labeled“GRB SFHs” are SFR histories
used to fit GRB data [53]. Other data give relative SFR densities from
measurements of galactic optical/UV emission (see [208]). The data
are denoted by a filled circle [209], an open square [210], an open dia-
mond [211], filled squares [212], open squares [213], and crosses [214].
High-redshift data with corrections for dust extinction are given by the
open triangles [215]. An estimate of the maximum extinction [216] is
shown by the USFR. The curve labeled �(z) = (1 + z)4 is considered
in Ref. [217].

to be proportional to the redshift-dependent comoving rate density
ṅi,co(z) = �i(z)ṅi,co, where the local comoving rate density ṅi,co of species
i normalizes the event rate. Different classes of sources can, of couse, con-
tribute to the UHECRs observed in the Solar neighborhood.

The SFR factors used to calculate the UHECR spectrum are

1. Constant comoving rate density,�1(z) = 1, considered for mathemat-
ical convenience.

2. LSFR �2(z), described by eq. (9.62) with by a1 = 0.005; a2 = 3.3,
and a3 = 3.0.

3. USFR �3(z) described by eq. (9.62) with by a1 = 0.0001, a2 = 4.0,
and a3 = 3.0.
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4. Comoving SFR ∝ the blue/UV luminosity density, which is assumed
to track the SFR of the universe [206],

�4(z) = 1+ 6.78z

1+ (z/3.3)5.2 . (9.63)

5. SFR IR; Comoving rate ∝ sub-mm/far-IR luminosity density associ-
ated with luminous IR galaxies [207], fit using the analytic form

�IR,n(z) = 1+ 2−n

(1+ z)−n + 2−n
. (9.64)

A good fit to the IR luminosity density data is obtained with n = 8,
as shown in figure 9.7. If IR-luminous galaxies are caused by galac-
tic merger events, as indicated by morphological and spectral evi-
dence [218], this would connect blazars and the formation of super-
massive black holes to galaxy collisions. Although related to super-
massive black hole growth, the IR luminosity density does not, how-
ever, directly measure the activity of supermassive black holes, be-
cause the IR radiation is a convolution of the photon luminosity which
is then reprocessed through thick columns of material. Hence we have
generalized the form with a single adjustable parameter, n, that rep-
resents a range of blazar formation histories. Only the �IR,8 form is
shown in figure 9.7, so �5(z) = �IR,8.

6. SFRs 6 and 7: Upper and lower range of SFRs that give a good fit to
Swift and pre-Swift GRB redshift distributions and pre-Swift opening
angle distribution [53]. The analytic forms of these functions are�6 =
(1 + 0.12z/0.011)/(1 + √z/3), and �7 = (1 + 0.12z/0.015)/(1 +√
z/1.3).

9.7 WAXMAN-BAHCALL BOUND

Waxman and Bahcall propose [30,219] that measurements of the UHECR
flux set an upper bound to UHE ν production from sources at redshifts
z � 1. They argue that astrophysical systems such as clusters of galax-
ies or magnetized relativistic outflows cannot contain the highest-energy
cosmic rays, so that the measured UHECR intensity implies an associated
maximum flux of “GZK-neutrinos” formed by photomeson interactions of
UHECRs with the CMBR.

To derive an estimate of this bound, consider that from eq. (5.2) for
optically-thin radiative transfer, the neutrino intensity

Iν ∼= jνs ∼= jνRH
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tively; thus the discontinuity. The UHECR data points are from obser-
vations taken with the Akeno Giant Air Shower Array (AGASA) [221].

where RH
∼= c/H0

∼= 4000 Mpc is the Hubble radius. Cosmological factors
rapidly reduce the contribution at z � 1.

In single-resonance production, about 3/2×0.05∼=7.5% of the energy of
the proton is transformed to neutrinos, rising to a value of ≈30% for mul-
tipion production. In single-resonance production, the relative fraction of
energy lost in neutrinos compared to all secondary energy is≈3/8, whereas
this fraction is ≈1/2 for multipion production (table 9.1). We use an inter-
mediate value ≈20% for the fractional energy in a photopion interaction.

If the timescale for photopion energy losses of a proton with Lorentz
factor γp is denoted by tφπ(γp), then the muon neutrino energy emissivity is

ενjνµ(εν,
)
∼= 0.2

2

uCR(γp)

4πtφπ (γp)

where uCR(γp) is the cosmic-ray energy density, εν ∼= mpc2γp/20, and the
factor 1/2 is for oscillations into νe and ντ (neutrino telescopes are most
sensitive to νµ).

Figure 9.8 is a sketch of the cosmic-ray energy density, showing that
uCR(1020 eV) ≈ 10−21 ergs cm−3. The photopion energy-loss timescale at
1020 eV is ≈140 Mpc/c = 1.44× 1016 s (∼= 0.5 Gyr; see figure 9.3). Thus

ενIνµ(5× 1018 eV, 
) ∼= 5× 10−9 GeV

cm2 s sr
.
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Waxman and Bahcall [30] estimate an upper bound of the neutrino intensity
equal to

ενI
WB
νµ+ν̄µ

∼= 1.5× 10−8ξz
GeV

cm2 s sr
, (9.65)

where ξz , a factor of order unity, is a correction factor for high-redshift
sources. This Waxman-Bahcall value is ≈ 3 larger than the value derived
here. The difference is found in the larger AGASA energy density, by a
factor ≈ 2, they assume for the � 1020 eV cosmic rays energy density,
and counting νµ and ν̄µ without oscillations. The associated energy density
εuWB(ε) = 4πεIWB

ε /c ≈ 10−20ξz erg cm−3 (figure 1.3).
Though our estimate here gives a somewhat smaller neutrino flux, the es-

timate assumes no evolution, yet any astrophysical model of UHECRs must
involve one or more source classes whose activity changes with time. The
SFR factors are generally strongly positively evolving (more in the past),
so that intensities comparable to the original Waxman-Bahcall estimate are
calculated.

Even though the bound applies to GZK neutrinos with energies ≈1018–
1019 eV, Waxman and Bahcall also claim that it applies to lower-energy
neutrino fluxes because cosmic-ray sources inject cosmic rays with number
spectral indices ≈−2. This seems a questionable extension of the bound;
cosmic ray sources can accelerate softer particle spectra, and these cosmic
rays need not escape the galaxies or clusters where they are formed. Yet the
Waxman-Bahcall bound may still hold at the lower TeV–PeV energies for
sources where the UHECRs do not suffer large photohadronic losses with
the EBL, provided that the UHECR protons and ions escape with negligible
photohadronic energy losses. Importantly, the Waxman-Bahcall bound does
not apply to high-redshift sources, or buried sources from which UHECRs
cannot escape, though from which an escaping flux of UHE neutrinos can
be detected [222].

The HiRes collaboration [223] measures a factor ≈4 less energy density
in�1020 eV particles than AGASA, and the Auger collaboration [183] mea-
sures≈40% less than the HiRes result (figure 9.9). The HiRes-2 Monocular
(denoted by solid dots in later figures) and the HiRes-1 Monocular data (de-
noted by open circles) [223] are used to compare model with data. The error
bars are given by the statistical errors, so the measurement uncertainty is
greater than shown due to additional systematic errors.

9.8 UHECR AND GZK NEUTRINO INTENSITIES

All of the necessary apparatus needed to calculate the UHECR proton
and neutrino flux has been developed, to be compared with sensitivities of
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Figure 9.9 Calculations of UHECR proton intensity spectra, multiplied by E3,
measured at Earth, compared with measurements of the UHECR spec-
trum by AGASA (filled diamonds), HiRes (open symbols), and Auger
(filled circles). The different SFR factors used in the calculation are
shown in figure 9.7.

present day UHE neutrino telescopes, and also with the Waxman-Bahcall
estimate.

Figure 9.9 shows calculations of the UHECR proton intensity spectra
measured at the present epoch due to UHECR protons injected in the shape
of an exponentially truncated power-law spectrum with injection index s =
2.2, low-energy cutoff Emin = mpc2γmin = 1014 eV, and high-energy expo-
nential cutoff Emax = 1020 eV. The local energy emissivity in UHECRs is
Ė44 = 60 (eq. [9.59]).

As is apparent from figure 9.9, the constant comoving SFR 1 could
explain a few of the highest energy UHECRs, but fails to explain much
else. The lower star formation rate, SFR 2, begins to reproduce much of the
high-energy data. When star formation evolves positively by a factor of 5–10
between the present epoch and z ≈ 1–2, the model can well fit the UHECR
spectrum from the ankle energy ≈ 4 × 1018 eV and above. For SFRs 3, 4,
and 6, a two-component galactic/extragalactic model, with a lower-energy
galactic component, can give high-quality fits to the data. Figure 9.9 also
shows the UHECR proton intensity spectrum for SFR 6, which is similar
to SFR 7. These SFRs were found [53] to give the best fit to the Swift and
pre-Swift redshift distributions of GRBs and the pre-Swift opening angle
distribution. A SFR that follows the IR luminosity density, SFR 5, seems to
be ruled out.
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Figure 9.10 Calculations of UHECR proton intensity spectra multiplied by E3 re-
ceived at Earth. The rate density of UHECR sources is proportional
to the different SFR factors. Upper panel: UHECR proton intensity
spectrum for SFR 5, eq. (9.64), with different values of parameter n,
as labeled. Also calculated here is the USFR model of Ref. [208] with
Ė44 = 70 (otherwise Ė44 = 60). Lower panel: UHECR proton inten-
sity spectrum for SFR 6, Ė44 = 60, and Emax = 1× 1020, 2× 1020 eV,
and SFR 7 with Ė44 = 60 and Emax = 1× 1020 eV.

The best-fit model of Ref. [208] uses USFR 3 and Ė44 = 70: the model
fit using these parameters is found in the upper panel of figure 9.10. Also
shown there are UHECR intensity spectra using the modified IR SFR func-
tion, eq. (9.64), with n = 4, 5, 6, 8 (SFR 5) (using Ė44 = 60). The lower
panel of Figure 9.10 shows SFR 6 with Emax = 1020 and 1021 eV, and SFR
7 with Emax = 1020 eV. These SFRs are found by [53] to give the best
fit to the Swift and pre-Swift redshift distributions of GRBs, and the pre-
Swift opening angle distribution. Inspection of these results indicates that
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the sources of UHECRs do not accelerate, on average, many particles to
energies �2× 1020 eV.

A number of features are apparent from these spectra. First is the dramatic
“GZK” cutoff at energies�6×1019 eV resulting from UHECR interactions
with the CMBR. The second is the pile-up of protons at ≈ 4 × 1019 eV as
a result of energy losses on the CMBR, and the third is the photopair dip
at ≈ (2–5) × 1018 eV. The energy of the pair production valley is rather
robust for vigorous UHECR source activity at z ∼= 1–2 compared with the
present epoch, which may be more easily fulfilled with blazar AGNs than
with GRB sources. Berezinskii [217,224] argues that the ankle feature is a
consequence of pair-production losses by UHECRs on target photons of the
CMBR, using models with injection indices s ∼= 2.7.

Figure 9.11 shows predictions of the GZK neutrino intensity spectrum
for the USFR 3 model [208] associated with the UHECR spectrum shown
in the upper panel of figure 9.10, and for SFR 6 shown in the lower panel of
figure 9.10. For the model of Ref. [208], the total neutrino intensity exceeds
the Waxman-Bahcall bound due to its increased SFR activity at z ≈ 1 – 2.
SFRs 6 (and 7) produce a low-energy diffuse neutino ledge due to photopion
processses occurring at large redshifts.

Predictions for the total diffuse neutrino spectrum for various models are
shown in figure 9.12 in comparison with the ANITA sensitivity for a 45 day
flight [227]. Long-duration balloon-borne high-energy neutino telescopes
seem close to discovering the guaranteed flux of GZK neutrinos that seri-
ously restrict models for UHECR origin. The cosmogenic neutrino flux is
difficult to detect with IceCube (see [226] for IceCube sensitivities to point
sources).
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The spectral injection and propagation signatures in the UHECR spec-
trum and the diffuse high energy neutrino intensity are important clues to
the sources of UHECRs. Besides making a diffuse flux of GZK neutrinos,
the secondary leptons and γ rays formed through photopair and photopion
processes make an electromagnetic cascade that emerges at photon ener-
gies where the universe is transparent to γ γ pair production on the diffuse
ambient EBL, as we discuss in more detail in the next chapter. Semikoz
and Sigl [228] have shown that to fit the AGASA data with a top-down ex-
otic particle physics model in the Z-burst scenario [229] makes a diffuse
intensity of cascade γ -rays that would overproduce the diffuse γ -ray back-
ground measured with the EGRET telescope. See Ref. [230] for a discussion
of UHE neutrino astronomy, including particle physics issues and top-down
models.

9.9 PHOTONUCLEAR REACTIONS

For UHECR ions, total energy E is dominated by the kinetic energy of the
A nucleons found in a nucleus of atomic mass A and charge Z. Thus the γ
factor of a nucleus is A times less than for an UHECR proton with the same
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energy. The mean photon energy is consequently smaller by a factor A in
the rest frame of an UHECR ion than of an UHECR proton with the same
energy. For a heavy nucleus with E ∼ 1020 eV, the photopion production
rate with photons of the CMBR is therefore at a much reduced level com-
pared to an UHECR proton with the same value of E, because the number
of CMBR photons above the photopion threshold is smaller.2 The propor-
tional to Z2 increase in the photopair energy-loss rate for ions counteracts
threshold effects from photopair losses for heavy ions to make photopair
losses with the CMBR an important energy-loss mechanism for ions. The
photopion and photopair losses are graphed for Fe in figure 9.3.

Besides pair- and pion-production energy losses, the composition of
UHECR ions during propagation can be changed by photoerosion through
resonant and nonresonant processes leading to the breakup of the nucleus.
The best-known resonant photonuclear process is the giant dipole reso-
nance, where one or two nucleons are ejected from a nucleus, thereby chang-
ing the atomic mass and charge. Nuclear dipole vibrations excited by the
γ -ray—though generally with wavelength far larger than the characteristic
nuclear size—drive the protons through the neutron fluid, leaving the nu-
cleus in an excited state, where it decays by the evaporation of one or two
protons or neutrons [231]. The characteristic energy of the electric dipole
transition is

hνGDR
∼= 40

A1/3
MeV

[232], and the characteristic excitation width  ≈ 3 – 10 MeV [233].
For electromagnetic dipole transitions, the Thomas-Reiche-Kuhn sum

rule over oscillator strengths gives the energy-integrated cross section

�d =
∫ ∞

0
dEγ σGDR(Eγ )

= 2π2e2h̄

mpc

(A− Z)Z
A

∼= 29.9Z

(
1− Z/A

1/2

)
MeV mb. (9.66)

In the approach of Puget, Stecker, and Bredekamp [234,235], the giant
dipole resonance cross section for nuclide (Z,A) is represented by a
Gaussian (rather than a Lorentzian) with single [(γ, n) or (γ, p)] or dou-
ble [(γ, 2n) (γ, np), (γ, 2p)] nucleon loss, in addition to a flat part above
30 MeV to match the data. With these approximations, the nuclear

2The photopion threshold Ethr
γ = mπ + m2

π/2Amp ∼= 140 MeV +10.5/AMeV is not
much different between protons and heavy ions.
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Figure 9.13 Comparison of photodisintegration cross section for Fe from [234]
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photodisintegration cross section takes the form

σφnuc(Eγ )= �dξi
Wi

exp

(−2(Eγ − Eiγ )2
2
i

)
H(Eγ ;E0, E1)

+�dζd H(Eγ ;E1, E2)

(E2 − E1)
(9.67)

(see figure 9.13), where i = 1, 2 refers to single- or double-nucleon emis-
sion during excitation, E0, E1, and E2 are assigned the values of 2, 30, and
150 MeV, respectively, and tables of values of Eiγ , i , ξi , ζd , are given in
Ref. [234].3 The normalization factor

Wi = i
√
π

8

[
erf

(
E1 − Eiγ
i/
√

2

)
+ erf

(
Eiγ − E0

i/
√

2

)]
.

The first term in eq. (9.67) describes the giant dipole resonance, and the
second term describes nonresonant processes in which the transition matrix
connects directly to the ground state. Note that the reaction γ +d → p+n,
the inverse of the deuterium-forming reaction p + n → d + γ (2.2 MeV),
is not a dipole resonance excitation [232]. Equation (9.66) can be used
to calculate the survival probability of UHECR ions in the CMBR or, in-
deed, in an arbitrary background radiation field. A more accurate treat-
ment would also consider the pygmy dipole resonance excited by surface

3Updated experimental giant dipole resonance parameters can be found at http://www-
nds.iaea.org/RIPL-2/gamma.html.
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Table 9.2 Anders-Grevesse [238] Abundances, by Number, Relative to H

Element Z Aa Solar photosphere Meteoritic
abundance abundance

H 1 1 1.0 1.0
He 2 4 0.98× 10−2 0.080
C 6 12 3.63× 10−4 4.44× 10−4

N 7 14 1.2 × 10−4 1.15× 10−4

O 8 16 8.51× 10−4 8.75× 10−4

Ne 10 20 1.23× 10−4 1.38× 10−4

Mg 12 24 3.80× 10−5 3.95× 10−4

Al 13 27 2.95× 10−6 3.12× 10−6

Si 14 28 3.55× 10−5 3.68× 10−5

S 16 32 1.62× 10−5 1.89× 10−5

Ca 20 40 2.29× 10−6 2.24× 10−6

Fe 26 56 4.68× 10−5 3.31× 10−5

aMost common isotope.

nuclear oscillations (e.g., [237]). Though its cross section is smaller than
that of the giant dipole resonance, it is peaked at a lower-energy radiation,
so that the threshold energy is lower.

An accurate treatment of UHECR ion propagation requires a reaction net-
work to follow creation and destruction of UHECR nuclei and energy loss
during transport. There is a general monotonic decrease of the composition
of heavier ions in the Solar photospheric abundances (see table 9.2). This
also holds true for the meteoritic abundances and, taking into account spal-
lation processes during transport, the composition patterns of the GeV–TeV
cosmic rays. If the abundances of accelerated UHECR ions follow the Solar
photospheric abundance, the addition of new nuclides during transport from
photodestruction of heavier nuclides can be neglected in a simple examina-
tion of the problem.

9.9.1 Photodisintegration Reaction Rate

We now make a simple guess for the photonuclear destruction or disintegra-
tion rate of UHECR ions by photons of the CMBR. The photonuclear cross
section can be written in the δ-function form

σφnuc(E) ∼= �d

me
δ(ε − ε̄r ), (9.68)
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where the total particle energy E = Ampc2γ . The peak of the photonuclear
cross section is typically near 20 MeV, so

ε̄r ∼= 20

mec2
MeV ∼= 40

(
hνGDR

20 MeV

)
≡ 40ε̄40.

By subdividing the cross section, eq. (9.68), into a superposition of
δ-functions with coefficients that sum to �d/mec

2, successively better
approximations to the photonuclear cross section can be made.

Another δ-function approximation for the photodisintegration cross
section of nucleus A is given by

σA(εr) ∼= π

2
σ0,AGDR δ(εr − εr,A) (9.69)

[138,236,239], where

σ0,A = 1.45A mb, GDR
∼= 15.6, εr,A ∼= 83.5A−0.21,

and εr = γ ε(1 − µ) is the invariant dimensionless photon energy in the
ion’s rest frame.

From eq. (9.3), the photonuclear reaction rate of a nuclide with Lorentz
factor γ passing through an isotropic radiation field denoted by nph(ε) is

Ṅφnuc(γ, z) = c

2γ 2

∫ ∞
0

dε
nph(ε)

ε2

∫ 2γ ε

0
dεrεrσφnuc(εr ), (9.70)

where γ = E/Ampc
2 and β → 1. Substitution of eq. (9.68) for the cross

section and eq. (9.6) for the CMBR radiation field gives

Ṅφnuc(γ, z, A,Z) = −4πc�̃d�(z)ε̄r
λ3

Cγ
2

ln

[
1− exp

( −ε̄r
2γ�(z)

)]
. (9.71)

Here �̃d = (�d/0.511 MeV)×10−27 cm2 (eq. [9.66]). Photonuclear re-
actions of ion (A,Z) with energy E = 1020E20 eV with E20 � 0.4Aε̄40/

(1 + z) take place with Wien photons of the CMBR. In this asymptote,
eq. (9.71) gives the photonuclear interaction pathlength

rφnuc(E20, z, A,Z) = c

Ṅφnuc(γ, z, A,Z)

→ 4.0E2
20

ε̄40ZA2(1+ z) exp

(
0.41Aε̄40

E20(1+ z)
)

Mpc, (9.72)

using eq. (9.66) for the energy-integrated cross section and treating
ions heavier than He. This proves to be a poor approximation, as shown in
figure 9.14.
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Figure 9.14 Photonuclear destruction pathlengths rφnuc, for low-redshift UHECR
nitrogen nuclei interacting with CMBR photons. Separate effective
mean free paths for photopion, photopair, photodisintegration, and
universal expansion losses are shown for N, including total effective
mean free path for N and Fe. Analytic photodisintegration mean free
path for N is also shown.

9.9.2 Effective Photodisintegration Energy-Loss Rate

When a single proton or neutron is ejected, then a fraction A−1 of the orig-
inal energy E is lost to the original nucleon, and with the ejection of two
nucleons, a fraction 2/A of energy is lost. For multinucleon injection, an
average fractional energy loss kA/A is used [234], where kA = 1.2, 3.6,
and 4.349 for A = 4, 10 ≤ A ≤ 22, and 23 ≤ A ≤ 56, respectively. The
photodisintegration energy-loss MFPs have only a generalized meaning in
terms of the mean distance for an UHECR nucleon to be broken up into
mostly lower energy protons and neutrons and a nucleon with A about half
of the original nucleonic mass. Photodisintegration of Fe, for example, leads
to significant fraction of A � 15 nucleon secondaries [234].

In the δ-function approximation for the GDR, eq. (9.69), the inverse of the
effective energy-loss timescale of an UHECR ion due to photodisintegration
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processes with photons of the CMBR, namely, the photodestruction rate, is

t−1
E (E,A)= 2π2cGDRkAεr,A�

γ 2Aλ3
C

ln

(
1

1− exp(−wr,A)
)

∼= 3.2× 10−15 kAA
1.79(1+ z)
E2

20

ln

(
1

1− exp(−wr,A)
)

s−1,

(9.73)
where

wr,A ≡ εr,A

2γ�
= 0.83A0.79

E20(1+ z) .

The effective path length for photodisintegration in the δ-function approxi-
mation for the GDR is therefore

λE = λE(E,A)= ctE(E,A)→
3.0E2

20 exp
{
0.83A0.79/[(1+ z)E20]

}
kAA1.79(1+ z) Mpc

(9.74)

in the limit wr,A � 1, that is, E20 � 5(A/10)0.79. The analytic MFP is not
very accurate, as shown for UHECR nitrogen in figure 9.14. The calculated
MFPs provide inputs for Monte Carlo calculations (see Refs. [203,240]).
Figure 9.14 also shows the effective photodisintegration energy-loss path-
lengths of UHECR Fe in the CMBR at low redshift, using a low-energy
threshold of 10 MeV [236]. This pathlength is an overestimate because of
the neglect of the diffuse infrared radiation field, considered in the next
chapter.

9.9.3 Neutrinos from Photodisintegration

The “guaranteed” cosmogenic GZK neutrino flux is actually quite sensitive
to the ionic composition of UHECRs [241]. As we have seen, the diffuse
neutrinos from UHECRs originate from photopion production and neutron
β-decay. Many neutrons formed as secondaries in photodisintegration of
ions will β-decay and, because of the large number of produced secondaries,
make a flux of ∼1016 eV neutrinos. But the fractional energy to neutrinos in
β-decay, with electron neutrinos taking ≈ 0.04% of the neutron’s energy,
makes it hard for ions to make a more detectable diffuse neutrino flux than
protons, where a neutrino takes ≈5% of the cosmic ray proton’s energy.

This factor reduces the efficiency for neutrino production compared to a
pure proton composition. Consider that the threshold condition for photo-
pion production by protons is γp〈ε〉 � mπ/me, 〈ε〉 ≈ 2.70� ≈ 1.2× 10−9,
giving a threshold energy

Ep = mpc2γp � 2× 1020 eV. (9.75)
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For an ion with energy EN , by comparison, the threshold for interaction
with the GDR is γN 〈ε〉 � εr,A, so

EN = Ampc2γN ∼= 4× 1020(A/10)0.79 eV, (9.76)

and the typical energy of a β-decay neutrino formed from photodisintegra-
tion is 〈Eν〉 ∼ 2× 1016(A/10)−0.21 eV.

If the upper energy of the UHECR ion injection spectrum extends to 1022

or 1023 eV, then a significant flux of high-energy neutrinos can be made
through both photopion and photodisintegration processes. Besides fitting
the UHECR proton and ion data [184], a model for the cosmogenic
neutrinos must in addition underproduce the diffuse galactic γ -ray back-
ground intensity.
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Chapter Ten

γ γ Pair Production

In this chapter, the astrophysical importance of the γ γ → e+e− process that
destroys γ rays and creates electron-positron pairs is considered. This reac-
tion is the inverse of the pair annihilation process considered in section 8.4.

Topics include:

1. the γ γ → e+e− cross section σγγ (s) and the γ γ pair-attenuation op-
tical depth per unit pathlength, dτγ γ (ε1)/dx, for a γ ray with
energy ε1;

2. δ-function approximation to the γ γ → e+e− cross section and an
estimate of the γ γ opacity τγ γ (ε1);

3. calculations of the γ γ → e+e− opacity of the universe for∼100 GeV
– multi-TeV γ rays emitted from a source at redshift z that interact
with photons of the EBL (extragalactic background light);

4. calculations of the γ γ opacity in compact sources;
5. minimum Doppler factor in standard relativistic jet model from obser-

vations of a variable source of γ rays;
6. γ -ray suppression during periods of most luminous neutrino emission;

and
7. electromagnetic cascades induced by leptonic or hadronic primaries

interacting with ambient photons.

The γ γ pair production optical depth τγ γ (ε1) is an integral quantity de-
fined along a specific path. In the absence of other γ -ray sources in the
path, the source flux is reduced by the factor exp(−τγ γ ). By this mecha-
nism, �10 GeV–TeV γ rays are attenuated by interacting with photons of
the ambient diffuse EBL at IR and optical wavelengths. Measurements of
pair production features from sources at different redshifts offer the prospect
of measuring the diffuse and evolving IR and optical EBL. The amount of
absorption for sources at different redshifts reveals the integral bolomet-
ric energy generated by stars and black holes, which make up the primary
astrophysical sources of power. Much of this stellar and/or black-hole accre-
tion and rotation power may be reprocessed into infrared wavelengths if the
powerhouses are surrounded by thick columns of gas or dust. Attenuation of
�TeV radiation should be apparent by z ∼= 0.15, which makes it a surprise
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that HESS detects multi-TeV radiation from moderate redshift TeV blazars,
including 1ES 1101-232 at z = 0.186 [242].

If the source medium is also the attenuating medium, then the emergent
flux depends on the values of the energy-dependent emissivity j (ε,�) and
absorption coefficient κε . For a radiating slab of width L, the emergent in-
tensity, from eq. (7.154), is given by Iε = j (ε,�)L [1 − exp(−τγ γ )]/τγ γ
and for a uniform spherical source, by eqs. (7.121) and (7.122).

When a source is compact to γ rays with dimensionless energy ε1,
τγ γ (ε1) > 1, and γ rays with energy ≈mec2ε1 are absorbed by the source
photons. The absorbed γ -ray materializes into an e+-e− pair. Subsequent
Compton and synchrotron emissions by these energetic secondary leptons
can produce new γ rays that are again subject to γ -ray annihilation. In
some cases, many generations of γ rays are formed in the electromagnetic
cascade. Either high-energy leptons or hadrons can, depending on source
conditions, induce these cascades. PeV neutrino detection from relativistic
jet sources would confirm the acceleration of hadrons in these sources, likely
solving the problem of UHECR origin.

As already mentioned in the previous chapter, cosmogenic γ rays formed
as the decay products of secondaries produced in photopair and photopion
processes between UHECRs and target photons of the EBL make a guar-
anteed source of diffuse extragalactic background γ rays. We conclude this
chapter with a consideration of cascades induced by UHECRs at the sources
and throughout intergalactic space.

10.1 γ γ PAIR-PRODUCTION CROSS SECTION

From the methods of quantum electrodynamics [37,64], one obtains the γ γ
pair-production cross section

σγγ (s) = 1

2
πr2

e (1− β2
cm)

[
(3− β4

cm) ln

(
1+ βcm

1− βcm

)
− 2βcm(2− β2

cm)

]
,

(10.1)

where βcm = (1 − γ−2
cm )

1/2 = √1− s−1, and
√
s = γcm is the center-of-

momentum frame Lorentz factor of the produced electron and positron. The
strength of a collision is characterized by the invariant energy

√
stot, defined

in terms of four-vectors pµ1 and pµ2 by

stot = (pµ1 + pµ2 )2 = (ε1 + ε)2− (ε1 + εµ)2− ε2(1− µ2)= 2εε1(1− µ).
(10.2)
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Figure 10.1 Cross section for γ γ pair production, σγγ (s), as a function of in-
variant s, along with asymptotes at s − 1� 1 and s � 1.

At threshold, two leptons are formed at rest with total energy 2mec2, so that
stot = 4 at threshold. Above threshold, stot = 4γ 2

cm. Hence

s = γ 2
cm =

1

2
[εε1(1− µ)] = stot

4
. (10.3)

The asymptotes of the cross section are

σγγ (s) = πr2
e



βcm, βcm � 1,

ln 2s − 1

s
, s � 1.

(10.4)

Equations (10.1) and (10.4), plotted in figure 10.1, give the γ γ pair-
production cross section as a function of s. The interaction angle θ =
arccosµ is the angle between the directions of ε1 and ε. For a γ -ray pho-
ton with energy ε1 passing through a background of photons with energy ε
and angle θ , the cross section is invariant with respect to fixed values of the
interaction energy s = εε1(1 − µ)/2. Note the strong peaking of the cross
section when s ≈ 2, which consequently favors collisions near threshold.
The assumption s ≈ 2 gives a good approximation to this process except
when the target photon spectrum is so hard that s � 1 interactions become
important.

For γ rays passing through isotropic photon fields, s → εε1 for head-on
collisions. For approximations, s → εε1/2 (assuming typical collision angle
θ ∼= π/2) gives reliable estimates for a typical interaction with isotropic
target photons. The threshold for pair production in γ γ processes is βcm> 0,
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γcm > 1, implying s > 1. Relations of interest for pair production are

γcm =
√
γr + 1

2
and γr = 2γ 2

cm − 1,

where γr is the Lorentz factor of one produced lepton in the rest frame of
the second antilepton.

The absorption probability per unit pathlength is

dτγ γ (ε1)

dx
= Ṅ sc

c
=
∮
d�(1− µ)

∫ ∞
0

dε nph(ε,�) σγγ (s), (10.5)

from eq. (2.40), where Ṅ sc is the γ -ray absorption rate, and the dependence
on ε1 is contained in the definition of s, eq. (10.3). For an isotropic photon
field,

dτγ γ

dx
= 1

2

∫ 1

−1
dµ (1− µ)

∫ ∞
0

dε nph(ε) σγ γ (s). (10.6)

This can be written [243–245] in the form

dτγ γ

dx
= πr2

e

ε2
1

∫ ∞
1/ε1

dε ε−2 nph(ε) ϕ̄(s0), (10.7)

where s0 ≡ εε1, and

ϕ̄(s0) = 2
∫ s0

1
ds

sσγγ (s)

πr2
e

. (10.8)

From the formulae of Gould and Schréder [244], corrected in [245],

ϕ̄(s0)=
1+ β2

0

1− β2
0

lnw0 − β2
0 lnw0 − ln2w0 − 4β0

1− β2
0

+ 2β0 + 4 lnw0 ln(1+ w0)− 4L(w0), (10.9)

where β2
0 = 1− 1/s0, w0 = (1+ β0)/(1− β0), and

L(w0) =
∫ w0

1
dw w−1 ln(1+ w) = 1

2
ln2w0 + π

2

12
−
∞∑
n=1

(−)n−1n−2w−n0 .

(10.10)

Equation (10.9) can also be written as

ϕ̄(s0)=
(

2s0 − 2+ 1

s0

)
lnw0 + 2(1− 2s0)

√
1− s−1

0

+ lnw0[4 ln(1+ w0)− 3 lnw0]− 1

3
π2 + 4

∞∑
n=1

(−)n−1n−2w−n0 .

(10.11)
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Figure 10.2 Graph of the function ϕ̄(s0)/(s0 − 1) used to calculate τγ γ in an
isotropic photon field, including asymptotes at small and large values
of s0, from eq. (10.12).

The asymptotes of ϕ̄(s0) are

ϕ̄(s0)→




2s0(ln 4s0 − 2)+ ln 4s0(ln 4s0 − 2)− π
2 − 9

3
+ s−1

0 (ln 4s0 + 9/8)+ · · · , s0 � 1,

4

3
(s0 − 1)3/2 + 6

5
(s0 − 1)5/2

− (253/70)(s0 − 1)7/2 + · · · , s0 − 1� 1

(10.12)

(see figure 10.2).

10.1.1 Absorption by a Blackbody and a Modified Blackbody
Photon Gas

The number spectrum of a blackbody photon gas, from eq. (5.16), is given by

nbb(ε;�) = 8π

λ3
C

ε2

exp(ε/�)− 1
. (10.13)

We generalize this formula to treat modified blackbody spectral energy den-
sities of the form

εu(ε) = u0
wk

exp(w)− 1
= mec2ε2nph(ε), (10.14)

where w = ε/�. For a blackbody, k = 4 and u0 = 8πmec2�4/λ3
C.

Substitution of the blackbody spectrum, eq. (10.13), into eq. (10.7) gives

dτ bb
γ γ

dx
= 2α2

f

λC
ε−2

1

∫ ∞
1/ε1

dε
ϕ̄(s0)

exp(ε/�)− 1
≡ 2α2

f

λC
�3F(ν) (10.15)
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Figure 10.3 Graph of the function F(ν) (≡F(ν, 4)), eq. (10.17), used to calculate
τγ γ in a blackbody photon field, including asymptotes (dotted curves)
from eq. (10.18). Also shown are the functions F(ν, k), eq. (10.22),
for k = 1, 2, 3, 4 (blackbody), and 5.

for the differential γ γ opacity through a blackbody radiation field, where

ν ≡ 1

ε1�
(10.16)

and

F(ν) = ν2
∫ ∞
ν

dw
ϕ̄(w/ν)

exp(w)− 1
. (10.17)

The asymptotes of F(ν) are

F(ν)→




√
πν exp(−ν)

(
1+ 9

4ν

)
, ν � 1 or ε1 � 1/�,

π2ν

3
ln(0.47/ν), ν � 1 or ε1 � 1/�

(10.18)

[131,244,245]. Figure 10.3 is a graph of the function F(ν), along with its
asymptotes.

The asymptotes of the γ γ optical depth through the local z � 1 CMBR
for a photon of energy E (PeV) from a source at distance d are given, from
eqs. (10.15) and (10.18), by the expressions

τγ γ (E (PeV), d) ∼=(
d

10 kpc

){
(2.5/
√
E (PeV) exp(−1.16/EPeV), EPeV � 1,

(5.0/EPeV) ln(0.40E (PeV)), EPeV � 1.
(10.19)
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The source distance for unity optical depth in the redshift-z CMBR is,
therefore,

λCMB
γ γ (kpc) ∼=



4
√
E (PeV)

(1+ z)5/2 exp{−1.16/[E (PeV)](1+ z)}, (1+ z)E (PeV)�1,

2.1E (PeV)

(1+ z)2 ln{0.42[E (PeV)](1+ z)} , (1+ z)E (PeV)� 1.

(10.20)

PeV sources in our Galaxy should show significant attenuation from the
CMBR, as well as from stellar radiation fields [246].

For the modified blackbody, eq. (10.14), eq. (10.7) gives

dτmbb
γ γ

dx
= πr2

e

�mec2
u0F(ν, k), (10.21)

where eq. (10.17) is generalized to

F(ν, k) = ν2
∫ ∞
ν

dw
wk−4ϕ̄(w/ν)

exp(w)− 1
. (10.22)

Figure 10.3 is a graph of the functionF(ν, k), for k = 1, 2, 3, 4 (blackbody),
and 5. Thus F(ν) = F(ν, 4). The ν � 1 asymptote of F(ν, k) is

F(ν, k) −→
ν�1

√
π νk−7/2 exp(−ν). (10.23)

10.1.2 Absorption by a Power-Law Photon Gas in a Relativistic Jet

The γ γ optical depth of γ rays interacting with lower-energy target photons
with a broken power-law target photon spectrum in a relativistic flow is
treated here. The target photon spectrum is defined in the fluid frame of a
relativistic jet, and is assumed to have low- and high-energy cutoffs. We
restore the primes to quantities in the proper frame of the relativistic bulk
flow, and then transform to the observer frame through the relations ε ′1 =
(1+z)ε1/δD for the γ -ray energy and ε′ = (1+z)ε/δD for the target photon
energy.

Consider a uniform spherical radiating blob of volume V ′b = 4πr ′3b /3.
The measured νFν flux is related to the comoving emissivity according to
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the relation

νFν = fε ∼=
δ4

DV
′
b

d2
L

ε′j ′(ε ′, �′)→ δ4
DV
′
b

4πd2
L

ε′j ′(ε′), (10.24)

where j ′(ε′, �′) is the comoving emissivity (see section 5.5), � is the di-
rection vector, and the final expression in eq. (10.24) assumes isotropic
emission in the comoving frame. Equation (10.24) is an approximation be-
cause we have implicitly assumed that the light travel time across the blob is
smaller than the duration of the flare in order to avoid integrations over dif-
ferent portions of the emitting plasma, consistent with causality arguments
for a discrete intense flare or pulse. The expression dt = (1 + z)dt ′/δD

relating observer and comoving differential times implies r ′b � ct ′var =
cδDtvar/(1+ z).

The comoving spectral energy density u′ε′ = mec
2ε′2n′(ε′) is related to

the isotropic emissivity j ′(ε′) through the relation ε′j ′(ε′) ∼= u′ε′/〈t ′esc〉 ∼=
cu′ε ′/r

′
b, where 〈t ′esc〉 is the mean photon escape time and n′(ε′) is the spectral

photon number density (eq. [5.47]). Thus

u′ε′ ∼=
3d2
L

cr ′2b δ
4
D

fε = 3d2
L

cr ′2b δ
4
D

fεpkS(x), (10.25)

where x = ε/εpk = ε′/ε′pk and the spectral function S(x) defines the shape
of the νFν spectrum.

If the target SED is approximated by a broken power law with peak en-
ergy flux fεpk at ε = εpk with νFν indices a (>0) and b (<0) at low and
high frequencies, respectively, then

S(x) = xaH(x; xa, 1)+ xbH(x; 1, xb). (10.26)

Equations (10.7) and (10.25) give

τγ γ (ε1)=
3πr2

e d
2
Lfεpk

cr ′bδ
4
Dmec

2

1

ε′21 ε
′3
pk

∫ ∞
1/ε′1ε

′
pk

dx x−4S(x)ϕ̄(xε′pkε
′
1)

= 3πr2
e d

2
Lfεpk

mec4tvarε
2
1ε

3
pk(1+ z)4

∫ ∞
ω−1

dx x−4S(x)ϕ̄(xω)

= 3πr2
e d

2
Lfεpk

mec4tvarε
2
1ε

3
pk(1+ z)4

[
H

(
1− 1

ω

)∫ 1

max(xa,1/ω)
dx

ϕ̄(xω)

x4−a

+
∫ xb

max(1,1/ω)
dx

ϕ̄(xω)

x4−b

]
, (10.27)

whereω = (1+z)2ε1εpk/δ
2
D, and the final expression uses the broken power-

law spectrum, eq. (10.26). The asymptotic behavior of low-energy γ -rays
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Figure 10.4 γ γ opacity τγ γ (ε1) as a function of photon energy for parameters
shown, with Doppler factor δD = 10 and z = 1. The target photon
SED is approximated as a broken power law, eq. (10.26), with νFν flux
peaking at εpk = 10−5. Heavy and light curves for τγ γ (ε1) are accu-
rate numerical integration, eq. (10.27), and δ-function approximation,
eq. (10.34), respectively.

(ε1 � εpk) interacting with the high-energy portion of the target isotropic
photon spectrum is given by

τγ γ (ε1)→
3πr2

e d
2
Lfεpk

cr ′bδ
4
Dmec

2
ε′−bpk ε

1−b
1

∫ xbε
′
pkε
′
1

1
ds sb−4ϕ̄(s) ∝ ε1−b

1 , (10.28)

where the behavior expressed in the last relation holds when xb = εb/εpk �
1/ε′pkε

′
1, or when δ2

D/(1 + z)2εpk � ε1 � δ2
D/(1 + z)2εb. Likewise, the

asymptotic behavior of high-energy γ rays when δ2
D/(1 + z)2εa � ε1 �

δ2
D/(1+ z)2εpk is τγ γ (ε1) ∝ ε1−a

1 ,
Figure 10.4 shows a numerical calculation of the opacity of photons trav-

eling through a target power-law photon field for a model blazar, using
eq. (10.27). The photon SED is given by eq. (10.26), with different val-
ues of a and b as shown in the figure. The parameters of the calculation are
shown in the figure legend, and δD = 10.

10.1.3 γ γ Attenuation in Anisotropic Radiation Fields

By integrating eq. (10.5) over the pathlength of the γ ray, one can derive
the total γ γ optical depth for a photon with measured energy ε1 [247]. For
a Shakura-Sunyaev disk field with intensity I SS

ε (�; R̃) given by eq. (6.139),
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the absorption optical depth τγ γ can be calculated by substituting the photon
intensity nSS

ph (ε∗, �∗) = ISS
ε∗ (�∗; R̃)/ε∗mec3 into eq. (10.5) and integrating

x from r to ∞. The optical depth to γ γ pair production attenuation for a
γ ray traveling outward along the jet axis starting at height R̃ is [73]

τ SS
γ γ (ε1, r̃)∼= 6× 106 l

3/4
EddM

1/4
9

η
3/4
f

∫ ∞
R̃

dx̃

x̃2

∫ ∞
6

dR̃

R̃5/4

× [φ(R̃)]1/4H(s̃ − 1)

(1+ R̃2/x̃2)3/2

(
σγγ (s̃)

πr2
e

)
(1− µ∗), (10.29)

where s̃ ≡ 〈ε(R̃)〉ε1(1+ z)(1− µ∗)/2 and µ∗ = 1/
√

1+ R̃2/x̃2. For the
Shakura-Sunyaev disk extending to the innermost stable orbit of a Schwarz-
schild black hole, one sees from eq. (10.29) that τ SS

γ γ (ε1, R̃)/M9 ∝ ξ ≡(
�Edd/M9ηf

)1/4
.

For the case of a photon traversing a radiation field scattered by BLR gas,
we consider a radially symmetric scattering shell, as in section 6.9. Sub-
stitution of eq. (6.170) into eq. (10.5) for a monochromatic photon source,
eq. (6.173), gives

τγ γ (ε1, r)= σTL0

8πmec3ε∗

∫ ∞
r

dx

x

×
∫ 1−2/[ε1ε∗(1+z)]

−1
dµ∗ (1− µ∗) N (µ∗, x)σγ γ (s) (10.30)

for the opacity of a photon with measured energy ε1 emitted outward along
the jet axis at height r . The γ γ opacity vanishes when ε1 ≤ 1/[ε∗(1 +
z)] due to the γ γ pair-production threshold. Blandford and Levinson [80,
248] introduced the concept of a pair horizon to describe a source radiation
environment that strongly attenuates GeV and TeV photons from the jet. See
also Refs. [83,249].

10.2 δ-FUNCTION APPROXIMATION FOR σγγ

In cases where the external radiation can be approximated as isotropic, a
mean interaction takes place with θ ≈ π/2 or µ = 0. In this case, we can
write

dτγ γ

dx
∼=
∫ ∞

2/ε1
dε σγγ (ε1ε)nph(ε; x). (10.31)
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Given this assumption, the simplest invariant cross section that can be
formed from the (quasi-)invariant εε1 is

σγγ (εε1) ∼= 2

3
σT δ(εε1 − 2) ∼= 2

3

σT

ε1
δ

(
ε − 2

ε1

)
∼= 1

3
σT ε δ

(
ε − 2

ε1

)

(10.32)

[250], where the coefficient improves comparison with numerical results.
The photoabsorption optical depth for a γ -ray photon with energy ε1 in

a radiation field with spectral photon density nph(ε
′, µ′; r ′) (≈nph(ε

′)/2
for a uniform isotropic radiation field in the comoving frame) is [244]

τγ γ (ε
′
1)=

∫ r ′2

r ′1
dr ′

∫ 1

−1
dµ′(1− µ′)

×
∫ ∞

2/ε′1(1−µ′)
dε ′ σγγ [ε′ε′1(1− µ′)]nph(ε

′, µ′; r ′)

∼= r ′b
∫ ∞

0
dε ′ σγγ (ε ′, ε′1) n

′
ph(ε

′). (10.33)

Using the approximation (10.32) for the cross section and making the
substitutions in eq. (10.33) gives [251]

τγ γ (ε1) = τ pk
γ γ



(
ε1

ε
pk
1

)1−b
H(ε

pk
1 − ε1)+

(
ε1

ε
pk
1

)1−a
H(ε1 − εpk

1 )


,

(10.34)

where

τ pk
γ γ =

σTd
2
Lfεpk

2mec4tvarδ
4
Dεpk

(10.35)

and

ε
pk
1 =

2δ2
D

(1+ z)2εpk
. (10.36)

Comparison of numerical calculations with the approximate form of τγ γ ,
eq. (10.35), is shown in fig. 10.4. Note that a factor 1/2 was added in
eq. (10.35) to improve agreement with the numerical calculations of τγ γ
in the low-energy asymptote.

10.3 OPACITY OF THE UNIVERSE TO γ γ ATTENUATION

The EBL consists of separate emission components that evolve differently
through cosmic time, the most energetically important of which is the
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Table 10.1 Relations Between γ -Ray Energy and Target Photon Frequency for γ γ
Attenuation

λ (µm) 1 2 4 8 12 25 60 100 1000
ν (1012 Hz) 300 150 75 37.5 25 12 5 3 0.3
E (eV) 1.24 0.62 0.32 0.16 0.10 0.50 0.21 0.012 0.0012
E1 (TeV) 0.42 0.84 1.68 3.4 5 10 25 42 420

CMBR (section 1.5). The EBL is additionally formed by the superposition
of stellar, galactic, black hole, dark matter, etc., emissions since the onset
of structure formation. The EBL at IR wavelengths is difficult to measure
directly because of foreground contamination by zodiacal light and galactic
cosmic-ray electron synchrotron emission. The cosmological importance of
measuring the diffuse cosmic IR and optical background lies in the fact
that its intensity is determined primarily by stellar processes, and gives a
bolometric calorimetry of normal matter processes.

Because of the peaking of σγγ (εr) at εr ∼= 2, photons with energy ε1 are
preferentially attenuated by photons with energy ε according to the relation
ε1ε ∼= 2 or, in dimensional units,

E1 (TeV) ∼= 0.4λ (µm) (10.37)

where λ = h/mecε is the wavelength of the target photon. Table 10.1 shows
values of GeV and TeV photon energies E1 which are most strongly atten-
uated by infrared photons with wavelength λ between 1 and 1000µm. One
micron or ≈1 eV photons effectively attenuate ∼0.5 TeV γ rays. Photons
detected with the Fermi Gamma Ray Space Telescope at ∼ 10 GeV will
be preferentially attenuated at large redshift, so eq. (10.37) does not hold
below ≈1µ.

10.3.1 γ γ Optical Depth of the Universe

The optical depth per unit distance traveled through the universe by a
γ -ray photon with energy ε1 (measured at the present epoch) is, starting
from eq. (10.7),

dτγ γ (ε1, z)

dx
= πr2

e

ε2
1(1+ z)2

∫ ∞
1/ε1(1+z)

dε
nph(ε; z)
ε2

ϕ̄[εε1(1+ z)]. (10.38)
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Because dx = cdt∗, the total γ γ optical depth becomes

τγ γ (ε1, z)= cπr
2
e

ε2
1

∫ z

0
dz′

∣∣∣∣dt
∗

dz′

∣∣∣∣ 1

(1+ z′)2

×
∫ ∞

1/ε1(1+z′)
dε
nph(ε; z′)

ε2
ϕ̄[εε1(1+ z′)]. (10.39)

For a modified blackbody radiation field described by eq. (10.14), and the
flat �CDM cosmological relation |dt∗/dz|, eq. (4.32), we find

τγ γ (ε1, z) = cπr2
e

mec2H0

∫ z

0
dz′

u0(z
′)F(ν, k)

�(z′)(1+ z′)
√
�m(1+ z′)3 +��

(10.40)

with ν−1 = ε1(1+ z′)�(z′) and F(ν, k) from eq. (10.22).
The γ γ optical depth to cosmic blackbody radiation (CBR, not CMBR,

because the CBR ceases to be primarily microwave radiation at high
redshift) is

τCBR
γ γ (ε1, z) =

2α2
f c

H0λC
�3

0

∫ z

0
dz′

(1+ z′)3F[ν(z′)]√
�m(1+ z′)3 +��

(10.41)

from eq. (10.15), where ν(z′) = 1/[ε1�0(1 + z′)] (see eqs. [10.16] and
[5.17]). The opacity of X-rays and γ -rays in evolving blackbody radiation
fields, including Compton scattering with gas and higher-order processes
such as γ γ → γ γ scattering, was treated in detail by Zdziarski and Svens-
son [131,252].

Equations (4.32) and (4.57) give the expression

εIε = c

4πH0

∫ zmax

0
dz

ε∗jco(ε∗; z)
(1+ z)2

√
�m(1+ z)3 +��

(10.42)

for the present intensity of radiation in a flat universe from sources described
by isotropic emissivity functions; thus jco(ε∗; z)= 4πmec2ε�Ṅco(ε�,��; z).
The maximum redshift of the emission is z = zmax. For radiation fields
produced by cosmic sources, the photon spectral density at redshift z, given
by nph(ε; z) = 4πεIε/(mec3ε2), is

nph(ε; z) = 1

H0

∫ zmax

z

dz′
ṅco(ε∗; z′)√

�m(1+ z′)3 +��
, (10.43)

from eq. (4.57). In this expression, Ṅco(ε∗; z′) is the photon emissivity at
z′′, and

ε∗ = (1+ z′)
(1+ z) ε.
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Figure 10.5 Measurements of the EBL at optical and infrared frequencies [253],
and empirical fits to the EBL using modified blackbody functions,
plotted in terms of spectral energy density εu(ε). Data triangles
pointed upwards are lower limits. The spectral energy density of the
CMBR at z = 0 is also shown.

10.3.2 Measurements of the EBL

Figure 10.5 shows measurements of the intensity of the unresolved IR and
optical EBL at the present epoch from the review by Hauser and Dwek
[253], including an upper limit at ≈ 0.1 eV inferred from γ -ray observa-
tions [254]. Motivated by the appearance of two distinct peaks in the SED
of luminous infrared galaxies and normal star-forming galaxies like the
Milky Way, we fit these two peaks with the modified blackbody functions,
eq. (10.14). The lower-energy emission feature peaking near ≈ 0.01 eV,
probably due to radiation reprocessed by dust, is referred to as the dust com-
ponent. The higher-energy emission feature peaking near 2 eV is referred to
as the stellar component.

The relationship giving u0 and � in terms of the peak spectral energy
density upk = εpku(εpk) at peak dimensionless photon energy εpk is, from
eq. (10.14), given by

u0 ≡ upk ωk = upk
exp(ak)− 1

akk
, (10.44)

where ak is a solution to the equation

(k − ak) exp(ak) = k, (10.45)
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Table 10.2 Functions Defined in Eqs. (10.44) and (10.45)

k ak ωk = exp(ak)− 1

akk
�(k)ζ(k)

2.0 1.659 1.545 1.6449
2.5 2.23 1.18 1.7826
3.0 2.82 0.703 2.404
3.5 3.38 0.40 3.745
3.8 3.707 0.273 5.145
4.0 3.92 0.209 6.494

� = εpk/ak, and

utot = u0

∫ ∞
0

dx
xk−1

exp(x)− 1
= u0�(k)ζ(k).

Solutions to eq. (10.45) and values of ωk and �(k)ζ(k) are given in table
10.2. Fits to the EBL data shown in figure 10.5 are described below.

10.3.3 γ γ Attenuation at Low Redshifts

The EBL does not evolve much at z � 1. The γ γ opacity can therefore
be estimated using the photon spectrum given in the εu(ε) form, as shown
in figure 10.5. The γ γ optical depth, eq. (10.21), for a photon traveling a
distance d = 1027d27 (corresponding to z ∼= 0.08 or a distance of≈350 Mpc
for the standard �CDM described in section 4.2.5) can be written as

τγ γ ∼= πr2
e d

mec2

N∑
i=1

u0,i

�i
F(νi, ki) ∼= 1.6 d27

N∑
i=1

u−14,i

Ti (eV)
F(νi, ki),

(10.46)

where u−14,i = u0,i/(10−14 ergs cm−3), and i represents the CMBR, dust,
and stellar contributions (see table 10.3). The limitation here is that z � 1,
d27 � a few.

It is simple to perform the numerical calculation starting with eq. (10.40)
for the superposition of N blackbody or modified blackbody distributions

τγ γ (ε1, z) = cπr2
e

mec2H0

N∑
i=1

∫ z

0
dz′

u0,i(z
′)F(νi, ki)

�i(z′)(1+ z′)
√
�m(1+ z′)3 +��

,

(10.47)

with, as before, ν−1 = ε1(1 + z′)�(z′) and F(ν, k) given in eq. (10.22).
This approach can be straightforwardly generalized for line emission using
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Table 10.3 Parameters of Empirical Fits to the Local Long-Wavelength EBL

Component ki �i(z) Ti (K) u0,i(z � 1)
(10−14 ergs cm−3)

CMBR 4 4.58× 10−10(1+ z) 2.72(1+ z) 6.38
Dust (high) 3.8 1.06× 10−8 62 0.819
Dust (low) 3.8 5.3× 10−9 31 0.273
Star 1 (high) 2.0 1.2× 10−6 7,100 1.1
Star 1 (low) 2.0 1.2× 10−6 7,100 0.55
Star 2 3.0 2.8× 10−6 16,600 0.5
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Figure 10.6 Optical depth to γ γ absorption with photons of the optical and IR
radiation fields, described as modified blackbody spectral for a stellar
component and dust component, respectively.

Breit-Wigner functions for the IR line radiation, for example, the IR lines of
the polycyclic aromatic hydrocarbons found in the ISM.1

The optical depth τγ γ to the stellar and dust components of the EBL, us-
ing the fits shown in figure 10.5, is shown in figure 10.6. For photon energies

1The Breit-Wigner function for line emission,

S(E) = (G/2)2

(E − E0)2 + (G/2)2
(with FWHM energy G), was introduced in eq. (8.61) to describe the cross section for reso-
nant nuclear scattering. Note that S(E0 +G/2) = 1/2 = S(E0)/2.
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Figure 10.7 Attenuation factor for the low and high forms of the EBL, for 1ES
1101-232 at z = 0.186. Inset shows the effects of the low and high
EBLs on the intrinsic spectrum of 1ES 1101-232 [242,258].

�10 TeV, the opacity is dominated by the stellar component. For the source
1ES 1101-232 at z = 0.186, with d27

∼= 2.4, the high-EBL attenuation fac-
tor at 1 TeV is ≈ exp(−3) ∼= 0.05, so that the intrinsic luminosity at 1 TeV
is ≈20 times greater than the observed luminosity. The spectral index of
the intrinsic photon number spectrum of 1ES 1101-232, using the optical
depth calculated in figure 10.5, is softer than −1.5, in agreement with ex-
pectations from the intrinsic spectra of nearby TeV blazars like Mrk 421 and
Mrk 501 [242].

Figure 10.6 shows the optical depth to γ γ pair production attenuation
for γ rays with measured energies E detected from the TeV X-ray selected
BL Lac object 1ES 1101-232 at z = 0.186 [242]. Separate components for
the CMBR, dust, and stellar radiation fields are shown for the low EBL in
the figure. In making this calculation, only the CMBR field evolves with
redshift, and the dust and stellar radiation field energy densities remain con-
stant. This assumption becomes increasingly less reliable at higher redshifts.

The attenuation factor, from which the intrinsic spectrum of 1ES 1101-
232 is obtained, is plotted in figure 10.7. As can be seen from the index,
the use of the low EBL means that the intrinsic photon spectral index of
1ES 1101-232 from ≈0.2–3 TeV is ≈−2.0. If we adopt as a general rule,
consistent with our knowledge of the GeV spectra of flat-spectrum radio
quasars (FSRQs) [255] and GeV–TeV spectra of BL Lacs like Mrk 421 and
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Mrk 501, that the intrinsic spectrum is softer than −2, then the low EBL is
favored (cf. [256,257]). A low EBL between 1 and 10µ solves the problem
of the unusually hard γ -ray spectrum of 1ES 1101-232 [242,258], avoids the
necessity to construct acceleration scenarios not operating in Mrk 421 and
Mrk 501, and explains the lack of evidence of hard synchrotron components
associated with a hard electron energy distributions in X-ray selected BL
Lac objects (XBLs) observed at TeV energies.

10.3.4 γ γ Attenuation at All Redshifts

Two methods have been employed to determine the evolving EBL over a
range of redshifts: (i) empirically adding up the optical/infrared emissions
from sources at various redshifts; and (ii) developing a model of the universe
from large-scale structure formation theory to give the integrated infrared
emission. In approach (i), developed in the work of Stecker and collabora-
tors [259–261], the Infrared Astronomical Satellite (IRAS) data at 12, 25,
60, and 100µ, and data from the Infrared Space Observatory and other tele-
scopes, for example, the Kuiper Airborne Observatory, are used to derive
luminosity-dependent galaxy SEDs from the optical through the IR. Inte-
grations over cosmic time given the evolving luminosity density permit τγ γ
to be derived.

In approach (ii) of Primack and collaborators [262], models of galaxy
formation, taking into account physical processes such as star formation,
supernova feedback and metal production in merging of dark matter halos,
are used to derived the EBL at different redshifts. The Primack model pre-
dicts an EBL with a steep spectrum between 2 and 10µm.

10.4 THE γ -RAY HORIZON

The low and high EBL SEDs represent the likely range of the local z � 1
intergalactic medium (IGM) IR and optical radiation fields. We can use
this field to calculate the γ -ray photon horizon, defined by the relation
τγ γ (Eosc, zosc) = 1 [244,263] (known as the Fazio-Stecker relation). Fig-
ure 10.8 shows the γ -ray photon energy Eosc as a function of obscuration
redshift zosc from Refs. [261] and [262].

The left panel in figure 10.8 illustrates that PeV γ rays can be detected
from sources within our Galaxy, though they might be subject to modest
attenuation from the CMBR. The IR and stellar radiation fields can also
contribute significant γ γ opacity at ∼ 100 TeV. Anisotropy effects of
Galactic radiation fields on opacity have recently been calculated in [246].
Attenuated spectra of TeV–PeV γ -ray sources could in principle give a
distance measure of specific sources in the Milky Way and nearby galaxies.
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Figure 10.8 The γ -ray horizon due to attenuation by EBL light. (Left) Low-redshift
(z ≤ 0.25) γ -ray horizon giving the relationship between obscura-
tion photon energy Eosc and obscuration redshift zosc or distance dosc

where τγ γ (Eosc, zosc) = 1 for the low and high EBLs shown in fig-
ure 10.5. (Right) The dashed curve is the γ -ray horizon from the work
of Primack et al. [262], and the dotted and dot-dashed curves are the
horizons for different evolutionary scenarios for IR luminous galaxies
from the work of Stecker et al. [261]. (The dotted curve shows a fast-
evolution model.) The solid curves show the γ -ray horizon calculated
here from empirical fits to the EBL.

The right panel compares detailed calculations of the γ -ray horizon with
the empirical approach, valid at low redshifts when the IR and optical ra-
diation fields have not changed appreciably over time, calculated here. The
dotted and dot-dashed curves in the right panel are the γ -ray horizon from
Stecker et al. [261], and the dashed curve is the γ -ray horizon from Primack
et al. [262]. This diagram is primarily illustrative, and should be used cau-
tiously to compare with data. For example, at the redshift of 1ES 1101-232,
namely, z = 0.186, this diagram says that the exponential cutoff energy
is at ≈300–400 GeV, and that the low and high EBLs are not significantly
different. In fact, no exponential cutoff is seen in the 1ES 1101-232 TeV
spectrum, because the actual attenuation is very sensitive to the full
spectrum of the EBL.

10.5 COMPACTNESS PARAMETER

Consider a spherical emission region with radius R that is at rest in the
stationary frame. Suppose also that this region emits a luminosity Lγ at
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≈500 keV (ε ≈ 1). The number density of ≈1/2 MeV photons in the source
is therefore

nγ ≈ Lγ

εmec3 · 4πR2c
≈ Lγ

4πR2mec3
. (10.48)

The numerical coefficient in eq. (10.48) depends on geometry. Note that the
photon distribution becomes increasingly anisotropic away from the center
of the sphere.2

A source is compact to γ γ -pair production attenuation if

τγ γ ≈ nγ σγγ R � 1. (10.49)

Taking σγγ ≈ σT (see figure 10.2), we define the compactness parame-
ter [108,264]

�• ≡
(
Lγ

R

)/(
4πmec3

σT

)
� 1. (10.50)

A source becomes compact to γ γ -pair production when �• � 1, or if Lγ /R
exceeds the electron compactness value

4πmec3

σT
= 4.64× 1029 erg s−1 cm−1. (10.51)

Note that Lγ /R is an observational quantity, with Lγ directly measurable
with detectors sensitive to soft γ -rays, and R inferred from the timescale for
temporal variability when, as is usually the case, direct imaging of the size
of the emission region is not possible.

The Solar luminosity produced in photons near mec2 energy within a So-
lar radius gives L�/R� ≈ 10−7(4πmec3/σT). One Solar luminosity re-
leased at soft γ -ray energies on the size scale of a football field would be-
come compact.

The production sites of high-energy radiation from black holes must be
extremely compact if the γ -ray emission regions are at rest in the stationary
frame of the black hole. For example, OSSE measured large-amplitude vari-
ability on a timescale∼3 days from the blazar PKS 0528+134 at z = 2.06,
dL ∼= 5 × 1028 cm [265]. Its mean flux in the 150–500 keV range during
this period was 0.82 (±0.15) × 10−3 ph cm−2 s−1 MeV−1, so its apparent
isotropic luminosity at ≈1/2 MeV was therefore Lγ ≈ 6 × 1048 ergs s−1.
A three-day variability timescale for a stationary source at z = 2.06 corre-
sponds to a size scale R ≈ 2.5 × 1015 cm, so that �• ∼= 5000 � 1. Rather
than being highly attenuated above≈ a few hundred keV, PKS 0528+134 is

2The mean distance to the boundary of a sphere if each photon is emitted isotropically
and uniformly throughout a sphere is 〈R〉 = 3R/4.
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a prolific source at MeV and 100 MeV γ -ray energies, as shown by COMP-
TEL and EGRET, suggesting that one of our assumptions is incorrect. From
all available evidence, the assumption that is violated is that the source is at
rest in the stationary frame.

Models of sources of multi-MeV γ radiation must ensure that the source
be transparent to its own γ radiation. γ -ray transparency can be guaranteed
if the source is in relativistic motion, as we show in the next section. Another
way to avoid the compactness constraint is to assume that all the radiation is
from beamed, anisotropic electrons [266]. Models of directed particle beams
from black-hole jets are unlikely because a broad pitch-angle distribution is
required to radiate synchrotron radiation, but beamed electrons would fol-
low quasi-parallel field lines with small pitch angles. Synchrotron radiation
is more easily modeled and understood in a scenario where the magnetic
field and plasma move in a bulk outflow.

10.6 MINIMUM DOPPLER FACTOR FROM γ γ CONSTRAINT

Requiring that τγ γ (ε1) < 1 so that the emission region is transparent to γ -
rays gives, using the δ-function result, eqs. (10.34)–(10.36), the minimum
Doppler factor

δD >

[
σTd

2
Lfεpk

2mec4tvarε
A
pk

(
(1+ z)2ε1

2

)1−A]1/(6−2A)

. (10.52)

In eq. (10.52), A = b if ε1 < ε
pk
1 , i.e., δD > (1 + z)√ε1εpk/2, and A = a

if ε1 > ε
pk
1 (here A = 1 − α is the νFν index, where the energy index α is

defined by the relation Fν ∝ ν−α) [251]. One can also use the relation [267]

δD >
6

√
σTd

2
Lfε(1+ z)2ε1

4mec4tvar
,

keeping in mind that the expression ε = 2δ2
D/[(1+ z)2ε1] relating γ -ray

and target photon energy depends on the Doppler factor.
To illustrate the application of the γ γ opacity constraint, we apply

eq. (10.52) to FSRQs such as 3C 279, PKS 0528 + 134, or CTA 102.
OSSE and COMPTEL observations [265] of bright blazars show that fεpk =
10−10f−10 ergs cm−2 s−1 with f−10 � 1, and f−10 ≈ 10 during bright
blazar flares. The νFν flux peaks at εpk ∼ 1–100. Photons observed at
100 MeV/GeV energies (i.e., ε1 = 1960EGeV � 200–2000) would there-
fore be preferentially absorbed by photons with energies below the peak
of the νFν spectrum, so that the case with A = a applies, and a ∼ 0.2–1.
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Taking a = 0.5 for illustration gives

δD � 8

[
d2

28f−10

t4

(
1+ z

2

)]1/5 (
EGeV

εpk

)1/10

. (10.53)

Here we define t4 = tvar(s)/104 s ∼ 1. The Fermi Gamma Ray Space Tele-
scope will be able to detect variability from flares at the level of f−10 ∼ 1
on this timescale [268]. For bright blazar flares from distant FSRQs, Fermi
could set minimum values of δD exceeding ∼20, comparable to the largest
values inferred from radio observations of superluminal motion [269].

We next consider TeV blazars (ε1 = 1.96 × 106ETeV) such as Mrk 421
or Mrk 501 at a distance of ≈ 140 Mpc. TeV photons from sources with
δD ≈ 10 preferentially pair produce with ∼1 keV synchrotron photons. The
X-ray synchrotron spectrum from TeV blazars can exceed f−10 ≈ 1, and
the flare timescale t4 may be as low as 0.1 or even lower, depending on
results from the ground-based γ -ray telescopes. Using A = a = b = 0 for
simplicity (a flat νFν synchrotron spectrum) gives

δD � 12

[(
dL

140 Mpc

)2
f−10ETeV

t4

]1/6

. (10.54)

Shorter flares and brighter synchrotron fluxes will potentially imply values
of δD � 15.

The differences between blast-wave and blob geometries do not make a
great deal of difference in the resultant expressions for the pair production
opacities, as shown in section 5.5.3. Thus we can also apply our results to
GRB blast waves.

The prompt hard X-ray/soft γ -ray emission of a GRB, which we assume
here to be nonthermal synchrotron radiation, has εpk ∼ 1. GRBs with peak
flux fεpk = 10−6f−6 ergs cm−2 s−1, with f−6 � 1, occur every 2–4 weeks
over the full sky. Anticipating that δD,100 = δD/100 ≈ 1 for GRBs, we
see that εpk

1 ≈ 5000δ2
D,100/{[(1 + z)/2]2εpk}, so that observations of GeV

photons from GRBs generally favor the case ε1 � εpk
1 . In other words, GeV

photons from GRBs are preferentially attenuated by photons on the high-
energy portion of the synchrotron spectrum. For illustration, we let A =
b = −1/2 for a typical value of the spectral index at �MeV energies, and
assume that the synchrotron spectrum extends to GeV energies, giving

δD � 200

[
f−6d

2
28

tvar(s)

(
1+ z

2

)3
]1/7 [

εpkE
3
GeV

]1/14
. (10.55)

Thus Fermi observations of GRBs imply values of δD � 200 in the brightest
and most variable GRBs (with � ≈ δD � 800 in GRB 080916C), and
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will potentially find differences in minimum values of δD between different
classes of GRBs.

The results agree with previous treatments [267,270,271]. Note the im-
plicit cospatial assumption in the derivation, namely, that the γ -rays are
formed in the same region as the lower-energy target photons. Without this
assumption, only much smaller values of minimum Doppler factors can be
confidently asserted, which depend more on observations at MeV energies
rather than at GeV or TeV energies [272]. To demonstrate the reliability of
the cospatial assumption requires correlated multiwavelength observations
of γ -ray sources.

After leaving the source, γ rays can still be attenuated as they pass
through the radiation environment of the black hole [273,274], and then
suffer absorption with photons of the EBL.

10.7 CORRELATED γ -RAY AND NEUTRINO FLUXES

Signal detection in neutrino and γ -ray telescopes is improved by reject-
ing background, most simply done by choosing favored time windows to
search for signal. One would logically think that the best time to search for
∼PeV neutrinos is when GRBs are γ -ray luminous and black-hole blazar
jets are flaring at GeV or TeV energies, because during γ -ray flaring states,
energetic particle acceleration is most vigorous. But photopion production
through photohadronic processes, for example, the direct pγ → nπ+
process, is enhanced in conditions of high internal photon target density.
Under these conditions, the γ ray flux will be strongly attenuated by
internal absorption. Thus times of most favorable neutrino detection could
also be argued to take place during periods of low γ -ray flux and high
optical/X-ray fluxes. Here the relations defining

1. efficient photopion losses of cosmic ray protons on target photons, and
2. γ γ opacity of γ rays through that same target photon field [275]

are clarified.
The causality constraint implies that the size scale of the emitting region

r ′b � cδDtvar/(1 + z), where tvar = t0 s = 10τ s is the measured variability
timescale, and δD is the Doppler factor. From eq. (10.25),

ε′n′(ε ′) ∼= 3d2
LfεpkS(x)/(cr

′2
b δ

4
Dmec

2ε′), (10.56)

where εpk ≡ 10j is the measured photon energy (in units of mec2) of the
peak of the νFν spectrum with peak flux fεpk = 10−10f−10 ergs cm−2 s−1 =
10η ergs cm−2 s−1. The rate at which protons lose energy through
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photohadronic processes is t ′−1
φπ
∼= ε′n′(ε ′)σ1K1c, where σ1K1

∼= 70µb,
eq. (9.10), and the threshold condition 2γ ′pε′ � ε′thr

∼= 400 relates the
proper-frame proton Lorentz factor γ ′p and the internal photon energy.

We write the target comoving photon SED from quasi-isotropic emis-
sions as a broken power law, eq. (10.26). The photopion energy-loss rate
of ultrarelativistic protons with Lorentz factor γ ′p interacting with photons
with energy ε′pk near the peak of the νFν spectrum is, from the proceeding
considerations,

ρφπ =
3σ1K1d

2
Lfεpk(1+ z)

mec4δ5
Dt

2
varεpk

. (10.57)

For the model target photon spectrum with 0 < a < 3, b < 0,

t ′−1
φπ (γ

′
p)
∼= ρφπ




2yb−1/[(1− b)(3− b)], y � 1,

2ya−1/[(1− a)(3− a)], y � 1, 0 < a � 1,

(a − b)/[(a − 1)(1− b)], y � 1, 1 � a < 3,

(10.58)

where y ≡ ε′thr/2γ
′
pε
′
pk
∼= δ2

Dε
′
thr/2γp(1 + z)εpk, and the Lorentz factor γp

of an escaping proton as measured by a local observer is γp ∼= δDγ
′
p. The

condition y = 1 for the energy Ep of protons interacting with photons with
energy εpk implies that

Eφπp
∼= mpc

2δ2
Dε
′
thr

2(1+ z)εpk

∼= 1.9× 1014δ2
D

(1+ z)εpk (keV)
eV. (10.59)

The radiating fluid element will expand rapidly following energization
through shell collisions, or through external shocks formed when the ejecta
shell sweeps through the surrounding medium. If ultrarelativistic protons
and ions are accelerated in black-hole jets, then photopion processes can
be certain to be efficient if the photopion energy-loss rate ρφπ , eq. (10.57),
is greater than the inverse of the light travel timescale, (1 + z)/δDtvar. An
UHECR accelerated in a black hole jet will therefore lose a large fraction of
its energy into electromagnetic and neutrino radiations when the jet Doppler
factor

δD < δφπ ≡
(

3σ1K1d
2
Lfεpk

mec4tvarεpk

)1/4

= 10−10.64+(2�+η−τ−j)/4 ∼= 7.3d1/2
28

(
f−10

t0εpk

)1/4

. (10.60)
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The same radiation field that functions as a target for photomeson pro-
duction is a source of γ γ opacity. The photoabsorption optical depth for a
γ -ray photon with energy ε1 in a quasi-isotropic radiation field with spec-
tral photon density n′(ε ′) is given by eqs. (10.34), (10.35), and (10.36). At
the Doppler factor δD = δφπ that allows for efficient photopion production,

the γ γ optical depth at photon energy εpk
1 is, substituting eq. (10.60) into

eq. (10.35), simply

τφπγ γ =
σT

6σ1K1

∼= 1600. (10.61)

Whenever photopion production is important, γ rays with energies given by
eq. (10.36) have to be highly extinguished by γ γ processes when interacting
with peak target photons with energy ∼εpk, making it impossible to detect
γ rays at these energies. This energy is

Eγγγ =
2mec2δ2

φπ

(1+ z)2εpk
= 2mec2 dL

(1+ z)2ε3/2
pk

√
3σ1K1fεpk

mec4tvar

∼= 10−24.26+�+(η−τ−3j)/2 GeV

(1+ z)2
∼= 0.055 d28f

1/2
−10

(1+ z)2t1/20 ε
3/2
pk

GeV. (10.62)

The energy of protons that interact most strongly with peak target photons
through photopion processes under conditions when photopion processes
must be important is, from eqs. (10.59) and (10.60),

Eφπp =
mpc

2δ2
φπε
′
thr

2(1+ z)εpk

∼= 10−10+�+(η−τ−3j)/2 eV∼= 1.0× 1013d28

√
f−10

t0ε
3
pk

eV.

(10.63)

Table 10.4 lists the jet Doppler factor where photopion losses are guaran-
teed to be important for protons of escaping energy Eφπp . Protons with this
energy undergo photopion interactions primarily with (peak) target photons
with energy ∼εpk. Eγγγ is the energy of γ rays that are attenuated through
γ γ -pair production primarily by peak target photons.

For canonical FSRQ values taken from observations of 3C 279 [276] or
PKS 0528 + 134 [277], table 10.4 shows that photopion production is al-
ready important at Doppler factors of ∼6–16 during times of day-scale op-
tical flaring, and these optical photons effectively extinguish all γ -rays with
energies�Eγγγ /16001/(1−b) (cf. figure 10.9); certainly this would include all
�100 GeV–TeV photons [275]. The ground-based γ -ray telescope MAGIC
has detected the FSRQ 3C 279 at ∼100 GeV [278]. Monitoring of FSRQs
during an optical flare would identify periods of likely neutrino emission.
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Table 10.4 Doppler factor δφπ for guaranteed photopion losses, γ -ray photon en-
ergy Eγγγ for γ γ attenuation with photons at the peak of the target pho-
ton SED, and cosmic-ray energy Eφπp for photopion interactions with
peak target photons (sources at z = 2 except for XBL, at z ≈ 0.08,
dL = 1027 cm).

� η τ j δφπ E
γγ
γ (GeV) E

φπ
p (eV)

FSRQ 28.7 −11 5 −5 (5 eV) 9 92 5× 1017

IR/optical −6 (0.5 eV) 16 30× 103 1.6× 1019

FSRQ 28.7 −11 5 −2 (5 keV) 1.6 0.03 1.6× 1013

X-ray −3 (0.5 keV) 2.8 0.92 5× 1014

XBL 27 −10 3 −2 (5 keV) 1.3 0.14 3× 1013

X-ray −3 (0.5 keV) 2.3 4.7 9× 1014

GRB 28.7 −6 0 0 (511 keV) 160 2.9 2× 1015

γ -ray −1 (51 keV) 280 92 5× 1016

X-ray flare −9 2 −3 (0.5 keV) 50 290 1.6× 1017

Figure 10.9 Target photon SED, γ γ opacity τγ γ (ε1), and normalized photopion
energy-loss rate t ′−1

φπ /ρφπ are shown as functions of photon or neu-
trino energy for parameters of rapidly varying prompt GRB emission
from table 10.4. The target photon SED is approximated as a broken
power law, eq. (10.26), with νFν flux peaking at εpk . When photopion
processes are certain to be important for protons with energy Eφπp that
interact with peak target photons with energy ≈εpk, then the γ γ opac-
ity of γ -rays with energy Eγγγ is ≈1600. The γ γ opacity is less than
unity at photon energies �Eγγγ /16001/(1−b).
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For guaranteed importance of photohadronic production implied by X-
ray observations, the Doppler factors of FSRQs and TeV BL Lac objects
like Mrk 421 or Mrk 501 have to be unexpectedly small, �3. If the X-ray
flaring timescale of FSRQs were hourly rather than daily, then δφπ would
more nearly correspond to Doppler factors ∼5–10 as inferred from unifica-
tion studies and superluminal motion observations of blazars [279]. During
such episodes of highly variable X-ray flux, such sources should be invisi-
ble at 100 MeV–GeV energies, and� TeV neutrinos should be created. For
the XBL estimate, 15 minute X-ray flaring timescales have already been as-
sumed [280], so high-energy neutrinos from BL Lacs are less likely than
from FSRQs, which are also more likely to be PeV neutrino sources for
IceCube, as the external radiation field plays a strong role in neutrino pro-
duction [95,281].

Prediction for PeV neutrino detection is most favorable for bright GRBs
with peak fluxes of ≈ 10−6 ergs cm−2 s−1 and peak photon energy in the
range 50 keV–0.5 MeV that show �1 s spikes of emission (figure 10.9).
The bulk Lorentz factors, ≈100, are consistent with widely considered out-
flow speeds in GRBs (see chapter 11). Perhaps 100 MeV photons could
be observed, but the Fermi Large Area Telescope (LAT) should see no
� GeV photons if δD � δφπ , which is the most favorable time for de-
tecting 100 TeV–PeV neutrinos and is at an optimal energy for detection
with kilometer-scale neutrino telescopes. Bright X-ray flares with durations
∼102 s observed hundreds to thousands of seconds after the GRB trigger,
like those discovered with Swift [282,283], with blast-wave Doppler factors
≈50, are also promising times to look for neutrinos and a γ -ray spectrum
attenuated above ∼100 GeV.

The condition τγ γ (ε1) < 1 for detected γ rays with energy ε1 gives a
minimum Doppler factor δmin

D , eq. (10.52). If δmin
D � δφπ , we should not

expect GRBs to be neutrino bright. Breakdown of any of these multivariable
predictions would call into question our understanding of the structure of
black-hole jets.

10.8 ELECTROMAGNETIC CASCADES

Electromagnetic cascades are important for understanding the development
of shower profiles when an UHECR impacts the atmosphere to form an
extensive air shower. Nuclear, bremsstrahlung, and Bethe-Heitler pair pro-
duction processes are important in the development of these hadronically
induced electromagnetic cascades. The theoretical analysis is quite in-
volved; see Ref. [12].
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Figure 10.10 Flow diagram of the dominant photohadronic (pγ ) processes involv-
ing ultrarelativistic protons and target photons that make an electro-
magnetic cascade and neutral beam. Photohadronic processes make
an injection source of π0, π± from photopion losses. The lepton
and photon π -decay secondaries, along with e+-e− pairs from photo-
pair processes, produce synchrotron photons and scatter ambient
target photons to γ -ray energies. γ γ attenuation of the synchrotron
and Compton-produced γ -rays produce new pair injection sources.
Escaping neutrons decay to become UHECR protons.

10.8.1 Cascades in Jets

In high-energy astrophysical sources, a range of cascades can form, de-
pending on the target matter and radiation, the compactness, and magnetic
field strength. Energetic electrons can induce an electromagnetic Compton-
synchrotron cascade by making γ rays in a region that is optically thick
to γ γ -pair production attenuation. Ultrarelativistic protons and ions will
interact with ambient target photons and matter to form secondaries that can
initiate an electromagnetic cascade. In Monte Carlo simulations, a cascade
tree must be followed (see figure 10.10) to calculate high-energy γ -ray and
neutrino spectra formed in black-hole jets.

The photopair (pγ → p + e+ + e−) process is the lowest-threshold pγ
process, and constantly supplies e± pairs over a wide energy range. The
two photopion processes (pγ → pπ0 and pγ → nπ+) have about equal
probability to occur. The neutral and charged pions decay as γ rays, muons,
and leptons, while making high-energy photons, positrons, and neutrinos.
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Figure 10.11 Photon energy fluence from an electromagnetic cascade initiated by
photopion secondaries in a model GRB, with parameters as given in
figure 10.2 and with δD = 100. Five generations of Compton (heavy
curves) and synchrotron (light curves) are shown. The first through
fifth generations are given by solid, dashed, dot-dashed, dot-triple-
dashed, and dotted curves, respectively. The total cascade radiation
spectrum is given by the upper bold dotted curve. (Figure courtesy of
Armen Atoyan.)

While neutrinos escape directly, photons, electrons, and positrons form an
electromagnetic cascade (shown in the box in figure 10.10) together with
pγ → p+e++e− photopairs. Synchrotron radiation and Compton scatter-
ing are the dominant electromagnetic processes, followed only by photopair
production by electrons and positrons at very high energy. High-energy γ
rays can escape from the source if the optical depth to produce e± pairs with
ambient soft photons is less than unity.

Neutron and UHE γ -ray escape, and subsequent decay or pair conversion
can inject energy and momentum hundreds of kpc from the black hole. This
is the basis of the neutral beam model [95], where photohadronic processes
in the inner jet lead to bright neutrino fluxes and the escape of 100 TeV–EeV
neutrons and γ rays.

Hadronic γ -ray emission components appearing during the prompt phase
of GRBs would be caused by a pair-photon cascade initiated by photo-
hadronic processes between high-energy hadrons accelerated in a GRB blast
wave and the internal synchrotron radiation field formed by the acceler-
ated nonthermal leptons. Atoyan’s calculation [191] of the γ -ray flux from
a cosmic-ray proton-induced cascade in a black-hole jet source is shown
in figure 10.11. Plotted there are the first five generations of synchrotron
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and Compton radiation initiated by the cascade, along with the total emer-
gent radiation spectrum. As can be seen, the cascade radiation approaches
the spectrum of an electron distribution cooling by synchrotron losses, that
is, a spectrum with photon number index between −1.5 and −2 where
τγ γ < 1.

This calculation follows a Compton-synchrotron-γ γ cascade initiated by
cosmic-ray protons. The inclusion of ultrarelativistic ions opens photo-
nuclear channels discussed in chapter 9, which produce neutrinos and
γ -rays. Energy-loss and acceleration of charged secondary muons can
alter the results of the cascade calculation including, crucially, the neutrino
flux.

10.8.2 Cascades in the Intergalactic Medium

We derive cascade equations for ultrarelativistic electron-positron pairs and
Thomson-scattered CMBR photons from the electron and photon conti-
nuity equations (Appendix C), though Monte Carlo methods (Appendix
D) are required to obtain the most reliable results. Suppose that beamed
electrons, also understood to include positrons, are injected by a source
into the local (z � 1) universe with Lorentz factor γTKN = 1/4� =
5.5 × 108. At this point, the electrons begin to Compton-scatter photons
in the Thomson regime, so their energy-loss rate is −γ̇T � ν0γ

2, ν0 =
1.3× 10−20 s−1.

The electron number distribution at time t , Ne(γ ; t), is given by

∂Ne(γ ; t)
∂t

+ ∂

∂γ
[γ̇ Ne(γ ; t)]+ Ne(γ ; t)

tesc(γ, t)
= 2cNph(2γ ; t)

λT
, (10.64)

where εCMB = 1.24 × 10−9 and λT = (nCMBσT)
−1 ∼= 1.2 kpc. The photon

distribution at time t , Nph(ε; t), is given by

∂Nph(ε; t)
∂t

+ cNph(ε; t)
λγ γ (ε)

= cNe
(√
ε/εCMB; t

)
λγγ (2γ )

. (10.65)

As apparently rich as these two coupled equations are, Monte Carlo simula-
tions are required to obtain accurate results, because implicit in the continu-
ity equations above is the use of an average distance for γ γ attenuation in
place of a stochastic distribution of the γ γ interactions.

When the charged leptons formed in the electromagnetic cascade are de-
flected out of the beam due to the IGM magnetic fields, pair halos of the
type considered in [284] are formed. For recent work, see papers by Murase,
Asano, Semikoz et al.
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10.9 γ γ → ν

The process of muon pair production from γ γ attenuation is

γ γ → µ+µ− → e+ + ν̄µ + νe + e− + νµ + ν̄e (10.66)

(cf. eq. [8.54]). The γ γ → muon-pair production cross section is derived
from quantum electrodynamics in a manner completely analogous to the
γ γ → e+e− pair production cross section [64] (see eq. [10.1] and sec-
tion 10.1), but with two changes:

• mass me in re = e2/mec
2 is now replaced by the muon mass mµ

(mµ/me = 206.8), so that the cross section at the muon-pair thresh-
old is a factor of (me/mµ)2 smaller than the cross section ∼σT at the
electron-pair threshold, and
• the threshold energy, instead of 2mec2, becomes 2mµc2 =

2× 105.66 MeV.

A δ-function representation for the lowest-order γ γ production of a pair of
particles of mass m is

σγγ→m+m− ∼
(
e2

mc2

)2

δ

(
s − 2

m2

m2
e

)
∼ πr2

e

(me
m

)4
ε δ

(
ε − 2

ε1

m2

m2
e

)
,

(10.67)

taking s ≈ εε1.
This process provides a channel for purely leptonic processes—for exam-

ple, Compton-scattered γ -rays interacting with ambient photons—to make
neutrinos. The actual efficiency to make a detectable neutrino flux has not
been shown to be comparable to photohadronic processes [285], assuming
equal energy or power into nonthermal hadrons as in synchrotron radiation
from nonthermal leptons. For the γ γ → π+π− process, see Ref. [286].



chapter11 July 17, 2009

Chapter Eleven

Blast-Wave Physics

The methods of blast-wave physics, developed to explain gamma-ray burst
(GRB) afterglows, can be used to model emissions from a relativistic flow
that is energized through shock formation. The shocks are formed when the
relativistic jetted plasma sweeps up material from the surrounding medium
at an external shock, or when shocks are formed in collisions between inho-
mogeneous outflows in a relativistic wind. Because black holes are observed
to be sources of collimated relativistic plasma outflows, as most clearly re-
vealed by observations of jets and superluminal motion in Solar mass and
supermassive black-hole systems, and also by achromatic breaks in GRB
optical afterglow-decay light curves, the techniques of blast-wave physics
can be applied to a variety of black-hole systems.

This chapter treats

1. fireball expansion and blast-wave deceleration,
2. blast-wave physics and afterglow theory,
3. relativistic shock hydrodynamics,
4. beaming breaks and jetted emission,
5. the synchrotron self-Compton component,
6. emission in the prompt and early afterglow phases through

• external shocks and
• colliding shells,

7. thermal photospheres and neutrons, and
8. GRB cosmology.

Much of the analysis presented here is based on research by Paczyński,
Mészáros and Rees, and Piran and Sari and their collaborators.

11.1 FIREBALLS AND RELATIVISTIC BLAST WAVES

Consider an explosion that takes place in a uniform circumburst medium
(CBM) with density n0. Suppose that the event releases energy at a fixed rate
over a timescale �0/c, where �0 is a characteristic size scale of the engine
that releases the energy. For long-duration GRBs, this engine is thought to
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be the collapse of a massive evolved star’s Fe core to a black hole, either
directly [18,287], or through intermediate formation of a neutron star [288].
It may also involve the coalescence of compact objects [289,290], or the
accretion- or coalescence-induced collapse of a neutron star to a black hole
for the short, hard class of GRBs. Consequently the engine’s minimum size
scale is the Schwarzschild radius of a few-Solar-mass black hole: �0/c �
30µs or, for impulsive models, a characteristic timescale much shorter than
a second.

In hypernova1 and collapsar models [18,292,293] of GRBs, an active cen-
tral engine is assumed to emit a jetted relativistic outflow on timescales
ranging from fractions of a second to hundreds of seconds, corresponding
to the duration of γ -ray emission from the GRB, or even longer for delayed
X-ray flares. The apparent isotropic equivalent γ -ray energy E0 released by
a GRB explosion can exceed ∼1054 ergs, with apparent isotropic powers
� 1051 ergs s−1. In comparison, the rest mass energy of a Solar mass of
material is ∼=2× 1054 ergs, and the bolometric luminosity of the universe is
∼1054 ergs s−1.

Given the extreme values of apparent energy release, combined with the
short variability times (� 1 s) measured for GRBs, the best explanation
is that the explosion forms a radiation-dominated fireball with injection
explosion entropy per baryon η = L/Ṁc2 � 1, where L is the wind power.
The energy of the fireball is transformed into the directed kinetic energy of
a shell with coasting Lorentz factor

�0 = E0/M0c
2, (11.1)

whereM0 is the amount of baryonic matter mixed into the initial explosion.2

This relation determines the baryon load of the fireball. When �0 � 1, most
system energy is originally in kinetic form and the baryon loading is small.

We begin by assuming that the fireball expands isotropically (jetted out-
flows are considered in section 11.4). Following the energy release, the fire-
ball expands to keep its total energy constant by transforming the entropy
of the explosion into directed kinetic energy. During the early expansion
phase, the Lorentz factor � of the shell evolves according to the relation
�(x) ≈ x/�0 (section 11.7), where x is the distance from the location of
the explosion [294,295]. The value of � increases until the internal energy
of the explosion is converted via baryon-photon coupling into the directed
energy of baryons in the blast-wave shell. The rapid expansion and large
optical depth of the fireball prevents significant energy loss in the form of
escaping photons during the expansion phase. If neutrons remain coupled

1Hypernovae are unusually energetic supernovae; see Ref. [291].
2The coasting Lorentz factor �0 coincides with η for a fireball that expands adiabatically,

which does not apply when neutron escape is important. See section 11.8.
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by the time the fireball reaches its coasting Lorentz factor (section 11.9)
and the expansion is adiabatic, then the blast-wave plasma shell reaches
a coasting Lorentz factor � ≈ �0 at the coasting distance xco ≈ �0�0.
In the stationary frame of the explosion, the shell width is � ≈ �0 at
xco � x � xspr, and � ≈ x/�2

0 at x � xspr, where the spreading dis-
tance xspr

∼= �2
0�0. At x � xspr, internal motions within the blast-wave

shell cause it to spread [296,297].
Adiabatic expansion converts the internal energy of the explosion into di-

rected kinetic energy, with the blast-wave particles nonrelativistic and cold
in the comoving frame. Entrained magnetic field in the outwardly moving
shell of plasma or field generated through plasma mechanisms [112] cause
the fluid shell to sweep up material and field from its surroundings. Inter-
actions of the shell with the external medium [298], or collisions between
shells in a relativistic wind [299], inject and dissipate the directed kinetic
energy in the form of internal energy that is available to be radiated. The
reconversion of energy from the directed outflow to nonthermal broadband
radiation from radio through γ -rays depends on particle acceleration and
radiation physics in the blast wave, including reverse and forward shock
components.

11.1.1 Blast-Wave Deceleration

A basic problem to consider, following Mészáros and Rees [298,300], is
blast-wave deceleration that occurs when the relativistic blast-wave shell
from an explosive event sweeps up CBM material at an external shock. The
accumulation of swept-up material causes the shell to decelerate. For a uni-
form spherically symmetric CBM, the mass of swept-up material at radius x
is Msw = 4πµ0mpn0x

3/3, where n0 is the proton density and µ0 is a factor
accounting for the metallicity of the CBM. Here we consider the simplest
case of an ionized H gas and take µ0 = 1.

The blast wave will start to undergo significant deceleration when an
amount of energy comparable to the initial energy E0 in the blast wave is
swept up. Looked at from the comoving frame, each proton from the CBM
carries with it an amount of energy�0mpc

2 when captured by the blast wave.
After capture and isotropization, the amount of energy carried by the blast
wave from this swept-up proton is �2

0mpc
2 as measured in the stationary

frame (cf. eq. [5.23]). The condition �2
0Mswc

2 = E0 gives the deceleration
radius

xd ≡
(

3E0

4π�2
0mpc

2n0

)1/3

∼= 2.6× 1016

(
E52

�2
300n0

)1/3

cm, (11.2)
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where E0 = E52/1052 ergs is the total explosion energy including rest mass
energy, �300 = �0/300, and n0 is the CBM proton density in units of cm−3.

Differential time elements in the stationary (starred), comoving (primed),
and observer (unscripted) reference frames satisfy the relations

dx = βcdt∗ = β�cdt ′ = βc dt

(1+ z)(1− βµ),
where θ = arccosµ is the angle between the direction of outflow and the
observer, and dt = (1+ z)dt ′/δD. Hence

dt = (1+ z)
c

dx (β−1 − µ) ∼= (1+ z)dx
�2c

. (11.3)

The final term in this expression applies to relativistic flows (� � 1) ob-
served at θ ∼= 1/�, assuming that the average emitting region is located at
cosine angle µ ∼= β to the line of sight.

The deceleration time [298,300] as measured by an observer is therefore

td ≡ (1+ z) xd

β0�
2
0c

= (1+ z)
(

3E0

4πn0mpc5�8
0

)1/3

∼= 9.6(1+ z)
β0

(
E52

�8
300n0

)1/3

s, (11.4)

where z is the redshift of the source, and the factor β−1
0 = 1/

√
1− �−2

0
generalizes [301] the original result of Mészáros and Rees for mildly rela-
tivistic and nonrelativistic supernova explosions. The Sedov radius, giving
the distance traveled in a uniform CBM when the shell sweeps up an amount
of mass energy comparable to the explosion energy, is given by

	S=
(

3E0

4πmpc2n0

)1/3

= �2/3
0 xd

∼= 1.2× 1018
(
E52

n0

)1/3

cm ∼= 6.6× 1018
(E�
n0

)1/3

cm. (11.5)

The final term is written in units of E� = E0/M�c2, where M� is the mass
of the Sun. For relativistic explosions, 	S refers to the radius where the blast
wave slows to mildly relativistic speeds, i.e., � ∼ 2. The Sedov radius of a
SN that ejects a 10M� envelope can reach several pc or more.

11.1.2 Blast-Wave Equation of Motion

The equation describing the momentum P = βγ of the relativistic blast
wave, which changes as a consequence of the blast wave sweeping up ma-
terial from the surrounding medium and radiating internal energy, is now
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derived. For notational simplicity, energies are written in mass units in this
section.

Intuitive Derivation

First we give an intuitive derivation reproducing the asymptotic forms and
showing where a more detailed treatment is needed. Applying momentum
conservation for the explosion and swept-up mass m(x) gives

P

[
M0 +

∫ x

0
dx̃

(
dm(x̃)

dx̃

)
�(x̃)

]
∼=β�[M0 +m(x)�(x)]

∼=β�[M0 + kx3�] ∼= const,

giving the asymptotes � ∝ x−3/2 when �0 � � � 1 and β ∝ x−3 when
� − 1� 1. For the radiative solution,

P

[
M0 +

∫ x

0
dx̃

(
dm(x̃)

dx̃

)]
∼= β�[M0+m(x)] ∼= β�[M0+kx3] ∼= const,

giving the asymptotes � ∝ x−3 when �0 � � � 1 and β ∝ x−3 when
� − 1� 1.

The limits for the adiabatic solution would seem to be obtained through
total energy conservation from the expression

�

[
M0+

∫ x

0
dx̃�(x̃)

(
dm(x̃)

dx̃

)]
∼=�[M0+�m(x)]∼=�(M0+kx3�)∼= const.

This gives the correct relativistic asymptote � ∝ x−3/2 when �0 � � � 1,
but implies that β ∝ x−3 when � − 1� 1. As is apparent from the numer-
ical results, the change in internal energy due to adiabatic losses becomes
important in the nonrelativistic regime so that this estimate is not valid there.

Detailed Derivation

The comoving particle distribution function N ′(p′; x), integrated over the
volume of the blast-wave shell, is defined so that N ′(p′; x)dp′ =
[dN ′(p′; x)/dp′]dp′ represents the differential number of particles with
momenta between p′ = β ′parγ

′ and p′ + dp′ in a blast wave at radius x.
In writing this function, we assume that the particles are isotropically dis-
tributed in the comoving frame and average over the volume of the blast
wave. Global conservation of energy implies that

d(�Utot) = dm+ �dUrad. (11.6)
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Here � is the Lorentz factor of the blast wave, dm is the differential change
in the swept-up rest-mass energy, Utot is the total internal energy in the
comoving frame, and dUrad is the differential change in the comoving in-
ternal energy that is radiated from the blast wave. The radiated energy is
assumed to be isotropically emitted in the comoving frame.

The quantity

Utot = mp
∫ ∞

0
dp′γ ′N ′(p′; x) = M0 +m(x)+ U (11.7)

represents the total internal energy, including rest-mass energy, whereas

U = mp
∫ ∞

0
dp′(γ ′ − 1)N ′(p′; x) (11.8)

represents the internal energy with rest-mass energy excluded. The total rest
mass consists of the sum of the baryon mass M0, eq. (11.1), in addition to
the swept-up mass

m(x) =
∫ x

x0

dx̃

(
dm(x̃)

dx̃

)
= 4πmp

∫ x

x0

dx̃ x̃2 next(x̃). (11.9)

Here next(x) is the density of the external medium, and is assumed for sim-
plicity to have radial symmetry.

The internal energy U in the blast wave increases by the addition of the
kinetic energy of the swept-up matter, and decreases due to particle en-
ergy losses through adiabatic expansion and radiation. Thus dU = dUm +
dUadi + dUrad, where dUm = (� − 1)dm and dUadi represent the change
in internal energy due to swept-up particle kinetic energy and adiabatic
losses, respectively. Expanding eq. (11.6) gives d{�[U +M0 + m(x)]} =
�dU + �dm + [U + M0 + m(x)]d�. From this follows the equation of
blast-wave evolution:

− d�

�2 − 1
= dm+ (�/P 2)dUadi

M0 +m(x)+ U , (11.10)

where the blast-wave momentum P = √�2 − 1. Equation (11.10) can also
be written as

−dP
dx
= P�(dm/dx)+ (�2/P )(dUadi/dx)

M0 +m(x)+ U . (11.11)

As the internal energy decreases due to adiabatic losses of the particles, as
given by the second term in the numerator on the right-hand side of either
eq. (11.10) or (11.11), the rate of change of the blast-wave Lorentz
factor likewise becomes smaller. In effect, the energy lost through adiabatic
processes is recovered in the kinetic energy of the bulk outflow.
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Figure 11.1 Evolution of blast wave momentum P = β� for different assump-
tions for the particle energy losses [301]. The solid curve labeled “full
treatment of adiabatic losses” is a numerical solution of eq. (11.11)
that includes adiabatic losses of swept-up particle energy that is trans-
formed into the directed kinetic energy of the outflow. The dotted
curve shows the analytic approximation, eq. (11.18). The curve la-
beled “momentum conservation solution” neglects adiabatic energy
losses of the swept-up particles, and the curve labeled “radiative so-
lution” assumes that the internal energy is promptly radiated. Dashed
line shows the Blandford-McKee self-similar solution, eq. (11.12).

Figure 11.1 shows a calculation of eq. (11.11) under different assump-
tions for the particle energy losses [301]. The thermal ejecta particles mak-
ing up the “M0” term are assumed to be cold, so that only energy losses of the
swept-up particles are considered. The parameters of the calculation are
E0 = 1052E52 ergs, �0 = 300�300, and n0 = n0 cm−3, with E52 = �300 =
n0 = 1. The long-dashed curve gives the numerical solution to eq. (11.11),
with swept-up particles losing energy through adiabatic losses. The dotted
curve gives the analytic solution, eq. (11.18), derived in the argument
leading to eq. (11.23). The solid curve gives the momentum conservations
solution, where particles suffer no adiabatic losses.

The pioneering treatment of adiabatic and radiative relativistic blast
waves, given by Blandford and McKee [302], uses a similarity variable to
solve the relativistic hydrodynamic equations of motion. The Lorentz fac-
tor of the shocked fluid immediately behind the shock is given for a rel-
ativistic adiabatic blast wave in a uniform surrounding medium (see also



chapter11 July 17, 2009

BLAST-WAVE PHYSICS 265

Ref. [303]) by

�(x) = 1

4

(
17E

πn0mpc2x3

)1/2
∼= 47

√
E52/n0

x
3/2
17

, (11.12)

where x = 1017x17 cm.

Adiabatic Losses

If the internal energy U in the blast wave is dominated by the kinetic energy
of a thermal particle distribution, then U changes due to volume expansion
according to the relation U−1(dUadi/dx) = −(γ̂ −1)(d lnV ′/dx), where γ̂
is the ratio of specific heats, V ′ is the comoving fluid volume, and γ̂ = 4/3
and 5/3 for relativistic and nonrelativistic monoatomic gases, respectively
(see section 9.4). The general case involving a mixed fluid that includes
both isotropic thermal and nonthermal particles can be obtained from the
expression

−
(
dp′

dx

)
adi
= p′

3

d lnV ′

dx
(11.13)

for adiabatic expansion losses. Equation (11.13) reproduces the limiting adi-
abatic loss forms exhibited by monatomic thermal gases. In the relativis-
tic limit p′ � 1, dγ ′ → −(γ ′/3)d lnV ′, and in the nonrelativistic limit
p′ � 1, d(p′2/2)→−(2/3)(β ′2/2)d lnV ′.

The comoving volume of the fluid shell is approximated by the expression

V ′ = 4πx2�′ = 4πx2
(
f�x

�

)
, (11.14)

where �′ is the comoving width of the blast-wave shell. The shocked fluid
shell for the uniform isotropic case has a width �′sh ∼= x/12�, so f� =
1/12. The value f� = 1/12 can be derived from the shock-jump con-
ditions [304],3 or by noting that conservation of particle number implies
4πx2�′sh(4�n0) = 4πn0x

3/3, for a compression ratio of 4�. The differen-
tial adiabatic expansion energy-loss rate for particles in a GRB blast wave
is therefore given by(

dp′

dx

)
adi
= −p

′

x

(
1− 1

3

d ln�

d ln x

)
, (11.15)

using eqs. (11.13) and (11.14). Note that the second term on the right-hand
side in the parentheses of eq. (11.15) is small in comparison with 1 in the
limit � − 1� 1.

3V ′ ∼= m(x)/[n′(x)mp] in the limits � � 1 and � − 1 � 1, where n′(x) = (γ̂ � +
1)n0/(γ̂ − 1) is the downstream comoving density in terms of the external medium density
n0, which is assumed to be at a nonrelativistic temperature.
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The internal energy therefore changes through adiabatic losses according
to the relation

dUadi

dx
= −mp

(
1

x
− 1

3

d ln�

dx

) ∫ ∞
0

dp′
(
p′2

γ ′

)
N ′(p′; x). (11.16)

If only adiabatic losses are important, then eq. (11.15) is easily solved to
give

p′ = p′(x, xi) = p′i
(xi
x

) (
�(x)

�(xi)

)1/3

, (11.17)

where p′i is the momentum of a particle injected at radius xi when the
blast wave was moving with Lorentz factor �(xi). Numerical solutions of
eq. (11.11) using this expression to calculate adiabatic energy losses are
shown in figure 11.1.

Adiabatic (Nonradiative) Blast Waves

An approximate equation describing the evolution of an adiabatic blast wave
in a uniform surrounding medium (neglecting the complications of the
reverse shock; see section 11.3) from highly relativistic to nonrelativistic
speeds is given by

P(x)∼= P0√
1+ 2(x/xd)3

∼=



β0�0, for xco � x � xd,

β0�0√
2(x/xd)3/2

= β0√
2(x/	S)3/2

for xd � x � xrad.
(11.18)

Here P = β� [301] is the dimensionless momentum of the shocked fluid,
P0 = β0�0 is the coasting momentum, and xrad is the distance where the
blast wave becomes highly radiative, as occurs for nonrelativistic super-
nova shocks at late stages in their evolution. Note that the blast-wave speed
becomes independent of its initial Lorentz factor �0 during the decelera-
tion phase, which is a feature of the self-similar deceleration phase.
Equation (11.18) applies only to adiabatic blast-wave evolution, and reduces
to the adiabatic Sedov behavior for nonrelativistic (β0 � 1) explosions. The
radiative state of GRBs—whether they are more likely to be highly radi-
ative or nearly adiabatic—and if this behavior changes from the prompt,
gamma-ray luminous to the later afterglow phase, is uncertain [305,306].
The expression for the relativistic (�0 � 1) behavior given by eq. (11.18)
is derived below.
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In the coasting phase, P ∼= P0, and in the relativistic deceleration (or
relativistic Sedov) phase, P ∼= P0(x/xd)

−3/2. For an on-axis observer,
µ ∼= β, and eqs. (11.3) and (11.18) imply that

x

xd

∼=




t/td , for t/td � 1, coasting,

(2t/td)1/4, for 1� t/td ��8/3
0 , relativistic Sedov (RSdv),(

5t√
8td�0

)2/5

, for t/td � �8/3
0 , (nonrelativistic) Sedov,

(11.19)
and

P

P0

∼=




1, coasting,

1√
2
(2t/td)

−3/8, RSdv,

2−1/2

(
5t√

8�0td

)−3/5

, Sedov.

(11.20)

These expressions are valid for relativistic GRB explosions, mildly relativis-
tic SNe such as SN 1998bw [307], and nonrelativistic supernova explosions.
The dependences

x ∝ t2/5 and β ∝ t−3/5

in the nonrelativistic Sedov regime are familiar from the physics of SN
remnant evolution [308]. The middle asymptote of eqs. (11.19) and (11.20)
applies only to relativistic outflows. The Sedov deceleration phase of a
relativistic adiabatic blast wave decays with time as

P(t)→ �(t) ∼= (1+ z)3/8
27/8(ct)3/8

(
3E0

4πn0mpc2

)1/8
∼= 5.4

(
1+ z
tday

)3/8 (
E52

n0

)1/8

,

(11.21)
where tday is the time measured by the observer in days after the GRB.

Relativistic Adiabatic Blast Waves

In the limit � � 1, the second term in the numerator of eq. (11.11) can
be neglected in favor of the first term. This simplification is not as easy to
justify analytically as numerically. Because both terms are of the same order,
that is, dUadi/dx ∼= −U/x ∼ �dm/dx, the neglect of the second term is
only possible when � � 1 because its neglect is balanced by the loss of
internal energy U in the denominator of the equation. At relativistic speeds,
therefore, eq. (11.11) becomes

−d�
�2
= dm

M0 +m(x)+ U . (11.22)
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This expression is often taken as a starting point to derive the relativistic
blast-wave equation of motion, whether for adiabatic, radiative, or partially
radiative blast waves. Its applicability is somewhat accidental, and does not
in any case apply when the blast-wave speed is�c.

For a relativistic adiabatic blast wave, eq. (11.22) can be solved by noting
that dU = (�−1)dm ∼= �dm, implyingU = M0[(�0/�)−1]. Substituting
this expression back into eq. (11.22) gives

�(x) = �0√
1+ 2�0m(x)/M0

→ �0√
1+ 2(x/xd)3

(11.23)

where, as before, the final expression holds for a uniform CBM. This ex-
pression agrees with the relativistic limit of eq. (11.18). It is easy to show
from eqs. (11.19) and (11.20) that, for relativistic adiabatic blast waves,

x = acor�
2ct

1+ z
∼=

{
�2ct/(1+ z), coasting,
4�2ct/(1+ z), RSdv,

(11.24)

where the correction factor acor ≈ 1 and 4 in the coasting and the relativistic
deceleration phase, respectively.

Radiative Blast Waves

For a strongly radiative blast wave, the adiabatic loss term is negligible
because the particles have lost all their internal energy. Letting
U = dUadi/dx = 0, we obtain from eq. (11.10) the equation of motion
for a radiative blast wave, given by

− d�

�2 − 1
= dm

M0 +m(x) (11.25)

[302]. This is easily solved to obtain

�(x) = [1+m(x)/M0]2(�0 + 1)+ �0 − 1

[1+m(x)/M0]2(�0 + 1)− �0 + 1
, (11.26)

which is valid throughout the nonrelativistic and relativistic regimes.
For a relativistic radiative blast wave, the blast wave enters the nonrela-

tivistic Sedov phase when m(x) ∼= M0. Therefore letting m(x) � M0 and
� � 1, eq. (11.25) can be solved to give

�(x) ∼= �0

1+m(x)�0/M0
→ �0

1+ (x/xd)3 , (11.27)

where the final expression applies to a uniform CBM.



chapter11 July 17, 2009

BLAST-WAVE PHYSICS 269

For a relativistic, radiative blast wave in the deceleration phase, therefore,
� ∝ 1/x3 and t ∝ ∫

dx/(�2c) ∝ x7, so that

x ∝ t1/7 and � ∝ t−3/7.

Relativistic Partially Radiative Blast Waves

If a fraction ϕ of the swept-up kinetic energy is instantaneously radiated
from the blast wave, then dU = (1 − ϕ)(� − 1)dm. DefiningM = M0 +
m(x)+ U implies that dM = [ϕ + �(1− ϕ)]dm, one obtains

−d�
�2
= dM
M[ϕ + �(1− ϕ)] (11.28)

in the limit � � 1. Equation (11.28) has been used to treat partially radia-
tive blast waves [297,309,310], though assuming that ϕ ≈ const through-
out the regime of blast-wave evolution under consideration. In the general
case when particle acceleration, escape, and adiabatic losses are considered,
eq. (11.11) must be solved numerically.

Equation (11.28) is solved [309] to give

�(x) = �0

[1+ (2− ϕ)�0m(x)/M0]1/(2−ϕ) =
�0

[1+ (2− ϕ)(x/xd)3]1/(2−ϕ) ,

(11.29)
which recovers eqs. (11.23) and (11.27) in the adiabatic (ϕ = 0) and ra-
diative (ϕ = 1) limits, respectively. In the relativistic deceleration regime,
therefore,

�(x) ∝ x−3/(2−ϕ), x(t) ∝ t (2−ϕ)/(8−ϕ), and �(t) ∝ t−3/(8−ϕ).
(11.30)

Inhomogeneous External Medium

The blast-wave evolution and radiative signatures depend on the distribu-
tion of the external medium density. A more general case beyond the uni-
form external medium considered up to now, is a radially symmetric density
dependence n(x) ∝ x−s . A special case is n(x) ∝ x−2, which gives the sim-
plest expression for the density distribution of a preexisting constant speed
stellar wind. Distinguishing between wind and uniform density surround-
ings is important to determine the nature of the progenitor stars of GRBs.
For the extension of blast-wave theory to non-uniform surrounding media,
including radio predictions, see work by Chevalier and Li [311,312], and
Panaitescu and Kumar [313,314]. Application to prompt [315] and after-
glow [314,316] modeling of GRBs is complicated by magnetic-field uncer-
tainties (section 11.2).
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11.1.3 Dissipated Internal Energy

The kinetic energy swept into the comoving fluid frame per unit proper time
at the forward shock is given by

dE′

dt ′

∣∣∣∣
FS
= A(x)n0mpc

2(βc)�(� − 1) ∝
{
�2, for � � 1,
β3/2, for � − 1� 1

(11.31)

[302], where the area A(x) = 4πx2 for a spherical blast wave. The factor �
represents the increase of external medium density due to length contraction,
the factor (� − 1)mp is the kinetic energy of the swept-up particles, and the
factor βc is proportional to the rate at which the particle energy is swept
into by the blast wave. This process provides internal energy available to be
dissipated in the blast wave.

If some fraction ϕ � 1 of the internal swept-up energy is instantane-
ously transformed to radiation at the forward shock, then eqs. (11.19) and
(11.20) show that the bolometric radiant luminosity measured by an ob-
server is

Lrad = ϕ�2 dE
′

dt ′
∝ ϕx2�4 ∝ ϕ

{
(t/td)

2, coasting,

(t/td)
−1, RSdv,

(11.32)

for a relativistic blast wave (� > 1). The final relations make use of
eqs. (11.19) and (11.20) for an adiabatic blast wave in the coasting and
relativistic Sedov phase. For a radiative blast wave, ϕ ≈ 1 and Lrad ∝ t−10/7

in the relativistic deceleration phase, as can be easily shown.

11.2 ELEMENTARY BLAST-WAVE THEORY

Equation (11.32) gives the bolometric luminosity from a relativistic adi-
abatic blast wave. Blast-wave theory was developed to calculate spectral
properties of GRB blast waves, whether from hadrons or electrons. For the
production of low frequency (ν � 1020 Hz; i.e., MeV and below) prompt
and afterglow radiation, the most important radiation process in GRBs is
probably nonthermal electron synchrotron radiation, though photospheric or
Compton emissions may appear below 1 MeV. At higher energies, an SSC
component must inevitably accompany synchrotron emission. Here we out-
line the assumptions and physics leading to the calculation of nonthermal
electron synchrotron spectra from decelerating relativistic blast waves, here
for the special case of a uniform CBM. For reviews, see Refs. [317,318].
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11.2.1 Characteristic Electron Energies

The broadband radio–MeV flux from GRBs is generally thought to be ra-
diated primarily by electrons/leptons rather than ions, for reasons related to
time variability, radiative efficiency, and polarization. Low-mass electrons
radiate in magnetized flows though a number of processes, but especially
via the synchrotron process. However, �mp/me ∼ 2000 of the nonthermal
particle energy swept up by the blast wave is in the form of protons or ions
rather than electrons. For a radiatively efficient system, physical processes
must transfer a large fraction of the swept-up energy to the electron com-
ponent. In elementary treatments of the blast-wave model, it is simply as-
sumed that a fraction εe of the forward-shock power is transferred to the
electrons/leptons, so that

L′e = εe
dE′

dt ′
. (11.33)

It is also generally supposed in simple blast-wave model calculations that
some mechanism—probably the first-order shock Fermi process—injects
electrons with a power-law distribution between electron Lorentz factors
γmin ≤ γ ≤ γmax downstream of the shock front. The electron injection
spectrum in the comoving frame is therefore described by the expression

dN ′e(γ )
dt ′dγ

= Keγ−pH(γ ; γmin, γmax), (11.34)

where Ke is the normalization coefficient and p is the injection index.

Minimum Electron Lorentz Factor

Electrons are swept into the comoving frame of the blast wave at the rate
dN ′e/dt ′ = A(x)n0cβ�. Assuming that all swept-up electrons are acceler-
ated and none escape, joint normalization of the number and power of the
swept-up electrons gives

γ
2−p
min − γ 2−p

max

γ
1−p
min − γ 1−p

max

∼= εe
(
p − 2

p − 1

)(
mp

me

)
(� − 1),

implying, when � � 1, p > 2 and γmax � γmin,

γmin
∼= εemp

me
f (p) �, where f (p) ≡

(
p − 2

p − 1

)
. (11.35)

Assuming that εe remains constant throughout the evolution of an adiabatic
blast wave,

γmin ∝ � ∝
{

const, coasting,

(t/td)
−3/8, RSdv.

(11.36)
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Cooling Electron Lorentz Factor

Suppose that the dominant energy loss of nonthermal electrons is synchro-
tron emission. The average energy-loss rate of relativistic electrons, ran-
domly distributed in pitch angles, that lose energy by emitting synchrotron
radiation in a tangled magnetic field is given by eq. (7.15), namely,

−γ̇syn = 4

3
cσT

(
B2

8πmec2

)
γ 2, (11.37)

The strength of the magnetic field is a major uncertainty. The standard
prescription is to assume that the magnetic field energy density is a fixed
fraction εB of the downstream energy density of the shocked fluid. Hence

B2

8π
= 4εBn0mpc

2(�2 − �) ∼= 4εBn0mpc
2�2, (11.38)

implying

B ∼=
√

32πmpc2εBn0� ∼= 0.39
√
εBn0 � G. (11.39)

This expression assumes that the compression ratio is 4� when � � 1, as
follows from the shock jump conditions discussed below. Compression of
the transverse component of the magnetic field in the CBM gives a different
(usually much smaller) estimate of the magnetic field, but the compressional
field is assumed to be dominated in relativistic shocks by the magnetic field
obtained from eq. (11.38). Recalling that dx = β�cdt ′, eq. (11.37) gives

−
(
dγ

dx

)
syn

∼= 16

3

mp

me
σTεBn0�γ

2. (11.40)

As described in section 11.1.1, particles lose energy by adiabatic losses
due to the expansion of the blast wave. From eq. (11.15), the adiabatic
energy-loss rate for relativistic (γ � 1) electrons can be written as

−
(
dγ

dx

)
adi
= γ

x
(1+ g/3), where g ≡ −d ln�

d ln x
(11.41)

[301], and g = 3/2 for an adiabatic blast wave expanding into uniform
CBM during the RSdv phase.

Equating eqs. (11.40) and (11.41) gives the “cooling” electron Lorentz
factor

γc ∼= 9me
32mpσTεBn0x�

(11.42)

above which synchrotron losses dominate adiabatic expansion losses.
Letting x → acor�

2ct/(1+z), where acor = 1 and acor = 4 during the coast-
ing and adiabatic relativistic deceleration phases, respectively (eq. [11.24]),
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gives essentially the expression of Ref. [319], namely,

γc = 9me(1+ z)
32acormpσTεBn0c�3t

.

This expression can also be obtained by defining γc through the relation
|− γ̇syn(γc)|dt ′ = γc, with �t ′ ∼= t ′ ∼= x/�c ∼= �t/(1 + z). If εB remains
constant throughout the evolution of the blast wave, then

γc ∝ 1

x�
∝

{
(t/td)

−1, coasting,
(t/td)

1/8, RSdv.
(11.43)

Maximum Electron Lorentz Factor

The maximum electron Lorentz factor γmax in eq. (11.34) is set by three
conditions, namely, the available time for acceleration, the condition that
the acceleration rate is faster than the radiation-loss rate, and the require-
ment that the particle Larmor radius rL = γmec

2/eB be smaller than the
size scale �′ of the system [320]. The available time constraint is the most
important constraint on particle energies at the earliest times t � td . It, and
the condition that the Larmor radius be smaller than the blast-wave width,
usually determines the maximum ion energy, as discussed in later chapters.
For electrons, by contrast, the maximum energy is most often determined
by competition with radiative losses.

The shortest acceleration time scale expected in Fermi processes is �
rL/c = γmec/eB = γ /γ̇acc [178]. Setting the acceleration rate equal to
a constant factor ε̂max(� 1) times the maximum particle energy-gain rate
≈ rL/c expected in Fermi processes gives γ̇acc = ε̂maxeB/mec. Equating
γ̇acc with | − γ̇syn|, assuming that synchrotron emission dominates the ra-
diative losses, implies a maximum particle energy determined by a compe-
tition between the radiative energy-loss rate and the acceleration rate, given
in terms of particle Lorentz factor by

γmax =
(

6πeε̂max

σTB

)1/2
∼= 1.2× 108ε̂

1/2
max√

B(G)
∼= 2× 108ε̂

1/2
max

ε
1/4
B n0�1/2

. (11.44)

Thus the maximum electron Lorentz factor in the comoving frame is

γmax ∝ �−1/2 ∝
{

const, coasting,

(t/td)
3/16, RSdv.

(11.45)

Figure 11.2 illustrates the behavior of γmin, γc, and γmax when εe, εB , and
ε̂max are assumed to remain constant with time. When γc > γmin, the system
is said to be in the weakly cooled regime, whereas it is in the strongly cooled
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γc

γ2

γmin

γmax,H, γmax,t

γmax,rad

log γ

log tlog td

∝ t–1 

∝ t0 

∝ t0 

∝ t1/8

∝ t1/4

∝ t3/16

∝ t–3/8

∝ t

Figure 11.2 Characteristic behavior of the minimum Lorentz factor γmin, the cool-
ing Lorentz factor γc, and the maximum Lorentz factor γmax with ob-
server time for the strong forward shock of a relativistic adiabatic blast
wave, assuming that εe, εB , and ε̂max remain constant with time and
that the blast wave expands into a uniform CBM. Also sketched is
the limit γmax,t from the available time constraint, and the limit γmax,H

from the constraint that the particle Lorentz factor be smaller than the
comoving blast-wave width.

regime when γc < γmin [319]. Figure 11.2 shows that, if the system is in the
weakly cooled regime when t = td , then it is always in the weakly cooled
regime under the stated assumptions. Otherwise the system evolves from
weakly cooling to strongly cooling behavior when t < td , and vice versa
when t > td .

These results apply to a scenario with only a strong forward shock. The
reverse shock emissions can be neglected for nonrelativistic, or Newtonian
reverse shocks (NRSs) [321,322]. When a relativistic reverse shock (RRS) is
present, the shocked fluid Lorentz factor � evolves from the coasting to the
relativistic Sedov phase through an intermediate RRS phase, as described in
section 11.3.

11.2.2 Characteristic Synchrotron Frequencies

Electrons with Lorentz factor γ0 will emit synchrotron radiation at a char-
acteristic observed frequency

ν0
∼= eBγ 2

0 �

2πmec(1+ z)
∼= 2.8× 106Bγ 2

0 �/(1+ z)Hz;
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see eqs. (5.38) and (7.19) with δD → �. In dimensionless units, we can
therefore relate the received photon energy through the electron γ factor by
the expression ε ∼= (B/Bcr)γ

2�/(1 + z), where Bcr = 4.414 × 1013 G is
given by eq. (7.22).

Characteristic Synchrotron Frequency Associated with γmin

The dimensionless photon frequency associated with electrons with γ ∼=
γmin, eq. (11.35), is therefore

εmin=
√

32πmpc2

Bcr

(
mp

me

)2 f 2(p)n
1/2
0 εBε

2
e�

4

(1+ z)

∼= 3.0× 10−8f
2(p)n

1/2
0 εBε

2
e�

4

(1+ z) ,

so that the characteristic frequency is

νm (Hz) ∼= 3.7× 1017

1+ z
[( εB

0.01

)
n0

]1/2 ( εe
0.1

)2
(
�

100

)4

f 2(p). (11.46)

For a relativistic adiabatic blast wave in the deceleration regime,

νm (Hz) ∼= 3× 1012(1+ z)1/2E1/2
52

t
3/2
day

( εB

0.01

)1/2 ( εe
0.1

)2
f 2(p), (11.47)

using eq. (11.21) for �(t).

Cooling Frequency

The dimensionless photon frequency associated with electrons with γ ∼= γc,
eq. (11.42), is

εc=
√

32πmpc2

Bcr

(
3me

16mpσTc

)2 1+ z
(n0εB)3/2�4t2

= 2.3(1+ z)
n

3/2
0 (εB/0.01)3/2(�/100)4t2 (s)

.
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The cooling frequency associated with electrons with γ ∼= γc is therefore

νc (Hz) ∼= 2.8× 1020(1+ z)
(εB/0.01)3/2 n3/2

0 (�/100)4 t2 (s)
. (11.48)

For a relativistic adiabatic blast wave in the deceleration regime,

νc (Hz) ∼= 4.4× 1015

(εB/0.01)3/2 n0
√
E52(1+ z)tday

, (11.49)

using eq. (11.21).

Maximum Frequency

The dimensionless photon frequency associated with electrons with γ ∼=
γmax, eq. (11.44), is

εmax = 9ε̂max

4αf

�

(1+ z) ,

implying a maximum synchrotron frequency

νmax (Hz) ∼= 3.7× 1022ε̂max�

(1+ z)
∼= 2× 1023ε̂maxE

1/8
52

(1+ z)5/8t3/8dayn
1/8
0

, (11.50)

where the final expression for adiabatic relativistic deceleration again uses
eq. (11.21).

Synchrotron Self-Absorption Fequency

At sufficiently low frequencies, a magnetoactive plasma will absorb the syn-
chrotron radiation emitted by electrons in the plasma, as discussed in section
7.8. Here we use the results derived there to obtain an expression the SSA
frequency νa.

We calculate the SSA coefficient

κν′ = − 1

8πmeν ′2V ′bw

∫ ∞
1

dγ
P (ν′, γ )
mec2

γ 2 ∂

∂γ

(
N ′(γ )
γ 2

)
(11.51)

from eq. (7.141), where the blast-wave volume V ′bw = 4πx2�′ and �′
is the comoving shell width. The electron distribution is approximated by
N ′(γ ) ∼= (s − 1)Ne(x)γ

s−1
0 γ−s , as discussed in more detail in the next

section.
In the regime νa < ν0 = min(νm, νc), which is the only regime consid-

ered here, the calculation of the absorption coefficient is simplified because
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we can use the asymptotic form, eq. (7.30), for the synchrotron emissivity
function

P(ν) = 31/2e3B sinψ F(ν/νc)→ 4πe3B

�(1/3)

(
ν

3νBγ 2

)1/3

. (11.52)

The right-hand side of this expression applies in the limit ν � νc =
3νBγ 2/2, and the pitch angle is set equal to π/2. Substituting eq. (11.52)
into eq. (11.51) and letting the relation ν′a�R = 1 define the comoving
frame SSA frequency ν′a, we obtain for the observed SSA frequency the
expression

νa (Hz) = 8.8 �

(1+ z)γ0

(
(s + 2)(s − 1)

(s + 2/3)

)3/5

{[x (cm)]n0}3/5
[
B (G)2/5

]
(11.53)

Case 1. νc < νm, ν0 = νc, and γ0 = γc: In this fast-cooling (fc) regime,
s = 2 and

νfc
a (MHz) ∼= 10

(1+ z)13/5

( εB

0.01

)6/5
n

9/5
0

(
�

100

)28/5

t (s)8/5, (11.54)

which can also be written as

νfc
a (GHz) ∼= 32

(1+ z)13/5

( εB
0.1

)6/5
n

9/5
0

(
�

10

)28/5

t
8/5
day . (11.55)

For adiabatic blast-wave evolution in the fast-cooling regime, �(t) ∝ t−3/8

and νfc
a ∝ t−1/2. For radiative blast-wave evolution in the fast-cooling

regime, �(t) ∝ t−3/7 and νfc
a ∝ t−4/5.

Case 2. νm < νc, ν0 = νm, and γ0 = γm: In this slow-cooling (sc) regime,
s = p and

νfc
a (Hz) ∼= 1.5× 104

(1+ z)8/5εe

(
(p − 1)8/5(p + 2)3/5

(p − 2)(p + 2/3)8/5

)
ε

1/5
B n

4/5
0 �8/5t3/5,

(11.56)

For p = 2.5,

νfc
a (MHz) ∼= 430

(1+ z)8/5(εe/0.1)
( εB

0.01

)1/5
n

4/5
0

(
�

100

)8/5

t (s)3/5.

(11.57)
This can also be written as

νfc
a (GHz) ∼= 28

(1+ z)8/5(εe/0.1)
( εB

0.1

)1/5
n

4/5
0

(
�

10

)8/5

t
3/5
day . (11.58)
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For adiabatic blast-wave evolution in the slow-cooling regime, νsc
a ∝ const.

For radiative blast-wave evolution in the slow-cooling regime, νsc
a ∝ t−3/35.

The SSA frequency appears in the radio regime for typical parameters con-
sidered for GRB blast waves in the afterglow phase.

11.2.3 Afterglow Theory

Long-wavelength optical and X-ray afterglows of GRBs were predicted by
Mészáros and Rees [323], shortly anticipating their discovery with Beppo-
SAX [324]. Here we follow the approach of Sari, Piran, and Narayan [319].
Electrons cool in the comoving fluid frame by synchrotron losses4 to
Lorentz factor γc at observing time t given by eq. (11.42). The distribution
of energized electrons is approximated by

N ′e(γ ; x) ∼=
Ne(x)

s − 1
γ s−1

0

{
γ−s for γ0 ≤ γ ≤ γ1,

γ−s1 (γ /γ1)
−(p+1) for γ1 ≤ γ ≤ γmax,

(11.59)

where Ne(x) = 4πx3n0/3 is the total number of nonthermal electrons. The
regime where the magnetic field is sufficiently weak that electrons do not
cool below γmin is referred to as the slow-cooling limit. In this regime, γ0 =
γmin, γ1 = γc, and s = p. In the opposite fast-cooling limit, electrons cool
through synchrotron radiation losses below γmin, in which case γ0 = γc,
γ1 = γmin, and s = 2. The blast wave’s radiative efficiency ϕ = εeεrad,
where εrad

∼= 1 in the fast-cooling limit, and εrad = (γmin/γc)
p−2 in the

slow-cooling limit.
For the blast-wave geometry, the νFν spectrum

fε ∼= �2

4πd2
L

(
4

3
cσTUB

)
γ 3
s N
′
e(γs; x) with γs ∼=

√
ε(1+ z)Bcr

�B
,

(11.60)

recalling that UB = B2/8π is the magnetic-field energy density in the
comoving frame. Substitution of eq. (11.59) into eq. (11.60) gives

fε= cσT

24π2d2
L

B2�2Ne(x)

s − 1
γ 2
s ×

{
(γs/γ0)

1−s for γ0 ≤ γs ≤ γ1,

(γ1/γ0)
1−s(γs/γ1)

−p for γ1≤γs ≤γmax.

(11.61)

4Cooling due to Compton losses is considered in section 11.5.
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The flux density at frequency ν0 is given by Fν0 = fε0/ν0. The relation

ν0 = mec
2ε0

h
= mec

2

h

�Bγ 2
0

Bcr(1+ z)
implies that

Fν0 =
�(1+ z)mec2BσT

4πd2
L 3e

Ne(x)

s − 1
= �(1+ z)

12πd2
L

Ne(x)

s − 1
Pν0, (11.62)

where

Pν0 =
8π

3

e3B

mec2
= Bmec

2σT

e

is the spectral power of a single electron.5 For a uniform CBM with density
n0, eq. (11.62) can be written, using x ∼= 4�2ct/(1+ z) (eq. [11.24]), as

Fν0=
32

9πd2
L

hc4σTn0

mec2(s−1)

�7BBcr

(1+ z)2 t
3∼= 1.7

d2
28

(εB/0.1)1/2n
3/2
0 (�/10)8t3day

(1+ z)2(s − 1)
Jy,

(11.63)
using eq. (11.38). The value of Fν0 does not depend on whether the system is
in the fast- or slow-cooling regime, because it depends simply on the number
of swept-up electrons that have accumulated at γ0 (fε0 = ν0Fν0 represents
the measured synchrotron energy flux from Ne(x) electrons with Lorentz
factor γ ≈ γ0).

Because the self-absorbed νFν spectrum is proportional to ε3 when ε <
εa < ε0, the synchrotron νFν flux can be approximated by the expression

fε = n0cσT

18πd2
L

B2�2x3

s − 1
×




γ 2
0

(
εa

ε0

)4/3 (
ε

εa

)3

for ε < εa,

γ 2
0

(
ε

ε0

)4/3

for εa < ε < ε0,

γ 3−sγ s−1
0 for ε0 < ε < ε1,

γ 2−pγ 1+p−s
1 γ s−1

0 for ε1 < ε < ε2,

(11.64)

5This expression gives accurate spectral results away from the endpoints of a synchrotron
spectrum produced by a distribution of electrons. For the synchrotron spectrum from an
electron distribution with a low-energy cutoff, the spectral power is actually distributed over
≈2π in frequency space. Thus the spectrum at ν � ν0 should be divided by 2π to account
for the spectral range of the synchrotron spectral power.
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where ε = hν/mec2 = �Bγ 2/Bcr(1+z), εi = hνi/mec2 = �Bγ 2
i /Bcr(1+

z), i = 0, 1, 2, and εa = hνa/mec2 is given by eq. (11.53).
The received spectrum, written in terms of flux density and frequencies,

takes the form

Fν = Fν0 ×




(
νa

ν0

)1/3 (
ν
νa

)2
for ν < νa,

(
ν

ν0

)1/3

for νa < ν < ν0,

(
ν

ν0

)−(s−1)/2

for ν0 < ν < ν1,

(
ν1

ν0

)−(s−1)/2 (
ν

ν1

)−p/2
for ν1 < ν < ν2,

(11.65)

with Fν0 given by eq. (11.63).
Recalling eq. (11.30), which gives the temporal dependence of �(t) and

x(t) for general radiative regimes, we find that the temporal and spectral
dependence of the synchrotron spectrum in the fast-cooling regime is

f fc
ε ∝




t (23−3ϕ)/[3(8−ϕ)]ε3 for ε < εa,

t (3−11ϕ)/[3(8−ϕ)]ε4/3 for εa < ε < ε0,

t−2(1+ϕ)/(8−ϕ)ε1/2 for ε0 < ε < ε1,

t2(2−ϕ−3p)/(8−ϕ)ε(2−p)/2 for ε1 < ε < ε2.

(11.66)

In the slow-cooling regime, the temporal and spectral dependence of the
νFν spectrum is

f sc
ε ∝




t (8−3ϕ)/(8−ϕ)ε3 for ε < εa,

t (4−3ϕ)/(8−ϕ)ε4/3 for εa < ε < ε0,

t3(2−ϕ−2p)/(8−ϕ)ε(3−p)/2 for ε0 < ε < ε1,

t2(2−ϕ−3p)/(8−ϕ)ε(2−p)/2 for ε1 < ε < ε2.

(11.67)

Figure 11.3 shows the spectral and temporal dependences of the syn-
chrotron emission from a blast wave that decelerates in a uniform CBM.
The parameters of the calculation are E52 = n0 = 1, εe = εB = 0.1,
and �0 = 300. The time t0 occurs when the system transitions from the
fast-cooling to the slow-cooling regime. It is defined by the condition that
γc = γm, which implies that

t0 = (1+ z) 8E0n0

3πmpc3

(
mp

me

)4 (
σTεBεef (p)

1+ g/3
)2

. (11.68)
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Figure 11.3 Spectral and temporal dependences of the synchrotron emission from
a blast wave that decelerates in a uniform surrounding medium. (a)
and (b) show the SEDs in Fν and νFν representations, respectively,
with SEDs graphed at times from 1 to 106 s in factors of 10. (c) and
(d) show the SED when the system is in the fast-cooling regime at
100 s, and in the slow-cooling regime at 105 s, respectively. The tem-
poral dependences of the characteristic frequencies in the adiabatic
and radiative limits are shown by the expressions above and below the
arrows, respectively. (e) and (f) show the light curves of the tempo-
ral behavior at high (here, at ν = 106 s) and low frequencies (here at
ν = 1012 Hz). The temporal dependences of the light curves in the
adiabatic and radiative regimes are given above and below the light
curves, respectively. After Ref. [325].
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Performing the previous analysis for an adiabatic blast wave decelerating
in a CBM with a density profile given by n(x) ∝ x−s should give spectral
differences that could identify a wind medium, as already noted [311–314].
Although a uniform CBM seems to give better agreement with data than a
wind CBM in several cases [314], the model uncertainties preclude strong
conclusions.

11.3 RELATIVISTIC SHOCK HYDRODYNAMICS

We follow the treatments of Refs. [302,321,322,326] in this section, assum-
ing idealized shock structures. For example, instabilities in the outward-
going flow that would lead to a nonuniform blast-wave shell [327] are ig-
nored. Effects of neutron decoupling [328], which occur for sufficiently high
Lorentz factor shocks when neutrons decouple from the proton-electron
component of the expanding blast-wave shell, are considered in section 11.9.

11.3.1 Relativistic Shock Thermodynamics

Thermodynamic quantities are defined in the comoving fluid frame. We
briefly review, without derivation, the equations leading to the strong-shock
jump conditions [302]. (For Poynting-flux dominated outflows, see [329].)
The structure of a shock is determined by continuity of the particle number
nβ�, energy w�2β, and momentum w�2β2 + p fluxes across the shock
front. The enthalpy w = p + etot, where p is the pressure, etot = eke + ρc2

is the total energy density, eke is the kinetic energy density, and nmc2 = ρc2

is the particle rest-mass energy density. For a nonrelativistic thermal gas,
eke = 3ρc2�/2, where � = kBT/mpc

2 and T is the fluid temperature.
The pressure p = (γ̂ − 1)eke, where γ̂ corresponds to the ratio of specific
heats. For a nonrelativistic monatomic ideal gas, γ̂ = 5/3, whereas γ̂ = 4/3
for a relativistic gas. Thus w = ρc2 + γ̂ eke.

Figure 11.4(a) illustrates the system of a shocked fluid with density n
and Lorentz factor � encountering a stationary medium with density n0. In
the strong-shock limit, p/n � p0/n0. This leads to the strong-shock jump
condition for the density, given by

n

n0
= γ̂ � + 1

γ̂ − 1
→

{
4+ 5β2/4 ∼= 4, NR (� − 1� 1)

4� + 3, ER (� � 1)
. (11.69)

The asymptotes in the nonrelativistic (NR) and extreme relativistic (ER)
limits are given in eq. (11.69).
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Figure 11.4 Diagrams of the relativistic shock system. (a) Quantities for the basic
system consisting of a shocked fluid encountering the stationary
external medium. (b) Quantities for the system consisting of the
unshocked shell, the reverse and forward shocks, and the stationary
external medium.

The strong-shock jump condition for the energy flux takes the form

etot

ρ
= �w0

n0
,

implying that

eke

ρc2
= � − 1+ γ̂ �

(
eke,0

ρ0c2

)
→



β2

2
+ 5

2
�0, NR,

�(1+ 2�0), ER.
(11.70)

Here it assumed that the unshocked gas is at nonrelativistic temperatures
θ0 � 1. This equation affords a very simple interpretation: the kinetic en-
ergy density of the shocked fluid is simply equal to the kinetic energy of the
swept-up matter plus an additional contribution from the swept-up internal
energy.
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A third jump condition relates the Lorentz factor � of the shocked fluid
to the Lorentz factor �sh of the shock itself, and is given by

�2
sh =

(� + 1)[γ̂ (� − 1)+ 1]2

γ̂ (2− γ̂ )(� − 1)+ 2
⇒

{
βsh = 4

3β, NR, γ̂ = 5
3 ,

�sh =
√

2�, ER, γ̂ = 4
3 .

(11.71)

Note that the shock must travel faster than the shocked fluid because of the
matter that is accumulated as the shock propagates.

Figure 11.4(b) illustrates the idealized structure of a relativistically
expanding shell of matter that encounters a stationary external medium. The
shock structure takes the form of a forward shock that accelerates the sta-
tionary CBM and a reverse shock that decelerates and gives internal energy
to the plasma in the cold relativistic shell. The fluids shocked by the reverse
and forward shocks, separated by a contact discontinuity, have the same
Lorentz factor � and kinetic energy densities. The reverse shock persists un-
til it traverses the shell of width �, after which time no further energization
is provided by the reverse shock. The shocked fluid is then hydrodynami-
cally connected in the sense that the material can be treated as a causally
connected shell whose Lorentz factor evolves according to bulk equations
for momentum and energy conservation derived earlier in this chapter.

The notation shown in figure 11.4(b) generalizes the figure 11.4(a) case to
include the shock-jump conditions operating at both the forward and reverse
shocks. In the coasting phase, the Lorentz factor of the unshocked shell
material is �0, and its density is

n(x) = E0

4πx2�2
0mpc

2�(x)
, (11.72)

assuming a thin (� � x), constant width shell. The temperature �sh of the
unshocked shell material resulting from the GRB explosion is likely to be
very small due to the strong adiabatic cooling during the expansion phase,
so that �sh � 1. In this treatment, we also assume that the temperature of
the surrounding medium is also small (�0 � 1), and that the blast wave is
relativistic (�0 � 1).

The term �̄ is the relative Lorentz factor of the reverse shocked fluid as
it encounters the material of the unshocked shell. From figure 11.4(b), we
see that

�̄ = ��0(1− ββ0) ∼= 1

2

(
�

�0
+ �0

�

)
, (11.73)

where the last relation applies in the regime �0, � � 1 considered here.
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When � � 1, the shocked fluid behind the forward shock is relativistic,
and the density of the forward-shocked fluid is nf = (4� + 3)n0

∼= 4�n0.
The density of the fluid shocked by the reverse shock is nr ∼= 4�̄n(x),
noting from eq. (11.69) that these expressions are not accurate for mildly
relativistic reverse shocks. The equality of kinetic-energy densities at the
contact discontinuity implies, for fluids made primarily of proton-electron
plasma, that

eke

mpc2
∼= nf (� − 1) ∼= nr(�̄ − 1) ∼= 4n0�

2 ∼= 4n(x)(�̄2 − �̄). (11.74)

The relativistic shock jump conditions for an isotropic explosion in a uni-
form CBM therefore imply [322]

n(x)

n0
≡F = E0

4πx2�2
0n0mpc2�

= 	3
S

3x2�2
0�
= �2

�̄2 − �̄ →
{

2�2/β̄2, NRS,

�2/�̄2, RRS,

(11.75)

where β̄ =
√

1− 1/�̄2. Because n(x)/n0 ∝ 1/x2, the quantity �̄2 − �̄ and
the reverse shock speed cβ̄(x) increases with x, at least when x � xd and
� ∼= �0.

The transition from a NRS to a RRS occurs when F(xNR) ∼= �2
0, or when

xNR =
	

3/2
S

�2
0�

1/2
≡ ξxd, (11.76)

where

ξ ≡ 	
1/2
S

�
4/3
0 �1/2

= x
1/2
d

�0�1/2
∼= 54

�
1/2
8 �

4/3
300

(
E52

n0

)1/6

, (11.77)

defining the blast-wave width � = 108�8 cm. For x � xNR, � ∼= �0, and
the reverse shock β-factor at location x is

β̄(x) =
√

2x

xNR
=
√

2�2
0�

1/2

	
3/2
S

x, (11.78)

from eq. (11.75). A NRS crosses the shell at �′/β̄(x�)c = �0�/β̄(x�)c ∼=
x�/�0c, implying that

x� ≡ �1/4	
3/4
S = ξ−1/2xd, (11.79)

dropping numerical factors of order unity. The reverse shock will remain
nonrelativistic if it crosses the shell before it reaches relativistic speeds, that
is, if x� < xNR, which implies that

ξ � 1 for a NRS.
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A GRB blast wave expanding in a uniform surrounding medium will be in
the NRS regime for the standard parameters used in eq. (11.77), which are
appropriate to an impulsive explosion. If the shell width is ∼lt-seconds or
more, then the blast wave may have a RRS.

For a NRS, β̄ � 1, F � 4�2
0, and

β̄ ∼= �0

√
2

F
, �̄ = 1√

1− β̄2
, � ∼= �0

(1+ β̄) . (11.80)

For a RRS, F � 4�2
0, �̄ � 1 and β̄ → 1, the shock jump conditions imply

F ∼= �2/�̄2, so that �̄ = �/
√
F = 1

2(�/�0 + �0/�), from eq. (11.73).
This can be solved to give

� = �0F
1/4√

2�0 − F 1/2
∼=

(
�0

2

)1/2

F 1/4 ∝ x−1/2. (11.81)

The second expression is valid when F 1/2 � 2�0 or x � xNR, and the
last two expressions hold when x � xNR. The relativistic reverse shock
crosses the shell when �′/c ∼= x�/�c, or x� ∼= �2� ∼= �0F

1/2�/2 =
	

3/2
S �1/2/2x�, from which eq. (11.79) is again recovered for the RRS case.

After the reverse shock crosses the shell, the shocked shell follows the self-
similar Sedov behavior given by (11.18). From eq. (11.81), we see for the
RRS case,

�̄
xNR<x<x�

→ �0F
−1/4√

2�0 − F 1/2 xNR�x<x�
→

√
�0

2
F−1/4 ∝ x1/2,

and β̄ ∼= 1. Figure 11.5 illustrates the values of � and �̄ as a function of F
with approximations in various asymptotes.

Definition (11.77) for the spreading radius xspr = �2
0� = ξ−2xd implies

the ordering

ξ2xspr = ξ1/2x� = xd = ξ−1xNR. (11.82)

In the NRS case, ξ � 1, and xspr < x� < xd < xNR, that is, the reverse
shock crosses the shell after the shell begins to spread but before the shell be-
gins to decelerate. The evolution of an adiabatic Lorentz factor is described
by eq. (11.18) in this case, so that the synchrotron emission as described in
the previous sections applies to the NRS case. In the RRS case, ξ � 1 and
the order of the characteristic radii is reversed. Thus xNR < xd < x� < xspr,
namely, the reverse shock becomes relativistic before the shell, if treated as
a connected hydrodynamic fluid, begins to decelerate. At larger radii and
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Figure 11.5 Lorentz factor � of the shocked fluid in the explosion frame, and
Lorentz factor �̄ of the unshocked shell material in the rest frame
of the shocked fluid, as a function of F/4�2

0 when �0 = 300. Solid
curves give numerical solution to eq. (11.75), and dotted curves show
approximations given in eqs. (11.80) and (11.81).

later times, the reverse shock crosses the shell and the entire shell begins to
uniformly decelerate.

The reverse shock power is dE′/dt ′|RS = A(x)n(x)mpc
3β̄(�̄2 − �̄).

Comparing with eq. (11.31) and using the shock jump condition (11.75)
gives the result that (dE ′/dt ′|RS)/(dE

′/dt ′|FS) = β̄, so that roughly equal
power is dissipated as internal energy in the forward and reverse shock dur-
ing the RRS phase. The fraction of power dissipated by the reverse shock is
a fraction β̄ of the forward-shock power in the NRS phase, but this phase
lasts only until the blast wave reaches x = x� < xd ; moreover, the shock is
nonrelativistic, which reduces the particle acceleration efficiency.

We summarize the results of this section by restating and generalizing the
equations for the adiabatic evolution of the relativistic blast wave Lorentz
factor �(� 1) and the reverse shock Lorentz factor �̄ in a uniform sur-
rounding medium, neglecting neutron decoupling. In the NRS case,

�(x) ∼=



x/�0 for �0 < x � �0�0,

�0 for �0�0 � x � xd,
�0(x/xd)

−3/2 for xd � x � 	S,

(11.83)

and �̄ ∼= 1, β̄ � x/xNR � 1 for x < x�.
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In the RRS case,

�(x)∼=




x/�0 for �0 < x � �0�0,

�0 for �0�0 � x � xNR,

�0f
1/4√

2�0 − f 1/2
�

√
�0

2
f 1/4 ∝ x−1/2 for xNR � x � x�,

�0(x/xd)
−3/2 for x� � x � 	S,

(11.84)

The reverse shock Lorentz factor is given through the expression

β̄(x)�̄(x) ∼=




√
2
�2

0�
1/2

	
3/2
S

x ∼= x

xNR
for x � xNR,

�0f
−1/4√

2�0 − f 1/2
�

√
�0

2
f−1/4 ∝ x1/2 for xNR � x � x�.

(11.85)

Figure 11.6 illustrates the generic behavior of � and �̄ in the NRS and RRS
cases.

11.3.2 Synchrotron Radiation from a Relativistic Reverse Shock

The observing time t and location x of a blast wave with a RRS and shocked
fluid Lorentz factor given by eq. (11.84) are related according to the expres-
sion

t ∼= 1+ z
c




�0(1−�0/x) for �0 � x � �0�0

(expanding),

x/�2
0 +�0 for �0�0� x � xNR

(coasting),

�1/2

	
3/2
S

(x2−x2
NR)−

(x − xNR)

�2
0

+ xNR

�2
0

for xNR� x � x�

(RRS),(
1

4�2
0x

3
d

(x4 − x4
�)+

�1/2x2
�

	
3/2
S

)
, for x� � x � 	S

(RSdv).
(11.86)

The measured period of activity of the central engine is just t ∼ (1 +
z)�0/c, corresponding to the duration of the explosion and generation of the
relativistic wind. The relations between times and locations in the coasting
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Figure 11.6 Diagrams illustrating the generic behavior of the forward and reverse
shocks in the nonrelativistic reverse shock (NRS) case (a) when the
reverse shock crosses the shell before it becomes relativistic, and in
the relativistic reverse shock (RRS) case (b) when the reverse shock
becomes relativistic before crossing the shell. In the NRS case, ξ �
1, and in the RRS case ξ � 1, where ξ is defined by eq. (11.77).
The dashed line with the arrow indicates a possible decoupling of the
neutrons from the expanding fluid.

and relativistic Sedov phases have the same dependences as for the NRS
case given by eq. (11.19). In the RRS phase where xNR � x � x�, x ∝ t1/2
and � ∝ t−1/4. We call this regime the asymptotic RRS regime.

The principal dependences of x(t), �(t), and β̄(t)�̄(t) are given, in the
various regimes, by

x(t) ∝




c�2
0

1+ z t ∝ t, t � tNR (coasting),
√

c	
3/2
S t

(1+ z)�1/2
∝ t1/2, tNR � t � t� (asymptotic RRS),

(
4c�2

0x
3
d t

1+ z

)1/4

∝ t1/4, t� � t � (1+ z)	S/c (RSdv),

(11.87)
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�(t) ∝




const, coasting,

t−1/4, asymptotic RRS,

t−3/8, RSdv,

(11.88)

and

β̄(x)�̄(x) ∝
{
x ∝ t, coasting,

x1/2 ∝ t1/4, asymptotic RRS.
(11.89)

The spectral and temporal indices for a blast wave with a RRS expanding in
a uniform CBM are shown in figure 11.7.

11.4 BEAMING BREAKS AND JETS

An observer will receive most emission from those portions of a GRB blast
wave that are within an angle ∼ 1/� to the direction to the observer. As
the blast wave decelerates by sweeping up material from the CBM, a break
in the light curve will occur when the jet opening half angle θj becomes
smaller than 1/�. This is due to a change from a spherical blast-wave geom-
etry, given by eqs. (5.70) and (11.60), to a geometry defined by a local-
ized emission region, as given by eq. (5.71). Assuming that the blast wave
decelerates adiabatically in a uniform surrounding medium, the condition
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Figure 11.8 Light curves calculated at various observing energies and inclination
angles θ for a GRB with a standard parameter set (see text) and open-
ing half-angle θj = 10◦ of the jet [331]. The initial blast wave Lorentz
factor �0 = 300. Calculations of θ = 0◦, 10◦, 12◦, 30◦, and 90◦ are
shown, with the brighter peak fluxes reached by curves progressively
closer to the jet axis. (a) Left: Light curves at 8.6 GHz radio (solid
curves), V-band optical (dotted), and 3 keV X-ray (dashed) are plot-
ted. The X-ray curves have the angles labeled. (b) Right: Light curves
at 4.8 GHz radio (solid curves), MeV (dot-dashed), GeV (dotted), and
TeV (dashed) are plotted. The MeV curves have the angles labeled.

θj ∼= 1/� = �−1
0 (xbr/xd)

3/2 = �−1
0 (tbr/td)

3/8 implies

tbr ≈ 45(1+ z)
(
E52

n0

)1/3

θ
8/3
j days, (11.90)

from which the jet angle

θj ≈ 0.1

[
tbr(d)

1+ z
]3/8 (

n0

E52

)1/8

(11.91)

can be derived [330]. Note that the beaming angle is only weakly dependent
on n0 and E0.

Figure 11.8 shows calculations of a GRB blast wave in a beamed geom-
etry [331] with θj = 10◦ at different observing angles and energies. The
jet emission is assumed to be uniform across its surface and not to spread
laterally (see [332] when this is not the case). For the standard parameters
used here (E52 = 100, εB = 10−4, εe = 0.5, n0 = 100 cm−3, p = 2.5),
the beaming break occurs at ∼ 105 s, but is obscured at X-ray and optical
frequencies by the appearance of an SSC component. The appearance of
clearly defined breaks in the light curves of some GRBs, if due to beaming
rather than to a variation in the density of the surrounding medium, limits
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the ratio εe/εB that defines the strength of the SSC component. So-called
“orphan” afterglows, which are those GRBs with jets pointed away from
our line of sight that become visible upon deceleration of the blast wave,
are quite similar in spectral evolution to heavily baryon-loaded, “dirty” fire-
balls [331,333].

Afterglow modeling of multiwavelength spectra of GRB 980703, GRB
990123, GRB 9905010, and GRB 991216 [314] shows that the blast-wave
model predictions are more simply explained with a a uniform surrounding
CBM than a wind profile (n(r) ∝ r−2). They derive magnetic field para-
meters in the range 10−4 � εB � 0.05 and electron energy-transfer para-
meters in the range 0.01 � εe � 0.1, and obtain low-density surroundings
(∼10−4 � n0 � 10 cm−3) in their fits. The jet angles θj range from 1◦ to
4◦. The beaming factor for a one-sided jet is ≈ 1.3 × 104[θ(◦)]−2, so that
many misaligned GRBs sources should exist for every detected GRB.

11.5 SYNCHROTRON SELF-COMPTON RADIATION

Electrons cool in the comoving fluid frame by synchrotron and Compton
losses. The Compton y-parameter [310]

yC ≡ LC

Lsyn

∼= Usyn

UB
, (11.92)

gives the ratio of the (synchrotron-self) Compton and synchrotron powers,
and the final expression holds for scattering in the Thomson regime. Primes
are omitted.

The total internal energy U = Ue + Up + UB + Uph in the shocked fluid
shell is found in the form of nonthermal electron and protons/ions, magnetic
field, and photons. The electron energy Ue = εeU , and the magnetic field
energy UB = εBU . The photon energy

Uph = Usyn + UC = ηeεeU = ηeεeUB

εB
, (11.93)

and ηe is the radiative efficiency to convert nonthermal electron energy into
radiation. In the fast cooling regime, γc < γmin, and ηe ∼= 1. In the slow-
cooling regime, only electrons with γ > γc cool efficiently. The fractional
energy in electrons that stongly cool is ∼(γmin/γc)

p−2, so

ηe = min

[
1,

(
γmin

γc

)p−2
]
. (11.94)

Dividing eq. (11.93) by UB gives
Usyn

UB
+ UC

Usyn

Usyn

UB
= yC + y2

C =
ηeεe

εB
, (11.95)
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Figure 11.9 Numerical calculation of the synchrotron and SSC emission SEDs
from a blast wave with a strong forward shock that decelerates in a
uniform surrounding medium. SEDs are labeled by the base 10 loga-
rithm of the observing time in seconds. The left (a) and right (b) panels
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with solution

yC ≡ LC

Lsyn
= −1+√1+ 4ηeεe/εB

2
→

{
ηeεe/εB, ηeεe/εB � 1,
√
ηeεe/εB, ηeεe/εB � 1.

(11.96)

The inclusion of a Compton component in blast-wave afterglow mod-
eling can be used to derive analytic [334] and numerical [310,331] spectra
and light curves. A standard approximation to treat the Compton component
analytically is to use the Thomson cross section truncated for scattering in
the Klein-Nishina regime. A numerical simulation [315,331] of the evolv-
ing leptonic synchrotron and SSC emission is shown in the external shock
model blast-wave calculation of figure 11.9. The parameters of the calcula-
tion are given in the figure legend, with injection index p = 2.5, εe = 0.5,
and apparent isotropic energy release E0 = 1054 ergs. The blast wave is as-
sumed to form a strong forward shock, and reverse shock emission is not
calculated. Internal γ γ opacity was considered in this calculation. The only
difference between the two calculations is the value of εB = 10−4 and 0.1
in the left and right panels, respectively. The different magnetic field param-
eters strongly affect the SEDs, with weak cooling in figure 11.9(a) and
strong cooling in figure 11.9(b). The relative powers in the synchrotron
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Figure 11.10 Sequence of calculations for GRBs with initial Lorentz factor �0 =
100 (left), 300 (center), and 1000 (right), using other parameters as
in the previous figure, with εB = 10−4.

and Compton components are inversely proportional to the εB parameter, in
accord with the general trend indicated in eq. (11.96).

As can be seen, external shock emission from a relativistic blast wave
is in principle capable of making multi-TeV emission from GRBs. This is
also shown in figure 11.10, which shows an external shock relativistic blast-
wave model calculation for a standard GRB explosion with different values
of �0. The different baryon-loading parameters could explain different types
of GRBs [335], for example, the X-ray flashes. Depending on the redshift of
the source, intervening EBL absorption would make it more difficult to
detect high-energy γ -ray emission, as considered in the previous chapter.

11.6 THEORY OF THE PROMPT PHASE

The prompt phase of long-duration GRBs, when they are most luminous,
lasts from seconds to minutes at ∼ 100 keV–MeV energies, as long as 90
minutes at � 100 MeV energies, and up to ∼ 105 after the start of a burst
for keV X-ray flares found with Swift [336]. Within the theoretical blast-
wave framework as developed, a central problem concerns the nature of the
prompt radiation. In the internal shock model, an active central engine ejects
waves of relativistic plasma that overtake and collide to form shocks [337].
The shocks accelerate nonthermal particles that radiate high-energy pho-
tons [338]. By contrast, in the external shock model, a single relativistic
wave of particles interacts with inhomogeneities in the surrounding medium
to accelerate particles that radiate the prompt γ rays.

Some canonical features found in the variable prompt and early after-
glow X-ray emission of long-duration GRBs is sketched in figure 11.11 from
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Figure 11.11 Left: Diagram of a generic long-duration GRB light curve at∼1 keV,
from Swift observations [339,340]. The temporal decay indices α in
the form Fν ∝ t−αν−β are listed for the prompt phase (0), decay
phase (I), plateau phase (II), afterglow phase (III), and jet break phase
(IV). X-ray flares (V), seen usually in the early afterglow, are seen as
late as∼105 s after a GRB trigger. Right: Sketch of blast-wave/cloud
interaction.

Swift observations. A plausible theory of GRB emission must explain these
characteristic behaviors.

11.6.1 X-Ray Flares and γ -Ray Pulses from External Shocks

Because the characteristic deceleration time scale, eq. (11.4), is comparable
to the typical duration of the long, soft GRBs, of a few tens of seconds,
then smooth peaked GRBs can be explained in an external shock model. It
is interesting to explore the requirement that external shocks make prompt
phase emission, as the answer to this question determines allowed pathways
for black-hole formation in a GRB.

As we have seen in section 5.5, if a spherical relativistic shell moving
outward with Lorentz factor �0 � 1 is instantaneously illuminated at radius
R over the Doppler cone on angular scales θ � 1/�0 with respect to the line
of sight to the observer, then a characteristic emission profile is formed with
mean duration tFWHM � 0.2R/�2

0c, due to light-travel time delays from
different portions of the surface of the shell.

For a single relativistic shell moving to larger radii, successive instanta-
neous illuminations would form pulses with successively larger durations,
contrary to observations, that is, unless the condition of local spherical
symmetry was broken on size scales � R/�0 [61]. Interactions of the
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blast-wave shell with density inhomogeneities (“clouds”) will break the lo-
cal spherical symmetry condition [341]. For �0 ≈ 300, comparison with
GRB pulse properties implied that density inhomogeneities located
≈1016 cm from the sites of GRBs with sizes≈1012–1013 cm are required to
make rapidly variable light curves. The duration of the pulse is limited by
two basic timescales, the radial and angular timescales.

Radial Timescale

Consider a blast wave intercepting a cloud with size r � R/�0 that is
located at an angle θ with respect to the line of sight to the observer. The
duration of the received pulse of radiation depends on the light travel-time
delays from different portions of the blast wave as it interacts with the cloud.
Photons emitted when the blast wave passes through the near and far sides
of the cloud are received over a radial timescale

tr = 2r

β0�0δDc
∼= r

�2
0c
. (11.97)

The radial timescale varies by a factor ≈ 2, depending on whether the cloud
is located on axis or at an angle θ ∼= 1/�0 off the observer’s line of sight.

Angular Timescale

Photons emitted from points defining the greatest angular extent of the cloud
are received over an angular timescale

tang
∼= rθ

c
. (11.98)

Note that if r → R/�0 and θ → 1/�0, then tang → R/�2
0c, as expected.

When θ ≈ 1/�0, tang ≈ �0tr � tr . Except for those few clouds with θ �
1/�2

0 lying almost exactly along the line of sight to the observer, tang � tr .

Short-Timescale Variability

Sari and Piran [342] argue that a highly variable light curve is only possible
in an external shock model if the radiative efficiency is very low. They define
a variability index V , roughly corresponding to the number of distinct pulses
in a GRB light curve, given by V = t/�t , where t is the GRB duration and
�t is a typical pulse width. A highly variable GRB can have V � 100. The
efficiency ηeff to extract energy from a GRB blast wave is given by the ratio
of the total area Ac ∼= Ncπr2 ≈ Vπr2 subtended by the Nc clouds within
the Doppler beaming cone θ � 1/�0, to the area Abw = πR2/�2

0 of the
blast wave within the Doppler beaming cone. Thus ηeff = Vπr2/(πR2/�2

0).
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Figure 11.12 Model GRB light curves formed through external shocks with clouds
in the circumburst medium. (a) All clouds have radii r = 1013 cm.
(b) Clouds are chosen with equal partial covering factor per logarith-
mic interval in cloud size between 1012 and 3× 1013 cm.

They then argue that ηeff � 1/4V � 1, so that a highly variable light
curve with V � 1 must be very inefficient. This expression makes use of
the relation V < (R/�0)/2r , which follows by assuming that the charac-
teristic duration of a GRB is t ≈ tdur ≈ R/�2

0c, and that the variability
timescale �t ≈ tang ≈ r/�0c. This last approximation makes use of an
expression for tang (see eq. [11.98]) that is correct only at θ ≈ 1/�0. Clouds
located at angles θ � 1/�0 with respect to the line of sight make a dispro-
portionate contribution to the variability of GRB light curves because tang

becomes small and therefore the peak flux of a pulse becomes large for such
clouds [341]. The peak pulse flux

φpk ∝ δ3+α
D

max(tr , tang)
→ cδ3+α

D

rθ
, (11.99)

where α is the energy spectral index, and the last expression holds for clouds
with θ � 1/�2

0. Here we have used a beaming factor appropriate to isotropic
synchrotron radiation in the comoving frame. Specifically,

φpk(θ = 1/10�0)

φpk(θ = 1/�0)
∼= 10 · 23+α ∼= 80–160.

Hence 1% of clouds at θ ∼= 1/10�0 produce 8–16% of the fluence in very
narrow pulses that are ≈100 times brighter than clouds at θ ≈ 1/�0. This
produces highly variable light curves with reasonable (�10%) efficiency.

Figure 11.12 shows calculations of GRB light curves in an external shock
scenario from a GRB with apparent isotropic energy release of 1053 ergs
and �0 = 300. Clouds, with a partial covering factor of 10%, are assumed
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to radiate 10% of their intercepted energy in the form of a photon spec-
trum with the shape of a Band function [343], which smoothly connects an
exponentially cutoff power-law spectrum with number index α to a second
power-law spectrum with index β, giving

NB(ε)= kB εα exp [−ε(α − β)/εbr]H(ε; εB
min, εbr)

+kBεα−βbr exp(β − α)εβH(ε; εbr, ε
B
max). (11.100)

Here, in this paragraph alone, α and β are the low- and high-energy Band α
and Band β indices, typically around −1 and −2.5, respectively, for long-
duration BATSE GRBs, and Ebr = mec

2εbr ∼ 100 keV is the “break en-
ergy.” It can readily be shown that the photon energy Epk of the peak of the
νFν spectrum is related to Ebr by

Epk = (2+ α)Ebr

α − β .

The clouds are assumed to be “uniformly randomly” distributed between
1016 and 1017 cm, that is, the location of the cloud is randomly selected
throughout the volume of the shell by Monte Carlo methods provided that
the volume of each cloud does not overlap the volume of another cloud. The
underlying assumption is that no spatial correlations exist between cloud
locations.

In figure 11.12(a), all clouds have the same radius r = 1013 cm, and
Gaussian noise is added to the simulation at a level typical of BATSE GRBs.
Figure 11.12(b) shows a simulation where clouds are chosen with equal
partial covering factor per logarithmic interval for clouds with sizes between
1012 and 3× 1013 cm. No noise is added in figure 11.12(b). As can be seen,
there is no difficulty in making highly variable light curves in an external
shock model, even with a 10% (or larger) partial covering factor.

Thin-Shell Requirement for External Shock Model

A central requirement for strong radiative efficiency in an external shock
model for the prompt phase is that a strong forward shock is formed; ofther-
wise the Lorentz factor � � �0 and the radiation is strongly debeamed. A
strong forward shock is formed when n(x)� �2

0n0, eq. (11.75), which will
occur if the shell remains narrow. We write the shell width

�(x) ∼= �0 + ηsh
x

�2
0

, (11.101)

and the proper number density of the relativistic shell is given by eq. (11.72).
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Short-timescale flaring requires (a) a strong forward shock, which from
the relativistic shock jump conditions [302] implies a maximum cloud den-
sity given by

ncl �
E0

16πx2�4
0mpc

2�(x)
, (11.102)

and (b) significant blast-wave deceleration to provide efficient energy
extraction, which occurs in clouds with thick columns [341], that is, with
densities

ncl �
E0

4πx2
0�

2
0mpc

2�cl
. (11.103)

These two conditions translate into the requirement that

�cl � 4�2
0�(x) (11.104)

in order to produce short-timescale variability. The short-timescale variabil-
ity condition [341] for quasi-spherical clouds is

�cl �
x

�0
. (11.105)

Using eq. (11.101) for the shell width, eqs. (11.104) and (11.105) imply
the requirement that

ηsh � 1/4�0 (11.106)

in order to produce rapid variability from an external shock. Hence the pro-
duction of γ -ray pulses and X-ray flares from external shocks depends on
whether the GRB blast-wave width spreads in the coasting phase according
to eq. (11.101), with ηsh ≈ 1, as is generally argued. In the gas-dynamical
study of [296], inhomogeneities in the GRB fireball produce a spread in
particle velocities of order |v − c|/c ∼ �−2

0 , so that �(x) ∼ x/�2
0 when

x � �2
0�0. This dependence is also obtained in a hydrodynamical analy-

sis [344].
Two points can be made about these relations. First, the spread in �

considered for a spherical fireball is averaged over all directions. As the
fireball expands and becomes transparent, the variation in fluid motions or
gas particle directions over a small solid angle ∼ 1/�2

0 of the full sky be-
comes substantially less. Second, the particles within a magnetized blast-
wave shell will expand and adiabatically cool so that the fluid will spread
with thermal speed vth = βthc. The comoving width of the blast wave is
�0�0 + βthc�t

′ ≈ �0�0 + βthx/�0, so that the spreading radius xspr
∼=

�2
0�0/βth. Adiabatic expansion of nonrelativistic particles can produce a

very cold shell with β0 � 10−3, leading to very small shell widths.
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Figure 11.13 Rates and inverse timescales as a function of observer time for
1020 eV cosmic-ray protons as measured by a stationary external ob-
server. Left and right panels are results for parameter sets 1 and 2,
respectively, with ζacc = 10.

The requirement on the thinness of �(x) does not apply to the adiabatic
self-similar phase, where the width is necessarily∼x/�2

0, as implied by the
relativistic shock hydrodynamic equations [302]. Even in this case, however,
�� x/�2

0 if the blast wave is highly radiative [345]. Under the assumption
of a strong forward shock and small clouds in the vicinity of a GRB, highly
variable GRB light curves are formed with reasonable efficiency (�10%) to
transform blast wave energy into γ rays [341].

Rapid X-Ray Declines from UHECR Escape

If hadrons are accelerated by GRB blast waves, then blast-wave dynam-
ics could be affected by the loss of internal energy when the UHECRs
escape, possibly explaining the rapid X-ray declines in the Swift GRB light
curves [346]. Photohadronic processes become important when the
comoving-frame threshold condition ε′γ ′ � mπ/me � 200 is satisfied. The
dependence on observer time of the photohadronic energy-loss timescale,
the available comoving time t ′ava since the start of the GRB explosion, the
comoving acceleration time scale t ′acc = ζaccmpc

2γ ′/eBc, written as a factor
ζacc � 1 times the Larmor timescale [178], the comoving escape timescale
t ′esc in the Bohm diffusion approximation, and the proton synchrotron energy
loss timescale t ′spr is shown in figure 11.13 for protons that would escape the
blast wave with 1020 eV, in the case of an adiabatic blast wave that deceler-
ates in a uniform surrounding medium. The left-hand panel of figure 11.13
uses the parameter set

z = 1, �0 = 300, E54 = 1, n0 = 1000 cm−3, εe = 0.3, εB = 0.3,
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and the right-hand panel uses the parameter set

z = 1, �0 = 150, E54 = 10, n0 = 1000 cm−3, εe = 0.1, εB = 0.3.

td ∼= 9.6(1+ z)(E54/n2�
8
300)

1/3 s is ≈9 s and ≈120 s, respectively.
For these parameters, it takes a few hundred seconds to accelerate pro-

tons to energies ≈1020 eV, at which time photohadronic losses and escape
start to be important. Photohadronic losses inject electrons and photons
into the GRB blast wave. The GRB blast wave rapidly loses internal en-
ergy due to the photohadronic processes and particle escape. The blast wave
will then rapidly decelerate, producing a rapidly decaying X-ray flux. The
electromagnetic cascade emission, in addition to hyper-relativistic electron
synchrotron radiation from neutron escape followed by subsequent photo-
hadronic interactions [97], makes a delayed anomalous γ -ray emission com-
ponent coincident with rapid X-ray declines. Detection of ∼ 1014–1016 eV
neutrinos formed as photopion secondaries would demonstrate the impor-
tance of cosmic ray acceleration in GRBs.

11.6.2 Colliding Shells and Internal Shocks

The relativistic winds formed by the energy released by the black hole are
likely to be variable and intermittent on time scales at least as short as or
shorter than the light crossing time scale for the Schwarzschild radius [299],
which is �10−5(Mbh/M�) s for a Solar mass black hole, and over an hour
for a ∼109M� black hole.

Consider two shells ejected into the same part of the sky at different times
t∗ and t∗ +�t∗, with the Lorentz factor �2 = ζ�1 of the second shell larger
by a factor of ζ than the first shell, so that it can catch up and intercept
it. The interception takes place at the interception radius rint = β1ct∗ =
β2c(t∗ −�t∗), which implies, for �1, �2 � 1, (ζ 2 − 1)rint

∼= 2�2
2c�t∗, or

rint
∼= 2�2

1c�t∗ ∼= 2× 1016
(
�1

10

)2

[�t∗ (hr)] cm

∼= 6× 1014
(
�1

100

)2

[�t∗ (s)] cm (11.107)

when �2 � �1. The interception radius will be much smaller than the de-
celeration radius tdec given by eq. (11.4) for variable outflows in GRBs pro-
duced on timescales �t∗ � 1 s with ζ � 1. Internal shocks in GRBs would
then generally take place at much smaller distance scales than the external
shock forming the afterglow emission when the blast wave sweeps up stellar
wind or CBM material, and the internal and external shocks can be, to first
approximation, treated separately.
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The relative Lorentz factor of the two shells, from eq. (11.73), is

�rel = �1�2(1− β1β2)
�1�2�1

→ 1

2

(
ζ + ζ−1) . (11.108)

For mildly relativistic internal shocks with a range of relative Lorentz factors
1 � �rel, ζ � 10, the Lorentz factor �̂ of the shocked fluid with adiabatic
index γ̂ = 5/3 in the explosion frame is, from eq. (11.81),

�sf
∼= 2�1

�relf
1/4√

2�rel − f 1/2
∼=

√
2�rel�1

∼=
√
�1�2,

where f = n2/n1 is the ratio of proper-frame densities of shell 2 to shell 1
when they intercept each other, and the final expression assumes that n2 ≈
n1 and �rel � 1. The proper shocked fluid number and energy densities are

nsf = (4�rel + 3)n1 ≈ 4�reln1 and esf = �relnsf mpc
2

from eqs. (11.69) and (11.70).
Now consider the elastic collisions of shell 2 with mass m2 intercepting

shell 1 with massm1. In an elastic collision, the Lorentz factor of the merged
shell is

�m ∼=
√

m1�1 +m2�2

m2/�2 +m1/�1
(11.109)

[318]. The efficiency to convert the directed kinetic energy of the shells into
internal energy is

υ = 1− (m1 +m2)�m

m1�1 +m2�2
(11.110)

[347]. The efficiency is greatest when the shells have comparable mass and
�2 � �1; otherwise υ ∼ few% [348,349]. When the contrast between the �
factors of the shells is large, υ ∼ 10–20% is possible. When the �0 contrast
is large, however, Doppler boosting would scatter Epk outside the detector
waveband, thus reducing the γ -ray detection efficiency. The allowed range
of � factors of the merged shells are constrained by γ γ processes.

From eq. (11.107) for the radius where the shells intercept each other,
we see that �t∗ ∼= rint/2�2

1c. A photon emitted with shell 2 will reach the
observer at almost the same time as a photon emitted from the shell colli-
sion, so that time histories in models of internal shocks closely follow the
assumed activity of the central engine. When two shells collide to form a
spherical radiating surface, light-travel time effects imply a unique temporal
relation between the shell intensity and Epk that depends only on the (mea-
surable) spectral indices of the GRB pulse [350]. The evolution of GRB
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pulses do not follow the expected trend, implying that the simplest version
of colliding shell physics is incomplete or incorrect [297].

The rapid X-ray declines seen [351] in the light curves of∼30% of GRBs
with Swift are explained as due to cessation of central engine activity. If the
shells emit uniformly within the Doppler cone of the shocked radiating fluid,
then the curvature relation for colliding shells,

Fν ∝ t−αν−β, α = 2+ β
(see section 5.5.2 and eq. [5.60]), should be obeyed. This test has been made
using the Swift data, with a significant fraction not following this relation,
with interesting implications for jet structure [339].

In the standard long-duration GRB picture with relativistic winds and col-
liding shells, X-ray flares are made when the GRB engine is restarted. Long-
lasting GRB central engines can also involve continual injection scenarios
with pulsars. For review, see [336,337]. For simulations of colliding shells
in GRBs, see [352], and in blazars, [353].

11.7 THERMAL PHOTOSPHERES

The tremendous energy release at the base of a GRB jet forms an opaque,
thermal relativistic wind. One motivation to study thermal processes oper-
ating in GRB emissions is that the existence of thermal photospheric X/γ
emissions may provide an explanation for the Amati and Ghirlanda correla-
tions relating spectral and global properties of GRBs.

11.7.1 The Amati and Ghirlanda Relations

The Amati relation [354] correlates the νLν peak photon energy Epk with
apparent isotropic energy release Eiso = 1054E54 ergs according to

Epk ∝ E1/2
iso . (11.111)

(In this section, Epk and Eiso are proper-frame quantities.) The Ghirlanda
relation [355] correlates Epk with the collimation-corrected absolute X/γ
energy release, Eabs = 1051E51 ergs, according to

Epk ∝ E0.7
abs . (11.112)

When Epk = 100 keV, Eiso ≈ 1052 ergs, and Eabs ≈ 1050 ergs in
eqs. (11.111) and (11.112), respectively. The absolute and apparent energy
releases are related in a top-hat jet geometry by the expression (1−µj)Eiso

∼=
Eabs, so that in the limit of small jet opening angle,

θj = arccosµj ∼=
(

2Eiso

Eabs

)1/2

.
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A thermal explanation for the Amati relation, eq. (11.111), is as fol-
lows [356]: The measured luminosity L ∼= �2L′ is �2 times the comoving
luminosity L′ ∼= 4πr2σSBT

′4. Written in like units, T ∼= Epk
∼= �T ′, so that

L ∼=
8πr2σSBE

4
pk

k2
j

Eabs

Eiso
, (11.113)

where we assume that the jet opening angle θj = kj/η is inversely propor-
tional to the entropy per baryon η = L/Ṁbc

2, where Ṁb is the baryonic
mass loss rate into the wind.

Because Eiso
∼= LtGRB, where tGRB = 10t1 s is the typical duration of a

GRB when it is most luminous,

Epk
∼=

√
kjEiso

r0
(8πσSBEabstGRB)

−1/4 ∼= 4 MeV
k

1/2
j E1/2

54

r
1/2
8 E1/4

51 t
1/4
1

, (11.114)

so Epk ∝ E1/2
iso . Here r0 = 108r8 cm is the size scale in which energy is

injected by processes in the vicinity of the newly formed black hole.
The values of Eiso are measured over a range of four orders of magnitude,

and the values of tGRB over ∼ one order of magnitude, which produces a
dispersion in the correlation by a factor ≈ 104/2/101/4 ∼= 100/1.8 ≈ 50.
The tight observed correlation between Epk and Eiso would mean, for the
thermal photospheric explanation, that kj , the scaled jet opening angle, and
r0 are relatively constant between GRBs.

11.7.2 Thermodynamics of a Steady Relativistic Wind

The black-hole engine can be described by a steady relativistic wind with
four-velocity uα = c�(1, β, 0, 0) in a spherical geometry with spherical co-
ordinates (t, r, θ, φ) in terms of the following model parameters: luminosity
L, entropy η = L/Ṁc2, injection size scale r0, and temperature T0. The
energy-momentum tensor for a perfect fluid is

T αβ = pηαβ + (p + ρ)uαuβ/c2, (11.115)

where ρ is the energy density, including rest-mass energy, of the fluid in a
rest frame where it is isotropic, and ηαβ is the Minkowski metric, eq. (3.3).
For a mixed radiation/matter fluid, ρ = u + ρp, where u is the energy den-
sity of radiation, and ρp is the proper (comoving) energy density of matter.
Temperature T is given in the local comoving frame where the particle dis-
tribution is isotropic (or at rest).

The mass flux four-vector Fα = ρpu
α = cρp�(1, β, 0, 0). Conserva-

tion of energy requires that the four-divergence of mass flux vanishes, i.e.,
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∂Fα/∂xα = 0, implying

1

c

∂(�ρp)

∂t
+ 1

r2

∂(r2β�ρp)

∂r
= 0.

In steady state, Ṁ = 4πr2β�ρpc = const, so

np = ρp

mp
= Ṁ

4πmpr2cβ�
= L

4πmpc3r2β�η
. (11.116)

For a relativistically light plasma, η � 1, u = aT 4, p = u/3, ρ = u+ρp,
so that

T αβ = 1

3
aT 4ηαβ +

(
ρp + 4

3
aT 4

)
uαuβ/c2. (11.117)

Conservation of four-momentum is expressed by T αβ,β = 0, or

∂T tt

∂xt
+ ∂T

rt

∂xr
= 0.

In steady state, ∂T rt/∂xr = 0 implies

∂

∂r

[
r2

(
ρp + 4

3
aT 4

)
β�2

]
= 0

or

L = 4πr2β�2cρp

(
1+ 4

3

aT 4

ρp

)
. (11.118)

For an adiabatic wind dominated by a relativistic photon or particle gas,
u ∝ T 4 ∝ V −4/3 ∝ r−4 (section 9.4), so that T ∝ r−1 ∝ n1/3

p , and

T

T0
=

(
np

n0

)1/3

=
(
ρp

ρ0

)1/3

. (11.119)

Equation (11.118) can be expressed as

L = 4πr2β�2cρp

[
1+ x0

(
ρp

ρ0

)1/3
]
, (11.120)

where

x0 ≡
4aT 4

0

3ρ0
(11.121)

and the subscripts “0” refer to values in the injection volume with radius r0.
The energy is assumed to injected at the base of the GRB jet with β� = 1,
or � = √2, and n0 = Ṁ/4πmpr2

0c, so that, from eq. (11.116),

np

n0
= ρp

ρ0
=

(r0
r

)2 1

β�
.
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Figure 11.14 Sketch of the behavior of the proton and neutron wind in a fireball
with injection entropy per baryon η (see Ref. [357]). The photo-
spheric radius occurs during the expanding wind phase for light rel-
ativistic winds with η � η∗, and the photospheric radius is found
in the coasting phase for heavy relativistic winds with η � η∗,
where the critical entropy η∗ is defined when rph = rsat is given by
eq. (11.129).

Using this result and eq. (11.116) in eq. (11.120) gives [357]

x0

(
r

r0

)−2/3

= (�2 − 1)1/6
( η
�
− 1

)
(11.122)

for the implicit equation giving the dependence of the radial Lorentz factor
�(r) of a steady relativistic wind. The asymptotes of eq. (11.122) are

�(r)→
{
r/r0, 1� r/r0 � η,

η

1+ [η/(r/r0)]2/3
≈ η, r/r0 � η.

(11.123)

The saturation radius rsat = ηr0 defines the radius separating the expand-
ing and coasting regimes of the blast wave. The behavior described by
eq. (11.123) is followed until the photons decouple from the outflowing
proton-electron plasma at the photospheric radius. See figure 11.14.

11.7.3 Photospheric Radius

The electrons, protons, and photons in the plasma are strongly coupled until
the fluid becomes optically thin to Thomson scattering. For the proper-frame
electron density n′e, the Thomson depth defining the photospheric radius
rph is

τ ′T ≈
n′eσTrph

�
= 1, (11.124)
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because the distance r is shortened by a factor �−1 in the proper frame.
Assuming that n′e ∼= np, that is, a proton-electron plasma rather than a pair
plasma with comoving electron density equal to proper-frame proton den-
sity, then eq. (11.116) implies with eq. (11.124) the definition of the photo-
spheric radius

rph = LσT

4πmpc3β�2η
. (11.125)

The radiant power released at the photospheric radius is, from eq. (11.118),

Lγ = 16π

3
r2
phcβ(rph)�

2(rph)aT
4(rph), (11.126)

with the remainder of the power leaving the jet in the form of particle kinetic
energy or field energy.

Equation (11.118) gives the injection luminosity

L ∼= 16π
√

2

3
r2
0c aT

4
0 (11.127)

of a radiation-dominated fireball, taking the value of β� = 1 at the base of
the flow by convention. The ratio of eq. (11.127) to eq. (11.126) is

Lγ

L
=

(
rph

r0

)2 �2(rph)√
2

(
T (rph)

T0

)4

. (11.128)

Following [358–360], we define a characteristic flow entropy η∗ where
the photospheric radius rph, eq. (11.125), equals the saturation radius rs =
ηr0, given by

η∗ = 4

√
L/r0

4πmpc3/σT

∼= 330 4

√
L51

r8
(11.129)

where r8 = r/(108 cm) andL51 = L/(1051 ergs s−1). The quantity 4πmpc3/

σT = 8.5× 1032 ergs s−1 cm−1 is the proton compactness, analogous to the
electron compactness introduced in eq. (10.51). When the entropy η < η∗,
there is more baryonic material in the flow, so more opacity, and rph > rsat.
Conversely, when η > η∗, rph < rsat. For a relativistic flow,

r

r0
= η4∗
�2η
→




η
4/3
∗
η1/3

for η > η∗, r < rsat,

η4∗
η3

for η < η∗, r > rsat.

(11.130)
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From eqs. (11.116) and (11.119),

T

T0
=

(
r

r0

)−2/3

(β�)−1/3

→




(
r

r0

)−1

for r < rsat,

T (rsat)

T0

T (r)

T (rsat)
= η−1

(
r

rsat

)−2/3

= η−1/3
(
r

r0

)−2/3

for r > rsat.

(11.131)

Substituting eqs. (11.123), (11.130), and (11.131) into eq. (11.128) gives

Lγ

L
→




1 for η > η∗, or rph � rsat,(
η

η∗

)8/3

for η < η∗ or r � rsat,
(11.132)

for the ratio of total photon luminosity emitted at the photospheric radius
compared to the total jet power. This result shows that, if the jet flow entropy
is sufficiently large and the baryon-loading sufficiently small that η � η∗,
then a large fraction of the escaping power can be in the form of photo-
spheric emission.

For a numerical solution for �(r), note that eq. (11.122) is an implicit
equation. The parameters are η, r0, L, and either x0 or T0, which are re-
lated because ρ0 = L/4πr2

0c
3
√

2 and x0 is given in terms of T0 and ρ0

(eq. [11.121]). Rossi, Beloborodov, and Rees [357] present a more detailed
study and numerical solutions of blast-wave evolution with different elec-
tron and ion temperatures.

11.7.4 Pair Photosphere

The pair plasma at the base of the jet is a Fermi gas, and obeys Fermi statis-
tics with chemical potential µ and distribution function

n̄k = 1

exp[(εk − µ)/T ]+ 1
. (11.133)

The phase space volume for particles with wavenumber k = 2π/λ = 2πν/c
and (dimensional) momentum p = hν/c is

gdV = gdV d3 �p = g4πk2dk

(2π)3
= 4πg

ν2dν

c3
= 4πg

h3
dV dp p2. (11.134)

The statistical weight g = 2S+ 1 = 2 for spin S = 1/2 leptons counts total
states. The lepton density is therefore

n′e± =
1

π2h3

∫ ∞
0

dp
p2

exp(γ /�)+ 1
, (11.135)
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taking εk → meγ for zero chemical potential and (dimensionless) p =√
γ 2 − 1.
In the limit �� 1, p � 1,

n′e± � 0.7
(2�)3/2 exp(−1/�)

π2λ–3
C

∫ ∞
0

dy
y1/2

exp(y)+ 1
. (11.136)

Here∫ ∞
0

dy
y1/2

exp(y)+ 1
=�(3/2)(1− 2−1/2)ζ(3/2)

=
√
π

2
× 0.2928 · · · × 2.612 . . . ∼= 0.67799 . . . (11.137)

(see Appendix B). The pair photospheric radius re± is defined through the
relation n′eσTre±/� ∼= 1, giving

re± =
1.92π2λ–3

C exp(1/�)�(r)

σT�3/2
. (11.138)

In the regime 1� r/r0 � η,

� = �0(r0/r) and �(r) =
√

2(r/r0),

and eq. (11.138) becomes, with ye± = r/r0�0

√
ye± exp(ye±) ∼= 1.92σT (r0�0)

π2λ–3
C

∼= 9× 1011r8�0. (11.139)

Squaring eq. (11.138) casts it in the form of a Lambert function (Appendix
B). It is a simple matter to solve this equation numerically, giving

ηe± = ye±�0
∼= 26�0

for the Lorentz factor of the fireball wind where it becomes optically thin
to Thomson scattering on the pairs. For values of η � 102, thought to be
found in GRB jets, the fireball becomes optically thin to pair Thomson scat-
tering well before it becomes optically thin to Thomson scattering with the
electrons carried by the baryonic material of the flow. The jet luminosity
L injected into the jet normalizes the dimensionless temperature �0 at the
base of the jet though the relation

L = 4πr2
0σSBT

4 ∼= 9× 1051r2
8�

4
0 ergs s−1. (11.140)

Letting re± , eq. (11.138), equal to rph, eq. (11.125), gives the injection
entropy where the pair photosphere equals the baryonic photosphere,

¯̄η ∼= L/r0

(8πmpc3/σT) (ye±�0)3
∼= 3× 105 L51

r8�
3
0

. (11.141)

It is not clear if such relativistically light jets occur in nature.
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11.8 THERMAL NEUTRONS

Neutrons in the fireball formed at the base of the GRB outflow are coupled
to the ambient protons through proton-neutron nuclear elastic scattering. At
a radius where the baryon density in the expanding fireball wind is suffi-
ciently dilute, the neutrons decouple to form a separately streaming wind of
particles interacting only through nuclear scattering. Inelastic π -producing
nuclear scattering between the two winds produces γ -ray and neutrino sig-
nals at ∼ 1–10 GeV [361]. Later, the neutrons decay into protons, form-
ing two charged proton winds moving at different speeds. In a dynamic
situation, the leading proton wind sweeps up material and decelerates, al-
lowing it to be impacted from behind by the neutron-decay proton wind.
Nuclear collisions form γ -rays and neutrinos that could be detected at ener-
gies�ηGeV ≈ (η/103)TeV [361]. In a steady situation, the neutron-decay
products in the wind produce disturbances that can excite shocks [362]. Here
we outline the basic theory of this process, first proposed by Derishev and
colleagues [328,363].

As we have seen (eq. [11.123]), the Lorentz factors of fluid particles in a
spherically symmetric wind evolve with radius r according to

�(r) �
{
r/r0, 1 � r/r0 � η,
η, r/r0 � η. (11.142)

A straightforward integration gives the comoving time

t ′(r) �




r0

c
ln

(
2r

r0

)
, r0 � r � ηr0,

r

ηc
+ r0
c

[ln(2η)− 1], r � ηr0,
(11.143)

to reach radius r from injection. Strong elastic nuclear forces keep neutrons
coupled if t ′np � t ′, where the nuclear elastic timescale is given by

t ′np � (n′pσpnβpc)−1, (11.144)

and βpσpn � 30 mb.
Let the total baryon density n′ = n′p+n′p be the sum of the proton density

n′p and neutron density n′p. Defining

y ≡ n′n
n′p
⇒ n′p =

n′

1+ y and
yn′

1+ y .

The proper baryon and proton densities are

n′ ∼= L

4πr2�ηmpc3
and n′p ∼=

L

4πr2�ηmpc3(1+ y), (11.145)
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respectively, from eq. (11.116). Neutrons become decoupled from the pro-
tons in the wind, which are bound to the radiation through electrostatic
forces with the electrons when t ′np > t ′, that is, when

(1+ y)4π�3ηmpc
3r0

Lσpn ln 2�
> 1. (11.146)

Neutrons will decouple if the flow entropy η exceeds ηdcp, the critical
entropy for decoupling, which is obtained by setting η = ηdcp, giving

ηdcp
∼= (ln 2ηdcp)

1/4 4

√
Lσpn

(1+ y)4πmpc3r0

≈ 240 4

√
ln

(ηdcp

300

)
4

√
L51

(1+ y)r8 , (11.147)

defining r0 = 108r8 cm and L = 1051L51 ergs s−1. With eq. (11.146),
eq. (11.147) gives the decoupling Lorentz factor of the neutrons,

�n = ηdcp

(
ηdcp

η

)1/3

= ηu4/3, (11.148)

where

u ≡ ηdcp/η < 1

for neutron decoupling. Because � = r/r0, the decoupling radius

rdcp = r0�n = r0ηu4/3. (11.149)

Consider a sudden release of energy over the stationary frame �t∗ with
mean luminosity L. The release is assumed to be long enough that a steady
windis established on a size scale c�t∗ � rsat ∼ 1010 cm and short enough
that c�t∗ � xd ∼ 1016 cm, so that the dynamics can be treated as an impul-
sive release of energy into a uniform CBM or size scales r ∼ xd (eq. [11.2]).
When the protons in the wind reach large radii r � xd , the observer time is

t ∼= (1+ z)xd
�2

0c

[
r

xd
+ 1

2

(
r

xd

)4
]
→ (1+ z)xd

2�2
0c

(
r

xd

)4

.

The location of the neutron-decay proton shell, as a function of observer
time t , is given by

r ∝ �2
nct/(1+ z),

provided that r � 900�nc s. The condition that the neutron-decay proton
shell intersects the proton shell at the same observer time implies the colli-
sion radius

rcoll = xd
(
�0

�n

)2/3

= xdu−8/9. (11.150)
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The observer time of the collision between the two shells is

tcoll
∼= tdu−32/9. (11.151)

The requirement that the neutrons have decayed before the collision be-
comes

xd � 6× 1015
( η

300

)
u20/9 cm. (11.152)

11.9 GRB COSMOLOGY

Beppo-SAX and Swift established the distance scale to long- and short-
duration GRBs, respectively. Except for a beaming-factor correction, this
also establishes the energy budget of these sources. The apparent isotropic
γ -ray energy release, from eq. (4.36), is

Eγ,iso = 4πd2
LFγ

1+ z , (11.153)

where the GRB γ -ray energy fluenceFγ is typically∼10−7–10−4 ergs cm−2.
Using θj given by eq. (11.91) for the opening angle of the jet gives a
beaming-corrected absolute energy release. Combining eqs. (11.91) and
(11.153) gives the jet energy

Ej (ergs) � 1.3× 1050(1+ z)−3/4t
3/4
br

( Eγ,iso
1052 ergs

)3/4

n
1/4
0 η1/4

γ (11.154)

[367].
Figure 11.15 from Frail and colleagues [364] shows the result of perform-

ing this exercise, and the remarkable mapping of apparent energies Eγ,iso
spread over three orders of magnitude to a distribution of beaming-corrected
energies Eγ,abs with dispersion of less than one order of magnitude. This
“standard energy reservoir,” with Eγ,abs ∼ 5 × 1050 ergs, or an absolute
energy release Eabs ∼ 1.5 × 1051 ergs for a γ -ray efficiency ηγ ∼= 1/3,
would represent the long-sought energy scale of GRBs (the most complete
pre-Swift study is by Friedman and Bloom [365]).

The clustering of the beaming-corrected energy has led several groups
[366,367] of researchers to consider the use of GRBs as standard candles,
and therefore as tools for cosmology. The energy is assumed to follow the
Ghirlanda relation, eq. (11.112). The dispersion of beaming-corrected ener-
gies away from this relation gives the uncertainty in standard energy. The
standard energy and its uncertainty can be used to derive the allowed range
in cosmological parameters. The low-luminosity GRBs may be identified as
a separate population.
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Figure 11.15 Distribution of the apparent isotropic GRB energy of GRBs with
known redshifts (top panel) vs. the geometry-corrected energy for
those GRBs whose afterglows exhibit the signature of a nonisotropic
outflow (bottom panel). Arrows are plotted for five GRBs to indicate
upper or lower limits to the geometry-corrected energy [364]. (Figure
courtesy of Dale A. Frail, National Radio Astronomy Observatory.)

GRBs are observed to have apparent isotropic energy releases as much as
9× 1054 ergs (at the time of writing, for GRB 080916C), mainly radiated at
≈ 100 keV–MeV energies. These GRBs could also radiate a large fraction
of their energy in the form of high-energy γ rays above ∼ 1 GeV. Devia-
tions of spectral models from an empirical Band function, eq. (11.100), can
reveal the existence of seperate spectral components and test EBL models.
The goal of measuring GRB energy release is being realized with the mul-
tiwavelength data in GRB studies, now using extensive γ -ray data from the
Fermi Gamma Ray Space Telescope and the ground-based arrays.
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Chapter Twelve

Introduction to Fermi Acceleration

The subject of particle acceleration is integral to our understanding of
energetic nonthermal radiations. Our focus on Fermi acceleration does not
preclude the existence of other accelerators based on magnetic reconnec-
tion, wakefield acceleration driven by the ponderomotive force of a radiation
pulse, shear flows (which can, but need not be, a Fermi mechanism), Weibel
or other plasma instability mechanisms, etc. Electrodynamic acceleration, as
discussed in relation to neutron stars, pulsars, and magnetars [368], can also
operate near black holes, and is studied in chapter 16. Because of its highly
developed theoretical basis, and its ability to produce nonthermal power-law
particle spectra with number indices near −2 or harder, Fermi acceleration
is studied here. For more introduction to Fermi acceleration, see the books
by Gaisser [12] and Longair [369].

Consider a test particle physically diffusing through a part of the ISM
inhabited by massive magnetized clouds moving randomly in all directions
with mean speed v = |�v| = βc (Figure 12.1a). Elastic scattering of the
particles by the massive clouds leads, stochastically, to a diffusive energy
gain. The scattered particle intercepts a cloud according to a scattering rate,
which favors head-on over tail-on collisions, and exits the cloud isotropi-
cally from the cloud frame. The particle diffuses physically when cycling
between ISM and cloud media, and diffuses in momentum space to higher
mean energies in the process of thermal equilibration between the test parti-
cle and the clouds. The fractional energy gain per cycle is proportional to v2,
and therefore this process is called second-order Fermi acceleration (F2).

A shock, by contrast, is a distinct geometry where suprathermal parti-
cles can diffuse and cycle through unshocked upstream regions and shocked
downstream regions by crossing the shock velocity discontinuity. The par-
ticle gains energy, and the statistical systematic energy gain is balanced by
convective particle loss downstream where there is no further acceleration.
In the idealized case of a semi-infinite forward shock between a fast-moving
fluid with speed u = |�u| � local sound speed cs of the upstream medium,
as sketched in figure 12.1, the divergent velocity structure results in a frac-
tional energy gain rate per cycle proportional to u/c; therefore this process
is known as first-order Fermi acceleration (F1).
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(b) First-Order Fermi
Acceleration: F1
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Acceleration: F2
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u = βc

Figure 12.1 The two basic types of Fermi processes. (a) Second-order,
stochastic Fermi acceleration, where test particles scatter off randomly
moving magnetized mirrors, now reinterpreted as MHD waves. (b)
First-order, shock Fermi acceleration, where test particles systemat-
ically gain energy by scattering with advancing (converging) scatter-
ing centers formed by the shock. Magnetic field shock geometries can
have the large-scale magnetic field direction aligned with the shock
normal as quasi-parallel (q-‖) shocks, and magnetic field directions
transverse to the shock normal as quasi-perpendicular (q⊥) shocks.
Blow-up shows the shock structure approximated by an infinite plane
parallel geometry.

For nonrelativistic flow speeds, the compression ratio χ is equal to the
ratio of downstream to upstream proper particle densities, or upstream to
downstream speeds as measured in the shock frame. For a strong shock
with u � cs in a uniform density ISM, χ → 4; thus the density of the
fluid downstream of a strong shock increases by a factor of 4, and the ve-
locity decreases by the same factor (section 13.1). Particles with gyroradii
much smaller than the shock width are heated by adiabatic compression, but
otherwise convect downtream. Particles with gyroradii much larger than the
shock width can sample both sides of the flow, increasing their momenta
proportionally to u in each cycle. Because of turbulence generated in both
the downstream and upstream fluids, suprathermal particles follow diffu-
sive trajectories. Each roundtrip cycle up- and downstream earns a particle
a systematic energy gain, so that the rare few particles that diffuse hundreds
of times across the shock can be accelerated to very high energies before
convecting downstream.
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The subject is introduced by describing the basic features of Fermi
acceleration, either through statistical systematic increases in particle en-
ergy by cycling across a shock front (F1) or statistical diffusive increases
in particle energy by scattering off randomly oriented scatterers (F2). The
remainder of this chapter introduces the following:

1. The two Fermi acceleration mechanisms are further described.
2. Dimensional arguments are shown to recover the Kolmogorov and

Kraichnan indices for the spectrum of turbulence.
3. Hillas’s criterion [320] that the particle gyroradius is smaller than the

size scale of the system is shown to rule out many sites as sources of
UHECRs.

4. The energy gain per cycle for relativistic particles in Fermi accelera-
tion is derived.

5. Diffusion in physical space, integral to Fermi processes, is discussed.
6. Expressions for maximum particle energies Emax are summarized.

The values of Emax are based on derivations of maximal energy-gain rates
integrated over time for first-order acceleration at nonrelativistic and rela-
tivistic shocks, and for second-order acceleration in the shocked fluid shell
formed by an explosive event.

12.1 STOCHASTIC AND SHOCK FERMI ACCELERATION

In the original formulation of this problem by Fermi [370,371], particles
gain energy by scattering off magnetic clouds moving in random directions
with mean speeds 〈v〉 = cβ.

The stochastic and shock Fermi mechanism both rely on scattering
charged particles by moving scattering centers. In the case of stochastic,
second-order Fermi acceleration, the scattering centers are assumed to be
moving in random directions. A test particle elastically scattering off these
randomly moving centers will on average pick up more energy than it loses.
This is because the rate factor (1− βparβµ), with its lower value for tail-on
collisions, makes a smaller energy loss than for head-on collisions, which
tend to increase the particle’s energy. A slow general energy increase of
the particle takes place at the expense of the kinetic energy of the magnetic
clouds.

When second-order acceleration is sufficiently rapid to accelerate supra-
thermal particles over the Coulomb barrier, quasi-Maxwellian particle
distributions with number index as hard as +1 (Ne(γ ) ∝ γ−1) are formed
with cutoff energies or effective temperatures that may be highly relativis-
tic [372,373].
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The first-order Fermi mechanism involves fundamentally different scat-
tering kinematics as a result of the discontinuity in velocity, density, and
magnetic field at the shock front. A suprathermal particle samples large vol-
umes around the shock front when its gyroradius is large compared to scales
set by the shock width. The effect of the velocity jump when viewed from
the stationary ISM is to have advancing scattering centers. Suprathermal
particles cycling upstream and downstream across the shock front pick up
a systematic energy gain. Remarkably, the convective loss downstream of
the accelerated particles balances the energy gain rate and makes, in the test
particle limit, a power-law particle distribution with power-law index sim-
ply related to the compression ratio of the flow. Important issues here are
the origin of the upstream and downstream scattering centers responsible
for the particles’ diffusive motions, and the effect of the nonthermal particle
energy on shock structure and acceleration.

The shock and magnetic-field geometries are usually considered in the
two limiting cases of

1. Quasi-parallel (q-‖), where the shock normal is parallel to the
magnetic-field direction; and

2. quasi-perpendicular (q-⊥), where the shock normal is perpendicular
to the magnetic-field direction,

as sketched in figure 12.1.

12.2 WAVE TURBULENCE SPECTRUM

A wavevector �k (k = |�k| = 2π/λ) description of turbulence is needed to
describe gyroresonant acceleration of particles which gain energy by inter-
acting with magnetic scattering centers. These scattering centers, viewed
by Fermi as magnetized clouds, are now understood to be magnetohydrody-
namic (MHD) (including hydromagnetic or electromagnetic) waves.
Gyroresonant interactions of these waves with electrons and protons cause a
gradual second-order diffusive increase in the mean energy of the particles.

The spectral wave energy density w(�k) is a local quantity, and depends in
general on location. The differential energy density of MHD waves in the
momentum element d3�k in the direction �k is defined as d3�k w(�k) [374,375].
A better description would consider wave type, polarization, and helicity.
By assuming isotropic MHD wave turbulence, and following the arguments
of Kolmogorov and Kraichnan outlined below, a simple approximate form
for the MHD wave spectrum for parallel, one-dimensional turbulence is
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Figure 12.2 Illustration of the wave spectral energy density w(k), including the
injection scale at k ∼ kmin, the inertial range between kmin and kmax,
and the dissipation range at k � kmax. The inverse size scale L−1

determines the characteristic wavenumber of the injected turbulence.

given by

w(k) ∼= w0k
−qH(k; kmin, kmax), q =

{
5/3, Kolmogorov,

3/2, Kraichnan,
(12.1)

in the inertial range of cascading turbulence. The units are such that kw(k)
is energy density. Turbulence spectral indices q in the range 1 � q � 2
are generally considered. Most of the turbulent energy resides in small-
wavenumber, large-size-scale turbulence.

As sketched in figure 12.2, the cascade phenomenology involves the in-
jection of turbulence at small wavenumber k ≈ kmin, corresponding to the
largest or dominant size scale of the system. Turbulence cascades to smaller
wavelength structures until it is damped by, for example, microphysical
processes or energy extraction by particles through gyroresonant processes.
A specific example of interacting waves and particles used to model impul-
sive Solar flare data is given in Ref. [376].

Kolmogorov Spectrum of Turbulence

Consider a closed system filled with an incompressible fluid filled with eddy
turbulence. Each eddy can be characterized by velocity v and size scale R.
Energy flows from smaller to larger wavenumbers as eddies cascade from
larger to smaller size scale until the eddies reach a size scale where energy
dissipation dominates the flow of turbulent energy (figure 12.2). The
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cascade phenomenology can be understood as a Reynolds-number-
dependent injection of turbulence, with feedback between the particle and
wave energy driving the wave spectrum to self-similar form [377].

For the units peculiar to this and the next subsection, energyE is given per
unit mass; thus E ∼ v2, where the “∼” sign connotes dimensional accuracy.
The only microphysical property that enters is the energy dissipation rate per
unit mass ε̇ (ergs s−1), which determines the end of the turbulent cascade
over the dissipation range of wavenumber space.

By dimensional analysis,

ε̇∼ v2 · v
λ
∼ v3

λ
⇒ v ∝ (ε̇λ)1/3 . (12.2)

In these units,

kw(k) ∼ v2 ∼ (ε̇λ)2/3 ∼ ε̇2/3

k2/3
, (12.3)

and λ refers to the size scale (wavelength) of the turbulence. Thus [378]

w(k) ∼ k−5/3 . (12.4)

Most of the wave energy is in waves with k ∼ kmin.
The frequency spectrum of the magnetic field fluctuations in the Solar

wind measured with the magnetometer on Mariner 10 gave a slope in the
inertial range consistent with the Kolmogorov spectrum. Many other studies
find a Kolmogorov spectrum for Solar wind turbulence [375].

Kraichnan Spectrum of Turbulence

Kraichnan [379] pointed out that coupled hydromagnetic equations for ve-
locity and magnetic field fluctuations were required to understand energy
transfer in the inertial range. Fluid fluctuations would couple turbulence
to produce “asymptotically exact equipartition of energy.” Distributing
kinetic energy into velocity turbulence on scales k−1

v with energy density∫∞
0 dkv wke(kv) implies a mean-squared velocity

3

2
v2

0 ∼ V
∫ ∞

0
dkv wke(kv) ∼ 3

2
b2

0 ∼ V
∫ ∞

0
dk w(k),

which is of comparable energy density to the MHD turbulent wave energy
density. Here b0 is a characteristic velocity associated with the MHD energy
density.

Performing dimensional analysis with vt ∼ 1/k, but now letting energy
depend quadratically on the wave energy density, we have

ε̇ ∼ E

tV
∼ E2

V tv2
∼ V [kw(k)]2 v0k

v2
0

∼ V k3w2(k)

v0
. (12.5)
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This gives [380] the form of the Kraichan spectrum of MHD turbulence,

w(k) ∼ k−3/2 . (12.6)

12.3 THE HILLAS CONDITION

The maximum particle energy Emax is governed by the condition that the
Larmor radius rL, eq. (7.5), be less than the size scale R of the system. For
relativistic particles

E < QBR.

More precisely, a Fermi acceleration mechanism is, as it must be, ultimately
an electrodynamic accelerator. The differential energy gained through
Lorentz force in a frame with zero electric field is dE ∼= QβBdr , so that the
total energy gain

E � QβBR ⇒ R � E

QβB
, or BµG �

E20

Zβ(R/Mpc)
,

the final expression immediately ruling out acceleration processes associ-
ated with the Galactic ISM, except possibly for heavy ions like Fe.

Figure 12.3 shows the original figure published by Hillas in 1984 [320]
comparing different astrophysical accelerators based on this criterion. This
diagram shows how much more effective mildly relativistic or relativistic
flows are for acceleration compared to nonrelativistic flows. It shows that
large-Z ions, specifically Fe nuclei, are easier to accelerate to 1020 eV
energies. It rules out many source classes to accelerate 1020 eV particles,
including most galactic sources other than highly magnetized neutron stars,
mainly young pulsars. Based on this diagram, pulsar wind nebulae like the
Crab (though not the Crab pulsar itself) would have difficulty on accelerat-
ing even cosmic-ray Fe to ∼ 1020 eV energies.

It is notable that AGNs, galaxy clusters, and �1012 G neutron stars are
viable candidate UHECR accelerators. The impact of the relativistic mo-
tions of the jet fluids in AGN, GRB, and other jet sources was not fully
considered by Hillas, and we take up that subject here.

Absent also from this diagram are the GRBs, whose nature and distance
scale were unknown at the time that Hillas wrote, though early papers by
Paczynski [294] and Goodman [295] in 1986, and earlier by Usov and
Chibisov in 1975 [381], saw the possibilities that GRBs are cosmological
in nature.
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Figure 12.3 Size and magnetic field strength of possible sites of particle accelera-
tion. Objects below the solid (dashed) diagonal line cannot accelerate
protons (Fe) to 1020 eV [320]. (Figure courtesy of A. M. Hillas.)

12.4 ENERGY GAIN PER CYCLE FROM FERMI

ACCELERATION

The particle Lorentz factor in the frame of the fluid moving with speed βc,
from the Lorentz transformation eqs. (2.11), is

γ ′ = �γ (1− ββparµ)
βpar→1
→ �γ (1− βµ). (12.7)

After scattering and becoming isotropized within the moving medium, the
particle then escapes and returns back to the original medium, but now with
Lorentz factor

γf = �γ ′(1+ ββ ′parµ
′)

β ′par→1
→ �γ ′(1+ βµ′). (12.8)

So, provided that the particle speed cβpar>cβ and further taking the γ�1,
βpar→ 1 limit

γf = �2γ (1− βµ)(1+ βµ′).

For a particle entering and exiting the scattering region with angles θ =
arccos(µ) and θ ′ = arccos(µ′), respectively, the fractional energy gain is

	γ (µ,µ′)
γ

= γ (µ,µ′)− γ
γ

= �2(1− βµ+ βµ′ − β2µµ′)− 1.
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The average energy gain per cycle for second-order Fermi acceleration, av-
eraged over entrance and exit angles, is(
	γ

γ

)
F2
=

∫
dµ′n′(µ′)

∫
dµ n(µ)(1−βµ)[�2(1−βµ+βµ′−β2µµ′)−1]∫

dµ′ n′(µ)
∫
dµ n(µ)(1− βµ) .

(12.9)
For isotropic particle distributions, the particle directional distribution is
given by n(µ) = 1

2H(µ;−1, 1) and n(µ′) = 1
2H(µ

′; −1, 1), and eq. (12.9)
gives (

	γ

γ

)
F2
= 4

3
β2�2

β�1
→ 4

3
β2 ∝ β2. (12.10)

In the case of first-order Fermi acceleration, the geometry is fundamen-
tally different, involving an infinite planar shock. The average energy gain
per cycle in first-order Fermi acceleration, averaged over entrance and exit
angles, is
(
	γ

γ

)
F1
=

∫
dµ′ n′(µ′)

∫
dµ n(µ)[�2µ(1− β + βµ′ − β2µµ′)− 1]∫

dµ′ n′(µ)
∫
dµ n(µ)

,

(12.11)

and no longer involves the reaction-rate factor because, in the frame of the
shock, there is a velocity discontinuity fixed in the frame of the shock. The
flux of particles onto a planar surface is reduced proportionally to µ,µ′ for
particles with angles θ, θ ′ ∼= π/2. The normalized projection of the flux
of particles escaping from the shock is n′(µ′) = 2µ′H(µ′; 0, 1). The nor-
malized projection of an isotropic flux of particles onto a plane is n(µ) =
2|µ|H(µ;−1, 0); weighting the flux by µ gives

∫ 0
−1 dµµ|µ| = −2/3. Av-

eraging eq. (12.11) using these fluxes gives(
	γ

γ

)
F1
= 4

3
β�2 + 13

9
β2�2

β�1
→ 4

3
β ∝ β. (12.12)

Note the crucial assumption that the accelerated particle distribution is
isotropic in the proper frame of the fluid. In fact, this assumption cannot
be justified in relativistic, � � 1 flows. For nonrelativistic shocks, the rela-
tive change in particle momenta per cycle is(

	p

p

)
F1
= 4β

3βpar βpar→1
→ 4

3
β. (12.13)

12.5 DIFFUSION IN PHYSICAL SPACE

In treatments of particle acceleration, diffusion in momentum space cannot
be separated from diffusion in physical space. When no energy losses or
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gains take place, however, we can examine the simpler convection-diffusion
equation for particle momentum density n(p, �x), given (section 13.2) by

∂n

∂t
= −�∇ · (�un− κ · �∇n), (12.14)

where κ is the diffusion tensor. The first term on the right says that the
change in the density is proportional to the gradient of the convective flux
�un, and the second term says that the change in density is proportional to
the gradient of the diffusive flux κ · �∇n, which itself is proportional to the
gradient of n.

Consider the simplest three-dimensional diffusion scenario without con-
vection and with an isotropic diffusion coefficient. Therefore

∂n

∂t
= κ

r2

∂2(r2n)

∂r2
.

Suppose that a source impulsively injects cosmic rays with a power-law
spectrumN(γ ) = Kγ−p. For energy-dependent diffusive propagation, κ =
κ(γ ), the spectral number density of relativistic cosmic, ray ions measured
at a distance r away from an impulsive source of cosmic rays that occurred
a time t earlier is

n(γ ; r, t) = Kγ−p

π3/2r3
dif

exp[−(r/rdif)
2]. (12.15)

Here the diffusion radius rdif
∼= 2
√
κ(γ )t = 2

√
λct/3, where λ is the dif-

fusion mean free path, and eq. (12.15) assumes that cosmic rays suffer no
significant energy losses during transport (see Ref. [196] for the more gen-
eral case).

In the Bohm diffusion approximation, the diffusion coefficient is defined
by the condition that λ = rL. Thus the Bohm diffusion coefficient for rela-
tivistc particles is κB = crL/3. The mean escape timescale from a region of
size 〈R〉, using the Bohm diffusion approximation, is tesc = 〈R〉2/2κB. The
Bohm diffusion approximation serves as a benchmark; particles can be more
diffusive than implied by the Bohm approximation if the coherence length
of the disordered magnetic field is small compared to the Larmor radius. In
contrast, an ordered field can trap particles and impede escape compared to
the Bohm approximation.

When r � rdif, then

n(γ ; r, t) ∝ γ
−p

r3
dif

∝ γ
−p−(3/2)(2−q)

t3/2
∝ t−3/2×

{
γ−p−1/2 for q = 5/3,

γ−p−3/4 for q = 3/2.
(12.16)
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The measured spectrum from a bursting source is therefore steepened by
3(2 − q)/2 units [196,208] when the diffusion coefficient κ ∝ λ ∝ γ 2−q
(chapter 14). By comparison, the spectral index is steepened by (2−q) units
for continuous cosmic-ray injection (q = 1 for the Bohm approximation).

The theory of cosmic-ray diffusion in the disk and halo of the Galaxy is
quite extensive; see, e.g., Refs. [12,114,382,383]. Physical diffusion through
regions with different flow speeds is integral to the Fermi mechanism. Con-
sequently a coupled convection-diffusion equation must be examined
(chapter 13).

12.6 MAXIMUM PARTICLE ENERGY

The question of maximum particle energy in shocked and turbulent flows
is central to the cosmic-ray problem. Lagage and Cesarsky [384] gave an
answer to this question for SNR explosions, finding maximum energies

Emax ∼ 1014ZBµG

of ions accelerated in SNR shocks. This energy is well below the pro-
ton knee at ≈3 PeV, threatening the standard interpretation expressed by
Ginzburg and Syravotskii [385] and Hayakawa [386] that GeV–TeV cosmic
rays are accelerated by supernovae. Crucial in making this calculation is
the magnetic field and spectrum of wave turbulence in the upstream region
responsible for scattering the accelerated particles.

Consider a quasi-homogeneous environment entraining a disordered
magnetic field with mean intensity B0 = 10−6BµG G. An impulsive release
of energy into the surroundings forms a shock wave, whose evolution in
the coasting and Sedov phase is assumed to follow the behavior of adiabatic
blast waves derived in chapter 11. Here we summarize the maximum energy
to which a particle can be accelerated in first-order and second-order Fermi
processes for a shock wave in this environment. These results are derived in
detail in the next two chapters.

The evolution of the blast-wave momentum P(x) = β(x)�(x) in the adi-

abatic asymptote is described by eq. (11.18) [301], where P0 =
√
�2

0 − 1 =
β0�0 is the initial blast-wave Lorentz factor that defines the baryon loading.
The deceleration radius [298,300], eq. (11.2), can be written as

xd ≡
(

3(∂E0/∂�)

�2
0mpc

2µ0n0

)1/3

∼= 6.6× 1018

(
E�

�2
0µ0n0

)1/3

cm ∼= 2.1

(
E�

�2
0µ0n0

)1/3

pc (12.17)
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is defined in terms of E�, the apparent isotropic energy release of the
explosion expressed in units of Solar rest-mass energy, so E� = 1⇔∂E0/

∂� ∼= 1.4 × 1053 ergs sr−1. The term µ0 gives the average atomic mass of
swept-up material in units of mp, and µ0

∼= 1.4 for Solar composition mate-

rial. For a nonrelativistic explosion, xd ∼= the Sedov length Sdv = �2/3
0 xd .

Maximum Particle Energy at Nonrelativistic Supernova Shocks

As shown in the next chapter, the maximum particle energy possible for
a particle accelerated by a quasi-parallel nonrelativistic shock from an ex-
plosion with energy E� and coasting speed cβ0 taking place in a uniform
density environment with density n0 and mean magnetic field B is

E‖,max � 6× 1015Zβ0

( E�
µ0n0

)1/3

BµG eV. (12.18)

The maximum particle energy E⊥,max(x1) at x1 possible for a particle accel-
erated by a quasi-perpendicular nonrelativistic shock is

E⊥,max � 1016Zβ
2/3
0

( E�
µ0n0

)1/3

BµG eV. (12.19)

Coasting speeds β0c are β0 ∼ 10−2 for Type II SNe and β0 � 10−1 for
SNe Ia (table 12.1). This gives results similar to those found by Lagage and
Cesarsky [384].

Maximum Particle Energy at
Relativistic External Shocks

The maximum energy that can be achieved by relativistic first-order shock
acceleration at an external shock is

Emax,F1� γ̄ �2(x0)mc
2 + 3× 23/2qB⊥−xd�0

�
[
8×1013γ̄ �2

300A+1.5×1016ZBµG

(E��0

µ0n0

)1/3
]

eV, (12.20)

where � = 300�300, and γ̄ is the Lorentz factor of a particle captured in the
first cycle of relativistic shock acceleration.

Besides requiring highly magnetized surroundings, external shock ac-
celeration of ∼ 1020 eV particles must surmount kinematic difficulties to
acceleration [338]. Another approach using first-order shock theory is to
have colliding shells, with each shell being highly magnetized.
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Table 12.1 Maximum Particle Energy through Fermi Processes in Cosmic Explo-
sions

Explosion Outflow speed

type (km s−1) 〈β0�0〉
Emax,F1 (eV)a

Z

Emax,F2 (eV)b

Z td
c

SN Iad �2× 104 0.03 ∼ 1015 ∼ 2× 1014 ∼ 350 yr
SN IId ∼ 103–2× 104 0.01 ∼ 5× 1014 ∼ 2× 1012 ∼ 200 yr

SN Ibd,e ∼ 1.5× 103–105 0.1 ∼ 2× 1015 ∼ 2× 1016 ∼ 700 yr
SN Ice ∼ 3× 104–3× 105 0.3 ∼ 4× 1015 ∼ 2× 1018 ∼ 70 yr
GRBsf 3× 105 ∼ 300 ∼ 7× 1016 ∼ 1020 ∼ 55 s
aBµG = E� = 1, µ0n0 = 1 cm−3; µ0n0mpc

2 is the mass density of the surrounding
medium, assumed homogeneous (section 13.4.3). E� � 10−3, 10−2, and 1 for SNe,
hypernovae, and GRBs, respectively.

bεB = ξ = f	 = E� = 1, µ0n0 = 1 cm−3, q = 5/3 (section 14.8).
cDeceleration timescale, eq. (11.4), td = xd/(�0P0c).
dData from [308].
eData from [387].
f Parameters representative of relativistic flows in long-duration GRBs

(see figure 11.9).

Maximum Particle Energy in Stochastic Acceleration at Relativistic Shocks

The basic scaling for the maximum energy achieved by stochastic accelera-
tion in a relativistic blast wave is given by the term

Emax,F2≡ qB∗f	xdP0
∼= 4×1020Zε

1/2
B (µ0n0)

1/6
(
f	

1/12

)
β0(E��300)

1/3 eV.

(12.21)

The term f	, which sets the shell width in terms of swept-up material, is
nominally set equal to 1/12 for a spherically symmetric explosion in a uni-
form medium. Stochastic acceleration processes apparently can accelerate
particles to �1020 eV, but the parameters of the flow—εB, �, n0—must be
in appropriate (high-end) ranges, or the particles must be ions with relatively
large Z.

Hillas [388] points out some other things besides Emax that must be
understood for a complete theory of cosmic-ray acceleration, including

1. the cosmic-ray spectral index, anisotropy, and short-residence-time
problem;

2. the reason for the low TeV fluxes from SNRs;
3. whether the radiation from SNRs is leptonic or hadronic in origin.



chapter13 July 17, 2009

Chapter Thirteen

First-Order Fermi Acceleration

The importance of first-order shock Fermi acceleration in driving ideas about
particle acceleration and the origin of the cosmic rays demands a fuller
review than a single chapter can provide, but here we present basic results
about the first-order Fermi acceleration mechanism that are essential knowl-
edge for deeper study.

We begin by deriving the hydrodynamic relation between Mach num-
berM and compression ratio χ . The derivation of the convection-diffusion
equation for nonrelativistic shocks and nonrelativistic particles is outlined,
and the momentum representation of the particle spectrum is extended to
relativistic energies. The shock spectral index in nonrelativistic shock accel-
eration is derived from the convection-diffusion equation and from proba-
bility arguments. The solution to the one-dimensional convection-diffusion
equation for a velocity jump written in terms of the compression ratio χ
is obtained, giving a spectrum n(p) ∝ p−2 for strong shocks. The under-
lying required simplification is that scattering centers exist in the fluid to
isotropize the particle distribution both upstream and downstream of the
shock.

In the test particle limit, spectral steepening occurs for finite-width
shocked fluid shells, or when the medium becomes appreciably diffusive.
The test particle limit fails due to nonlinear effects from the pressure of the
accelerated particles, which flattens the shock transition and hardens the ac-
celerated particle spectrum. Maximum particle energy in first-order Fermi
acceleration is derived, and effects of upstream conditioning by the Bell-
Lucek mechanism [389,390] are discussed.

Anisotropies are essential to relativistic shock acceleration, so a Fokker-
Planck equation in terms of the particle distribution function f (µ, p, x)
is considered [391]. Solving the eigenvalue equation either numerically or
analytically gives a number spectral index A ∼ 2.2–2.3, which is obtained
as a limiting case of highly relativistic shocks in the solution by Keshet
and Waxman [392]. Kinematic effects limit maximum particle energy from
relativistic external shocks [338].

The basic theory of first-order particle acceleration at a nonrelativistic
shock was developed by Bell [393,394], Blandford and Ostriker [395],
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Figure 13.1 Shock geometry in rest frame of shock, with inset showing forward
and reverse shock structure.

Krymsky [396], and Axford [397] in the late 1970s. For reviews, see
Refs. [398–400].

13.1 NONRELATIVISTIC SHOCK HYDRODYNAMICS

The relationship between the compression ratio χ and Mach numberM for
a strong nonrelativistic shock was mentioned in the previous chapter. Here
we derive this result.

Conservation of mass, momentum, and energy is satisfied in one dimen-
sion by the Rankine-Hugoniot equations generalized for escape:

ρ1u1 = ρ2u2 +�m = �0, (13.1)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 +�P , (13.2)

and

ρ1u1

(
1

2
u2

1 +
γ̂ P1

(γ̂ − 1)ρ1

)
= ρ2u

2
1

(
1

2
u2

2 +
γ̂ P2

(γ̂ − 1)ρ2

)
+�E (13.3)

[401,402], where the subscript “1” refers to upstream and “2” to downstream
(see figure 13.1), ρ1,2 and P1,2 are the particle mass densities and pres-
sures, respectively, and γ̂ is the ratio of specific heats (γ̂ = 5/3 for a non-
relativistic monatomic ideal gas). In this expression, the terms�m,�P , and
�E represent particle, momentum, and energy flux, respectively, lost from
the system.

Defining the compression ratio

χ = u1

u2
, (13.4)
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eq. (13.1) becomes

ρ2 = χρ1N
′, N ′ ≡ 1− �m

�0
. (13.5)

The upstream (preshock) Mach numberM1= u1/cs , where cs =
√
γ̂ P1/ρ1

is the local sound speed. Thus

M2
1 =

ρ1u
2
1

γ̂ P1
.

Defining
Y = P2/P1,

eq. (13.2) becomes

Y = γ̂M2
1

(
1− N

′

χ

)
+ 1. (13.6)

Defining

D ≡ 1

2
ρ1u

3
1,

eq. (13.3) can be rewritten as a quadratic in χ , given by

χ2

(
1+ 2

(γ̂ − 1)M2
1

− �E
D

)
− 2χγ̂

(γ̂ − 1)

(
1+ 1

M2
1

)
+

(
γ̂ + 1

γ̂ − 1

)
N ′ = 0.

(13.7)
For a lossless adiabatic shock wave, �E = 0 and �m = 0, N ′ = 1, and
eq. (13.7) reduces to a quadratic with solution

χ = γ̂ + 1

γ̂ − 1+ 2/M2
1

. (13.8)

WhenM1 � 1, χ → 4 for a gas with γ̂ = 5/3. It follows from eq. (13.4)
that

u1 = χu

χ − 1
, u2 = u

χ − 1
,

so u1→ 4u/3 and u2 → u/3 in the limitM� 1.
Again in the limit of a large-Mach-number shock, M1 � 1, but now

allowing for particle or energy losses, eq. (13.7) can be solved for χ , giving

χ = [γ̂ /(γ̂ − 1)]±
√

[γ̂ /(γ̂ − 1)]2 − (1−�E/D)N ′[(γ̂ + 1)/(γ̂ − 1)]

1−�E/D .

(13.9)
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The positive root is physically interesting, as the negative root gives χ < 1.
If the particle flux lost is small compared to the influx, �m � �0 = ρ1u1,
and eq. (13.9) gives, with γ̂ = 5/3,

χ = 5/2+√25/4− 4(1−�E/D)
1−�E/D �E/D�1

→ 4+ 16�E
3D

+O
(
�2
E

D2

)
.

(13.10)
When the energy lost is small, that is, for a nonradiative shock,�E � 1 and
χ → 4 for a large-Mach-number shock in a γ̂ = 5/3 gas.

For a relativistic gas, γ̂ = 4/3. The compression ratio of an adiabatic
shock in a relativistic shock can be as large as χ = 7. The inclusion of
accelerated particle energy in the hydrodynamic description of the gas
changes the adiabatic index and the acceleration efficiency, as described in
section 13.3.4.

13.2 CONVECTION-DIFFUSION EQUATION

The density of particles differential in momentum p is n = n(p, 	x), with
units dN/dV dp. The convection-diffusion equation describing n is

∂n

∂t
+ 	∇ · (	un− κ · 	∇n)− 1

3
( 	∇ · 	u) ∂(pn)

∂p
= 0, (13.11)

where κ is the diffusion tensor. We sketch the derivation of this result,
assuming the flow speed |	u| � particle speed |	v|.

The invariant phase space density for nonrelativistic particles with
velocity 	v is

f (	v) = dN

dV =
dN

dV d3	v (13.12)

(section 2.4). The shock frame is unprimed, and the frames with isotropic
particle distributions are primed (see figure 13.1). For strong nonrelativistic
shocks, the upstream flow in the shock frame is approaching with speed
u− = 4βc/3, and the downstream flow is receding with speed u+ = βc/3,
so that u = u− − u+ = βc. The velocity discontinuity acts as a source of
free energy to be tapped by test particles.

In the nonrelativistic shock limit, particle velocities in the shock frame
and frame K ′ in which the particle distribution is isotropic are related by
	v = 	v′ + 	u, so that

f (	v) = f ′(	v′) = f ′(|	v − 	u|) ∼= f ′(v)− uµ∂f
′(v)
∂v

. (13.13)
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Here θ = arccosµ is the angle of the particle velocity with respect to the
direction of the flow, and the final expression uses a Taylor expansion in
u/v.1

Assuming isotropy of the particle distributions in the upstream and down-
stream flows, the differential particle density satisfies the particle conserva-
tion equation

∂n

∂t
+ 	∇ · 	Sc + ∂

∂p
Sp = 0, (13.14)

where 	Sc is the physical flux of particles, and Sp is the momentum-space
flux. The convective flux across a planar surface is

dN

dAdt
=

∮
d		v

∮
dv v2f (	v)v cos θ, (13.15)

and the integration is over angles in velocity space.
The differential flux across the shock defined by the direction 	u is

therefore

	Scnv = dN

dAdt dp
= 2π

m

∫ 1

−1
dµv3µ

(
f ′(v)− uµ∂f

′

∂v

)
= −4π

3m
v3	u∂f

′(v)
∂v

.

(13.16)

From the definition of the invariant phase space density, eq. (13.12),

n′(v′) ≡ dN

dV dv
=

∮
d		v′v′2f ′(	v′) = 4πv′2f ′(	v′). (13.17)

For the stationary frame,

n(v) =
∮
d		v f (	v)v2 = 2π

∫ 1

−1
dµ

(
f ′(v)− uµ∂f

′

v

)
= 4πv2f ′(v),

(13.18)
so f ′(v) = n(v)/4πv2. Substitution into eq. (13.16) gives

	Scnv = − 1

3m
v3	u ∂

∂v

(
n(v)

v2

)
= −	u

3
p3 ∂

∂p

(
n

p2

)
= 	u

(
n− 1

3

∂(pn)

∂p

)
,

(13.19)

rewriting the expression in terms of momentum p = mv.
The diffusive flux 	Sdif = −κ · 	∇n is proportional to the gradient of the

particle density, so the total flux in physical space from combined convective
and diffusive processes is

	Scnv+dif = −κ · 	∇n+
(
n− 1

3

∂(pn)

∂p

)
	u. (13.20)

1The Compton-Getting anisotropy�I(µ)/〈I 〉 = (γCR+2)βµ of the cosmic-ray intensity
follows from this expression, where γCR (∼= 2.75 from ∼10 GeV–100 TeV) is the number
index of the cosmic-ray spectrum [391]; see eq. (8.44).
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The flux in momentum space can be obtained by recognizing that parti-
cles increase their energy in response to work being performed by pressure
gradients. The pressure P = pvn/3, so that the force per unit volume is
−	∇P = − v3 	∇(pn). The energy dissipation rate is dE/dt = −	F · 	u, and the
flux in momentum space is

Sp = ∂p

∂t
= 1

v

∂E
∂t
= 1

3
	u · 	∇(pn), (13.21)

which, combined with eq. (13.20), gives eq. (13.11).

13.3 NONRELATIVISTIC SHOCK ACCELERATION

In the previous section, we freely moved between velocity and momentum
representations for particles with speed much in excess of the shock speed.
From the Lorentz transformation equation for the parallel component of mo-
mentum, eq. (2.13),

β ′parγ
′µ′ = p′µ′ = �γ (βparµ−β) = �pµ−Pγ

βpar→1
→ γ (�µ−P).

(13.22)

The transformation at nonrelativistic speeds was 	v = 	v′+	u or, in momentum
representation for the component along the direction of 	u,

pµ = p′µ′ + P,
which has the same form as eq. (13.22) and the same appearance as
eq. (13.13) in velocity. Because momentum is the space component of a
four-vector, which reduces to velocity in the nonrelativistic limit, the mo-
mentum representation is a more convenient description of the particle dis-
tribution function across a shock.

In this section, we derive the momentum spectral index of particles from
the convection-diffusion equation. Absence of a natural scale in momentum
for an infinite planar geometry suggests that power-law spectra are solutions
to the particle distribution function formed by a shock discontinuity [403].

13.3.1 Spectral Index from Convection-Diffusion Equation

In one spatial dimension, eq. (13.11) takes the form

∂n

∂t
+ ∂(un)

∂x
− ∂

∂x

(
κ
∂n

∂x

)
= 1

3

(
∂u

∂x

)
∂(pn)

∂p
. (13.23)
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We look for steady solutions. Integration of eq. (13.23) over x from x →
−∞ to x = x+ > 0 gives

u+n+ − u−n− − κ+ ∂n
∂x

∣∣∣∣
x+
+ κ− ∂n

∂x

∣∣∣∣
x→−∞

= u

3

∂(pn)

∂p

∣∣∣∣
x∼=x+

. (13.24)

The intermediate terms vanish, leaving

∂(pn+)
∂p

= 3(u+n+ − u−n−)
u

. (13.25)

With u = u− − u+ and χ = u−/u+, eq. (13.25) can be rearranged to give

∂n+
∂ lnp

= −Atpn+ + 3χ

χ − 1
n−, (13.26)

where

Atp ≡ 2+ χ
χ − 1

= u− + 2u+
u− − u+ (13.27)

is the test-particle number index.
Equation (13.26) can be solved by substituting n+ = exp(−Atp lnp)g(p),

reducing this equation to

∂g(p)

∂ lnp
= 3χ

χ − 1
exp(−Atp lnp)n−, (13.28)

with solution

g(p) = 3χ

χ − 1

∫ p

0
dp′p′−(1+Atp)n−(p′), (13.29)

so that

n+(p) = 3u−
u
p−Atp

∫ p

0
dp′ n−(p′)p′(Atp−1). (13.30)

Far upstream, a δ-function injection momentum spectrum of particles,
n−(p′) ∝ δ(p′ − p̄′), is transformed into a power law

n+(p)∝p−Atp

with index Atp given by eq. (13.27).
The function g(p) represents the number of injected particles, so that at

momenta larger than the injection momenta,

n+ = n+(p) = g(p)× p−Atp ∝ p−Atp .

For strong nonrelativistic shocks, χ → 4 (section 13.1) and Atp→ 2. The
shock provides a mechanism to distribute energy over a large range.
Practical limits from available time, system size, and the duration of the
Fermi process itself limit the particle energy to a calculable maximum.
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13.3.2 Spectral Index from Probability Arguments

The average increase in momentum for a particle making a complete cycle in
first-order Fermi acceleration at a nonrelativistic shock is, from eq. (12.12),
given by (

�p

p

)
F1

∼= 4

3
β, (13.31)

where u = βc = u− − u+. The average particle momentum after k cycles
is, when β � 1,

pk = p0

k∏
i=1

(
1+ 4

3
β

)
∼= p0

(
1+ 4βk

3

)
∼= p0 exp

(
4

3
βk

)
,

where p0 is the injection momentum, so k = (3/4β) ln(p/p0). The proba-
bility per cycle of particle escape downstream from the shock is given by the
factor 4u+/c = 4β+, as Bell [393] showed. Taking this result at face value
for the moment, the change in the integral number of particles per cycle is
therefore

dN

dk
= −4β+N,

so that

N = N0 exp

[
−3β+

β
ln

(
p

p0

)]
= N0

(
p

p0

)−3β+/β
. (13.32)

Because N ∼ pN(p) is an integral number of particles,

N(p) ∝
(
p

p0

)−1−(3β+/β)
∝ p−(χ+2)/(χ−1) ∝ p−Atp . (13.33)

The factor 4u+/c for particle escape downstream is obtained by recogniz-
ing that the fraction of particles that escape downstream is the ratio of the
convective flux downstream to the flux entering from upstream. The convec-
tive flux downstream is n0u+. The flux entering from upstream is

�x = dN

dAdt

∣∣∣∣
x

=
∫ 2π

0
dφ

∫ 1

0
dµ

∫ ∞
0

dv µv3f (	v) = π
∫ ∞

0
dv v3f (v).

(13.34)
Because the total particle density n0 = 4π

∫∞
0 dv v2f (v),

d�x

dv
= πv3f (v) = 1

4
v
dn0

dv
.

For relativistic particles, �x = cn0/4, and the escape probability Pesc per
cycle is Pesc = 4n0u+/n0c = 4β+ [399,404]. The return probability,
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that is, the probability that a particle completes a complete cycle without
being convected downstream where it no longer samples the shock, is

Pret = 1− Pesc = 1− 4
u+
c
= 1− 4β+ =

(
v − u+
v + u+

)2

(13.35)

for relativistic particles accelerated at nonrelativistic shocks [405].

13.3.3 Finite Shell Width

As illustrated in the inset to figure 13.1, the spatial extent of the down-
stream reverse and forward shocked fluids limits particle acceleration in the
test particle limit. The steady-state, time-independent diffusion-convection
equation, eq. (13.23), is

∂

∂x

(
un− κ ∂n

∂x

)
= 1

3

(
∂u

∂x

)
∂(pn)

∂p
∼= 0, (13.36)

where the last relation is true provided we evaluate the expression away
from the shock discontinuity where the velocity gradient, ∂u/∂x, vanishes.

Following the treatment of Ellison [402], the solution to eq. (13.36) is, by
inspection, given by

n1(x)= c1 exp

(
u1x

κ1

)
+ c2, x ≤ 0, (13.37)

n2(x)= c3 exp

(
u1x

κ1

)
+ c4, x > 0, (13.38)

with boundary conditions

n1(x →−∞) = n−, n2(x = a) = 0.

The relations

c1= c3(1− B2)− n−,
c2= n−,
c4=−B2c3 (13.39)

follow, where

B1,2 ≡ exp

(
au1,2

κ1,2

)
. (13.40)

Continuity of particle flux reads

�x ≡
(
−κ ∂n

∂x
+ 2

3
un− pu

3

∂n

∂p

) ∣∣∣∣
x

= const. (13.41)
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The upstream particle flux at the shock is

�x− =
2

3
u1n− − u1

3

[
c3(1− B2)−n−

]− pu1

3

∂c3

∂p
(1− B2). (13.42)

The downstream particle flux at the shock is

�x+ = −
u2c3

3
(1+ 2B2)− pu2

3

∂c3

∂p
(1− B2). (13.43)

Equating the two particle fluxes yields the equation

p
∂c3

∂p
+ A′c3 = D′n−, (13.44)

where

D′ = 3u1

(1− B2)u

and

A′ = u1 + 2u2

u
− 3u2

(1− B2)u
= Atp + 3

(B2 − 1)(χ − 1)
. (13.45)

The solution to eq. (13.44) can be written

c3 = D′p−A′
∫ p

0
dp′ p′(A

′−1)n−, (13.46)

as can be verified by direct substitution. The solution for the downstream
particle distribution is

n2(p, x) = 3u1

u(B2 − 1)

[
B2 − exp

(
u2x

κ2

)]
p−A

′
∫ p

0
dp′ n−(p′)p′(A

′−1).

(13.47)
Noting that [B2 − exp

(
u2x/κ2

)]
B2 − 1

= 1− exp
[
u2(x − a)/κ2

]
1− exp(−u2a/κ2)

,

we see that in the regime u2a/κ2 � 1

n2(p, x) ∼= 3u1n−
u

p−A
′
∫ p

0
dp′ n−(p′)p′(A

′−1). (13.48)

For a δ-function injection of particles upstream, n−(p′) = n0δ(p
′ − p′0),

and

n2(p, x � a) ∼= 3u1n−
u

p−A
′
H(p − p0) ∝ p−A′ . (13.49)
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In the regime u2a/κ2 � 1,

n2(p, x)→ 3u1n−
u

(
1− x

a

)
p−A

′
H(p − p0) ∝ p−A′ . (13.50)

From eq. (13.45), the modified spectral index

A′ = χ + 2

χ − 1
+ 3

[exp(u2a/κ2)− 1](χ − 1) u2a/κ2�1
→ Atp + 3κ2

au2

(13.51)

resulting from diffusion in a finite medium is seen to introduce a spectral
steepening compared to the test-particle spectral index Atp, eq. (13.27), ob-
tained for nonrelativistic shock acceleration of a test particle in an infinite
medium. Formation of a hard spectrum with A′ ∼= 2 requires the down-
stream shocked fluid width a � κ2/u2 andM1 � 1 so that χ − 1 � 1.

When κ = κ(p), interesting behaviors are obtained for the accelerated
particle distribution function. Models for the diffusion coefficient based on
pitch-angle scattering with MHD turbulence are derived in the next chap-
ter. From particle kinetic theory, the isotropic diffusion coefficient can be
written as

κ = 1

3
λv = κ0βpar(R/R0)

αR,

where λ is the mean free path, v is the particle speed, and R = pc/|Ze| is
the rigidity. The introduction of an energy-dependent diffusion coefficient
softens the spectrum at energies above a characteristic energy defined by
κ(γ2) ∼= au2 when αR > 0.

13.3.4 Cosmic-Ray Pressure and Shock Width

The shock structure has been naively treated as a step-function discontinuity,
in which case every test particle samples the same compression ratio χ . With
particle pressure in the equation for momentum conservation, eq. (13.2) can
be written as

ρ0u
2
0 + P0 = ρ(x)u2(x)+ Pg(x)+ PCR(x), (13.52)

where far-upstream quantities have subscript “0,” Pg(x) is the gas pressure,
and

PCR(x) = 1

3

∫ pmax

pinj

dp̃ 4πp̃3 v(p̃)f (x, p̃) (13.53)

is the cosmic-ray pressure. Because this pressure is spread out over differ-
ent length scales, the modified shock structure hardens the accelerated rela-
tivistic particle distribution, because increasingly energetic particles sample
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larger ranges of the upstream shock region, with consequently a larger range
of speeds and therefore compression ratios. The shock structure consists of
a precursor shock upstream and a subshock with a sharp transition [405].
Nonrelativistic particles primarily sample the subshock, and relativistic par-
ticles sample the range of compression ratios in the precursor.

Rewriting the one-dimensional convection-diffusion equation, eq. (13.23),
in terms of the momentum phase-space distribution function

f (p, x) = n(p, x)

4πp2
(13.54)

and including a source term q(p, x) gives

∂f

∂t
= ∂

∂x

(
κ
∂f

∂x

)
− u∂f

∂x
+ 1

3

∂u

∂x

(
p
∂f

∂x

)
+ q(p, x). (13.55)

If we assume a solution of the form f (p) = Kp−� , then n(p) = 4πKp2−� ,
and

n (>p) = 4π
∫ ∞
p

dp̃p̃2f (p̃) = pn(p)

� − 3
. (13.56)

Hence

� ≡ −∂f (p)
∂p
= 3− ∂ ln n (>p)

∂ lnp
. (13.57)

From eq. (13.56),

n (>p +�p) = 4π
∫ ∞
p+�p

dp̃p̃2f (p̃) = Pret n (>p), (13.58)

where �p = 4βp/3 is the momentum change per cycle, and the integral
particle density is reduced over this momentum difference by the return
probability Pret = 1− 4β+, eq. (13.35). Expanding the integral spectrum

n (>p +�p) ∼= n (>p)+�p ∂n (>p)
∂p

gives the result

∂ ln n (>p)

∂ lnp
= −3β+

β
. (13.59)

With eq. (13.57), we have

� = 3+ 3β+
β
= 3β−
β− − β+ = 2+ Atp. (13.60)
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Generalizing eq. (13.60) and letting u− = β−c → up, β+c = u2,
Berezhko [406] shows

�p = 3up
up − u2

+ d ln(up − u2)

d lnp
= 3up
up − u2

+ 1

(up − u2)

dup

d lnp
. (13.61)

The term up has the meaning of the average fluid velocity that a particle with
momentum p samples during diffusion. The particle distribution function
can then be written as

f (p) ∼= q

4πp3
inj

exp

(
−

∫ p

pinj

dp̃

p̃
�p̃

)
(13.62)

[407]. For relativistic particles accelerated at nonrelativistic shocks,

�p = 3.5+ 3.5− 0.5χsub

2χ − χsub − 1 χ�χsub�1
→ 3.5, (13.63)

where χsub is the compression ratio of the subshock. Nonlinear effects from
the pressure of the cosmic rays on the shock structure cause the relativistic
cosmic-ray spectrum to be as hard as−1.5, considerably harder than the−2
limit in first-order test-particle acceleration. See also Refs. [408–410].

13.3.5 Maximum Particle Energy in Nonrelativistic Shock
Acceleration

We now perform standard derivations to determine maximum energies of
particles in nonrelativistic first-order shock Fermi acceleration [384,390,
411,412].

Consider relativistic nonthermal particles with v = βparc ≈ c, and Lorentz
factor γ � 1. As usual, u = β(x)c = βc is the speed of the relativistic flow
moving with Lorentz factor � in the stationary frame, and the blast-wave
evolution is described by its bulk momentum P = β�. In the comoving
primed frame stationary with respect to the shock, the upstream (−) flow
approaches with speed u− = β−c = 4βc/3 and the downstream (+) flow
recedes with speed u+ = β+c = βc/3 and u = u− − u+ = βc.

Momentum Gain Rate for Quasi-Parallel Shocks

Let p =
√
γ 2 − 1 represent the dimensionless momentum of a particle with

Lorentz factor γ ′ in the comoving shock frame. Then

ṗFI
∼= �p

tcyc
, (13.64)

where the cycle time tcyc is given by the diffusive properties of the upstream
and downstream regions. The average change in particle momentum over a
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complete cycle for relativistic test particles with p � 1 is �p = 4βp/3
when β � 1 (eq. [12.12]), provided that there are scatterers in the upstream
and downstream flow to isotropize the particles. In a one-dimensional flow,

tcyc = 4

v

(
κ−
u−
+ κ+
u+

)
= 4

vu−
(κ− + χκ+) (13.65)

[411], where χ = u−/u+ = ρ+/ρ− is the compression ratio, ρ is the mass
density, and the spatial diffusion coefficient

κ± = 1

3
λ±v = 1

3
η±rL±v = 1

3
η±roL±pv.

Here we write diffusion coefficients in terms of the parameters η± that give
the particle mean free paths scaled to the values implied by the Bohm diffu-
sion limit evaluated in the local magnetic field.

In the Bohm diffusion approximation, the diffusion mean-free path is set
equal to the Larmor radius, so η± = 1. Thus the Bohm approximation is

κB± = 1

3
rL±v,

where the Larmor radius

rL± = roL±p =
mc2

QB±
p. (13.66)

The Bohm approximation is a limit if we assume that regions can only be
more diffusive than the Bohm approximation, i.e., η± > 1, which limits
maximum acceleration rate.

In q-‖ shocks, B−/B+ ∼= 1. Hence

ṗ‖ ∼= u−β
roL−(η− + χ B−B+ η+)
∼= u2

croL−

(
χ

χ − 1

)
1

η− + χη+ �
u2

croL−

(
χ

χ2 − 1

)
≡ ṗ‖,max. (13.67)

The last relation defines the Bohm-diffusion-limit maximum acceleration
rate for q-‖ shocks.

For q-‖ shocks, particle acceleration through the shock Fermi mechanism
proceeds more rapidly in less diffusive media. Assuming there exist scatter-
ing centers to isotropize the particles over a distance λ = ηrL, κ‖ ∝ η for
q-‖ shocks. The rate ṗ‖ ∝ κ−1

‖ ∝ η−1 is thus largest when η → 1. The
maximum rate at which relativistic particles gain energy in a nonrelativistic
quasi-parallel shock is

γ̇‖,max ≈ u2

croL−

(
χ

χ2 − 1

)
. (13.68)
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Momentum Gain Rate for Quasi-Perpendicular Shocks

In q-⊥ shocks, the situation is somewhat different. A scattering event shifts
a particle in the x̂ direction by a mean distance rL; therefore λ → rL. The
effective particle drift speed is reduced by a factor η−1 because particles
are confined within the gyroradius scale size rL. Hence κ⊥ ∼= rLv/3η, or
κ⊥ ∼= κ‖/(1+ η2) [413], implying

κ⊥± = η±
1+ η2±

rL±v
3
, roL+ =

B−
B+
roL− =

1

χ
roL−. (13.69)

Equations (13.64), (13.65), and (13.69) together give

ṗ⊥ ∼= u2

croL−

(
χ

χ − 1

)(
η−

1+ η2−
+ η+

1+ η2+

)−1

� u2

croL−

χη

χ2 − 1
≡ ṗ⊥,max.

(13.70)
In this expression, η = min(η−, η+).

For this analysis to apply, two conditions must hold: first, the particle
distribution must be isotropic. To maintain an isotropic particle distribution
requires

η � v/u ∼ 1/β (13.71)

for relativistic particles [413]. Second, if shock drift takes particles to
regions of smaller obliquenesses, then the acceleration rate is reduced
[413,414]. Particles will drift along a q-⊥ shock to scatter in a region of
smaller obliqueness in a homogeneous medium with a directed magnetic
field when

ηrL−
x
� θ1/2. (13.72)

Let Ra be the ratio of the energy gain rate at a shock with obliqueness
cos−1 µ to that for the energy-gain rate in the q-‖ case. Jokipii [413] finds

Ra(µ) = 1+ χ [µ2 + χ2(1− µ2)]−1/2

µ2 + 1− µ2

1+ η2 + χ [µ2 + χ2(1− µ2)/(1+ η2)]
[µ2 + χ2(1− µ2)]3/2

→
{

1 for µ = 1 (q− ‖),
1+ η2 for µ = 0 (q− ⊥). (13.73)

The relative energy-gain rates scale proportionally to η2, and the energy and
momentum gain rate ṗ⊥ for particle acceleration at q-⊥ shocks is enhanced
by a factor proportional to η with respect to the Bohm diffusion limit [414].
Eqs. (13.67) and (13.70) span the range of particle acceleration rates in
diffusive first-order nonrelativistic shock acceleration.
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When µ� 1, that is, for nearly perpendicular shocks,

Ra
µ�1
→ 1+ η2

1+ 1
2µ

2(1+ η2)(1+ χ−2)
. (13.74)

The ratio of the q-⊥ to q-‖ acceleration rates declines by a factor of 2 when
Ra(η1/2) = 1

2Ra(0) = (1+η2)/2, implying η1/2 =
√

2/(1+ η2)(1+χ−2) ∼=√
2/(1+ η2), where the last relation applies for strong shocks. Thus

η1/2 = cos(π/2 − θ1/2) ∼= θ1/2 � 21/2/η, when η � 1. From eq. (13.72),
ηrL−/x � 21/2/η so that η �

√
x/rL. With the results of eq. (13.71),

η− � min[β−1,
√
x/rL−].

Distance Differentials and Energy Gains

To consider the total energy gain by a particle, it is necessary to relate dis-
tance, time, and shock location. Let �sh be the Lorentz factor of the shock
and (as ususal) � the Lorentz factor of the shocked fluid, and consider the
relativistic shock jump condition for a strong shock, eq. (11.71) [302,415].
For a nonrelativistic shock in a nonrelativistic monotonic gas with γ̂ = 5/3,
βsh = β− = 4β/3 and β+ = β/3, as already noted. For highly relativistic
shocks with γ̂ = 4/3, �s = �− =

√
2� and �+ =

√
9/8, implying that the

downstream speed cβ+ = c/3.
A nonrelativistic shock advances a differential distance dx=βsh�shcdt

′→
βshcdt

′ = u−dt ′ ∼= u−dt during the differential time element dt measured
in the stationary frame of the external medium in which the explosion source
is assumed to be at rest. From the expression for the compression ratio, eqs.
(13.4) and (13.8), for a nonrelativistic shock,

dx = χ

χ − 1
udt, (13.75)

so that

dp

dx

∣∣∣∣‖ =
β

roL
(η− + χη+)−1 � β

roL
(13.76)

and

dp

dx

∣∣∣∣
⊥
= β

roL

(
η−

1+ η2−
+ η+

1+ η2+

)−1

� ηβ

roL
, provided η � max

(
β−1,

√
x

rL

)
.

(13.77)

The condition
√
x/rL < β−1 ⇒ E > β2xQB, and this condition gener-

ally holds when evaluating maximum particle energies. The condition η �√
x/rL ⇒ η2 � (ηβ)−1 or η � β−1/3, which is obtained by making the ap-

proximation rL � roL|dp/dx|⊥x � ηβx. Because min(β−1, β−1/3) = β−1/3
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for all β < 1, we find |dp/dx|⊥x � β2/3/roL. Thus the maximum energy
gain per unit distance for quasi-parallel and quasi-perpendicular nonrela-
tivistic shocks is

dE

dx

∣∣∣∣‖,max
� βQB− (13.78)

and

dE

dx

∣∣∣∣⊥,max
� β2/3QB−. (13.79)

13.3.6 Maximum Particle Energy in Nonrelativistic Shocks

We assume that the upstream medium surrounding the explosion entrains a
magnetic field with mean intensity B− = B0 = 10−6BµG G. Importantly,
we assume that the accelerated diffusing cosmic rays do not affect this
upstream magnetic field value. For a homogeneous surrounding medium,
blast-wave evolution is assumed to follow the behavior of the coasting and
adiabatic Sedov solutions. The solution fails at xrad when the shocked ma-
terial becomes highly radiative (see later). The maximum particle energy at
blast-wave location x1 = y1xd possible for a particle accelerated from en-
ergy E‖,max(x0) at location x0 = y0xd by a q-‖ nonrelativistic shock is, after
integrating eq. (13.78), given by

E‖,max(x1) ∼= E‖,max(x0)+ β0QB0I‖(y0, y1), (13.80)

where

I‖(y0, y1) ≡
∫ y1

y0

dy√
1+ y3

∼=



y1 − y0 for y0 < y1 � 1,

3− y0 − 2y−1/2
1 for y0 � 1 � y1,

2(y−1/2
0 − y−1/2

1 ) for 1 � y1 < y2.

(13.81)

Thus E‖,max � 3 × β0QB0xd , noting that
∫∞

0 dy/
√

1+ y3 ∼= 2.8. Conse-
quently,

E‖,max � 9500Zβ0

( E�
µ0n0

)1/3

BµG ergs � 6×1015Zβ0

( E�
µ0n0

)1/3

BµG eV.

(13.82)
The maximum particle energy E⊥,max(x1) at x1 possible for a particle

accelerated from energy E⊥,max(x0) at location x0 by a q-⊥ nonrelativistic
shock is, integrating eq. (13.79), given by

E⊥,max(x1) ∼= E⊥,max(x0)+ β2/3
0 QB0I⊥(y0, y1), (13.83)
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where

I⊥(y0, y1) ≡
∫ y1

y0

dy

(1+ y3)1/3
∼=



y1 − y0 for y0 < y1 � 1,

1− y0 + ln y1 for y0 � 1 � y1,

ln(y1/y2) for 1 � y1 < y2.

(13.84)

ThusE⊥,max � [3+ln(x1/10xd)]β
2/3
0 QB0xd , noting that

∫ y1
0 dy/

√
1+y3 ∼=

3.15 + ln(y1/10). The distance where radiative losses start to dominate is
at xrad

∼= 20(Eke/1051 ergs)0.29n−0.41
0 pc [416,417], where Eke is the kinetic

energy of the explosion. In the most extreme case of transrelativistic flows
with large kinetic energy, y1 ∼ 102, so that the maximum value taken by I⊥
is ≈5. Consequently,

E⊥,max� 1.6× 104Zβ
2/3
0

( E�
µ0n0

)1/3

BµG ergs

� 1016Zβ
2/3
0

( E�
µ0n0

)1/3

BµG eV. (13.85)

13.3.7 Amplification of Upstream Medium Magnetic Field

A crucial assumption made in the previous derivation is that the upstream
magnetic field is unaffected by the approaching shock wave and the accel-
erated particle distribution, and so is given by an interstellar value of order
a few µG, so BµG ∼ 1. Cosmic rays diffuse upstream, amplify the mag-
netic field, and excite Alfvénic and other MHD turbulence through particle
streaming instabilities [418,419]. The enhanced magnetic-field energy eff-
ectively increases the density of scattering centers and decreases the scat-
tering mean free path to make the medium less diffusive (η ∼ 1). This
increases the energy-gain rate (eqs. [13.67] and [13.70]) and therefore the
maximum cosmic-ray energy [411].

Alfvén waves are hydromagnetic waves supported by magnetic field ten-
sion against density perturbations of the thermal ions with mean mass den-
sity ρ0, and travel with speed vA = B/

√
4πρ0 (see section 14.3), so

βA = vA

c
= B√

4πµ0n0mpc2
∼= 7.3× 10−6 BµG√

µ0n0
. (13.86)

The energy density in Alfvénic turbulence is

UA
∼=

(
�B

B

)2

UB ≡
(
�B

B

)2
B2

8π
=

(
�B

B

)2 1

2
ρ0v

2
A, (13.87)

where (�B/B)2 is the ratio of turbulent MHD and large-scale magnetic
field energy densities.
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Energy is dissipated into Alfvénic turbulence by PdV work proportional
to the gradient ∂PCR(x)/∂x of the cosmic-ray pressure, eq. (13.53), on a
characteristic timescale proportional to �x/vA, where �x is the distance
over which the cosmic-ray pressure changes significantly. Thus the rate at
which Alfvénic turbulence energy density is generated is given by

dUA

dt
= ∂UA

∂t
+ vsh

∂UA

∂x
= vA

∂PCR(x)

∂x
. (13.88)

In steady state, vsh∂UA/∂x = vA∂PCR(x)/∂x. Integrating over x gives
UA ≈ vA/vshPCR, so that with eq. (13.87)

(
�B

B

)2

≈ ρ0vshvA

2UB

(
PCR

1
2ρ0v

2
sh

)
= βsh

βA

(
PCR

1
2ρ0v

2
sh

)
. (13.89)

The quantity in parentheses represents the efficiency for the conversion of
the directed kinetic energy into cosmic rays, and may approach unity [420].
A value of 0.1 might be more realistic, otherwise if it were larger the cosmic-
ray energy would be lost to MHD turbulence.

For a shock speed vsh = βshc ≡ 10−2β−2c,

βsh

βA

∼= 1400
β−2
√
µ0n0

BµG
,

and the energy density in MHD turbulence could potentially be increased
orders of magnitude by cosmic-ray streaming. The perturbed magnetic field,
from eq. (13.89),

�B (µG) ∼= 12

[
BµGβ−2

√
µ0n0

(
PCR

1
2ρ0v

2
sh

) /
0.1

]1/2

. (13.90)

For ISM magnetic fields BµG � 10, the amplified magnetic field can reach
values as large as a few hundred µG in the optimistic case of a mildly rel-
ativistic shock, β−1 ∼ 10, that converts streaming cosmic-ray energy into
Alfvénic turbulence with high efficiency.

Once �B/B exceeds unity, the plasma becomes fully turbulent and the
problem becomes nonlinear, so the applicability of the above estimate is
uncertain. Bell and Lucek numerically [389] and analytically [390] treat
amplification of the upstream magnetic field by streaming cosmic rays. They
find that the streaming energy is efficiently transferred to the magnetic field
in accord with eq. (13.90).
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Substitution of eq. (13.90) into eq. (13.85) gives the maximum energy
possible in nonrelativistic shock acceleration,

ENR,max � 2× 1015Z
√
BµG β

5/3
−2

(
E1/3
�

(µ0n0)1/12
eV

) √√√√
(
PCR

1
2ρ0v

2
sh

) /
0.1.

(13.91)

This estimate gives acceleration of protons to maximum energies near the
knee of the cosmic-ray spectrum at ∼ 3 PeV for Type II SNe, the most
common type. For mildly relativistic Type Ib/c SNe, efficient conversion of
streaming energy into Alfvén waves, BµG ∼ 10, and diffusion in the Bohm
limit with the amplified magnetic field, the maximum energy in nonrelativis-
tic shock acceleration cannot be substantially increased above ≈1017Z eV,
unless the upstream field is substantially larger [384]. One possibility is that
the explosion takes place in the presupernova stellar wind [421], optimisti-
cally reaching maximum energies ≈ 1017Z eV for the winds of a massive
OB or Wolf-Rayet star.

In spite of not reaching ultrahigh energies, first-order Fermi acceleration
at supernova shocks is the leading mechanism to explain the origin of the
Galactic cosmic rays. Galactic supernovae have adequate energy to power
Galactic cosmic rays, and the mechanism efficiently produces hard power-
law cosmic-ray spectra independent of specific details about the diffusion
process or magnetic field geometry.

13.4 RELATIVISTIC SHOCK ACCELERATION

The success of nonrelativistic diffusive shock acceleration, and the evidence
for relativistic jetted outflows, has spurred the effort to extend the theory
to relativistic shocks. The underlying assumption in nonrelativistic theory
that the accelerated particle distribution is isotropized by scattering in the
upstream and downstream fluid frames is violated in relativistic shock ac-
celeration due to anisotropy induced by relativistic beaming.

In the frame of strong nonrelativistic shocks, the upstream flow ap-
proaches at speed 4u/3 and the downstream flow recedes at the speed u/3.
In the frame of highly relativistic, � � 1 shocks, the shock Lorentz factor

�sh =
√

2�, (13.92)

from eq. (11.71), so that the Lorentz factor of the receding downstream
fluid is

�ds = 3

2
√

2
and βds = 1√

3
. (13.93)
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13.4.1 Fokker-Planck Equation for a Stationary, Parallel Shock

The simplest geometry of relativistic shock acceleration is a stationary
shock with a parallel magnetic field. The transport equation for this case,
and for the case of oblique shocks, was derived in the papers by Kirk and
Schneider [422] and Kirk and Heavens [423], respectively.

The particle distribution function f (µ, p, t) is used to describe anisotropic
particle distributions in the simplest case of a one-dimensional, gyrotropic
flow, where the phase of the particles in the Larmor orbits are random. Parti-
cles diffuse by pitch-angle scattering according to the Fokker-Planck trans-
port equation

df

dt
= ∂f

∂t
+ 	v · 	�f = ∂

∂µ

(
Dµµ

∂f

∂µ

)
. (13.94)

On other timescales, the particles diffuse in momentum space, for example,
due to energy losses.

The diffusion coefficients are given in terms of the spectrum of plasma
waves in the plasma, which in turn depend on the particle distribution func-
tion, so that the treatment as expressed by simplification of eq. (13.94) is
quasi-linear. For isotropic turbulence making isotropic pitch-angle
scattering,

Dµµ ∼ (�µ)2

tscat
∼ (�ψ)2

tscat

(
�µ

�ψ

)2

∼ (1− µ2)
(�ψ)2

tscat
∝ (1− µ2),

where tscat is the characteristic timescale for isotropization through pitch-
angle scattering. The last expression refers to isotropic turbulence and an
isotropic pitch-angle scattering coefficient (�ψ independent of direction).

Thus we write eq. (13.94) as

∂f

∂t
+ vµ∂f

∂x
= ∂

∂µ
Dµµ(p)(1− µ2)

∂f

∂µ
, (13.95)

and the newly defined diffusion coefficient Dµµ(p) is independent of µ in
quasi-linear theory for certain properties of the waves. Transforming to the
shock frame with variables xsh and tsh and considering the steady situation
∂f/∂t = 0 gives the transport equation [422]

G(β + µ)∂f (µ, p, xsh)

∂xsh
= ∂

∂µ
(1− µ2)

∂f (µ, p, xsh)

∂µ
, (13.96)

and G = [(1 − µ2)Dµµ(p)]−1. By solving the eigenvalue problem [422,
424], general solutions are obtained upstream and downstream of the shock.
The two solutions are matched at the shock to obtain the spectral index
and anisotropic distribution by taking into account a sufficient number of
eigenfunctions.



chapter13 July 17, 2009

348 CHAPTER 13

13.4.2 Spectral Index in Relativistic Shock Acceleration

The spectral index in relativistic shock acceleration has been studied
numerically [425,426] and analytically [391,424]. Values of number index
between 2.2 and 2.3 were calculated numerically, in agreement with analytic
results obtained by solution of an eigenfunction equation for the station-
ary transport equation describing the particle anisotropy [422,424]. Keshet
and Waxman [392] obtain an index � = 38/9, that is, a number index of
20/9 = 2.22.

They start with eq. (13.96) in the form

γ (β + µ)∂f (µ, p, τ)
∂τ

= ∂

∂µ
(1− µ2)

∂f (µ, p, τ)

∂µ
, (13.97)

applied to particles in the downstream or upstream frame. The variable
τ ≡ γ−1

∫ x
D2(p, x̃)dx̃ assumes the separation Dµµ = D1(µ)D2(p, x) =

(1− µ2)D(µ)D2(p, x) of the diffusion coefficient.
The boundary conditions on the particle distribution functions are

fu(µu, pu, τ = 0) = fd(µu, pu, τ = 0)

and

fu(µu, pu, τ →−∞) = 0 and fd(µu, pu, τ →∞) = f∞p−sd .
By inspection of the vanishing of the left-hand side of eq. (13.97), it is clear
that ∂j/∂µ = 0 at µ = β, where j = Dµµ(∂f/∂µ) is the diffusive flux.
Thus it makes sense to expand the particle distribution function f about the
variable µ+ β.

Doing this leads to a relation between the particle spectral index siso for
upstream and downstream fluid speeds, βuc and βdc, respectively, and the
parameters characterizing anisotropies of the particle distribution function
and diffusion coefficient at the shock front. The transport equation is ex-
panded in various powers of anisotropy parameters, considering limiting
forms of the shock front distributions. Assuming essentially isotropic turbu-
lence downstream of the shock gives

siso = (3βu − 2βuβ
2
d + β3

d)/(βu − βd). (13.98)

For highly relativistic shocks,

siso(βu→ 1, βd → 1/3) = 38

9
= 4.222 . . . , (13.99)

in good agreement with numerical simulations. See Ref. [392] for details.
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13.4.3 Maximum Particle Energies in Relativistic Shock Acceleration

It is simplest to work in the frame of the upstream medium to calculate the
maximum energy of particles accelerated by a relativistic external shock.
In the first cycle, a particle increases its energy by a factor �2 but, due to
kinematics of escape and capture, the particle increases its energy by only a
factor ≈2 in successive cycles, as shown by Gallant and Achterberg [338].
This is because a particle is captured by the advancing relativistic shock
when the particle is deflected by an angle θd ∼ 1/�s , so that the upstream
cycle time is tu ∼ (�sω⊥−)−1. Here the particle gyration frequency in the
upstream medium is ω⊥− = v/rL−, where v is the particle speed and the
particle deflection is determined by B⊥−, the transverse component of
the magnetic field in the upstream region. As a result, the nonthermal
particle distribution function at relativistic shock is highly anisotropic [422].
The cycle time is dominated by the upstream transit time [338].

Because the energy increases by a factor ∼= 2 during a single cycle, the
momentum gain rate following the first cycle in relativistic shock accelera-
tion is

ṗrel � 2p

tu
� 2cQB⊥−�s

mc2
, (13.100)

provided �s � 1. Because dx = βscdt , |dE/dx|rel � 2QB⊥−�s , and we
have

Erel(x1) � Erel(x0)+ 23/2QB⊥−�0xdI‖(y0, y1). (13.101)

If the particles are captured in the first cycle with Lorentz factor γ̄ , then the
energy from the first cycle of Fermi acceleration in the stationary frame is
≈ �2γ̄ mc2 [427]. The maximum energy that can be achieved by relativistic
first-order shock acceleration at an external shock is therefore

Erel,max� γ̄ �2(x0)mc
2 + 3× 23/2QB⊥−xd�0

�
[

8× 1013γ̄ �2
300A+ 1017ZBµG

(E��300

µ0n0

)1/3
]

eV, (13.102)

where � = 300�300. From eq. (13.102), we see that it is difficult to ac-
celerate particles to energies larger than a factor ∼ 21/3�

1/3
0 over E⊥,max,

given by eq. (13.85), unless a preexisting energetic particle distribution with
Lorentz factors γ̄ is found in the vicinity of the explosion. Higher energies
can be obtained though single-cycle acceleration than through continuous
Fermi acceleration if �0 > � � 2 × 104(ZBµG/Aγ̄ )

3/5(E�/µ0n0)
1/5, as

can be verified by comparing the two terms in eq. (13.102).
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Following the deceleration of the blast wave from relativistic speeds, little
subsequent acceleration occurs because of the size-scale limitation on non-
relativistic flows to be able to capture the diffusing particles. This condition
implies rL− < x, which means that E � 1015ZBµG[x (pc)] eV. Noting
this constraint, equations [13.82] and [13.85] provide reasonable estimates
of the largest particle energy that can be obtained through first-order Fermi
acceleration in nonrelativistic and mildly relativistic external shocks of
supernovae and black-hole jets.
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Chapter Fourteen

Second-Order Fermi Acceleration

The mean energy gain per cycle in second-order Fermi acceleration was
derived in section 12.4. Revisiting this point, let us consider a test particle
that changes energy by first entering a magnetized cloud, scattering around
until isotropized, and then leaving the cloud, as shown in figure 14.1. If γ1 is
the initial Lorentz factor of the particle, then its Lorentz factor in the cloud
is γ ′1 = �γ1(1 − ββ1µ1), where arccosµ1 is the angle between the cloud
direction of motion and the direction of the particle. For isotropic elastic
scattering, the Lorentz factor γ ′2 of the scattered particle is the same as the
initial Lorentz factor, so that γ ′2 = γ ′1. After leaving the scattering cloud,
the particle’s Lorentz factor in the stationary frame is γ2(µ

′
2) = �γ ′2(1 +

ββ ′2µ
′
2).

Averaging the particle energy, assuming isotropic scattering in the frame
of the magnetized cloud, gives

〈γ2〉 = 1

2

∫ +1

−1
dµ′2 γ2(µ

′
2) = �γ ′2 = �2γ1(1− ββ1µ1).

In the course of performing a cycle by entering the cloud, scattering around,
and isotropically exiting to the surrounding medium, the relative change of
the particle energy or Lorentz factor is

�γ

γ1
=�2(1− ββ1µ1)− 1

= 1− ββ1µ1

1− β2
− 1

β�1, β1→1
→ − ββ1µ1 + β2 +O(β3).

Averaging the mean energy loss over the rate factor gives

〈
�γ

γ1

〉
=
∫ 1
−1 dµ1(1− βµ1)(�γ/γ1)∫ 1

−1 dµ1(1− βµ1)
=
(

1+ β1

3

)
β2�2

β1→1
→ 4β2�2

3 β�1
→ 4β2

3
∝ β2. (14.1)
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K�

β

arccos µ2�

arccos µ

Figure 14.1 Second-order Fermi acceleration due to elastic scattering with magne-
tized clouds moving in random directions.

This process is referred to as “second-order” acceleration because the rel-
ative energy change in a cycle is proportional to the square of the speed
of the magnetized clouds. Since Fermi’s time, the magnetized clouds have
been replaced with MHD waves that cause diffusion in direction and energy
due to pitch-angle scattering and second-order energy changes as the parti-
cles are accelerated and decelerated by gyroresonant interactions with MHD
plasma waves.

A presentation of second-order Fermi theory is given here that is based
on gyroresonant scattering of particles by plasma waves. The resonance
condition that couples the MHD wave and particle motions is introduced,
followed by a summary of plasma waves that can produce second-order
acceleration. A description of diffusive particle acceleration is presented.
The Ramaty-Lee equation for hard-sphere diffusive scattering is derived,
and more general solutions are mentioned. The chapter ends with a deriva-
tion of maximum particle energy achievable by second-order processes in
the shocked fluid shells made by nonrelativistic and relativistic outflows.

Implicit in the treatment of second-order acceleration is the correctness of
the diffusion approximation. A momentum-diffusion equation is not valid
when the momentum changes are large compared with the total particle
momentum. Large, ∼1 radian pitch-angle changes per interaction also ren-
ders the pitch-angle diffusion equation invalid. Typically, particles will dif-
fuse along large scale magnetic field, which itself could have a complex
geometry. The diffusion approximation is also invalid in a system where the
magnetic field is so strong that electrons lose energy and are forced to follow
the large-scale magnetic field direction, like in pulsars or magnetars. Only
scenarios where the diffusion approximation applies are considered here.
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14.1 POWER-LAW PARTICLE SPECTRA FROM

SECOND-ORDER FERMI ACCELERATION

The remarkable feature about statistical or stochastic second-order Fermi
acceleration is that it naturally makes a power-law spectrum of accelerated
relativistic particles. Consider that the number of particles surviving without
escape to Lorentz factor γ is just the exponential factor

N (>γ ) ∝ exp

(
−
∫ γ

γi

dγ ′

γ̇acctesc

)
.

We have just seen that γ̇acc
∼= 4β2γ /(3tcyc), where tcyc is the time to com-

plete a complete cycle in Fermi acceleration. Assuming that particles escape
from the system of magnetic scattering clouds with timescale tesc = fcyctcyc,
then

N(γ ) ∝
(
γ

γi

)−(1+3/4β2fcyc)

. (14.2)

The main difficulty in arguing that this mechanism is responsible for
cosmic-ray acceleration, as Fermi himself recognized, is that this model
lacks an explanation as to why the index (1+ 3/4β2fcyc) coincides with
the measured number index (≈2.7) of the cosmic rays.

14.2 THE RESONANCE CONDITION

Waves in magnetized plasma have, in general, an electric field component
transverse to the ambient magnetic field B0, as well as a component par-
allel to B0. These two components strongly affect charged particle motion
through resonant interactions. A resonant interaction between a particle and
the transverse electric field of a wave occurs when the Doppler-shifted wave
frequency is a multiple of the particle cyclotron frequency in the particle
guiding-center frame. Additionally, the sense of rotation of the transverse
electric field and the particle gyrational motion must be the same.

Depending on the initial relative phase of the particle and wave, the par-
ticle will see either an accelerating or a decelerating electric field along
its transverse direction of motion over a substantial fraction of a cyclotron
period, resulting in a relatively large energy gain or loss, respectively.

A MHD wave with frequency ω and wavenumber k is in resonance with
an electron with Lorentz factor γ when the resonance condition,

ω − k‖v‖ + ςπςq l�
γ
= 0 (14.3)
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is satisfied. Here

� = |Q|B
mc

is the nonrelativistic gyrofrequency of the particle with charge Q and mass
m, k‖ and v‖ are the parallel wavenumber and parallel particle speed, re-
spectively, and B is the intensity of the large-scale magnetic field. The po-
larization index ςπ = +1 (−1) for right-hand circularly polarized R (left-
hand circularly polarized L) waves, and the charge index ςq = +1 (−1)
for positively (negatively) charged particles; different conventions are also
adopted [428]. The harmonic number l is equal to zero for resonance with
the parallel electric field, but is equal to ±1,±2, . . . for resonance with the
transverse electric field.

The resonance condition can be derived by transforming to the guiding
center frame of the particle moving with velocity vzẑ = cβzẑ along the
direction of the magnetic field. The frequency of the wave in the particle’s
rest frame, given by ωc = γz(ω − vzk) where γz = (1 − β2

z )
−1/2, is equal

to the gyrofrequency of the particle in the guiding center rest frame �gc =
γz(ςq�/γ ). Hence |ω − kvz| = |ςq�/γ | [429].

For the electron, proton, and ion cyclotron frequencies, we define

�e = eB

mec
, �p = eB

mpc
, and �i = ZeB

mic
,

respectively, where mi =Amp is the ionic mass. Note that these various
frequencies are defined in terms of a large-scale magnetic field of strength
B. If the energy density in the plasma waves starts to approach B2/8π ,
than the field becomes disordered and there may be no well-defined gyrofre-
quency. We work in the quasi-linear approximation where

∫∞
0 dk w(k) �

B2/8π .
Resonances with l �= 0 primarily change the transverse particle momen-

tum and therefore its pitch angle. The pitch-angle scattering accompanies
not only diffusion in momentum space but also diffusion in physical space.
When the resonance condition is not satisfied, the time over which a particle
can be influenced by a wave is much shorter, and the effect on the particle
becomes negligible. For l = 0, resonance between a particle and the parallel
electric field occurs when the parallel phase speed of the particle approxi-
mately equals the parallel phase speed of the wave. Depending on whether
the parallel particle speed is slightly less than or greater than the paral-
lel phase speed, the particle will become trapped in a potential trough and
either be accelerated up to phase speed or decelerated down to this speed,
respectively.

The l = +1 case is called the normal Doppler resonance, and is relevant
when the handedness of the transverse electric field of the wave is the same
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as that for the gyrational motion of the particle; l = −1 corresponds to the
anomalous Doppler resonance, which is appropriate when the handedness
of the field and particle are opposite. The transverse electric field can be
decomposed into right- and left-hand circularly polarized components, so
that both l = ±1 should be considered for a given wave and particle.

14.3 PLASMA WAVES

The frequency and wave vector �k are related through the warm-plasma
dispersion relations [430]. The phase speed vφ and group speed vg are de-
fined as

vφ = ω

k
and vg = ∂ω

∂k
. (14.4)

Waves can be modulated and made to carry information; these waves travel
with speed vg < c as compared to vφ , the phase speed of a wave crest in an
infinite wave train of MHD waves, which can exceed c in plasma but carries
no information.

The generation of electron plasma waves with a parallel electric field
that could contribute to resonant acceleration is not considered here. Here
we consider, for simplicity, only the cold-plasma approximation, and par-
allel propagating circularly polarized modes in a fully ionized hydrogen
plasma. Calculating these modes and the associated diffusion coefficients
is the province of plasma astrophysics, and can only be briefly summarized
here [383,429–432].

The cold-plasma approximation, which involves neglecting the particle
temperatures, results in a much simpler dispersion relation for
electron waves, which is also accurate when the waves are near a cyclotron
frequency or other natural frequency of the system, such as the electron
plasma frequency [433]. The plasma frequency ωp is defined by

ω2
p =

4πn0e
2

me
+ 4πn0e

2

mp

∼= 4πn0e
2

me
. (14.5)

Defining

aβ =
ω2
p

�2
e

∼= mec
2ne

2UB
, (14.6)

where ne is the electron density and UB = B2/8π , the cold-plasma disper-
sion relation takes the form

k2c2

�2
e

= ω2

�2
e

(
1− aβ[

(ω/�e)− ςq
][
(ω/�e)+ ςq(me/mp)

]
)
. (14.7)
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The Alfvén speed

vA = B√
4πnpmp

, (14.8)

so that

βA = vA

c
=
√
me

mpaβ
. (14.9)

Note that aβ = 4πmec2ne/B
2 ∼ upar/uB is the plasma beta factor, with

aβ � 1 for magnetically dominated (low-beta) plasmas, and aβ  1
in (high-beta) plasmas with particles dominating the energy density. From
eq. (14.9),

aβ = me

mpβ
2
A

. (14.10)

Equation (14.10) shows that βA >
√
me/mp for a low-β plasma.

The R and L waves resonate with �e and �p, respectively. Each mode
also has a plasma cutoff that depends on the value of (ωp/�e).

From eq. (14.7), kc = ω
√

1− aβmp/me for ω � �p and kc =
ω
√

1− aβ/(ω/�e) for �p � ω � �e. In the first case, when ω � �p,
we have the high-frequency, small-wavevector Alfvén wave branch with

ω = kcβA√
1− β2

A

. (14.11)

As the frequency approaches �p, the L waves become proton cyclotron
waves and cease to propagate in the plasma. The R waves in the second
case have dispersion relation

ω ∼= k2c2

aβ�e
= k2c2�e

ω2
p

. (14.12)

These low-frequency waves, which can gyroresonate with low-energy
suprathermal electrons are called whistlers. Figure 14.2 gives the dispersion
relation for a magnetized plasma with ωp/�e =

√
10 [429].

Plasma waves may be electronic or ionic, and electrostatic or electromag-
netic. Electrostatic electron waves are electron density perturbations that
propagate at thermal speeds vth =

√
2kBT/me. These are plasma oscilla-

tions, or Langmuir waves, with dispersion relation

ω2 = ω2
p + v2

th. (14.13)

When a magnetic field is present, electrostatic electron waves with trans-
verse components meet a resonance at the electron plasma frequency. These
are upper hybrid oscillations, with dispersion relation

ω2 = ω2
p +�2

e. (14.14)
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Figure 14.2 Normalized dispersion relations for parallel transverse waves in a cold
hydrogen plasma. The solid curves are for right-hand circularly po-
larized waves, which become the fast-mode branch when ω � �p
and the whistler branch at �p � ω � �e. The dashed curve is for
left-hand circularly polarized waves, which are the shear Alfvén
waves when ω � �p [429]. (Figure courtesy of J. Steinacker and
J. Miller.)

An electrostatic ionic density disturbance propagates more slowly than
an electron plasma wave due to the greater mass of the ions. These are ion
acoustic, or ion sound waves. When a field is present, and the wave has
a transverse component along the field direction (k̂ × �B0 �= 0), ion den-
sity waves meet the ion-cyclotron resonance. These are electrostatic ion-
cyclotron waves, with dispersion relation

ω2 = �2
i + k2v2

i , (14.15)

and vi =
√
kBT /mi .

Electromagnetic waves propagating in an unmagnetized plasma have the
well-known dispersion relation

ω2 = ω2
p + k2c2. (14.16)
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When a magnetic field is present and �k‖ �B, electromagnetic electron waves
propagate with dispersion relation

c2k2 = ω2 − ω2
p

1±�e/ω,
{
+ for L waves

− for R or whistler waves.
(14.17)

Other electromagnetic electron waves are the ordinary and extraordinary
waves.

The nonrelativistic cold-temperature parallel-propagating ( �k ‖ �B) Alfvén
wave is dispersionless, with dispersion relation

ω = vA|k‖|. (14.18)

When �k ⊥ �B, magnetosonic waves with dispersion relation

ω2

k2
= c2 v

2
i + v2

A

c2 + v2
A

(14.19)

can propagate.
When ω � �p, the L mode is referred to as the shear Alfvén wave,

while the R mode is referred to as the fast-mode wave. Both have dispersion
relation ω = vA|k‖|. The shear Alfvén mode has a resonance at ω = �p.
As ω→ �p, k‖ on the shear Alfvén branch approaches infinity, and waves
in this regime are called ion-cyclotron waves. The fast-mode waves pass
through �p and become whistlers in the regime �p � ω � �e, where
�e is the electron gryrofrequency. The whistler dispersion relation, from
eq. (14.12) or eq. (14.17), is

k2
‖ =

ω2
pω

c2�e
. (14.20)

As ω→ �e, whistlers become electron cyclotron waves.
For parallel waves, higher-order gyroresonances are not as important as

the l = ±1 values. Inserting the low-frequency dispersion relation into
the resonance condition, eq. (9.13), we have that, for protons, ω − kvµ −
ςπςq(�p/γ ) = 0, where µ is the cosine of the pitch angle. When ω � �p,
kvµ ∼= �p/γ . Thus

k = �p

v|µ|γ =
�p

cp|µ| �
�p

vA
.

The Alfvén dispersion relation ω = kvA(��p) then implies that protons
can resonate with shear Alfvén waves via l = +1, or with fast-mode waves
via l = −1, when their momenta p = βγ satisfy the relation

p  βA

|µ| . (14.21)
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This is the threshold conditions for protons to gyroresonate with Alfvén
waves. Sub-Alfvénic protons can also resonate with waves, but of frequency
above the region of applicability of the Alfvén dispersion relation.
Equation (14.3) shows that low-energy particles will resonate with waves
of frequency comparable to the particle cyclotron frequency which, in the
case of protons, are ion-cyclotron waves.

Similarly, electrons can gyroresonate with fast-mode waves via l = +1,
or shear Alfvén waves via l = −1 if their dimensionless momentum satisfies

p  mpβA

me|µ| . (14.22)

Even if the threshold condition is satisfied, it is of course also required to
have sufficient energy in the form of MHD waves to gyroresonante with the
particle. It is generally assumed, for simplicity, that there is equal energy in
forward- and backward-propagating L and R waves.

For whistlers,

�p �
c2�ek

2

ω2
p

= �e
(
�e

ωp

)2 1

(pµ)2
� �e,

using the resonance condition k ≈ �e/(cp|µ|) in the regime ω � �p/γ .
Because (�e/ωp)2 = (mp/me)β2

A, the threshold condition for electrons to
gyroresonate with whistlers takes place in the regime defined by the condi-
tion

√
mp

me
βA � p|µ| � mp

me
βA. (14.23)

14.4 DIFFUSIVE PARTICLE ACCELERATION

The effect of a spectrum of waves upon the particle phase-space distribu-
tion function f ( �p) can be determined by solving a diffusion equation for
f ( �p) in momentum �p = γ �βpar space. The diffusion coefficients can be
derived from a Fokker-Planck equation for the particle distribution func-
tion [383, 434, 437] and in a Hamiltonian formulation for the variation of
the phase-space distribution functions [429]. If the pitch angle changes
appreciably on a timescale much less than the acceleration timescale, then
the distribution is isotropic over the latter timescale, and this two-
dimensional diffusion equation can be averaged over µ to obtain a
diffusion equation in p-space only. In this case, acceleration is character-
ized by a single momentum diffusion coefficient D(p), with units of t−1.
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The convective and diffusive nature of the acceleration is best seen by
examining the momentum diffusion equation

∂f

∂t
= 1

p2

∂

∂p

(
p2D(p)

∂f

∂p

)
. (14.24)

The convection coefficient (or systematic energy-gain rate) in the Fokker-
Planck equation is related to D(p) by

1

mc2

〈
dE

dt

〉
= 1

p2

∂

∂p
[βp2D(p)], (14.25)

and E is the particle energy. The mean rate of change of momentum due to
stochastic acceleration is given by〈

dp

dt

〉
= 1

p2

∂

∂p
[p2D(p)] (14.26)

[436, 437].
Various formalisms have been developed to derive the pitch-angle-

averaged momentum diffusion coefficient D(p) from coefficients for diffu-
sion in momentum and pitch angle. By analyzing the equation of motion
of a particle in the presence of a background magnetic field of strength
B0 on which is superposed a fluctuating electromagnetic field from small-
amplitude electric and magnetic fields due to parallel cold-plasma waves,
the collisionless Boltzmann equation for the distribution function f0 can be
derived. It takes the form

∂f0

∂t
+ �v · ( �∇f0)+ dp

dt

∂f0

∂p
+ dψ
dt

∂f0

∂ψ
+ dφ
dt

∂f0

∂φ
= S0, (14.27)

where ψ and φ are the particle’s pitch angle and azimuth, respectively, and
S0 is a source function. This function can be written as

∂f0

∂t
+ vµ∂f

∂z
− 〈S0〉= ∂

∂µ

(
Dµµ

∂f

∂µ
+Dµp ∂f

∂p

)

+ 1

p2

∂

∂p

(
p2Dpµ

∂f

∂µ
+ p2Dpp

∂f

∂p

)
, (14.28)

with the Fokker-Planck diffusion coefficients Dpp, Dµp, and Dµµ given in
terms of k- and ω-integrals over waves satisfying the resonance condition.

The momentum diffusion coefficient and the spatial (parallel) diffusion
coefficient κ‖(p) are related to the Fokker-Planck diffusion coefficients
through the expressions

D(p) = 1

2

∫ +1

−1
dµ

(
Dpµ −

D2
µp

Dµµ

)
(14.29)
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[435], and

κ‖(p) = v2

8

∫ +1

−1
dµ

(1− µ2)2

Dµµ
(14.30)

[438], where v = βparc is the particle speed.
Another approach [404] is to use the collisionless Boltzmann equation for

the evolution of the particle distribution function f (�r, �p, t) in response to
the exact electromagnetic fields, given by

∂f

∂t
+ �v · ∇f +

[
Ze

( �v
c
× �B

)
+ �E

]
· ∂f
∂ �p = 0. (14.31)

The particle distribution function evolves because of correlations between
the fluctuating force components at different times along the trajectories.
Writing f = f0+ f̄ , where f̄ is the evolving part of the particle distribution
function, one obtains

∂f̄

∂t
+ �v · ∇f̄ +

[
Ze

( �v
c
× �B

)
+ �E

]
· ∂f̄
∂ �p =

∂

∂ �p · D̄ ·
∂f̄

∂ �p . (14.32)

The diffusion term

D̄ · ∂f̄
∂ �p =

(
Dµµ

∂f̄

∂µ
+Dµp ∂f̄

∂p

)
µ̂+

(
Dpµ

∂f̄

∂µ
+Dpp ∂f̄

∂p

)
p̂. (14.33)

The diffusion coefficients for particles interacting with parallel transverse
waves, derived using a Hamiltonian formulation of the collisionless Boltz-
mann equation, are [429]

Dµµ=�2m2 v
2

p2
(1− µ2)

∫ ∞
0

dω

∫ +∞
−∞

dk
(
1− ωµ

kv

)2

×|�Bk,ω|
2

B2
0

δ(ω − ω−ςπk )

kvµ− ω − ςπςq� (14.34)

and

Dpp =�2m2(1− µ2)

∫ ∞
0

dω

∫ +∞
−∞

dki
ω2

k2

|�Bk,ω|2
B2

0

δ(ω − ω−ςπk )

kvµ− ω − ςπςq�.
(14.35)

Here a more physical approach to this problem is presented which, though
lacking rigor, give intuitive expressions for the diffusion coefficients having
the correct dependencies on µ, p, and B.
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14.5 APPROXIMATE DERIVATION OF DIFFUSION

COEFFICIENTS

The various Fokker-Planck diffusion coefficients represent the mean-
squared change of �µ and �p per unit time according to

Dµµ ≈ (�µ)2

tg
, Dpp ≈ (�p)2

tg
, Dµp ≈ Dpµ ≈ (�µ�p)

tg
,

(14.36)
and appropriate averaging is performed in accurate treatments. The gyro-
time

tg ≡ 1

ωL
= γmc

QB
= γ rL0

c
(14.37)

is the time to execute a radian in a Larmor orbit (recall that it is independent
of pitch angle; see eq. [7.3]). The Larmor length

rL0 = mc2

QB
. (14.38)

Consider particle acceleration by low-frequency (ω � �p) waves. The
spectral density of low-frequency parallel waves of type i, assuming sym-
metry and equipartition [i.e, w(k‖) = w(−k‖)], is normalized by

ξi ≡ W tot
i

UB
= 2V

UB

∫ ∞
0

dk‖ w(k‖). (14.39)

If the wave spectrum can be described by the function in eq. (12.1),

w(k) ∼= w0 k
−qH(k; kmin, kmax) (14.40)

(q is the wave spectral index). Dropping the ‖ subscripts for simplicity, and
letting kmax →∞, then

kW(k) ≡ V kw(k) = q − 1

2
ξiUB

(
k

kmin

)1−q
. (14.41)

14.5.1 Pitch-Angle Diffusion Coefficient

We derive the pitch-angle diffusion coefficient Dµµ by noting that the
change in pitch angle over a gyrotime is reasonably related to the ratio of
magnetic field fluctuations�B to the background large-scale magnetic field
of intensity B according to

�ψ ≈ �B

B
.
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Because µ = cosψ , �ψ = �µ/
√

1− µ2, so that
∣∣∣∣�BB

∣∣∣∣
2

≈ (�µ)2

1− µ2
= kw(k)

UB
,

so that (�µ)2 = kw(k)(1− µ2)/UB .
From the normalization of the wave energy spectrum, eq. (14.41), and

eq. (14.36),

Dµµ ≈ c

γ rL0

q − 1

2
ξi (1− µ2)

(
k

kmin

)1−q
. (14.42)

The condition for gyroresonant interaction with waves with frequency ω �
�/γ is k ∼= 1/(prL0|µ|), so that eq. (14.42) becomes

Dµµ ≈ q − 1

2
ξi βparckmin(kminrL0)

q−2 |µ|q−1(1− µ2)pq−2. (14.43)

This expression is independent of the type of wave mode. Moreover, note
that Dµµ ∼ |µ|q−1, so that the diffusion coefficient vanishes when µ =
cosψ = 0, or ψ = π/2. This is known as the resonance gap problem.
Schlickeiser [437] argues that there is no resonance gap when both L and R
waves traveling in both directions are found in the plasma.

14.5.2 Momentum Diffusion Coefficient

Consider a relativistic particle with Lorentz factor γ1. The mean change in
its momentum when completing a cycle in second-order Fermi acceleration
is, from eq. (14.1),

�p = γ�γ

p
= γ1

β

�γ

γ1
= 4

3
β�2γ1

β�1
→ 4

3
βγ1 � βγ1→ βgγ1,

where βg is the group velocity of the resonant wave. The averaging over
angles washes out the first-order term in second-order Fermi acceleration,
making this process generally slower and less efficient than first-order Fermi
acceleration, and consequently often overlooked in astrophysical problems.

The Fokker-Planck momentum diffusion coefficient

Dpp ≈ (�p)
2

tg
≈ (βgγ )2 Dµµ

≈ q − 1

2
ξi (ckmin)β

2
g(kminrL0)

q−2 |µ|q−1(1− µ2)
pq

βpar
. (14.44)

Rather than use eq. (14.29), the diffusion coefficient can be estimated
through the relation by D(p) ≈ 1

2

∫ +1
−1 dµDpp. For stochastic acceleration
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of particles by Alfvén waves, βg = βA, and

DA(p) ∼= π

2

(
q − 1

q(q + 2)

)
ξi(ckmin) β

2
A(rL0kmin)

q−2 pq

βpar
, (14.45)

and we have included a multiplicative factor to agree with more accurate
treatments [434, 436].

For whistler waves, βg → βw = 2c�ek/ω2
p = 2(mp/me)β2

A(ck/�e).
The resonance condition for whistler waves when ω � �e is k ≈ �e/

(cp|µ|), so that ck/�e = 1/pµ and βw ≈ 2(mp/me)(β2
A/p|µ|). The

Fokker-Planck momentum diffusion coefficient for whistler waves is there-
fore

Dw
pp ≈

q − 1

2
ζw

(
mp

me

)2

(ckmin)β
4
A(kminrL0)

q−2 |µ|q−3(1− µ2)
pq

βe
,

(14.46)

and ζw is the ratio of MHD wave energy in whistlers compared to UB . The
approximation D(p) ≈ 1

2

∫ +1
−1 dµ Dpp indicates that the momentum diffu-

sion coefficient for electrons gyroresonating with whistlers has the form

Dw(p) ∝ ζw
(
mp

me

)2

(ckmin)β
4
A(kminrL0)

q−2p
q−2

βe
.

A more accurate derivation [439] that takes into account waves from the
fast-mode through the whistler regimes is given by

Dw(p)≈ π
4
(q − 1) ζw

(
mp

me

)2

(ckmin)β
4
A(kminrL0)

q−2 p
q−2

βe

×
(

2

q(2+ q) +
(p/43βA)2−q

2− q + (p/43βA)−q

q

)
. (14.47)

Equation (14.47) can be shown to reduce to the Alfvén fast-mode expres-
sion, eq. (14.45), in the appropriate regime. The diffusion coefficient can be
written in the form

D(p) ∼= π

2

β4
A

β

Q

A

2 ∫ ku

k�

dk k

(
1− k

2
0

k2

)
w(k), (14.48)

with ku =
√
A/Q/βA and k� = max(k0, A/QβA). More detailed and

exhaustive derivations ofDpµ andDµp are given by Melrose [434], Schlick-
eiser [383], and the Hamiltonian method [376,429,432].

14.6 ENERGY GAIN AND DIFFUSIVE ESCAPE RATES

From eq. (14.25) and the momentum diffusion coefficients, one obtains
the systematic energy-gain rate for either shear Alfvén or fast mode waves
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given by

〈
dγ

dt

〉
A
= π

2

(
q − 1

q

)
(ckmin)β

2
Aξi(kminrL0)

q−2 pq−1. (14.49)

The functional dependence of this expression can be obtained by noting
that the particle pitch angle ψ changes by ∼�B/B during one gyrotime
tg = rL0/c, where B now refers to the mean magnetic field in the shocked
fluid plasma. The isotropization time scale from pitch-angle diffusion is
tiso ∼= tg/(�B/B)2. Changes in ψ due to gyroresonant interactions of parti-
cles with resonant plasma waves is described by relating the mean-squared
magnetic fluctuation to the ξi , the ratio of wave energy in mode i to B2/8π ,
according to (�B/B)2 ≈ k̄W(k̄)/UB . The resonant wavenumber is as-
signed through the resonance condition ω − k‖v‖ = ��/γ , but for low-
frequency waves and ψ ∼= π/2, we can let k ≈ 1/prL0 [374]. Assuming
isotropy of forward- and backward-moving waves gives the normalization
W0 = ξiUB(q − 1)/2kmin. Hence t−1

iso
∼= cξi(q − 1)(rL0kminp)

q−1/(2rL0),
ṗ � p2

At
−1
iso and

ṗF2
∼= 2

3
p2
A ξi(q − 1)

(
c

rL0

)
(rL0kminp)

q−1. (14.50)

The term rL0kminp in the parentheses of equation (14.50) gives the
comoving gyroradius in units of the inverse of the smallest turbulence
wavenumber kmin found in the shocked fluid. If kmin ∼ 1/R, then the
relation rL0kminp � 1 is an expression of the Hillas [320] condition. When
this condition is satisfied, then ṗF2 � p2

Ac/rL0. According to this prescrip-
tion, the relative momentum increase per gyroperiod can greatly exceed the
Larmor rate c/rL, which depends on relativistic scattering centers. If rela-
tivistic MHD waves do exist, but do not gyroresonate with particles, then
acceleration at a rate as indicated by this expression may not be possible.

The characteristic timescale for a particle starting from low energy to
reach Lorentz factor γ  1 through gyroresonant interactions with Alfvén
waves is given by

tEA ≡
∣∣∣∣ 1

γ − 1

〈
dγ

dt

〉
A

∣∣∣∣
−1
∼= 2

π

(
q

q − 1

)
tdyn

β2
Aξi

γ 2−q, (14.51)

and we set kmin→ R−1.
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The systematic energy-gain rate for gyroresonant interaction of electrons
with whistler waves, from eqs. (14.47) and (14.25), is〈

dγ

dt

〉
w

= π
2

(
q − 1

2− q
)
ξi

(
mp

me

)2

(ckmin)β
4
A(kminrL0)

q−2pq−3

×(1− γ−1)

[(
p

43βA

)2−q
− 1

]
. (14.52)

The characteristic timescale for a particle starting from low energy to reach
Lorentz factor γ  1 through gyroresonant interactions with whistler waves
is given by

tEw = 2

π

(
me

mp

)1+q/2(
q − 2

q − 1

)
tlc

β
2+q
A ξR

(rL0

R

)2−q
p2

[(
43βA
p

)2−q
−1

]−1

(14.53)

The acceleration timescales for electron interactions with whistlers,
eq. (14.53), and with low-frequency fast-mode waves, eq. (14.51), are not
continuous, owing to the discontinuity in the dispersion relations. Employ-
ing the correct dispersion relation for R waves from low to high frequencies
is necessary to obtain continuous energy gains and time scales throughout
the whistler and fast-mode regime [429,439].

Equations (14.30) and (14.43) imply that the parallel spatial diffusion
coefficient due to gyroresonant interactions with Alfvén waves is given by

κA
‖ (p) =

vp2−q

(q − 1)(2− q)(4− q)
(kminrL0)

2−q

ξikmin
. (14.54)

For magnetic field lines directed radially outward, the diffusive escape time

tAd ≈
R2

4κA
‖
≈ tlc

4
(q−1)(2−q)(4−q)ξi(kminR)(rL0kmin)

q−2p
q−2

βpar
, (14.55)

where tlc ≡ R/c is the light-crossing time scale for the system. For Kraich-
nan or Kolmogorov wave turbulence spectra, therefore, the particle escape
time decreases with increasing particle energy.

The pitch-angle scattering Fokker-Planck coefficient for electrons inter-
acting with whistlers is given by eq. (14.43) with rL0 = eB/mec2. Follow-
ing the procedure for the Alfvén mode gives the diffusive escape time of
electrons due to scattering by whistlers, namely,

twd ≈
π

4
(q − 1)tlcξR(kminR)(rL0kmin)

q−2p
q−2

βpar

×
(
(p/43βA)q−2 − 1

q − 2
− (p/43βA)q−4 − 1

q − 4

)
. (14.56)
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Equation (14.56) generalizes eq. (14.55) to include both the Alfvén and
whistler interactions, and reduces to eq. (14.55) in the limit p 
βA
√
mp/me.

14.7 MOMENTUM DIFFUSION EQUATION

The convective and diffusive nature of the acceleration is best revealed by
writing the resulting momentum diffusion equation with no systematic
losses, but with momentum-dependent exponential escape timescale T (p)
and source function ṅ(t). Written in terms of the particle momentum spec-
trum n(p) = 4πp2f (p) rather than the distribution function f (p), the
diffusion equation takes the form

∂n

∂t
= ∂

∂p

(
D(p)

∂n

∂p

)
− ∂

∂p
[A(p)n]− n

T (p)
+ ṅ(p, t). (14.57)

where

A(p) ≡ 2D(p)

p
.

For Alfvén waves,DA(p) ∝ pq , as can be seen from eq. (14.45). Writing
D(p) = Dpq , A(p) = Apq−1, and T (p) = T0p

s , and letting p → x to
improve its appearance, then G, the Green’s function,1 is a solution of the
equation

∂G

∂y
= xq ∂

2G

∂x2
+(q−a)xq−1 ∂G

∂x
−[a(q−1)xq−2+θx−s]G+δ(x−x0)δ(y).

(14.58)
Here the reduced time y = Dt , θ ≡ 1/Dy0, and a is an index of an assumed
additional systematic energy gain term with p dependence proportional to
pq−1. This equation can also be written in the Fokker-Planck form

∂G

∂y
= ∂2

∂x2
(xqG)− ∂

∂x
[(q + 2+ a)xq−1G]− θx2−qG+ δ(x − x0)δ(y),

(14.59)
where the identification s = q − 2 follows by relating the diffusive escape
time scale, eq. (14.55), with the systematic energy gain rate in second-order
acceleration, eq. (14.49).

1The Green’s function is the solution to a differential equation with δ-function source
terms in space and time. For Green’s function methods to solve differential equations see,
e.g., Ref. [440].
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14.7.1 Ramaty-Lee Spectrum for Hard-Sphere Scattering

The application of the diffusion equation for hard-sphere scattering to parti-
cle acceleration in Solar flares was done by Ramaty [441]. The magnetized
fluid elements of Fermi are replaced by hard spheres with radius rhs and
effectively infinite mass moving in random directions with the same nonrel-
ativistic speed βc. All particles are scattered with equal cross section πr2

hs.
The diffusion coefficient for hard-sphere scattering is

Dhs(p) = 1

3

(βc)2

λscc
βparp

2 ≡ 1

3
αhsβparp

2 ∝ p2, (14.60)

where βc is the speed of the hard spheres, λsc = 1/(πr2
hsnsc) is the scattering

mean free path, and nsc is the density of hard spheres. Thus q = 2 for hard-
sphere scattering.

With q = 2, eq. (14.59) becomes, retaining the possibility of an additional
acceleration term,

∂G

∂y
= x2 ∂

2G

∂x2
+ (2− a)x ∂G

∂x
− (a + θ)G+ δ(x − x0)δ(y). (14.61)

Equation (14.61) can be solved by the Laplace transform method. The
Laplace transform

L = L{G} =
∫ ∞

0
dy G(x, y) exp(−yλ), (14.62)

so

L
{
∂G

∂y

}
=
∫ ∞

0
dy
∂G

∂y
exp(−yλ) = −G(y = 0)+ λL ≡ G(0)+ λL

and

x2 ∂
2

∂x2

∫ ∞
0

dy exp(λy)G = x2 ∂
2L

∂x2
≡ x2L′′.

The Laplace transform of eq. (14.61) gives the normal differential equation

x2L′′ + (2− a)xL′ − (a + θ + λ)L = −G(0) = −δ(x − x0)

D ; (14.63)

the final relation derives from the initial condition for G(p, t).
The solution of the homogeneous equation, valid for x �= x0, is obtained

by assuming a solution in the form L = Kxj−1, where j is a solution of the
quadratic

j = a + 1±
√
(a + 1)2 + 4(θ + λ)

2
.



chapter14 July 16, 2009

SECOND-ORDER FERMI ACCELERATION 369

Re λ

Im λ

xxxxxxxxxxxxxx xxxxxxxxx xxxxxxxxx xxx

–λ0

Figure 14.3 Contour for the integration of eq. (14.65).

We write j1,2 = [(a + 1)/2] ± µ, where µ = √λ0 + λ and λ0 = [(a +
1)/2]2 + θ . Note that j1 > 0 and j2 < 0. As x → x0, one sees that we take
the + root for x → x0 and the − root for x →∞. Therefore

L = K1x
j1−1H(x0 − x)+K2x

j2−1H(x − x0).

Continuity of L at x = x0 impliesK2 = K1x
j1−j2
0 . Also, the derivative jump

condition ∫ x0+ε

x0−ε

[
x2L′′ + (2− a)xL′ − (a + θ + λ)L] = − 1

D
gives the result through partial integrations in the limit ε→ 0 that

K1 = −
x
−j1
0

D(j2 − j1) , K2 = −
x
j2
0

D(j2 − j1) . (14.64)

Hence

L = 1

2Dµx0

[(
x

x0

)j1−1

H(x0 − x)+
(
x

x0

)j2−1

H(x − x0)

]
. (14.65)

The inverse Laplace transform is defined by

G(x, y) = 1

2πi

∫ c1+i∞

c1−i∞
dλ exp(λy) L(x, λ). (14.66)

The singularity at µ = √λ0 + λ = 0 in eq. (14.65) suggests that we in-
tegrate around the contour shown in figure 14.3, avoiding the singularity
at λ = −λ0. After performing the inversion, one obtains for the Green’s
function solution to eq. (14.61) the result

G(x, y) = exp(−θy)
Dx√4πy

exp

(
− 1

4y

[
ln(x/x0)− (a + 1)y

]2)
. (14.67)
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For impulsive injection and no escape, the particle energy distribution in
the asymptote for relativistic particle energies takes the form

N(E, t) ∝ E−1 exp{−3[ln(E/E0)− αhst]
2/(4αhst)}

[441], whereE0 is the injection energy. For continuous injection and energy-
independent escape time tesc, the relativistic particle distribution becomes

N(E, t) ∝ (E/E0
)[1−√9+12/(αhstesc)]/2

[442], with a power-law form. Solutions for hard-sphere scattering are
shown in the top panels of figure 14.4.

14.7.2 Green’s Function Solution

The Laplace transform of eq. (14.59) is

z2 d
2L

dz2
+ a + 1

q − 2
z
dL

dz
+
(
(1− q)(2+ a)
(2− q)2 − z

2

4
− sz

c0(2− q)2
)
L

= −c0 δ(z − z0)

2− q
(
z

c0

)(3−2q)/(2−q)
, (14.68)

where

z(x) ≡ 2
√
θ

2− q x
2−q, z0(x0) ≡ 2

√
θ

2− q x
2−q
0 , (14.69)

and

c0 ≡ 2
√
θ

2− q . (14.70)

The Green’s function G = (x0, x, y) can be found using the complex
Mellin inversion integral [436], with general closed-form solution

G= 2− q
x0

(
x

x0

)(a+1)/2 √
zz0ξ

1− ξ exp

(
−(z+ z0)(1+ ξ)

2(1− ξ)
)
Iβ−1

(
2
√
zz0ξ

1− ξ
)
,

(14.71)

where Iβ−1 is a modified Bessel function of the first kind of order β−1 (see
Appendix B).

z(x) ≡ 2
√
θ

2− q x
2−q, z0(x0) ≡ 2

√
θ

2− q x
2−q
0 ,

β ≡ a + 3

2− q , and ξ(y) ≡ e2(q−2)y
√
θ . (14.72)
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Figure 14.4 Green’s function solutions to the time-dependent stochastic particle
acceleration equation, eq. (14.58) or (14.59), for x0 = 1, θ = 1, and
a = 0, for values of q = 2 (top), 5/3 (middle), 3/2 (lower). Left panels:
δ-function injection in time and momentum. Right panels: Continu-
ous injection and the approach to steady state. The reduced time
variable is y.
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Note that the solution for G depends on the time parameter y representing
the “age” of the injected particles.

The exact solution for the time-dependent Green’s function describing
the evolution of a monoenergetic initial spectrum with q < 2 is given by
eq. (14.71). In the hard-sphere case with q = 2, eq. (14.71) reduces to the
result [443]

G(q = 2) = e−γy

2x0
√
πy

(
x

x0

)(a+1)/2

exp

(−(ln x − ln x0)
2

4y

)
(14.73)

(cf. eq. [14.67]), where

γ ≡ (a + 1)2

4
+ 2+ a + θ. (14.74)

Equation (14.71) is plotted in figure 14.4 for parameters as labeled. The
steady-state solution at x ≥ x0 = 1 is a power-law spectrum when q = 2,
whereas it is a curving spectrum at q < 2. For research on second-order
Fermi acceleration processes in a variety of cosmic environments, see the
work by Petrosian and Liu, e.g., [444].

14.8 MAXIMUM PARTICLE ENERGY IN SECOND-ORDER

FERMI ACCELERATION

The energy gain in second-order Fermi acceleration can be seen to result
from the elastic deflection of a particle in the wave frame, which for Alfvén
waves, moves along the magnetic field with a velocity ±βAc (the phase
speed) for forward and backward waves propagating along the field. In the
wave frame, the electric field associated with the waves vanishes, and the
particle energy is unchanged by the wave-particle interaction, which reduces
to pure pitch-angle scattering in that frame.

We derived the relative energy gain in one cycle of second-order Fermi
acceleration in the nonrelativistic (β � 1) limit (eq. [14.1]). The second-
order acceleration rate of particles resulting from interactions with Alfvén
waves therefore scales as(

dp′

dt ′

) ∣∣∣
F2
∝ β2

Aγ
2
Ap
′ ≡ p2

Ap
′.

We now extend these expressions to relativistic scatterers.
The flow behind a relativistic blast wave is relativistically hot. If the blast-

wave Lorentz �  1, then

P = e

3
= 4

3
�2ρ−c2, n = 4�n−, and B ≈ 4�B−⊥,
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with the subscript “−” referring to upstream quantities. For a cold upstream
medium, then ρ− = µnp−mpc2, and np− is the upstream density, assumed
to be dominated by protons. The quantity e is the proper thermal energy den-
sity in the downstream flow, P is the pressure, B is the shock-compressed
comoving magnetic field, and B−⊥ is the upstream transverse field.

The Alfvén speed in a relativistically hot gas is given by [445]

βA = vA

c
= B√

4π(e + P + B2/4π)
. (14.75)

Taking P = e/3, the associated Lorentz factor γA is

γA = 1√
1− β2

A

=
√

1+ 3B2

16πe
, (14.76)

so that

pA = βAγA =
√

3B2

16πe
=
√

3εB
2
, (14.77)

where εB = B2/8πe is the fraction of total energy in magnetic field energy,
and is essentially equivalent to the εB parameter in blast-wave physics. Even
if the field is amplified to equipartition, εB → 1, the quantity pA is of order
unity. Thus we take p2

A = 3εB/2 as the scaling for the relativistic momenta
of Alfvén waves.

14.8.1 Gyroresonant Stochastic Acceleration

Particle acceleration through stochastic gyroresonant processes is written as
ṗ′F2
∼= �p′/tiso, where tiso is the pitch-angle isotropization timescale in the

comoving fluid frame. When p′  1, the fractional change in momentum
over this time period is

�p′

p′
∼= γ 2

A(1+ β2
A/3)− 1 = 4p2

A/3→ 2εB. (14.78)

Equation (14.78) represents the mean fractional momentum change from
elastic scattering off relativistic scattering centers. The quantity βAc, which
represents the speed of the scattering centers, reduces to the Alfvén speed
in the weakly turbulent quasilinear regime.

The downstream Larmor radius depends on the strength of the down-
stream magnetic field, given by

B+ ∼= max(χ�B⊥−, B∗
√
�2 − � ), (14.79)
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where the first term represents the compression of the upstream transverse
magnetic field, and the second term defines the downstream field in the man-
ner of eq. (11.39). The compression ratio χ = 4 for strong shocks whether
or not the shocks are relativistic.

When B∗ > χB⊥−/
√

1− 1/�, that is, when, n0εB � 2× 10−10B2
µG/β

2

cm−3, the turbulent field dominates the compressive field. The value of εB
cannot be too small, however; otherwise particles will not be captured by the
blast wave. We parameterize kmin = f�x/� in terms of the characteristic
scale of the blast-wave shell [296]. The value f� = 1/12 corresponds to
the hydrodynamic width of the blast wave [301, 304]. For f� ≈ 1/12, the
size scale of the MHD turbulence corresponds to the physical scale of the
comoving blast-wave width.

With the result that βA → pA =
√

3εB/2, then p2
A = 3εB/2. For rel-

ativistic flows, pA  1 if εB�  1, and the energy gain rate through
gyroresonant stochastic acceleration can exceed c/roL+ under these circum-

stances. For nonrelativistic flows, pA → βA = ε
1/2
B β, provided that the

turbulent field exceeds the compressive field. The implied energy-gain rate
from second-order Fermi acceleration is
dE′

dx

∣∣∣∣
F2
= 4

3
εBξ(q−1)

(
�−1

βsh�sh

)
QB∗

√
�2−�

(
E′

QB∗
√

1−�−1f�x

)q−1

,

(14.80)

and ξ is the ratio of plasma turbulence to magnetic-field energy density
(section 14.6). Equation (14.80) reduces for nonrelativistic and relativistic
flows to

dE′

dx

∣∣∣∣
F2,NR

= 2−3/2εBξ(q − 1) QB∗β2
(

21/2E′

QB∗f�xβ

)q−1

for � − 1� 1

(14.81)
and

dE′

dx

∣∣∣∣
F2,ER

= 23/2

3
εBξ(q − 1) QB∗�

(
E′

QB∗f�x

)q−1

for �  1,

(14.82)
respectively.

14.8.2 Stochastic Energization in Nonrelativistic Shocks

For an adiabatic blast wave in a uniform surrounding medium, the nonrela-
tivistic expression (14.81) can be integrated to give

E′2−q(x1)=E′2−q(x0)+
(

2q/2

4

εBξ

f�
(q−1)(2−q)β0I2N

)
(QB∗f�xdβ0)

2−q,

(14.83)
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where

I2N = IF2,NR(y0, y1, q) ≡
∫ y1

y0

dy y1−q

(1+ y3)(3−q)/2

∼=




(2− q)−1(y
2−q
1 − y2−q

0 ) for y0 < y1 � 1,

1− y2−q
0

2− q + 2(1− y−(q−1)/2
1 )

q − 1
for y0 � 1 � y1,

2(q − 1)−1 (y
−(q−1)/2
0 − y−(q−1)/2

1 ) for 1 � y1 < y2,

(14.84)

and yi = xi/QB∗f�. The largest possible value of I2N is given by the
middle branch of eq. (14.89), and I2N(0,∞, 5/3) ∼= I2N(0,∞, 3/2) ∼= 6.

When E′(x1) E′(x0) and x1  x0,

E(x1) ∼= E′(x1) ∼=
(

2q/2

4

εBξ

f�
(q − 1)(2− q)β0I2N

)1/(2−q)
QB∗f�xdβ0.

(14.85)
The maximum energy of particles accelerated by second-order Fermi
acceleration in a nonrelativistic blast wave is defined by the quantity
KQB∗f�xdβ0, where K is the coefficient of the quantity QB∗f�xdβ0 in
eq. (14.85), given by

K ≡
(

2q/2

4

εBξ

f�
(q − 1)(2− q)β0I2N

)1/(2−q)

→




2× 10−7
(
εBξβ−2(I2N/6)

f�

)3

for q = 5/3,

4× 10−5
(
εBξβ−2(I2N/6)

f�

)2

for q = 3/2.

(14.86)

The measured ejecta speed from Types Ia, II, and Ib SNe are in the range
β0 ∼ 0.005–0.05 (table 12.1), so we take as a basic scaling β0 = 10−2β−2

for nonrelativistic shocks from SNe. The quantity

QB∗f�xdβ0
∼= 8× 1018Zε

1/2
B (µ0n0)

1/6f�β−2E1/3
� eV. (14.87)

Equations (14.86) and (14.87) imply maximum particle energies Emax ∝
2× 1012Zβ4

−2 eV for q = 5/3 and Emax ∝ 3× 1014Zβ3
−2 eV for q = 3/2,

when the quantity εBξ/f� ∼= 1. Though this quantity could arguably be
much smaller than unity, it cannot be much larger. Comparison of these
energies with the values given by eqs. (13.82) and (13.85) shows why sto-
chastic processes are generally discounted as being important in nonrela-
tivistic shock physics. When β0 → 1, the second-order acceleration rate
can become, however, more rapid than the first-order Fermi acceleration
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rate. This is simply because the second-order rate does not depend on the
field strength in the upstream medium, but on the much stronger downstream
field strength.

14.8.3 Stochastic Energization in Relativistic Flows

The relativistic expression (14.82) can be integrated to give

E′2−q(x1)=E′2−q(x0)+
(

23/2

3

εBξ

f�
(q − 1)(2− q)�0I2E

)
(QB∗f�xd)2−q,

(14.88)
where

I2E = IF2,ER(y0, y1, q) ≡
∫ y1

y0

dy y1−q√
1+ y3

∼=




(2− q)−1(y
2−q
1 − y2−q

0 ) for y0 < y1 � 1,

1− y2−q
0

2− q + 1− y−q+1/2
1

q − 1/2
for y0 � 1 � y1,

(q − 1/2)−1(y
−q+1/2
0 − y−q+1/2

1 ) for 1 � y1 < y2.

(14.89)

The largest possible value of I2E is given by the middle branch of
eq. (14.89), and I2E(0,∞, 5/3) ∼= 27/7, I2E(0,∞, 3/2) ∼= 3.

When E′(x1) E′(x0) and x1  x0,

E(x1) ∼= �(x1)E
′(x1) ∼=

(
23/2

3

εBξ

f�
(q − 1)(2− q)I2E

)1/(2−q)
QB∗f�xd�0.

(14.90)

Equation (14.90) shows that the maximum energy of particles accelerated
by second-order Fermi acceleration in a relativistic blast wave occurs near
the deceleration scale. The basic scaling for this maximum energy is given
by the energy

QB∗f�xdP0
∼= 7.7× 1020Zε

1/2
B (µ0n0)

1/6f�β0(E��0)
1/3 eV (14.91)

(cf. eq. [14.87]), where we have generalized the expression so that the scal-
ings (14.87) [446] for nonrelativistic Sedov and relativistic adiabatic flows
are recovered. Note the dependence of the maximum accelerated energy
given by eq. (14.90) on the factor ξεB/f�. When εBξ/f� � 1 near the de-
celeration radius, then stochastic acceleration processes in relativistic blast
waves can in principle accelerate particles to energies of ≈1020Z eV, lim-
ited by competition with adiabatic and radiation losses and escape from
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the system. The acceleration of particles to such energies remains however
hypothetical due to poorly understood wave-particle interaction physics in
relativistic plasmas dominated by electromagnetic energy [447, 448], and
the existence of turbulence on different scales.

Comparison with Adiabatic Losses

Particle acceleration by stochastic Fermi acceleration will proceed only if
adiabatic losses are small, which applies to particles with energies that sat-
isfy |dE′/dx|F2  kE′/x. For nonrelativistic flows, adiabatic losses can be
neglected for particles with energies

E � 2−1/2
(
εBβ

2kf�
(q − 1)

)1/(2−q)
QB∗f�βx (14.92)

(see eq. [14.81]). For the relativistic gain rate (14.82), adiabatic losses can
be neglected when

E � �E′ �
(

23/2

3k

�εBξ

f�
(q − 1)

)1/(2−q)
QB∗f��x. (14.93)

Note again the extreme sensitivity to the factor ξεBβ�/f� on second-order
particle acceleration processes. As can be seen, adiabatic losses become im-
portant near the maximum particle energies obtained by solving the particle
energy evolution with location x in both the nonrelativistic and relativistic
cases.

Competition between Stochastic Acceleration and Diffusive Escape

The escape timescale t ′esc ≈ Nλ/v′ depends only upon pitch-angle diffu-
sion. The number of scattering events to travel distance �′ is N ∼= (�′/λ)2,
where λ ∼= v′tiso � 2v′rL(rL+kmin)

1−q/[cξ(q − 1)]. The timescale to travel
distance �′ is therefore t ′esc = c�′2ξ(q − 1)kmin(rL+kmin)

q−2/(2v′2). For
relativistic particles, v′ → c, and

t ′esc
∼= �′

c
max

[
1,
ξ(q − 1)

2
(�′kmin) (rL+kmin)

q−2
]
. (14.94)

When rL+ � k−1
min[ξ(q − 1)(�′kmin)/2]1/(2−q), the escape time is governed

by the transit time, so particles diffusively escape when E′ � E ′[ξ(q −
1)(�′kmin)/2]1/(2−q), where E ′ = QB+/kmin ≈ QB+R′. Depending on the
precise value of kmin�

′, diffusive escape is unimportant when E′  E ′,
where at the highest energies, particles escape with increasingly straight
trajectories.
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Figure 14.5 Maximum proton energy Emax,H as a function of blast-wave location
x implied by the Hillas condition obtained by comparing the Larmor
radius and blast-wave width and stochastic acceleration rate, given
eq. (14.91), with the synchrotron cooling rate, eq. (14.95). Changes
in Emax,H and Emax,syn for different values of n0 are shown, with para-
meters given in the figure legend [301].

Comparison between Stochastic Energy Gain and Synchrotron
Radiation Losses

The synchrotron energy-loss rate for particles with randomly oriented pitch
angles in a magnetic field with mean strength B is given by (equation 7.49)

−γ̇ ′syn = 4cσTZ
4(B2/8πmec

2)p′2/[3A3(mp/me)
3].

Hence

−γ̇ ′syn =
16

3

µ0Z
4

A3

cσTεBµ0n0�(� − 1)

(mp/me)2
p′2 ∼= −ṗ′syn. (14.95)

Equating this rate to the stochastic energy-gain rate (14.50) gives the
maximum particle momentum achievable due to the competition with syn-
chrotron losses. The result is

pmax,syn
∼= �


Kp
�′

(
r0
L

�′

)q−2
3A3

16µ0Z4

(mp/me)
2

σTεBµ0n0�(� − 1)




1/(3−q)

.

(14.96)
The maximum particle energy from second-order Fermi acceleration,

compared to limitations placed by synchrotron energy losses, is given in
figure 14.5 [301]. Acceleration and diffusive escape of particles with en-
ergies  1018 eV from second-order Fermi processes in relativistic blast
waves has been proposed as the mechanism that accelerates UHECRs (see
chapter 17).
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Chapter Fifteen

The Geometry of Spacetime

15.1 INTRODUCTION

The presence of a massive object (compact or otherwise) deforms the
ambient Minkowski geometry of spacetime in accordance with the Einstein
equation. The gravitational field is described by the metric tensor gµν of the
manifold. On any region of the manifold we can place a coordinate system
(t, x1, x2, x3) such that t is a timelike coordinate, and xi are spacelike for
i = 1, 2, 3. The metric tensor can then be written in the form

g = gttdt ⊗ dt + gtidt ⊗ dxi + gitdxi ⊗ dt + gijdxi ⊗ dxj . (15.1)

Here gµν = gνµ, and since t is a timelike coordinate, gtt < 0. At every
point of our manifold, the tangent space is isomorphic to Minkowski space.
In particular, the timelike vectors are contained within two lightcones. We
may designate either of the lightcones as future directed. After having
chosen the orientation of the future cone at one point, one must extend this
to every point of the manifold in a continuous manner assigning light cones
as future directed and past directed consistently. It may not be possible to
do this in general if the manifold has a nontrivial topology. In the event that
such a designation can be made, we say that the manifold is time orientable.
By going into a local Minkowski tangent frame at any point p of the mani-
fold, we can easily see that any two distinct causal (timelike or lightlike)
vectors at p belong to the same light cone if and only if their inner product
is less than zero. In addition to time orientability, if the metric satisfies the
Einstein equation for an appropriate energy momentum tensor, the manifold
is physically relevant and is a candidate spacetime.

The spacetime is determined by the gravitational interactions of all the
matter and other causal fields in it. In turn, the geometry determines the mo-
tion of all matter and the time evolution of the fields it contains. Therefore,
it is necessary to solve for the geometry and the fields (including matter)
at the same time. This is nearly an impossible task save for a few ideal, but
very important, examples. There is however a practical solution to this prob-
lem. Gravitation is a very weak force. Consequently, it takes a large amount
of energy and momentum to deform the geometry of spacetime. Thus, it is
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n

β

∂t

Σt

Figure 15.1 �t is a sample spacelike surface which may in general be curved and
evolve in time.

possible to introduce the concept of a fixed ambient spacetime in which
other particles and fields may evolve. For example, in the absence of massive
stars and black holes, we may take the ambient geometry to be Minkowski.
This is the situation in special relativity. The Minkowski metric descibes
perfect vacua. However, we may still talk about particles falling in it, and
solve the twin paradox problem for example. Our situation will be very
similar. We will fix the ambient geometry so that it describes the gra-
vitational field of a rotating star or a black hole. In chapter 16, we will
consider the nature of electromagnetic fields and currents in this fixed
geometry.

15.2 SPLITTING SPACETIME INTO SPACE AND TIME

It will be convenient in our discussions to visualize spacetime as time-
stacked slices of absolute space. These spacelike slices are three-dimensional
manifolds whose geometry, as we shall see, is described by the metric
γij ≡ gij . In general, the metric coefficients can be a function of time,
in which case, the properties of the absolute space also become time depen-
dent. For the case of a stationary spacetime however, the metric coefficients
are by definition time independent. Stationary spacetimes will be of great
significance for us since it will be sufficient in describing the ambient ex-
terior geometry of stars and black holes. When this happens, the nature of
absolute space will not evolve with time and can therefore be thought of as
a curved space counterpart of the familiar Galilean notion of space. We will
rewrite eq. (15.1) in a form that will make the foliation of the geometry into
spacelike slices manifest, i.e., we shall give meaning to the various com-
ponents of the metric tensor gµν . The discussion here will be applicable in
general, and shall not require the stationarity of spacetime.

Consider a spacelike hypersurface �t obtained by fixing the value of the
timelike coordinate t . Henceforth, such hypersurfaces will be referred to as
absolute space. The geometric nature of the various slices of absolute space
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will in general evolve in time. Clearly,

T (�t) = span

{
∂

∂xi

}
. (15.2)

From eq. (15.1), we see that the induced metric on our 3d absolute space is
given by

γ̂ = gij dxi ⊗ dxj ≡ γij dxi ⊗ dxj (15.3)

since dt = 0 on �t . Let t̃ denote the timelike vector field ∂/∂t and let n be
the unit normal vector field on �t that points in the direction of increasing t
(as shown in figure 15.1). We pick the time coordinate t such that t̃ is future
pointing. Consequently, n is timelike and future pointing and so g(n, t̃) < 0.
The lapse function α is the component of t̃ in the direction of n, i.e.,

α ≡ −g(t̃, n). (15.4)

To obtain the components of n, define a three-dual vector in our absolute
space by

β = βidxi ≡ gtidxi. (15.5)

The corresponding tangent vector (which we also denote as β) is given by

β = βi ∂
∂xi
= γ ijβj ∂

∂xi
. (15.6)

We raise β by the induced metric γ̂ since it belongs to T (�t ). Vector fields
like β will be given a new life in our absolute space. We shall refer to vec-
tors belonging to T (�t ) as spatial vectors. They are, however, to be dis-
tinguished from spacelike vectors. Spacelike vectors can have a component
along t̃ . Spatial vectors are three-dimensional. Since n is normal to T (�t)

g(n, ∂i) = 0. (15.7)

In components, the above equation becomes

βjn
t + γijni = 0. (15.8)

From eq. (15.4) we get

gttn
t + βini = −α (15.9)

and since n is a unit timelike vector

gtt (n
t )2 + 2βin

int + γ ijninj = −1. (15.10)

Equations (15.8)–(15.10) can be solved immediately to obtain

n = 1

α
(∂t − βi∂i). (15.11)
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Equivalently,

∂t = α n+ βi ∂i. (15.12)

We now proceed to write the spacetime metric components in terms of α
and β:

gtt = g(t̃, t̃ ) = g(α n+ β, α n+ β)
=−α2 + 2 α g(n, β)+ g(β, β).

Therefore, we get that

gtt = β2 − α2.

The spacetime metric eq. (15.1) can now be written in the form

g = (β2−α2)dt⊗dt+βi[dt⊗dxi+dxi⊗dt]+γijdxi⊗dxj . (15.13)

β is traditionally called the shift vector.
Lowering the index to obtain the one-form corresponding to nµ, we see

that

nµ = 1

α
(gtµ − gµiβi).

Therefore,

nt = 1

α
(gtt − gtiβi) = 1

α
(β2 − α2 − βiβi) = −α

and

nj = 1

α
(gtj − gjiβi) = 0.

That is,

nµ = (−α, 0, 0, 0).
It is now easy to verify that in matrix form

gµν =



β2 − α2 β1 β2 β3

β1

β2

β3


 γij





 .

It is not too difficult to obtain a projection operator from T (M)→ T (�t).
The interested reader is referred to the footnote below.1 A quick calculation
reveals that √−g ≡

√
−det(g) = α

√
det(γ̂ ) ≡ α

√
γ̂ ,

1Let X be any vector in T (M). Then clearly, by an orthogonal decomposition

X = −g(X, n) n+ χ
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where det(g) and det(γ̂ ) are the determinants of the matrix representations
of g and γ̂ (the induced spatial metric given in eq. [15.3]). It is important
to distinguish the tensor g from the square root of the absolute value of its
determinant

√|g| = √−g (this rule applies to metric tensors of spacetime
and the absolute spaces). It should be clear to the reader by now that the
absolute spaces are hardly unique. They depend entirely on the time function
t that was chosen.

It is usual to give the invariant interval ds2 of a spacetime instead of the
metric tensor g. They are of course, closely related. Let α be any curve in
our spacetime parameterized by the variable τ as given in eq. (3.43). Then

ds2 ≡ g(α̇, α̇)dτ 2. (15.14)

Clearly, it is sufficient to give the expression for ds2 instead of the metric
tensor g. It will useful to briefly consider some simple examples from a
3+ 1 space and time point of view. As remarked earlier, far from regions of
strong gravitation the Minkowski spacetime will be adequate in describing
the background geometry. Here

ds2 = −dt2 + dx2 + dy2 + dz2, (15.15)

where (t, x, y, z) are the spacetime coordinates. Here (as per the notation
above) α = 1, βi = 0, and γij = δij , where as usual δij = 1 if i = j ,
and 0 otherwise. The absolute spaces are the usual Cartesian space �3 with
coordinates (x, y, z) endowed with the metric

γ̂ = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz. (15.16)

It will be instructive to write the above metric using the familiar spherical
coordinate system. In this case

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2). (15.17)

The coordinates used are (t, r, θ, ϕ), where x = r sin θ cosϕ, y = r sin θ
sinϕ, and z= r cos θ. Once again α= 1, βi = 0, and the nontrivial

for some unique χi∂i ∈ T (�t ), where g(n, χ) = 0 from eq. (15.7). But clearly,

Xµ = −g(X, n) nµ +Xµ + g(X, n) nµ = −g(X, n) nµ + (gµν + nµnν)Xν.

Therefore,
hµν = gµν + nµnν

is the projection operator we need. In components

hµν =




β2 β1 β2 β3

β1

β2

β3


 γij





 .

As expected, the purely spatial components of the tensors g and h agree.
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components of γ̂ are γrr = 1, γθθ = r2, and γϕϕ = r2 sin2 θ. Since all
we have done is a coordinate change, the absolute spaces continues to be
flat, and in spherical coordinates (r, θ, ϕ), the spatial metric takes the form

γ̂ = dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ). (15.18)

For the case of the Schwarzschild metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2).

(15.19)
Since there are no mixed time and space components in the metric, here
βi = 0 and α2 = (1 − 2M/r). The coordinate t is timelike when r > 2M ,
and in this region, the absolute space is described by the metric

γ̂ =
(
1− 2M

r

)−1

dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ). (15.20)

15.3 THE KERR METRIC

Ever since its inception in 1963 [449], the Kerr solution is the only can-
didate metric to describe the exterior gravitational field of an electrically
neutral, massive, stationary, compact object. From a theoretical point of
view, the Kerr solution has been supported by uniqueness theorems of vary-
ing sophistication. But the physical relevancy of the Kerr solution can be
discerned only by careful astrophysical observations of rapidly rotating
compact objects. The observational data has to be then matched up with
theoretical predications and calculations. Therefore, it is crucial that we
strive to do physics in a Kerr background. As a first step, in this section,
we will describe the salient properties of the Kerr solution. The discussion
here is merely functional. The reader is referred to the exhaustive book on
Kerr geometry by Barrett O’Neill [450]. However, the analysis that follows
is sufficient and self-contained.

The Kerr metric describes the time-independent, axis-symmetric gravita-
tional field of a collapsed object that has retained its angular momentum.
All matter having collapsed, the Kerr metric (where defined) satisfies the
vacuum Einstein equation

Rµν = 0. (15.21)

Rµν is the Ricci tensor defined in eq. (A.69). In the Boyer-Lindquist coor-
dinate system (t, r, θ, ϕ), the Kerr metric takes the form

ds2 = gttdt2 + 2βϕdtdϕ + γrrdr2 + γθθdθ2 + γϕϕdϕ2. (15.22)
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Here

gtt = −1+ 2Mr

ρ2
, gtϕ ≡ βϕ = −2Mra sin2 θ

ρ2
,

γrr = ρ2


, γθθ = ρ2, γϕϕ = �2 sin2 θ

ρ2
, (15.23)

where

ρ2 = r2 + a2 cos2 θ,

 = r2 − 2Mr + a2,

and

�2 = (r2 + a2)2 − a2 sin2 θ.

Additionally

α2 = ρ2

�2
, β2 = β2

ϕ

γϕϕ
,

√
γ̂ =

√
ρ2�2


sin θ, and

√−g = ρ2 sin θ.

Here, M can be interpreted as the mass and aM the angular momentum of
the black hole. It is convenient to pick the time orientation of the Kerr metric
consistently so that as r → ∞ and t̃ is future directed. The metric coeffi-
cient functions are independent of t and ϕ as expected from the assumed
symmetry. When a → 0, the Kerr metric reduces to the Schwarzschild
metric given by eq. (3.48). The Schwarzschild metric is both static and
spherically symmetric, and consequently describes the end product of a non-
rotating spherically symmetric collapse. The contravariant form of the Kerr
metric tensor is given by

g=− �2

ρ2
∂t ⊗ ∂t − 2aMr

ρ2
∂t ⊗ ∂ϕ − 2aMr

ρ2
∂ϕ ⊗ ∂t + 

ρ2
∂r ⊗ ∂r

+ 1

ρ2
∂θ ⊗ ∂θ + (− a

2 sin2 θ)

ρ2 sin2 θ
∂ϕ ⊗ ∂ϕ. (15.24)

We will find the following relationships obeyed by the components of the
Kerr metric in Boyer-Lindquist coordinates useful. Since they can be easily
verified by algebraic manipulation, we state them without proof:

a sin2 θgtt + gtϕ = −a sin2 θ, (15.25)
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(r2 + a2)gtϕ + aγϕϕ = a sin2 θ, (15.26)

(r2 + a2)gtt + agtϕ = −, (15.27)

and
a sin2 θgtϕ + γϕϕ = (r2 + a2) sin2 θ. (15.28)

It is clear that the Kerr metric is singular at ρ2 = 0. This is a true singularity
of the geometry and cannot be removed away by a coordinate transforma-
tion as can be verified by computing scalar quantities at ρ2 = 0 which
do not change with coordinate systems. In particular the contraction of
the Riemann tensor with itself is not well defined at ρ2 = 0. Explicitly,
RµναβR

µναβ →∞ as ρ2→ 0. The singularity at ρ2 = r2 + a2 cos2 θ = 0,
has an additional interesting feature in that it happens only when θ = π/2.
For an excellent, but brief, description of the true Kerr singularity and re-
lated matters, see Chandrashekar [451].

On the other hand, the singularity when  = 0 in the contravariant form
of the Kerr metric is unphysical. These apparent singularities are located at
r = r±, where

r± = M ±
√
M2 − a2 (15.29)

are the roots to the equation  = 0. To understand the properties of these
surfaces and the region bounded by them, we will have to rewrite the Kerr
metric in a coordinate system that is well behaved at r = r±. We will get to
these matters shortly.

15.3.1 The Geodesic Equation and Its Integrability in Kerr Geometry

The nature of the Kerr geodesics will play a vital role in understanding the
process of energy extraction from black holes. Energy extraction from ro-
tating black holes will be our chief concern in the following chapter. In a
four-dimensional spacetime we would need four constants along geodesics
to successfully integrate the geodesic equation. It is clear that we should
expect at least three such quantities:

1. The speed of a geodesic is a conserved quantity. In particular, the geo-
desic tangent vector u satisfies u2 = q2 where q2 = −1 and q2 = 0
for timelike and null geodesics, respectively.

2. Since the Kerr metric is time independent, we would expect a con-
served quantity that is related to the energy of the particle.

3. Owing to the axial symmetry of the geometry, or equivalently ϕ inde-
pendence of the metric functions, the angular momentum of the parti-
cle corresponding to the geodesic would remain a constant.
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Indeed, a fourth conserved quantity exists [452], and as such has enabled a
complete geometric analysis of the Kerr spacetime. But, before we embark
on deriving the fourth Carter’s constant (as it is called), lets quantify the
remaining two items above. Let u denote the tangent vector of a proper-time
parameterized geodesic, i.e.,

u(τ) = ṫ ∂t + ṙ∂r + θ̇∂θ + ϕ̇∂ϕ. (15.30)

Here, (as always) the overdot refers to the derivative with respect to proper
time τ . The symmetry properties of the Kerr geometry are reflected in its
Killing vectors. A vector field ξ is Killing if it satisfies the following
equation:

∇µξν + ∇νξµ = 0. (15.31)

It is not difficult to see that along any geodesic, g(ξ, u) = const, where u is
the geodesic tangent:

u g(ξ, u) = g(uµ∇µξ, u)+ g(ξ,∇uu) = 0.

In the above equation

uµuν∇µξν = 0,

since the symmetric sum of an antisymmetric object is trivial. Since the
metric coefficients in the Kerr geometry are independent of t , t̃ is a Killing
vector field. To check this, we see if t̃ satisfies the Killing equation. Note
that

∇µt̃ν + ∇ν t̃µ = gνγ∇µt̃γ + gµγ∇ν t̃γ. (15.32)

But,

gνγ∇µt̃γ = gνγ �γµαt̃α = gνγ �γµt =
1

2
gνγ g

γα(∂µgαt + ∂tgµα − ∂αgµt )

= 1

2
(∂µgνt − ∂νgµt ).

Substituting the above into eq. (15.32) we find

∇µt̃ν + ∇ν t̃µ = 1

2
(∂µgνt − ∂νgµt + ∂νgµt − ∂µgνt ) = 0,

i.e., t̃ satisfies the Killing equation (15.31). In a similar manner we can show
thatm = ∂ϕ is a Killing vector field of the Kerr geometry. Since Killing vec-
tors give rise to conserved quantities, we are now able to define the constants
of motion arising from t̃ and m. The energy E of the geodesic is given by

E = −g(t̃, u) = −(gtt ṫ + gtϕϕ̇). (15.33)
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The angular momentum L of the geodesic with four-velocity u is given by

L = g(m, u) = (gtϕ ṫ + γϕϕϕ̇). (15.34)

Clearly, E and L are constant along each geodesic. There is a slight abuse
of terminology here. For the case of particles with mass, since our timelike
geodesics are of unit speed, the quantities E and L defined above corre-
sponds to the energy and angular momentum per unit mass of the particle. It
should be clear that the definitions above will determine the time evolution
of the geodesic coordinates t and ϕ. The geodesic equations for t and ϕ in
eq. (15.30) are

ṫ = �2E − 2aMrL

ρ2
(15.35)

and

ϕ̇ = 2aMrE sin2 θ + (ρ2 − 2Mr)L

ρ2 sin2 θ
. (15.36)

This can be see by substituting expressions for the metric coefficients in eqs.
(15.33) and (15.34). The energy of the geodesic is given by

−E =
(
−1+ 2Mr

ρ2

)
ṫ − 2aMr sin2 θ

ρ2
ϕ̇. (15.37)

Similarly, from eqs. (15.23) and (15.34) we see that

L = −2aMr sin2 θ

ρ2
ṫ + �

2 sin2 θ

ρ2
ϕ̇. (15.38)

The above two equations can be inverted to obtain eqs. (15.35) and (15.36).
The promised fourth conserved quantity along Kerr geodesics is not so

immediately obtained. The most efficient way of deriving the remaining
constant of motion is by recalling that the geodesic equation is implied by
an Euler-Lagrange set of equations. Having a Lagrangian in our possession
lends itself to the sometimes very powerful set of equations of the Hamilton-
Jacobi theory. Following Carter [452], we shall show below that the action
is indeed completely separable in this case, and that, all the independent
conserved quatities of geodesic motion can be obtained using the Hamilton-
Jacobi formalism.

The Lagrangian for geodesic motion is given by (eq. [3.38])

L(xµ, ẋµ, τ ) = 1

2
gµνẋ

µẋν. (15.39)

Here, xµ are the coordinates, and can therefore in our case take on val-
ues t, r, θ , and ϕ. In relativity theory, the proper time parameter τ takes on
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the usual role of time. To pass from a Lagrangian formalism to Hamilton’s
method, we must first obtain the conjugate momenta. By definition,

Pµ = ∂L
∂ẋµ
= gµνẋν, (15.40)

where Pµ are the generalized momenta. Therefore, the Hamiltonian H ≡
H(xµ,Pµ, τ) becomes

H = Pµẋµ − L = 1

2
gµνPµPν. (15.41)

The Hamiltonian here is not an explicit function of τ and therefore is a con-
served quantity. Clearly, H = q2/2. To utilize the Hamilton-Jacobi method
we must introduce a function S such that it is a function of τ , the old coordi-
nates t, r, θ, ϕ and the new set of conserved quantities of geodesic motion:
q2, E,L,K . Here, K will turn out to be Carter’s constant. That is,

S = S(τ, t, r, θ, ϕ, q2, E,L,K). (15.42)

In addition, S is related to the conjugate momenta of the old coordinates as
follows.

∂tS = Pt , ∂rS = Pr , ∂θS = Pθ , and ∂ϕS = Pϕ. (15.43)

From eqs. (15.41) and (15.43) we get that

H = 1

2
gµν∂µS∂νS. (15.44)

The Hamilton-Jacobi equation ∂τS+H = 0 can now be written in the form

∂τS + 1

2
gµν∂µS∂νS = 0. (15.45)

From eqs. (15.24) and (15.45) we have

2∂τS= �2

ρ2
(∂tS)

2 + 4aMr

ρ2
∂tS∂ϕS − 

ρ2
(∂rS)

2 − 1

ρ2
(∂θS)

2

−(− a
2 sin2 θ)

ρ2 sin2 θ
(∂ϕS)

2. (15.46)

Assuming separability, let us try to write S in the form

S = −1

2
q2τ − Et + Lϕ + Sr(r)+ Sθ(θ). (15.47)

As suggested Sr is dependent only on r and Sθ only on θ . Here the τ depen-
dence of S was chosen so that

∂τS = −1

2
q2 = −1

2
gµνPµPν = −H,
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as required by the Hamilton-Jacobi equation. From eqs. (15.46) and (15.47)
we get[


(
dSr

dr

)2

− C
2


− q2r2

]
+

[(
dSθ

dθ

)2

+ D2

sin2 θ
− q2a2 cos2 θ

]
= 0.

(15.48)
Here,

C = C(r) = (r2+a2)E−aL and D = D(θ) = L−aE sin2 θ. (15.49)

The terms in the first square bracket above are functions of r alone, while
in the second square bracket they are functions of only θ . This gives us the
necessary separation constant K . Set



(
dSr

dr

)2

− C
2


− q2r2 = −K (15.50)

and (
dSθ

dθ

)2

+ D2

sin2 θ
− q2a2 cos2 θ = K. (15.51)

Define functions R(r) and �(θ) by

R(r) ≡ C2 + (q2r2 −K) (15.52)
and

�(θ) ≡ K + q2a2 cos2 θ − D2

sin2 θ
. (15.53)

Therefore, modulo an irrelevant additive constant, we get the following
expression for S:

S = −1

2
q2τ − Et + Lϕ +

∫ √
R


dr +

∫ √
� dθ. (15.54)

The result we need is obtained from the requirement

∂S

∂q2
= 0 = −1

2
τ +

∫
1

2
√
R

∂R

∂q2
dr +

∫
1

2
√
�

∂�

∂q2
dθ (15.55)

and
∂S

∂K
= 0 =

∫
1

2
√
R

∂R

∂K
dr +

∫
1

2
√
�

∂�

∂K
dθ. (15.56)

Taking the derivative with respect to proper time after substituting the ex-
plicit form of R in eq. (15.55), we get

1 = r2

√
R
ṙ + a

2 cos2 θ√
�

θ̇. (15.57)
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Similarly, from eq. (15.56) we see that

ṙ√
R
= θ̇√

�
. (15.58)

Therefore, the geodesic equations for r and θ in eq. (15.30) for the Kerr
geometry are given by

ρ4ṙ2 = R(r) (15.59)

and

ρ4θ̇2 = �(θ). (15.60)

Here, the Carter constant K brought about a separation of variables, thus
permitting the integrability of Kerr geodesic equations (15.59) and (15.60).

Null geodesics that stay on a constant value of θ will be important to our
analysis. For null geodesics q2 = 0. Here, we will also set K = 0, E = 1,
and L = a sin2 θ . When this happens, from eq. (15.53) we see that θ̇ = 0 as
required, for only then isL = a sin2 θ is a constant of motion. Consequently,
from the above derived equations of motion, we see that the components of
the geodesic tangent vectors take the simple form

ṫ = r2 + a2


, ṙ = ±1, θ̇ = 0 and ϕ̇ = a


.

It will be convenient to define the following two null geodesic tangent
vectors:

l+ = 1



[
(r2 + a2)∂t +∂r + a∂ϕ

]
(15.61)

and

l− = 1



[
(r2 + a2)∂t −∂r + a∂ϕ

]
. (15.62)

Here l+ is outgoing (ṙ > 0), and l− is infalling (ṙ < 0).
As was mentioned before, the Boyer-Lindquist coordinates fail at r = r+.

Even the null geodesics defined above are not valid when = 0. In order for
our analysis to be valid beyond this value of r , we must be able to transform
all the relevant quantities to a coordinate system that is well defined across
this region. This is the central purpose of the Kerr-Schild coordinate system
that we will discuss in the following section.

15.3.2 The Kerr Metric in Kerr-Schild Coordinates

As expected, the coordinate transformation will be singular at r = r+ if the
new coordinates are to remove the existing unphysical singularity. Clearly,
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this is the case below. The Kerr-Schild coordinates are t̄ , r̄, θ̄ , and ϕ̄. They
are related to the Boyer-Lindquist coordinates by the following relations:

r̄ = r, θ̄ = θ, dt̄ = dt + 2Mr


dr, and dϕ̄ = dϕ + a


dr.

(15.63)

The overbar is placed on r and θ so that no confusions arise while per-
forming coordinate transformations. We will have plenty of opportunities to
compare various components of tensors in the Boyer-Lindquist and Kerr-
Schild coordinates. Therefore, it will be crucial to establish the transforma-
tion properties as early as possible. Clearly,


dt̄

dr̄

dθ̄

dϕ̄


 =




1 G 0 0
0 1 0 0
0 0 1 0
0 H 0 1






dt

dr

dθ

dϕ


 , (15.64)

where

G = 2Mr


and H = a


. (15.65)

We can write the above equation as

dx̄µ = Aµν dxν. (15.66)

Here, as will be the case always, “barred” quantities refer to the Kerr-Schild
objects, and the “unbarred” objects are the equivalent Boyer-Lindquist
objects. Also, Aµν is the transformation matrix defined in eq. (15.64). For
a one-form X,

X̄µdx̄
µ = X̄µAµν dxν ≡ Xνdxν, (15.67)

i.e, in component form

Xν = Aµν X̄µ. (15.68)

Taking the inverse of Aµν we find

X̄µ = (A−1)νµXν, (15.69)
where

(A−1)νµ =




1 −G 0 0
0 1 0 0
0 0 1 0
0 −H 0 1


. (15.70)

It is now a trivial matter to work out the transformation properties of vectors,

dx̄µ
(
∂

∂x̄ν

)
= δµν , (15.71)
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where δµν is the Kronecker delta. Let

∂

∂x̄ν
= Bβν

∂

∂xβ
. (15.72)

Then, using eq. (15.66), eq. (15.71) becomes

Aµαdx
α

(
Bβν

∂

∂xβ

)
= δµν . (15.73)

Therefore

AµαB
α
ν = δµν , (15.74)

i.e.,

Bαν = (A−1)αν . (15.75)

Therefore from eq. (15.72) and the above equation we get the transformation
properties for the components of a vector Y ,

Ȳ α = AαβYβ. (15.76)

Equations (15.69) and (15.76) can be used to transform general tensors.
We are now in a position to compute the metric tensor in the Kerr-Schild
coordinate system. Various metric identities listed in eqs. (15.25)–(15.28)
will be required to simplify the expressions. To illustrate the nature of the
simplifications, will carry out the calculation of ḡr̄ r̄ explicitly, leaving the
others to the reader to verify:

ḡr̄ r̄ =Bα1Bβ1 gαβ =
(
G2gtt +GHgtϕ

)+ (
GHgtϕ +H 2γϕϕ

)+ γrr . (15.77)

But,
(
G2gtt+GHgtϕ

)
= G


(
2Mrgtt+agtϕ

)
= G


[
(r2 + a2)gtt + agtϕ −gtt

]
.

Using eq. (15.27), the above equation gives
(
G2gtt +GHgtϕ

) = −G(1+ gtt ) . (15.78)

Similary, using eq. (15.26) we find that
(
GHgtϕ +H 2γϕϕ

) = H (
a sin2 θ − gtϕ

)
. (15.79)

Placing eqs. (15.78) and (15.79) in eq. (15.77), we get

ḡr̄ r̄ = 1+ 2Mr

ρ2
.
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In a similar manner, we find that in Kerr-Schild coordinates the metric
components in the basis {t̄ , r̄, θ̄ , ϕ̄} become

ḡµν =




z − 1 z 0 −za sin2 θ

z 1+ z 0 −a sin2 θ(1+ z)
0 0 ρ2 0

−za sin2 θ −a sin2 θ(1+ z) 0 �2 sin2 θ/ρ2


 ,

(15.80)

where z = 2Mr/ρ2. As required, the metric above is not singular when
 = 0. In going to a 3 + 1 space and global time formalism, we must
remember that, here we have different foliations of space. Spacelike slices
in the two coordinate systems are not equivalent. On spacelike slices dt̄ = 0,
the three-metric in a basis {r̄ , θ̄ , ϕ̄} become

γ̄ij =




1+ z 0 −a sin2 θ(1+ z)
0 ρ2 0

−a sin2 θ(1+ z) 0 �2 sin2 θ/ρ2


 . (15.81)

Also

ᾱ = 1/
√

1+ z and β̄ = zdr̄ − za sin2 θdϕ̄. (15.82)

Lowering the above one-form β using eq. (15.81), the shift vector becomes

β̄ = z

1+ z
∂

∂r̄
. (15.83)

Having removed the coordinate singularity at  = 0, we are able to mean-
ingfully extend our analysis beyond the r = r+ mark.

15.3.3 The Ergosphere

The causal character of the coordinate function t changes even outside the
event horizon. To see this explicitly, let us locate the set of points such that
gtt = 0. This is given by the surface

rerg(θ) = M +
√
M2 − a2 cos2 θ. (15.84)

Therefore, gtt > 0 in the region

r+ < r < rerg(θ), (15.85)

and consequently t̃ ≡ ∂t becomes spacelike in the above region. We shall
refer to the region defined by eq. (15.85) as the ergosphere (see figure 15.2).
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rerg (θ)

r+

r−

Figure 15.2 r± locate the horizons of the Kerr geometry. The shaded region is the
ergosphere.

When r > rerg, t̃ is timelike and future directed (as per our choice of time
orientation). Inside the ergosphere we can no longer use t̃ as our candidate
future-pointing timelike vector. Therefore, the nature of the future cones
inside the ergosphere becomes unclear. The same problem exists beyond
r = r+ (as we shall see below, this region brings about other interesting fea-
tures). Both of these issues can now be handled in one stroke. To this end, let
us write the null geodesic l− in the Kerr-Schild coordinate system. We will
denote the corresponding Kerr-Schild vector as l̄. Using the transformations
listed above we get from eq. (15.62) that

l̄− = ∂t̄ − ∂r̄ . (15.86)

The above vector field is well defined so long as the Kerr-Schild coordinate
system is. As r →∞ we have that g(l̄−, t̃)→−1. Therefore, l̄− is asymp-
totically future pointing. But, since l̄− is nowhere vanishing, for consistency
reasons l̄− is future pointing everywhere. Therefore, we shall take the time-
cone containing l̄− as the future cone at every point in the region defined by
r− < r since the Kerr-Schild coordinates is single valued and well defined
in this region. In particular, l̄− prescribes the future cone in the ergosphere.

Even though t̃ is not timelike in the ergosphere, the coordinate func-
tion t does increase for observers in the ergosphere. To see this, note that
eq. (15.24) implies that

gµν∇µt∇νt = gµν∇µt∇ν t = gtt < 0. (15.87)

Therefore, ∇µt is timelike in the ergosphere. Since l̄− is future pointing,

gµν l̄
µ∇νt = l̄µ∇µt = l0 = r2 + a2


> 0 (15.88)
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implies that ∇µt is past-directed timelike in the ergosphere. Consequently,
for an observer with future-pointing four-velocity u

0 < gµνu
µ∇ν t = uµ∇µt = ṫ . (15.89)

Therefore, for an observer in the ergosphere with four-velocity u(τ) =
(ṫ , ṙ, θ̇ , ϕ̇)

ṫ > 0. (15.90)

In the ergosphere, since t̃ is spacelike, an observer cannot remain static. A
static observer is one whose curve traced out in the spacetime has a fixed
value of r, θ , and ϕ. The required rotation of an observer in the ergosphere
can be thought of as an extreme case of frame dragging. At best, all we
can have are stationary observers. Stationary observers move along constant
values of r and θ . More precisely, as an object with mass falls into the er-
gosphere, it starts to rotate along with the black hole. This can be seen as
follows:

Let α(τ) be the curve traced out the by a stationary observer. The four-
velocity of the observer then takes the form

α̇ = u(τ) = (ṫ , 0, 0, ϕ̇).
We also require that

−1 = u2 = [
(β2 − α2)ṫ2 + γϕϕϕ̇2 + 2βϕṫ ϕ̇

]
. (15.91)

If such an observer is to be static, ϕ̇ must vanish. Inside the ergosphere, all
but the last term on the right hand side of eq. (15.91) is positive. Therefore,
for eq. (15.91) to hold true

βϕ ϕ̇ < 0

for timelike curves, since ṫ > 0 even in the ergosphere. From eq. (15.23)
the above inequality remains true only when

a ϕ̇ > 0.

In particular, there are no static observers in the ergosphere, for the observer
is forced to rotate along with the black hole.

15.3.4 The Event Horizon

In the region r− < r < r+, < 0. Since changes sign in this region,−∂r
is necessarily timelike. We will now show that −∂r is contained in the same
timecone as l−; or equivalently we need that

g(−∂r , l−) < 0. (15.92)
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Using the transformation matrix constructed above we see that

− ∂
∂r
= −G ∂

∂t̄
− ∂

∂r̄
−H ∂

∂ϕ̄
. (15.93)

Therefore,

g(−∂r, l−)=−[G(ḡt̄ t̄−ḡt̄ r̄ )]+H [(ḡt̄ ϕ̄−ḡϕ̄r̄ )]−(ḡt̄ r̄−γ̄r̄ r̄ ))=
ρ2


. (15.94)

Since  < 0 in the region of interest, we have the necessary result. Conse-
quently, −∂r is future pointing and timelike when r− < r < r+.

This claim leads to a very important result in general relativity. For a
particle with future-pointing four-velocity u,

g(u,−∂r) < 0→ ṙ < 0,

when r− < r < r+. Therefore, if a particle (massless or otherwise) enters
the region r < r+, it will have necessarily have to move along decreasing
values of r until it is thrown into the region r < r− where  is positive and
−∂r is no longer timelike. Therefore r = r+ forms a one-way membrane.
Particles entering it may never escape, thus r = r+ is referred to as the event
horizon and it forms the boundary of the black-hole region. Consequently,
what happens beyond r = r− will never affect physics (and indeed life)
in our region of the spacetime, i.e., for values of large r , since particles in
the region r < r− may never enter the region r > r−. For this reason,
r = r− is called the Cauchy horizon. Figure 15.2 shows the ergosphere and
the horizons of the Kerr black hole when a2 < M2.

15.4 THE PENROSE PROCESS

As early as 1969, Roger Penrose [453] pointed out the possibility of extract-
ing energy from rotating black holes. As we shall see, such an extraction of
energy is possible only due to the existence of the ergosphere.

We begin our analysis with a few preliminaries. Outside the ergosphere
t̃ is future pointing and timelike. Therefore, for a particle (regardless of
its mass) moving along a geodesic outside the ergosphere we have
that

g (u, t̃ ) < 0. (15.95)

From eq. (15.33), we have that the energy E of such an object must be
greater than zero. Positivity of E is, however, not a requirement for causal
geodesics in the ergosphere (since t̃ is not timelike here). Naturally,
particles flowing along geodesics with E < 0 will not be able to escape
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the ergosphere into the asymptotically flat region, since the energy E in this
region must be a positive quantity for the four-velocity of the particle to be
future pointing. For a future-pointing causal four-velocity u we need ṫ > 0
and ϕ̇ > 0 in the ergosphere. From eqs. (15.35) and (15.36), we see that this
is possible for geodesics so long as

�2E > 2aMrL (15.96)

and

2aMrE sin2 θ > (2Mr − ρ2)L. (15.97)

As usual, here E and L are the energy and angular momentum constants
associated with the geodesics. Notice, in the ergosphere (2Mr − ρ2) > 0.
Clearly, if we want orbits with E < 0, we must also have that L < 0.
We shall see below that the above relations will place a restriction on the
amount of energy that can be extracted from the black hole. Thus, we see
that geodesics in the ergosphere are permitted to have “negative” values of
energy E. Such “negative-energy” particles can be used for energy extrac-
tion from Kerr black holes. It is important to note that these particles are
never observed in regions outside r > rerg(θ).

Let us consider the simplest example put forth by Penrose in some detail.
Our presentation of the Penrose process leans heavily on [451]. To extract
energy from the black hole we would send an object with four momentum p0

toward the hole via a timelike geodesic. Inside the ergosphere, this object is
set to decay into two photons. One photon with negative energy will fall into
the black hole, whereas the other photon would escape from the ergosphere
into regions of large r . Conservation of energy would then imply that the
photon emerging from the ergosphere will have a greater total energy than
the initial particle with mass. To see how this would happen let us set up the
necessary notation:

1. The four-momentum of the initial infalling particle (along a timelike
geodesic):

p0 = m (ṫ0, ṙ0, θ̇0, ϕ̇0). (15.98)

2. The four-momentum of the decayed photon with negative energy (along
a lightlike geodesic) that falls into the hole:

p1 = (ṫ1, ṙ1, θ̇1, ϕ̇1). (15.99)

3. The four-momentum of the decayed photon that escape into regions of
large r (along a lightlike geodesic):

p2 = (ṫ2, ṙ2, θ̇2, ϕ̇2). (15.100)
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At the point of decay r = rd (for r+ < rd < rerg(θ)), conservation of
four-momentum would imply

p0 = p1 + p2. (15.101)

For simplicity, we would want all these geodesics to lie in the θ = π/2
plane. Now, its just a matter of calculating the various geodesics constants
for the three particle to make sure that all of what we want can be done
consistently. To this end, lets recall the results of eqs. (15.59) and (15.60)
and specialize it to the θ = π/2 plane. The r and θ coordinates of all the
geodesics above must satisfy

ρ4ṙ2 = R(r) ≡ C2 +(q2r2 −K) (15.102)

and

ρ4θ̇2 = �(θ) ≡ K + q2a2 cos2 θ − D2

sin2 θ
, (15.103)

where

C = C(r) = (r2 + a2)E − aL and D = D(θ) = L− aE sin2 θ.

As before, here, K is the Carter’s constant. Since we want all geodesics
to be in the θ = π/2 plane, following eq. (15.103), we set

K0 = D2
0 , K1 = D2

1, and K2 = D2
2 . (15.104)

The subscripts on all quantities refer to the particle labels as given in
eqs. (15.98)–(15.100). We will also pick the initial object to have unit mass,
and we will drop it from rest at infinity, i.e.,

m = 1 and E0 = 1. (15.105)

At r = rd , contracting the four-momentum conservation equation
eq. (15.101) with the Killing vectors of the Kerr geometry, we get the con-
servation of energy and angular momentum relations, i.e.,

1 = E1 + E2 and L0 = L1 + L2. (15.106)

The above equations will not uniquely specify the remaining constants. One
way to insist on eq. (15.101), and a safe return of our energetic photon is to
require that r = rd is the only turning point of all the three geodesics. That
is we require that at r = rd we have that ṙ0 = ṙ1 = ṙ2 = 0. Then clearly,
eq. (15.106) will ensure that

(ṫ0, 0, 0, ϕ̇0) = (ṫ1, 0, 0, ϕ̇1)+ (ṫ2, 0, 0, ϕ̇2), (15.107)

since ṫ and ϕ̇ are given by eqs. (15.35) and (15.36). To impose the turning
point condition in eq. (15.102), we set ṙ0 = 0 at r = rd for E0 = 1 and
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q2 = −1, and solve for L0. This gives

L0 = 1

2M − rd
(
2aM −√

2Mrd rd
)
. (15.108)

Here, r = 2M locates the outer boundary of the ergosphere in the θ = π/2
plane, and rd =  (r = rd). For rd close to the event horizon,  ≈ 0 and
so L0 > 0 (we picked the appropriate root for the quadratic equation for L0

in eq. [15.102] so that this happens). Similarly, from eq. (15.102), setting
ṙ1 = 0 at r = rd for as yet arbitrary but negative E1 gives

L1 = 1

2M − rd
(
2aM + rd

√
rd

)
E1. (15.109)

Here, we set q2 = 0, since this geodesic describes a photon. Clearly, when
E1 is less than zero, so is L1. Finally, for photon number 2 we get in a
similar manner that

L2 = 1

2M − rd
(
2aM − rd

√
rd

)
E2. (15.110)

With little difficulty we obtain from eqs. (15.106), (15.108), (15.109), and
(15.110) the values for the photon energies:

E1 = −1

2

(√
2M

rd
− 1

)
and E2 = 1

2

(√
2M

rd
+ 1

)
. (15.111)

Indeed, the gain in energy in this process is given by

E = E2 − E0 = E2 − 1 = 1

2

(√
2M

rd
− 1

)
= −E1 (15.112)

as expected. This is the Penrose process.
As we have seen, negative energy particles in the ergosphere have nega-

tive angular momentum. As the black hole swallows such particles, the mass
and the angular momentum of the black hole decrease. This will also lead
to a decrease in the ergosphere region. Once the ergosphere vanishes, we
cannot continue further with the extraction process. This places a natural
limit on the amount of energy we can extract from the black hole. We now
proceed to calculate this limit.

Consider the geodesic that describes the negative energy photon (or any
other particle in general) that falls into the hole. From remarks made earlier,
we know that for such a geodesic, in the ergosphere ṫ ≥ 0 and ϕ̇ ≥ 0.
Therefore, at the event horizon, as the particle enters the black hole, from
eqs. (15.96) and (15.97) we get the single condition

E ≥ �HL. (15.113)
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Here, eqs. (15.96) and (15.97) were evaluated at r = r+ (i.e.,  = 0), and

�H = a

r2+ + a2
= a

2Mr+
. (15.114)

�H is usually referred to as the angular velocity of the event horizon. After
the negative energy particle falls into the black hole, it suffers a mass and
angular momentum decrease subject to the condition

δM ≥ �H δJ. (15.115)

Here, J = aM is the angular momentum of the black hole. To consider the
time evolution of the Kerr black hole, which is subject to energy extraction,
let us assume that this process is done in a very slow manner so that we
may employ the adiabatic approximation. That is, the black-hole geometry
continues to be described by the Kerr metric with its new value ofM and J ,
i.e.,

M → M + δM and J → J + δJ. (15.116)

Of course δJ = δ(aM) = M δa + a δM . Christodoulou [454] defines the
irreducible mass of the black hole as

M2
irr =

1

2

(
M2 +

√
M4 − J 2

)
= 1

2
M

(
M +

√
M2 − a2

)
. (15.117)

To obtain the utility and the meaning of the above expression, lets compute
the variation of the irreducible mass. We will do this in the usual manner by
taking its variational derivative. Consider variations of the type

M → M + λ δM and a→ a + λ δa. (15.118)

Here λ is the variational parameter. By definition

δM2
irr=

dM2
irr

dλ

∣∣∣∣
λ=0

= 1

2
δM(M +

√
M2 − a2)+ 1

2
M

(
δM + 2M δM − 2a δa

2
√
M2 − a2

)

= 1

2
√
M2 − a2

[(2Mr+ − a2) δM − aM δa]. (15.119)

But from eq. (15.115)

(2Mr+ − a2) δM > a δJ − a2 δM = aM δa. (15.120)

The above two equations imply that

δM2
irr > 0.
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Therefore, the irreducible mass of a black hole cannot decrease as it expels
energy and angular momentum. Equation (15.117) can be inverted to give:

M2 = M2
irr +

J 2

4M2
irr

. (15.121)

Now consider a Kerr black hole with some initial value of mass and angular
momentum Mi and Ji . We can at best extract energy from the hole such
that δM2

irr = 0 (the theoretical ideal). At the end of the energy extraction
process, the mass of the black hole has now been reduced to the value M =
Mirr(Mi, Ji). From the above equation we see that this happens when the
new J = 0, i.e., the ergosphere has disappeared. Consequently, the term

J 2

4M2
irr

(15.122)

can be thought of as the extractable rotational energy of the black hole. Since
J 2
i = M2

i for a maximally rotating Kerr black hole, the percent of energy
that can be extracted from the hole is given by(

1− Mirr

Mi

)
× 100% =

(
1− 1√

2

)
× 100% ≈ 29%. (15.123)

Thus we see that the astrophysical black hole has little in common with its
proverbial counterpart.

15.5 HAWKING RADIATION

It has been well known for some time now that black holes can also radiate
energy by means of a purely quantum mechanical process [455]. Unlike the
Penrose process, Hawking radiation from black holes does not require an
ergosphere. When considering particle production in the presence of a strong
gravitational field, we enter the realm of quantum field theory in curved
spacetime—a topic that is well outside the scope of this book. However,
the essential features of this process can be understood with the slightest
knowledge of quantum field theory (or even the quantum mechanical har-
monic oscillator for that matter). In this section, we will carefully outline
this radiation process. For computational simplicity, we will restrict our
discussion to scalar particles.

15.5.1 Scalar Fields in Curved Spacetime

Consider a massless scalar field φ in a curved spacetime whose equation of
motion is given by

∇µ∇µφ = 0. (15.124)
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Just as in our applications of classical general relativity, we will continue
our discussion here within the 3 + 1 formalism used before. Consider a
particular foliation of the background spacetime into spacelike slices �. On
� we define an inner product on functions φ that satisfy eq. (15.124),

(φ1, φ2) = i
∫
(φ∗2∇nφ1 − φ1∇nφ∗2) dV . (15.125)

As usual, n is the unit timelike vector field that is orthogonal to� and dV =√
γ̂ d3x is the volume element on the spacelike hyperspaces, and ∗ denotes

complex conjugation. The inner product defined above is independent of the
spacelike slice chosen. To see this, consider integrable functions φ1 and φ2

that satisfy eq. (15.124) such that they vanish at spatial infinity. Let �1 be
the spacelike surface at t = t1, and �2 be the spacelike surface at t = t2
with t2 > t1. Let B be the four-dimensional volume bounded by the surface.
Then

(φ1, φ2)�1 − (φ1, φ2)�2 = i
∫
∂B

(φ∗2∇nφ1 − φ1∇nφ∗2 ) dV, (15.126)

but

i

∫
∂B

(φ∗2∇nφ1 − φ1∇nφ∗2) dV = i
∫
∂B

(φ∗2∇µφ1 − φ1∇µφ∗2 ) nµ dV,
(15.127)

and since n is a unit normal vector, we get from the four-dimensional version
of the divergence theorem that

i

∫
∂B

(φ∗2∇µφ1−φ1∇µφ∗2 ) nµ dV = i
∫
B

∇µ(φ∗2∇µφ1−φ1∇µφ∗2 )
√−g d4x.

(15.128)

But the integrand in the right-hand side of the above equationes vanishes
due to eq. (15.124):

∇µ(φ∗2∇µφ1 − φ1∇µφ∗2 ) = φ∗2∇µ∇µφ1 − φ1∇µ∇µφ∗2 = 0. (15.129)

From eqs. (15.126)–(15.129) we see that

(φ1, φ2)�1 = (φ1, φ2)�2 (15.130)

as claimed. It should be noted that the inner product defined above is not
positive definite. In particular,

(f, f ) = −(f ∗, f ∗). (15.131)

In order to proceed with the canonical quantization of the scalar field, we
must choose a complete set of basis functions {φk, φ∗k } that satisfy



chapter15 July 16, 2009

404 CHAPTER 15

eq. (15.124) such that

(φk, φk′) = δ(k − k′), (15.132)

which implies that

(φ∗k , φ
∗
k′) = −δ(k − k′), (15.133)

along with the requirement that

(φk, φ
∗
k′) = 0. (15.134)

Here k is just a convenient label. The above equation is consistent with the
requirement that (f, f ∗) = 0 for any smooth function f . Here δ(k − k′) is
the usual delta-function such that∫

dk g(k)δ(k − k′) = g(k′)

for any smooth function g.

15.5.2 The Quantum Field for a Scalar Particle in a Flat Spacetime

In Minkowski space, for example, the positively normed functions are
given by

φk = 1√
(2π)3

1√
2ω
e−i(ωt−k·x) (15.135)

for any three-vector k. Here ω ≡ √m2 + k2. The quantum field for the
scalar particle can be written as

φ(x) =
∫
d3k ak φk(x)+ a†

k φ
∗
k(x), (15.136)

where ak and a†
k are annihilation and creation operators such that their com-

mutators are given by

[ak, a
†
k′] = δ(k− k′) (15.137)

and

[ak, ak′] = 0 = [a†
k, a

†
k′]. (15.138)

The adjoint a†
k of the operator ak is defined so that

〈f | a†
k g〉 ≡ 〈ak f |g〉 (15.139)
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for every |f 〉 and |g〉 in the Hilbert space of multiparticle states with inner
product denoted by

〈g|f 〉.
Since quantum field theory in flat spacetime is invariant under Lorentz trans-
formations, the vacuum state |0〉 is defined by the conditions

ak|0〉 = 0 for every three-vector k. (15.140)

This vacuum is well defined in the sense that all inertial observers agree on
its meaning. Any other inertial observer will see a vacuum as well. Multi-
particle states are obtained by the action of the creation operators on the vac-
uum state. For example, a two-particle state with momentum three-vectors
k1 and k2 are given by

a
†
k1
a

†
k2
|0〉. (15.141)

The number operator

Wk ≡ a†
kak

counts the number of particles with momentum k and energy ω≡√m2+k2

in a given multiparticle state, for clearly

Nk(a
†
k)
n|0〉 = n (a†

k)
n|0〉.

The notion of particle content is taken for granted in flat space quantum field
theory. In other words, suppose you have an n-particle state in one inertial
frame, then all other inertial observers seen an n-particle state. This is true
because all observers are related to each other by a mere Lorentz transfor-
mation. As we shall see below, this will not be the case when noninertial
agents conduct observations.

15.5.3 Particle Creation in Curved Spacetime

In curved spacetime, there is no unique complete set of functions {φk}. Con-
sider a spacetime which is stationary in the infinite past (the in region) and
in the infinite future (the out region). Let {φk} and {ψk} be a complete set of
positively normed solutions of eq. (15.124) such that

(φk, φk′) = (ψk, ψk′) = δ(k − k′), (15.142)

and consequently

(φ∗k , φ
∗
k′) = (ψ∗k , ψ∗k′) = −δ(k − k′), (15.143)

along with the requirement that

(φk, φ
∗
k′) = (ψk, ψ∗k′) = 0. (15.144)
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Since {φk} and {ψk} reside in the same space, it is possible to make the
following expansion:

φj =
∫
dk

(
αjkψk + βjkψ∗k

)
. (15.145)

αjk and βjk are in general complex numbers and are referred to as
Bogoliubov coefficients. The orthonormalization condition eq. (15.142)
implies that

(φj , φj ′)=
∫
dk ds (αjk ψk + βjk ψ∗k , αj ′s ψs + βj ′s ψ∗s )

=
∫
dk ds [(αjk ψk, αj ′s ψs)+ (βjk ψ∗k , βj ′s ψ∗s )]

=
∫
dk ds [αjk α

∗
j ′s(ψk, ψs)+ βjk β∗j ′s(ψ∗k , ψ∗s )].

Therefore, the Bogoliubov coefficients satisfy∫
dk

(
αjk α

∗
j ′k − βjk β∗j ′k

)
= δ(j − j ′). (15.146)

Similarly, eq. (15.144) gives∫
dk

(
αjk αj ′k − βjk βj ′k

) = 0. (15.147)

Equation (15.145) can be inverted to give

ψj =
∫
dk

(
α∗jkφk − βjkφ∗k

)
. (15.148)

We further assume that φk ∝ e−iωt in the in region (as t → −∞) and that
ψk ∝ e−iωt in the out region (as t → +∞). Here ω is a fixed positive
function of k. Such solutions are possible since the spacetime is stationary
when t →±∞. The in-vacuum is such that

ak|0〉in = 0 (15.149)

for every in annihilation operator ak. a
†
k are creation operators associated

with ak such that the set {ak, a†
k } satisfy eqs. (15.137) and (15.138). The

number of particles present in the far past can be calculated by using the in
number operator

Nin,k ≡ a†
kak.

We define the out vacuum in an analogous manner:

bk|0〉out = 0 (15.150)
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for every out annihilation operator bk, and b†
k are creation operators associ-

ated with bk that satisfy eqs. (15.137) and (15.138) as well. Also, the number
of particles present in the far future can be calculated by using the out
number operator

Nout,k ≡ b†
kbk.

The quantum field for the scalar particle in a curved spacetime is given by

φ(x) =
∫
dk ak φk(x) + a

†
k φ
∗
k (x). (15.151)

Equivalently,

φ(x) =
∫
dk bk ψk(x)+ b†

k ψ
∗
k (x). (15.152)

To avoid any notational confusion, we restate that φ denotes the quantum
field operator for the scalar particle, whereas {φk} are the positively normed
bases functions that have a positive frequency in the in region (i.e., φk ∝
e−iωt as t →−∞, where ω = ω(k) > 0). The argument x locates points in
spacetime. Since aj = (φ, φj ) we can use eq. (15.145) to obtain

aj =
∫
ds (bs ψs + b†

s ψ
∗
s , φj )

=
∫
ds dk (bs ψs + b†

s ψ
∗
s , αjk ψk + βjk ψ∗k ).

Therefore,

aj =
∫
dk (α∗jk bk − β∗jkb†

k). (15.153)

Similarly, using the fact that bk = (φ, ψk) and eq. (15.148), we get that

bj =
∫
dk (αkj ak + β∗kja†

k ). (15.154)

Now, consider the circumstance where you have the in state as the vacuum
|0〉in. If the curvature of spacetime can indeed create particles, the expecta-
tion value of the number of particles with mode j in the out region is
given by

in〈0|Nout,j |0〉in = in〈0|b†
j bj |0〉in. (15.155)

Using the expansion given in eq. (15.154) we get that

in〈0|Nout,j |0〉in =
∫
dk ds in〈0|(βkj ak + α∗kj a†

k )(αsj as + β∗sj a†
s )|0〉in.
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Therefore,

in〈0|Nout,j |0〉in =
∫
dk |βkj |2. (15.156)

It turns out that it is a generic feature of black hole spactimes that the above
quantity is nontrivial. It is this process of particle creation that leads to
Hawking radiation.

15.5.4 Particle Creation in Rindler Spacetime

The simplest case of particle creation occurs when detectors are carried by
non-inertial observers in Minkowski spacetime. Specifically, let us consider
the two-dimensional (2D) Rindler spacetime as defined by the metric

g = −(κx)2dt ⊗ dt + dx ⊗ dx. (15.157)

Here −∞ < t < ∞. Since this metric is singular at x = 0, we will restrict
our spatial coordinate to 0 < x < ∞. Also, κ > 0 , is a constant that is
included for dimensional consistency. To understand the geometry of this
spacetime, consider coordinates (u, v) defined by

κu = κt − ln x and κv = κt + ln x. (15.158)

The Rindler spacetime is covered by −∞ < u <∞ and −∞ < v <∞. In
this coordinate system the metric becomes

g = −κ
2

2
eκ(v−u) (du⊗ dv + dv ⊗ du) . (15.159)

Let us make a further coordinate transformation given by

ū = −e−κu and v̄ = eκv. (15.160)

In this coordinate system the metric becomes

g = −1

2
(dū⊗ dv̄ + dv̄ ⊗ dū) . (15.161)

Here ū < 0 and v̄ > 0 describes the original Rindler spacetime. But the
metric in eq. (15.161) has no coordinate singularities, and therefore can be
extended to all values of ū and v̄. It is easily seen that when −∞ < ū <∞
and −∞ < v̄ <∞, eq. (15.161) describes the 2D Minkowski metric by the
following coordinate transformation:

t̄ = v̄ + ū
2

and x̄ = v̄ − ū
2

. (15.162)

In the t̄ , x̄ coordinate system

g = −dt̄ ⊗ dt̄ + dx̄ ⊗ dx̄. (15.163)



chapter15 July 16, 2009

THE GEOMETRY OF SPACETIME 409

Rindler Spacetime

t

x

t = x , x > 0

t = − x , x > 0

Figure 15.3 The Rindler spacetime is the wedge x̄ > |t̄ | of the Minkowski
geometry.

What we have shown here is that the Rindler spacetime in contained within
the Minkowski geometry. A quick calculation reveals that x = √x̄2 − t̄2.
Therefore, as shown in figure 15.3, the Rindler spacetime is simply the
wedge x̄ > |t̄ | of the Minkowski geometry.

The null geodesics

l = ṫ ∂t + ẋ ∂x (15.164)

of the Rindler spacetime are such that

−(κx)2 ṫ2 + ẋ2 = 0. (15.165)

Here, the overdot refers to the derivative with respect to an affine parameter.
The above equation is easily integrated by noting that

(dt/dx)2 = 1

(κx)2
. (15.166)

Consequently, along null geodesics

κt ± ln x = const. (15.167)

Clearly, u = const and consequently ū = const delineate the outgoing null
geodesics. Similarly, v = const and consequently v̄ = const delineate the
infalling null geodesics. The boundary

t̄ = x̄ , x̄ > 0 (15.168)
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H − ℑ−

ℑ+
H +

U = tan−1 u
V = tan−1 v

Rindler Wedge

Figure 15.4 The asymptotic structure of the Rindler spacetime. The coordinate
transformation U = tan−1 ū and V = tan−1 v̄ brings points at infinity
closer.

denotes the future horizon H+ of the Rindler spacetime, and

t̄ = −x̄, x̄ > 0 (15.169)

denotes the past horizon H− of the Rindler spacetime. The region

v̄ = ∞ and ū < 0 (15.170)

is the future null infinity �+ of the Rindler spacetime, since all outgoing
null geodesics with ū = const move along increasing values of v̄. Similarly,
the region

ū = −∞ and v̄ > 0 (15.171)

is the past null infinity �− of the Rindler spacetime. Figure 15.4 depicts the
asymptotic structure of the Rindler geometry.

A static observer in Rindler coordinates

x = const = x0

moves along the tangent vector field

∂t = κ(−ū ∂ū + v̄ ∂v̄). (15.172)

Since

gtt = κ2g(−ū ∂ū + v̄ ∂v̄,−ū ∂ū + v̄ ∂v̄) = κ2ūv̄ (15.173)



chapter15 July 16, 2009

THE GEOMETRY OF SPACETIME 411

(note that ūv̄ < 0 in the Rindler region), the proper velocity k of such an
observer is given by

k = 1√−ūv̄κ2
∂t = 1√−ūv̄ (−ū ∂ū + v̄ ∂v̄). (15.174)

The acceleration aµ of this observer is by definition

aµ = ∇k kµ. (15.175)

But

∇∂t ūv̄ = [−ū ∂ū + v̄ ∂v̄] ūv̄ = −ū v̄ + v̄ ū = 0. (15.176)

Therefore

a = 1

−ūv̄
{∇−ū ∂ū [−ū ∂ū + v̄ ∂v̄]+ ∇v̄ ∂v̄ [−ū ∂ū + v̄ ∂v̄]

}
. (15.177)

Also, in the (ū, v̄) coordinates, from eq. (15.161), we see that the metric
coefficients are constants, and therefore from eq. (A.57) we get that

�
µ
αβ = 0. (15.178)

Therefore,

a = −
{

1

v̄
∂ū + 1

ū
∂v̄

}
. (15.179)

The magnitude of proper acceleration for the Rindler observer then becomes

|a| =
√
g(a, a) =

√
1

−ūv̄ =
1

x
. (15.180)

Therefore, Rindler observers lie on orbits of constant acceleration that in-
creases without bound as they approach the horizon x = 0.

For the Rindler spacetime we will consider the boundary

Sin = H− ∪ �− (15.181)

as the in region. For the in region, it will be convenient to use the (ū, v̄)
coordinate system when writing the solutions φk. In particular, the solutions
of positive frequency are outgoing on H− and can be written as

φω,→ = 1√
2π

1√
2ω

e−iωū. (15.182)

The→ denotes “outgoing.” Note that ū = t̄ − x̄, and so a point of constant
phase moves in the increasing direction of x̄. Similarly, the solutions of
positive frequency are ingoing on �− and can be written as

φω,← = 1√
2π

1√
2ω

e−iωv̄. (15.183)
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The← denotes “ingoing.” The quantum field operator in the in region can
be written as

φin =
∫
dω [aω φω,← + a†

ω φ
∗
ω,← + cω φω,→ + c†

ω φ
∗
ω,→]. (15.184)

Here a†
ω create infalling particles, and c†

ω create outflowing particles in the in
region. As these particles enter the Rindler spacetime, the particle content
are now measured by accelerating detectors. Consequently, we will use the
Rindler coordinates (u, v) in the out region,

Sout = H+ ∪ �+. (15.185)

The equation of motion (eq. [15.124]) can be written using ordinary
derivatives as

1√−g ∂µ
√−g ∂µ ψ = 0. (15.186)

Here
√−g = κ2eκ(v−u)/2 as can be seen from eq. (15.159). It is now easily

verified that the equation of motion becomes:

∂v∂uψ = 0. (15.187)

The solutions of positive frequency are infalling on H+ (see figure 15.5) and
are given by

ψω,← = 1√
2π

1√
2ω

e−iωv, (15.188)

and the solutions of positive frequency that reach �+ are given by

ψω,→ = 1√
2π

1√
2ω

e−iωu. (15.189)

The quantum field operator in the out region can be written as

φout =
∫
dω

[
bω ψω,← + b†

ω ψ
∗
ω,← + dω ψω,→ + d†

ω ψ
∗
ω,→

]
. (15.190)

Here b†
ω create infalling particles, and d†

ω create outflowing particles in the
out region.

If we are looking for the number of particles of mode ω in the �+ region,
we must calculate the relevant Bogolubov coefficiant βω′ω and then integrate
the absolute value squared of this amplitude over ω′. From eq. (15.145) we
see that

βω′ω = −(φω′,→, ψ∗ω,→)− (φω′,←, ψ∗ω,→). (15.191)
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H−

H + ℑ+

ℑ−

Ψω,←

ϕω,← ϕω,→

Ψω,→

Sin

Sout

Figure 15.5 Infalling and outgoing modes in the in and out states of the Rindler
geometry.

Due to the invariant nature of the inner product, we will evaluate β ω′ω along
0 < x̄ <∞ when t̄ = 0. Let

β1, ω′ω = −(φω′,→, ψ∗ω,→) (15.192)

and

β2, ω′ω = −(φω′,←, ψ∗ω,→). (15.193)

Here we will evaluate β1, ω′ω explicitly. A similar calculation for β2, ω′ω is
left as an exercise. In this case

β1, ω′ω = −i
∫ ∞

0
dx̄

[
ψω,→

(
∂t̄ φω′,→

)− φω′,→
(
∂t̄ ψω,→

)] |t̄=0

(15.194)
since ∇n = ∂t̄ on scalar functions and dV → dx̄ in one spatial dimension.
The first term in the above integral yields

ξω′ω≡−i
∫ ∞

0
dx̄ ψω,→ (∂t̄ φω′,→) |t̄=0

= −i
4π
√
ω′ω

∫ ∞
0

dx̄ e−iωu (−iω′) e−iω′ū |t̄=0

= −ω′
4π
√
ω′ω

∫ ∞
0

dx̄ eiω
′x̄ x̄iω/κ (15.195)

since κu = − ln(−ū) and ū = −x̄ when t̄ = 0. Since ξω′ω is analytic in the
upper half of the complex plane of the variable x̄, we can rotate our contour
of integration axis to upper imaginary axis when ω′ > 0 (see figure 15.6).
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x

i y

rotate contour

Figure 15.6 Rotated contour of integration for ξω′ω when ω′ > 0.

This is effectively a coordinate substitution y = −iω′x̄. Then

ξω′ω = −i(−iω
′)−iω/κ

4π
√
ω′ω

∫ ∞
0

e−y yiω/κ dy. (15.196)

Therefore

ξω′ω = 1

4π
√
ω′ω

ω

κ
(−iω′)−iω/κ�(iω/κ). (15.197)

Here �(s) = ∫∞
0 dz e−z zs−1. Similarly, the second term in the integral of

eq. (15.194) gives the exact same result as above, i.e.,

ζω′ω ≡ i
∫ ∞

0
dx̄ φω′,→

(
∂t̄ ψω,→

) |t̄=0=
1

4π
√
ω′ω

ω

κ

(−iω′)−iω/κ � (iω/κ) .
(15.198)

Since there is no scattering in Rindler spacetime, ψω,→ could only have
originated in the H− region. This is now easily verified by showing that
β2, ω′ω = 0. We will not show the parallel calculation for β2, ω′ω; however,
we note that the two integrals for β2, ω′ω (analogous to ξω′ω and ζω′ω for
β1, ω′ω) are equal and opposite in this case, and hence cancel each other.
Therefore from eqs. (15.194), (15.197), and (15.198) we get

βω′ω = 1

2π
√
ω′ω

ω

κ
(−iω′)−iω/κ�(iω/κ). (15.199)
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It immediately follows that

in〈0|Nout,ω|0〉in =
∫
dω′ |βω′ω|2 =

∫
dω′

1

2πω′κ
1

e2πω/κ − 1
. (15.200)

Here we have used the identity |�(ix)|2 = π/(x sinhπx) and that

(−i)(−iω/κ) = e(−iπ/2)(−iω/κ) = e−πω/2κ

in calculating |βω′ω|2. The integral in eq. (15.200) is divergent since we are
calculating the number of pure modes created by the Rindler spacetime.
Pure modes are orthonormal, but they are not square integrable. Had we
carefully worked with normalizable wave packets, we would indeed produce
normalizable results. From eq. (15.200) we see that the Rindler observer
is submerged in a thermal bath of scalar particles such that the absolute
temperature T is given by

kT = h̄κ

2π
. (15.201)

Here kB is the Boltzmann constant. This is the Unruh effect. The reader
is referred to [42] for a detailed study of the Unruh effect and its physical
interpretation.

15.5.5 Particle Creation in Schwarzschild Geometry

Consider a spherical collapse of matter into a Schwarzschild black hole. At
some point during the collapse, the future horizon H+ appears in the space-
time. Scalar modes from the past null infinity �− propagate toward H+ and
fall into the hole, yet others propagate to the future null infinity �+ due
to the curvature in the geometry created by the strong gravitational field.
Therefore, when we calculate βω′ω for this process, we must carefully con-
nect the modes at �+ to �−. The full calculation is beyond the scope of our
discussion. Here, we simply present the results. The blackbody temperature
of the Schwarzschild black hole is given by [42,455]

kBTH = h̄c3

8πGM
, i.e., TH ≈ 6× 10−8(M�/M) K. (15.202)

Here we have restored all the fundamental constants, and M is the mass
of the black hole and TH is the Hawking temperature. Clearly, the Hawk-
ing temperature is vanishingly small for supermassive black holes. From
Stephan’s law, it is possible to get a quick estimate on the lifetime of a black
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hole (in the following calculation we will ignore any effects due to back
reaction):

d

dt
(Mc2) = −σSB A T

4
H . (15.203)

The effective area of a Schwarzschild black hole A ∼ M2 since r = 2M
locates the event horizon. Therefore, we have that

dM

dt
∼ 1

M2
(15.204)

and hence

τ ∼ M3 (15.205)

where τ is the lifetime of the black hole. From eqs. (15.202) and (15.205) we
see that the Hawking effect does not play a significant role in the radiative
properties of a supermassive black hole.

Hypothetical black holes of significantly smaller mass, � 5 × 1014 g,
would radiate a steady γ -ray emission to contribute to the diffuse extra-
galactic γ -ray background, according to Page and Hawking [456,457], and
evaporating black holes would make submicrosecond bursts of ∼250 MeV
γ rays. Searches using the EGRET [458] place upper limits on the space
density of evaporating low-mass black holes, which will improve with the
Fermi Gamma Ray Space Telescope.
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Chapter Sixteen

Black-Hole Electrodynamics

We have seen in chapter 15 that energy and angular momentum can be
extracted from rotating black holes. Extraction of energy using particles
does not seem to be a very efficient process in an astrophysical setting [459].
Energetic jets that emanate from supermassive black holes probably rely on
electromagnetic fields and currents for their existence. To undertake a study
of these matters we shall begin by looking at the equations of electrody-
namics in a curved background whose metric is written in the form given
by eq. (15.13). Just as we did with the metric, we shall rewrite the usual co-
variant form of Maxwell’s equations in spacetime (i.e., using the Maxwell
tensor) in the familiar three-vector formalism that utilizes the electric and
magnetic fields. These three-vectors will turn out to be spatial vectors that
live in our absolute space. If we choose to employ a coordinate transforma-
tion that uses a different foliation of space (and we will), we must be careful
in recalculating the three-vectors.

16.1 3+1 ELECTRODYNAMICS

Since we rely on intuition, following Komissarov [460], we will decompose
the Maxwell tensor and its dual to components that we are familiar with.
The 3+1 formalism of electrodynamics was pioneered by MacDonald and
Thorne particularly to study the magnetospheres of black holes [461,462].
Thorne went on to formulate the membrane paradigm wherein he introduces
a fictitious membrane just outside the event horizon of the black hole [463].
Prescribing a suitable boundary condition on this membrane allows one to
proceed with techniques familiar from classical electrodynamics. However,
the membrane paradigm restricts analysis to regions away from the event
horizon. Since we will be concerned with the stringent condition imposed
by the event horizon, we will not follow the membrane paradigm. However,
the 3+1 decomposition will prove useful to our analysis. For the remainder
of the chapter, we shall retrict ourselves to stationary spacetimes. This will
not pose any difficulty since later on we wish to consider the magnetosphere
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of a Kerr black hole. In general, stationary spacetimes come with a timelike
Killing vector t̃ . We will use a coordinate system (t, x1, x2, x3) such that
t̃ ≡ ∂t . This is the case for the Kerr metric in the Boyer-Lindquist coor-
dinate system. The metric coefficients in such an adapted coordinate sys-
tem become time independent, i.e., ∂tgµν = 0. Consequently, our absolute
spaces do not evolve in time.

In general, Maxwell equations can be written in the form

∇β ∗Fαβ = 0, (16.1)

∇βFαβ = Iα. (16.2)

Here, the Maxwell tensor F that describes the electromagnetic field is anti-
symmetric. I is the current four-vector, ∇ is the covariant derivative of the
geometry, and ∗F is the the two-form given by

∗Fαβ ≡ 1

2
εαβµνFµν, (16.3)

or equivalently

Fαβ = −1

2
εαβµν ∗Fµν. (16.4)

Here εαβµν is the completely antisymmetric Levi-Civita tensor density of
spacetime defined in eq. (A.41) such that

ε0123 =
√−g = α

√
γ̂ . (16.5)

Since our absolute spaces do not evolve in time, let us fix a candidate
absolute space �0 at t = t0. On �0 we define spatial vectors E and B
by the relation

Bi = α ∗F it (16.6)

where α is defined by eq. (15.4), and

Ei = 1

2
α ε̃ijk ∗Fjk. (16.7)

Of course, spatial vectors are raised and lowered by the metric γ̂ ,
specificallyEi = γ̂ ijEj . Here, the Levi-Civita tensor density of the absolute
space �0 is fixed by setting ε̃123 =

√
γ̂ . Of course, all metric coefficients

are understood to evaluated at t = t0, but this will not directly affect us since
they are time independent in our adapted coordinate system. Similarly, we
define dual field tangent vectors D and H by

Di = αF ti (16.8)
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and

Hi = 1

2
α ε̃ijkF

jk. (16.9)

It is also possible to define the electric field vector as

Ei = Fit . (16.10)

To see that the above equation is consistent with eq. (16.7) we note that:

Ei = 1

2
α ε̃ijk ∗Fjk = 1

2
α ε̃ijk

1

2
εjkµνFµν.

Since ijk are spatial indices, either µ or ν must take on the label t in the
right-hand side above (j �= k �= µ �= ν). Therefore, using the antisymmetry
property of the tensors above,

Ei = 1

2
α ε̃ijkε

tjklFtl = −1

2
ε̃ijkε̃

jklFtl,

since

ε0ijk = −1

α
ε̃ijk,

as can be easily seen by raising the Levi-Civita tensor defined by eq. (16.5).
To obtain E we must first compute ε̃ijkε̃jkl . {i, j, k} and {j, k, l} should take
on distinct values in the above contraction since ε̃ijk is a totally
antisymmetric tensor. But these indices can take on only values 1, 2, and 3.
Therefore we see that

ε̃ijk ε̃
jkl ∝ δli .

To get the proportionality constant we note that

ε̃1jkε̃
jkl = ε̃123ε̃

23l + ε̃132ε̃
32l = [1+ (−1)(−1)]δl1 = 2δl1.

Therefore,

Ei = −δliFtl = Fit (16.11)

as desired. In a similar manner B, D and H can be defined in an alternate
way.

It is easy to see that

1.

Bi = 1

2
ε̃ijkFjk, (16.12)
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2.

Di = 1

2
ε̃ijk ∗Fjk, (16.13)

and

3.

Hi = ∗Fti. (16.14)

Equations (16.6)–(16.14) can be used to construct the matrix representa-
tions of the Maxwell tensor and its dual. Accordingly,

Fµν = 1√−g




0
√
γ̂ D1

√
γ̂ D2

√
γ̂ D3

−
√
γ̂ D1 0 H3 −H2

−
√
γ̂ D2 −H3 0 H1

−
√
γ̂ D3 H2 −H1 0


 , (16.15)

Fµν =




0 −E1 −E2 −E3

E1 0
√
γ̂ B3 −

√
γ̂ B2

E2 −
√
γ̂ B3 0

√
γ̂ B1

E3

√
γ̂ B2 −

√
γ̂ B1 0


 , (16.16)

∗Fµν =




0 H1 H2 H3

−H1 0
√
γ̂ D3 −

√
γ̂ D2

−H2 −
√
γ̂ D3 0

√
γ̂ D1

−H3

√
γ̂ D2 −

√
γ̂ D1 0


 , (16.17)

and

∗Fµν = 1√−g




0 −
√
γ̂ B1 −

√
γ̂ B2 −

√
γ̂ B3√

γ̂ B1 0 E3 −E2√
γ̂ B2 −E3 0 E1√
γ̂ B3 E2 −E1 0


 . (16.18)

These relations can be viewed as the natural generalization of their flat
space counterpart (eqs. [3.27] and [3.28]). From the above expressions we
see that the Maxwell tensor and its dual can be obtained from E, B, D,
and H . We will let the above vector fields on �0 become time dependent in
accordance with Maxwell’s equations such that

Fµν(t, x1, x2, x3) = Fµν{D(t; x1, x2, x3),H(t; x1, x2, x3)} (16.19)
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and

Fµν(t, x
1, x2, x3) = Fµν{E(t; x1, x2, x3), B(t; x1, x2, x3)}. (16.20)

By expressions like E = E(t; x1, x2, x3), we mean the time-evolved spatial
vector E on �0 at the point (x1, x2, x3). Similar remarks apply to the dual
tensors, i.e., they are generated by the following dependence:

∗Fµν(t, x1, x2, x3) = ∗Fµν{E(t; x1, x2, x3), B(t; x1, x2, x3)} (16.21)

and

∗Fµν(t, x1, x2, x3) = ∗Fµν{D(t; x1, x2, x3),H(t; x1, x2, x3)}. (16.22)

The strength of the above defintions for E, B, D, and H is that the
two covariant Maxwell’s equations (eqs. [16.1] and [16.2]) reduce to the
famaliar four (frame-dependent) Maxwell’s equations of electrodynamics,
as we shall now show. To see the implications of the homogenous Maxwell
equation, we first evaluate

∇β ∗Fαβ = ∂β ∗Fαβ + 	αβλ ∗Fλβ + 	ββλ ∗Fαλ. (16.23)

Substituting the value for the contracted Christoffel symbol from eq. (A.64),
we find that

∇β ∗Fαβ = 1√−g ∂β{
√−g ∗Fαβ} + 	αβλ ∗Fλβ. (16.24)

The last term on the right-hand side in the above equation vanishes since
we taking the symmetric sum of an antisymmetric object. Therefore, the
homogeneous Maxwell equation (eq. [16.1]) gives

1√−g ∂β{
√−g ∗Fαβ} = 0. (16.25)

Taking the time component of the above equation we get

1√
γ̂
∂i{

√
γ̂ α ∗F ti} = 0. (16.26)

This implies that in a stationary ambient spacetime, in our adapted coordi-
nate system, the magnetic field B is divergence-free, i.e.,

∇̃ · B = 0. (16.27)

Here ∇̃ is the covariant derivative of �0 induced by the spacetime metric.
When the index α takes on spatial values, from eq. (16.25) we get

1√−g ∂t {
√−g ∗F jt} + 1√−g ∂i{

√−g ∗F ji} = 0. (16.28)
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Clearly,

1√−g ∂t{
√−g ∗Fjt } = 1

α
∂t {α ∗Fjt} = 1

α
∂tB

j . (16.29)

To compute the second term in eq. (16.28) note that

ε̃ijkε̃klm ∗F lm = [δil δ
j
m − δjl δim] ∗F lm = −2 ∗Fji .

Therefore,

1√
γ̂
∂i{

√
γ̂ α ∗Fji}=− 1√

γ̂
∂i

{√
γ̂

1

2
α ε̃ijk ε̃klm ∗F lm

}

=−ε̃ijk∇̃i
{
α

1

2
ε̃klm ∗F lm

}
.

Consequently, from eq. (16.7),1

1√
γ̂
∂i{

√
γ̂ α ∗F ji} = ε̃j ik∇̃iEk. (16.30)

Therefore, from eqs. (16.28), (16.29), and (16.30) we get that

∂tB + ∇̃ × E = 0. (16.31)

Here,

(∇̃ × E)i ≡ ε̃ijk∇̃jEk. (16.32)

Since the inhomogenous Maxwell’s equations are obtained in exactly the
same way, we leave the details as an exercise.

When the ambient metric is stationary, in an adapted coordinate system
wherein t̃ = ∂t is the timelike Killing vector field, the dual electric and
magnetic fields D and H on �0 satisfy

∇̃ ·D = ρc (16.33)

and

−∂tD + ∇̃ ×H = J, (16.34)

1Note:
ε̃j ik ε̃j ik = 3!.

Therefore,
2 ε̃j ik ∇̃m ε̃jik = 0,

which in turn implies that
∇̃m ε̃jik = 0.
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where ρc = αI t and J k = αIk. Here ρc is the charge density and J is the
electric three-current.

Clearly, F and ∗F are not independent, therefore, we cannot expectE and
B to be independent of D and H . Given E and B we must be able to obtain
an expression for D and H . In special relativity, in regions of ignorable
electric and magnetic susceptibilities, E = D and B = H . Here, we will
see that the corresponding relations are nontrivial. Gravitation induces a
mixing of the various electromagnetic vector fields. The vacuum contitutive
relations between the electromagnetic vector fields in a stationary spacetime
are given by

αD = E − β × B (16.35)

and

H = αB − β ×D. (16.36)

These results follow from a direct computation. Here we will outline the
calculations for eq. (16.35). We can obtain D from eq. (16.15), while E and
B can be obtained from eq. (16.18). The tensors in eqs. (16.15) and (16.18)
are related by

Fµν = −1

2
εµναβ ∗Fαβ = −1

2
εµναβgαλ gβθ ∗Fλθ . (16.37)

Therefore,

αDi =α2F ti = −α
2

2
εtijkgjλ gkθ ∗Fλθ

=−α
2

2

(−ε̃ijk
α

)
[gjtgkm ∗F tm + gjmgkt ∗Fmt + gjmgkn ∗Fmn].

(16.38)

Therefore

αDi = αε̃ijk

2
[βj γ̂km(−Bm/α)+ βkγ̂jm(Bm/α)+ γ̂jmγ̂kn ∗Fmn]. (16.39)

But
α

2
ε̃ijk[βj γ̂km(−Bm/α)+ βkγ̂jm(Bm/α)] = −(β × B)i

and from eq. (16.7)
α

2
ε̃ijkγ̂jmγ̂kn ∗Fmn = α

2
γ̂ il ε̃lnm ∗Fmn = Ei.

Using the above two equations and eq. (16.39) we get eq. (16.35). Equation
(16.36) should follow from a similar calculation and is left as an exercise.
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Equations (16.27), (16.31), (16.33), and (16.34) should be solved together
with eqs. (16.35) and eq. (16.36) to obtain the expressions for the
electromagnetic field vectors. As a consistency check, notice that very far
from the Kerr black hole, α → 1 and β → 0, and therefore the constitutive
relations reduce to their special relativistic counterpart. It is also possible to
introduce the usual scalar and vector potential. Let Uµ be the four-vector
potential for the Maxwell tensor Fµν , i.e.,

Fµν = ∂µUν − ∂νUµ. (16.40)

Then

Ei = Fit = −∂i− ∂tAi, (16.41)

where − = Ut and Ai = Ui . Therefore

E = −∇̃− ∂tA. (16.42)

The magnetic field can also be obtained from the four-potential.

Bi = 1

2
ε̃ijkFjk = 1

2
ε̃ijk[∂jAk − ∂kAj ]

= 1

2
ε̃ijk[∇̃jAk − ∇̃kAj ] = ε̃ijk∇̃jAk = (∇̃ × A)i. (16.43)

Here, we have used the fact that the Christoffel symbols are symmetric in
the lower indices in the above calculations (i.e., 	ijk = 	ikj ). Therefore,

B = ∇̃ × A, (16.44)

as expected.

16.2 THE ENERGY-MOMENTUM TENSOR

While the currents affect the fields (eqs. [16.1] and [16.2]), they themselves
are not immune to prevailing electromagnetic field. The resulting dynamics
is however finely balanced by the following principle:

∇µT µν = 0, (16.45)

where T µν is the total energy momentum of the system. Consider,
for example, the electromagnetic field. Here the energy-momentum tensor
is given by [464]

(Tem)
µ
ν = FµαFνα −

1

4
(FαβF

αβ)δµν . (16.46)



chapter16 July 16, 2009

BLACK-HOLE ELECTRODYNAMICS 425

When there is no matter field present, we want the above energy-momentum
tensor to be divergence-free. It is easily verified that this is indeed the case.

∇µ(Tem)
µ
ν = (∇µFµα)Fνα + Fµα∇µFνα −

1

2
Fαβ∇νFαβ.

But

Fµα∇µFνα = 1

2
[Fαβ∇αFνβ + Fβα∇βFνα]

=−1

2
[Fαβ∇αFβν + Fαβ∇βFνα].

Therefore

∇µ(Tem)
µ
ν = −FναIα −

1

2
Fαβ[∇νFαβ + ∇αFβν + ∇βFνα]. (16.47)

The last term in the right-hand side of the equation above vanishes. To see
this, note that from eq. (16.1) we get

εαβµν∇βFµν = 0. (16.48)

Therefore, when β,µ, and ν are all different

∇βFµν + ∇µFνβ + ∇νFβµ = 0. (16.49)

But the above equation is easily seen to be true if any of the two indices are
the same (owing to the antisymmetry of Fµν). Consequently, eq. (16.49) is
identically true. And so

∇µ(Tem)
µ
ν = −FναIα. (16.50)

Therefore, as promised in eq. (16.45), for “pure” electromagnetic fields
when the current vector is absent (Iα = 0), we get that

∇µ(Tem)
µ
ν = 0. (16.51)

When the electromagnetic fields interact with charges and currents, the
above equation is slightly modified. Here,

∇µ [ T µνem + T µνmatter] = 0, (16.52)

where T µνmatter is the energy-momentum tensor of the matter fields present.
The nature of the matter fields will not concern us directly.

The “divergence-free” nature of the energy-momentum tensor will be
used later in the chapter to construct expressions for the total energy and
angular momentum of the electromagnetic field in the vicinity of a Kerr
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black hole. To facilitate this, we proceed to calculate the relevant compo-
nents of the energy-momentum tensor of the electromagnetic field. We begin
by computing (Tem)

t
t :

(Tem)
t
t = F tαFtα −

1

4
(FαβF

αβ). (16.53)

But

F tαFtα = F tiFti = 1

α
Di · (−Ei) (16.54)

and

(FαβF
αβ) = 2FtiF

ti + FijF ij = −2

α
D · E + FijF ij . (16.55)

To simplify the last term in the above equation we note that

BiHi = 1

2
ε̃ijk Fjk

1

2
α ε̃ilm F

lm.

Therefore,

BiHi = 1

2
α Fjk F

lmδil δ
k
m =

1

2
α FijF

ij . (16.56)

From eqs. (16.53)–(16.56) we see that

(Tem)
t
t = −

1

2α
(E ·D + B ·H). (16.57)

The computation of the remaining useful components of the electromagnetic
energy-momentum tensor yield

(Tem)
i
t = −

1

α
(E ×H)i (16.58)

and

(Tem)
t
i =

1

α
(D × B)i ≡ 1

α
γij (D × B)j . (16.59)

If any notion of energy and angular momentum of electromagnetic field
should exist in a curved spacetime, it should arise from the symmetries of
the background geometry. Although, at this point, we are not committing
to a particular background configuration, we will assume that the geometry
is endowed with two Killing vector fields: t̃ , which is asymptotically time-
like, and m, whose integral curves are closed and spacelike. As mentioned
before, in our adapted coordinate system t̃ = ∂t . The asymptotically time-
like Killing vector field t̃ can be used to obtain the Poynting equation:

∇µ[(Tem)
µ
ν t̃
ν]= [∇µ(Tem)

µ
ν ]t̃ ν + (Tem)

µ
ν∇µt̃ν

=−FναIαt̃ ν + (Tem)
µν∇µt̃ν.



chapter16 July 16, 2009

BLACK-HOLE ELECTRODYNAMICS 427

The first term on the right-hand side of the above equation comes from
eq. (16.50). T µνem is a symmetric tensor, while ∇µt̃ν is antisymmetric as can
be seen from the Killing equation (15.31). Therefore, the second term on the
right-hand side of the equation above vanishes, and so we have

∇µ[(Tem)
µ
ν t̃
ν] = −FtiI i = EiJ

i

α
. (16.60)

Consequently,

1

α
√
γ̂
∂t [α

√
γ̂ T tt ]+ 1

α
√
γ̂
∂i [α

√
γ̂ T it ] = E · J

α
.

Multiplying the above equation by −α and by noting that
√
γ̂ is time inde-

pendent, we get that

∂t e + ∇̃ · S = −E · J. (16.61)

Here

e = −α T tt and S = E ×H.
Equation (16.61) is the curved space version of the Poynting equation. The
analogous equation generated by m is given by

∂t l + ∇̃ · L = −(ρc E + J × B) ·m, (16.62)

where

l = α T tϕ and L = −(E ·m) D − (H ·m) B + 1

2
(E ·D + B ·H) m.

16.3 THE BLANDFORD-ZNAJEK PROCESS

Based on the work of Ruffini and Wilson [465], and Goldreich and Ju-
lian [466], Blandford and Znajek in their seminal paper proposed a viable
mechanism by which energy and angular momentum can be extracted from
a rotating black hole [467]. Stray charges in the magnetosphere set up by an
accretion disc get accelerated sufficiently to produce photons. These pho-
tons will in turn produce electron-positron pairs. When charges are pro-
duced freely in this manner, an approximately force-free magnetosphere is
set up in the vicinity of the black hole. They then showed that such force-
free magnetospheres will permit solutions that allow for the extraction of
energy from the rotating black hole.

From an observational point of view, the release of energy occurs over a
significant amount of time that we are only too content to study the steady-
state properties of such phenomena. In addition to time independence, we
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shall very naturally impose the condition of axis symmetry. For concrete-
ness, we shall let the Kerr metric describe the ambient geometry of
spacetime. Unless otherwise stated, we shall do our calculations in the
Boyer-Lindquist coordinate system. Additionally, much like the ambient
geometry, we will take Uµ, E, B, D, H , ρc, and J to be independent of
the coordinates t and ϕ.

We will presently quantify what we mean by “force-free” in the context
of a fluid of charges in the magnetosphere. In this case, since the individ-
ual charges do not feel a net electromagnetic force, there is no way for the
electromagnetic charges and fields to exchange energy. Therefore, we would
expect the energy-momentum tensors of matter and electrometric fields to
be divergence-free separately, i.e., we require that

∇µT µνmatter = 0, (16.63)

and consequently

∇µT µνem = 0. (16.64)

Therefore, from eq. (16.50) we have that

FναI
α = 0. (16.65)

This is the force-free condition that we will enforce. In the 3+ 1 formalism,
this reduces to the usual result in special relativity. The t component of the
above equation gives

Fti I
i = −Ei J

i

α
= 0, (16.66)

and the spatial components give

Fit
ρc

α
+ Fij J

j

α
= 0. (16.67)

But

(J × B)i = ε̃ijk J jBk = ε̃ijk J j 1

2
ε̃klm Flm = FijJ j . (16.68)

Therefore, when the charges and currents in the magnetosphere of a sta-
tionary black hole are not subject to a net electromagnetic force, we have
that

E · J = 0 (16.69)

and

ρcE + J × B = 0. (16.70)
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Taking the inner product of eq. (16.70) with the magnetic field B, we find
that

E · B = 0. (16.71)

Definition 16.1 Any spatial vectorA in�0 can be decomposed uniquely into
the form

A = AP + AT (16.72)

where AP = Ar∂r + Aθ∂θ and AT = Aϕ∂ϕ . AP and AT are referred to as
the poloidal and toroidal components of A, respectively. Clearly,

ET = 0 (16.73)

since
Eϕ = ∂ϕUt − ∂tUϕ = 0

from the assumed symmetry of the problem. Therefore, eq. (16.71) implies
that

EP · BP = 0. (16.74)

From eq. (16.73) and eq. (16.74) we see that there exists a purely toroidal
vector

ω = � ∂ϕ
such that

E = −ω × B. (16.75)

Additionally, since EP is perpendicular to BP and JP (from the force free
condition), and since poloidal vectors are two dimensional,

JP ∝ BP . (16.76)

In our analysis of the force-free stationary axis-symmetric magnetosphere
of the Kerr black hole, it will convenient to intoduce the notion of a poloidal
function and poloidal surfaces. The relationship between E = EP ,BP and
JP is shown in figure 16.1.

Definition 16.2 Surfaces of constant Aϕ are called equipotential surfaces.
HereAϕ is the toroidal component of the three-vector potentialA. Functions
that are constant on equipotential surfaces are called equipotential surface
functions.

Functions on�0 that we consider here are functions of only r and θ (from
the assumed symmetries of the situation). Therefore equipotential surfaces
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E

Jp

Bm

Figure 16.1 3+ 1 Electrodynamics.

are curves in the r–θ plane that have been rotated about the symmetry axis.
Clearly, a function f is an equipotential surface function if and only if

Aϕ,θ ∂rf = Aϕ,r ∂θf.
Since (see eq. [16.84])

BP = 1√
γ̂

[Aϕ,θ ∂r − Aϕ,r ∂θ ], (16.77)

we have that

f is an equipotential surface function if and only if B · ∇̃f = 0. (16.78)

We will now show that � is an equipotential surface function. From eqs.
(16.31) and (16.75) we see that

∇̃ × (ω × B) = 0. (16.79)

Therefore,

(∇̃ × (ω × B))i = ε̃ilm ε̃mjk∇̃l ωjBk

= δij δlk∇̃l ωjBk − δlj δik∇̃l ωjBk

=∇̃j (ωiBj )− ∇̃j (ωjBi).
That is,

(∇̃B ω − ∇̃ω B)− (∇̃ · ω)B = 0. (16.80)

But,

∇̃jωj = δj3 �,j +� 	j3j = δj3 �,ϕ +� (ln
√
γ ), ϕ = 0 (16.81)

from axial symmetry. Also,

0 = T̃ (B, ω) = (∇̃Bω − ∇̃ωB)− [B,ω]. (16.82)
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Here T̃ is the torsion tensor of the absolute space. Finally

[B, ω] = B · ∇̃� ∂ϕ −� (∂ϕB
j ) ∂j = B · ∇̃� ∂ϕ (16.83)

since the components of B are ϕ independent. Equations (16.79)–(16.83)
imply that

B · ∇̃� = 0.

Therefore, from eq. (16.78), � is an equipotential surface function. There
are two other important equipotential surface functions. Using eqs. (16.34)
and (16.76) we get that Hϕ is an equipotential surface function, and from
eq. (16.75) we see that the same is true for the scalar potential .

16.3.1 Explicit Expressions for the Fields and Currents

In this section, we will write the field variables in terms of the equipotential
surface functions Aϕ and �. Consequently, as we shall see, the dynamics of
the force-free, stationary, axis-symmetric magnetosphere of the Kerr black
hole will be governed by two equipotential surface functions. From the very
definition of the three-vector potential we have that

BP = 1√
γ̂
(Aϕ,θ∂r − Aϕ,r∂θ ). (16.84)

Consequently, eq. (16.75) implies that

EP = − d
∫
� dAϕ. (16.85)

The above integral is meaningful, since � can be written as a function of
Aϕ . Equation (16.35) gives the expression for the dual of the electric field:

D = DP = − 1

α
(�+ βϕ) dAϕ. (16.86)

Similarly, from eq. (16.36) the poloidal component of the dual of the mag-
netic field is given by

HP = (α2 − β2 − βϕ�)BP
α
. (16.87)

The electric charge density is determined by the divergence ofDP , and from
eq. (16.86) we get

−
√
γ̂ ρc= ∂r

(
1

α
√
γ̂
(γϕϕ�+ βϕ) γθθ Aϕ,r

)

+∂θ
(

1

α
√
γ̂
(γϕϕ�+ βϕ) γrr Aϕ,θ

)
. (16.88)
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The toroidal current vector can be obtained by computing the ϕ component
of the curl in eq. (16.34):

−
√
γ̂ J ϕ =Hr,θ −Hθ,r = ∂r

(
1

α
√
γ̂
(α2 − β2 − βϕ�)γθθAϕ,r

)

+ ∂θ
(

1

α
√
γ̂
(α2 − β2 − βϕ�)γrrAϕ,θ

)
. (16.89)

The poloidal current is completely determined by Hϕ and is given by
√
γ̂ Jp = Hϕ,θ ∂r −Hϕ,r ∂θ . (16.90)

Finally,

Bϕ = Hϕ/α.
In the next section we will show that indeed Hϕ , and thus Bϕ and Jp, is
uniquely determined by Aϕ and � as well (modulo an integration constant).

16.3.2 The Force-Free Constraint Equation

The explicit expressions derived above reflect the time and axis symmetry
of the problem. In this section, we will make sure that all the requirements
of the force-free condition are met. Since Hϕ is an equipotential surface
function, from eq. (16.90) we have that

JP = 1√
γ̂

dHϕ

dAϕ
(Aϕ,θ ∂r − Aϕ,r ∂θ ) = dHϕ

dAϕ
BP , (16.91)

as claimed in eq. (16.76). Therefore, since E ·B = 0 we see that eq. (16.69)
is automatically satisfied. The expressions above do not however fully incor-
porate the force-free condition given by eq. (16.70). We will rectify this defi-
ciency immediately. Since EP is perpendicular to BP , we can take
{EP ,BP ,m} as an orthogonal basis for our absolute space. Since JP is pro-
portional to BP , clearly,

(J × B) ·m = 0.

Therefore,

(ρc E + J × B) ·m = 0 (16.92)

and

(ρc E + J × B) · BP = 0. (16.93)
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It remains to verify that eq. (16.70) is satisfied when projected onto EP :

ρc E ·Ep + (J × B) ·EP = ρc E2+ ((JP + JT )× (BP + BT )) ·EP
= ρc E2+ ((JP ×BT )+ (JT ×BP )) ·EP = 0

(16.94)

since JP is parallel to BP . To simplify the terms above we use the following
relations:

E2 = �2

γrrγθθ
[γθθ (Aϕ,r)

2 + γrr (Aϕ,θ )2] (16.95)

and

ErBθ − EθBr = �√
γ

[γθθ (Aϕ,r )
2 + γrr (Aϕ,θ )2]. (16.96)

Substituting eq. (16.91) in eq. (16.94) along with the above two equations
gives the result that for the magnetosphere of a stationary, axis-symmetric,
Kerr black hole to be force-free, Hϕ must satisfy the following equation:

1

2

dH 2
ϕ

dAϕ
= −α(ρc�γϕϕ − Jϕ). (16.97)

As it turns out, this is not a trivial requirement, and we must impose the
resulting constraint while we search for solutions.

Two remarks are in order. Since Hϕ is an equipotential surface function,
the right-hand side of eq. (16.97) must also be an equipotential surface func-
tion. This would severely restrict the allowable forms of � and Aϕ . We
view this as a constraint on the equipotential surface functions. Second, as
claimed at the end of the previous section we see that Hϕ and thus Bϕ is
determined by the functions � and Aϕ since ρc and Jϕ are determined by
them as well.

16.3.3 The Znajek Regularity Condition

As we cross into the ergosphere, the electromagnetic field vectors may loose
their original meaning since t̃ is not timelike there. This is not necessarily
catastrophic. The equations developed above continue to hold regardless of
their physical interpretation. This is not however the case at the event hori-
zon, where the Boyer-Lindquist coordinates cease to be valid. The careful
practitioner of relativistic astrophysics must transform the equations to a
meaningful coordinate at the event horizon such as the Kerr-Schild system
developed in chapter 3. Znajek [468] was the first to do this careful analysis
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using the tetrad method. We shall present the results of his work in the 3+1
formalism.

From eqs. (16.35) and (16.36) we see that

ᾱH̄ = ᾱ2B̄−β̄×Ē+β̄×(β̄×B̄) = ᾱ2B̄−β̄×Ē+β̄ (β̄ ·B̄)−B̄ β̄2. (16.98)

All “barred” quantities are objects in the Kerr-Schild system. In particular√
γ̄ = √

det γ̄ij .

Taking the ϕ̄ component of the above equation we get

ᾱH̄ ϕ̄−B̄r̄ [γ̄ϕ̄r̄ (ᾱ2− β̄2)+ β̄ϕ̄ β̄ r̄ ]+
√
γ̄ β̄ r̄ γ̄ θ̄ θ̄ Ēθ̄ = B̄ϕ̄[(ᾱ2− β̄2)γ̄ϕ̄ϕ̄+ β̄2

ϕ̄].

(16.99)
From the forms of the various components of the metric coefficients in the
Kerr-Schild coordinates given in chapter 15 we see that

(ᾱ2 − β̄2)γ̄ϕ̄ϕ̄ + β̄2
ϕ̄ = � sin2 θ. (16.100)

Therefore, for B̄ϕ̄ to be well defined at the event horizon we must have that
at r = r+

ᾱH̄ ϕ̄ − B̄ r̄ [γ̄ϕ̄r̄ (ᾱ
2 − β̄2)+ β̄ϕ̄ β̄ r̄ ]+

√
γ̄ β̄ r̄ γ̄ θ̄ θ̄ Ēθ̄ = 0. (16.101)

To understand what this means to us, we must rewrite the above equation in
Boyer-Lindquist coordinates.

From eq. (15.69), we see that the Maxwell tensor transforms according to

F̄ µν = (A−1)αµ (A
−1)βν Fαβ. (16.102)

From the explicit form of the transformation matrix A−1 we see that F̄ µν =
Fµν as long as µ, ν �= r . The same goes for the dual tensor ∗F . In particular,

−� = Eθ√
γ̂ Br
= Fθt

Fθϕ
= F̄ θ̄ t̄

F̄ θ̄ ϕ̄
= Ēθ̄√

γ̄ B̄r̄
, (16.103)

and

H̄ ϕ̄ = Hϕ.
Using the above two equations in eq. (16.101), we get that at the event hori-
zon

ᾱ

α

(
αHϕ −

√−g√−ḡ B
r [γ̄ϕ̄r̄ (ᾱ

2 − β̄2)+ β̄ϕ̄ β̄ r̄ + γ̄ β̄ r̄ γ̄ θ̄ θ̄ �]

)
= 0.

(16.104)

Here, γ̄ = √γ̄ 2. In obtaining the above equation, we also used the fact that
√−g = α

√
γ̂ = ᾱ

√
γ̄ =

√
−ḡ = ρ2 sin θ.
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Simple calculations reveal that

det γ̄īj̄ ≡ γ̄ = sin2 θ(1+ z)ρ4

and that

γ̄ϕ̄r̄ (ᾱ
2 − β̄2)+ β̄ ϕ̄ β̄ r̄ + γ̄ β̄ r̄ γ̄ θ̄ θ̄ � = sin2 θ(2Mr�− a).

Equation (16.104) which is valid at the event horizon, then takes on the form

Hϕ
∣∣
r+
= sin2 θ

α
Br(2Mr�− a)

∣∣∣
r+

(16.105)

in Boyer-Lindquist coordinates. This is the Znajek regularity condition. As
mentioned before, eq. (16.105) has to hold true for B̄ϕ̄ to be well defined at
the event horizon.

16.3.4 Energy and Angular-Momentum Extraction from the
Force-Free Magnetosphere

It will be convenient to have the expressions for the terms that calculate the
rate of extraction of energy and angular momentum from the black hole.
We will specialize the general results obtained in section 3.2 to our specific
purposes. Consider a Gaussian surface in our absolute space �0 given by
the region bounded by r+ < r1 and r2 →∞. In the force-free case, we see
from eq. (16.61) that

d

dt

∫ r2

r1

e dV = −
(∫

r2

S · n dA−
∫
r1

S · n dA
)
. (16.106)

Here, n = √γ rr∂r . The area integral is done over surfaces r = r1 and
r = r2. In our steady-state case, there are no time-dependent phenomena.
What that means is that the energy that flows out of r = r2 must also flow
through r = r1. Therefore, the rate of total electromagnetic energy extracted
from the black hole is given by

dE
dt
=

∫
r2= ∞

S · n dA. (16.107)

Similarly, the rate of extraction of total angular momentum is given by

dL
dt
=

∫
r2= ∞

L · n dA. (16.108)

Clearly,

LP = −Hϕ BP ,
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and since

SP = 1√
γ

[−ErHϕ∂θ + EθHϕ∂r ] = −�BθHϕ∂θ −�BrHϕ∂r,

the poloidal component of the Poynting vector is

SP = (E ×H)P = �LP .
Therefore, for the form of n given above,

B · n dA = Brγrr
√
γ rr{√γθθγϕϕ dθ dϕ}.

Thus, we have that

dE
dt
= −

∫
r2= ∞

�HϕB
r
√
γ̂ dθ dϕ (16.109)

and
dL
dt
= −

∫
r2= ∞

HϕB
r

√
γ̂ dθ dϕ. (16.110)

Under this circumstance, the energy and angular momentum of the black
hole decrease at rates given by

δM

δt
= −dE

dt
and

δJ

δt
= −dL

dt
. (16.111)

Equation (16.109) gives the expression for the rate of extraction of energy
from the black hole under the Blandford-Znajek mechanism.

16.4 GEODESIC CURRENTS IN THE MAGNETOSPHERE

As a simplifying assumption, we write the current-density vector in a force-
free magnetosphere as

I ν = F(r, θ) uν, (16.112)

where uν(r, θ) is a geodesic congruence of the form

uν =
(
ṫ ,

√
R

ρ2
,

√
�

ρ2
, ϕ̇

)
. (16.113)

Here, ṫ , ϕ̇, R, and � are as given in eqs. (15.35), (15.36), (15.59), and
(15.60). The function F(r, θ) is such that the charge density and the cur-
rent spatial vector are given by

ρc = α F ṫ, J ϕ = α F ϕ̇, and JP = α F
(√

R

ρ2
,

√
�

ρ2

)
. (16.114)
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Since JP is parallel to BP , eq. (16.78) tells us that, when the force-free mag-
netosphere is filled with geodesic currents, a function f is an equipotential
surface function iff

JP f = 0 =
√
R ∂rf +

√
� ∂θf, (16.115)

i.e., the charges flow along equipotential surfaces. Conservation of current
implies

∇µ Iµ = 0,

i.e.,

∂r

(
F

√
R

ρ2

√−g
)
+ ∂θ

(
F

√
�

ρ2

√−g
)
= 0. (16.116)

This is actually an equation for F . It is very resonable to assume that force-
free currents can be described by eq. (16.112). In this case, we can under-
stand the physical origin for the equations describing the charge density ρ
and the toroidal current density Jϕ (eqs. [16.88] and [16.89]). It is important
to develop a physical understanding of these objects, since they are the only
undetermined nonequipotential surface functions to appear in the constraint
equation. From eqs. (15.35), (16.88), and (16.114) we see after substituting
the expressions for the metric coefficients that

−F sin θ
(�2E − 2aMrL)

�
= ∂r

(
sin θ(�2�− 2aMr)

Aϕ,r

ρ2

)

+ ∂θ
(

sin θ(�2�− 2aMr)
Aϕ,θ

ρ2�

)
.

(16.117)

Both sides of the equation have similar features. There is more in common
to the two sides than one might initially suspect. E and L are constant along
a geodesic. That does not imply that E and L are constant over the magne-
tosphere. The integral curve of each JP can have a different value for E and
L. That is, much like �, E and L are equipotential surface functions. The
above equation lends credence to the form of the current density four-vector
we have chosen. This feature is seen again in the expression for J ϕ (the other
important term in the constraint equation). From eqs. (15.36), (16.89), and
(16.114), we see after substituting the expressions for the metric coefficients
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that

−F [2aMrE sin2 θ + (ρ2 − 2Mr)L]

sin θ�
= ∂r

(
[2aMr� sin2 θ

+ (ρ2−2Mr)]
Aϕ,r

ρ2 sin θ

)
+∂θ

(
[2aMr� sin2 θ+ (ρ2 − 2Mr)]

Aϕ,θ

ρ2� sin θ

)
.

(16.118)

This is an expected expression considering eq . (16.117). In eqs. (16.117)
and (16.118) we must keep in mind that

JP � = JP E = JP L = 0. (16.119)

This is the only preset requirement for E and L. Since eq. (16.112)
prescribes JP (eq. [16.114]), we shall now consider its implications.

√
γ̂ Jp = Hϕ,θ∂r −Hϕ,r∂θ =

√−g
(
F

√
R

ρ2
∂r + F

√
�

ρ2
∂θ

)
. (16.120)

Therefore,

√−gF
√
R

ρ2
= Hϕ,θ (16.121)

and
√−gF

√
�

ρ2
= −Hϕ,r . (16.122)

But Hϕ,θ,r = Hϕ,r,θ imply that

∂r

(
F

√
R

ρ2

√−g
)
+ ∂θ

(
F

√
�

ρ2

√−g
)
= 0. (16.123)

But this is exactly eq. (16.116), which is satisfied by F , so there is no extra
consistency requirement from the form of JP . Finally we turn our attention
to Hϕ . Equations (16.121) and (16.122) explicitly show that Hϕ satisfies
eq. (16.115), which is consistent with the requirement that Hϕ is an equipo-
tential surface function. In terms of eq. (16.114), the constraint equation for
Hϕ takes the form

−1

2

dH 2
ϕ

dAϕ
=α(ρc �γϕϕ − Jϕ) = α2γϕϕ

α
√
γ̂
(
√
γ̂ ρc �−

√
γ̂ J ϕ)

=� sin2 θ(I 0 �− Iϕ). (16.124)

Therefore,

−1

2

dH 2
ϕ

dAϕ
= � sin2 θF (ṫ �− ϕ̇). (16.125)
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16.5 AN EXACT SOLUTION

It is actually possible to extract an exact set of solutions to the constraint
equation above, which is consistent with all the requirements of the force-
free, stationary, axis-symmetric electrodynamics on a Kerr background
[469]. However, as we shall see these solutions will not explain the pheno-
menon of energy extraction. Nonetheless, this may serve as a guide for the
future researcher in the search for other solutions.

From eqs. (15.35) and (15.36) we see that

a sin2 θ�

(
ṫ

a sin2 θ
− ϕ̇

)
= C(r), (16.126)

where C(r) is defined in eq. (15.49). Comparing the equation above with
eq. (16.125), we see that considerable simplification of terms occur if� can
be chosen as (a sin2 θ)−1. It is a remarkable coincidence that this choice of
� does satisfy all the necessary requirements and even the Znajek regular-
ity condition eq. (16.105). Since we are guessing the form of �, it will be
convenient to write Aϕ in terms of �.

Definition 16.3 Let � be the equipotential surface function such that

dAϕ = −� d�. (16.127)

In terms of � and �, the constraint equation eq. (16.97) takes the form

1

2�

dH 2
ϕ

d�
= αγϕϕ√

γ̂

[
�∂r

[
�

α
√
γ̂
(γϕϕ�+ βϕ)γθθ�,r

]

+�∂θ
(

�

α
√
γ̂
(γϕϕ�+ βϕ)γrr�,θ

)

+ ∂r
(

�

α
√
γ̂
(β2 − α2 + βϕ�)γθθ�,r

)

+ ∂θ
(

�

α
√
γ̂
(β2 − α2 + βϕ�)γrr�,θ

)]
, (16.128)

where we have used eqs. (16.88) and (16.89) for the expressions for ρ
and Jϕ .

Definition 16.4 Let �− be our particular choice of �, i.e.,

�− ≡ 1

a sin2 θ
. (16.129)



chapter16 July 16, 2009

440 CHAPTER 16

The nature of the equipotential surfaces is fixed by our choice of �. Since
� is only a function of θ , θ = const are equipotential surfaces. That is, the
r derivatives of all equipotential surface functions vanish. When �,r = 0,
the constraint equation takes the form

1

2�

dH 2
ϕ

d�
= αγϕϕ√

γ̂

[
�∂θ

(
�

α
√
γ̂
(γϕϕ�+ βϕ)γrr�,θ

)

+ ∂θ
(

�

α
√
γ̂
(β2 − α2 + βϕ�)γrr�,θ

)]
. (16.130)

Expanding the terms, we find that

1

2�

dH 2
ϕ

d�
= sin θ

(
�(�−,θ )

sin θ

)
,θ

β2 − α2 + 2βϕ�− + γϕϕ�2−
ρ2

+��−(�−,θ )[γϕϕ�− + βϕ],θ
ρ2

+�(�−,θ )[β
2−α2+βϕ�−],θ

ρ2
.

(16.131)

The Kerr metric coefficients in Boyer-Lindquist coordinates satisfy

β2 − α2 + 2βϕ�− + γϕϕ�2
− =

ρ2

a2 sin2 θ
,

β2 − α2 + βϕ�− = −1,

γϕϕ�− + βϕ = r2 + a2

a
. (16.132)

Substituting the above expressions in our constraint equation, we get

1

2�

dH 2
ϕ

d�
= 1

a2 sin θ

(
��−,θ
sin θ

)
,θ

. (16.133)

The right-hand side of the equation above is clearly an equipotential
surface function since, much like �−, it is not r dependent. Therefore, we
can consistently integrate to obtain Hϕ as a function of only θ . There is still
freedom in choosing �(θ). What we have shown is that � = �− is an
exact solution to the constraint equation (eq. [16.97]) where � is any arbi-
trary equipotential surface function.
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16.6 FIELDS AND ENERGY EXTRACTION FOR THE

�− SOLUTION

Equation (16.133) can be easily integrated by observing that

dH 2
ϕ

dθ
= 4

a4

d

dθ

(
� cos θ

sin4 θ

)2

(16.134)

to give

H 2
ϕ =

(
2� cos θ

a2 sin4 θ

)2

+H 2
ϕ0. (16.135)

Here H 2
ϕ0 is an integration constant. The poloidal component of the mag-

netic field is given by

Br = −��−,θ√
γ̂
= 2

a
�

cos θ√
γ̂ sin3 θ

. (16.136)

For Br as given above, we see that Hϕ satisfies the Znajek regularity con-
dition (eq. [16.105]) at the event horizon when we pick the positive root in
eq. (16.135) for H 2

ϕ0 = 0, i.e.,

Hϕ = 2� cos θ

a2 sin4 θ
. (16.137)

We now proceed to calculate the remaining nontrivial components of the
fields and current consistent with our choice of �−. From eq. (16.75) and
above we get

Eθ = − 2

a2
�

cos θ

sin5 θ
. (16.138)

The charge density is caluclated from eq. (16.88), and is given by

ρc = −2(r2 + a2)

a2�
√
γ̂

∂θ

(
�

cos θ

sin4 θ

)
. (16.139)

The expression for the toroidal component of the current density vector is
given by eq. (16.89), and in our case, this reduces to

J ϕ = −2

a �
√
γ̂
∂θ

(
�

cos θ

sin4 θ

)
. (16.140)

Finally, from eq. (16.90) we see that

J r = 2

a2
√
γ̂
∂θ

(
�

cos θ

sin4 θ

)
. (16.141)
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The efforts to solve for the fields and currents for the force-free magne-
tosphere of a Kerr black hole have been largely numerical in nature. To
date, this is the only known, exact, analytical solution to the problem that
has been presented in the last thirty years since it was formulated [467].
The appearance of the various powers of sin θ in the denominator of the
above expressions do not create any real divergences in the solution along
the symmetry axis, since as yet � has not been prescribed. In fact, a simple
transformation of the type �→ � sin5 θ removes all problems of apparent
divergences. But, when it comes to the chief issue of energy extraction from
the black hole, it appears that we are not so lucky. From eq. (16.109) we see
that

dE
dt
= −8π

a4

∫ π

0

�2 cos2 θ

sin9 θ
dθ ≤ 0, (16.142)

and similarly, from eq. (16.110), we get

dL
dt
= −8π

a3

∫ π

0

�2 cos2 θ

sin7 θ
dθ ≤ 0. (16.143)

There the solution generated by � = �− does not allow for energy extrac-
tion from the black hole regardless of the form of the equipotential surface
function �.

By writing the charge and current three-vector in its covariant form we
get that

I ν = − 2

a2α
√
γ̂

d

dθ

(
�

cos θ

sin4 θ

)
lν−, (16.144)

where lν− is the infalling null geodesic of the Kerr geometry given in
eq. (15.62). It is of course nice that these charges move along geodesics
since we are considering the force-free magnetosphere, but the fact that they
move along null geodesics suggests that these charged particles are mass-
less: a feature that makes our solution less practical.

16.7 AN APPROXIMATE SOLUTION

As shown above, the solution generated by � = �− has not proven quite
useful. However, the question remains as to whether there are other solutions
where equipotential surfaces are surfaces of constant θ . As we shall show
in the next section, the solution presented above is the unique exact solution
that satisfies all the requirements of force-free, stationary, axis-symmetric
dynamics when � = �(θ). But we shall temporarily abandon our search
for exact solutions. Instead, we look for solutions to order r−2 such that
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�,r = 0, which we shall assume for the remainder of this section. So once
again we impose the condition that � = �(θ). To O(r−3) the constraint
equation (eq. [16.97]) becomes

− 1

2f (θ)

dH 2
ϕ

dθ
= −� sin θ

d

dθ
(f� sin θ)

+ sin θ

r2

[
−a2� sin2 θ

d

dθ
(f� sin θ)+ d

dθ

(
f

sin θ

)]
+ 2M

sin θ

r3

×
[
a�

d

dθ
[f sin θ(1−a� sin2 θ)]− d

dθ

(
f

sin θ
(1−a� sin2 θ)

)]
,

(16.145)

where f (θ) ≡ −��,θ ≡ Aϕ,θ . The above expansion to O(r−3) was ob-
tained for future reasons.

The solution we seek for Hϕ to O(r−2) must satisfy the condition that
Hϕ = Hϕ(θ). If to O(r−2) Hϕ is to be a function of θ alone, then f and �
must satisfy

a2� sin2 θ
d

dθ
(f� sin θ) = d

dθ

(
f

sin θ

)
(16.146)

to make the r−2 term trivial. Defining g ≡ f� sin θ and h ≡ (� sin2 θ)−1,
it is possible to integrate the above equation. Consequently eq. (16.146)
becomes

a2

h

d

dθ
g = d

dθ
(gh). (16.147)

This can be easily integrated to give

g = Q0√
|a2 − h2|

. (16.148)

Here Q0 is an integration constant. Resubstituting the definitions of g and
h into eq. (16.146), we see that when � �= �− the unique solution for f in
terms of � is given by

f = Q0 sin θ√
|(a� sin2 θ)2 − 1|

. (16.149)

Consequently, by ignoring all r-dependent terms in eq. (16.145) we get

dH 2
ϕ

dθ
= 2f� sin θ

d

dθ
(f� sin θ) = d

dθ
(f� sin θ)2

⇒H 2
ϕ = ±H 2

0 + (f� sin θ)2 (16.150)
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to O(r−2). Clearly, the expression for Hϕ given above, since it is only
a function of θ , is an equipotential surface function. Let us impose this
r-independent expression for Hϕ in the Znajek regularity condition
eq. (16.105). This gives

±H 2
0 =

sin2 θ

ρ4+
[(4r2
+M

2 − ρ4
+)�

2 − 4r+Ma�+ a2]f 2. (16.151)

Using eq. (16.150), when H0 = 0, we can eliminate the function f and the
above quadratic equation for � can be solved to obtain

�± ≡ a

2Mr+ ± ρ2+
. (16.152)

Incidentally, notice that

�− = a

2Mr+ − ρ2+
= 1

a sin2 θ
(16.153)

as before. The �− solution is of no further interest to us.
Let us consider the consequence of the choice � = �+. In this case, the

nonvanishing components of the fields are

Br = 1√
γ̂
f = 1√

γ̂

Q0 sin θ

2ρ+

√
a�H

�+
, (16.154)

and from the explicit formula for the electric field we find that

Eθ = −
√
γ̂ �+Br.

Also

αBϕ = Hϕ = −
√
γ̂ �+Br sin θ. (16.155)

As before

�H = a/2Mr+
is the angular velocity of the event horizon and ρ+ =

√
r2+ + a2 cos2 θ . The

charge density in the magnetosphere is given by eq. (16.88). To O(r−2),

ρc ≈ −Q0
√
a �H

2 r2 sin θ

d

dθ

(
sin2 θ

ρ+

)
. (16.156)

Clearly, Q0 has dimensions of charge. It is interesting to note that, while
B satisfies ∇ · B = 0, we find that∫

r>2M
B · n dA �= 0. (16.157)
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For our case,

∫
r>2M

B · n dA = Q0πa√
r2+ + a2




√
r2+ + a2

a
+ (3r

2+ + 2a2)

a2
sinh−1 a

r+


.

(16.158)
This is not an unexpected result; after all, the region bounded by r < 2M
is not a closed region wherein the fields are completely well defined. The
ring singularity of the Kerr black hole (which is removed from our space-
time) creates interesting topological and geometric effects. This is one such.
Solutions of this type are referred to as “monopole” solutions. One should
not mistake this to mean that there are net magnetic charges in general rela-
tivistic electrodynamics.

In the limit when a � M

Br → 1√
γ̂
Q0 sin θ

and

�+ → a

8M2
. (16.159)

This is the monopole solution derived by Blanford and Znajek [467] (also
see [460]). In their approach, Blandford and Znajek found a perturbative
solution by requiring that a is very small when compared to the mass of the
black hole. We did not pose any restriction of this type. Therefore, the so-
lutions for the fields and currents corresponding to � = �+ generalizes the
Blandford-Znajek monopole solution to accommodate the case of a black
hole for all values of a2 < M2 [470]. Blandford and Znajek also proposed
that we can split the solution where Q0 can have opposite signs above and
below the equatorial plane, so that the resulting solution gives a trivial net
magnetic flux. This discontinuity would be introduced by the currents in the
equatorial plane possibly stemming from the accretion disk.

Unlike the exact solution we developed previously, the �+ solution does
indeed permit the extraction of energy and angular momentum. From the
expression for the fields corresponding to the �+ solution, we see from
eq. (16.109) that the rate of energy extraction per unit area is given by

d2E
dAdt

≈ a�H

r2

(
Q0

2

)2 sin2 θ

ρ2+
. (16.160)

Clearly, for this solution, most of the extraction of energy takes place along
the equatorial plane (when sin θ is a maximum); see figure 16.2. That is, the
solution developed here cannot as such be used to account for jet formation



chapter16 July 16, 2009

446 CHAPTER 16

a = 0.1
a = 0.5
a = 0.9
a = 0.99

Pole,0°

Equator
90°

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.2 0.4 0.6 0.8 1

M2PΩ+

a

πQ0
2

Figure 16.2 Energy-loss rate for the �+ solution as a function of spin parame-
ter a for M = 1. The heavy solid curve is the expression given by
eq. (16.161), the short-dashed curve shows the asymptote given in
eq. (16.173) for a � 2M , and the dot-dashed curve plots (2/3)�2

H .
Inset shows angular distribution of emitted power.

from black holes. However, the formalism here does permit solutions that
allow for the extraction of energy and angular momentum from rotating
Kerr black holes. Upon completing the above integral we find that the rate
of energy extraction, or power, of the �+ solution is

P�+ =
dE
dt
= πQ2

0

ar+

(
arctan

a

r+
− a

2M

)
. (16.161)

In a similar manner we can compute the rate of extraction of angular mo-
mentum:

dL
dt
= 2π

3
Q2

0�H +
1

�H

dE
dt
. (16.162)

From eq. (16.111) we see that the mass and the total angular momentum of
the black hole change by the amounts

δM

δt
= −dE

dt
and

δJ

δt
= −dL

dt
. (16.163)

Therefore,

δJ

δt
+ 2π

3
Q2

0�H =
1

�H

δM

δt
; (16.164)

consequently,

δJ

δt
≤ 1

�H

δM

δt
. (16.165)
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As we have seen, the above inequality ensures that the mass of the hole is
always greater than its angular momentum. When all the angular momentum
is spent, the ergosphere disappears, and the extraction of energy is brought
to a halt. Therefore, this process cannot lead to the formation of a naked
singularity.

16.8 UNIQUENESS OF THE �− SOLUTION

In this section we will show that � = �− is the only exact solution pos-
sible when we impose the condition that �,r = 0. Consequently, as in the
previous section � = �(θ). From eq. (16.151) we see that

f 2 = ±H
2
0 ρ

4+
a

�+�2−
(�−�+)(�−�−) . (16.166)

Here the ± factor is to ensure that f 2 ≥ 0. Similarly, we find from
eq. (16.149) that

f 2 = Q2
0

a2 sin2 θ |(�−�−)(�+�−)|
. (16.167)

Setting the right-hand sides of the last two equations equal to each other,
we get

Q2
0|�−�+| = H 2

0 ρ
4
+�+�−|�+�−|. (16.168)

The above equation has the unique solution

� = �̃± = Ã�+ ± B̃�−
Ã∓ B̃ . (16.169)

Here B̃ = H 2
0 ρ

4+�+�− and Ã = Q2
0 �= 0. When Q0 = 0, the radial

component of the magnetic field is trivial and no extraction of energy is
possible. If H0 = 0, we see that �̃± → �+. Therefore, the �− solution is
never described by �̃±. If � = �̃± is to be realized by an exact solution,
then f is given by eq. (16.149). It is only necessary to show that � = �̃±,
along with f as given in eq. (16.149), does not satisfy eq. (16.145) to order
1/r3, for then �̃± could never be an r-independent exact solution. Vanishing
of the 1/r3 term in eq. (16.145) implies that

dg2

dθ
sin θ(1− a�̃± sin2 θ) = 2g2 cos θ(a�̃± sin2 θ + 1). (16.170)

Here g = f (1− a�̃± sin2 θ). Inserting the expression for f and �̃± in the
definition of g, we find that

g2 = 1

r2+ + a2
|(H 2

0 ρ
4
+ −Q2

0ρ
2
+ sin2 θ)|. (16.171)
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Inserting eq. (16.171) in eq. (16.170) we find that

−2Mr+Q2
0

a2
= sin4 θ[Q2

0a
2 sin2 θ −Q2

0ρ
2
+ − 2H 2

0 a
2ρ2
+]. (16.172)

The above equation will not be satisfied because the left-hand side is inde-
pendent of θ , unlike the right-hand side. Therefore, we reach a contradic-
tion, and � = �̃± is not an exact solution that satisfies the Znajek event
horizon regularity condition. We have also shown that � = �− is an exact
solution that is consistent with the event horizon regularity condition. Hence
we get the following result [469]: when equipotential surfaces are surfaces
of constant θ , the unique class of solutions to the stationary, axisymmetric
force-free magnetosphere that is regular on the event horizon of a Kerr black
hole is generated by the function � = �−. The entire degree of freedom in
this theory lies in the r-independent but otherwise arbitrary function �.

Unfortunately, from eqs. (16.142) and (16.143) we see that it is impos-
sible to extract energy and angular momentum from a stationary, axisym-
metric force-free magnetosphere that is regular on the event horizon of a
Kerr black hole when �,r = 0. While it is clear from analytical grounds
that the Blandford-Znajek mechanism describe a process by which extrac-
tion of energy and angular momentum from a black hole can happen in an
astrophysical setting, the extent to which it might explain jet physics is still
an open question. The above result of the uniqueness of �− implies that
the search for new solutions must incorporate a dependence of the radial
coordinate into equipotential surfaces.

16.9 ENERGY EXTRACTION FOR THE �+ SOLUTION

The approximate �+ solution, eq. (16.152), generalizes the Blandford-
Znajek (BZ) split monopole solution to all values of 0 < a < M and leads
to positive energy extraction. We suppose that this solution accurately gives
the black-hole rotational energy extraction, and that the collimation problem
can be handled separately through geometrical or magnetic field effects (by
bringing in the radial dependence of �).

If so, the black-hole power through the BZ process is given by
eq. (16.161), with asymptotes

P�+
∼= πQ2

0

M2
×




1

6

( a

2M

)2
for a/2M � 1,

π

4
− 1

2
∼= 0.285 for a→ M,

(16.173)

noting that r+ shrinks from 2M to M as the spin parameter increases from
a � M to a→ M .
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The charge Q0 can be related to the radial component of the magnetic
field, Br , from eq. (16.154), giving

Q0 = 2
√
γ̂ ρ+�+

sin θ
√
a�H

Br −−−→
θ≈π/2

2
√
γ̂

√
r2+ + a2 �+√
a�H

Br, (16.174)

evaluating the magnetic field threading the event horizon at the equator.
To obtain the magnetic field threading the event horizon, we will now

calculate the magnetic field intensity in the Kerr-Schild coordinate system:

B̄ =
√
γ̄r̄ r̄ (B̄ r̄ )2 + γ̄θ̄ θ̄ (B̄θ̄ )2 + 2 γ̄r̄ϕ̄ B̄ r̄ B̄ϕ̄ + γ̄ϕ̄ϕ̄(B̄ϕ̄)2 . (16.175)

Unlike Bϕ , the Znajek regularity condition will force B̄ϕ̄ to be finite at
the event horizon. It is easily verified using eqs. (15.69) and (16.16) that√

γ̄ B̄ϕ̄ = F̄ r̄θ̄ = G Eθ +
√
γ̂ Bϕ +H

√
γ̂ Br = 0

for the �+ solution. Similarly,

B̄θ̄ = 0 and
√
γ̄ B̄r̄ = √γBr .

Then B̄ = f (θ)√γ̄r̄ r̄ /γ̄ , where

f ≡ Q0 sin θ

2ρ+

√
a�H

�+
,

and
√
γ̄r̄ r̄ /γ̄ = 1/ρ2 sin θ → r−2

+ when r = r+ and θ̄ = θ = π/2. Thus

B̄|r=r+,θ=π/2 =
f (θ = π/2)

r2+
. (16.176)

which gives

Q2
0 =

4r2+(r2+ + a2)2

(2M + r+)2 B̄2 . (16.177)

Consequently, the BZ power for the �+ solution is

P�+
∼= 4πB̄2 (r2+ + a2)2

(2M + r2+)2
(r+
a

) (
arctan

a

r+
− a

2M

)

→ 8π

3
B̄2M2




( a

2M

)2
for a/2M � 1,

(
2

9

) (
π

4
− 1

2

)
∼= 0.0634 . . . for a→ M.

(16.178)
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16.10 BLANDFORD-ZNAJEK PROCESS IN ASTROPHYSICAL

SOURCES

Adopting the notation that B = 10iBi G andM = 10jM�Mj and restoring
units gives

8π

3
cB2M2 = 5.5× 1047B2

4M
2
9 ergs s−1. (16.179)

The two asymptotes of eq. (16.178) are

P�+(ergs s−1)→ 1047B2
4M

2
9

{
1.4

( a
M

)2
for a/2M � 1,

0.35 for a→ M,
(16.180)

so the power extracted through the BZ power given by the �+ solution is,
roughly,

P�+ � 4× 1046B2
4M

2
9

( a
M

)2
ergs s−1 . (16.181)

Astronomical observations can be used to deduce the magnetic field
threading the event horizon. The estimate in eq. (7.73), obtaind by normal-
izing the magnetic field energy density to the density of radiant photons,
when substituted in eq. (16.182), gives the power

P�+ �
2× 1047

R̃0
�EddM9

( a
M

)2
ergs s−1. (16.182)

Thus the BZ power for the �+ solution is limited to values

P�+ � 2× 1047 �EddM9 ergs s−1, (16.183)

taking R̃0
∼= r+/M . For Solar-mass black holes, this power is at the level

P�+ � 5× 1038�Edd

(
M

3M0

)
ergs s−1. (16.184)

Accretion scenarios that could be effectively Eddington limited, at least
over long timescales, probably operate in wind-fed X-ray binaries and
AGNs. The Eddington luminosity is, from eq. (6.133),

LEdd � 1047M9 ergs s−1, (16.185)

and is comparable to the BZ power, eq. (16.182).
The Eddington limit �Edd ≤ 1 cannot, however, be considered a fun-

damental limiting luminosity in all cases. Gamma-ray bursts, if due to the
formation of a few Solar-mass black holes at redshifts near unity, reach in-
stantaneous powers �1051 ergs s−1, so that �Edd ∼ 1012. Blandford-Znajek
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energy extraction through a massive nuclear torus accreting on the a newly
formed, rapidly rotating black hole could extract the spin energy and power
the GRB. Jet collimation can be a consequence of effects in the accretion-
disk magnetospheric. The solution presented here accurately describes the
BZ process near a black hole if the energy extraction and jet formation prob-
lem can be separated.

The formation of jets by the BZ process has driven many recent studies,
both numerical and theoretical. For recent work, see, for example, Punsly
[471], Levinson [472], McKinney and Narayan [473,474], and Königl [475].
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Chapter Seventeen

High-Energy Radiations from Black Holes

Energy from a black hole is generated by one of three mechanisms: (i) the
release of gravitational potential energy by accretion of matter onto a black
hole; (ii) dissipation of rotational energy stored in black-hole spin; and (iii)
Hawking radiation from low-mass, evaporating black holes. For case (i),
the energy of accreting matter is surely the source of the luminous UV and
X-rays detected from radio-quiet Seyfert AGNs, reaching to≈1046 ergs s−1,
and X-ray binaries in the Galaxy as bright as ≈1039 ergs s−1. For case (iii),
no evidence for evaporating black holes was found with EGRET [458], and
it would be a great but unexpected discovery for the Fermi Gamma Ray
Space Telescope to detect evaporating black holes.

Several lines of evidence, including superluminal motion, brightness
temperature, Compton limits on the Doppler factor, and γ γ attenuation,
lead to the conclusion that nonthermal radiations emitted by black holes
are produced by jets of collimated relativistic plasma outflows. If, for case
(ii), the energetic nonthermal radiations of radio and γ -ray loud sources are
powered by the rotational energy of the black hole—an important and inter-
esting question that only detailed studies using theory as presented here can
answer—then this could explain the very different properties and powers of
radio-quiet and radio-loud black holes, which in the latter cases reach ap-
parent luminosities �1049 ergs s−1 for supermassive black-hole blazars, and
�1051 ergs s−1 for GRBs. The extreme black-hole–jet environment where
the energy is dissipated provides appropriate conditions for particle acceler-
ation to the highest energies. When they leave the black-hole accelerators,
these particles become high-energy cosmic rays.

Cosmic rays were discovered by Victor Hess in 1912, UHECR air
showers were discovered by Rossi and Auger in the 1930s, and intense,
highly variable sources of cosmic γ rays were discovered with the Vela
satellites and the COS-B and Compton γ -ray observatories in the last half
of the twentieth century. The Pierre Auger Observatory (PAO) recently ob-
served clustering in the arrival direction of UHECRs, opening the field of
charged-particle astronomy. The lower energy, ∼GeV–PeV cosmic rays are
widely believed to be accelerated by supernova remnant shocks from
exploding stars in the Galaxy, but conclusive evidence for this hypothesis
has not yet been found.
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According to the black-hole spin paradigm examined here, the
�1017–1018 eV UHECRs are accelerated in the even more extreme envi-
ronments of a black hole by the release of its rotational energy. Black holes
have the properties needed to explain the extraordinary energies and powers
of the γ -ray and multiwavelength radiations from AGNs and GRBs: they
are compact and can release large amounts of energy on short time scales.
If they accelerate ultrahigh-energy particles, they will unavoidably make γ
rays and neutrinos, so the sources of cosmic rays must, at some predictable
flux level, be γ -ray and neutrino sources.

Therefore we propose, based on many related theoretical ideas, for
example, by Vietri [427] and Waxman [476] for GRBs, and by Berezin-
sky [217,230], and Mannheim and Biermann [477] for blazars, and work by
Atoyan and the authors [95, 191, 208], that collimated relativistic jets from
black holes emit γ rays and neutrinos and accelerate the UHECRs. The very
different properties of radio quiet and radio loud sources are ultimately re-
lated to the spin of the black hole, following Blandford’s hypothesis [478].
To confirm this black-hole spin paradigm requires calculations of γ -ray,
neutrino, and cosmic-ray signatures, and comparison of theory and model
results with the evolving astronomical and astroparticle data bases. Tying
UHECR acceleration to the spin of a black hole would involve, at least,
statistical studies of the properties of galaxies hosting nonthermal radio/
γ -ray emitting black holes.

Our understanding of the most luminous, highly variable sources of
radiation in nature is far from complete. Whether the mechanism power-
ing these luminous emissions is an accretion process, a Penrose process for
extracting black-hole spin energy, or some hybrid of the two, is unclear. The
black-hole spin paradigm for radio/γ -ray emitting blazars will be tested by
new observations over the next decade, when γ -ray, astroparticle and neu-
trino observatories more sensitive than ever before will provide confirming
or contrary evidence for this hypothesis.

17.1 γ RAYS

The EGRET experiment on the Compton Observatory discovered that blazar
AGNs and GRBs are powerful sources of nonthermal γ rays [479], and the
Whipple Observatory discovered that X-ray-selected BL Lac objects includ-
ing Mrk 421 [480] and Mrk 501 are strong sources of TeV γ rays. The new
air-Cherenkov TeV telescopes HESS, MAGIC, and VERITAS, the large field-
of-view Milagro and HAWC water Cerenkov telescopes, and new discover-
ies with AGILE and Fermi are building on these results in unexpected ways.
(See Refs. [175, 481,482] for reviews of γ -ray sources.)
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Except for lineless blazars like 0716 + 714 with no confirmed redshift,
BL Lac objects and FSRQs detected with EGRET have mean redshifts≈0.3
and≈1, respectively. The brightest FSRQ flares reach apparent powers of∼
1049 ergs s−1, ≈2–3 orders of magnitude greater than the brightest apparent
powers of the most luminous BL Lac objects. The misaligned population
of blazars, namely radio galaxies like Centaurus A and M87 are also found
to be a class of γ -ray sources with EGRET and HESS, with 3C 84 in the
Perseus cluster recently detected with Fermi.

Concerning GRBs, we had before Fermi only fragmentary evidence about
γ -ray emission from five EGRET spark chamber GRBs and a few BATSE
GRBs also seen with the EGRET calorimeter, most without redshifts. The
γ -ray properties of different classes of GRBs will probably be very dif-
ferent. This is likewise true for candidate Galactic black hole sources, for
example, LS 5039 and other high-mass microquasars like Cyg X-1, a radio-
emitting X-ray binary with strong dynamical evidence for a black-hole
primary. New classes of γ -ray sources may soon be discovered, e.g.,
extreme blazars or evaporating black holes.

Gamma-ray telescopes will advance studies on γ rays from black holes,
including the topics discussed in sections 17.1.1–17.1.5.

17.1.1 Modeling γ Rays from Black Holes

Large new γ -ray and multiwavelength databases from black-hole sources
will allow physical models of black-hole jets to be tested and jet properties
to be extracted. Two analytical methods can be employed.

Acceleration, Injection, Energy Loss, and Spectral Fitting

In standard time-dependent leptonic models of black-hole jet sources (e.g.,
[100, 483]), the low- and high-energy components in the SEDs are simulta-
neously fit by injecting relativistic electrons into the model jet and allowing
the electrons to evolve through radiative and adiabatic cooling. The injec-
tion spectrum is usually approximated by a power law with low- and high-
energy cutoffs. The evolution of the comoving electron distribution function
N ′(γ ′; t ′) is usually described by the particle continuity equation

∂N ′(γ ′; t ′)
∂t ′

+ ∂

∂γ ′
[γ̇ ′ N ′(γ ′; t ′)]+ N ′(γ ′; t ′)

t ′esc(γ
′, t ′)
= Ṅ ′(γ ′; t ′). (17.1)

Solutions to this equation give the electron distribution, from which the
multiwavelength spectrum of black-hole jet sources can be calculated for
comparison with data.

Appendix C gives elementary solutions to the particle continuity equation
for specific injection and energy losses. Internal attenuation, pair reinjection,
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Figure 17.1 Relativistic jet model of PKS 0528 + 134 [277]. (Figure courtesy of
M. Böttcher.)

anisotropy, and light-travel time effects are considered in advanced models,
giving predictions for temporal evolution that can be tested with multiwave-
length light curves. Figure 17.1 shows an example of a spectral model fit
to PKS 0528 + 134, a FSRQ at z = 2.07 [277] (4πd2

L × 1013 Jy Hz =
3× 1048 ergs s−1).

New Methodology for Multiwavelength Analysis

Another approach developed here and in [72] is to assume that the radio/
optical/ X-ray νFν flux is nonthermal lepton synchrotron radiation, and use
this SED and the variability data to deduce the electron distribution in the jet
by solving eq. (7.116) for a model electron spectrum. The derived electron
distribution can then be used to calculate the high-energy SSC component
using eq. (7.117). The SSC spectrum is precisely calculated from the in-
ferred electron distribution and a small set of well-constrained observables.
Allowed values of mean magnetic field B and Doppler factor δD (for a given
variability time and implied size scale of the emitting region) are obtained
by fitting the multiwavelength spectrum of a relativistic jet source, implying
absolute jet luminosities.

An application of this method to the X/γ -ray spectrum of PKS 2155-304
at z = 0.116 is shown in figure 17.2 [72] (4πd2

L × 10−9 ergs s−1 cm−2 =
3.3 × 1046 ergs s−1). A synchrotron/SSC model requires δD � 60 and ab-
solute jet powers � 2 × 1046 ergs s−1, calling into question whether this
model is correct.
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Figure 17.2 Relativistic synchrotron/SSC jet model [72] for the July 2006 flares of
PKS 2155-304 [25, 484], using different EBL models [261,262].

The spectrum from external Compton scattering in a standard one-zone
blazar model is given, in general, by the fourfold integral, eq. (6.97). This
equation can be solved for a variety of external radiation fields, including a
point source from behind the jet, and accretion-disk and scattered radiation
fields [73]. Figure 17.3 shows a calculation of a jet source for a FSRQ.

Knowing precisely the leptonic signatures of a relativistic jet model, we
can examine theoretically the different hadronic signatures and compare
with γ -ray data to determine whether relativistic jets of black holes acceler-
ate UHECRs.

17.1.2 Statistics of Black-Hole Sources

The (“logN– log S”) integral rate Ṅ (> φp) at which an observer detects
events with flux greater than φp is given by

dṄ (>φp)

d�
= c

H0

∫ zmax(φp)

0
dz d2

evt(z)ṅco(z) Y tr[φp(z)], (17.2)

where ṅco(z) is the comoving rate density (cm−3 s−1) of events at redshift
z (eq. [4.45]; [485]). The term Ytr[φp] is a detector-dependent quantity, and
gives the detection (“trigger”) efficiency to detect an event with peak flux φp
in the waveband where the detector is most sensitive. Well above detector
threshold, Ytr[φp] ∼= 1. The function φp(z) relates the measured flux over
different wavebands to the peak source directional jet luminosity. The event-
rate distance devt(z), eq. (4.46), is plotted as a function of z in figure 4.3,
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Figure 17.3 Multiwavelength spectral model of a FSRQ, including accretion disk
radiation, and synchrotron, SSC, and external Compton (EC) scat-
tered disk and BLR components, as labeled. Model includes internal
and source γ γ attenuation. (Figures 17.2 and 17.3 courtesy of Justin
Finke.)

incidentally showing that there is not very much effective volume in the
high-redshift universe.

Equation (17.2), when supplemented by a physical model of relativistic
jet sources [52, 53, 486], can be used to fit flux or fluence distributions. Sta-
tistical analysis of extragalactic source counts is a powerful technique [29]
to test jet structure, the redshift-dependent formation rate of sources, lumi-
nosity and density evolution, and the relationship between different classes
of black-hole sources.

17.1.3 Blazar Physics

The Fermi Gamma Ray Space Telescope is providing an all-sky scanning
mission giving a GeV γ -ray data base containing as many as thousands of
radio-loud AGN and GRBs over a wide range of redshifts and fluxes. From
these results, combined with data taken with ground-based γ -ray telescopes
and correlated with multiwavelength and multichannel observations we can,
by joining statistical analysis and blazar modeling efforts, answer some open
questions in black hole research, including:

1. Unification. Significant progress will be made in connecting different
subclasses of AGN and testing the unification hypothesis [279] that
luminous Fanaroff-Riley 2 (FR2) radio galaxies [487] are the parent
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population of radio-loud quasars and FSRQs, and low-luminosity FR1
radio galaxies are the parent population of BL Lac objects. The space
densities and emissivities of different classes of jetted sources, impor-
tant for cosmic-ray studies and black-hole fueling scenarios, can be
determined.

2. Blazar main sequence. Blazar subclasses exhibit a trend characterized
by decreasing bolometric luminosities, a shift of the peak frequencies
of their broadband spectral components towards higher values, and a
decreasing fraction of power in γ rays compared with lower-frequency
radiation [488, 489]. The blazar main sequence is argued [490] to re-
sult from the decreasing energy density of the external radiation field,
leading to a decreasing amount of Compton cooling.

3. Blazar evolution. An evolutionary scenario may link these blazar sub-
classes in terms of a reduction of the black hole fueling with time. As
the circumnuclear material accretes to fuel the central engine, less gas
and dust is left to scatter accretion-disk radiation and produce an exter-
nal Compton-scattered component in blazar spectra. This chronology
produces an evolution with time from FSRQ→ BL Lac objects [491],
with the BZ process playing an important role [492].

17.1.4 GRB Classes

The distance scale is crucial for solving the question of source origin. As
demonstrated by short-hard and long-soft GRB studies, both apparent
isotropic and beaming-corrected energies can be derived. Separation of
GRBs by energy release and redshift distribution has led to the recogni-
tion of a low-luminosity GRB population. In the same way, absolute and
beaming-corrected energy releases, unusual spectral states, and anomalous
γ -ray emission components can be used to define different classes of GRBs.

With the dozen or so GRBs that the Fermi LAT and the hundreds of
GRBs that the Fermi Gamma ray Burst Monitor (GBM) will significantly
detect per year, the simplest method to examine the γ -ray properties of
GRBs, as shown in figure 17.4, is to plot the ratio of fluences in the Fermi
LAT (20 MeV–>300 GeV) and GBM (8 keV–40 MeV) wavebands [493].
Fluence ratio is one way to search for distinct classes of GRBs, compared
to hardness/duration diagrams [494] or energies [495, 496].

17.1.5 Unresolved and Diffuse γ -Ray Background

The intensity of the diffuse and unresolved γ -ray EBL from EGRET obser-
vations and analysis [33,34] is shown in figure 17.5 (compare figure 1.3). It
is decomposed into contributions from blazars [52], separated into FSRQs
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tios [493]. Shown are the BATSE fluence distribution (upper panel;
figure courtesy Nicola Omodei), and EGRET and BATSE fluences, in
units of ergs cm−2 s−1, for five GRBs detected with the spark chamber
on EGRET (lower panel).

and BL Lacs, and the superposed emissions from numerous faint sources
where the γ rays are formed primarily by interactions of cosmic rays
accelerated by supernovae in star-forming galaxies and by structure forma-
tion shocks in clusters of galaxies [497,499]. (For the diffuse γ -ray intensity
from the Hawking radiation of evaporating mini–black holes, see [457].)
Particle and radiation fields are connected because photohadronic interac-
tions of UHECRs with the EBL form cascade γ rays that contribute a truly
diffuse component to the γ -ray EBL [498].

17.2 COSMIC RAYS

The origin of the cosmic rays has been one of the central problems in
astrophysics since Baade and Zwicky [500] commented on the connection
between cosmic rays and supernovae in 1934. The hypothesis that
cosmic rays, at least the Galactic cosmic rays between ∼GeV/nuc and
≈1014–1017 eV, are accelerated by supernova remnant shock waves is rea-
sonable because it passes the basic tests of available power and a plausible
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Figure 17.5 Decomposition of the diffuse/unresolved γ -ray background measured
with EGRET [33,34,497]. Shaded region shows estimate for cascade γ
rays induced by UHECRs formed by sources evolving as AGNs [498].

acceleration mechanism, especially given results of first-order shock Fermi
acceleration theory, reviewed here (see [12, 114]).

Featureless power-law hard X-rays from SNRs like SN 1006, interpreted
as nonthermal synchrotron radiation from cosmic-ray electrons, lead us to
think that SNRs are sites of cosmic-ray electron acceleration. The identifi-
cation of sites of hadronic acceleration in Galactic SNRs has however been
more difficult. EGRET’s point spread function was too large to convincingly
identify a SNR as a source of γ -rays. The HESS spectra on SNRs may be
interpreted as leptonic or hadronic emissions. Milagro finds ∼10 TeVγ -ray
excesses in the Cygnus region of unknown origin.

The confirming γ -ray signature of the acceleration of the hadronic
cosmic rays is the π0 γ -ray bump at ≈70 MeV in a photon number spec-
trum [385, 386]. Fermi could provide the crucial data to determine if the
solution to the origin of cosmic rays can be settled by γ -ray astronomy.
This is a difficult problem, because it depends on background subtraction,
line-of-sight integrations, presence of clouds of target material, and argu-
ments regarding the age and distance of the SNR.

Depending on the spectral hardness and diffusivity of TeV–PeV cosmic
rays, neutrinos could be detected from interactions of cosmic rays with the
gas and dust in the OB associations. The detection and interpretation of
γ -ray and neutrino signals from SNRs should solve the problem of Galactic
cosmic-ray origin.
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17.2.1 Acceleration of Cosmic Rays at Supernova Remnant Shocks

The momentum gain rate from first-order Fermi acceleration at an external
shock is, from eqs. (13.78) and (13.100),

ṗF1 � (� − 1)c

roL−
� ṗ′FI. (17.3)

The momentum gain rate from second-order Fermi acceleration in the co-
moving shocked fluid frame is, from eqs. (14.50) and (14.77),

ṗ′F2 �
εBξ(q − 1)c

roL+
(roL+kminp

′)q−1. (17.4)

Note that ṗ′FI ∝ const and ṗ′F2 ∝ p′q−1, recalling that q is the index of the
wave turbulence.

The rate of stochastic second-order processes is negligible in compari-
son with the first-order rate when β0 � 0.1. As the flow speed becomes
marginally relativistic, first-order processes can accelerate particles to suf-
ficiently high energies that second-order acceleration then starts to become
important [372]. At relativistic flow speeds, the second-order process can
easily dominate.

Table 12.1 gives a listing of flow speeds and ejecta energies obtained from
spectral line observations of SNe [308] and GRBs. Particle acceleration to
the knee of the cosmic ray spectrum by SNe requires large explosions tak-
ing place in tenuous surroundings [384]. This is feasible for SNe if cosmic
rays primarily originate from Type Ia SNe, as Type II and Type Ib/c SNe
are thought to be associated with young massive stars in dense, gaseous
environments. In the latter case, though, upstream amplification of the mag-
netic field can enhance acceleration to reach, for mildly relativistic outflows,
≈1017 eV.

The situation is far more complex. Acceleration efficiency is probably a
function of Mach number, so that different classes of SNe differ widely in
their efficiency to accelerate cosmic rays. A clumpy or a wind-type environ-
ment would have different maximum energies than a uniform medium. (Out-
flow velocities of ejected matter from SN 1987A reached 2–3×104 km s−1,
more than twice as fast as a typical Type II SN [308].) SNe and hypernovae
may eject mass outflows with a range of speeds [501]. Mildly relativistic
outflows are deduced from radio observations of the Type Ic SN 1998bw
associated with GRB 980425 [307, 387], so that hadronic cosmic-ray ac-
celeration to the knee of the cosmic-ray spectrum is possible from Type Ic
SNe. But even if shocks of SNRs accelerate cosmic rays, this mechanism has
trouble in accounting for the origin of cosmic rays with energies �1017 eV.
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17.2.2 Acceleration of UHECRs at Relativistic Blast Waves

The maximum particle energy for a cosmic-ray ion accelerated by second-
order Fermi processes at an external shock of a relativistic blast wave can
easily be derived. Consider a blast wave with apparent isotropic energy
E0 = 1052E52 ergs and Lorentz factor �0 = 300�300, sweeping up an ex-
ternal medium with density n0 cm−3. The volume of the shocked shell for
a spherically symmetric explosion at distance x from the engine is V ′ =
4πx2�′, where the shell width �′ = x/12�. The Hillas condition [320] for
maximum particle energy E′max is that the particle Larmor radius is less than
the size scale of the system; thus

r ′L =
E′max

QB ′
= Emax

Z�eB ′
< �′. (17.5)

The largest particle energy is reached at the deceleration radius x = xd ,
from eq. (11.2). Hence Emax

∼= ZeB ′xd/12.
The mean magnetic field B ′ ∼= 0.4(εBn0)

1/2�G, from eq. (11.39), giving

Emax
∼= 8× 1019Zn

1/6
0 ε

1/2
B �

1/3
300E

1/3
52 eV (17.6)

[301,446], so that second-order processes in the shocked fluid shell of a rel-
ativistic blast wave that sweeps up material from the surrounding medium
can, in the right environment, accelerate particles to ultrahigh energies. Ac-
celeration to ultrahigh energies through first-order relativistic shock accel-
eration requires a highly magnetized surrounding medium [338], but mildly
relativistic shocks in the colliding shells of relativistic black-hole jet sources
are also able to accelerate particles to �1020 eV energies.

17.2.3 Charged-Particle Astronomy

The Auger discovery [14] of clustering in the arrival directions of �60 EeV
UHECRs along the supergalactic plane (SGP) rules out a Galactic origin of
UHECRs. By correlating the UHECR arrival directions with directions to
AGNs in the Véron-Cetty and Véron (VCV) catalog [502], with 694 active
galaxies at d � 100 Mpc, the Auger collaboration finds that UHECRs with
E � 60 EeV correlate with the directions to AGNs within 50–100 Mpc.
UHECRs are deflected in transit by the Galactic [503] and the intergalactic
magnetic field.

The clustering energy Ecl
∼= 60 EeV separates UHECRs formed mainly

by sources along the SGP at d � dcl from lower-energy UHECRs formed
nearby and on �75 Mpc scales. A high-significance steepening in the
UHECR spectrum at E ∼= 1019.6 eV ∼= 4× 1019 eV and at E ∼= 1019.8 eV ∼=
6 × 1019 eV was recently reported, respectively, by the PAO [183] and
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Figure 17.6 Effective energy-loss mean free path of Fe in low and high EBLs of
figure 10.5.

HiRes [182] collaborations. These results confirm the prediction of Greisen,
Zatsepin, and Kuzmin [10, 11] that interactions of UHECRs with CMBR
photons cause a break in the UHECR spectral intensity near 1020 eV.

The simplest explanation is that more distant UHECRs fail to arrive here
at Earth due to energy and photodisintegration losses. Figure 17.6 shows
the effective energy-loss MFP of UHECR Fe from photopion, photopair,
photodisintegration, and universal expansion losses, as described in chapters
9 and 10, for the low and high EBLs of figure 10.5 [504]. This distance is
≈200 Mpc at 1020 eV and a factor of 2 larger at 60 EeV. The PAO clustering
results would apparently rule out that � 60 EeV had a significant UHECR
Fe composition.

Figure 17.7 shows the energy-loss MFP of UHECR He, N, and Fe in the
low and high EBLs. If we accept the Auger results, keeping in mind calibra-
tion uncertainties [505, 506] and the approximate meaning of an effective
MFP, then figures 17.6 and 17.7 show that UHECR ions up to perhaps Ne
(A = 20) would lose their energy or be destroyed within ≈100 Mpc. An
abundance of light ions [505] would be required if there is significant ionic
composition in the UHECRs.

For protons, the clustering energy is similar to the GZK energy because
they both represent the energy where detection of �60 EeV cosmic rays
at the �100 Mpc scale is obscured by photopion energy losses with the
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Figure 17.7 Effective energy-loss mean free paths of UHECR He, N, and Fe ions,
as labeled, in low and high EBLs of figure 10.5.

CMBR. The energy-loss mean free path gives the mean distance over which
a particle with energy E loses ≈1− e−1 ∼= 63% of its energy.

The GZK horizon radius giving the mean distance from which protons
detected with energy 1020E20 eV originate depends in general on injection
spectra and source evolution [203], but a model-independent definition that
reduces to rφπ (E20) for energy-independent energy loss considers the aver-
age distance from which a proton with measured energy E had energy eE.
The horizon distance, defined this way, is given by

rhrz(E20) =
∫ eE20

E20

dx

x
rφπ(x) ∼=

1.1E2
20 exp(4/E20)

1+ 1.6E2
20/13.7

Mpc, (17.7)

where the last expressions gives the proton horizon on CMBR photons
alone, using eq. (9.17).

Using the phenomenological fits to the low and high EBLs at optical and
IR frequencies, represented as a superposition of blackbodies in figure 10.5,
gives the corrected horizon distance shown in figure 17.8. The horizon dis-
tance for �57 (75, 100)EeV UHECR protons is �200 (100, 50)Mpc. A
GZK horizon smaller than 40 Mpc applies to protons with E � 100 EeV.
This explains the clustering observations for UHECR protons. Differences
in the energy scale between the two experiments, which have ≈ 20%
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uncertainties due to systematic effects, could reconcile the discrepancies
between the HiRes and Auger GZK energies as determined from the spec-
tral break (see figure 9.9), and would be compatible with GZK losses of
UHECRs with a predominantly proton composition.

The dip energy can be viewed as a consequence of photopair effects on
UHECR protons [506], either from GRBs [208] or AGNs [507]. It could also
involve photodisintegration and photopair energy losses of ions interacting
with photons of the EBL.
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17.2.4 UHECR Propagation

Three-dimensional diffusive propagation was described in section 12.5. De-
tailed propagation models follow trajectories in specified magnetic field
geometries [203, 508]. If the magnetic field is tangled on size scales ∼λcoh,
where λcoh is the coherence length of the magnetic field, then cosmic rays
from a source at distance d passing through a medium with mean magnetic
field B = 10−12B−12 G are deflected by the angle [476,509]

θd � d

2rL
√
Ninv

∼= dZeB

2E
√
Ninv
� 0.04◦ Z

B−12 d(100 Mpc)

(E/60 EeV)
√
Ninv

. (17.8)

Here Ninv
∼= d/λcoh � 1 is the number of inversions of the magnetic field,

and the Larmor radius of a particle with energy E and charge Ze is rL ∼=
65(E/60 EeV)/(ZB−12)Gpc. If the UHECRs originated from AGNs in the
Véron-Cetty and Véron catalog [502], taking d ∼= 75 Mpc and θd ∼= 3◦
gives B−12 � 100(E/60 EeV)

√
Ninv/Z in order that the deflections are not

greater than 3◦.
The Galactic magnetic field could, however, cause the deflections [503].

Approximating the Galactic magnetic field by a magnetic disk with charac-
teristic height hmd gives a deflection angle θdfl ≈ hmd csc b/rL, where b is
the Galactic latitude of the UHECR source. Thus

θdfl,MW
∼= 0.9◦

Zhmd(kpc)B(µG)

sin b(E/60 EeV)
. (17.9)

Mean magnetic fieldsB in the≈0.2 kpc thick gaseous disk of the Galaxy are
≈3–5µG, but could fall to� 1µG in the kpc-scale halo. Deflection angles
�3◦ from Cen A (b = 19.4◦, galactic longitude � = 309.5◦, declination
−43◦, distance d ∼= 3.4 Mpc) would seem to restrict UHECRs to protons or
light-Z nuclei and a small (�0.1µG) Galactic halo magnetic field, consistent
with results in section 17.2.3.

The equation for the time delay due to the deflection of UHECRs from an
impulsive source is

�t ∼= d

6c
θ2
d �

34Z2B2
−12d

3(100 Mpc)

(E/60 EeV)2
yr (17.10)

[476, 509]. Recurrent events over days or shorter could be observed from
UHECRs powered by nearby GRBs from Cen A or low luminosity GRBs
like GRB980425/SN1998bw (d ∼= 36 Mpc) if the magnetic field of the IGM
is sufficiently weak or disordered.

17.2.5 UHECR Source Power Requirements

Maximum particle energy in relativistic flows characterized by apparent jet
power L is given by a simple theoretical argument.
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The particle energy density of a cold relativistic wind with apparent
isotropic luminosity L and Lorentz factor � = 1/

√
1− β2 at radius R from

the source is

up = L

4πR2β�2c
,

from eq. (11.116). If a fraction εB of the power is channeled into magnetic
field B ′ in the fluid frame, then RB ′� = √2εBL/βc, implying maximum
particle energies E′max

∼= QB ′(R/β�), so

Emax
∼=E′max�

∼=
(
Ze

�

)√
2εBL

β
c≡ 2× 1020ZA

√
εB

(
L

1046 ergs s−1

)
eV.

This simple, optimistic estimate does not explain how to transform directed
particle kinetic energy into magnetic field energy in a cold wind, and leaves
out physical limitations, for example, the acceleration time limiting the
highest energy particles in supernova remnant shocks. Nevertheless, this
equation is recovered in more detailed studies, where the factorA� 1. As-
suming a Fermi acceleration scenario for the sources of UHECRs therefore
restricts sources to those with apparent isotropic powers to �1046 ergs s−1,
that is, blazars and GRBs.

We also consider another argument that black holes are luminous enough
to accelerate 1020E20 eV UHECR protons or ions [510]. In a region of size
R and magnetic field B, electromagnetic forces can accelerate a particle to
a maximum energy of Emax > Epar � ZeβBR. The available time in the
comoving frame is shortened by bulk Lorentz factor �, so that the effective
size for acceleration is ≈R/�, and BR > �Epar/Zeβ. The required power
of the magnetized flow is

L≈ 2×4πR2v× B
2

8π
≈ βc(BR)2≈ c�

2E2
par

Z2e2β
∼= 3× 1045

Z2

�2

β
E2

20 ergs s−1,

(17.11)

including a factor of 2 for the plasma jet kinetic power. If the nonthermal
luminosity is a good measure of jet power, then we can decide whether
different source classes are good candidate UHECR sources.

For GRBs, � ≈ 300, and LGRB � 1050(�/300)2E2
20/Z

2 ergs s−1. Ap-
parent isotropicX/γ powers of long-duration GRBs are regularly measured
in excess of 1050 ergs s−1 [365], so long-duration GRBs are a viable can-
didate for UHECR acceleration. For the low-luminosity GRBs, which may
only reach≈1048–1050 ergs s−1 [495], higher-Z ions can still be accelerated
to super-GZK energies if � remains large.

For blazars, Lblazars � 3 × 1045�2E2
20/Z

2 ergs s−1. The γ -ray evidence
shows that powerful radio galaxies, and even lower-luminosity radio
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galaxies like Centaurus A during flaring periods, could be the sources of
UHECRs.

17.3 NEUTRINOS

Multimessenger astronomy will truly come of age when PeV neutrinos are
detected from extragalactic sources beyond the γ -ray horizon. Instruments
at the kilometer scale have the critical size needed to open this window and
detect sources.

A source of neutrinos should also be bright in direct or cascade GeV–TeV
γ -rays coproduced in the pion/neutrino production process. Consequently,
detectable neutrino production should be accompanied by high-energy γ -
ray fluences, which should exceed the level ∼10−4 ergs cm−2 to be bright
enough to be detected with km-scale neutrino detectors. The detection effi-
ciency in water or ice of ultrarelativistic upward-going muon neutrinos (νµ)
with energy of 100εT TeV is

Pνµ(εT ) � 10−4P−4ε
χ

T , χ = 1 for εT < 1 and χ = 0.5 for εT > 1

[181, 226]. Parameterizing the GRB neutrino νFν fluence spectrum by a
power law with index aν , so νFν = 10−4φ−4ε

aν
T erg cm−2, then the number

of neutrinos detected with a km-scale ν detector such as IceCube or the
proposed northern hemisphere neutrino telescope KM3NeT is

Nν ≈
∫
dεT

νFν
ε2
T

Pνµ(εT )Aν

(160 erg/100 TeV)

� 0.6
φ−4P−4A10

1− aν

{
1+ (1− a−1

ν )(1− εaνT ), for εT < 1,

ε
aν−1/2
T , for εT > 1.

(17.12)

For a neutrino spectrum that is flat in νFν , that is, aν ∼= 0, Nν(εT < 1) �
φ−4P−4A10(1 + 1

2 ln ε−1
T ) and Nν(εT > 1) � φ−4P−4A10/

√
εT . The

IceCube detector is especially sensitive to cosmic neutrino sources at
∼100 TeV–PeV energies, as cosmic-ray-induced background may become
too large at lower energies, and the flux becomes too small at higher ener-
gies.

The detection of a single νµ therefore requires a νµ fluence
�10−4 erg cm−2 above 1 TeV. Since the energy release in high-energy neu-
trinos and electromagnetic secondaries is about equal, this energy will be
reprocessed in a pair-photon cascade and emerge in the form of observable
radiation at γ -ray energies, and this radiation cannot exceed the measured
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Figure 17.9 Energy fluence of photons and photomeson muon neutrinos for
a collapsar-model GRB with hard X-ray fluence �tot = 3 ×
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show the Compton and synchrotron contributions to the photon flu-
ence from the electromagnetic cascade initiated by secondaries from
photomeson processes, respectively.

fluence in this regime. Thus the γ -ray photon fluence Fγ accompanying
the neutrino production must be �10−4 ergs cm−2 for an UHECR source to
be detected with a km-scale neutrino telescope such as IceCube. Because
the neutrino fluence will be spread over several orders of magnitude, it is
necessary that Fγ � few × 10−4 ergs cm−2 in order to produce a sufficient
neutrino fluence for detection, given that the νµ fluence will generally be
smaller than the photon fluence even in the optimistic case that the photon
radiation originates substantially from hadronic processes [511].

For comparison, ≈2 GRBs per year are expected with X/γ -fluence >
3×10−4 ergs cm−2 s−1 at hard X-ray/soft γ -ray energies [512] (figure 17.4).
The day-long fluence of a bright γ -ray blazar flare with flux brighter than
� 200 × 10−8 ph (>100 MeV) cm−2 s−1 exceeds 10−4 ergs cm−2, and we
expect a blazar flare this bright should occur every few weeks [268].

Figure 17.9 shows calculations [191,513] of photomeson neutrino pro-
duction for a collapsar model GRB with �tot = 3 × 10−4 erg cm−2 and
δD = 100, as well as the accompanying electromagnetic radiation induced
by pair-photon cascades from the secondary electrons and γ rays made by
the same photomeson interactions [97]. (Not shown is the leptonic SSC
component.) The same energy required to power the leptonic synchrotron
radiation is deposited in the form of relativistic protons in this calculation,
so that the baryon-load factor fCR = 1. The dotted curve shows the primary
lepton synchrotron radiation spectrum that was assumed for the calculation.
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Figure 17.10 The fluences of muon neutrinos calculated for a GRB at z = 1 with
X-ray/MeV γ -ray fluence of 3× 10−4 ergs cm−2 and Doppler factors
δD = 100, 200, and 300, and a nonthermal baryon-loading factor
fCR = 20. (Figures 17.9 and 17.10 courtesy of Armen Atoyan.)

The total number of νµ expected with IceCube is ∼= 0.1. The total fluence
of cascade photons shown here is contributed by lepton synchrotron (dot-
dashed) and Compton (dashed) emissions induced by hadronic processes.
The level of the fluence of the cascade photons is ≈10% of the primary
synchrotron radiation. This means that the maximum allowed baryon load
fCR � 10–30 in order not to overproduce the primary synchrotron radiation
fluence, which could possibly be of hadronic origin.

Figure 17.10 shows the neutrino fluences expected in the collapsar GRB
scenario from a model burst with photon fluence �rad = 3× 10−4 erg cm−2

at redshift z = 1 [513]. The value of the baryon-loading parameter fCR

is set equal to 20 in this calculation. The numbers of muon neutrinos that
would be detected from a single GRB with IceCube for these parameters
and with δD = 100, 200, and 300 are Nν = 1.32, 0.105, and 0.016, respecti-
vely, limited by the high-energy radiation fluence. If the radiation fluence
at MeV–GeV energies is larger than the hard X-ray fluence, a possibility
that the Fermi telescope is answering, then the expected number of detected
neutrinos could be increased correspondingly. Observations of γ -ray emis-
sion not easily explained with leptonic models, for example, the anomalous
γ -ray component in GRB 941017 [514], could be a feature of relativistic
hadron acceleration in these sources.

Figure 17.11 is a hybrid plot of lengths for particles and photons of
different energies. Its interest for neutrino physics is that any source of
UHECRs, if from a collimated relativistic jet, produces a distinctive γ -ray
signature from γ γ cascades on the EBL. For IGM magnetic fields that
are very disordered or weak, then the hadronic cascade will produce an



chapter17 July 29, 2009

HIGH-ENERGY RADIATIONS FROM BLACK HOLES 471

1020

λ
T

λ
KN

λγγ

10–3

10–2

10–1

100

101

102

103

10–3 100 103 106

di
st

an
ce

 (M
pc

)

E (TeV) PeV EeV
 

eVGeV

 

 

 

 

ZeV

λ
neu

θ–1/B–12
= 1

θ–1/B–9
= 1

θ–1/B–18
= 1

θ–1/B–15
= 1

Figure 17.11 Mean free paths for attenuation of γ rays by the EBL (λγγ ; for
corrections from radio EBL, see [515]), for Compton-scattering en-
ergy loss of relativistic electrons or positrons with the CMBR in the
Thomson (λT) and Klein-Nishina (λKN) regimes, and neutron decay
(λneu). The particle or photon energy is denoted E (TeV). The pho-
topion horizon and energy-loss pathlengths for protons, from figure
17.8, are shown for comparison. Dotted lines give length scales for a
lepton to be deflected by 0.1θ−1 rad in a magnetic field from 10−9 to
10−18 G, as labeled. Photohadronic processes that induce such high-
energy electromagnetic primaries will also be strong sources of
neutrinos.

≈100 GeV–multi-TeV flux from sources of UHECRs at distances ≈ few
hundred Mpc–Gpc. A strong neutrino source will be accompanied by a flux
of neutrons and γ rays. The neutrons transfer energy to lobes or the sur-
rounding galactic environment, while the γ rays materialize and form an
electromagnetic cascade. Observations with the IceCube neutrino detector
will determine whether black holes power neutral beams.

17.4 CONCLUDING REMARKS

In this study, we have tried to join black-hole engine and high-energy radi-
ation physics to give an understanding of observations of energetic nonther-
mal emissions from candidate black-hole sources, seen as sites of energy
release, plasma ejection, particle acceleration, and radiation. We have con-
centrated on energy extraction from spinning black holes through Penrose
processes, namely, the spin paradigm, with the spin of the black hole as the
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decisive variable separating thermal black holes largely powered by accre-
tion from nonthermal black holes in radio galaxies, γ -ray blazars, and jetted
sources like GRBs and microquasars whose radiative output is dominated
by nonthermal emissions.

Based on a Blandford-Znajek process for electromagnetically extracting
rotational energy from a black hole, we found a solution with energy extrac-
tion valid for general values of the spin angular momentum parameter a.
The power output peaks, however, along the equator, contrary to the pic-
ture of oppositely-directed collimated jets. The geometry of matter currents
setting up the black-hole magnetospheric fields could play a role, but the
jet-formation problem was not treated here.

Instead, we considered whether spinning black holes eject relativistic out-
flows, and make shocks that accelerate the ultrahigh-energy cosmic rays, at
the same time making γ -ray luminous sources. Evidence challenging this
hypothesis would be given by special characteristics of the host galaxies or
progenitor populations; by high-energy neutrino observations of GRBs or
blazars or other sources; by anomalous γ -ray signatures associated with
hadronic acceleration and energy losses in relativistic shock waves; and
by evidence for cosmic-ray sources based on the arrival direction studies
of UHECRs, for example, from special types of galaxies (e.g., radio, star-
forming, or infrared luminous).

The advent of the IceCube neutrino telescope at the South Pole and the
launch of Fermi in 2008, accompanied by major advances in ground-based
cosmic-ray and γ -ray observatories, autonomously repointing telescopes,
and a network of multiwavelength observers, will provide the important
data to determine whether black holes accelerate the ultrahigh-energy cos-
mic rays and make hadronic radiations. Our understanding is already being
challenged by new results from ground-based γ -ray observatories, the Pierre
Auger Observatory, and the Fermi Gamma-ray Space Telescope. Detection
of multi-TeV–PeV neutrino sources and sources of cosmogenic neutrinos
with IceCube and UHE neutrino observatories could succeed in establish-
ing the sources of Galactic and extragalactic cosmic rays and solve a puzzle
reaching back a century. In the meantime, searches for energetic radiations
from black holes in the extreme universe continue to surprise.
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Appendix A

Essential Tensor Calculus

A.1 INTRODUCTION

This chapter provides the supplemental material that is necessary for a
reader unfamiliar with tensor calculus and/or differential geometry to follow
parts of the book. The description here is elementary, and it is our hope that
a background in vector calculus is sufficient prerequisite. There are plenty
of excellent books on the subject of differential geometry, some of which we
include here as reference. For an introduction to the subject, see the books
by Synge and Schild [516], Kay [517], and Bishop and Goldberg [518]. For
a more advanced introduction suitable for physicists, see O’Neill [519] and
Curtis and Miller [520].

A.2 THE TANGENT VECTOR

In order to formulate a general description of a tangent vector, let us consider
the simplest possible example: Consider the Cartesian space �2 on which
we impose a coordinate system (x, y) in the usual manner. A vector at any
point p ∈ �2 is spanned by the two unit vectors {ex, ey}. ex is the unit
vector pointing along curves y = const along the increasing direction of
the x coordinate, and ey is the unit vector pointing along curves x = const
along the increasing direction of the y coordinate. Any vector χ at p can be
written in the form

χ = χxex + χyey. (A.1)

Here χx and χy are just numbers. A vector field A on the other hand can be
written in the form

A(x, y) = Ax(x, y)ex + Ay(x, y)ey. (A.2)

This vector field is defined wherever the functions Ax and Ay are. We say
the vector field A is smooth whenever Ax and Ay are smooth functions of
x and y. At any point p = (x0, y0), in the domain of the tangent vector
field A

A(x0, y0) = Ax(x0, y0)ex + Ay(x0, y0)ey (A.3)

is a tangent vector.
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A vector is also characterized by its transformation property. To under-
stand how vector fields transform, let us now use the polar coordinate
system (r, θ) to describe �2 − 0. In the polar coordinate system, the origin
is removed from �2 for the usual reason. The polar coordinates are defined
by

x = r cos θ and y = r sin θ.

The unit vectors

er = cos θ ex + sin θ ey and eθ = − sin θ ex + cos θ ey.

The above transformation of unit vectors can be written as

er = ∂x

∂r
ex + ∂y

∂r
ey and eθ = 1

r

(
∂x

∂θ
ex + ∂y

∂θ
ey

)
.

Let us compare the above equation with
∂

∂r
= ∂x

∂r

∂

∂x
+ ∂y
∂r

∂

∂y
and

∂

∂θ
= ∂x

∂θ

∂

∂x
+ ∂y
∂θ

∂

∂y
.

We see that the basis vectors transform like partial derivatives. The 1/r in eθ
is there for normalization reasons since here we are looking at the transfor-
mation properties of unit vectors. Therefore, we see that there is a 1:1 corre-
spondence between the basis for tangent vectors and partial derivatives. Let
us generalize the result that we have obtained, keeping in mind that we are
just looking for a basis set for the tangent vector fields (not necessarily an
orthonormal set).

We would like to do tensor calculus on a general smooth surface and
not just on �n as we have done above. Examples of these surfaces are a
3d sphere, a 2d ball (the boundary of a sphere) and a torus. In relativity,
we will even be concerned with 4d spaces. Regardless of the details, an n-
dimensional smooth space will have n smooth coordinate functions {xi |ni=1}
defined on it. In the language of differential geometry the space itself is re-
ferred to as a manifold. In an arbitrary manifoldM with coordinates {xi |ni=1},
the vector fields are objects spanned by the quantities

∂

∂xi

for i = 1, 2, . . . , n. The most general tangent vector A at the point p ∈ M
can be written as

A(p) = Ai(p) ∂
∂xi

. (A.4)

Here, we have used the Einstein summation convention that repeated indices
with one upper and one lower implies summation, i.e.,

Ai
∂

∂xi
≡

n∑
i=1

Ai
∂

∂xi
. (A.5)
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M

Figure A.1 Tp(M) and Tq(M).

The set of all tangent vectors at p ∈ M forms the tangent vector space at p
and is denoted as Tp(M), as shown in figure A.1.

The most general tangent vector fields have the appearance

A(x) = Ai(x) ∂
∂xi

. (A.6)

Here x is any point of interest on the manifold where the coordinates are
well defined. The tangent vector field A is defined wherever all the Ai(x)
are. Ai are the components of the vector field A. Also ∂/∂xi is sometimes
written as ∂i . Very often, the basis vectors ∂i are ignored and the vector (or
vector field) Ai(x)∂i is simply denoted as Ai . The restriction of a tangent
vector field to a point p of the manifold is a tangent vector at p. The collec-
tion of all the tangent vectors spaces of all the points on the manifold forms
the tangent bundle: T (M). Naturally, tangent vector fields live on the tan-
gent bundle. The transformation property of vectors fields can be deduced
from the familiar chain rule.

Consider a change of coordinates from {xi} to {x̄i} for i = 1, 2, . . . , n.
Then

A(x) = Ai(x) ∂
∂xi
= Ai(x)∂x̄

j

∂xi

∂

∂x̄j
≡ Āj (x̄) ∂

∂x̄j
. (A.7)

Here, the point x is short for (x1, x2, . . . , xn), and x̄ is the corresponding
point in the “barred” coordinate system, and Āj are components of the vec-
tor field A in the transformed coordinate system. In component form, the
transformation property of tangent vectors become

Āj (x̄) = Ai(x)∂x̄
j

∂xi
. (A.8)

Definition. Tangent vectors at any point p of the manifold take smooth func-
tions at p to a real number in a linear fashion by the prescription

A(f )|p = Ai(p)
∂f

∂xi

∣∣∣∣
p̂

. (A.9)
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Here f is any smooth function.
Clearly, eq. (A.9) is a linear map since

A(af + bg) = a A(f )+ b A(g). (A.10)

Here f and g are smooth functions and a and b are numbers. In differential
geometry this is how tangent vectors are defined. It turns out that the rest of
the properties can be derived from the above definition.

A.3 DUAL VECTORS

A dual vector at a point p ∈ M is a linear functional on the tangent vectors
at p, i.e., a dual vector at a point takes a tangent vector at the same point and
converts it to a number in a linear fashion.

Definition. For a smooth function f on the manifold, let the differential of
f , denoted as df , be the linear functional on tangent vectors defined by

df (A) = A(f ) = Ai ∂f
∂xi

. (A.11)

It is easy to verify that the action of a differential of a function on a tangent
vector is a function linear map, i.e.,

df (gA+ hB) = g df (A)+ h df (B). (A.12)

Here A and B are vectors, and g and h are functions.
The coordinate differentials form a basis for the dual vectors since

dxi(∂j ) = ∂xi

∂xj
= δij .

Indeed, any dual vector A at the point p of the manifold can be written in
the form

A(p) = Ai(p)dxi. (A.13)

As in the case of tangent vector fields, the notion of dual vector at p
can be extended to dual vector fields by allowing the point p to vary. The
transformation properties of dual vectors follow from the expression above

A(x) = Ai(x)dxi = Ai(x) ∂x
i

∂x̄j
dx̄j = Āj (x̄)dx̄j = Ā(x̄). (A.14)

As before, we employ a coordinate transformation from {xi} to {x̄i}. Here
the point x̄ is the corresponding point to x in the new coordinate system,
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Figure A.2 Tp(M) and T ∗p (M).

and Āj are components of the dual vector field A in the transformed coordi-
nate system. In component form the transformation relation for dual vectors
become

Āj (x̄) = Ai(x) ∂x
i

∂x̄j
. (A.15)

Let us consider the action of a general dual vector A on a tangent vector χ

A(χ) = Aidxi(χj∂j ) = Aiχjdxi(∂j ) = Aiχjδij = Aiχi. (A.16)

The resulting function Aiχi obtained by contraction of indices is coordi-
nate invariant, and hence is a scalar function. This is easily verified by the
transformation properties eqs. (A.8) and (A.15).

Āj χ̄
j (x̄) = Ai ∂x

i

∂x̄j
χk
∂x̄j

∂xk
= Aiχk ∂x

i

∂xk
= Aiχi(x). (A.17)

Therefore we see that contraction is a coordinate-invariant action.
Definition. The set of all dual vectors at a point p ∈ M forms the dual space
at that point p denoted as T �p (M), and the set of all dual spaces forms the
cotangent bundle: T �(M) (see figure A.2).

Traditionally, tangent vectors are called contravariant vectors and dual
vectors are referred to as covariant vectors. For a smooth function f ,

df = (∂if ) dxi ≡ f,i dxi .

A.4 THE SPACE T ��(M)

As one might expect, the dual space at a point p will have its own dual
space: the set of all linear functionals on the dual vectors at p denoted as
T ��p (M). Let {Ei} be a basis for T ��p (M) such that

Ei(dx
j ) = δji . (A.18)
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Then any χ ∈ T ��p (M) can be written in the form χ = χiEi . The action of
such an object with a dual vector A = Ajdxj is given by

χ(A) = χiEi(Ajdxj ) = χiAjEi(dxj ) = χiAi.
The space T ��p (M) can be defined on all points of the manifold, and as a
result we get the bundle T ��(M). From the above equation, and eq. (A.16)
we see that T ��p (M) can easily be identified with the original tangent space
Tp(M) by the following map

Ei ←→ ∂i. (A.19)

In this manner we can think of a tangent vector as a dual to the covariant
vectors. Therefore, there are no new spaces that can be constructed by a
search for dual spaces, and discussions here for this reason are limited to
the tangent and the cotangent bundle.

It is important to remember that the action of a dual on a vector and
vice-versa is essentially a contraction, and therefore, they are a coordinate
independent process.

A.5 TENSORS

The tangent vectors and dual vectors can used to construct multilinear func-
tionals. Consider objects of type

dxi ⊗ dxj .
We can view this as a multilinear functional on two tangent vectors, i.e.,

dxi ⊗ dxj (A,B)= dxi ⊗ dxj (Am∂m,Bn∂n)
≡ dxi(Am∂m) · dxj (Bn∂n) = AiBj .

HereA and B are tangent vectors.⊗ is referred to as a “tensor” product. The
most general tensor that can take two tangent vectors and return a scalar can
be written in the form

T = Tijdxi ⊗ dxj .
The action of the tensor T on tangent vectors A and B is given by

T (A,B) = Tijdxi ⊗ dxj (A,B) = Tijdxi(Am∂m) · dxj (Bn∂n) = TijAiBj .
Once again, we see that the end product is a coordinate independent con-
traction. Clearly,

{dxi ⊗ dxj } |ni,j=1
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is a set of basis for tensors of type T mentioned above. The (ij)th compo-
nent of such a tensor is obtained by the action

T (∂i, ∂i) = Tij .
In a similar manner we can construct tensors T of type (r, s) at any point

p ∈ M as a multilinear functional on r many dual vectors and s many-
tangent vectors:

T : T ∗P (M)×T ∗P (M)×· · ·×T ∗P (M)×TP (M)×TP (M)×· · ·×TP (M)→ �.
(A.20)

In the above expression, there are r many T ∗P (M) and s many TP (M). The
components of such a tensor in an arbitrary coordinate basis can be obtained
by the formula

T i1i2···ir j1j2···js = T (dxi1, dxi2, . . . , dxir , ∂j1, ∂j2, . . . , ∂js ). (A.21)

To write the basis for such a tensor we need a dual basis for {dxi} and {Ei}.
Therefore,

T = T i1i2···ir j1j2···jsEi1 ⊗Ei2⊗· · ·⊗Eir ⊗ dxj1 ⊗ dxj2⊗· · ·⊗ dxjs (A.22)

with the understanding that for tensor basis, Ei acting on dxj has the same
effect as dxj acting on ∂i . These tensors at a point can be extended to
tensor fields in an obvious manner. The above definition makes tensors
multifunction-linear objects, i.e.,

T (A,B, αC+βD, . . . , E)= αT (A,B,C, . . . , E)+βT (A,B,D, . . . , E).
(A.23)

Here α and β are functions on the manifold and A,B,C,D,E are either
covariant or contravariant vectors acting on a tensor of an appropriate type.
This property would hold true at any entry of tensors of arbitrary type. Ten-
sor products can also be used to construct other tensors. For example, if T is
a tensor of type (r, s) and S is a tensor of type (l, m), then T ⊗ S is a tensor
of type (r + l, s +m) whose components are given by

(T ⊗ S)i1···irp1···pl
j1···jsq1···qm = T i1···ir j1···js Sp1···pl

q1···qm. (A.24)

The transformation properties of tensors under an arbitrary coordinate
change can be deduced from from eqs. (A.8) and (A.15) as

T̄ i1i2···ir (x̄) j1j2···js = T l1l2···lr m1m2···ms
∂x̄i1

∂xl1
· · · ∂x̄

ir

∂xlr

∂xm1

∂x̄j1
· · · ∂x

ms

∂x̄js
. (A.25)
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It is also possible to convert a tensor of type (r, s) to type (r − 1, s − 1) by
contracting the ilth contravariant and the jkth covariant indices. In compo-
nent form:

CT i1i2···ir−1
j1j2···js−1 =

∑
σ

T i1i2···σ ···ir j1j2···σ ···js . (A.26)

For exactly the same reason as in eq. (A.17), the above contraction is not
dependent on the coordinate basis chosen.

A.6 THE METRIC TENSOR

The metric tensor is of type (0, 2). It takes two tangent vectors and returns
a scalar. It is usual to reserve the letter g to describe the metric tensor.

Definition. The inner product of any two vectors A and B is given by the
scalar

A · B ≡ g(A,B).
For a tensor of type (0, 2) to be a metric tensor, it must satisfy two proper-
ties:

1. g must be a symmetric tensor, i.e., g (A,B) = g (B,A) for any two
tangent vectors A and B.

2. g must be nondegenerate, i.e., if the inner product of a vector A with
all the tangent vectors at a point vanishes, then A must vanish at that
point. Explicitly,

g(A, .) = 0⇒ A = 0.

Definition. Since gij is a nondegenerate tensor, given a metric tensor g, there
is a unique tensor of type (2, 0) denoted as gij such that

gij g
jk = δki . (A.27)

The tensor gij is also referred to as the metric tensor.

1. The metric tensor gij induces a well-defined map from T (M) →
T �(M) given by

Ai(x) = gij (x) Aj (x) (A.28)

for any Aj ∈ T (M).
2. The metric tensor gij induces a well-defined map from T �(M) →
T (M) given by

Ai(x) = gij (x) Aj (x) (A.29)

for any Aj ∈ T �(M).



appendixa July 29, 2009

ESSENTIAL TENSOR CALCULUS 481

Arbitrary tensor indices can be raised and lowered in a similar manner. For
example

T i1i2···il−1
il
il+1···ir

j1j2···js = gilσ T i1i2···il−1 σ il+1···ir
j1j2···js . (A.30)

It is not necessary that the metric is positive definite; more definitely, there
could be nontrivial vectors A such that

g(A,A) ≤ 0. (A.31)

In fact, this is the case in relativistic physics. Spacetime is in general a 4d
manifold. There are three classes of tangent vectors. Lightlike vectors are
nontrivial vectors whose inner product with itself vanishes. Timelike vectors
u, on the other hand, satisfy g(u, u) < 0. Spacelike tangent vectors X are
familiar objects from classical physics with g(X,X) > 0.

In general, the metric tensor on a manifold has the form

g = gµν dxµ ⊗ dxν. (A.32)

This metric can induce a metric on the various submanifolds of the original
manifold. For concreteness, let µ, ν take on the values 1, 2, 3. Consider the
submanifold defined by the surface x3 = const. Then on the 2d manifold
we have an induced metric of the form

ĝ = gij dxi ⊗ dxj , (A.33)

where {i, j} take on the values {1, 2}, since on this submanifold dx3 = 0.

A.7 THE VOLUME ELEMENT AND THE LEVI-CIVITA TENSOR

We know from classical analysis that under a coordinate change from {xi}
to {x̄i} ∫

f (x) dnx =
∫
f̄ (x̄) J (x, x̄) dnx̄. (A.34)

Here, by definition f̄ (x̄) = f (x) and the Jacobian of the transformation
J (x, x̄) is given by the determinant of the transformation matrix. Explicitly,

J (x, x̄) =
∣∣∣∣∂x

µ

∂x̄ν

∣∣∣∣ . (A.35)

As always, the upper indices refer to rows, and the lower indices refer to
columns. On the other hand, the metric tensor transforms accordingly:

ḡµν(x̄) = ∂xα

∂x̄µ
gαβ(x)

∂xβ

∂x̄ν
. (A.36)
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Taking the determinant on both sides we find that when J (x, x̄) > 0
√
|ḡ(x̄)| = J (x, x̄)

√
|g(x)|. (A.37)

Here |g| is the absolute value of the determinant of the matrix gµν . There-
fore, since

∫
f̄ (x̄)

√
|ḡ(x̄)| dnx̄=

∫
f (x)

√
|g(x)| J (x, x̄) dnx

J (x, x̄)

=
∫
f (x)

√
|g(x)| dnx, (A.38)

we can take
√
|g(x)| dnx (A.39)

as the invariant volume element. The above volume element is invariant only
when the coordinate systems are such that eq. (A.37) holds true. Therefore,
we must make sure that we pick coordinate systems that are “positively
oriented,” i.e., if {xi} is chosen as a positiviely oriented frame, all other
coordinate systems {x̄i} should be such that

J (x, x̄) > 0;
otherwise, we must make sure to insert a “−” sign manually. In general rel-
ativity, since the determinant of the spacetime metric is negative, the above
volume element becomes

√
−g(x) d4x. (A.40)

In differential geometry, we call eq. (A.39) the volume element regardless
of the dimension of the manifold; for example, if n = 1, then eq. (A.39)
reduces to the line element, while if n = 2, eq. (A.39) becomes the area
element, and so on.

In a similar manner, it can be shown [44] that the Levi-Civita tensor

εµναβ =




√|g(x)| for even permutations of µναβ,

−√|g(x)| for odd permutations of µναβ,

0 if any two indices are equal µναβ

(A.41)

is a well-defined tensor when coordinate transformations are restricted to
systems where J (x, x̄) > 0.
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A.8 THE COVARIANT DERIVATIVE

The goal here is to be able to take derivatives of tensors in a coordinate-
independent way. Derivatives of tensors are taken with respect to a tangent
vector. This derivative should not affect the tensor type, i.e., the derivative of
an (r, s) tensor is another (r, s) tensor. By ∇X we mean the covariant deriv-
ative with respect to the tangent vector X. Following is a list of properties
that we would like the derivative operator to have:

1.

∇X(aT + bS) = a∇XT + b∇XS. (A.42)

Here a, b ∈ � and T and S are tensors of arbitrary type. Additionally,

∇fX+gY T = f∇XT + g∇Y T . (A.43)

Here f and g are functions and Y is any tangent vector.
2. For scalar functions f

∇Xf = X(f ). (A.44)

3. For arbitrary tensors T and S

∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗∇XS. (A.45)

This is nothing more than the usual product rule for derivatives. A
scalar function f can be thought of a tensor of type (0, 0) where f ⊗
T ≡ f T .

4.

∇XCT = C∇XT . (A.46)

Here C is a contraction of any pair of covariant and contravariant in-
dices.

These properties do not by any means fix the covariant derivative, to fix this,
we will need to develop the notion of the torsion tensor.

Definition. The Lie bracket [X, Y ] of two tangent vector fields X = Xi∂i
and Y = Y j∂j is a vector field given by the expression

[X, Y ] = (Y i,jXj −Xi,jY j )∂i . (A.47)

Note that the above expression satisfies

[X, Y ]f = XYf − YXf
for any scalar function f .

Definition. The torsion tensor T is of type (1, 2) and is given by

T (W,X, Y ) = W(∇XY − ∇YX − [X, Y ]). (A.48)
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Here X and Y are tangent vector fields, and W is a dual vector field. T
as defined above is a tensor, i.e., its truly a function linear object. It is not
difficult to show that

1. T (fW + gZ,X, Y ) = f T (W,X, Y )+ g T (Z,X, Y ).
2. T (W, fX + gχ, Y ) = f T (W,X, Y )+ g T (Z, χ, Y ).
3. T (W,X, f Y + gχ) = f T (W,X, Y )+ g T (Z,X, χ).

Here X, Y , and χ are vector fields, W and Z are dual vector fields, and f
and g are functions. Hence, T = T ikj ∂i ⊗ dxk ⊗ dxj .

We will now show that there exists a unique covariant derivative on a
manifold such that

1.

∇Xg = 0 (A.49)

for a prescribed metric tensor g on the manifold, and
2. the torsion tensor T = 0.

To see this, let us fix a coordinate system and set

∇∂µ∂ν = �αµν∂α. (A.50)

�αµν are called connection coefficients or Christoffel symbols. Using the
properties satisfied by the covariant derivative, we see that

∇XY ν∂ν = (XY ν)∂ν +XµYν�αµν∂α. (A.51)

Here Y is vector field and X is a tangent vector at the point we wish to
take the derivative. Since W(X) = WµX

µ, the properties of the covariant
derivative imply that

∇∂µdxν = −�ναµdxα. (A.52)

Here W ∈ T ∗(M) and X ∈ T (M).
Since the torsion tensor T = 0, and since [∂µ, ∂ν] = 0 for coordinate

vector fields, we get that

∇∂µ∂ν = ∇∂ν ∂µ,
i.e.,

�αµν = �ανµ.
This is the feature we need from our torsion-free requirement. Now let us
consider the implication of the requirement that the covariant derivative of
the metric is trivial. Using the product rule and eq. (A.52)

∇Xgµν dxµ ⊗ dxν =X(gµν) dxµ ⊗ dxν − gµνXβ�µαβ dxα ⊗ dxν
−gµνXβ�ναβ dxµ ⊗ dxα = 0. (A.53)
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After changing dummy variables so that all tensor products in the above
equations are of the form dxµ ⊗ dxν , and setting X = ∂λ we get

∂λgµν = gαν�αλµ + gαµ�αλν. (A.54)

Let us rewrite the above equation by permutations of subscripts:

∂µgνλ = gαλ�αµν + gαν�αµλ, (A.55)

∂νgλµ = gαµ�ανλ + gαλ�ανµ. (A.56)

Equation (A.54)+ eq. (A.55) − eq. (A.56) gives

�αµλ =
1

2
gνα[∂λgµν + ∂µgνλ − ∂νgλµ]. (A.57)

We have the result we want. The connection coefficients are completely
specified, and hence it is unique. Equations (A.50) and (A.52) along with
the expressions for the connection coefficients (eq. [A.57]) enable us to take
derivatives of arbitrary tensor fields.

Let α(τ) = (x1(τ ), . . . , xn(τ )) be a curve with tangent uµ, i.e.,

uµ = dxµ

dτ
. (A.58)

Then, by definition, α is a geodesic if

∇uu = 0. (A.59)

From eq. (A.51), in component form

ẍµ + �µαβẋαẋβ = 0. (A.60)

Comparing with eq. (3.40), we see that eq. (A.59) is consistent with the
previous definition of a geodesic.

A.9 THE DIVERGENCE THEOREM

The divergence of a vector field is given by

∇ · V = ∇∂µV µ = ∂µV µ + �µµλV λ. (A.61)

From eq. (A.57) we see that

�
µ
µλ =

1

2
gµα ∂λgαµ. (A.62)

But, for any matrix G

Tr {G−1 ∂λG} = ∂λ {ln Det G}. (A.63)
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Therefore, from above, eq. (A.62) becomes

�
µ
µλ =

1√|g|∂λ
√
|g|. (A.64)

As usual
√|g| = √|Det gµν |. Consequently, the expression for the diver-

gence of a tangent vector field becomes

∇∂µV µ =
1√|g|∂µ(

√
|g| V µ). (A.65)

Since we will have occasion to use the 3d divergence theorem, we will state
the familiar result without proof. For any 3d manifold M with boundary
∂M , and a positive definite metric g,1 we have that∫

M

∇ · V dV =
∫
∂M

g(V · n) dA. (A.66)

Here dV is the volume element of the manifold ∂M , which is a 2d sub-
manifold and has an induced metric prescribed on it. Using the induced
metric we can construct a volume element which we denote as dA. n is the
outward-pointing unit normal on ∂M . Of course, any vector n is normalized
by dividing the vector by its magnitude

√
g(n, n). It is possible to generalize

the divergence theorem to a four-dimensional spacetime as well.

A.10 THE EINSTEIN EQUATION

Let X, Y , and Z be tangent vector fields, and let W be a dual vector field.
The Riemann curvature tensor is defined by

R(X, Y,Z,W) = [∇X∇YW − ∇Y∇XW − ∇[X,Y ]W ]Z. (A.67)

The Riemann curvature tensor is of type (1, 3). In component form
eq. (A.67) becomes

Rαβµ
ν Xα Yβ Zµ Wν = XαYβ [∇∂α∇∂βW − ∇∂β∇∂αW ]νZ

ν, (A.68)

since on smooth functions [∂a, ∂b] = 0. The contracted Riemann tensor
gives the Ricci tensor Rµν :

Rµν = Rµαν α. (A.69)

The scalar curvature R is given by

R = Rµ µ. (A.70)

1A metric g is positive definite if g(X,X) � 0 for every X ∈ T (M), and the equality is
realized only for a trivial tangent vector.
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The Einstein equation for the gravitational field gµν is

Rµν − 1

2
Rgµν = 8π Tµν. (A.71)

Here Tµν is the energy-momentum tensor of the nongravitational fields
present. In vacuum, Tµν = 0 and therefore by contracting the Einstein
equation we find that the scalar curvature vanishes in this case. Conse-
quently, the vacuum Einstein equation is given by

Rµν = 0. (A.72)
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Appendix B

Mathematical Functions

B.1 THE GAMMA FUNCTION AND ERROR FUNCTION

The Gamma function

�(n) =
∫ ∞

0
dx xn−1 exp(−x). (B.1)

Thus

�(n+ 1) = n�(n). (B.2)

When n is a whole number, �(n) = (n − 1)!, and �(1/2) = ∫∞
0 dx x−1/2

exp(x) = 2
∫∞

0 dt exp(−t2) = √π , so that �(3/2) = √π/2. This definite
integral is related to the error function, defined by

erf(x)= 2√
π

∫ x

0
dt exp(−t2)=−erf(−x)→




2√
π

exp(−x2) if x � 1,

1− exp(−x2)

x
√
π

if x � 1.

(B.3)

B.2 MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND

Modified Bessel functions R satisfy the differential equation

d2R

dx2
+ 1

x

dR

dx
−

(
1+ n

2

x2

)
R = 0, (B.4)

with n an integer. Being second-order, eq. (B.4) has two linearly indepen-
dent solutions In(x) and Kn(x), which prove to be Bessel functions of
pure imaginary argument (eq. [B.4] becomes Bessel’s equation when−(1+
n2/x2) is replaced by +(1 − n2/x2)). The Besssel function of the second
kind of order n, Kn(x), satisfies

Kn(x) = xn

1 · 3 · 5 · . . . · (2n− 1)

∫ ∞
0

dθ sh2n(θ) exp(−xchθ) (B.5)
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and the integral formula

Kn(x) =
�(n+ 1

2)(2x)
n

√
π

∫ ∞
0

cos t dt

(t2 + x2)n+1/2
. (B.6)

Among its properties is the relation

d

dx

(
xnKn

) = −xnKn−1. (B.7)

The asymptotes of Kn(x), also valid for fractional order, are

Kn(x)→



− ln(x/2)− γE + · · · if n = 0,

�(n)

2

(
2

x

)n
+ · · · if n �= 0,

for x � 1, (B.8)

where γE = 0.577216 . . . is Euler’s constant, and

Kn(x)→
( π

2x

)1/2
exp(−x)

(
1+ 4n2 − 1

8x
+ . . .

)
for x � 1. (B.9)

A useful representation for numerical evaluation of the modified Bessel
functions appearing in the synchrotron radiation formulae is [521]

Kn(x) = 1

2


exp(−x)

2
+
∞∑
j=1

cosh(nj/2) exp[−x cosh(j/2)]


 . (B.10)

B.3 EXPONENTIAL INTEGRAL FUNCTION

The exponential integral function

Ei(x) = −
∫ ∞
−x

dt
e−t

t
= γE + ln x +

∞∑
k=1

xk

k · k! (B.11)

is a special case of the incomplete Gamma function

�(n, x) =
∫ ∞
x

dt tn−1 exp(−t), (B.12)

and extends the exponential integral

E1(x) =
∫ ∞
x

dt
e−t

t
= −Ei(−x) (B.13)

to values of the negative real numbers. The exponential integral function can
also be expanded as

E1(x)→ exp(−x)
x

[
N∑
k=0

k!

(−x)k +O
(
N !

xN

)]
. (B.14)
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B.4 PLANCK’S FUNCTION

The expression for u(ε,�) = Iε(�)/c, eq. (5.15), gives the spectral black-
body energy density

ubb(ε) = 4πubb(ε,�) = 8πmec2

λ3
C

ε3

exp(ε/�)− 1

→ 8πmec2

λ3
C

{
�ε2, ε � �, Rayleigh-Jeans regime,

ε3e−ε/�, ε � �, Wien regime.
(B.15)

The blackbody energy density

ubb=
∫ ∞

0
dε ubb(ε) = aT 4 = 8π5mec

2

15λ3
C

�4

= π
2αf

15
B2

cr�
4 = 9.36× 1024�4 ergs cm−3 = 0.12ucr�

4, (B.16)

in terms of the critical magnetic-field energy density ucr = B2
cr/8π = 7.75×

1025 ergs cm−3 associated with the critical magnetic field Bcr (eq. [7.22]).

B.5 BERNOULLI NUMBERS AND RIEMANN ζ FUNCTION

When dealing with Planck’s function, integrals of the form
∫ ∞

0
dx

xn−1

exp(ax)− 1
= �(n)

an
ζ(n) (B.17)

for n > 0 are often encountered. The quantity

ζ(n) =
∞∑
i=1

1

in
=

∏
p≥2

p prime

1

1− p−n (B.18)

is the Riemann zeta function, with the final expression giving the Euler prod-
uct. Some values of the zeta function are, ζ(1)→∞, ζ(3/2) = 2.612 . . . ,
ζ(2)= π2/6= 1.6449 . . . , ζ(5/3)= 1.341 . . . , ζ(3)= 1.202 . . . , ζ(7/2) =
1.127 . . . , and ζ(4) = π4/90 = 1.08232 . . . .

When dealing with fermions, integrals of the form
∫ ∞

0
dx

x2n−1

exp(ax)+ 1
= �(2n)

a2n

(
1− 21−2n) ζ(2n) = (22n−1 − 1)π2n

2na2n
Bn

(B.19)
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are met. Here Bn are the Bernoulli numbers defined by the contour integral

Bn = n!

2πi

∮
dz

zn+1

z

exp(z)− 1
, (B.20)

with analytic solution for even orders

B2n = (−1)n−12(2n)!

(2π)2n
ζ(2n). (B.21)

Perhaps the most well-known Bernoulli number is related to the integral
∫ ∞

0
dx

x3

ex − 1
= 4π4

2
B2 = π4

15
.

Some values of Bi are Bi = 1/6, 1/30, 1/42, 1/30, 5/66, 691/2730, 7/6
for i = 1, 2, . . . , 7.

B.6 WHITTAKER FUNCTIONS

The Whittaker functions are solutions to the differential equation

d2Wκ,µ(x)

dt2
+

(
−1

4
+ κ
z
+ (1/4)− µ

2

z2

)
Wκ,µ(x) = 0 (B.22)

and can be expressed in the form of a confluent hypergeometric function.

B.7 LAMBERT W FUNCTION

The Lambert W function is solved by inverting the equation

z = W(z) exp[W(z)] (B.23)

for the complex number z. Some values of W are W(0) = 0,W(1) = � =
0.56714 . . . ,W(e) = 1; here � is the Omega constant. For example, the
solution to eq. (11.139) is ye± = W(2K2)/2, whereK is the constant on the
right-hand side of this equation. See Ref. [522] for more properties of the
Lambert W function.
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Solutions of the Continuity Equation

We consider solutions of the continuity equation

∂n(γ ; t)
∂t

+ ∂

∂γ
[γ̇ n(γ ; t)]+ n(γ ; t)

tesc(γ, t)
= ṅ(γ ; t) (C.1)

in various limits (for inclusion of a diffusion term, see Ref. [523]). Here
n(γ ; t) is the spectral number density (units of cm−3 γ−1) of particles with
Lorentz factor γ at time t , γ̇ is the energy-gain rate (energy loss is negative
energy gain), and ṅ(γ ; t) (units of cm−3 γ−1 s−1) is the source term. The es-
cape term tesc(γ, t) can be equated with the diffusive escape timescale from
the system, or with the timescale for catastrophic losses, such as those which
occur in the extreme Klein-Nishina limit for electrons, or in secondary nu-
clear processes for hadronic collisions.

Case (i). Time Independent with No Escape Term

The continuity equation takes the form

∂

∂γ
[γ̇ n(γ )] = ṅ(γ ). (C.2)

Equation (C.2) has solution

n(γ ) = 1

|γ̇ |
∫ ∞
γ

dγ ′ ṅ(γ ′) (C.3)

for an energy-loss process with γ̇ < 0. Now consider the case of Thomson
or synchrotron energy-loss processes of the form γ̇ = −ν0γ

2, and power-
law injection

ṅ(γ ) = keγ−sH(γ ; γ1, γ2), (C.4)

with injection index s. Normalization to the total electron emissivity ε̇e (ergs
cm−3 s−1) gives

ke = (s − 2)ε̇e
(γ 2−s

1 − γ 2−s
2 )mec2

(C.5)
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(compare eq. [6.64]). The solution of eq. (C.3) is

n(γ )= ke

ν0γ 2

∫ γ2

max(γ,γ1)

dγ ′γ ′−s = ke

ν0(s − 1)
γ−2

[
max(γ, γ1)

1−s−γ 1−s
2

]
.

(C.6)
Therefore

n(γ ) ∝
{
γ−2 if γ ≤ γ1,

γ−(1+s) if γ1 ≤ γ � γ2,
(C.7)

and the effect of Thomson or synchrotron losses is to make the spectral index
of the steady-state cooling spectrum one unit steeper than the injection index
for γ1 � γ ≤ γ2. For the case s = 2, the spectrum breaks from n(γ ) ∝ γ−2

to n(γ ) ∝ γ−3 at γ = γ1.
Now consider the steady-state spectrum for particles subject to accelera-

tion energy gains of the form γ̇ = νaγ−v. Equation (C.2) has solution

n(γ ) = γ v

νa

∫ γ

1
dγ ′ ṅ(γ ′). (C.8)

For monoenergetic electron injection ṅ(γ ) = ṅ0δ(γ
′ − γ̄ ), the steady-state

electron spectrum is n(γ ) = ṅ0γ
v/νa for γ ≥ γ̄ . For power-law injection

given by eq. (C.4),

n(γ ) = keγ
v

νa(s − 1)

[
γ 1−s

1 −min(γ, γ2)
1−s

]
∝ γ v if γ1 � γ and s > 1.

(C.9)
For s < 1, n(γ ) ∝ γ−v−s+1, when γ1 � γ ≤ γ2, and n(γ ) ∝ γ−v
for γ > γ2. In realistic situations, energy losses or escape will alter this
dependence at sufficiently large Lorentz factors.

Case (ii). Time Independent with Energy-Dependent Escape Term

The continuity equation takes the form

∂

∂γ
[γ̇ n(γ )]+ n(γ )

tesc(γ )
= ṅ(γ ). (C.10)

Equation (C.10) has the solution

n(γ ) = |γ̇ |−1
∫ ∞
γ

dγ ′ ṅ(γ ′) exp

(
−

∫ γ ′

γ

dγ ′′

tesc(γ ′′)|γ̇ (γ ′′)|

)
(C.11)

for an energy-loss process γ̇ < 0. Consider Thomson or synchrotron
energy-loss processes of the form γ̇ = −ν0γ

2, and an energy-independent
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Figure C.1 Solution (C.13) to the time-independent continuity equation with losses
proportional to γ−2, constant escape time t0, and monoenergetic injec-
tion at γ = γ̄ = 104.

escape timescale tesc(γ ) = t0. Equation (C.11) becomes

n(γ ) = exp(−1/ν0t0γ )

ν0γ 2

∫ ∞
γ

dγ ′ ṅ(γ ′) exp(1/ν0t0γ
′). (C.12)

For monoenergetic injection ṅ(γ ′) = ṅ0δ(γ
′ − γ̄ ),

γ 2n(γ ) = ṅ0

ν0
exp

[
χ

(
1− γ̄

γ

)]
H(γ ; 1, γ̄ ). (C.13)

Figure C.1 shows n(γ ;χ) as a function of γ for different values of χ ≡
1/νt0γ̄ .

For power-law injection given by eq. (C.4),

γ 2n(γ ) = ke exp(−1/ν0t0γ )

ν0
(ν0t0)

s−1
∫ y2

y1

dy ys−2 exp(y), (C.14)

where y1 = (ν0t0γ2)
−1 and y2 = [ν0t0 max(γ, γ1)]−1. The solution is ana-

lytic for the case s = 2, with result

n(γ )= ket0
γ 2

exp(−1/ν0t0γ ){exp[1/ν0t0 max(γ, γ1)]− exp(1/ν0t0γ2)}

∝
{
γ−2 if γ � 1/ν0t0,

γ−3 if γ � 1/ν0t0.
(C.15)



appendixc July 16, 2009

SOLUTIONS OF THE CONTINUITY EQUATION 495
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Figure C.2 Solution (C.16) to the time-dependent continuity equation with losses
proportional to γ−2, constant escape time t0, and power-law electron
injection function proportional to γ −sH(γ ; γ1, γ2)H(t; 0,�t), with
γ1 = 102, γ2 = 107, and s = 2.2. Panel (a) has B = 1 G, and panel (b)
has B = 10 G.

The general behavior for the steady-state electron spectrum with power-
law injection index s is a power-law spectrum proportional to γ−s at γ �
1/ν0t0, breaking to a power-law spectrum ∝ γ−(s+1) at γ � 1/ν0t0, as can
be seen from eq. (C.14).

Case (iii). Time Dependent with Time-Independent Energy-Dependent
Escape

Equation (C.1), with tesc(γ, t)→ tesc(γ ) and γ̇ = dγ /dt < 0, has solution

n(γ, t)= 1

|dγ /dt |
∫ ∞
γ

dγ ′ ṅ(γ ′; t ′) exp

(
−

∫ γ ′

γ

1

tesc(γ ′′)
dγ ′′

|dγ (γ ′′)/dt |

)
,

(C.16)

where

t ′ = t −
∫ γ ′

γ

dγ ′′

|dγ (γ ′′)/dt | . (C.17)

For Thomson-synchrotron losses, −dγ /dt = ν0γ
2, a constant escape

timescale tesc(γ)= t0, and injection function ṅ(γ ′, t ′)= keγ ′−sH(γ ′; γ1, γ2)
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H(t ′; 0,�t), the solution to eq. (C.16) is

γ 2n(γ, t)= ke
ν0

exp

( −1

ν0t0γ

)

×
∫ min [γ2,(γ

−1−ν0t)
−1]

max{γ,γ1,[γ−1−ν0(t−�t)]−1}
dγ ′ γ ′−s exp

(
1

ν0t0γ ′

)
. (C.18)

The solution is analytic in the aymptote ν0t0 � 1. Figure C.2 is a
graph of γ 2n(γ ; t) as a function of γ in this limit for different times in
units of the injection timescale �t = 800 s. The electron emissivity ε̇e =
1/800 erg cm−3 s−1, so that ε̇e�t = 1 erg cm−3. Note the stronger cooling
taking place on the right-hand panel with B = 10 G than on the left-hand
panel with B = 1 G.
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Basics of Monte Carlo Calculations

The standard random number generators on Fortran or c systems yield val-
ues randomly but uniformly distributed on (0, 1). Every simulation or in-
tegration typically is reduced to an average or an integral over auxiliary
variables x on (0, 1), with values of x to be supplied by the random number
generator.

Case (1). Values of y are to be chosen to follow a parent distribution f (y)
on a ≤ y ≤ b. Define the normalized cumulative distribution

F(y) =
∫ y
a
dy′f (y′)∫ b

a
dy′f (y ′)

, F (a) = 0, F (b) = 1. (D.1)

Then solve x = F(y) or y = F−1(x).
Case (1a). Analytic inversion is possible. The standard example is f (y) =

exp(−λy) on 0 ≤ y <∞ (radioactive decay, absorption of photons, etc.) It
is fairly common, although not necessary, to invert the limits in the cumula-
tive distribution,

F(y) =
∫∞
y
dy′ exp(y ′)∫∞

0 dy′ exp(y ′)
= exp(−λy) = x, y = −1

λ
ln x. (D.2)

When xi are chosen randomly on (0, 1), then yi = ln xi/λ are distributed in
an exponential decrease on (0,∞).

Case (1b). No analytic inversion is possible. Tabulate F(yi) versus yi .
The “mesh” of points can be defined by choosing either the set yi or the
set F(yi). Then solve x = F(y) by inverse interpolation of the table. If
either the mesh of yi or the mesh of F(yi) has equal intervals, then higher-
order interpolation is possible, but linear iterpolation producing a histogram
approximating f (y) is always possible.

Case (2). Linear rescaling. The standard example is angular integration

I =
∮
d�f (θ, φ) =

∫ 1

−1
d cos θ

∫ 2π

0
dφf (θ, φ). (D.3)

Set cos θ = 2xθ − 1, d cos θ = 2dxθ , and φ = 2πxφ , dφ = 2πdxφ .
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Therefore

I = 4π
∫ 1

0
dxθ

∫ 1

0
dxφf (2xθ − 1, 2πxφ)→ 4π

N∑
i=1

f (2xθi − 1, 2πxφi ).

(D.4)
Case (3). Nonlinear rescaling. The standard example is relativistic ther-

mal averaging.

Ḡ =
∫ ∞
E=mc2

dE′G(E′) exp(−E′/kBT ). (D.5)

Similarly to case (1a), define an auxiliary variable

x = F(E) =
∫∞
E
dE′ exp(−E′/kBT )∫∞

mc2 dE′ exp(−E′/kBT )
= exp[−(E −mc2)/kBT ], (D.6)

so that E = mc2 − kBT ln x, or exp(−E/kBT )dE = −kBT exp(−mc2/

kBT )dx. Hence

Ḡ = kBT exp(−mc2/kBT )

∫ 1

0
G(mc2 − kBT ln x)dx

→ kBT exp(−mc2/kBT )
1

N

N∑
i=1

G(mc2 − kBT ln xi). (D.7)
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Appendix E

Supplementary Information

Table E.1 Astronomical Constants—Gaussian (cgs) Units

Physical quantity Symbol Value Units

Solar mass M� 1.989× 1033 g
Solar luminosity L� 3.826× 1033 ergs/s
Solar radius r� 6.960× 1010 cm
Solar constant �� 1.353× 106 ergs/cm2 s
Astronomical unit AU 1.496× 1013 cm
parsec pc 3.085678× 1018 cm

Source: AIP 50th Anniversary Physics Vade Mecum [524].

Table E.2 Physical Constants—Gaussian (cgs) Units

Physical quantity Symbol Value Units

Boltzmann constant kB 1.3807×10−16 ergs/deg (K)
Elementary charge e 4.8032× 10−10 statcoulomb

(statcoul)
Electron mass me 9.1094× 10−28 g

0.510 999 MeV
Proton mass mp 1.6726× 10−24 g

938.27 MeV
Neutron mass mn 1.6749× 10−24 g

939.57 MeV
Neutron mean life tn 886 s
Gravitational constant G 6.6726× 10−8 dyne cm2/g2

Planck constant h 6.6261× 10−27 erg s
h̄ = h/2π 1.0546× 10−27 erg s

Speed of light in vacuum c 2.9979× 1010 cm/s
Proton/electron mass mp/me 1.8362× 103

ratio
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Table E.3 Physical Constants—Gaussian (cgs) Units

Physical quantity Symbol Value Units
Classical electron radius re = e2/mec

2 2.8179× 10−13 cm
Thomson cross section σT = 8πr2

e /3 6.6525× 10−25 cm2

Compton wavelength of λC = h/mec 2.4263× 10−10 cm
electron

λC = h̄/mec 3.8616× 10−11 cm
Fine-structure constant αf = e2/h̄c 7.2974× 10−3

α−1
f 137.04

Stefan-Boltzmann σSB = 2π5k4
B

15c2h3
5.6705× 10−5 erg/(cm2 s K4)

constant
Radiation constant a = 4σSB/c 7.566× 10−15 erg/(cm3 K4)
Critical magnetic field Bcr = m2

ec
3/eh̄ 4.414× 1013 G

Frequency associated 2.4180× 1014 Hz
with 1 eV
π± mass mπ± 139.57 MeV
π± mean life τπ± 2.6030× 10−8 s
π0 mass mπ0 134.96 MeV
π0 mean life τπ0 0.83× 10−16 s
µ± mass mµ± 105.66 MeV
µ± mean life τµ± 2.197× 10−6 s

Source: NRL Plasma Formulary [123]; Review of Particle Properties [525].

Table E.4 Commonly Used Symbols

Physical quantity Symbol

Bulk Lorentz factor �

Christoffel symbol �αµν
Lorentz transformation 	µ

ν

Dimensionless temperature 
 = kBT/mc
2

Compton scattering kernel �C

Thomson scattering kernel �T

Absolute space at time t �t
Star formation rate factor �(z)

Energy flux �

Direction vector �
Cyclotron frequency of particle of type i i
Angular momentum of the electromagnetic field 
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Table E.4 Continued

Physical quantity Symbol

Energy spectral index α

Lapse function α

Shift vector β

Bulk β-factor β = √1− �−2

Particle β-factor βpar =
√

1− γ−2

Particle Lorentz factor γ

Induced metric on absolute space γ̂µν

Square root of the determinant of the
√
γ̂

absolute space metric
Doppler factor δD

Dimensionless photon energy ε

Stationary frame photon energy εs = εz = (1+ z)ε
Dimensionless magnetic field εB = B/Bcr

Blast-wave parameters εe, εB
Levi-Civita tensor of spacetime εµναβ
Levi-Civita tensor of absolute space ε̃ijk
Minkowski metric ηµν
Baryon-loading factor η

Absorption coefficient κ

Wavelength λ

Cosine of scattering angle µ

Metallicity correction to mass density µ0

Photon frequency ν

Charge density ρc
Cross section σ

Thomson depth τT

Quantum field for a scalar particle φ

Spectral flux φ(ε)

Comoving coordinate χ

Scattering angle ψ

Angular frequency ω

Three-vector potential A

Atomic weight A

Poloidal vector AP
Toroidal vector AT

Magnetic field �B, B
Critical magnetic field Bcr
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Table E.4 Continued

Physical quantity Symbol

Electric field dual D

Diffusion coefficient Dij
Particle energy E

Photon energy Eγ

Electric field �E, E
Aggregate energy E
Maxwell tensor Fµν

Dual Maxwell tensor ∗Fµν
Flux density F(ε;), Fν
Fluence F
Magnetic field dual H

Intensity Iε
Blackbody intensity I bb

ε (
)

Black-hole angular momentum J

Current density vector J , J i

Carter constant K

Particle angular momentum per unit mass L

Mass of a black hole M

Poynting power, jet power PP, Pj
Bulk momentum P = β�
Charge Q

Scalar curvature R

Schwarzschild radius RS

Expansion scale factor R(t)

Riemann curvature tensor Rµναβ
Ricci tensor Rµν
Poynting vector S

Spectral function S(x)

Flux density S(ν)

Temperature T

Energy-momentum tensor T µν

Tangent bundle T (M)

Cotangent bundle T ∗(M)
Four-vector potential Uµ
Magnetic field energy density UB = B2/8π
Critical magnetic field energy density Ucr = B2

cr/8π
Phase space volume V
Atomic charge Z
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Table E.4 Continued

Physical quantity Symbol

Rising index of νFν spectrum a

Angular momentum per unit mass of a black hole a

Falling index of νFν spectrum b

Luminosity distance dL
Angular diameter distance dA
Invariant interval ds2

Dual vector basis dxµ

Energy density of type ż eż
νFν flux fε
Invariant phase space density f (v)

Shell width parameter f�
Metric tensor gµν
Hubble constant (units of 100 km s−1 Mpc−1) h

Emissivity js(ε,)

Wavevector k

Number emissivity ṅs(p,)

Unit normal nµ

Electron number density ne
Dimensionless momentum p = βparγ

Four-momentum pµ

Index of wave spectrum q

Comoving radius of emitting region r ′b
Larmor radius rL
Time (variability timescale) t (tvar,�tvar)

Specific spectral energy density u(ε,)

Four-velocity uµ,vµ

Dimensionless magnetic field energy density uB = UB/mec2

Velocity v

Wave turbulence energy density w(k)

Spacetime coordinates xµ

Redshift z

Tensor product ⊗
Dirac delta function δ(k − k′)
Inner product of functions (φk, φk′)

Adjoint of operator A A†
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Table E.4 Continued

Physical quantity Symbol

Commutator of operators A and B [A,B]
Inner product of quantum states |f 〉 and |g〉 〈f |g〉
Complex conjugate of function φ φ∗

Covariant derivative of spacetime ∇
Covariant derivative of space ∇̃
Cross product ×
Tangent vector basis ∂µ
Set of n-tuples of real numbers 
n
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Appendix F

Glossary and Acronym List

AGASA Akeno giant air shower array
AGILE Astro-Rivelatore Gamma a Immagini L’Eggero, launched

23 April 2007
AGN Active galactic nucleus (nuclei)
ANITA Antarctic Impulsive Transient Antenna
ARIANNA Antarctic Ross Ice Shelf Antenna Neutrino Array
AU Astronomical unit
BATSE Burst and Transient Source Experiment, on CGRO
Beppo-SAX X-ray satellite, 30 April 1996–30 April 2002
Blazar Radio galaxy with radio jet pointed toward observer
BL Lac BL Lacertae object; lineless or nearly lineless blazar
BLR Broad line region
BZ Blandford-Znajek
CBM Circumburst medium
CGRO Compton Gamma Ray Observatory,

5 April 1991–4 June, 2000
CMB(R) Cosmic microwave background (radiation)
COMPTEL Compton Telescope, on CGRO
EBL Extragalactic background light
EGRET Energetic Gamma Ray Experiment Telescope, on CGRO
ERF Electron rest frame
FGST Fermi Gamma-ray Space Telescope, formerly GLAST
FR1(2) Fanaroff-Riley 1(2) radio galaxies
FS Forward shock
FSRQ Flat spectrum radio quasar; blazar with strong emission

lines
GBM GLAST (or GRB) Burst Monitor on FGST
GDR Giant dipole resonance
GLAST Gamma-ray Large Area Space Telescope, launched

11 June 2008, renamed FGST
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GRB Gamma-ray burst
GZK Cutoff in the UHECR spectrum predicted by Greisen,

Zatsepin, and Kuzmin
HAWC High-Altitude Water Cherenkov detector in Mexico
HiRes High-Resolution Fly’s Eye in Utah
HESS High-Energy Stereoscopic System, array of air

Cherenkov telescopes in Namibia
IceCube South Pole Neutrino Observatory, reaches km scale in

2012
IGM Intergalactic medium
INTEGRAL INTErnational Gamma Ray Astrophysics Laboratory,

launched 17 October 2002
IR Infrared
ISM Interstellar medium
KASCADE KArlsruhe Shower Core and Array Detector in Germany
KM3NeT Proposed km-scale neutrino telescope in the

Mediterranean Sea
LAT Large-Area Telescope on Fermi/GLAST
LIGO Laser Interferometer Gravitational Wave Observatory
LISA Laser Interferometer Space Antenna
LS Laboratory system
MAGIC Major Atmospheric Gamma ray Imaging Cherenkov

telescope in Canary Islands
MFP Mean free path
Milagro All-sky ground-based TeV γ -ray telescope in

New Mexico
MHD Magnetohydrodynamic
NRS Nonrelativistic reverse shock
OSSE Oriented Scintillation Spectrometer Experiment,

on CGRO
PAO Pierre Auger Observatory in Argentina
RS Reverse shock
RRS Relativistic reverse shock
RSdv Relativistic Sedov
SGP Supergalactic plane
SN Supernova
SNR Supernova remnant
SFH Structure formation history
SFR Star formation rate
SS Shakura-Sunyaev
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SSA Synchrotron self-absorption
SSC Synchrotron self-Compton
Swift GRB satellite, launched 20 November 2004
UHE(CR) Ultrahigh energy (cosmic ray)
VERITAS Very Energetic Radiation Imaging Telescope Array

System in Arizona
VLBI Very Long Baseline Interferometer
VLBA Very Long Baseline Array
WMAP Wilkinson Microwave Anisotropy Probe, launched

30 June 2001
XBL X-ray selected BL Lac Object
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314 (See black-hole electrodynamics);
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accretion, 2, 13, 452; accretion disk,
105–106; far-field approximation of,
109–110, 113; near-field approxima-
tion of, 109–112; Shakura-Sunyaev,
105–108; transformed fields of,
108–111; two-temperature, 164

active galactic nuclei, 1
adiabatic energy losses, 187, 202–204,

265
adiabatic expansion, 203–204, 260
affine parameter, 31, 409
afterglow theory, 278–282
Alfvén speed, 344, 356; in relativistic gas,

373
Alfvén waves. See plasma waves
Amati relation, 303–304
angular timescale, 296
ANITA, 218–219, 505
annihilation radiation, 180–185
astroparticle spectrum, 5
Auger Observatory. See Pierre Auger

Observatory

background radiation; cosmic microwave,
13, 55; infrared and optical, 13;
X-ray, 13; γ -ray, 13, 458–459

Band function, 298, 313
BATSE, 298, 454, 459, 505
beaming, 18, 64; for blob geometry,

60; for spherical-shell geometry,
68

beaming patterns, 113
Bell-Lucek mechanism, 345
Beppo-SAX, 278, 312, 505
Bernoulli numbers, 490–491
Bessel function, 3, 157, 370, 488–489

Bethe-Heitler pair production, 197, 253
binary particle collision processes,

160–186
black hole, 397; angular momentum of,

385; annihilation radiation
from, 161–185; energy extraction from,
398, 400; Hawking (or evaporating),
416, 452, 459; irreducible mass of,
401–402; Kerr, 401–402, 429, 431,
433, 442, 445; mass of, 1, 11, 385;
Schwarzschild, 33, 106–108,
415–416; spin paradigm for, 452–453,
471–472

black-hole electrodynamics, 417–451
blackbody radiation, 53–55; transforma-

tion of, 57–58
Blandford-Znajek process, 427, 436,

448–449, 450–451, 472
Blandford-Znajek split monopole

solution, 445, 448
blast waves: adiabatic, 266–268;

deceleration of, 260–269; equation of
motion for, 261–269; partially radia-
tive, 269; physics of, 258–313;
radiative, 268–269

blast-wave cooling regimes; slow, 273,
277–280, 290; fast (or strongly),
273–274, 277–280, 290

blast-wave deceleration radius, 260, 324
blast-wave deceleration timescale, 261
blast-wave frequency; cooling, 275–276;

minimum, 275; maximum, 276;
synchrotron self-absorption,
276–277

blazars, 9, 213, 246–248, 251–253,
453–454; evolution of, 458;
models of, 454–456

blazar main sequence, 458
BL Lac objects, 243, 453
blob geometry, 60–62, 68–69, 130, 136
blue bump, 108



index July 30, 2009

532 INDEX

Bohm diffusion approximation, 323, 340
Boltzmann equation, 360–361
Boyer-Lindquist coordinates, 384–385,

391–392, 418, 428, 433–435, 440
Breit-Wigner distribution, 176, 194, 242
bremsstrahlung, 160, 166–169; energy-loss

rate for, 167; production spectra of,
168–169; suprathermal proton, 166;
thermal energy emissivity of, 168

brightness temperature, 146–147;
maximum, 150–153

broad-line region, 114, 236, 457

Carter constant, 391
cascades, 253–256; in gamma-ray bursts,

469–470; in the intergalactic medium,
256, 470–471; in jets, 254–256;
turbulent plasma wave, 318

Christoffel symbols, 31, 33–34, 421, 424,
484

coherence length. See magnetic field,
coherence length

comoving coordinates, 38
comoving density, 46
comoving UHECR proton density,

208–209
compact, 228, 246
compactness parameter, 245–247
compression ratio, 315, 328–329, 340
COMPTEL, 185, 247, 505
Compton catastrophe, 154
Compton cross section, 71–79; double, or

radiative, 168; moments of, 79
Compton effect, 70–71
Compton energy-loss rates, 81–83
Compton scattering, 70–116; of

external radiation fields 94–96,
103–104 (See external Compton scat-
tering; isotropic spectral head-on com-
parisons for, 86–88; kernel for, 78;
spectral head-on approximations for,
83–84, 93–94

Compton Gamma Ray Observatory, 9, 161,
185, 505

Compton-synchrotron logarithm, 139
Compton y parameter, 292–293
continuity equation, 454, 492–496
continuous energy losses, 197
contraction, 477
contravariant vectors, 25–26, 477

convection-diffusion equation,
330–332

cosmic microwave background radiation,
12, 55

cosmic rays, 5–7, 13, 160, 170, 452;
abundances of, 222; accelerated by
supernovae, 346, 452, 459–461,
demodulated spectrum of, 171,
180; diffusion of, 324; energy
density of, 214; maximum energy of,
324–326

cosmological constant, 41
cosmological principle, 39
cosmology: Einstein-de Sitter, 43; flat, 43;

Friedmann, 39–43; �CDM, 45, 46,
239

cospatial assumption, 249
Coulomb cross section, 160
Coulomb diffusion coefficient, 165
Coulomb energy loss rate, 161–165
Coulomb force, 162
Coulomb logarithm, 162–163
Coulomb scattering, 160
covariant derivative, 418, 483–485
covariant vectors, 26, 477–478
cross section, 21; annihilation, 181;

Bhabha, 160; Compton, 71–73;
Coulomb, 160; exclusive, 172;
γ γ pair production, 228, 229;
inclusive, 172; inelastic nuclear,
172–173; Klein-Nishina, 73;
Møller, 160; photonuclear,
220–223; photopair, 198–199;
photopion, 191–194, 205 (multi-
pion, 205–206; single pion, 205–206);
spallation, 170; Thomson, 72

curvature relation, 64–65, 303
curved space, 29, 35

deflection angle, 158, 466
density: critical, 42; energy, 53, 57, 61;

mass, 42
diffusion: in momentum space, 360, 367;

in physical space, 322–324
diffusion approximation, 352
diffusion coefficients, 359–361;

approximate derivation of, 362–363;
Hamiltonian formulation of,
361

dilogarithm function, 143
dispersion relation, 355
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distance: angular diameter, 45; event-rate,
46, 456; luminosity, 44–46; propaga-
tion, 44; proper, 44

divergence theorem, 403, 485–486
Doppler beaming, 64
Doppler effect, 18–19
Doppler factor, 18–19; Compton limits on,

153–154; minimum value from γ γ

constraint, 247–248
Doppler resonance, 354–355
dot product, 25
dual vectors, 28, 476–479

Eddington luminosity, 106, 450
EGRET, 9, 13, 135, 219, 247, 416,

452–454, 458–460, 505
electromagnetic cascades, 253–256
electromagnetic spectrum, 4
electromagnetic waves, 357
emissivity, 51
Einstein coefficients, 145–146
Einstein equation, 32, 379, 384,

486–487
electron cyclotron waves, 358
electron plasma frequency, 162, 355
energy flux, 8, 44, 51–52, 59
energy-momentum tensor, 304–305,

424–426, 487
entropy per baryon, 259
ergosphere, 394–398, 400, 402, 433, 447
Euler’s constant, 83, 489
event horizon, 33, 394, 396–397, 400–401,

417, 433–435, 441, 448–450
event rate, 45–47
exponential integral function, 209, 489
external Compton scattering, 94–116; of

accretion disk, 108–111; blazar model
with, 456–457; of broad-line region,
114–116; of cosmic microwave back-
ground radiation, 103–104; of isotropic
photons, 99–101; in Thomson limit,
96–99, 101–102

extragalactic background light (EBL), 227,
237–238; calculations of, 244; em-
pirical fit to, 240–242; measurements
of, 240

Fazio-Stecker relation, 244. See
gamma-ray horizon

Fermi acceleration: introduction to,
314–326; first-order (shock), 317,
321–322, 327–350 (—nonrelativistic:

maximum particle energy for, 339–
344; spectral index in, 332–337;
—relativistic: maximum particle
energy for, 349; spectral index in, 348)
second-order (stochastic), 316, 321–
322, 351–378 (diffusive escape rate
in, 364–366; energy gain rates for,
366–367; maximum particle
energy for, 372–378)

Fermi Gamma ray Space Telescope, 238,
248, 252–253, 313, 452–454,
457–458, 472; 505; GBM, 458;
LAT, 506, 253, 458, 505

Feynman scaling, 177
fine structure constant, 129
flat spectrum radio quasars, 243,

251–252, 454–458
fluence, 44, 312
flux, 8; νFν flux, 8, 52, 59–60,

278–279
flux density, 8, 143–145, 279
Fokker-Planck coefficients, 359–364
Fokker-Planck equation 347, 360
four vectors, 16, 25
four-vector acceleration, 119
four-vector force, 32, 118
four-vector momentum, 16–18, 27
four-vector velocity, 26, 32
future cone, 395

galaxies: infrared luminous, 213; Milky
Way, 1, 5, 244; Seyfert, 13, 108, 452

Gamma function, 55, 195, 488
gamma-gamma absorption, 230–236; in

anisotropic radiation fields,
235–236; by blackbody radiation,
231–232; intrinsic source spectra with,
243–244; by modified blackbody, 233;
by power-law radiation, 233–235, 237

gamma-gamma opacity of the universe,
237–244

gamma-gamma pair horizon, 236
gamma-gamma pair production cross

section; δ-function approximation
for, 236–237; exact, 228–229

gamma-ray bursts, 1, 9, 213, 248–249,
252–253; blast-wave physics of,
258–313; cascade radiation, 255;
classes of, 258–259, 294, 312, 458;
collapsar model, 259; colliding shell
model, 294, 301–303; cosmology,
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312–313; deceleration radius, 260, 324;
external shock model for, 294; lumi-
nosity, 259; model light curves, 297;
prompt phase, 294–303; rapid X-ray
decline, 295, 300–301; standard
energy reservoir in, 312–313;
thin-shell requirement, 298–300

gamma-ray horizon, 238, 244–245
gamma rays: from blazars, 453–459;

detectors of, 228, 253, 453–454, 472;
Galactic cosmic-ray induced, 171–180;
neutrino correlations with, 249–253,
468–469; nuclear line, 185–186; from
supernova remnants, 170; UHECR-
induced cascade, 219

Gaunt factor, 168–169
GBM. See Fermi GBM
general relativity, 25, 32, 403
geodesic: definition of, 30, 32, 485; null,

32, 36–37
geodesic currents, 436–437
geodesic equation, 30–31; for Kerr

metric, 386–391, 397–398; for
Schwarzschild metric, 34–35

Ghirlanda relation, 303–304
giant dipole resonance, 220–225
GLAST, 505. See Fermi Gamma ray Space

Telescope
gravitational radius, 106
gravitational redshift, 35
gravitational waves, 7–8
Green’s function, 367, 370–372
Greisen-Zatsepin-Kuzmin (GZK), 7,

188–189, 195–197, 218, 462–463
gyrofrequency, 354
GZK energy, 196–197
GZK horizon, 211, 464–465
GZK neutrinos; see neutrinos,

cosmogenic (or GZK)

HAWC, 506, 453
Hawking black hole. See black hole,

Hawking
Hawking radiation, 402, 408, 452, 459
Hawking temperature, 416
head-on approximation, 74, 77
HESS gamma-ray telescope, 11, 228,

453–454, 460, 506
Hillas condition, 320–321, 378
HiRes, 189, 215–216, 463, 465, 506

Horizon: gamma-ray (See gamma-ray
horizon); UHECR, 211, 464–465

Hubble constant, 40, 42
Hubble relation, 39
hypernova, 259, 326
hyper-relativistic electrons, 156–158

IceCube neutrino observatory, 7, 218–219,
468–472, 506

impact parameter, 161–162
inclusive cross section for pion produc-

tion, 173–174
inelasticity, 173–174, 187, 189–190, 203
INTEGRAL, 161, 185, 506
intensity, 49–51; diffuse neutrino, 207;

diffuse γ -ray, 208
internal energy, 261–265, 270
interstellar medium: dust in, 182; phases

of, 183–185
invariant cross section, 176
invariant energy, 175, 189, 228–229
invariant quantities, 53
ion-cyclotron waves, 357–359
ionization losses, 163
isobar (See also resonance); model,

175–176
isospin statistics, 193–194

Jacobian, 20, 481
jet angle, 291, 303
jet models: beam-on-target, 169;

mass-loaded, 169–170
jet power, 135–138
jitter radiation, 158–159

Kerr metric, 33, 384–397; in
Boyer-Lindquist coordinates,
384–386, 418, 428, 440; in Kerr-Schild
coordinates, 391–395

Kerr singularity, 386
Killing vector, 387, 399, 418, 422,

426–427
kinematic invariants, 19–21
Kirchoff’s law, 146
Klein-Nishina scattering; cross section for,

73; δ-function approximation for, 81;
energy-loss rate for, 82–83; mean free
path in blackbody radiation field for,
83; moments of, 80; regime of,
70–73; spectral index for isotropic
scattering in, 91
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knock-on electrons, 165–166
Kolmogorov spectrum of turbulence,

318–319
Kraichnan spectrum of turbulence,

318–320

Lambert function, 309, 491
Laplace transform, 368–369
lapse function, 381
Larmor angular frequency, 117, 119
Larmor formula, 119
Larmor radius, 6, 117, 273
Larmor timescale, 120, 362
LAT. See Fermi LAT
length contraction, 15
Levi-Civita tensor, 418–419, 481–482
lightcone, 36–37, 379
light cylinder, 132
LIGO, 7–8, 506
LISA, 7–8, 506
Lorentz factor; bulk coasting, 259; cool-

ing electron, 272; maximum electron,
273; minimum electron, 273; parti-
cle, 5, 21, 26; relative, 284

Lorentz force equation, 117
Lorentz invariance, 14
Lorentz transformation, 14–17, 28
luminosity: apparent, 1, 259;

Eddington, 106, 450
luminosity density, 48, 209
luminosity distance, 8, 44–45

Mach number, 329
MAGIC, 251, 453, 506
magnetic field, 117; amplification of, 344;

in blast-wave physics, 272; coherence
length of, 158–159, 323, 466; criti-
cal, 121, 129; equipartition, 131–135;
of Milky Way, 466

magnetohydrodynamic (MHD) waves, 317,
352, 355. See plasma waves

magnitude, 9–10
magnitude scale, 10
manifold, 379, 474–476, 478–479,

481–482, 484, 486
Maxwell-Boltzmann distribution, 3, 168
Maxwell’s equations, 28–29, 417–418,

420–422
Maxwell tensor, 29, 417–418, 420, 424,

434

Medium: circumburst , 260, 269, 282;
interstellar. See interstellar
medium; intergalactic, 244, 256

Metric: Kerr (See Kerr metric);
Minkowski (See Minkowski
metric); Robertson-Walker (See
Robertson-Walker metric);
Schwarzschild (See
Schwarzschild metric)

metric tensor, 379–380, 480–481
microquasars, 454
Milagro, 453, 460, 506
Minkowski metric, 25–28, 304,

380, 408
Monte Carlo calculations, 182,

197–198, 256, 298
momentum diffusion equation, 367
multiplicity, 172, 205–206
muon: decay, 177; production,

177

naked singularity, 447
neutral beam model, 255, 471
neutrinos: bound on intensity of (See

Waxman-Bahcall bound);
from cascades in the intergalactic
medium, 470–471; cosmogenic
(or GZK), 195, 204–207, 213–215,
218–219, 225; detectors of, 7,
188–189, 215, 218, 468–469;
from gamma-ray bursts, 469–470;
gamma-ray correlations with,
249–253, 468–469; from
γ γ processes, 257; MeV, 7;
oscillations of, 188, 214; from pho-
todisintegration, 225–226; from pho-
topion processes, 187–188, 193; from
pion decay, 172; sources of (buried,
215; exotic, 219); from supernova rem-
nants, 460

neutron: β decay of, 193, 205, 225, 254;
lifetime of, 193; mean free path of,
202; secondary, 190–193; thermal,
310–312

neutron decoupling, 310–312

one-zone (blob) model, 130, 136
optical depth, 51; γ γ , 238–239, 241–242;

Thomson depth, 3
orphan afterglows, 292
OSSE, 161, 185, 246–247, 506
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pair photosphere, 308–309
pair production: Bethe-Heitler, 197–198

(See photopair production); dip in UHECR
spectrum, 218, 465; direct, 166; γ γ ,
193, 227–257

Penrose process, 397–400, 453
photodisintegration: cross section for, 220–

223; effective energy-loss rate for, 224–
225

photodisintegration mean free path, 195
photodisintegration reaction rate,

222–224
photoerosion. See photodisintegration
photohadronic interaction rate, 189
photohadronic mean free path,

195–196
photohadronic processes, 187–226
photonuclear. See photodisintegration
photopair cascade, 254
photopair cross section, 198–199
photopair production: energy-loss rate and

timescale for (approximate, 198–201;
numerical, 201–202); inelasticity of,
187, 203; mean free path for, 196,
201–202; threshold of, 198

photopion cascade, 254
photopion cross section, 191–193
photopion (or photomeson) production; energy-

loss rate and timescale for, 194–195;
inelasticity of, 187, 203; mean free
path for, 196–197; threshold of, 190

photosphere, 303–309
photospheric radius, 306–307
Pierre Auger Observatory, 7, 189,

214–216, 219, 452, 462–463, 465,
472, 506

pion decay, 177, 187
pion production, 172–177
pitch angle, 119–120
pitch-angle diffusion coefficient,

362–363
Planck’s (blackbody) function, 54,

145, 490
plasma waves; Alfvén waves, 344, 356;

Langmuir waves, 356; magnetosonic
waves, 358; turbulence, 317–318; whistler
waves, 356–357, 359

polarization: of plasma waves, 354; of syn-
chrotron radiation, 157

poloidal, 105, 429, 431–432, 436, 441
positronium, 181–184

Poynting flux, 132, 282
pressure, 52, 282, 332
proper time, 16, 32
pygmy dipole resonance, 221–222

quantum synchrotron regime, 121
quasi-linear approximation, 354

radial timescale, 296
radiation reaction, 119, 156
radiative transfer equation, 51, 146, 213
radioactive nuclei, 185–185
Ramaty-Lee spectrum, 368–370
Rankine-Hugoniot equations, 328
reaction rate, 21–23; particle-particle, 22;

particle-photon, 23; photon-photon,
23

redshift: cosmological, 1, 38; gravitational,
35; obscuration (for UHECRs, 210–
211; for gamma rays, 245)

relativistic shock hydrodynamics,
282–290

resonances, 191; multipion, 193–194;
single-pion, 192–194

resonance condition, 393–394
resonance gap problem, 363
Ricci tensor, 384, 486
Riemann curvature tensor, 486
Riemann zeta function, 55, 195, 490
rigidity, 117, 337
Rindler spacetime, 408–415
Robertson-Walker metric, 36, 37, 48

scaling model, 176–177
Schwarzschild metric, 33–34, 384
Schwarzschild radius, 10
secondary nuclear production, 169–180;

δ-function approximation to, 173;
isobar model for, 175–176; scaling
model for, 176–180

secondary production spectra, 23–24;
particle-particle, 24; particle-photon,
24; photon-photon, 24

Sedov phase, 267
Sedov radius, 261
self absorption. See synchrotron

self absorption
Seyfert galaxies. See galaxies, Seyfert
Shakura-Sunyaev accretion disk,

105–108
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shift vector, 382, 394
shock acceleration. See Fermi accelera-

tion
shock; forward, 283–284; quasi-parallel,

317, 340; quasi-perpendicular, 317,
340–341; reverse, 283–284 (relativis-
tic, 274, 285–290; nonrelativistic, 274,
285–290)

shock jump conditions, 282–284
slab approximation, 144, 228
source function, 51
spacetime: curved, 25–35 (particle

creation in, 405; scalar fields in, 402);
geometry of, 379–416; Minkowski,
26, 36–37, 383, 408

special relativity, 14, 25
spherical shell geometry, 63–69
spin paradigm. See black holes, spin par-

adigm for
star formation rate, 209, 211–213,

215–216
statistics: of black-hole sources, 456–457;

with V/Vmax method, 12
stochastic energy losses, 197
stopping power: in cold plasma, 161–163;

in thermal plasma, 164–165
structure formation history, 46, 212
superluminal motion, 62–63, 253
suprathermal proton bremsstrahlung,

166
supernova, supernova remnants, 128,

185–186, 267, 461; outflow speeds
in, 326, 375

Swift, 507, 213, 216–217, 253,
294–295, 300, 303, 312

synchrotron radiation, 117–159;
δ-function approximation for,
129–130; elementary emissivity of,
122–127; energy-loss rate by, 119,
126–127; from power-law
electrons, 127–129

synchrotron self absorption, 143–153;
coefficient of, 144, 148–150

synchrotron self-absorption frequency, 150,
276–277

synchrotron self-absorption spectrum,
154–155

synchrotron self-Compton radiation, 135,
138–142; energy-loss rate by, 143; in
gamma-ray bursts, 292–294

synchrotron/synchrotron
self-Compton model, 142–143,
455–456

tangent bundle, 475
tangent vector, 473–478, 26, 32, 381,

386–387, 483–484
tensor calculus, 473–487
tensor product, 26, 478
tensors, 478–480
thermalization, 3, 160, 163–164; of

positrons, 181–183
Thomson scattering: δ-function

approximation for, 80, 92; energy-loss
rate in, 82; moments of, 79; regime
of, 70–73; spectral index from, 90;
spectrum in δ-function approximation
for, 92

Thomson scattering cross section, 72
time dilation, 15
time orientable, 379
timing studies, 10–11
toroidal vector, 429
torsion tensor, 431, 483–484
transformations of: accretion-disk

radiation field, 108–111; energy, 39,
56; external radiation fields,
57–59; photon and particle
distributions, 56; time, 39

triplet pair production, 198

ultra-high energy cosmic rays: accelera-
tion of, 462; arrival direction corre-
lation of, 462; detectors for, 7, 189,
214, 472; evolution with redshift of,
208–209; from gamma-ray bursts,
300–301; injection spectrum of, 209;
interactions of, 187–188; luminosity
density of, 209, 216; power require-
ments for, 466–468; propagation of,
466; sources of, 452–453; spectrum
of, 6, 13, 215–218

unification hypothesis,
457–458

units of electron rest mass, 2
Unruh effect, 415

variability timescale, 68; in gamma ray
bursts, 296–297
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vectors: dual (covariant), 26;
tangent (contravariant), 26, 32

volume element: in curved spacetime, 403,
481–482, 486; in flat space, 46, 48,
63, 144, 204; momentum, 20

VERITAS, 453, 507
VLBA, 10, 152, 507
VLBI, 137, 152, 507

wavevector, 317
Waxman-Bahcall bound, 13, 213–215
Whistlers. See plasma waves
Whittaker functions, 126, 491
WMAP, 43, 45, 507

Znajek regularity condition, 433–435, 439,
441, 444, 449
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