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Preface

This book is intended for use in a graduate-level course on the physics of the in-
terstellar medium within galaxies, and the intergalactic medium between galaxies
– diffuse systems dominated by radiative processes and by two-body collisions be-
tween electrons, ions, atoms, molecules, and dust grains.

While it is assumed that the reader will have a background in undergraduate-
level physics – including some prior exposure to atomic and molecular physics,
statistical mechanics, and electromagnetism – the first six chapters of this book
include a review of the basic physics that will be used in later chapters, including
the notation and nomenclature used for identifying energy levels of atoms, ions,
and molecules, and the selection rules for radiative transitions between levels.

In addition to serving as a text for a graduate-level course, it is hoped and in-
tended that this book will also be useful to researchers (myself among them) who
need to learn, or reaquaint themselves with, some aspect of interstellar/intergalactic
physics. Accordingly, the book contains considerably more material than can real-
istically be covered in a one-semester course. The table of contents identifies some
sections with a � symbol – these might be skipped in a “first pass” through the
book.

The appendices include a list of symbols (Appendix A), values for physical con-
stants (Appendix B), a collection of useful formulae for radiative processes (Ap-
pendix C), ionization potentials for atoms and ions up to atomic number 30 (Ap-
pendix D), energy-level diagrams for a number of atoms and ions of astrophysical
interest (Appendix E), and a compilation of collisional rate coefficients (Appendix
F), up-to-date as of 2010.

This book grew out of lecture notes that I started to develop 25 years ago when I
began teaching the graduate ISM course at Princeton. It is, I hope, a comprehensive
treatment, but inevitably it reflects my own interests and biases. The best part of
writing the book was that it forced me to find time to clarify my own understanding
of many aspects of interstellar physics.

Errors will no doubt be found. An up-to-date list of errata will be maintained at
http://www.astro.princeton.edu/∼draine/book/errata.pdf.

The writing of this book has taken more years than I planned. Much work on the
text was accomplished during a sabattical semester at the Institute for Advanced
Study in fall 2004; I am deeply grateful to the late John Bahcall for his encourage-
ment. Further work took place during a sabattical semester in fall 2005 at Osser-
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vatorio Arcetri in Florence; the warmth, hospitality, and stimulation of the Arcetri
scientists and staff are not forgotten.

I am indebted to many colleagues for permitting me to reproduce figures from
their publications, including Rick Arendt, Johannes Blümer, Jim Cordes, Dick
Crutcher, Tom Dame, John Dickey, Don Ellison, Marcello Felli, Doug Finkbeiner,
Dale Fixsen, Erika Gibb, JinLin Han, Jelle Kaastra, Peter Kalberla, Ciska Kemper,
Tom Kerr, Jin Koda, Richard Larson, Alex Lazarian, Aigen Li, Ron Maddalena,
Chris McKee, Jean-Paul Meyer, Jerry Ostriker, Peter Sarre, Steve Snowden, and
Joe Weingartner. I especially thank Doug Finkbeiner and Steve Snowden for pro-
viding information on local backgrounds, and Ken Dere for providing the radiative
cooling function shown in Figures 34.1 – 34.3. I am grateful to Doug Finkbeiner
for providing the 100µm and Hα all-sky maps reproduced in Plates 2 and 3b, to
Peter Kalberla for the 21-cm map reproduced in Plate 3a, and to Steve Snowden for
the 0.75 keV all-sky map reproduced in Plate 5.

A number of colleagues read early drafts of many of these chapters. I particularly
thank Princeton graduate students Gonzalo Aniano, Mike Belyaev, Tim Brandt,
Ena Choi, Sudeep Das, Ruobing Dong, Aurelien Fraisse, Josh Green, and Yanfei
Jiang for their helpful comments. Doug Finkbeiner and Mark Krumholz field-tested
some of the manuscript; they and their students provided valuable feedback. Chris
McKee and another reviewer (anonymous) provided thoughtful advice that led to
improvements in the manuscript.

I relied on the SM plotting program for creating many of the figures in this book.
I thank Robert Lupton for making SM available, and for expert assistance with it;
he and Jeremy Goodman provided generous help with LaTeX arcana. The Smithso-
nian/NASA Astrophysics Data System (http://adsabs.harvard.edu) has been a truly
invaluable aid to research, and was used frequently.

I am indebted to all my Princeton colleagues – students, postdocs, and fellow
faculty – for creating the most congenial and stimulating research environment I
can imagine.

It has been a pleasure to work with Ingrid Gnerlich, Dimitri Karetnikov, Mark
Bellis, and Steve Peter at Princeton University Press.

My deepest thanks go to my wife, Dina Gutkowicz-Krusin, for her many good
suggestions, both scientific and editorial, which greatly improved this work, and
for her continuing encouragement, without which it could not have been completed.
She didn’t expect it to take so long, but it is finally done.

Princeton, October 2010



Chapter One

Introduction

The subject of this book is the most beautiful component of galaxies – the gas and
dust between the stars, or interstellar medium. The interstellar medium, or ISM,
is, arguably, also the most important component of galaxies, for it is the ISM that is
responsible for forming the stars that are the dominant sources of energy. While it
now appears that the mass of most galaxies is primarily in the form of dark matter
particles that are collisionless, or nearly so, it is the baryons (accounting for perhaps
∼10% of the total mass) that determine the visible appearance of galaxies, and
that are responsible for nearly all of the energy emitted by galaxies, derived from
nuclear fusion in stars and the release of gravitational energy in accretion disks
around black holes. At early times, the baryonic mass in galaxies was primarily in
the gas of the interstellar medium. As galaxies evolve, the interstellar medium is
gradually converted to stars, and some part of the interstellar gas may be ejected
from the galaxy in the form of galactic winds, or in some cases stripped from the
galaxy by the intergalactic medium. Infalling gas from the intergalactic medium
may add to the mass of the ISM. At the present epoch, the galaxy in which we
reside – the Milky Way – has most of its baryons incorporated into stars or stellar
remnants. But even today, perhaps 10% of the baryons in the Milky Way are to be
found in the ISM. The “mass flow” of the baryons in the Milky Way is illustrated
schematically in Figure 1.1.

Our objective is to understand the workings of the ISM – how it is organized and
distributed in the Milky Way and other galaxies, what are the conditions (tempera-
ture, density, ionization, ...) in different parts of it, and how it dynamically evolves.
Eventually, we would like to understand star formation, the process responsible for
the very existence of galaxies as luminous objects.

The subject of this book, then, is everything in the galaxy that is between the
stars – this includes the following constituents:

• Interstellar gas: Ions, atoms, and molecules in the gas phase, with velocity
distributions that are very nearly thermal.

• Interstellar dust: Small solid particles, mainly less than ∼1µm in size,
mixed with the interstellar gas.

• Cosmic rays: Ions and electrons with kinetic energies far greater than ther-
mal, often extremely relativistic – energies as high as 1021 eV have been
detected.
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Figure 1.1 Flow of baryons in the Milky Way. See Table 1.2 for the ISM mass budget,
and §42.4 for the value of the star formation rate in the Milky Way.

• Electromagnetic radiation: Photons from many sources, including the cos-
mic microwave background (CMB); stellar photospheres (i.e., starlight); ra-
diation emitted by interstellar ions, atoms, and molecules; thermal emission
from interstellar grains that have been heated by starlight; free–free emission
(“bremsstrahlung”) from interstellar plasma; synchrotron radiation from rel-
ativistic electrons; and gamma rays emitted in nuclear transitions and π0

decays.

• Interstellar magnetic field: The magnetic field resulting from electric cur-
rents in the interstellar medium; it guides the cosmic rays, and in some parts
of the ISM, the magnetic field is strong enough to be dynamically important.

• The gravitational field: This is due to all of the matter in the galaxy – ISM,
stars, stellar remnants, and dark matter – but in some regions, the contribution
of the ISM to the gravitational potential leads to self-gravitating clouds.

• The dark matter particles: To the (currently unknown) extent that these
interact nongravitationally with baryons, electrons, or magnetic fields, or ei-
ther decay or annihilate into particles that interact with baryons, electrons, or
magnetic fields, these are properly studied as part of the interstellar medium.
The interactions are sufficiently weak that thus far they remain speculative.

There is of course no well-defined boundary to a galaxy, and all of the preceding
constituents are inevitably present between galaxies – in the intergalactic medium
(IGM) – and subject there to the same physical processes that act within the inter-
stellar medium. The purview of this book, therefore, naturally extends to include
the intergalactic medium.



INTRODUCTION 3

Table 1.1 Units

pc = 3.086× 1018 cm parsec
M� = 1.989× 1033 g solar mass
L� = 3.826× 1033 erg s−1 solar luminosity
yr = 3.156× 107 s sidereal year
Myr ≡ 106 yr megayear
AU = 1.496× 1013 cm astronomical unit
Å ≡ 10−8 cm Ångstrom
nm ≡ 10 Å ≡ 10−7 cm nanometer
µm ≡ 10−4 cm micron

km s−1 ≡ 105 cm s−1 km per sec
Jy ≡ 10−23 erg s−1 cm−2 Hz−1 jansky
R ≡ (106/4π)photons cm−2 s−1 sr−1 rayleigh
D ≡ 10−18esu cm debye
eV = 1.602× 10−12 erg electron-volt
G = 10−4 tesla = 10−4 weberm−2 gauss

The primary aim of this book is to provide the reader with an exposition of the
physics that determines the conditions in, and evolution of, the interstellar medium
and the intergalactic medium. We will also emphasize the ways that observational
data (e.g., strengths of emission lines or absorption lines) can be used to determine
the physical properties of the regions where the emission or absorption is occuring.

We will employ the units of measurement that are currently used routinely by
researchers in this field – for the most part, we use cgs units (including for electro-
magnetism), supplemented by standard astronomical units such as the parsec (pc),
solar mass (M�), and solar luminosity (L�); see Table 1.1.

Historically, astronomers have reported optical wavelengths in Ångstroms (Å).
In recent years, much of the physics literature has shifted to nanometers (nm), and
consideration was given to doing so here. After weighing pros and cons, I decided
to stick with Ångstroms; in practical work, it is necessary to specify optical wave-
lengths to (at least) four digits to avoid confusion, and it seems easier to remember
them without a decimal point. And, after all, conversion from Å to nm is sim-
ply division by 10, a rather minor concern in a field that measures distance in pc,
brightnesses in magnitudes, and angles in degrees, arcminutes, and arcseconds. So
this book will use Ångstroms for wavelengths shorter than 1µm.

I am, however, departing from established tradition by using wavelengths in
vacuo for all transitions. This means that the wavelengths of familiar optical lines
are now all shifted by ∼1 Å – e.g., the famous [O III] doublet is now 4960, 5008,
rather than the wavelengths in air (4959, 5007) that have been entrenched in us-
age for the past century. This will cause some pain for those who have burned the
air wavelengths into their memories, but it is time to abandon this anachronism
from days when spectroscopy was done in air at (near) standard temperature and
pressure.
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Figure 1.2 Structure of the Milky Way, viewed edge-on. The dots represent a sampling
of stars; the volume containing most of the interstellar gas and dust is shaded. Compare
with the infrared image of the stars in Plate 1, the dust in Plate 2, and various gas
components in Plates 3–5.

1.1 Organization of the ISM: Characteristic Phases

In a spiral galaxy like the Milky Way, most of the dust and gas is to be found within
a relatively thin gaseous disk, with a thickness of a few hundred pc (see the diagram
in Fig. 1.2 and the images in Plates 1–5), and it is within this disk that nearly all of
the star formation takes place. While the ISM extends above and below this disk,
much of our attention will concern the behavior of the interstellar matter within a
few hundred pc of the disk midplane.

The Sun is located about 8.5 kpc from the center of the Milky Way; as it happens,
the Sun is at this time very close to the disk midplane. The total mass of the Milky
Way within 15 kpc of the center is approximately 1011M�; according to current
estimates, this includes ∼ 5 × 1010M� of stars, ∼ 5 × 1010M� of dark matter,
and ∼ 7× 109M� of interstellar gas, mostly hydrogen and helium (see Table 1.2).
About 60% of the interstellar hydrogen is in the form of H atoms, ∼20% is in the
form of H2 molecules, and ∼20% is ionized.

The gaseous disk is approximately symmetric about the midplane, but does not
have a sharp boundary – it is like an atmosphere. We can define the half-thickness
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Table 1.2 Mass of H II, H I, and H2 in the Milky Way (R < 20 kpc)

Phase M(109 M�) fraction Note
Total H II (not including He) 1.12 23% see Chapter 11
Total H I (not including He) 2.9 60% see Chapter 29
Total H2 (not including He) 0.84 17% see Chapter 32

Total H II, H I and H2 (not including He) 4.9
Total gas (including He) 6.7

z1/2 of the disk to be the distance z above (or below) the plane where the density has
dropped to 50% of the midplane value. Observations of radio emission from atomic
hydrogen and from the CO molecule indicate that the half-thickness z1/2 ≈ 250 pc
in the neighborhood of the Sun. The thickness 2z1/2 ≈ 500 pc of the disk is only
∼6% of the ∼8.5 kpc distance from the Sun to the Galactic center – it is a thin
disk. The thinness of the distribution of dust and gas is evident from the 100µm
image showing thermal emission from dust in Plate 2, and the H I 21-cm line image
in Plate 3.

The baryons in the interstellar medium of the Milky Way are found with a wide
range of temperatures and densities; because the interstellar medium is dynamic,
all densities and temperatures within these ranges can be found somewhere in the
Milky Way. However, it is observed that most of the baryons have temperatures
falling close to various characteristic states, or “phases.” For purposes of discus-
sion, it is convenient to name these phases. Here we identify seven distinct phases
that, between them, account for most of the mass and most of the volume of the
interstellar medium. These phases (summarized in Table 1.3) consist of the follow-
ing:

• Coronal gas: Gas that has been shock-heated to temperatures T >∼ 105.5 K
by blastwaves racing outward from supernova explosions. The gas is col-
lisionally ionized, with ions such as OVI (≡ O5+) present. Most of the
coronal gas has low density, filling an appreciable fraction – approximately
half – of the volume of the galactic disk. The coronal gas regions may have
characteristic dimensions of ∼ 20 pc, and may be connected to other coronal
gas volumes. The coronal gas cools on ∼Myr time scales. Much of the vol-
ume above and below the disk is thought to be pervaded by coronal gas.1 It
is often referred to as the “hot ionized medium,” or HIM.

• H II gas: Gas where the hydrogen has been photoionized by ultraviolet pho-
tons from hot stars. Most of this photoionized gas is maintained by radiation
from recently formed hot massive O-type stars – the photoionized gas may be
dense material from a nearby cloud (in which case the ionized gas is called
an H II region) or lower density “intercloud” medium (referred to as diffuse
H II).

1This gas is termed “coronal” because its temperature and ionization state is similar to the corona of
the Sun.
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Table 1.3 Phases of Interstellar Gas

Phase T (K) nH( cm−3) Comments

Coronal gas (HIM) >∼ 105.5 ∼ 0.004 Shock-heated
fV ≈ 0.5? Collisionally ionized

〈nH〉fV ≈ 0.002 cm−3 Either expanding or in pressure equilibrium
Cooling by:

(fV ≡ volume filling factor) � Adiabatic expansion
� X ray emission

Observed by:
• UV and x ray emission
• Radio synchrotron emission

H II gas 104 0.3− 104 Heating by photoelectrons from H, He
fV ≈ 0.1 Photoionized

〈nH〉fV ≈ 0.02 cm−3 Either expanding or in pressure equilibrium
Cooling by:
� Optical line emission
� Free–free emission
� Fine-structure line emission

Observed by:
• Optical line emission
• Thermal radio continuum

Warm H I (WNM) ∼5000 0.6 Heating by photoelectrons from dust
fV ≈ 0.4 Ionization by starlight, cosmic rays

nHfV ≈ 0.2 cm−3 Pressure equilibrium
Cooling by:
� Optical line emission
� Fine structure line emission

Observed by:
• H I 21 cm emission, absorption
• Optical, UV absorption lines

Cool H I (CNM) ∼ 100 30 Heating by photoelectrons from dust
fV ≈ 0.01 Ionization by starlight, cosmic rays

nHfV ≈ 0.3 cm−3 Cooling by:
� Fine structure line emission

Observed by:
• H I 21-cm emission, absorption
• Optical, UV absorption lines

Diffuse H2 ∼ 50K ∼ 100 Heating by photoelectrons from dust
fV ≈ 0.001 Ionization by starlight, cosmic rays

nHfV ≈ 0.1 cm−3 Cooling by:
� Fine structure line emission

Observed by:
• H I 21-cm emission, absorption
• CO 2.6-mm emission
• optical, UV absorption lines

Dense H2 10− 50 103 − 106 Heating by photoelectrons from dust
fV ≈ 10−4 Ionization and heating by cosmic rays

〈nH〉fV ≈ 0.2 cm−3 Self-gravitating: p > p(ambient ISM)
Cooling by:
� CO line emission
� C I fine structure line emission

Observed by:
• CO 2.6-mm emission
• dust FIR emission

Cool stellar outflows 50− 103 1− 106 Observed by:
• Optical, UV absorption lines
• Dust IR emission
• H I, CO, OH radio emission
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Bright H II regions, such as the Orion Nebula, have dimensions of a few pc;
their lifetimes are essentially those of the ionizing stars, ∼ 3− 10 Myr. The
extended low-density photoionized regions – often referred to as the warm
ionized medium, or WIM – contain much more total mass than the more
visually conspicuous high-density H II regions. According to current esti-
mates, the Galaxy contains ∼ 1.1×109 M� of ionized hydrogen; about 50%
of this is within 500 pc of the disk midplane (the distribution of the H II is
discussed in Chapter 11). In addition to the H II regions, photoionized gas
is also found in distinctive structures called planetary nebulae2 – these are
created when rapid mass loss during the late stages of evolution of stars with
initial mass 0.8M� <M < 6M� exposes the hot stellar core; the radiation
from this core photoionizes the outflowing gas, creating a luminous (and of-
ten very beautiful) planetary nebula. Individual planetary nebulae fade away
on ∼ 104 yr time scales.

• Warm H I: Predominantly atomic gas heated to temperatures T ≈ 103.7 K;
in the local interstellar medium, this gas is found at densities nH ≈ 0.6 cm−3.
It fills a significant fraction of the volume of the disk – perhaps 40%. Often
referred to as the warm neutral medium, or WNM.

• Cool H I: Predominantly atomic gas at temperatures T ≈ 102 K, with den-
sities nH ≈ 30 cm−3 filling ∼1% of the volume of the local interstellar
medium. Often referred to as the cold neutral medium, or CNM.

• Diffuse molecular gas: Similar to the cool H I clouds, but with sufficiently
large densities and column densities so that H2 self-shielding (discussed in
Chapter 31) allows H2 molecules to be abundant in the cloud interior.

• Dense molecular gas: Gravitationally bound clouds that have achieved nH
>∼

103 cm−3. These clouds are often “dark” – with visual extinction AV
>∼

3mag through their central regions. In these dark clouds, the dust grains are
often coated with “mantles” composed of H2O and other molecular ices. It
is within these regions that star formation takes place. It should be noted that
the gas pressures in these “dense” clouds would qualify as ultrahigh vacuum
in a terrestrial laboratory.

• Stellar outflows: Evolved cool stars can have mass loss rates as high as
10−4M� yr−1 and low outflow velocities <∼ 30 km s−1, leading to relatively
high density outflows. Hot stars can have winds that are much faster, al-
though far less dense.

The ISM is dynamic, and the baryons undergo changes of phase for a number of
reasons: ionizing photons from stars can convert cold molecular gas to hot H II;
radiative cooling can allow hot gas to cool to low temperatures; ions and electrons
can recombine to form atoms, and H atoms can recombine to form H2 molecules.

2They are called “planetary” nebulae because of their visual resemblance to planets when viewed
through a small telescope.
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Table 1.4 Protosolar Abundances of the Elements with Z ≤ 32 (based on Asplund
et al. (2009); see text)

Z X 〈mX〉/amu NX/NH MX/MH Source
1 H 1.0080 1 1
2 He 4.0026 9.55× 10−2±0.01 3.82× 10−1 Photospheric
3 Li 6.941 2.00× 10−9±0.05 1.38× 10−8 Meteoritic
4 Be 9.012 2.19× 10−11±0.03 1.97× 10−10 Meteoritic
5 B 10.811 6.76× 10−10±0.04 7.31× 10−9 Meteoritic
6 C 12.011 2.95× 10−4±0.05 3.54× 10−3 Photospheric
7 N 14.007 7.41× 10−5±0.05 1.04× 10−3 Photospheric
8 O 15.999 5.37× 10−4±0.05 8.59× 10−3 Photospheric
9 F 18.998 2.88× 10−8±0.06 5.48× 10−7 Meteoritic
10 Ne 20.180 9.33× 10−5±0.10 1.88× 10−3 Photospheric
11 Na 22.990 2.04× 10−6±0.02 4.69× 10−5 Meteoritic
12 Mg 24.305 4.37× 10−5±0.04 1.06× 10−3 Photospheric
13 Al 26.982 2.95× 10−6±0.01 8.85× 10−5 Meteoritic
14 Si 28.086 3.55× 10−5±0.04 9.07× 10−4 Photospheric
15 P 30.974 3.23× 10−7±0.03 1.00× 10−5 Photospheric
16 S 32.065 1.45× 10−5±0.03 4.63× 10−4 Photospheric
17 Cl 35.453 1.86× 10−7±0.06 6.60× 10−6 Meteoritic
18 Ar 39.948 2.75× 10−6±0.13 1.10× 10−4 Photospheric
19 K 39.098 1.32× 10−7±0.02 5.15× 10−6 Meteoritic
20 Ca 40.078 2.14× 10−6±0.02 8.57× 10−5 Meteoritic
21 Sc 44.956 1.23× 10−9±0.02 5.53× 10−8 Meteoritic
22 Ti 47.867 8.91× 10−8±0.03 4.27× 10−6 Meteoritic
23 V 50.942 1.00× 10−8±0.02 5.09× 10−7 Meteoritic
24 Cr 51.996 4.79× 10−7±0.01 2.49× 10−5 Meteoritic
25 Mn 54.938 3.31× 10−7±0.01 1.82× 10−5 Meteoritic
26 Fe 55.845 3.47× 10−5±0.04 1.94× 10−3 Photospheric
27 Co 58.933 8.13× 10−8±0.01 4.79× 10−6 Meteoritic
28 Ni 58.693 1.74× 10−6±0.01 1.02× 10−4 Meteoritic
29 Cu 63.546 1.95× 10−8±0.04 1.24× 10−6 Meteoritic
30 Zn 65.38 4.68× 10−8±0.04 3.06× 10−6 Meteoritic
31 Ga 69.723 1.32× 10−9±0.02 9.19× 10−8 Meteoritic
32 Ge 72.64 4.17× 10−9±0.04 3.03× 10−7 Meteoritic

Asplund et al. (2009) have corrected the measured photospheric abundances of He, C, N, O,
Ne, Mg, Si, S, Ar, and Fe to allow for diffusion in the Sun.
As recommended by Asplund et al. (2009), the photospheric abundance of Si, and meteoritic
abundances (tied to Si), have been increased by a factor 100.04 to allow for diffusion in the
Sun. Similarly, the measured photospheric abundance of P has been multiplied by 100.04 to
allow for diffusion in the Sun.
M(Z > 2)/MH = 0.0199; M(total)/MH = 1.402 .
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Table 1.5 Energy Densities in the Local ISM

Component u(eV cm−3) Note
Cosmic microwave background (TCMB = 2.725K) 0.265 a
Far-infrared radiation from dust 0.31 b
Starlight (hν < 13.6 eV) 0.54 c
Thermal kinetic energy (3/2)nkT 0.49 d
Turbulent kinetic energy (1/2)ρv2 0.22 e
Magnetic energy B2/8π 0.89 f
Cosmic rays 1.39 g

a Fixsen & Mather (2002).
b Chapter 12.
c Chapter 12.
d For nT = 3800 cm−3 K (see §17.7).
e For nH=30 cm−3, v=1km s−1, or 〈nH〉=1 cm−3, 〈v2〉1/2=5.5 km s−1.
f For median Btot ≈ 6.0µG (Heiles & Crutcher 2005).
g For cosmic ray spectrum X3 in Fig. 13.5.

1.2 Elemental Composition

The interstellar gas is primarily H and He persisting from the Big Bang, with a
small reduction in the H fraction, a small increase in the He fraction, and addition
of a small amount of heavy elements – from C to U – as the result of the return to the
ISM of gas that has been processed in stars and stellar explosions. The abundance
of heavy elements in the ISM – e.g., C, O, Mg, Si, and Fe – is a declining function of
distance from the Galactic Center, with the abundance near the Sun (galactocentric
radius R ≈ 8.5 kpc) being about half the abundance in the Galactic Center region.

The composition of the ISM in the solar neighborhood is not precisely known,
but is thought to be similar to the composition of the Sun. The current best esti-
mates of solar abundances for elements with atomic number ≤ 32 (as determined
from both observations of the stellar photosphere and studies of primitive carbona-
ceous chondrite meteorites) are given in Table 1.4. These abundances are intended
to be the abundances in the protosun, which differ from photospheric abundances
due to diffusion. H and He together account for most of the mass – the elements
with Z ≥ 3 contribute only ∼ 1% of the total mass. Nevertheless, these heavy
element “impurities” in many cases determine the chemistry, ionization state, and
temperature of the gas, in addition to which they provide valuable observable diag-
nostics.

1.3 Energy Densities

Energy is present in the ISM in a number of forms: thermal energy u = (3/2)nkT ,
bulk kinetic energy (1/2)ρv2, cosmic ray energy uCR, magnetic energy B2/8π,
and energy in photons, which can be subdivided into cosmic microwave back-
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Figure 1.3 Flow of energy in the Milky Way.

ground, far-infrared (FIR) emission from dust, and starlight. It is a remarkable
fact that in the local ISM, today, these energy densities all fall within the range
0.2 − 2 eV cm−3 – see Table 1.5. This near-equipartition is partly coincidental –
the fact that the energy density in the CMB is similar to the other energy densities
is surely accidental – but the other six energy densities are in fact coupled: the
magnetic energy has been built up by fluid motions, so it is probably not a coin-
cidence that the magnetic energy density B2/8π and the turbulent energy density
(1/2)ρv2 are comparable in magnitude. Similarly, if the cosmic ray energy den-
sity were much larger, it would not be possible for the magnetized ISM to confine
the cosmic rays, and they would be able to escape freely from the Galaxy – this
negative feedback limits the cosmic ray energy density to approximate equiparti-
tion with the sum of the turbulent energy density and thermal pressure in the ISM.
The fact that the starlight energy density is comparable to the gas pressure may be
coincidental. However, if the starlight energy density were much larger (by a fac-
tor ∼102), radiation pressure acting on dust grains would be able to “levitate” the
ISM above and below the Galactic midplane, presumably suppressing star forma-
tion; this feedback loop may play a role in regulating the starlight energy density in
star-forming galaxies.

The ISM is far from thermodynamic equilibrium, and it is only able to maintain
this nonequilibrium state because of the input of “free energy,” primarily in the
form of ultraviolet radiation emitted by stars, but with a significant and important
contribution of kinetic energy from high-velocity gaseous ejecta from supernovae.
The overall flow of energy in the ISM is sketched in Figure 1.3. Ultimately, nearly
all of the energy injected into the ISM in the form of starlight and kinetic energy
of stellar ejecta is lost from the galaxy in the form of emitted photons, departing to
the cold extragalactic sky.



Chapter Two

Collisional Processes

Collisions are fundamental to the physics of the interstellar medium (ISM): they
allow the gas to (usually) be treated as a fluid; they determine the thermal and elec-
trical conductivity and diffusion coefficients; they produce most of the excitations
of ions, atoms, and molecules that result in emission of photons from the ISM;
and they are responsible for recombination of electrons and ions, and for chemical
reactions.

It is important to become comfortable with the concept of collisional rates – and
collisional rate coefficients – and to understand how they depend on temperature.
Indeed, the very concept of kinetic temperature depends on elastic scattering rates
being fast enough to ensure that the velocity distribution function for particles will
be close to a Maxwellian distribution.

In this chapter, we will review the concept of collisional rate coefficients. There
are three basic types of collisional interactions that concern us: the long-range 1/r
Coulomb interaction between ions and ions, ions and electrons, and electrons and
electrons; the intermediate range r−4 induced-dipole interaction between ions and
neutral atoms or molecules; the interaction between electrons and neutrals; and
the short-range interaction between neutrals. For the Coulomb interaction, we will
estimate collisional ionization rates and scattering rates using the “impact approxi-
mation.” For the induced-dipole interaction, we will use exact results for scattering
by a r−4 potential. For electron–neutral scattering, we use experimental data. For
neutral–neutral collisions, we use estimates for the effective “hard-sphere” radius.

2.1 Collisional Rate Coefficients

The rate per unit volume of a general two-body collisional process

A+B → products (2.1)

is written

reaction rate per unit volume = nAnB〈σv〉AB , (2.2)

where the two-body collisional rate coefficient for A+B → products is

〈σv〉AB ≡
∫ ∞

0

σAB(v) v fv dv , (2.3)
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where σAB(v) is the velocity-dependent reaction cross section for the reaction, and
fvdv is the probability that A and B have relative speed v in dv. In cgs units, a
two-body collisional rate coefficient has dimensions of cm3 s−1.

In thermal equilibrium at temperature T , the distribution function for the relative
speed in encounters between particles A and B is given by a Maxwellian velocity
distribution

fv dv = 4π
( µ

2πkT

)3/2
e−µv2/2kT v2 dv , (2.4)

where µ ≡ mAmB/(mA +mB) is the reduced mass of the collision partners. It
will sometimes be convenient to use the distribution function fE for the center-of-
mass energy E = µv2/2. From fEdE = fvdv, we obtain

vfE = v
dv

dE
fv =

(
8

πµkT

)1/2
E

kT
e−E/kT . (2.5)

Thus the two-body collisional rate coefficient is

〈σv〉AB =

(
8kT

πµ

)1/2 ∫ ∞

0

σAB(E)
E

kT
e−E/kT dE

kT
. (2.6)

At sufficiently high densities (e.g., the Earth’s atmosphere), three-body colli-
sions – where three particles are simultaneously in close proximity and interacting
strongly – can become important. The rate per unit volume of a general three-body
collisional process A+B + C → products is written

reaction rate per unit volume = kABC nAnBnC , (2.7)

where kABC is the three-body collisional rate coefficient. Even at interstellar
densities, three-body processes can be important for some reactions, such as pop-
ulating the high-n levels of atomic hydrogen (see §3.7). In cgs units, a three-body
collisional rate coefficient kABC has dimensions of cm6 s−1.

2.2 Inverse-Square Law Forces: Elastic Scattering

The classical problem of elastic scattering by an inverse-square force law – Ruther-
ford scattering – can be solved, but the resulting integrals can be tedious to evalu-
ate. Here we will employ a very simple approach – the “impact approximation” –
to obtain approximate results with very simple algebra. The impact approximation
is accurate when the interaction is weak enough to produce only a small deflection
– this often turns out to be the case.
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Figure 2.1 Coordinates for impact approximation, in the frame where the target is at
rest. The projectile is assumed to travel in a straight line at constant speed, and the
target is assumed to remain at rest during the encounter.

2.2.1 The Impact Approximation

The impact approximation consists of calculating the exchange of momentum be-
tween projectile and target, assuming that the projectile and target velocities remain
constant during the encounter – the projectile moves in a straight line at constant
speed. For the Coulomb interaction between particles with charges Z1e and Z2e,
the instantaneous force perpendicular to the trajectory is

F⊥ =
Z1Z2e

2

(b/ cos θ)2
cos θ =

Z1Z2e
2

b2
cos3 θ , (2.8)

where the “impact parameter” b is the distance of closest approach if the projectile
were to travel undeflected, and the angle θ is defined in Figure 2.1. If v1 is the
relative velocity, we find

dt =
d(b tan θ)

v1
=

b

v1

dθ

cos2 θ
, (2.9)

and the total momentum transfer is obtained by integrating F⊥ over time1:

∆p⊥ =

∫ ∞

−∞
F⊥dt =

Z1Z2e
2

bv1

∫ π/2

−π/2

cos θdθ = 2
Z1Z2e

2

bv1
. (2.10)

2.2.2 Example: Collisional Ionization

Consider an atom or ion with a single bound electron. Let I be the energy required
to “ionize” it – i.e., to unbind the electron. Suppose that we have a fast-moving

1A back-of-the-envelope estimate by taking the product of the force at closest approach
(Z1Z2e2/b2) and the characteristic interaction time (b/v1) differs from Eq. (2.10) by only a factor
of 2.



14 CHAPTER 2

electron with speed v � (2I/me)
1/2. We can use the impact approximation to

estimate the ionization rate by asking: For what impact parameters is the momen-
tum transfer (∆p⊥)2 > 2meI? The answer is b < bmax(v) = [2Z2

pe
4/mev

2I]1/2.
This gives us an estimate for the ionization cross section:

σ(v) ≈ πb2max =
2πZ2

pe
4

mev2I
. (2.11)

This is of course not quite correct, even classically – we have assumed the momen-
tum transfer to be perpendicular to the initial velocity of the bound electron – but
it is a good estimate for (1/2)mev

2 � I . If we now assume Eq. (2.11) to apply
down to the minimum impact velocity vmin = (2I/me)

1/2 for which it is energet-
ically possible to ionize the atom, we can estimate the thermal rate coefficient for
collisional ionization:

〈σv〉=
∫

σ(v) × v × f(v)dv

=

∫ ∞

vmin

2πZ2
pe

4

mev2I
× v × 4π

( me

2πkT

)3/2
v2e−mev

2/2kT dv

=Z2
p

(
8π

mekT

)1/2
e4

I
e−I/kT . (2.12)

Now consider a hydrogen atom with principal quantum number n, and ionization
energy I = IH/n

2, where IH = 13.602 eV is the ionization potential for hydrogen
in the ground state. For large n (e.g., n ≈ 100) and T ≈ 104 K, the ionization
energy threshold I � kT and 〈σv〉 ∝ I−1 ∝ n2 – the collisional ionization rate
becomes very large for hydrogen with large values of the principal quantum number
n. We will see in Chapter 3 that such highly excited hydrogen, with n >∼ 102, is
in fact present in the interstellar medium, and observable through radio frequency
emission lines.

2.2.3 Deflection Time

Consider the special case of a projectile with charge Z1e traveling with velocity v1
through a “field” of stationary “targets,” with charge Z2e and number density n2.
In the impact approximation, each interaction gives an impulse that is in the plane
perpendicular to the direction of motion of the projectile, but is randomly oriented
in this plane. Thus the net vector momentum transferred to the projectile undergoes
a random walk in this plane, with

〈 d
dt

[(∆p)⊥]2〉=
∫ bmax

bmin

[2πbdb n2v1]︸ ︷︷ ︸×
[
2Z1Z2e

2

bv1

]2
︸ ︷︷ ︸

d(event rate) × (∆p⊥)2

=
8πn2Z

2
1Z

2
2e

4

v1

∫ bmax

bmin

db

b
. (2.13)



COLLISIONAL PROCESSES 15

The integral is logarithmically divergent at both limits (bmin → 0 and bmax → ∞),
so there must be a physical reason for lower and upper cutoffs, bmin and bmax.
At separation r = Z1Z2e

2/E, the interaction energy is equal in magnitude to the
initial center-of-mass kinetic energy E and the impact approximation fails, so it is
reasonable to take bmin = Z1Z2e

2/E.
The upper cutoff bmax is more subtle. The integral in Eq. (2.13) assumes the

field particles to be randomly located, so that the contribution from each field par-
ticle is independent. However, on large scales, the plasma must maintain electrical
neutrality, and plasma particles are statistically correlated on length scales larger
than the Debye length (see Appendix H):

LD ≡
(

kT

4πnee2

)1/2

= 690 cm

(
T

104 K

)1/2(
cm−3

ne

)1/2

, (2.14)

a positive ion will tend to be shielded by a higher-than-average density of electrons,
with the shielding being effective on length scales exceeding LD. Thus we set
bmax = LD, and find〈 d

dt
[(∆p)⊥]2

〉
=

8πn2Z
2
1Z

2
2e

4

v1
ln Λ , (2.15)

where

Λ≡ bmax

bmin
=

E

kT

(kT )3/2

(4πne)1/2Z1Z2e3

=4.13× 109
(

E

kT

)(
T

104 K

)3/2(
cm−3

ne

)1/2

(2.16)

ln Λ=22.1 + ln

[(
E

kT

)(
T

104 K

)3/2(
cm−3

ne

)]
. (2.17)

We see that Λ is in general a very large number for interstellar conditions. The im-
portance of distant encounters relative to close encounters is given by ln Λ. Because
ln Λ ≈ 20 − 35 for interstellar conditions, weak distant encounters dominate, and
our simple impact-parameter-based treatment should be quite accurate; uncertain-
ties in exactly how the integral is treated near the upper and lower limits introduce
only ∼5% uncertainties in the total rate.

It should be noted that Eq. (2.15) is quite general: in the case of species 1 and
2 with velocity distributions, the factor 1/v1 in Eq. (2.15) should be replaced by
〈1/|v12|〉, where v12 is the velocity difference between particles 1 and 2.

Consider now selected cases:

• The energy loss time scale for the projectile is defined by

tloss ≡ E

〈(dE/dt)loss〉 , (2.18)
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where 〈(dE/dt)loss〉 is the mean rate at which the particle gives kinetic en-
ergy to the field particles. If the latter have velocity dispersion σ2 � v1, then

tloss =
m1v

2
1

〈(d/dt)[(∆p)⊥]2〉/m2
=

m1m2v
3
1

8πn2Z2
1Z

2
2e

4 ln Λ
. (2.19)

• The time scale for the projectile to be deflected by ∼ 90◦ from its initial
trajectory is

tdefl =
(m1v1)

2

〈(d/dt)[(∆p)⊥]2〉 =
m2

1v
3
1

8πn2Z2
1Z

2
2e

4 ln Λ
, (2.20)

and, for kinetic energy (3/2)kT , the mean free path is

mfp= v1tdefl =
m2

1v
4
1

8πn2Z2
1Z

2
2e

4 ln Λ
(2.21)

=5× 1017 cm

(
T

106 K

)2(
0.01 cm−3

ne

)(
25

lnΛ

)
. (2.22)

For example, consider an electron moving through a field of protons at the root-
mean-square (rms) speed v1 = (3kTe/me)

1/2. The deflection time is

tdefl(e by p)=
m

1/2
e (3kTe)

3/2

8πnee4 ln Λ
(2.23)

=7.6× 103 s

(
Te

104 K

)3/2(
cm−3

ne

)(
25

lnΛ

)
. (2.24)

For temperatures T <∼ 106 K and densities ne
>∼ 10−3 cm−3, the deflection

time is short (compared to astronomical time scales), and we may assume that the
velocity distribution will be isotropic. The energy exchange time tloss is larger by
the ratio mp/me = 1836:

tloss(e to p) = 1.4× 107 s

(
Te

104 K

)3/2(
cm−3

ne

)(
25

lnΛ

)
. (2.25)

Because we have considered an electron moving with the rmsthermal speed, and
because the number densities of protons and electrons in ionized gas will be ap-
proximately equal, the energy loss time tloss(e to p) is the same as the time scales
for the electrons and protons to equilibrate at the same temperature, if the electron
and proton temperatures initially differed. The energy loss time tloss is generally
short by astronomical standards, except in very hot, very low density gas. Accord-
ingly, we may usually (though not always!) assume that the electrons and ions each
have Maxwellian velocity distributions, with common temperatures.
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2.3 Electron–Ion Inelastic Scattering: Collision Strength Ωu�

Inelastic collisions of electrons with ions are responsible for much of the line radia-
tion emitted by hot gas, from H II regions to supernova remnants, as such collisions
can leave the ion in an excited state, from which it will decay by emitting a photon.

Earlier we discussed elastic scattering of electrons by ions, finding that the mo-
mentum transfer is dominated by “distant” encounters, where the distance of closest
approach is much larger than atomic dimensions. However, in those cases where
the electron does approach within atomic dimensions of the ion, the electric field
of the projectile electron will strongly perturb the wave function of the electrons
bound to the ion. Because the projectile electron (attracted by the Coulomb po-
tential) is moving with a speed approaching the velocities of the bound electrons,
the perturbation is relatively “sudden,” and when the projectile electron recedes,
the ion wave function may have made a transition to another energetically allowed
state.

Let us consider the case where the ion is initially in an excited state u, with
degeneracy gu. The thermally averaged rate coefficient for deexcitation to a lower
energy level � is customarily written in terms of a dimensionless quantity Ωu�(T ):

〈σv〉u→� ≡ h2

(2πme)3/2
1

(kT )1/2
Ωu�(T )

gu
(2.26)

=
8.629× 10−8

√
T4

Ωu�

gu
cm3 s−1 , (2.27)

T4 ≡
(

T

104 K

)
. (2.28)

Equation Eq. (2.26) serves as the definition of Ωu�(T ), called the collision strength
connecting levels u and �. In principle, the collision strength Ωu� is a function of
temperature T , but quantum-mechanical calculations of the inelastic scattering for
many ions show that: (1) the Ωu� are approximately independent of temperature T
for T <∼ 104 K, and (2) the Ωu� typically have values in the range 1 to 10. These
quantum-mechanical results can be qualitatively understood in terms of a heuristic
classical model (see Appendix I).

2.4 Ion–Neutral Collision Rates

The 1/r coulomb interaction is a long-range interaction, and we found that the
elastic scattering process is dominated by distant, weak interactions. We now con-
sider the case of charged particles (e.g., an ion) interacting with neutral particles
(atoms or molecules). If the ion and atom are separated by more than a few Å, the
principal interaction between the ion and neutral consists of the polarization of the
neutral caused by the electric field of the ion. The ion is characterized by its charge
Ze, and the neutral by its polarizability αN : in a uniform static electric field E, the
neutral acquires an electric dipole moment �P = αN

�E. Atomic polarizabilities (see
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Figure 2.2 Three trajectories in an r−4 potential. The trajectory with b < b0 passes
through the origin, where b0 is defined in Eq. (2.30). The total cross section for such
“orbiting” trajectories is πb20.

Table 2.1) are of order a few a30, where a0 ≡ h̄2/mee
2 = 5.292 × 10−9 cm is the

Bohr radius.
In the Coulomb field of the ion, the polarized atom experiences an attractive force

F = P · (dE/dr) = −2αNZ2e2/r5, corresponding to an interaction potential

U(r) = −1

2

αNZ2e2

r4
. (2.29)

Classical trajectories in this potential have been studied by Wannier (1953) and
Osterbrock (1961). Let Ecm be the initial center-of-mass kinetic energy. Define

b0 ≡
(
2αNZ2e2

Ecm

)1/4

(2.30)

=6.62× 10−8 cm Z1/2

(
αN

αH

)1/4(
0.01 eV

Ecm

)1/4

, (2.31)

where αH is the polarizability of an H atom (see Table 2.1). For r = b0, the in-
teraction energy U(b0) = −Ecm/4, so we would expect a trajectory with impact
parameter b0 to be significantly deflected. In fact, for an ideal r−4 potential, tra-
jectories with b < b0 are totally overcome by the r−4 potential, and actually pass
through r = 0 – these are referred to as “orbiting” trajectories. An example of
one such orbiting trajectory is shown in Figure 2.2. The cross section for orbiting
trajectories with b < b0 is

σ = πb20 = 2πZe

(
αN

µ

)1/2
1

v
, (2.32)
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Table 2.1 Ion–Neutral Scattering Parameters

Neutral αN/a3
0 Ion 〈σv〉orb ( cm3 s−1)a 〈σv〉mt ( cm3 s−1)b

H 4.500c H+ 2.69× 10−9 3.25× 10−9

C+ 1.98× 10−9 2.39× 10−9

He 1.383d H+ 1.18× 10−9 1.42× 10−9

H2 5.315e H+ 2.54× 10−9 3.06× 10−9

H+
2 2.07× 10−9 2.49× 10−9

C+ 1.58× 10−9 1.91× 10−9

O 5.326f H+ 2.14× 10−9 2.57× 10−9

C+ 7.95× 10−10 9.57× 10−10

a 〈σv〉orb = rate coefficient for orbiting collisions.
b 〈σv〉mt = momentum transfer rate coefficient.
c Landau & Lifshitz (1972). e Marlow (1965).
d Thomas & Humbertson (1972). f Kelly (1969).

where µ ≡ m1m2/(m1 +m2) is the reduced mass. Note that for this interaction,
the cross section σ ∝ 1/v, and the rate coefficient

〈σv〉=2πZe

(
αN

µ

)1/2

(2.33)

=8.980× 10−10Z

(
αN

a30

)1/2(
mH

µ

)1/2

cm3 s−1 (2.34)

is then independent of temperature! The polarizability αN is given in Table 2.1 for
H, He, H2, and O, together with 〈σv〉 for orbiting collisions of these neutrals with
selected ions.

Obviously, the approximation of an r−4 interaction potential fails when the ion
and neutral come within a few Å of one another, but it is evident that the orbiting
trajectories do bring the ion and neutral into intimate contact. If an outcome is
energetically allowed – such as collisional deexcitation of an excited state, or an
exothermic charge exchange or chemical exchange reaction – there will be a sub-
stantial probability of it happening when the ion and neutral undergoing an orbiting
collision with b < b0 come together to form an excited “complex,” and the reac-
tion rate coefficient will, therefore, be comparable to the orbiting rate coefficient.
Examples of such exothermic reactions include

O+ + H → O(3P0) + H+ (charge exchange), (2.35)
H+

2 + H2 → H+
3 + H (chemical exchange), (2.36)

CH+ + H2 → CH+
2 + H (chemical exchange). (2.37)

Because their rate coefficients are large even at low temperatures, exothermic ion–
neutral reactions play a major role in the chemistry of cool interstellar gas.
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Momentum transfer in ion–neutral collisions is important in some astrophysical
situations. The momentum transfer cross section is

σmt = 2π

∫ ∞

0

(1− cos θ) b db , (2.38)

where θ(b) is the deflection angle. It is reasonable to assume that the short-range
interaction between ion and neutral will result in isotropic scattering for collisions
with b < b0 (which for an r−4 potential would pass through r = 0). Adding the
contribution from b > b0 gives the momentum transfer rate coefficient:

〈σv〉mt = 2.41πZe

(
αN

µ

)1/2

= 1.21〈σv〉 . (2.39)

2.5 Electron–Neutral Collision Rates

Elastic scattering of electrons by neutrals can be important in very low ionization
regions (such a protoplanetary disks), where electron–neutral scattering limits the
electrical conductivity. In regions of very low fractional ionization, the primary
collision partner is H2, followed by He.

Low-energy scattering of electrons by H2 has been studied theoretically and
experimentally. At energies E < 0.044 eV the scattering is purely elastic; for
E > 0.044 eV, rotational excitation can occur; at E >∼ 0.5 eV vibrational excita-
tion is also possible; and for E > 11 eV electronic excitation can take place.

The experimentally measured momentum transfer cross section between 0.01
and 1 eV (Crompton et al. 1969; Ferch et al. 1980) can be approximated by

σmt ≈ 7.3× 10−16(E/0.01 eV)0.18 cm2 . (2.40)

The thermal rate coefficient for momentum transfer due to e−H2 scattering is then

〈σv〉mt ≈ 4.8× 10−9

(
T

102 K

)0.68

cm3 s−1 , (2.41)

accurate to within ∼10% for 50 <∼ T <∼ 5000K.2

The cross section for electron scattering by He (Crompton et al. 1970; Ferch
et al. 1980) is somewhat smaller than for H2.

2For T < 104 K, the rate in Eq. (2.41) is significantly smaller than the classical estimate, Eq. (2.33).
The classical estimate is inapplicable because the deBroglie wavelength of the electron, h/p, is larger
than the critical impact parameter b0 for orbiting collisions.
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2.6 Neutral–Neutral Collision Rates

The interaction between neutral species is repulsive at small separations and weakly
attractive at larger separations due to the van der Waals interaction, which arises be-
cause fluctuations in the electron dipole moment of one species induce an electric
dipole in the other, resulting in an attractive U(r) ∝ 1/r6 interaction. The at-
tractive interaction is sufficiently weak, and the onset of the repulsive interaction
sufficiently rapid, that for many purposes the interaction can be approximated by
a “hard-sphere” model, with the collision partners each having hard-sphere radii
Ri ≈ 1 Å.

Hard-sphere collisions occur for impact parameters b < R1+R2, so the collision
cross section π(R1+R2)

2 ≈ 1.2×10−15 cm2. The rate coefficient for hard-sphere
scattering is

〈σv〉=
(
8kT

πµ

)1/2

π(R1 +R2)
2 (2.42)

=1.81× 10−10

(
T

102 K

)1/2(
mH

µ

)1/2(
R1 +R2

2 Å

)2

cm3 s−1, (2.43)

where again µ is the reduced mass. For T <∼ 102 K, the rate coefficient for neutral–
neutral scattering is smaller by more than an order of magnitude than the rate coef-
ficient for ion–neutral scattering.



Chapter Three

Statistical Mechanics and Thermodynamic

Equilibrium

The interstellar medium (ISM) and intergalactic medium (IGM) are generally far
from thermodynamic equilibrium. Nevertheless, the methods of statistical mechan-
ics and thermodynamics provide powerful tools for understanding the nonequilib-
rium conditions that prevail, and for relating forward and reverse rates for the pro-
cesses, such as ionization and recombination, that shape the medium.

This chapter reviews some results from statistical mechanics, and illustrates their
use by obtaining the relationship between collisional excitation and deexcitation
rate coefficients, and cross sections for forward and reverse reactions. In §§3.7
and 3.8, we estimate the three-body recombination rate, and use this estimate to
understand the population of the high-n levels of atomic hydrogen.

3.1 Partition Functions

Consider some physical system (e.g., atoms in a box of volume V ) that is able to
exchange energy with a “heat reservoir” at temperature T . The theory of statistical
mechanics defines the partition function Z to be

Z(T ) ≡
∑
s

e−E(s)/kT , (3.1)

where the sum is over all distinct possible states s of the system, and E(s) is the
energy of state s. For dilute gases, we can factor the partition function into “trans-
lational” and “internal” partition functions:

Z(T ) = Ztran(T )× zint(T ) . (3.2)

For example, let X be a single atom, ion, or molecule. Suppose that the internal
energy levels of X are labeled by index i = 0, 1, 2, .... The total energy of X in
level i is E(Xi) = p2/2MX + Ei, where p is the linear momentum, MX is the
mass of X , and Ei is the internal energy of X in level i.

The translational partition function Ztran(T ) is obtained by integrating over six-
dimensional phase space and dividing by the “cell size” h3 (where h = Planck’s
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constant):

Ztran(X;T ) =
V

h3

∫ ∞

0

4πp2dp e−p2/2MXkT =
(2πMXkT )3/2

h3
V , (3.3)

and the internal partition function zint(T ) is just a sum over the possible internal
states of X:

zint(X;T ) ≡
∑
i

gie
−Ei/kT , (3.4)

where the degeneracy gi of level i refers to the number of distinct quantum states
that are grouped together and treated as a single energy level. For example, for a
free electron, there are just two “internal” quantum states (spin up and spin down),
both have Ei = 0, and hence zint = 2. For dilute gases, the partition function
Z ∝ V , as seen in Eq. (3.3). It is convenient to define the partition function per
unit volume:

f(X;T ) ≡ Z

V
=

[
(2πMXkT )3/2

h3

]
zint(X;T ) . (3.5)

3.2 Detailed Balance: The Law of Mass Action

Suppose that we have a chemical reaction A + B ↔ C. In local thermodynamic
equilibrium (LTE), statistical mechanics shows that the number densities of species
A, B, C, will satisfy the law of mass action:

nLTE(C)

nLTE(A)nLTE(B)
=

f(C)

f(A)f(B)
, (3.6)

where f(X) is the partition function per unit volume for species X . The LTE
abundance of X is proportional to f(X). The law of mass action applies to an
arbitrary number of reactants and products. For a general reaction

R1 +R2 + ...+RM ↔ P1 + P2 + ...+ PN , (3.7)

the law of mass action is∏N
j=1 nLTE(Pj)∏M
i=1 nLTE(Ri)

=

∏N
j=1 f(Pj)∏M
i=1 f(Ri)

=

[
(2πkT )3/2

h3

]N−M
[∏N

j=1 M(Pj)∏M
i=1 M(Ri)

]3/2 ∏N
j=1 zint(Pj ;T )∏M
i=1 zint(Ri;T )

. (3.8)
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Note that the reactants Ri and products Pj in Eq. (3.7) can be species (e.g., H and
O, where we sum over internal quantum states), or specific quantum states (e.g., the
3P2 fine structure level of atomic O). In §3.7, we will apply the law of mass action
to the states of H with large quantum number n.

We must be careful with our accounting when it comes to internal energies. For
each reactant Ri and product Pj , choose “reference” states Ri,0, and Pj,0. If we
define ∆E by

E (R1,0 + ...+RM,0) + ∆E = E (P1,0 + ...+ PN,0) , (3.9)

(so that ∆E > 0 for an endothermic reaction), then∏N
j=1 zint(Pj ;T )∏M
i=1 zint(Ri;T )

= e−∆E/kT

∏N
j=1

∑
s g(Pj,s)e

−[E(Pj,s)−E(Pj,0)]/kT∏M
i=1

∑
s g(Ri,s)e−[E(Ri,s)−E(Ri,0)]/kT

,

(3.10)

and therefore∏N
j=1 nLTE(Pj)∏M
i=1 nLTE(Ri)

=

[
(2πkT )3/2

h3

]N−M
[∏N

j=1 M(Pj)∏M
i=1 M(Ri)

]3/2
×

e−∆E/kT

∏N
j=1

∑
s g(Pj,s)e

−[E(Pj,s)−E(Pj,0)]/kT∏M
i=1

∑
s g(Ri,s)e−[E(Ri,s)−E(Ri,0)]/kT

. (3.11)

This appears daunting, but is in fact fairly straightforward to apply. We will demon-
strate the utility of this equation in the following.

3.3 Ionization and Recombination

As a first example, consider the balance between recombination and ionization,
where we consider some specific energy level � of species X+r, and some specific
energy level u of species X+r+1:

e− +X+r+1
u ↔ X+r

� . (3.12)

(If we were to apply this to hydrogen, we would let X = H, and r = 0.) Using
the law of mass action (3.11), we find the abundance of X+r

� if it is in LTE with
n(X+r+1

u ) and electron density ne:

nLTE(X
+r
� ) =

h3

2(2πmekT )3/2
n(X+r+1

u )ne
g(X+r

� )

g(X+r+1
u )

e−(Er,�−Er+1,u)/kT .

(3.13)

We will apply this result to the high-n energy levels of hydrogen in §§3.7, and 3.8.
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3.4 Saha Equation

The overall balance between recombination and ionization

e− +X+r+1 ↔ X+r (3.14)

is obtained by summing over energy levels of X+r and X+r+1. Using the law of
mass action (3.11), we find

nLTE(X
+r)

nLTE(e−)nLTE(X+r+1)
=

h3

(2πmekT )3/2

∑
j gr,je

−Er,j/kT

2
∑

j gr+1,je−Er+1,j/kT
. (3.15)

We now suppose that we are at a sufficiently low temperature that we can ap-
proximate the internal partition functions by retaining only the first term in each
sum – the term due to the lowest energy states of X+r and X+r+1. If we let
Φr ≡ Er+1,1 − Er,1 = the ionization energy, we obtain the Saha equation:

nLTE(e
−)nLTE(X

+r+1)

nLTE(X+r)
≈ 2(2πmekT )

3/2

h3

gr+1,1

gr,1
e−Φr/kT . (3.16)

If we now apply the Saha equation (3.16) to the specific case of hydrogen, we have
gr,0 = g(H 1s) = 2 × 2 = 4 (the proton can have spin up or spin down, and the
electron can have spin up or spin down), gr+1,0 = g(H+) = 2 (the proton can have
spin up or spin down), and

nLTE(e
−)nLTE(H

+)

nLTE(H0)
=

(2πmekT )
3/2

h3
e−IH/kT , (3.17)

where IH = 13.60 eV is the ionization energy of hydrogen.
The law of mass action is a good approximation in a stellar interior, where the

radiation is very close to blackbody and the matter has had ample time to come
into statistical equilibrium with the radiation field. The Saha equation is a good
approximation to the law of mass action, provided the temperature is low enough
that retaining only the first term provides a good approximation to the sum over all
internal states1:

∑
i gie

−Ei/kT ≈ g0e
−E0/kT . However, the law of mass action

(including the Saha equation) is generally not a good approximation in the ISM or
IGM, where the electromagnetic radiation field is far from a blackbody.

1This is a somewhat delicate point. An isolated atom or positive ion (in an infinite universe) has
an infinite number of highly excited “Rydberg states,” with the outermost electron in hydrogenic orbits
with very large radial quantum number n. Thus, the sum Σjgr,j exp(−Er,j/kT ) becomes infinite,
and the internal partition function zint → ∞. However, at a finite density, the higher Rydberg states
can no longer be considered to be bound, as the electron at large radii behaves like a free electron from
the plasma rather than as a bound electron.
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3.5 Detailed Balance: Ratios of Rate Coefficients

The law of mass action implies very general restrictions on rate coefficients. Sup-
pose that we have a general reaction

R1 +R2 + ...+RM

kf
→←
kr

P1 + P2 + ...+ PN . (3.18)

If the equilibrium abundances of the reactants and products must satisfy the law of
mass action, and the forward and reverse rates must balance when in equilibrium
(the principle of detailed balance), then it follows that the ratio of rate coefficients
kr/kf must satisfy the condition

kr
kf

=

[
(2πkT )3/2

h3

]M−N
[∏M

i=1 M(Ri)∏N
j=1 M(Pj)

]3/2 ∏M
i=1 zint(Ri;T )∏N
j=1 zint(Pj ;T )

. (3.19)

As a simple application of this, consider inelastic scattering

X(�) + Y → X(u) + Y , (3.20)

where X(�) and X(u) are two different energy levels of species X , with degen-
eracies g� and gu, and Y is some collision partner that does not change internal
state during the collision. Let 〈σv〉�→u and 〈σv〉u→� be the “upward” and “down-
ward” rate coefficients (i.e., rate coefficients for excitation � → u and deexcitation
u → �). Equation (3.19) applied to this case yields the ratio of upward and
downward rate coefficients:

〈σv〉�→u =
gu
g�

e−(Eu�/kT )〈σv〉u→� , (3.21)

where Eu� ≡ Eu − E�.

3.6 Detailed Balance: Ratios of Cross Sections

3.6.1 Inelastic Scattering

If the ratios of forward and reverse reaction rates are determined by detailed bal-
ance considerations, there must be definite conditions on the ratios of forward and
reverse cross sections. To abbreviate our notation, let σij(E) ≡ σi→j(E).

For inelastic scattering [Eq. (3.20)], the balancing of forward and reverse rate
coefficients implies that, for any temperature T ,∫ ∞

Eu�

Ee−E/kTσ�u(E)dE =
gu
g�

e−Eu�/kT

∫ ∞

0

Ee−E/kTσu�(E)dE . (3.22)



STATISTICAL MECHANICS AND THERMODYNAMIC EQUILIBRIUM 27

This equation can be true for all T only if the cross sections σ�u and σu� satisfy

(Eul + E)σ�u(Eul + E) =
gu
g�

Eσu�(E) (3.23)

for all E > 0.

3.6.2 Photoionization and Recombination

These detailed balance considerations also apply to reactions where photons are
absorbed and emitted. Consider the balance of photoionization and radiative re-
combination. Let σpi(E) be the cross section for photoionization from level � of
atom X:

X� + hν → X+
u + e− , (3.24)

where the resulting ion X+ is in energy level u, and let σrr(E) be the cross section
for radiative recombination:

X+
u + e− → X� + hν . (3.25)

In LTE, the rate per volume at which photons with energies in (hν, hν + hdν)
are removed by photoelectric absorption and the rate at which they are created by
radiative recombination must be equal: within an energy interval dE = hdν, we
have

nLTE(X�)
4πBνdν

hν
σpi,�u(hν) =

nLTE(X
+
u )nLTE(e

−)vfE(hν − IX,�u)hdν σrr,u�(hν − IX,�u)[1 + nγ ] , (3.26)

where σpi,�u(hν) is the cross section for photoionization from X� to create X+
u ,

σrr,u�(E) is the cross section for an ion X+ in quantum state u to capture an elec-
tron by radiative recombination to level � of X , and

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
(3.27)

is the blackbody radiation intensity [see Eq. (6.6)].
The process of radiative recombination – where the electron drops from a “free”

state to a bound state by emission of a photon – can proceed either by spontaneous
emission

X+
u + e− → X� + hν (3.28)
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or by stimulated emission

X+
u + e− + hν → X� + 2hν . (3.29)

The radiative recombination cross section σrr,u� applies to the spontaneous process
(3.28). Here we anticipate the discussion in Chapter 6, where we will show that
the ratio of stimulated emission to spontaneous emission is equal to the photon
occupation number [see Eq. (6.11)] in LTE:

(nγ)LTE =
1

ehν/kT − 1
. (3.30)

The factor [1+nγ ] in Eq. (3.26) therefore allows for the contribution of stimulated
recombination.

Applying the principle of detailed balance (3.21), we obtain the Milne relation
between the cross section for photoionization and the cross section for electron
capture by spontaneous radiative recombination:

σrr,u�(E) =
g�
gu

(IX,�u + E)2

Emec2
σpi,�u(hν = IX,�u + E) , (3.31)

where gu is the degeneracy of the ion in level u, and g� is the degeneracy of the ion
or atom in level �.

3.7 Example: Three-Body Recombination

As an example to demonstrate the utility of Eq. (3.8), consider the simple reaction

H+ + 2e− ↔ H(n) + e− , (3.32)

where H(n) denotes the hydrogen atom in a level with principal quantum number
n. Application of Eq. (3.8) gives[

n(H(n))

n(H+)ne

]
LTE

=

[
h3

(2πkT )3/2

] [
mH

mpme

]3/2
g[H(n)]

g(e−)g(H+)
e−In/kT , (3.33)

where In = IH/n
2 is the energy required to ionize H(n) → H+ + e−.

The electron and proton are spin 1/2 particles, with g(e−) = g(H+) = 2. Hydro-
gen with principal quantum number n has g[H(n)] = 4n2: there are two electron
spin states, two nuclear spin states, and n2 distinct (�,m) orbits.2 Therefore,

nLTE[H(n)] = n2 h3

(2πmekT )3/2
nen(H

+)eIH/n2kT . (3.34)

2For example, for n = 2 we have four orbits: � = 0 with m = 0, and � = 1 with m = −1, 0, 1.
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This is a remarkable result! For n � 1, we have nLTE[H(n)] ∝ n2 – since n could
be a large number, this suggests that there could be significant populations in the
high quantum levels n, if they are in LTE with the electrons and ions.

Suppose that we would like to estimate the rate for the three-body “collisional
recombination” reaction

H+ + e− + e− → H(n) + e− . (3.35)

The rate per volume of this three-body reaction will have the form

d

dt

(
n [H(n)]

)
H++2e−

= βn(T )n(H
+)n2

e , (3.36)

where βn(T ) is the unknown rate coefficient for three-body recombination to level
n. Even if we are willing to use a semiclassical treatment, integration over possible
trajectories in three-body collisions is much more complicated and tedious than for
two-body reactions. It is therefore pleasing to see that we can use the law of mass
action and the principle of detailed balance to relate the three-body rate coefficient
to a two-body reaction rate: in LTE, we must have

βn(T )nLTE(H
+)[nLTE(e)]

2 = nLTE [H(n)]nLTE(e)〈σv〉n→c , (3.37)

where 〈σv〉n→c is the collisional rate coefficient for collisional ionization from
H(n):

H(n) + e− → H+ + 2e− . (3.38)

Thus

βn(T ) =

[
n[H(n)]

nen(H+)

]
LTE

〈σv〉n→c . (3.39)

Inserting Eq. (3.34), we obtain

βn(T ) = n2 h3

(2πmekT )3/2
eIH/n2kT 〈σv〉n→c . (3.40)

This is an exact result.
The rate coefficient 〈σv〉n→c for collisional ionization by electrons was esti-

mated in Eq. (2.12). Applied to ionization from level n, we find

〈σv〉n→c ≈n2 e
4

IH

(
8π

mekT

)1/2

e−IH/n2kT (3.41)

=3.5× 10−3
( n

100

)2
T

−1/2
4 e−IH/n2kT cm3 s−1 . (3.42)
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From (3.40), we now obtain the rate coefficient for three-body recombination H++
2e− → H(n) + e−:

βn(T )≈n4 4a20h
3IH

π(mekT )2
(3.43)

=1.4× 10−20
( n

100

)4
T−2
4 cm6 s−1 . (3.44)

This three-body rate coefficient appears to be numerically small,3 but note the de-
pendence on quantum number n: for sufficiently large values of n, the three-body
recombination rate can be fast enough to ensure that the high-n levels of H are in
collisional equilibrium with the electrons and protons.

3.8 Departure Coefficients

Let us consider the density n[H(n)] of H with principal quantum number n. When
discussing the levels with n >∼ 30, it is convenient to define the departure coeffi-
cient:

bn ≡ n[H(n)]

nLTE[H(n)]
=

n[H(n)]

nen(H+)

(2πmekT )
3/2

n2h3
e−IH/n2kT , (3.45)

where nLTE[H(n)] is given by Eq. (3.34). The departure coefficient bn compares
the actual level population n[H(n)] to the level population that would apply if the
levels were in LTE with the given electron and proton densities. If only collisional
processes (collisional ionization and three-body recombination) were acting, the
system would have bn = 1. However, the excited states also can be depopulated
by spontaneous emission of a photon, with the rate for this radiative process in-
creasing rapidly as n decreases. The total rate of depopulation by spontaneous
radiative decay from level n � 1 (averaged over the angular momentum states) is
approximately 4

An,tot ≈ 7× 1010n−5 s−1 . (3.46)

Let nc be the principal quantum number n for which An,tot = ne〈σv〉n→c. From
Eqs. (3.42 and 3.46), we obtain

nc ≈ 110
( ne

103 cm−3

)−1/7

T
1/14
4 . (3.47)

This is only an estimate, but it indicates that we may expect to see appreciable
departures from LTE for n <∼ 110 in H II regions where ne ≈ 103 cm−3.

3Three-body recombination can also be mediated by protons: 2H+ + e− → H(n) + H+. For
sufficiently large quantum number n, the three-body rate coefficient for 2H+ + e− → H(n) + H+ is
larger than the electron rate (3.43) by a factor

√
mp/me = 43.

4Wiese et al. (1966) have transition probabilities for levels up to n = 20.
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Figure 3.1 Departure coefficient bn versus principal quantum number n, for H atoms
in thermal plasma with T = 103.9 K, for three values of electron density ne = 10, 103,
and 105 cm−3, with no radiation present. Data from Salem & Brocklehurst (1979).

Figure 3.1 shows bn values calculated by Salem & Brocklehurst (1979). We see
that for ne = 103 cm−3, bn is noticeably smaller than 1 for n <∼ 110, consis-
tent with our back-of-the-envelope estimate for the value of n for which radiative
deexcitation and collisional ionization have comparable rates.

The high-n levels undergo radiative decay via electric dipole transitions to lower
levels. Transitions n + 1 → n are referred to as nα transitions (e.g., Lyman α
is the 1α transition). For high n values, the photon emitted is in the radio spec-
trum; hence these are known as “radio recombination lines.” The 166α transition,
at ν = 1424.7MHz, falls close to the H I 21-cm line at 1420.4 MHz, and the 159α
transition, at ν = 1620.7MHz, falls close to the 1612.2 MHz (λ = 18.6 cm) tran-
sition of OH. Because radio observatories often have receivers tuned to work near
21 cm and 18 cm, the 166α and 159α transitions are often selected for observation.
When the transition is optically thin, the observed line intensity

Inα ∝ Anαhνnα

∫
n[H(n)]ds ∝ n−6bn

∫
nen(H

+)ds. (3.48)

By study of the variation of line intensity Inα with n, one can observe the decrease
of bn with decreasing n, and thereby infer the electron density.

When bn is an increasing function of n, conditions are such that maser amplifi-
cation can occur in the line; such masing, if present, complicates the interpretation
of the observations.

Radio recombination lines are discussed further in §10.7.



Chapter Four

Energy Levels of Atoms and Ions

This chapter reviews the energy-level structure of atoms and ions, together with the
nomenclature for referring to those levels. It is probably an understatement to say
that the material in this chapter is not electrically exciting; it should be regarded as
reference material that can be returned to as needed.

Atomic spectroscopists customarily identify the different ionization stages of the
elements by roman numerals, with I corresponding to the neutral atom, II to singly
ionized, III to doubly ionized, and so on. Thus atomic hydrogen is referred to as
H I, ionized hydrogen (H+) as H II, and five-times ionized oxygen (O+5) as O VI.

We now consider the disposition of the electrons.

4.1 Single-Electron Orbitals

According to the quantum mechanical theory of multielectron atoms, it is a good
first approximation to think of the electrons as occupying “single-electron” orbitals
characterized by integer quantum numbers n and �: n = 1, 2, 3, ... is the “principal”
quantum number (the electron wave function has n − 1 radial nodes), and � is the
orbital angular momentum in units of h̄. For a given principal quantum number n,
the possible values of � are 0 ≤ � < n.

The letters s, p, d, f are used to designate orbitals with � = 0, 1, 2, 3. In addition
to the quantum numbers n and �, there is a third quantum number characterizing
the orbital: mz , the projection of the orbital angular momentum/h̄ onto the z axis.
Thus mz can take on 2� + 1 different values: −�, ...,−1, 0, 1, ..., �. If there is no
applied magnetic field, the energy of the orbital is independent of mz .

Electrons are spin 1/2 particles, and the projection of the electron spin onto the
z axis can take on only 2 values: −h̄/2 or +h̄/2. Again, if there is no applied field,
these two states are degenerate.

Thus a given pair of quantum numbers n� actually refers to 2(2� + 1) distinct
electronic wave functions.

4.2 Configurations

An atom or ion with a single electron can have its electron in any of the allowed
orbitals or wave functions. When an atom or ion has more than one electron, the
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Pauli exclusion principle forbids two electrons from sharing the same wave func-
tion. Therefore, there can be at most 2(2�+ 1) electrons in a given subshell n�: s
subshells can contain at most 2 electrons, p subshells can contain at most 6 elec-
trons, and d subshells can contain up to 10 electrons.

The orbitals, in order of increasing energy, are 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p,
5s, and so on. Thus atomic carbon, with 6 electrons, has a ground state configu-
ration with 2 electrons in the 1s subshell, 2 electrons in the 2s subshell, and the
remaining 2 electrons in the 2p subshell. The number of electrons in each subshell
is designated by a superscript: the ground state configuration for neutral carbon is
written 1s22s22p2. Neutral sodium, with 11 electrons, has ground state configura-
tion 1s22s22p63s.

4.3 Spectroscopic Terms

Each electron has orbital angular momentum �h̄ and spin angular momentum h̄/2.
If an orbital has more than one and less than 4�+ 1 electrons (for the np subshell,
this means 2, 3, or 4 electrons), then there is more than one way in which the orbital
and spin angular momentum vectors of the electrons in the partially filled shell can
add. In the so-called “L-S coupling” approximation, the orbital angular momenta
add (vectorially) to give a total orbital angular momentum Lh̄, and the individual
spin angular momenta similarly add to give a total spin angular momentum Sh̄; the
wave functions of course must obey the Pauli exclusion principle. Each allowed
(L, S) combination is referred to as a term.1 Terms are designated by 2S+1L,
where L = S, P, D, F for orbital angular momentum L = 0, 1, 2, 3.

Different terms (e.g., for an np2 configuration, the three possible terms 3P, 1D,
and 1S) will differ in energy by a significant fraction of the total binding energy of

1 Determining what terms can be constructed for a given electron configuration can become involved,
but it may be helpful to look at one example: two p electrons, i.e., np2. Each of the p electrons has
orbital quantum number � = 1 and spin quantum number s = 1/2. With three possible values of
m� = −1, 0, 1, and two possible values of ms = −1/2, 1/2, there are 3 × 2 = 6 possible one-
electron states. The exclusion principle says that both electrons cannot share the same one-electron
state, giving (6× 5)/2 = 15 possible different states for the two indistinguishable electrons:

1. Both electrons could have ml = 1, giving Lz = 2, but this would require that one electron be
spin up and one spin down, so that S = 0. Having Lz = 2 requires L ≥ 2. For two � = 1
orbitals, the maximum possible value of L = 2. Thus it is evident that one of the allowed terms
has S = 0 and L = 2, i.e., 1D. With multiplicity (2S + 1)(2L + 1) = 1 × 5, this accounts
for 5 of the 15 possible quantum states.

2. Both electrons could have ms = +1/2, and S = 1. One electron could have m� = 1 and one
have m� = 0, so that Lz = 1 is possible, requiring this state to have L ≥ 1. We have seen
earlier that the only way to have L > 1 is to have S = 0; therefore, this term must have L = 1.
With degeneracy (2S + 1)(2L+ 1) = 3× 3, this 3P term accounts for 9 quantum states.

3. We have thus far accounted for 5+9=14 of the 15 quantum states. Therefore there can be only
one remaining term, and it must be a singlet, with S = 0 and L = 0: 1S.

Thus a 2p2 configuration gives rise to 3 different terms: 1D, 3P, and 1S. The term with the largest
possible values of S and L usually has the lowest Coulomb energy. In this case the 3P term has the
lowest energy.
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the electrons in the partially filled subshell. Thus for atoms and low-ionization ions,
the energy differences between different terms of the ground state configuration
will be of order a few eV.

Table 4.1 lists the terms for the ground state configurations of atoms and ions
where the outermost subshell is ns or np.

Higher energy states can be constructed by taking one of the electrons out of the
ground state configuration and putting it into a higher orbital. For example, in the
case of atomic carbon, this can be done by removing one of the 2s electrons and
promoting it to a 2p orbital, giving 1s22s12p3 – the electrons in this configuration
can also be organized into different terms.

When L > 0 and S > 0, there is more than one way to add L and S to get the
total angular momentum J = L + S. For given L and S, the allowed values of
J range from |L − S| to L + S. Thus the 3P term can have J = 0, 1, 2, with the
spin-orbit interaction leading to “fine-structure” splitting between the three differ-
ent fine-structure levels of the term: 3P0, 3P1, and 3P2.

Because of the possibility of multiple J values for a given L and S, the terms
are also referred to as multiplets. A term with L = 0 or S = 0 can have only one
possible value of J , and is therefore referred to as singlet. Terms with two, three,
four, ... possible values of J are referred to as doublet, triplet, quartet, and so on.

4.4 Fine Structure: Spin-Orbit Interaction

As mentioned earlier, when a configuration has L > 0 and S > 0, there are dif-
ferent ways the orbital and spin angular momenta can add to give total angular
momentum J . Each will have different value of L ·S, and will differ in energy due
to spin-orbit coupling. The fractional energy shifts are of order ∼ 10−2 eV. This
splitting of energy levels is referred to as fine structure.

4.5 Designation of Energy Levels for Atoms and Ions: Spectroscopic Notation

If

L=(total orbital angular momentum)/h̄ ,

S=(total spin angular momentum)/h̄ ,

J =(total electronic angular momentum)/h̄ ,

then the energy levels (including fine structure splitting) are designated by spectro-
scopic notation:

2S+1Lp
J ,
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where L=S, P,D, F, ...

for L=0, 1, 2, 3, ...

and p=

{
blank for state of even parity
o for state of odd parity

.

The parity of an energy level is “even” or “odd” depending on whether the elec-
tronic wave function changes sign under reflection of all of the electron positions
through the origin. If �i are the orbital angular momenta of the individual electron
orbitals, then

parity is

{
even if Πi(−1)�i = 1 (i.e.,

∑
i �i is even)

odd if Πi(−1)�i = −1 (i.e.,
∑

i �i is odd)
.

Note that the adopted notation for designating energy levels overlooks possible hy-
perfine structure arising from interaction of the electrons with the magnetic moment
of the nucleus.

4.5.1 Multiplicity and Degeneracy

Because the total spin S and total orbital angular momentum L are vectors, they
can point in different directions. The multiplicity of a term with total spin S and
orbital angular momentum L is g = (2S + 1)× (2L+ 1). Thus the 3P term, with
S = 1 and L = 1, has multiplicity 3 × 3 = 9. When spin-orbit coupling is taken
into consideration, these states are split into distinct fine-structure levels, each with
a definite value of J and a degeneracy g = 2J + 1: g = 1, 3, and 5 for 3P0, 3P1,
and 3P2.

4.5.2 Example: Six-electron System

Consider a six-electron system (e.g., C I, N II, O III, F IV, Ne V). The ground config-
uration 1s22s22p2 has even parity. The 1s2 and 2s2 electrons form filled subshells,
whereas the 2p subshell is only partially filled.

There are three different ways that the two 2p electron orbits and spins can be
organized into an overall wave function that is antisymmetric under electron ex-
change, as required by the Pauli exclusion principle – see footnote 1 or, e.g., Brans-
den & Joachain (2003): 3P (i.e., L = 1, S = 1), 1D (i.e., L = 2, S = 0), and 1S
(i.e., L = 0, S = 0). The term with the lowest energy is 3P. With nonzero S and
nonzero L, the 3P term splits into 3 fine structure levels: 3P0,1,2. The first excited
term is 1D – this is a singlet because it has spin 0, so that the only fine-structure
level has J = L = 2. The remaining term, 1S, is also a singlet. The energy-level
diagram for the ground configuration is shown for N II and O III in Figure 4.1.

Table 4.1 lists the terms corresponding to the ground configuration for atoms or
ions where the outermost subshell is either ns or np.
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Figure 4.1 Energy-level diagram for the ground configuration of the 2p2 ions N II
and O III. (Fine-structure splitting is exaggerated for clarity.) Forbidden transitions
connecting these levels are shown, with wavelengths in vacuo.

Table 4.1 Terms for ns and np Subshells

Ground Terms
configuration (in order of increasing energy) Examples

...ns1 2S1/2 H I, He II, C IV, N V, O VI

...ns2 1S0 He I, C III, N IV, O V

...np1 2P o
1/2,3/2 C II, N III, O IV

...np2 3P0,1,2 , 1D2 , 1S0 C I, N II, O III, Ne V, S III

...np3 4S o
3/2 , 2D o

3/2,5/2 , 2P o
1/2,3/2 N I, O II, Ne IV, S II, Ar IV

...np4 3P2,1,0 , 1D2 , 1S0 O I, Ne III, Mg V, Ar III

...np5 2P o
3/2,1/2 Ne II, Na III, Mg IV, Ar IV

...np6 1S0 Ne I, Na II, Mg III, Ar III

4.6 Hyperfine Structure: Interaction with Nuclear Spin

If the nucleus has nonzero spin, it will have a nonzero magnetic moment. If the
nucleus has a magnetic moment, then fine-structure levels with nonzero electronic
angular momentum can themselves be split due to interaction of the electrons with
the magnetic field produced by the nucleus. This “hyperfine” splitting is typically
of order 10−6 eV. Hyperfine splitting is usually difficult to observe in optical spec-
tra due to Doppler broadening, but it needs to be taken into account if precise
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modeling of line profiles is required.
It is customary to let

J ≡ [electronic angular momentum]/h̄ ,
I ≡ [nuclear angular momentum]/h̄ , and
F ≡ [total angular momentum]/h̄ .

The best-known example of hyperfine splitting is the hydrogen atom, where the
ground electronic state 1s 2S1/2 has J = 1/2 and the proton has I = 1/2. The
1s 2S1/2 state is split into two levels: The lower level has the electron and proton
spins antiparallel, with total angular momentum F = 0. The hyperfine excited
state has the proton and electron spins parallel, and F = 1. The levels are split by
∆E = 6.7×10−6 eV, giving rise to the astronomically important 21-cm transition.

4.7 Zeeman Effect

When a static magnetic field B0 is applied, each of the fine-structure levels LJ

splits into 2J+1 energy levels, with energies depending on the value of J ·B0. The
energy splittings are small, of order µBB0 ≈ 5.78 × 10−15(B0/ µG) eV, where
µB ≡ eh̄/2mec is the Bohr magneton. Interstellar magnetic field strengths are of
order 1−100µG, and therefore the Zeeman shifts are too small to be measured for
transitions in the sub-mm or shortward (hν >∼ 10−4 eV).

However, in the case of atomic hydrogen, the hyperfine splitting gives rise to the
21-cm transition, with an energy hν = 5.9 × 10−6 eV, and, therefore, an applied
field of order 10µG shifts the frequency by about one part in 108. This shift is
much smaller than the frequency shift v/c ∼ 10−5 due to a radial velocity of a
few km s−1, and it would be nearly impossible to detect, except that it leads to a
shift in frequency between the two circular polarization modes. The Zeeman effect
in H I 21-cm can therefore be detected by taking the difference of the two circular
polarization signals. This technique has been used to measure the magnetic field
strength in a number of H I regions.

4.8 Further Reading

Bransden & Joachain (2003) provide a comprehensive discussion of the spectroscopy
of atoms and ions.



Chapter Five

Energy Levels of Molecules

This chapter reviews the energy-level structure of small molecules, with particular
attention to selected molecules of astrophysical interest: H2, CO, OH, NH3, and
H2O. Just as for Chapter 4, Chapter 5 should be regarded as reference material
– give it a quick once-over now, then return to it when you need to understand
observations of some molecule.

5.1 Diatomic Molecules

It is helpful to consider first the hypothetical case where the nuclei are fixed, and
only the electrons are free to move – this is known as the Born-Oppenheimer
approximation. In atoms and atomic ions, the electrons move in a spherically
symmetric potential, and the total electronic orbital angular momentum Le is a
good quantum number. In molecules, the electrons move in a Coulomb potential
due to two or more nuclei, and spherical symmetry does not apply. However, in
the case of diatomic molecules (or, more generally, linear molecules), the Coulomb
potential due to the nuclei is symmetric under rotation around the nuclear axis (the
line passing through the two nuclei), and Lez =(the projection of the electronic
angular momentum onto the internuclear axis)/h̄ is a good quantum number. It is
conventional to define Λ ≡ |Lez|. Because the potential is axially symmetric, the
two states Lez = ±Λ have the same energy.

5.1.1 Fine-Structure Splitting

In addition, Sez =(projection of the total electron spin onto the internuclear axis)/h̄
is also a good quantum number; define Σ ≡ |Sez|.
Jez =(projection of the total electronic angular momentum on the internuclear

axis)/h̄ is also a good quantum number. If Λ and Σ are both nonzero, then there
are two possible values: Jez = |Λ− Σ| and Jez = Λ+ Σ.

States with different |Jez| will differ in energy due to fine-structure splitting.

5.1.2 Hyperfine Splitting

If one or more nuclei have nonzero nuclear spin and Jez �= 0, then there will be an
interaction between the nuclear magnetic moment and the magnetic field generated
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by the electrons, resulting in “hyperfine splitting”: the energy will depend on the
orientation of the nuclear angular momentum (or angular momenta) relative to the
axis. As in atoms, this splitting is small, of order ∼ 10−6 eV.

5.1.3 Designation of Energy Levels: Term Symbols

Diatomic molecules with identical nuclei (e.g., H2, N2, O2) are referred to as
homonuclear. Note that the nuclei must be truly identical – HD and 16O17O are
not homonuclear molecules. The energy levels of homonuclear diatomic molecules
are designated by term symbols

(2Σ+1)Lu,g ,

where

L = Σ, Π, ∆, ... for Λ = 0, 1, 2, ..., where Λh̄ = projection of the electron
orbital angular momentum onto the internuclear axis,

Σh̄ = projection of the electron spin angular momentum onto the internuclear
axis.

u, g =

⎧⎪⎪⎨
⎪⎪⎩

g (“gerade”) if symmetric under reflection through the
center of mass,

u (“ungerade”) if antisymmetric under reflection through the
center of mass.

For the special case of Σ states, a superscript + or – is added to the term symbol:

(2Σ+1)Σ±
u,g ,

where the superscript

± =

⎧⎪⎪⎨
⎪⎪⎩

+ if symmetric under reflection through (all) planes
containing the nuclei,

− if antisymmetric under reflection through a plane
containing the nuclei.

In the case of a heteronuclear diatomic molecule (e.g., HD, OH, or CO), the
energy levels are designated

(2Σ+1)LJe,z

where L and Σ have the same meaning as for homonuclear diatomic molecules,
but now Je,z is indicated as a subscript. As for homonuclear molecules, if the term
symbol is Σ, then an additional superscript ± is applied, specifying the symmetry
of the wave function under reflection through planes containing the nuclei.

Because a given molecule may have more than one electronic state with the same
term symbol, the electronic states are distinguished by a letter X, A, B, ..., a, b, ...
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Table 5.1 Selected Diatomic Moleculesa

Ground B0/hc b B0/k b r0 d µ c ν0/c b

term ( cm−1) (K) (Å) (D) ( cm−1) Λ-doubling

H2
1Σ+

g 59.335f 85.37 0.741 0 4161 –
CH 2Π1/2,3/2 14.190 20.42 1.120g 1.406g 2733. ν ≈ 3.3GHz

CH+ 1Σ+
0 13.931 20.04 1.131 1.679e 2612. –

OH 2Π3/2,1/2 18.550 26.69 0.9697 1.6676 3570. ν ≈ 1.61GHz

CN 2Σ+
1/2

1.8910 2.721 1.1718 0.557i 2042. –

CO 1Σ+
0 1.9225 2.766 1.1283 0.1098 2170. –

SiO 1Σ+
0 0.7242 1.042 1.5097 3.098 1230. –

CS 1Σ+
0 0.8171 1.175 1.5349 2.001h 1272. –

a Data from Huber & Herzberg (1979) unless otherwise noted.
b E(v, J) ≈ hν0(v + 1

2
) +B0J(J + 1) [see Eq. (5.2)].

c µ = permanent electric dipole moment. g Kalemos et al. (1999).
d r0 = internuclear separation. h Maroulis et al. (2000).
e Folomeg et al. (1987). i Neogrády et al. (2002).
f Jennings et al. (1984).

appearing in front of the term symbol. The letter X is customarily used to designate
the electronic ground state. The ground terms for a number of diatomic molecules
of astrophysical interest are given in Table 5.1, along with the internuclear separa-
tion r0 and the electric dipole moment µ.

5.1.4 O, P, Q, R, and S Transitions

A diatomic molecule can vibrate (stretch) along the internuclear axis, and it can
rotate around an axis perpendicular to the internuclear axis. The rotational angular
momentum adds (vectorially) to the electronic angular momentum.

The rotational levels of diatomic molecules are specified by a single vibrational
quantum number v and rotational quantum number J . Transitions will change J
by either 0, ±1, or ±2. It is customary to identify transitions by specifying the
upper and lower electronic states, upper and lower vibrational states, and one of the
following: O(J�), P (J�), Q(J�), R(J�), S(J�), where the usage is given in Table
5.2. Thus, for example, a transition from the v� = 0, J� = 1 level of the ground
electronic state to the vu=5, Ju=2 level of the first electronic excited state would
be written B–X 5–0 R(1).

Table 5.2 Usage of O, P , Q, R, and S

Designation (Ju−J�) Note
O(J�) −2 Electric quadrupole transition
P (J�) −1 Electric dipole transition
Q(J�) 0 Electric dipole or electric quadrupole; Q(0) is forbidden
R(J�) +1 Electric dipole transition
S(J�) +2 Electric quadrupole transition
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5.1.5 H2

The electronic ground state of H2 (two electrons) has zero electronic orbital an-
gular momentum (Le = 0), has zero electron spin (Se = 0), is symmetric under
reflection through the center of mass (g), and is symmetric under reflection through
planes containing the nuclei (+). The ground state is X 1Σ+

g .
Consider the two nuclei at some fixed separation rn: one can solve the electron

Schrödinger equation for the electrons moving in this potential and obtain the elec-
tron eigenfunctions ψq and eigenenergies E(e)

q (rn), where q denotes the quantum
numbers that characterize the eigenfunction. If we (slowly) vary the internuclear
separation rn, the electron eigenfunctions ψq will change adiabatically, as will the
eigenenergies E(e)

q (rn). Therefore, we can define a function

Vq(rn) ≡ E(e)
q (rn) + Z1Z2

e2

rn
(5.1)

that is an effective potential governing the internuclear separation. In Figure 5.1,
we show the effective internuclear potential Vq(rn) for the electronic ground state
and the first two excited states of H2.

If we consider only radial, or “vibrational,” motions of the two nuclei, the inter-
nuclear separation obeys an equation of motion identical to that of a particle with a
mass equal to the “reduced mass” mr = m1m2/(m1 +m2), moving in a potential
Vq(r). The vibrational energy levels are quantized, with vibrational quantum num-
ber v = 0, 1, 2, ... corresponding to the number of nodes in the vibrational wave
function. Suppose that Vq(r) has a minimum at nuclear separation r0. In the neigh-
borhood of r0, the potential can be approximated Vq(r) ≈ Vq(r0)+(1/2)k(r−r0)

2,
corresponding to a “spring constant” k characterizing the curvature of the potential.
Classically, for small-amplitude vibrations we would have a harmonic oscillator
with angular frequency ω0 = (k/mr)

1/2. The spring constant k = d2Vq/dr
2 is

closely related to the strength of the chemical bond. While k will differ from one
chemical bond to another, it varies less than does the reduced mass. Hydrides (i.e.,
species of chemical formula XH) will have the smallest reduced mass, with H2

being the extreme limit, with mr = mH/2. Therefore, the H2 molecule has an un-
usually high fundamental vibrational frequency ω0, corresponding to a wavelength
λ ≈ 2.1µm.

In addition to vibrational motion, the two nuclei can also undergo rotational mo-
tion around their center of mass, with quantized angular momentum Jh̄, where J =
0, 1, 2, .... Classically, the rotational kinetic energy of a rigid rotor is (Jh̄)2/2I ,
where I is the moment of inertia of the molecule. If we consider masses m1 and m2

separated by distance r0, the moment of inertia I = mrr
2
0 . Quantum-mechanically,

we replace the classical J2 by J(J+1). Therefore, we expect the rotational kinetic
energy Erot = J(J +1)h̄2/2mrr

2
0 , and the total vibration-rotation energy when in
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electronic state q is, in the harmonic-oscillator and rigid-rotor approximation:

Eq(v, J)=Vq(r0) + hν0

(
v +

1

2

)
+BvJ(J + 1) , (5.2)

ν0 ≡ ω0

2π
Bv =

h̄2

2mrr20
. (5.3)

The 1/2 in the (v+1/2) term corresponds to the “zero-point energy” – the quantum
vibrator cannot be localized at the potential minimum, and the lowest vibrational
level corresponds to an energy (1/2)h̄ω0 above Vq(r0). The constant Bv is referred
to as the “rotation constant”; the subscript v is because the moment of inertia de-
pends on the vibrational state. Pure vibrational transitions v → v−1 have energy
hν0. Pure rotational transitions J → J−1 have energy hν = 2BvJ

Equation (5.2) is not exact. The potential V (r) is not quadratic, so that the
vibrations are not exactly harmonic. In addition, the molecule is not a rigid rotor:
the moment of inertia I depends on the state of vibration and also on the state of
rotation (in high J states, the molecule gets stretched, resulting in a larger moment
of inertia). Note also that r0 and k depend on which electronic state the molecule

Figure 5.1 Effective internuclear potential for H2 for the ground state X1Σ+
g and the

first two electronic excited states, B1Σ+
u and C1Πu
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is in: the excited electronic states will have different values of ω0 and Bv than the
ground state.

Each electronic state q therefore supports a vibration–rotation spectrum of en-
ergy levels, with energies Eq(v, J). In Figure 5.2, we show the vibration–rotation
levels of the ground electronic state of H2.

5.1.6 Ortho-H2 and Para-H2

In the case of H2, the electronic wave function is required to be antisymmetric under
exchange of the two electrons. The two protons, just like the electrons, are identical
fermions, and therefore the Pauli exclusion principle antisymmetry requirement
also applies to exchange of the two protons. The protons are spin 1/2 particles –
the two protons together can have total spin 1 (spins parallel) or total spin 0 (spins
antiparallel). Without going into the quantum mechanics, the consequence of the
antisymmetry requirement is that if the protons have spin 0, the rotational quantum
number J must be even; this is referred to as para-H2, with J =0, 2, 4, .... If the
two protons are parallel, with total spin 1, the rotational quantum number J must
be odd: this is referred to as ortho-H2, with J = 1, 3, 5, .... Because the nuclear
spins are only weakly coupled to the electromagnetic field, ortho-H2 and para-H2

behave as almost distinct species, with conversion of ortho to para, or para to ortho,
happening only very slowly.

Figure 5.2 Vibration–rotation energy levels of the ground electronic state of H2 with
J ≤ 29. The (v, J)=(1, 3) level and 1–0S(1) λ = 2.1218µm transition are indicated.
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Because H2 has no permanent electric dipole moment, the vibrational states
and the rotational states radiate very weakly, via the time-variation of the elec-
tric quadrupole moment as the molecule vibrates or rotates. Because the nuclear
spin state does not change, the rovibrational radiative transitions of H2 must have
∆J = 0 or ∆J = ±2 – i.e., ortho→ortho or para→para.

The vibration–rotation emission spectrum of H2 therefore consists of electric
quadrupole transitions. The downward transitions are identified by

vu−v� S(J�) if J� = Ju−2 ,

vu−v� Q(J�) if J� = Ju ,

vu−v� O(J�) if J� = Ju+2 .

For example, 1–0 S(1) refers to the transition (v=1, J=3) → (v=0, J=1). This
transition is indicated in Fig. 5.2.

5.1.7 CO

CO has 2 p electrons contributed by C and 4 p electrons contributed by O; together,
these 6 p electrons fill the 2p subshell, and as a result, the ground electronic state
of CO has zero electronic angular momentum and zero electronic spin: 1Σ+

0 , just
like H2. The reduced mass of CO is (12×16/28) amu ≈ 6.9 amu. The C=O
chemical bond is extremely strong; r0 is unusually small, the spring constant k
is unusually large, and the electric dipole moment (only µ = 0.110D) is unusu-
ally small. The fundamental vibrational frequency corresponds to a wavelength
λ0 = c/ν0 ≈ 4.6µm. (The energy is ∼ 50% of the energy in the H2 funda-
mental frequency.) The fundamental rotational frequency 2B0/h = 115GHz, and
h̄2/Ik ≈ 5.5K (versus 170K for H2). Because the moment of inertia of CO is
much larger than that of H2, the rotational levels of CO are much more closely
spaced than those of H2, and therefore there are many more allowed rotation–
vibration levels.

If µ is the permanent electric dipole moment, the Einstein A coefficient for a
rotational transition J → J−1, radiating a photon with energy h̄ω, is given by

AJ→J−1 =
2

3

ω3

h̄c3
µ2 2J

2J + 1
(5.4)

=
128π3

3h̄

(
B0

hc

)3

µ2 J4

J + 1
2

s−1 (5.5)

=1.07× 10−7 J4

J + 1
2

s−1 (5.6)

=7.16× 10−8 s−1 for J = 1 → 0 . (5.7)
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5.1.8� OH and Λ-Doubling

OH is an example of a molecule with the ground electronic state having nonzero
electronic orbital angular momentum: with seven electrons, the OH ground state
has Lez = 1 and Sez = 1/2, and is therefore designated by 2Π1/2,3/2. The electron
spin and orbital angular momenta can couple to give Je = 1/2 or 3/2, with energies
that are separated due to spin-orbit coupling (i.e., fine-structure splitting in atoms
or ions); the Je = 3/2 state has the lower energy.

Now consider either one of these fine-structure states. The projection of the
electron angular momentum along the nuclear axis is a constant of the motion, but
the vector angular momentum Je of the electrons is not. The electric field from the
nuclei exerts a torque on the electrons. If the nuclei were held fixed in space, the
electron angular momentum vector would precess in a cone centered on the nuclear
axis. Now, of course, the nuclei are not held fixed, and if the electron angular
momentum Je changes, there must be an equal and opposite change in the angular
momentum of the nuclei.

For the moment, ignore the nuclear spin – if the nuclear angular momentum
is going to change, the nuclei must be undergoing rotation. The implication is
that the nuclei undergo rotation even when the OH is in the ground state. Since
there is no external torque applied to the OH, the electron angular momentum Je

and the nuclear angular momentum Jn both precess around the fixed total angular
momentum J = Jn + Je. The magnitude of the total angular momentum J is just
equal to the magnitude of the electronic angular momentum that is found when the
nuclei are imagined to be held fixed.1

If additional angular momentum is given to the nuclei, the rotational kinetic en-
ergy will be increased, and each of the fine structure states of OH will have a
“rotational ladder”: the Je = 1/2 state can have total angular momentum J=1/2,
3/2, 5/2, 7/2, ..., and the Je = 3/2 state can have J = 3/2, 5/2, 7/2, ..., and so on.
The two rotational ladders are shown in Figure 5.3.

For the moment, let us reexamine the electronic wave functions in the idealiza-
tion where the nuclei are held fixed, so that the electrons are moving in a poten-
tial that is time-independent and symmetric around the nuclear axis. For a linear
molecule such as OH, the electronic eigenfunctions are of the form ψ(r, θ, φ) =
e±iΛφf(r, θ), where Λ is the projection of the electronic angular momentum along
the nuclear axis, and (r, θ, φ) are spherical coordinates with the center of mass as
origin and with the polar axis along the internuclear axis: for Λ > 0, there are two
degenerate states. Taking orthogonal linear combinations of these eigenfunctions,

1Imagine the nuclei being held fixed, with the electrons orbiting around the nuclear axis. If the
nuclei are suddenly released, the total angular momentum will remain unchanged (and equal to the
angular momentum of the electrons just prior to the moment of release) but will now be shared by the
electrons and the nuclei.
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Figure 5.3 Energy levels of OH. Left: The rotational ladders of the 2Π3/2 and 2Π1/2

electronic states. The splitting of the levels due to Λ-doubling has been exaggerated.
Hyperfine splitting is not shown. Right: Λ-doubling and hyperfine splitting of the
2Π3/2(J=3/2) state, showing the four 18-cm lines. In a magnetic field, each of these
four lines is further split by the Zeeman effect.

we have

ψ+(r, θ, φ)=
eiΛφ + e−iΛφ

√
2

f(r, θ) =
√
2 cos(Λφ)f(r, θ) , (5.8)

ψ−(r, θ, φ)=
eiΛφ − e−iΛφ

i
√
2

f(r, θ) =
√
2 sin(Λφ)f(r, θ) . (5.9)

Now let the nuclear axis be in the ẑ direction, and let φ = 0 correspond to the
x̂ direction. The ψ+ and ψ− wave functions have different values of 〈y2〉. The
moment of inertia of the molecule is dominated by the nuclei, but the electrons
make a small contribution. If the rotational angular momentum is oriented along the
x axis, the moment of inertia of the molecule, and therefore the rotational kinetic
energy, will differ between the ψ+ and ψ− states: each of the energy levels is split
by this “Λ-doubling” into two states with energies differing by of order ∆EΛ ≈
[me/(mAB)] × [J2h̄2/mABr

2
0], where me is the electron rest mass, mAB is the

reduced mass of the two nuclei, and r0 is the internuclear separation. For the OH
ground state 2Π3/2(J =3/2), the Λ-doubling splitting amounts to ∆EΛ = 6.9 ×
10−6 eV, corresponding to a frequency ∆EΛ/h = 1666MHz.

5.1.9� Hyperfine Structure

Many nuclei have nonzero nuclear spin (e.g., 1H, 13C, 15N, and 17O), and, there-
fore, also have nuclear magnetic moments of magnitude ∼ µN , where µN ≡
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e2h̄/2mpc is the nuclear magneton. The magnetic field from the nuclear mag-
netic moment couples to the electron motions, and, therefore, the electronic energy
depends on the orientation of the nuclear moment and the electron angular mo-
mentum. This introduces hyperfine structure in the molecular energy levels. The
eigenstates will be states of fixed total angular momentum F = J+Sn, where J is
the combined angular momentum of the electrons and rotational angular momen-
tum of the nuclei, and Sn is the nuclear spin.

In the case of OH, with Sn = 1/2, we have seen that the two rotational ladders
have J = 3/2, 5/2, 7/2, ..., and J = 1/2, 3/2, 5/2, and so on. Each of these states
is first split by Λ-doubling into levels denoted + or −; each of these levels is in
turn split by hyperfine splitting into two levels, with F = J ± 1/2. Therefore, the
ground fine-structure level of OH 2Π3/2 (with Je=3/2) splits into four sublevels,
shown in Figure 5.3.

Radio frequency transitions between the sublevels can be observed in emission
and absorption. These levels are important not only because they often are observ-
able as masers (therefore, very bright tracers of the dynamics of molecular gas) but
also because the energy levels are subject to Zeeman splitting; because these are
radio frequency transitions, the Zeeman splitting produces a frequency shift that is
measurable. OH is often used to measure the magnetic field strength in molecular
clouds.

5.2� Energy Levels of Nonlinear Molecules

When we consider nonlinear molecules, the rotational spectrum becomes consid-
erably more complex. Treating the nuclei as point masses at fixed separations (the
“rigid rotor” approximation), the moment of inertia tensor has three nonzero eigen-
values and three principal axes.

The rotational kinetic energy of a classical rigid rotor can be written

E
(class.)
rot =

(JAh̄)
2

2IA
+

(JBh̄)
2

2IB
+

(JC h̄)
2

2IC
, (5.10)

where IA, IB , and IC are the three eigenvalues of the moment of inertia tensor, and
JAh̄, JBh̄, and JC h̄ are the (instantaneous) projections of the total angular mo-
mentum Jh̄ onto the three principal axes Â, B̂, Ĉ corresponding to the eigenvalues
IA, IB , IC . It is conventional to define “rotation constants”

A ≡ h̄2

2IA
, B ≡ h̄2

2IB
, C ≡ h̄2

2IC
, (5.11)

so that the classical rotational kinetic energy is

E
(class.)
rot = AJ2

A +BJ2
B + CJ2

C . (5.12)

Symmetric rotors, also referred to as “symmetric tops,” have two degenerate eigen-
values; NH3 is the primary example of astrophysical interest. Asymmetric rotors
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(or asymmetric tops) have three nondegenerate eigenvalues – this applies to most
polyatomic molecules of astrophysical interest, e.g., H2O and H2CO.

5.2.1� Symmetric Rotor: NH3

For the classical symmetric rotor, we let Â be the symmetry axis; then IB = IC ,
and we can write

E
(class.)
rot =

(JAh̄)
2

2IA
+

(Jh̄)2 − (JAh̄)
2

2IB

=
(Jh̄)2

2IB
+ (JAh̄)

2

(
1

2IA
− 1

2IB

)
=BJ2 + (A−B)K2 , (5.13)

where K ≡ JA is the projection of J onto the symmetry axis. A “prolate” rotor
has IA < IB (A > B); an “oblate” rotor has IA > IB (A < B). NH3 is a prolate
rotor.

If we now shift from the classical to the quantum treatment, we need only to
replace J2 by the eigenvalue J(J + 1):

Erot = BJ(J + 1) + (A−B)K2 . (5.14)

The quantum symmetric rotor, therefore, has rotational energy levels specified by
two quantum numbers, J and K. If J is an integer, then K can take on values
K = 0, 1, ...J−1, J . The rotational level structure of NH3 is shown in Figure 5.4.

The electric dipole moment of a symmetric rotor is parallel to axis Â. When
J > K, Â precesses around the fixed angular momentum J, with a time-varying
electric dipole moment. As a result, NH3 rotational levels with J > K have al-
lowed electric dipole transitions (J,K) → (J−1,K), with Einstein A coefficients
typically of order 10−2 to 10−1 s−1.

However, when J = K, the molecule is spinning around its symmetry axis.
Classically, this rotation state has no time-varying electric dipole moment, and
would not produce electric dipole radiation. Quantum-mechanically, the levels
J = K are metastable, with very long radiative lifetimes. The sequence of levels
J = K are referred to as the “rotational backbone”; at interstellar densities, most
of the NH3 will be found occupying these levels, with only very small populations
in the levels with J > K above the backbone.

Because NH3 is a hydride, it has a very small moment of inertia, and the rota-
tional transitions are at relatively high (microwave) frequencies.

However, NH3 has an additional type of transition that is purely quantum me-
chanical in nature. Consider the plane defined by the three H atoms. There are two
minimum energy positions for the N atom, symmetrically located on either side
of the plane. When the problem is treated quantum mechanically, it is found that
there are two distinct eigenstates for the NH3 wave function, separated slightly in
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Figure 5.4 Rotational energy levels of NH3 with K ≤ 6 and E/k < 500K. Each
level, labeled by (J,K), is split into two inversion sublevels (not shown). Levels with
J=K [e.g., (0,0), (1,1), (2,2), (3,3), ...] are referred to as the “rotational backbone”.

energy [9.8×10−5 eV in the case of the (1,1) level]. Transitions between these two
eigenstates are referred to as inversion lines, because the frequency of the transi-
tion corresponds to the characteristic frequency for the N atom to tunnel back and
forth through the H atom plane from one energy minimum to the other, with as-
sociated time-varying electric dipole moment. Transitions between these inversion
sublevels are observable, with frequencies near 23GHz; for the backbone levels
(J,K) = (1, 1) and (2, 2), the inversion lines are at 23.694 and 23.723GHz, re-
spectively.

The inversion sublevels of the (J,K) states are, in turn, further split by inter-
actions with the electric quadrupole moment of the 14N nucleus and the magnetic
dipole of the protons. The electric quadrupole splitting breaks the (1, 1) inversion
transition into six separate lines, spread over 3.06MHz – the splitting is large com-
pared to the thermal line broadening, and therefore these lines are easily resolved.
Each of these lines is, in turn, split by hyperfine splitting, but the hyperfine splitting
is only on the order of 10 to 40 kHz, corresponding to Doppler shifts of only 0.13
to 0.5 km s−1.

NH3 is not the only molecule with observable inversion transitions. Inversion
transitions of H3O+ near 181µm have also been observed (Goicoechea & Cer-
nicharo 2001; Yu et al. 2009).
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Figure 5.5 Rotational energy levels of para-H2O (left) and ortho-H2O (right) with
total angular momentum J ≤ 8 and E/k < 1500K.

5.2.2� Asymmetric Rotor: H2O

We turn now to the more complicated case of the general asymmetric rotor, with
three nondegenerate eigenvalues. We order them IA < IB < IC , so that the ro-
tation constants A > B > C. The total angular momentum J is of course a
constant of the motion, but the projections of J onto individual axes are no longer
conserved, except for the special case where JA = J or JC = J . For the general
case where JA < J and JC < J , the asymmetric rotor undergoes a tumbling mo-
tion, with the instantaneous values of JA, JB , and JC all varying while satisfying
J2
A + J2

B + J2
C = J2.

For a given value of J , the allowed rotation states are specified by two indices,
K−1 and K+1; the rotational state is designated JK−1,K+1

. There are seven J = 3
states: 303, 312, 313, 321, 322, 330, and 331.

In the case of H2O, the two protons can have their nuclear spins either antiparallel
or parallel, corresponding to total nuclear spin either 0 or 1. Just as for H2, the
antiparallel spin state is referred to as “para,” and the parallel spin state as “ortho.”
Because the overall wave function must be antisymmetric under proton exchange,
it turns out that para-H2O must have K−1 +K+1 odd, while ortho-H2O must have
K−1 +K+1 even. Because the nuclear spins do not change in radiative transitions,
ortho-H2O and para-H2O behave almost like separate species. The rotational levels
of para-H2O and ortho-H2O are shown in Figure 5.5.

The selection rules for electric dipole radiative transitions are ∆J = 0,±1;
∆K−1 = ±1,±3; and ∆K+1 = ±1,±3.
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The allowed radiative decays tend to build up the populations in the lowest en-
ergy level for a given J – these states are referred to as the rotational backbone.
All of the rotational backbone levels (except the lowest) have allowed transitions
to the next lower backbone state. For most of the backbone states, this is the only
allowed downward transition. However, two of the ortho-H2O backbone states
in Fig. 5.5 – 414 and 616 – have permitted downward transitions to nonbackbone
levels: 414 → 321 and 616 → 523. The nonbackbone levels tend to have very
low populations, and, therefore, these two transitions, with the upper level on the
backbone and the lower level above the backbone, frequently have population in-
versions with resulting maser emission in the 414 → 321 transition at 380 GHz and
the 616 → 523 transition at 22.2 GHz.

The same holds true for the 313 and 515 levels of para-H2O: the 313 → 220
183 GHz and 515 → 422 325 GHz transitions are also candidates for masing.

5.3� Zeeman Splitting

If an external magnetic field B is present, molecular energy levels with a magnetic
moment µ will be shifted in energy by an amount

∆Emag = −µ ·B , (5.15)

where µ is the magnetic moment, with contributions from the orbital and spin
angular momenta of the electrons. When both spin and orbital angular momentum
are present, neither S nor L are fixed in space – both precess around the total
angular momentum Fh̄ = (L+ S)h̄. The magnetic moment is antiparallel to F,

µ = −gµBF , (5.16)

where µB ≡ eh̄/2mec is the Bohr magneton, and g is the Landé g-factor. Values
for the Landé g-factor lie between 0.5 and 1, depending on the values of L and S.

The projection of F onto the direction of the magnetic field B is MF , with 2F+1
allowed values MF = −F,−F + 1, ..., F . The perturbation to the energy level is

Emag = (gµBB) MF . (5.17)

For a transition between two levels with different MF , the energy-level splitting
gµBB corresponds to a frequency shift

(∆ν)B =
∆Emag

h
=

gµB

h
∆MF B (5.18)

=1.3996 g ∆MF
B

µG
Hz . (5.19)

For interstellar magnetic fields in the µG−mG range, Eq. (5.19) shows that the fre-
quency shifts are small, typically much smaller than the frequency shift (∆v/c)×ν
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due to Doppler broadening.2 The only hope for detecting this small shift is to (1)
use radio frequency transitions where (∆ν)B/ν is large enough for the shifts to be
measured, and (2) to use the fact that the two circularly polarized components have
∆MF = ±1, so that they are shifted in frequency by 2(∆ν)B . If Doppler broad-
ening is assumed to contribute identically to the two circular polarizations, then
subtraction of one circular polarization from the other produces a signal that allows
the frequency shift (∆ν)B to be measured, allowing the magnetic field strength to
be determined.

Successful detection of the Zeeman splitting requires an atom or molecule with
a strong radio frequency transition, and F > 0. The hydrogen atom fulfills this
requirement, with F = 1/2 in the ground state 2S1/2, Landé g-factor g = 0.5, and
the spin-flip transition at ν = 1.420GHz.

Diatomic molecules with 2Π1/2,3/2 orbitals have both F > 0 (so that Zeeman
splitting occurs) and Λ-doubling (providing relatively low frequency radio transi-
tions). The OH transitions at 1.665 and 1.667 GHz are frequently used, both in
absorption and in (maser) emission. Higher frequency OH transitions can also be
used, as well as CH transitions at 3.33 GHz.

In high-density regions, OH and CH may be unavailable, and it becomes neces-
sary to resort to rotational transitions with much higher frequencies. The CN 1–0
rotational transition at 113 GHz has been used for Zeeman measurements.

Polyatomic molecules also exhibit Zeeman splitting. H2O does not have an un-
paired electron, and hence F = 0, but ortho-H2O, with parallel proton spins, has a
small magnetic moment contributed by the protons. Magnetic field measurements
have been made using H2O masers in the 616 → 523 transition at 22.2 GHz.
Further information can be found in reviews by Heiles et al. (1993) and Heiles &
Crutcher (2005).

5.4 Further Reading

Bransden & Joachain (2003) has an extensive discussion of molecular quantum
mechanics and spectroscopy.

2The only exception appears to be OH – the 1.67GHz frequency (due to Λ-doubling) is low, and
regions hosting OH masers appear to sometimes have large enough magnetic fields to produce frequency
shifts exceeding the line width.



Chapter Six

Spontaneous Emission, Stimulated Emission, and

Absorption

In this chapter, we review the general principles governing absorption and emission
of radiation by absorbers with quantized energy levels. The absorbers in question
can be atoms, ions, molecules, dust grains, or any objects with energy levels.

6.1 Emission and Absorption of Photons

If an absorber X is in a level � and there is radiation present with photons having
an energy equal to Eu − E�, where E� and Eu are the energies of levels � (for
“lower”) and u (for “upper”), the absorber can absorb a photon and undergo an
upward transition:

absorption : X� + hν → Xu , hν = Eu − E� . (6.1)

Suppose that we have number density n� of absorbers X in level �. The rate per
volume at which the absorbers absorb photons will obviously be proportional to
both the density of photons of the appropriate energy and the number density n�,
so we can write the rate of change of n� due to photoabsorption by level � as(

dnu

dt

)
�→u

= −
(
dn�

dt

)
�→u

= n�B�uuν , ν =
Eu − E�

h
, (6.2)

populate level u depopulate level �

where uν is the radiation energy density per unit frequency, and the proportionality
constant B�u is the Einstein B coefficient1 for the transition � → u.

An absorber X in an excited level u can decay to a lower level � with emission
of a photon. There are two ways this can happen:

spontaneous emission : Xu →X� + hν ν = (Eu − E�)/h , (6.3)
stimulated emission : Xu + hν→X� + 2hν ν = (Eu − E�)/h . (6.4)

1 Einstein was the first to discuss the statistical mechanics of the interaction of absorbers with the
quantized radiation field.
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Spontaneous emission is a random process, independent of the presence of a ra-
diation field, with a probability per unit time Au� – the Einstein A coefficient.

Stimulated emission occurs if photons of the identical frequency, polarization,
and direction of propagation are already present, and the rate of stimulated emission
is proportional to the density of these photons. Thus the total rate of depopulation
of level u due to emission of photons can be written(

dn�

dt

)
u→�

= −
(
dnu

dt

)
u→�

= nu (Au� +Bu�uν) , (6.5)

where the coefficient Bu� is the Einstein B coefficient for the downward transition
u → �. Thus we now have three coefficients characterizing radiative transitions
between levels u and �: Au�, Bu� and B�u. We will now see that they are not
independent of one another.

In thermal equilibrium, the radiation field becomes the “blackbody” radiation
field, with intensity given by the blackbody spectrum

Bν =
2hν3

c2
1

ehν/kT − 1
, (6.6)

with specific energy density

(uν)LTE =
4π

c
Bν(T ) =

8πhν3

c3
1

ehν/kT − 1
. (6.7)

If we place absorbers X into a blackbody radiation field, then the net rate of change
of level u is

dnu

dt
=

(
dnu

dt

)
�→u

+

(
dnu

dt

)
u→�

=n�B�u
8πhν3

c3
1

ehν/kT − 1
− nu

(
Au� +Bu�

8πhν3

c3
1

ehν/kT − 1

)
. (6.8)

If the absorbers are allowed to come to equilibrium with the radiation field, lev-
els � and u must be populated according to nu/nl = (gu/g�)e

(E�−Eu)/kT , with
dnu/dt = 0. From Eq. (6.8) it is easy to show2 that Bu� and B�u must be related
to Au� by

Bu� =
c3

8πhν3
Au� , (6.9)

B�u =
gu
g�

Bu� =
gu
g�

c3

8πhν3
Au� . (6.10)

2Hint: consider the two limits T → 0 and T → ∞. Equation (6.8), with dnu/dt = 0, must be
valid in both limits.
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Thus the strength of stimulated emission (Bu�) and absorption (B�u) are both de-
termined by Au� and the ratio gu/gl.

Rather than discussing absorption and stimulated emission in terms of the radi-
ation energy density uν , it is helpful to characterize the intensity of the radiation
field by a dimensionless quantity, the photon occupation number nγ :

nγ ≡ c2

2hν3
Iν , (6.11)

n̄γ ≡ c2

2hν3
Īν =

c3

8πhν3
uν , (6.12)

where the bar denotes averaging over directions. With this definition of nγ , we can
rewrite Eqs. (6.2 and 6.5) as simply(

dn�

dt

)
u→�

=nu ·Au� · (1 + n̄γ) , (6.13)(
dnu

dt

)
�→u

=n� · gu
g�

Au� · n̄γ . (6.14)

If the radiation field depends on frequency in the vicinity of the transition frequency
νu�, then nγ needs to be averaged over the emission profile in (6.13) and over the
absorption profile in (6.14).

From Eq. (6.13) we immediately see that the photon occupation number nγ de-
termines the relative importance of stimulated and spontaneous emission: stimu-
lated emission is unimportant when n̄γ � 1, but should otherwise be included in
analyses of level excitation.

6.2 Absorption Cross Section

Having determined the rate at which photons are absorbed by an absorber exposed
to electromagnetic radiation, it is useful to recast this in terms of an absorption
cross section. The photon density per unit frequency is just uν/hν. Let σ�u(ν) be
the cross section for absorption of photons of frequency ν with resulting � → u
transition. The absorption rate is then(

dnu

dt

)
�→u

= n�

∫
dν σ�u(ν)c

uν

hν
≈ n�uν

c

hν

∫
dν σ�u(ν) , (6.15)

where we have assumed that uν (and hν) do not vary appreciably over the line
profile of σu�. Thus

B�u =
c

hν

∫
dν σ�u(ν) , (6.16)
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and, using Eq. (6.10), we obtain the integral over the absorption cross section:∫
dν σ�u(ν) =

gu
g�

c2

8πν2�u
Au� . (6.17)

Thus we may relate the monochromatic absorption cross section σ�u(ν) to a nor-
malized line profile φν :

σ�u(ν) =
gu
g�

c2

8πν2�u
Au�φν with

∫
φνdν = 1 . (6.18)

The frequency dependence of the normalized line profile φν is discussed in the
following.

6.3 Oscillator Strength

Earlier we characterized the strength of radiative transitions by the Einstein A co-
efficient, Au�. Equivalently, we can characterize the strength of an absorption tran-
sition � → u by the oscillator strength f�u, defined by the relation

f�u ≡ mec

πe2

∫
σ�u(ν)dν . (6.19)

From Eqs. (6.17 and 6.19), we see that the Einstein A coefficient for spontaneous
decay is related to the absorption oscillator strength of the upward transition by

Au� =
8π2e2ν2�u
mec3

g�
gu

f�u =
0.6670 cm2 s−1

λ2
�u

g�
gu

f�u . (6.20)

The oscillator strength fu� for a downward transition u → � is negative, and is
defined by

g�f�u = −gufu� . (6.21)

The rate of stimulated emission is proportional to the downward oscillator strength,
so it is natural that it should be negative, as it results in depopulation of the upper
level. With this definition, the transitions for a one-electron atom in an initial state
i obey the Thomas-Reich-Kuhn sum rule:∑

j

fij = 1 , (6.22)

where the sum over final states j includes transitions to bound states and also to the
continuum (i.e., photoionization). If the initial state i is not the ground state, the
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sum includes downward transitions with fij < 0. For multielectron atoms or ions,
the sum rule (6.22) generalizes to∑

j

fij = N , (6.23)

where N is the number of electrons, and the sum is over all transitions out of initial
state i. The absorption cross section σ�u(ν) is related to the oscillator strength by

σ�u(ν) =
πe2

mec
f�uφν with

∫
φνdν = 1 . (6.24)

6.4 Intrinsic Line Profile

The intrinsic line profile is characterized by a normalized profile function φintr.
ν :

σintr.(ν) =
πe2

mec
f�u φintr.

ν

( ∫
φintr.
ν dν = 1

)
. (6.25)

The intrinsic line profile of an absorption line is normally described by the Lorentz
line profile function:

φintr.
ν =

4γu�
16π2(ν − νu�)2 + γ2

u�

, (6.26)

where νu� ≡ (Eu − E�)/h. The Lorentz profile in Eq. (6.26) provides an accurate
(but not exact)3 approximation to the actual line profile. The Lorentz line profile
has a full width at half maximum (FWHM)

(∆ν)intr.FWHM =
γu�
2π

. (6.27)

The intrinsic width of the absorption line reflects the uncertainty in the energies
of levels u and � due to the finite lifetimes of these levels4 against transitions to
all other levels, including both radiative and collisional transitions. If the primary
process for depopulating levels u and � is spontaneous decay (as is often the case
in the ISM), then

γu� ≡ γ�u =
∑

Ej<Eu

Auj +
∑

Ej<E�

A�j . (6.28)

3The line profile is more accurately given by the Kramers-Heisenberg formula; Lee (2003) discusses
application of this formula to the Lyman α line.

4The Heisenberg uncertainty principle ∆E∆t ≥ h̄ implies that an energy level u has a width
∆Eu ≈ h̄/τu, where τu is the level lifetime.
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In the case of a “resonance line,” where � is the ground state, the second sum
vanishes.

It is convenient to describe line widths in terms of the line-of-sight velocities that
would produce Doppler shifts of the same amount. Thus the intrinsic width of an
absorption line can be given in terms of velocity:

(∆v)intr.FWHM = c
(∆ν)intr.FWHM

νu�
=

λu�γu�
2π

= 0.0121
km

s

(
λu�γu�

7618 cm s−1

)
, (6.29)

where λu�γu� = 7618 cm s−1 is the value for H Lymanα. The intrinsic line width
can also be written in terms of the energy and oscillator strength of the transition:

(∆v)
intr
FWHM ≥ α3

(
hν

IH

)
g�
gu

f�uc = 0.116

(
hν

IH

)
g�
gu

f�u km s−1 , (6.30)

where α ≡ e2/h̄c = 1/137.036 is the fine-structure constant, IH = (1/2)α2mec
2 =

13.60 eV is the ionization energy of H, and the inequality is because γu� ≥ Au� [see
Eq. (6.28)]. From (6.29), we see that optical and ultraviolet absorption lines, for
which hν/IH < 1 and f�u < 1, will have (∆v)intr.FWHM

<∼ 0.1 km s−1. For example,
H Lyman α (λ = 1215 Å) has hν/IH = 3/4, flu = 0.4162, g�/gu = 2/6, and
(∆v)intr.FWHM = 0.0121 km s−1. H Lyman α has a relatively large energy (0.75IH)
and relatively large oscillator strength (0.4162); most other optical and ultraviolet
permitted lines have even smaller (∆v)intr.FWHM.

Because (∆v)intr.FWHM ∝ hν, x-ray transitions can have considerably larger intrin-
sic line widths. For example, the 6.68 keV Fe24+1s2p → 1s2 line has an intrinsic
linewidth (∆v)intr.FWHM = 13.5 km s−1.

6.5 Doppler Broadening: The Voigt Line Profile

Atoms and ions are generally in motion, and the velocity distribution is often ap-
proximated by a Gaussian, this being of course the correct form if the velocities are
entirely due to thermal motions:

pv =
1√
2π

1

σv
e−(v−v0)

2/2σ2
v =

1√
π

1

b
e−(v−v0)

2/b2 , (6.31)

where pvdv is the probability of the velocity along the line of sight being in the
interval [v, v + dv], σv is the one-dimensional velocity dispersion, and the “broad-
ening parameter” b ≡ √

2σv .
The width of the velocity distribution is also sometimes specified in terms of the

FWHM; for a Gaussian distribution of velocities, this is just

(∆v)FWHM =
√
8 ln 2 σv = 2

√
ln 2 b . (6.32)
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If the velocity dispersion is entirely due to thermal motion with kinetic temperature
T = 104T4 K, then

σv =

(
kT

M

)1/2

= 9.12

(
T4

M/amu

)1/2

km s−1 , (6.33)

b=

(
2kT

M

)1/2

= 12.90

(
T4

M/amu

)1/2

km s−1 , (6.34)

(∆v)thermFWHM =

[
(8 ln 2) kT

M

]1/2
=21.47

(
T4

M/amu

)1/2

km s−1 . (6.35)

The intrinsic absorption line profile φintr.
ν must be convolved with the velocity

distribution of the absorbers to obtain the line profile

φν =

∫
dv pv(v)

4γu�

16π2 [ν − (1− v/c)νu�]
2
+ γ2

u�

, (6.36)

where pvdv is the probability of the absorber having radial velocity in the interval
(v, v + dv). If the absorbers have a Maxwellian (i.e., Gaussian) one-dimensional
velocity distribution pv (Eq. 6.31), then the absorption line will have a so-called
Voigt line profile:

φVoigt
ν ≡ 1√

2π

∫
dv

σv
e−v2/2σ2

v
4γu�

16π2 [ν − (1− v/c)νu�]
2
+ γ2

u�

. (6.37)

Unfortunately, the Voigt line profile cannot be obtained analytically except for lim-
iting cases.5 However, if, as is generally the case, the one-dimensional velocity dis-
persion σv � (∆v)intr.FWHM, the central core of the line profile is well-approximated
by treating the intrinsic line profile as a δ-function, so that the central core of the
line has a Maxwellian profile:

φν ≈ 1√
π

1

νul

c

b
exp

(−v2/b2
)

, b ≡
√
2 σv . (6.38)

We will discuss the Voigt profile further in Chapter 9.

6.6 Transition from Doppler Core to Damping Wings

Near line-center, the line profile is well-approximated by the Doppler core profile,
which for a Gaussian velocity distribution gives

σ ≈ √
π

e2

mec

f�uλu�

b
e−v2/b2 , (6.39)

5Accurate approximation formulae have been developed for the Voigt profile – see Armstrong (1967).
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where the velocity v ≡ (ν0 − ν)c/ν0. For very large frequency shifts, the profile
can be approximated by just the damping wings:

σ ≈ √
π

e2

mec

f�uλu�

b

[
1

4π3/2

γu�λu�

b

b2

v2

]
. (6.40)

For what frequency shift, expressed as a velocity, do we make the transition from
the Doppler core to the damping wings? The condition for z ≡ v/b is obtained by
equating (6.39) and (6.40):

ez
2

=

[
4π3/2 b

γu�λu�
z2
]
= 2924

[
7618 cm s−1

γu�λu�
b6

]
z2 , (6.41)

where b6 ≡ b/10 km s−1. The solution to this transcendental equation is

z2 ≈ 10.31 + ln

[
7618 cm s−1

γu�λu�
b6

]
, (6.42)

provided that the quantity in square brackets is not very large or very small. There-
fore, for a strong permitted line (such as Lyman α), the damping wings dominate
for velocity shifts |z| >∼ 3.2, or |∆v| >∼ 32b6 km s−1.

6.7 Selection Rules for Radiative Transitions

Some energy levels are connected by strong radiative transitions; in other cases,
radiative transitions between the levels may be extremely slow. The strong transi-
tions always satisfy what are referred to as the selection rules for electric dipole
transitions. Here, we summarize the selection rules for the strong electric dipole
transitions, and we also give the selection rules” for intersystem and forbidden
transitions that do not satisfy the electric dipole selection rules but nevertheless are
strong enough to be astrophysically important. We will use the ion N II as an
example; the first nine energy levels of N II are shown in Fig. 6.1.

6.7.1 Allowed = Electric Dipole Transitions

The strongest transitions are electric dipole transitions. These are transitions satis-
fying the following selection rules:

1. Parity must change.

2. ∆L = 0,±1.

3. ∆J = 0,±1, but J = 0 → 0 is forbidden.

4. Only one single-electron wave function n� changes, with ∆� = ±1.
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Figure 6.1 First nine energy levels of N II. Forbidden transitions are indicated by
broken lines, and allowed transitions by solid lines; forbidden decays are not shown
from levels that have permitted decay channels. Fine-structure splitting is not to scale.
Hyperfine splitting is not shown.

5. ∆S = 0: Spin does not change.

An allowed transition is denoted without square brackets, for example,

N II 1084.0 Å 3P0 − 3D o
1 .

This is a transition between the � = 1s22s22p2 3P0 and u = 1s22s22p3s 3D o
1

levels of N II, with a wavelength λu� = 1084.0 Å. The transition has Au� = 2.18×
108 s−1. This decay is very fast – the lifetime of the 3D o

1 level against this decay is
only 1/Au� = 4.6 ns!
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6.7.2 Spin-Forbidden or Intersystem Transitions

These are transitions that fulfill the electric dipole selection rules 1 to 4 but have
∆S �= 0. These transitions are considerably weaker than allowed transitions. Such
transitions are sometimes referred to as semiforbidden, or intercombination, or
intersystem transitions; the latter is the terminology that we will use here. An
intersystem transition is denoted with a single right bracket — for example,

N II]2143.4 Å 3P2 − 5S o
2 ,

a transition between � = 1s22s22p2 3P2 and u = 1s22s2p3 5S o
2 , with wavelength

λu� = 2143.4 Å and Au� = 1.27× 102 s−1.

6.7.3 Forbidden Transitions

Forbidden transitions are those that fail to fulfill at least one of the selection rules
1 to 4. The transition probabilities vary widely, depending on the values of the
electric quadrupole or magnetic dipole matrix elements between the upper and
lower states. A forbidden transition is denoted with two square brackets — for
example,

[N II]6549.9 Å 3P1 − 1D2 ,

a transition between � = 1s22s22p2 3P1 and u = 1s22s22p2 1D2, with λu� =
6549.9 Å and Au� = 9.20 × 10−4 s−1. This fails rule 1 (parity is unchanged) and
it fails rule 4 (single electron wave functions are unchanged). This is an example
of a magnetic dipole transition.

Another example of a forbidden transition is the electric quadrupole transition

[N II]5756.2 Å 1D2 − 1S0 ,

between � = 1s22s22p2 1D2 and u = 1s22s22p2 1S0, with λu� = 5756.2 Å and
Au� = 1.17 s−1. This fails rules 1 (parity is unchanged) and 4 (single electron
wave functions are unchanged) and it fails rules 2 and 3 (∆L=−2 and ∆J=−2),
yet its transition probability is three orders of magnitude larger than the magnetic
dipole transition [N II]6549.9 Å!

We see then that there is a hierarchy in the transition probabilities: very roughly
speaking, intersystem lines are ∼ 106 times weaker than permitted transitions, and
forbidden lines are ∼ 102 − 106 times weaker than intersystem transitions.

Despite being very “weak,” forbidden transitions are important in astrophysics
for the simple reason that every atom and ion has excited states that can only decay
via forbidden transitions. At high densities, such excited states would be depopu-
lated by collisions, but at the very low densities of interstellar space, collisions are
sufficiently infrequent that there is time for forbidden radiative transitions to take
place.



Chapter Seven

Radiative Transfer

Almost all of what we know about the ISM is based on interpretation of electromag-
netic radiation arriving at our telescopes. Chapters 4, 5, and 6 have been devoted
to the elementary processes involved in absorption and emission of radiation by
atoms, ions, and molecules. The subject of this chapter – radiative transfer the-
ory – describes the propagation of radiation through absorbing and emitting media.

7.1 Physical Quantities

There are various ways to describe the strength of the radiation field at location �r
and at time t:

• Specific intensity Iν(ν): The electromagnetic power per unit area, with
frequencies in [ν, ν + dν], propagating in directions n̂ within the solid angle
dΩ, is

Iν(ν, n̂,�r, t) dν dΩ . (7.1)

Unless otherwise noted, Iν includes the power in both polarizations. If the
radiation field is in local thermodynamic equilibrium (LTE), the intensity is
equal to that of a blackbody:

(Iν)LTE → Bν(T ) ≡ 2hν3

c2
1

exp(hν/kT )− 1
. (7.2)

• Photon occupation number nγ(ν):

nγ(ν, n̂,�r, t) ≡ c2

2hν3
Iν(ν, n̂,�r, t) . (7.3)

The photon occupation number nγ is dimensionless, and is simply the num-
ber of photons per mode per polarization. If the radiation field is in LTE (i.e.,
is a blackbody), then

(nγ)LTE → 1

exp(hν/kT )− 1
. (7.4)



64 CHAPTER 7

• Brightness temperature TB(ν): The brightness temperature TB(ν) is de-
fined to be the temperature such that a blackbody at that temperature would
have specific intensity Bν(TB) = Iν :

TB(ν) ≡ hν/k

ln[1 + 2hν3/c2Iν ]
. (7.5)

In LTE, the brightness temperature TB is equal to the actual thermodynamic
temperature of the emitting and absorbing material.

• Antenna temperature TA(ν): Brightness temperature has a simple ther-
modynamic interpretation, but has the disadvantage of being a nonlinear
function of intensity Iν . Radio astronomers have found it convenient to mea-
sure intensities in terms of the “antenna temperature:”

TA(ν) ≡ c2

2kν2
Iν . (7.6)

The advantage of antenna temperature (as opposed to TB) is that it is linear
in the intensity. In the limit kTA � hν (or, equivalently, nγ � 1), one sees
that TA ≈ TB . This is commonly the case at radio frequencies.

• Specific energy density uν(ν):

uν(ν,�r) =
1

cm

∫
IνdΩ , (7.7)

where cm is the speed of light in the medium (in the ISM, the speed of light
in vacuo). Note that as defined here, uν has no directional information: it is
integrated over all directions and polarizations.

It is clear that four of these – the photon occupation number nγ , the specific in-
tensity Iν , the brightness temperature TB , and the antenna temperature TA – are
entirely equivalent; any one can be obtained from any other of the four. The photon
occupation number nγ has the appeal of being dimensionless, and we have already
seen [Eq. (6.13)] that nγ is equal to the ratio of stimulated emission to sponta-
neous emission from an excited state: the stimulated emission rate is just nγ times
the spontaneous emission rate. Masers and lasers normally have nγ � 1 at the
maser or laser frequency.

The preceding definitions all pertain to the strength of the radiation field. If the
radiation field is modified by emission and absorption in a spectral line emitted or
absorbed in transitions between levels u and � of some species X , we can char-
acterize the relative importance of emission and absorption using the “excitation
temperature”:
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• Excitation temperature T exc: The excitation temperature of level u relative
to level � is defined by

nu

n�
≡ gu

g�
e−Eu�/kTexc,u� or Texc,u� ≡ Eu�/k

ln
(

n�/g�
nu/gu

) , (7.8)

where nu, n� are the populations of the upper and lower levels; gu, g� are
the degeneracies of the upper and lower levels; and Eu� ≡ Eu − E� is the
difference in energy between the upper and lower levels.

7.2 Equation of Radiative Transfer

Consider now a beam of radiation with intensity Iν entering a slab of material (see
Figure 7.1). Let s measure pathlength along the direction of propagation. Let us
neglect scattering and assume that the only processes affecting the intensity are
absorption and emission. As the radiation propagates through the medium, the
intensity evolves according to the equation of radiative transfer:

dIν = −Iνκνds+ jνds . (7.9)

The term −Iνκνds is the net change in Iν due to absorption and stimulated emis-
sion (both processes are linear in Iν), and jνds is the change in Iν due to sponta-
neous emission by the material in the path of the beam:

• κν is the attenuation coefficient at frequency ν, with dimensions of 1/length.
While κν is normally positive, we will see in §7.5 that it can become negative,
in which case amplification takes place (i.e., masers or lasers).

• jν is the emissivity at frequency ν, with dimensions of power per unit volume
per unit frequency per unit solid angle.

Figure 7.1 Radiative transfer geometry.
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7.3 Emission and Absorption Coefficients

Absorption and emission can be due to atoms, ions, molecules, grains, thermal
plasma, or a nonthermal population of energetic electrons. Atoms, ions, or molecules
with discrete energy levels contribute to the absorption and emission coefficients as
follows.

The emissivity jν was defined as the power radiated per unit frequency per unit
solid angle per unit volume. For randomly oriented emitters:

jν =
1

4π
nu Au� hν φν , (7.10)

where φνdν is the probability that the emitted photon will have frequency in (ν, ν+
dν) (see §6.5). The attenuation coefficient κν is proportional to the net absorption
– i.e., true absorption minus stimulated emission:

κν =n�σ�→u(ν)− nuσu→�(ν) (7.11)

=n�σ�→u(ν)

[
1− nu/n�

gu/g�

]
(7.12)

=n�σ�→u(ν)
[
1− e−hν/kTexc

]
, (7.13)

where the absorption cross section σ�→u(ν) is given by Eq. (6.37) in the case where
the absorbers have a Maxwellian velocity distribution.

7.4 Integration of the Equation of Radiative Transfer

It is convenient to change independent variables from pathlength s to “optical
depth” τν , defined by

dτν ≡ κνds . (7.14)

According to this definition,1 the radiation propagates in the direction of increasing
τν (assuming κν > 0). The equation of radiative transfer now becomes just

dIν = −Iνdτν + Sνdτν , (7.15)

where

Sν ≡ jν
κν

(7.16)

1Note that some authors, including Spitzer (1978), adopt the opposite convention of radiation prop-
agating in the direction of decreasing τ .
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is referred to as the source function. It is important to remember that Eq. (7.15)
does not include scattering processes, such as scattering by dust grains or by elec-
trons.

We can formally integrate Eq. (7.15) by moving Iνdτν to the left hand side, and
multipying by the “integrating factor” eτ :

eτν (dIν + Iνdτν)= eτνSνdτν

d (eτν Iν)= eτνSνdτν (7.17)

We now integrate this from some starting point, which we define to be τν = 0, with
initial value Iν(0):

eτν Iν − Iν(0) =

∫ τν

0

eτ
′
Sνdτ

′ . (7.18)

Now multiply by e−τν to obtain the equation of radiative transfer in integral
form:

Iν(τν) = Iν(0)e
−τν +

∫ τν

0

e−(τν−τ ′)Sνdτ
′ . (7.19)

This integral equation, with Sν allowed to be a function of position, is a fully gen-
eral solution to the equation of radiative transfer (7.15) if scattering is neglected.
Equation (7.19) has a simple physical interpretation: the intensity Iν at optical
depth τν is just the initial intensity Iν(0) attenuated by a factor e−τν , plus the inte-
gral over the emission Sνdτ

′ attenuated by the factor e−(τν−τ ′) due to the effective
absorption over the path from the point of emission.

7.4.1 Special Case: Uniform Medium and Kirchhoff’s Law

Consider now the special case of a slab of uniform medium with the matter having
its energy levels populated according to a single excitation temperature Texc. We
know that if the slab were infinite in extent, the radiation field within it would be
equal to the blackbody radiation field with intensity Iν = Bν(Texc). Therefore,
when Iν = Bν , Eq. (7.15) becomes

0 = dIν = −Bνdτν + Sνdτν , (7.20)

which requires that Sν = Bν(Texc). Therefore, the emissivity jν and attenuation
coefficient κν must satisfy Kirchhoff’s Law:

Sν ≡ jν
κν

= Bν(Texc) . (7.21)

Now jν and κν depend only on the local properties of the matter: Kirchhoff’s law
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(7.21) must be true at each point. Without loss of generality, we can therefore
rewrite the integral form of the equation of radiative transfer (7.19) as

Iν = Iν(0)e
−τν +

∫ τν

0

e−(τν−τ ′)Bν(Texc)dτ
′ . (7.22)

In the case of a uniform slab with Texc = constant, we can immediately integrate
Eq. (7.22):

Iν = Iν(0)e
−τν +Bν(Texc)

(
1− e−τν

)
, (7.23)

or, equivalently,

nγ(ν) = n(0)
γ (ν)e−τν +

1− e−τν

(n�gu/nug�)− 1
. (7.24)

If the matter is in LTE at temperature T , then Texc = T . However, under inter-
stellar conditions, the populations of the excited states may depart from a thermal
distribution. If emission and absorption at frequency ν are dominated by transitions
between levels u and � of a single species, then Texc in Eq. (7.21) is equal to the
excitation temperature Texc,u� defined in Eq. (7.8).

Because antenna temperature TA ∝ Iν , Eq. (7.23) can be rewritten as a transfer
equation for TA:

TA =TA(0)e
−τν +

hν/k

exp(hν/kTexc)− 1

(
1− e−τν

)
(7.25)

≈TA(0)e
−τν + Texc

(
1− e−τν

)
if

hν

kTexc
� 1 . (7.26)

7.4.2 Limiting Cases: Radio versus Optical

There are two limiting cases that are often encountered. At radio and sub-mm fre-
quencies, the upper levels are often appreciably populated, and it is important to
include both spontaneous emission from the medium [i.e., the term Bν(Texc)(1 −
e−τν ) in Eq. (7.23)], and stimulated emission [i.e., the term e−hν/kTexc in the at-
tenuation coefficient κν = n�σ�→u(1− e−hν/kTexc)].

On the other hand, when we consider propagation of optical, ultraviolet, or X-
ray radiation through cold interstellar clouds, the upper levels of the atoms and
ions usually have negligible populations, and stimulated emission can be neglected:
κν ≈ n�σ�→u.

7.5 Maser Lines

Under some conditions, a process may act to “pump” an excited state u by either
collisional or radiative excitation of a higher level that then decays to populate level
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u. (Radiative pumping will be discussed further in Chapter 20.) If this pumping
process is rapid enough (relative to the processes that depopulate u), it may be
possible for the relative level populations nu, n� to satisfy the inequality

nu >
gu
g�

n� , (7.27)

in which case, the excitation temperature

Texc,u� < 0 (7.28)

[see Eq. (7.8)], and we speak of a population inversion. When this occurs, stim-
ulated emission is stronger than absorption, and the radiation is amplified as it
propagates. The absorption coefficient

κν = σ�→u

(
1− nu/gu

n�/g�

)
< 0 (7.29)

[see Eq. (7.12)], and the optical depth τν =
∫
κνds < 0; thus the factor e−τν > 1,

indicating amplification by stimulated emission rather than attenuation.
Such population inversions in astronomical sources have been observed for mi-

crowave transitions of H I, OH, H2O, and SiO, and hence we speak of maser (mi-
crowave amplification by stimulated emission of radiation) emission. In principle,
population inversions can occur for higher frequency transitions as well (e.g., Jo-
hansson & Letokhov 2005).

If we assume that |kTexc,u�| � hν, then Eq. (7.26) applies:

TA ≈TA(0)e
−τν + Texc

(
1− e−τν

)
(7.30)

= [TA(0) + |Texc|] e|τν | − |Texc| . (7.31)

The factor e|τν | is in some cases very large – some OH and H2O masers have been
observed to have TA > 1011 K. Because e|τν | > 1:

• e|τν | is more strongly peaked on the sky than |τν | — the angular size of the
maser is less than the actual transverse dimension of the masing region.

• e|τν | is more strongly peaked in ν than |τν | — the maser line is narrower
than the actual velocity distribution of the masing species.

Some masers can be very bright, allowing the use of interferometry, as well
as observations of sources at large distances. This has enabled measurements of
proper motions of maser spots in star-forming regions of the Milky Way, as well
as in material orbiting a supermassive black hole in the spiral galaxy NGC 4258
(Herrnstein et al. 1999). Maser theory was reviewed by Elitzur (1992).



Chapter Eight

H I 21-cm Emission and Absorption

The ISM is composed primarily of hydrogen, and atomic hydrogen can be conve-
niently detected and studied via the 21-cm line, originating in the hyperfine split-
ting of the 1s electronic ground state of hydrogen. Studies of this line have allowed
mapping of the distribution of H I in the Milky Way and other galaxies, determi-
nation of the galactic rotation curve, and measurement of the gas temperature in
interstellar clouds. This chapter discusses 21-cm emission and absorption.

Figure 8.1 Hyperfine splitting of the 1s ground state of atomic H (Gould 1994).

8.1 H I Emissivity and Absorption Coefficient

The electron in the electronic ground state (1s) of atomic hydrogen can have its spin
either parallel or antiparallel to the spin of the proton. The coupling of the electron’s
magnetic moment to the magnetic field produced by the magnetic moment of the
proton results in “hyperfine splitting” of the parallel and antiparallel spin states.
The antiparallel spin state (with degeneracy g = 1) has the lower energy, which we
take to be E� = 0. The parallel spin state (with total spin S = 1, and degeneracy
g = 2S + 1 = 3) has an energy Eu − E� = 5.87 × 10−6 eV. When the electron
drops to the ground state, the electron spin flips, and a photon is emitted with a
wavelength λ = 21.11 cm.

Because of the small energy splitting between these two spin states, the cos-
mic microwave background by itself is able to populate the upper level. For all
conditions of interest (at least until the expansion factor of the universe increases
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by a factor 100), we expect the excitation temperature (or “spin temperature”)
Texc ≡ Tspin � .0682K, and

nu

n�
≡ gu

g�
e−hνu�/kTexc = 3 e−.0682K/Tspin ≈ 3 , (8.1)

nu ≈ 3

4
n(H I), n� ≈ 1

4
n(H I) . (8.2)

Because the upper level contains ∼ 75% of the H I under all conditions of interest,
the H I 21-cm emissivity is effectively independent of the spin temperature:

jν = nu
Au�

4π
hνu� φν ≈ 3

16π
Au� hνu� n(H I) φν , (8.3)

where φν is the normalized line profile (
∫
φνdν = 1), determined by the velocity

distribution of the H I.
The absorption coefficient is

κν =n�σ�u − nu|σu�| (8.4)

=n�
gu
g�

Au�

8π
λ2
u�φν

[
1− nu

n�

g�
gu

]
(8.5)

=n�
gu
g�

Au�

8π
λ2
u�φν

[
1− e−hνu�/kTspin

]
. (8.6)

Because e−hνu�/kTspin ≈ 1, the correction for stimulated emission is very impor-
tant! Noting that hνu�/kTspin � 1 for all conditions of interest, e−hνu�/kTspin ≈
1− hνu�/kTspin, and

κν ≈ 3

32π
Au�

hcλu�

kTspin
n(H I) φν . (8.7)

Thus the absorption coefficient κν ∝ 1/Tspin.
Suppose that the H I has a Gaussian velocity distribution. Then

φν =
1√
2π

c

νu�

1

σV
e−u2/2σ2

V , (8.8)

and the absorption coefficient

κν =
3

32π

1√
2π

Au�λ
2
u�

σV

hc

kTspin
e−u2/2σ2

V (8.9)

=2.190× 10−19 cm2n(H I) ,
K

Tspin

km s−1

σV
e−u2/2σ2

V (8.10)

τν =2.190
N(H I)

1021 cm−2

100K

Tspin

km s−1

σV
e−u2/2σ2

V , (8.11)

N(H I)≡
∫

ds n(H I) , (8.12)
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where N(H I) is the column density of H I. Many sightlines in the ISM have
N(H I) >∼ 1021 cm−2, spin temperatures Tspin ≈ 102 K, and σV of order km s−1:
self-absorption in the 21-cm line can be important!

8.2 Optically Thin Cloud

Suppose that we have a cloud with

N(H I) <∼ 1020 cm−2 Tspin

100K

σV

km s−1 , (8.13)

so that τν <∼ 0.2 even at the center of the line. If we now neglect absorption, then

Iν = Iν(0) +

∫
jνds (8.14)

= Iν(0) +
3

16π
Au� hνu� φν N(H I) . (8.15)

Now suppose that Iν(0) is known independently. We can then integrate the inten-
sity over the line: ∫

[Iν − Iν(0)] dν =
3

16π
Au� hνu� N(H I) . (8.16)

This is often expressed in terms of antenna temperature TA and relative velocity u,
where ν = νu�(1− u/c), when u is the radial velocity:

∫
[TA − TA(0)] du=

∫
c2

2kν2
[Iν − Iν(0)]

c

ν
dν

=
3

32π

hcλ2
u�

k
Au� N(H I)

= 54.89Kkm s−1 N(H I)

1020 cm−2
. (8.17)

Thus the intensity integrated over the line profile gives us the total H I column
density without need to know Tspin, provided that self-absorption is not important.
Plate 3a is an all-sky map of H I 21-cm integrated line intensity, converted to N(H I)
assuming self-absorption to be negligible.

With the assumption that the emitting regions are optically thin, the total mass
MH I of H I in another galaxy can be determined from the observed flux in the 21-
cm line, Fobs =

∫
Fνdνobs, where Fν is the observed flux density in the 21-cm

line, which may be redshifted to a frequency νobs = νu�/(1 + z), where z is the
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redshift of the emitting galaxy:

MH I =
16πmH

3Aulhνu�
D2

L Fobs (8.18)

=4.945× 107 M�

(
DL

Mpc

)2(
Fobs

JyMHz

)
, (8.19)

where DL is the luminosity distance to the source.1 Radio astronomers often
report the integrated flux in “Jy km s−1,” writing dνobs = [νu�/(1 + z)]dv/c :

MH I =
16πmH

3Aulhc
D2

L

∫
Fνdv (8.20)

=2.343× 105 M�(1 + z)

(
DL

Mpc

)2( ∫
Fνdv

Jy km s−1

)
, (8.21)

where z is the source redshift.

8.3 Spin Temperature Determination Using Background Radio Sources

In cases where we have a bright background radio source with a continuum spec-
trum (a typical radio-loud quasar or an active galactic nucleus, or a radio galaxy),
we can study both emission and absorption by the foreground interstellar medium
in our galaxy by comparing “on-source” and “off-source” observations. The tech-
nique consists of taking on-source observations with the radio telescope pointed
at the background radio source, and off-source observations with the telescope
pointed so that the background source is out of the beam, and we are observing
“blank sky” behind the foreground cloud. We assume that the foreground gas is
sufficiently uniform so that the two different sightlines have essentially the same
N(H I) and Tspin.

Figure 8.2 On-source and off-source observation geometry. RS is a radio source.

1For a nice discussion of distance measures in cosmology, see Hogg (1999).
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We measure the on-source and off-source spectra T on
A (v) and T off

A (v), where we
continue to report frequency (shifts) in terms of radial velocity. From the mea-
surements at frequencies well above and below the 21-cm emission feature, we
determine the antenna temperature Tsky of the blank sky, and the antenna temper-
ature TRS of the continuum from the radio source (averaged over the beam of our
radio telescope).

At velocity v, the spectrum measured on the blank sky is [see Eq. (7.26)]

T off
A (v) = Tskye

−τv + Tspin(1− e−τv ) , (8.22)

while the spectrum on the radio source is

T on
A (v) = TRSe

−τv + Tspin(1− e−τv ) . (8.23)

These two equations can be solved for the two unknowns, τ(v) and Tspin(v):

τ(v)= ln

[
TRS − Tsky

T on
A (v)− T off

A (v)

]
, (8.24)

Tspin(v)=
T off
A (v)TRS − T on

A (v)Tsky

(TRS − Tsky)− [T on
A (v)− T off

A (v)]
. (8.25)

When the absorption is strong, (TRS − Tsky) is measurably larger than [T on
A (v) −

T off
A (v)], and both τ(v) and Tspin can be determined from the observations using

Eqs. (8.24 and 8.25). When the absorption is weak, however, (TRS − Tsky) and
[T on

A (v) − T off
A (v)] are the same within the errors, and the observations provide

only an upper bound on τ(v), and a lower bound on Tspin(v). Surveys employing
this technique to determine Tspin in H I clouds will be discussed in Chapter 29.

If the gas is optically thin [τ(v) <∼ 0.1], the H I column density per unit velocity
can be directly obtained from the observed intensity:

dN(H I)

dv
≈ 32π

3λ2

k

hcAu�
[T on

A (v)− Tsky(v)]

= 1.813
T on
A (v)− Tsky(v)

K
× 1018 cm−2

km s−1 , (8.26)

whereas if τ(v) >∼ 0.1 and we have measured τ(v) and Tspin(v) using Eqs. (8.24
and 8.25), we can correct for self-absorption:

dN(H I)

dv
=

32π

3λ2

k

hcAu�
Tspin(v)τ(v) (8.27)

=1.813
Tspin(v)τ(v)

K
× 1018 cm−2

km s−1 . (8.28)



Chapter Nine

Absorption Lines: The Curve of Growth

The composition and excitation of interstellar gas can be studied using absorption
lines that appear in the spectra of background stars (or other sources of continuum
radiation). The interstellar lines are typically narrow compared to spectral features
produced by absorption in stellar photospheres, and in practice can be readily dis-
tinguished. It is normally possible to detect absorption only by the ground state and
perhaps the excited fine-structure levels of the ground electronic state – the popu-
lations in the excited electronic states are too small to be detected in absorption.

Observations of interstellar absorption lines allow the radial velocity, elemental
composition, and the ionization state of the gas to be determined; if the ground
electronic state has fine structure, the populations of the fine-structure levels can
constrain the density and temperature.

The widths of absorption lines are usually determined by Doppler broadening,
with linewidths of a few km s−1 – or ∆λ/λ ≈ 10−5 – often observed in cool
clouds. The spectrographs available to astronomers often lack the spectral resolu-
tion to resolve the profiles of such narrow lines, but can measure the total amount
of “missing power” resulting from a narrow absorption line. The equivalent width
W is a measure of the strength of an absorption line, in terms of “missing power” in
the unresolved absorption line. The curve of growth refers to the function W (N�),
showing how W depends on the column density N� of the absorber – in general,
we want to invert this function, so that from an observed equivalent width W , we
can infer the column density N� of the absorber.

9.1 Absorption Lines

Suppose that we observe a bright continuum source (e.g., a star) behind a fore-
ground cloud of gas, and we measure the energy flux density Fν as a function of ν.
We observe the source using an aperture of solid angle ∆Ω, and we assume that the
properties of the foreground gas are essentially uniform over ∆Ω. If we integrate
Eq. (7.23) over the (small) solid angle ∆Ω of our spectrometer aperture, we obtain
the flux density at the observer

Fν = Fν(0)e
−τν +Bν(Texc)∆Ω

(
1− e−τν

)
, (9.1)

where Fν(0) is the flux density from the source in the absence of absorption. At
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optical frequencies, we normally have nu/n� � 1, Bν(Texc)∆Ω � Fν , and we
can neglect the emission from the ISM, thus obtaining the very simple result

Fν ≈ Fν(0)e
−τν . (9.2)

If absorption is negligible except in a few narrow spectral lines, then, if the back-
ground source spectrum is smooth, we can interpolate to estimate the stellar con-
tinuum flux Fν(0) even at the frequencies where absorption is present, and we can
evaluate the dimensionless equivalent width

W ≡
∫

dν

ν0

[
1− Fν

Fν(0)

]
=

∫
dν

ν0

(
1− e−τν

)
. (9.3)

Some authors instead define the wavelength equivalent width

Wλ ≡
∫

dλ
(
1− e−τν

) ≈ λ0W , (9.4)

or the velocity equivalent width Wv = cW , but I prefer the dimensionless W .
The integrals in Eqs. (9.3 and 9.4) extend only over the absorption feature, with

the integrand ∝ [1 − Fλ/Fλ(0)] → 0 on either side of the feature. It is important
to note that W (or Wλ) can be measured even if the absorption line is not resolved:
the equivalent width is just proportional to the total missing power that has been
removed by the absorption line.

The optical depth in an absorption line can be written [see Eq. (6.24)]

τν =
πe2

mec
f�uN�φν

[
1− Nu/gu

N�/g�

]
, (9.5)

where

N� ≡
∫

n�ds (9.6)

is the column density of the absorbers, φν is the normalized line profile (
∫
φνdν =

1), and the term [1− (Nu/gu)/(N�/g�)] is the correction for stimulated emission.
For interstellar optical absorption lines, (Nu/gu)/(N�/g�) � 1, and the correction
for stimulated emission can be disregarded.

Suppose that the absorbers have a Gaussian velocity distribution with 1-D veloc-
ity dispersion σV . Then, from Eq. (6.38), the optical depth near line-center

τν = τ0 e
−(u/b)2 b ≡

√
2σV , (9.7)

where u is the frequency shift from line-center expressed as a velocity, u = c(ν0 −
ν)/ν0 and the optical depth at line-center is

τ0 =
√
π

e2

mec

N�f�uλ�u

b

[
1− Nu/gu

N�/g�

]
(9.8)

=1.497× 10−2 cm2

s

N�f�uλ�u

b

[
1− Nu/gu

N�/g�

]
, (9.9)
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where the term (Nu/gu)/(N�/g�) is the correction for stimulated emission, which
is usually negligible in the ISM or IGM except for radio frequency transitions.
Dropping the correction for stimulated emission, Eq. (9.8) becomes

τ0 = 0.7580

(
N�

1013 cm−2

)(
f�u

0.4164

)(
λ�u

1215.7 Å

)(
10 km s−1

b

)
, (9.10)

where f�u = 0.4164, λ�u = 1215.7 Å are for H Lymanα.
If we assume that the absorbers have a Gaussian velocity distribution, the line

profile shape has three distinct regimes, which we now examine.

9.2 Optically Thin Absorption, τ0 <∼ 1

An example of an absorption line in the optically thin regime is shown in the upper
panel of Fig. 9.1. If τν � 1, we expand (1− e−τ ) ≈ τ − τ2/2 + ... and obtain

W ≈ √
π
b

c
τ0

(
1− τ0

2
√
2
+ ...

)
. (9.11)

To obtain a well-behaved approximation formula, we replace 1 − (τ0/2
√
2) + ...

by 1/[1 + (τ0/2
√
2)] (which is the same to first order in τ0) to obtain

W ≈√
π
b

c

τ0

1 + τ0/(2
√
2)

(9.12)

=
πe2

mec2
N�f�uλ�u

1

1 + τ0/(2
√
2)

(9.13)

=8.853× 10−13 cmN�f�uλ�u
1

1 + τ0/(2
√
2)

. (9.14)

The approximation (9.12) is exact for τ0 → 0, and is accurate to within 2.6% for
τ0 < 1.254. In the optically thin regime (τ0 � 1), W depends only on the product
N�f�uλ�u. Hence,

N� = 1.130× 1012 cm−1 W

f�uλ�u
if τ0 � 1 . (9.15)

We see that even if we do not resolve the line profile, measurement of W allows us
to determine N�, provided that the line is actually optically thin.1

9.3 Flat Portion of the Curve of Growth, 10 <∼ τ0 <∼ τdamp

In the linear regime discussed earlier, the quantity [1−e−τν ] has the same Gaussian
profile as τν itself. However, as the core of the line becomes saturated, the quantity

1If we are not certain whether the line is optically thin, then Eq. (9.15) gives a lower limit on N�.



78 CHAPTER 9

Figure 9.1 Absorption line profiles in three regimes, using as an example H Lymanα
with b = 10 km s−1 and N(H I) = 6.6 × 1012 cm−2, 1.3 × 1016 cm−2, and 1.3 ×
1019 cm−2 in the upper, middle, and lower panels. Shaded area is proportional to the
missing energy. Note the different abscissa in the lower panel.

[1 − e−τν ] becomes increasingly “box-shaped.” An example is shown in the mid-
dle panel of Fig. 9.1. Treating the opacity as a delta function broadened only by
Doppler broadening:

τ(ν) = τ0 e
−(u/b)2 , (9.16)

we approximate W by the fractional full width at half maximum (FWHM):

W ≈ (∆ν)FWHM

ν0
=

(∆u)FWHM

c
≈ 2b

c

√
ln(τ0/ ln 2) . (9.17)

The approximation (9.17) is accurate to within 5% for 1.254 < τ0 <∼ τdamp, where
τdamp, the optical depth separating the “flat” from the “damped” regimes, is from
Eq. (9.25), shown later.

Since τ0 depends on N�f�uλ�u and b, we see that W depends on the product
N�f�uλ�u and b. Note that W is very insensitive to τ0 (and therefore N�) in this
regime – it varies as the square root of the logarithm of τ0. Because W increases
so slowly with increasing N�, this is referred to as the flat portion of the curve of
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growth. If we invert Eq. (9.17) to obtain N�, we obtain

N� ≈ ln 2√
π

mec

e2
b

f�uλ�u
exp

[(
cW

2b

)2
]

(9.18)

=46.29

(
b

f�uλ�u

)
exp

[(
cW

2b

)2
]
cm−2 s . (9.19)

Because of the insensitivity of W to N� — therefore extreme sensitivity of N� to
W — Eq. (9.18) should not be used to determine N� unless:

1. We have a very accurate measurement of W .

2. We have a very accurate value for the Doppler broadening parameter b.

3. We have reason to believe that the velocity profile is very accurately de-
scribed by a single Gaussian.

Unless all three conditions are satisfied, column densities estimated from W in this
regime should be regarded as highly uncertain.

9.4 Damped Portion of the Curve of Growth, τ0 >∼ τdamp

In this regime, the Doppler core of the line is totally saturated, but the “damping
wings” of the line provide measurable partial transparency. See the lower panel of
Fig. 9.1 for an example with τ0 = 106. In the limiting case, we can entirely neglect
the Doppler broadening, and assume that the wings of the line are given by a pure
Lorentz profile [see Eq. (6.26)]:

τν ≈ πe2

mec
N�f�u

4γ�u
16π2(ν − ν0)2 + γ2

�u

for |ν − ν0| � ν0
b

c
, (9.20)

where γ�u is given by Eq. (6.28). The full width of the profile at 50% transmission
is

(∆λ)FWHM

λ
=

(∆u)FWHM

c
=

√(
1

π ln 2

)
e2

mec2
N�f�uλ�u

(
γ�u
ν�u

)
. (9.21)

The equivalent width W is larger than the dimensionless FWHM (9.21) by just a
factor (π ln 2)1/2 = 1.476:

W =

√
e2

mec2
N�f�uλ�u

(
γ�uλ�u

c

)
=

√
b

c

τ0√
π

γ�uλ�u

c
. (9.22)

In this regime, W depends on the product N�f�uλ�u and on the dimensionless ratio
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Figure 9.2 Curves of growth for five values of the Doppler broadening parameter b,
for a damping constant γ�uλ�u = 7616 cm s−1 (appropriate for H Lymanα). Dashed
lines show the analytic approximations to the linear, flat, and square-root portions of
the curve of growth. Only the flat portion [Eq. (9.17)] depends on b. Only the square-
root portion [Eq. (9.22)] depends on γλ.

γ�uλ�u/c. In Figure 9.2, we show W as a function of N�f�uλ�u, for five values of
b, where we have taken γ�uλ�u appropriate for the Lyman α transition of atomic H.

The column density N� is given by

N� =
mec

3

e2
W 2

f�uγ�uλ2
�u

(9.23)

=2.759×1024 cm−2 W 2

(
0.4164

f�u

)(
7616 cm s−1

γ�uλ�u

)(
1215.7 Å

λ�u

)
.(9.24)

The transition from the flat to the damped portion of the curve of growth takes place
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near central optical depth τdamp obtained by equating2 Eqs. (9.17) and (9.22):

τdamp ≈ 4
√
π

b

γ�uλ�u
ln

[
4
√
π

ln 2

b

γ�uλ�u

]

≈ 93
b

km s−1

(
7616 cm s−1

γ�uλ�u

)
ln

[
134

b

km s−1

7616 cm s−1

γ�uλ�u

]
(9.25)

[N�]damp ≈
4mec

e2
b2

f�uγ�uλ2
�u

ln

[
4
√
π

ln 2

b

γ�uλ�u

]

=1.23× 1014 cm−2

(
0.4164

f�u

)(
b

km s−1

)2(
7616 cm s−1

γ�uλ�u

)
×(

1215.7 Å

λ�u

)
ln

[
134

b

km s−1

7616 cm s−1

γ�uλ�u

]
. (9.26)

9.5 Approximation Formulae for W

In general, then, if we assume a Gaussian velocity profile, W depends on three
quantities: b, γ�uλ�u, and τ0 ∝ N�f�uλ�u. Accurate evaluation of W in general
requires numerical integration over the Voigt profile (6.37). Rodgers & Williams
(1974) give useful approximation formulae for W (τ0, b, γ�uλ�u). Here we provide
a simple approximation, based on the discussion in this chapter, that is continuous
and accurate to a few percent:

W ≈

⎧⎪⎪⎨
⎪⎪⎩

√
π b

c
τ0

1+τ0/(2
√
2)

for τ0 < 1.25393 ,

[(
2b
c

)2
ln
(

τ0
ln 2

)
+ b

c
γ�uλ�u

c
(τ0−1.25393)√

π

]1/2
for τ0 > 1.25393 ,

(9.27)

where τ0 is given by Eq. (9.8). This approximation is exact in the limits τ0 � 1 and
τ0 � b/γ�uλ�u, and is accurate to within 5% for all τ0 when applied to H I Lymanα
with b = 10 km s−1.

9.6 Doublet Ratio

In some cases, an absorbing level � will have allowed transitions to two different
excited states u1 and u2. Let λ2 be the wavelength of the stronger transition (i.e.,

2One obtains a transcendental equation of the form τdamp = C ln(τdamp/ ln 2). For C 	 1,
τdamp ≈ C ln(C/ ln 2).
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f�u2λ�u2 > f�u1λ�u1 ). In the optically thin limit, the ratio of equivalent widths
[from Eq. (9.12)] will be

W2

W1
=

f�u2
λ�u2

f�u1
λ�u1

. (9.28)

Now consider the effects of increasing N�. The stronger line will become optically
thick first, and W2/W1 will drop below the value in Eq. (9.28). If the measured
equivalent width ratio W2/W1 is consistent with the optically thin limit (9.28), then
one may confidently use (9.15) to calculate the absorbing column density N�.

Figure 9.3 Ratio of equivalent widths for the Ca II H (3970Å) and K (3935Å) lines,
and for the C IV 1548/1551 doublet, as a function of the line-center optical depth τ2
for the stronger component of the doublet.

When both lines are on the flat portion of the curve of growth, the ratio will be
approximately

W2

W1
≈
[
1 +

ln(f�u2λ�u2/f�u1λ�u1)

ln(τ�u1
/ ln 2)

]1/2
. (9.29)

With very strong lines, e.g., Lymanα and Lymanβ, we may enter the damped
portion of the curve of growth, in which case the doublet ratio becomes

W2

W1
≈ λ�u2

λ�u1

√
f�u2

γ�u2

f�u1γ�u1

. (9.30)

Fig. 9.3 shows W2/W1 as a function of the optical depth τ0,2 of the stronger tran-
sition for two frequently observed doublets – the Ca II H and K lines (3969.6 and
3934.8Å, respectively), and C IV 1548.2,1550.8 .
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Table 9.1 Hydrogen Lyman Series

Transition λ( Å) f�u Au,tot( s−1)

Lyα(1s− 2p) 1215.67 0.4164 6.265× 108

Lyβ(1s− 3p) 1025.73 0.07912 1.672× 108

Ly γ(1s− 4p) 972.54 0.02901 6.818× 107

Ly δ(1s− 5p) 949.74 0.01394 3.437× 107

Ly ε(1s− 6p) 937.80 0.007799 1.973× 107

Ly ζ(1s− 7p) 930.74 0.004184 1.074× 107

Ly η(1s− 8p) 926.22 0.003183 8.249× 106

Ly θ(1s− 9p) 923.15 0.002216 5.781× 106

Ly ι(1s− 10p) 920.96 0.001605 4.209× 106

Ly (1s− np), n 	 1 911.75
1−n−2 1.563n−3 4.180× 109n−3

9.7 Lyman Series of Hydrogen: Lyα, Lyβ, Lyγ, . . .

In the ISM, the atomic hydrogen is found almost entirely in the electronic ground
state 1s. From this level, hydrogen has allowed transitions: 1s → 2p, 1s →
3p, 1s → 4p, and so on. These are referred to as the “Lyman series”: Lymanα,
Lymanβ, Lyman γ, and so on. Lymanα has a rest wavelength λ = 1215.67 Å.

Both the 2P o
3/2 and 2P o

1/2 levels have Au� = 6.265 × 108 s−1 for transitions to
the ground state 2S1/2, giving an intrinsic linewidth (∆v)intr.FWHM = λAu�/2π =

0.0121 km s−1. This intrinsic linewidth is negligible compared to the FWHM of a
thermal velocity distribution

(∆v)thermFWHM = 2
√
2 ln 2

(
kT

M

)1/2

= 2.15

(
T/100K

M/mH

)1/2

km s−1 , (9.31)

for all gas temperatures of interest.
The 2p excited state is actually a doublet 2P o

1/2,3/2, so there are really two Ly-
manα lines: 2S1/2−2P o

1/2 1215.674 Å, and 2S1/2−2P o
3/2 1215.668 Å. However,

the fine-structure splitting of these levels is extremely small,3 corresponding to a
velocity shift of only ∆v = 1.33 km s−1 between the two components of Lyman
α. Therefore, in the ISM or IGM, the two lines are always blended by the thermal
broadening (9.31). Because the splitting is so small, and because the two excited
states have the same Au�, the two lines can be treated together as a single 1s → 2p
transition.

The Lymanα absorption line is of great importance because it allows us to di-
rectly measure the column density of atomic hydrogen. Figure 9.2 shows the curve
of growth for Lyman α, for five different values of the Doppler broadening param-
eter b.

Almost all hydrogen consists of the normal isotope, with atomic weight 1, but of
order 20 ppm is deuterium, with atomic weight 2.

3[E(2P o
3/2

)− E(2P o
1/2

)]/hc = 0.366 cm−1.
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Deuterium has essentially the same energy levels as the hydrogen atom, the prin-
cipal difference being that the binding energy of all the energy levels is slightly
greater because the reduced mass of the electron-deuteron system is greater than
that of the electron–proton system by a factor (1 +me/mp)/(1 +me/md). where
md ≈ 2mp is the mass of the deuteron.4 The shift in energy levels causes all of
the electronic transitions in deuterium to be at slightly higher energy than the cor-
responding transitions in hydrogen, and the small amount of deuterium in a cloud
therefore appears like an equal number of hydrogen atoms but with an apparent
blue shift c(me/mp −me/md) ≈ 82 km s−1. Under suitable conditions, it is pos-
sible to measure the strength of both the hydrogen lines and the deuterium lines,
and thereby determine the D/H ratio in the gas.

9.8 Lyman Limit

As n → ∞, the Lyman series absorption lines converge to a limiting wavelength
λ = 911.75 Å known as the “Lyman limit.” The interval between line centers
goes to zero as n → ∞. Because the lines have finite width, they will therefore
blend together to form a continuum before reaching this limit. The series of lines
is essentially indistinguishable from a smooth continuum when

dλn

dn
<

vFWHM

c
λn , (9.32)

which is satisfied for quantum number

n−3 <∼
vFWHM

2c
, (9.33)

or

n >∼ 67

(
2 km s−1

vFWHM

)1/3

, (9.34)

corresponding to a wavelength

λ ≈ 911.75 Å + 0.20

(
vFWHM

2 km s−1

)2/3

Å , (9.35)

or energy hν/eV = 13.599− 0.003(vFWHM/2 km s−1)2/3. When the Lyman se-
ries absorption lines blend together in this way, the resulting continuum absorption
has an absorption cross section per H, σ ≈ 6.3× 10−18 cm2, the same as the pho-
toionization cross section for hydrogen at energies just above the photoionization
threshold 13.60 eV.

4The deuteron has a smaller magnetic moment than a proton. This changes the frequency of the “spin
flip” transition from 1420 MHz to 327.4 MHz, but has a negligible effect on the optical and ultraviolet
transitions.
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Table 9.2 Absorption Lines out of H2(v=0, J=1) with λ > 970 Å

Transition λ( Å) f�u Transition λ( Å) f�u
Ly 0–0 P(1) 1110.07 0.0005775 Ly 7–0 P(1) 1014.33 0.008982
Ly 0–0 R(1) 1108.64 0.001082 Ly 7–0 R(1) 1013.43 0.02045
Ly 1–0 P(1) 1094.05 0.001982 Wer 0–0 Q(1) 1009.77 0.02377
Ly 1–0 R(1) 1092.73 0.003798 Wer 0–0 R(1) 1008.50 0.02058
Ly 2–0 P(1) 1078.92 0.003942 Ly 8–0 P(1) 1003.29 0.008461
Ly 2–0 R(1) 1077.69 0.007716 Ly 8–0 R(1) 1002.45 0.01818
Ly 3–0 P(1) 1064.60 0.005964 Ly 9–0 P(1) 992.81 0.00768
Ly 3–0 R(1) 1063.46 0.01192 Ly 9–0 R(1) 992.01 0.01817
Ly 4–0 P(1) 1051.03 0.007624 Wer 1–0 Q(1) 986.80 0.03645
Ly 4–0 R(1) 1049.96 0.01557 Ly 10–0 P(1) 982.83 0.00679
Ly 5–0 P(1) 1038.16 0.008682 Ly 10–0 R(1) 982.07 0.01358
Ly 5–0 R(1) 1037.15 0.01813 Wer 1–0 R(1) 985.64 0.03313
Ly 6–0 P(1) 1025.93 0.009105 Ly 11–0 P(1) 973.34 0.005875
Ly 6–0 R(1) 1024.99 0.01955 Ly 11–0 R(1) 972.63 0.01395

9.9 H2: Lyman and Werner Bands

The energy level structure of H2 was reviewed in Chapter 5. Each vibration–
rotation level (v, J) of the electronic ground state X 1Σ+

g of the hydrogen molecule
H2 has a large number of permitted electric-dipole transitions to vibration–rotation
levels (vu, Ju) of electronic excited states. The first electronic excited state B 1Σ+

u

and the second electronic excited state C 1Πu have permitted transitions to the low-
est (v, J) levels of the electronic ground state at wavelengths λ > 912 Å, so that
these lines can be observed in neutral gas where radiation shortward of the Lyman
limit is totally absorbed. Transitions between X 1Σ+

g and B 1Σ+
u are referred to as

Lyman band transitions, and transition between X 1Σ+
g and C 1Πu are Werner

band transitions.5

Table 9.2 lists the permitted transitions with λ > 970 Å out of a single vibration–
rotation level, (v=0, J =1), of the electronic ground state. The lines have oscil-
lator strengths ranging from 0.00058 for Ly 0-0P(1) to 0.024 for Wer 0-0Q(1) –
a factor of 40. The fact that a single lower level has a large number of permitted
absorption lines allows the lower-level population to be determined using intrinsi-
cally weak transitions if the stronger transitions are on the flat portion of the curve
of growth.

Because of the numerous lines and the range of oscillator strengths, observation
of the rich absorption spectrum of H2 can yield the column densities of H2 from the
J =0 and J =1 rotational levels (that generally account for the bulk of the H2) to
rotational levels as high as J=5 or 6 that may contain only ∼ 10−4 of the H2. The
rotational distribution can tell us much about the physical conditions in the region

5The second excited state C 1Πu is actually split into two sets of energy states, sometimes denoted
C+ and C−, with nearly identical energies. The Q branch (∆J = 0) Werner band transitions are
between X 1Σ+

g and the C− levels, and the R and P branch (∆J = ±1) Werner band transitions are
between X 1Σ+

g and C+.
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where the H2 is located – see Chapter 31 for further details.

9.10 “Metal” Lines

Following astronomical usage, all elements heavier than He are here referred to
as “metals” (including elements such as N, O, and Ne!!). With the exception of
the two lightest inert gases He and Ne, all other neutral atoms have resonance
lines (that is, permitted absorption lines out of the electronic ground state) with
λ > 912 Å, allowing them to be observed on sightlines where neutral hydrogen
is present. For most atoms and ions, the resonance lines all fall shortward of
∼ 3000 Å. For ground-based observatories, the Earth’s atmosphere is effectively
opaque at wavelength λ < 3000 Å, so that λ < 3000 Å transitions can be observed
only from space or in redshifted systems.

A small number of atoms and ions do have resonance lines at wavelengths λ >
3000 Å, allowing them to be observed from the ground. Table 9.3 lists selected
resonance lines with λ > 3000 Å.

Some of the lines in Table 9.3 are routinely observed, in particular the Na I D
doublet at 5891.6, 5897.6 Å, the K I doublet at 7667.0, 7701.1 Å, and the Ca II dou-
blet at 3934.8, 3969.6 Å.

Because Na I and K I are not the dominant ion stage for these elements, one
cannot reliably estimate the total amount of H or H2 associated with Na I or K I
absorption lines, but these lines do serve as evidence that some gas is present at the

Table 9.3 Selecteda Resonance Linesb with λ > 3300 Å, f�u > 0.015

Configurations � u E�/hc ( cm
−1) λvac( Å) f�u Note

Na I 2p63s− 2p63p 2S1/2
2P o

3/2
0 5891.582 0.641 Na D2

2S1/2
2P o

1/2
0 5897.558 0.320 Na D1

Al I 3s23p− 3s24s 2P o
1/2

2S1/2 0 3945.122 0.115
2P o

3/2
2S3/2 112.06 3962.641 0.12

K I 3p64s− 3p64p 2S1/2
2P o

3/2
0 7667.01 0.682

2S1/2
2P o

1/2
0 7701.08 0.340

Ca I 3p64s2 − 3p64s4p 1S0
1P o

1 0 4227.918 1.750
Ca II 3p64s− 3p64p 2S1/2

2P o
3/2

0 3934.77 0.682 Ca II K
2S1/2

2P o
1/2

0 3969.59 0.33 Ca II H
Ti I 3d24s2 − 3d24s4p 3F2 z 3F o

2 0 5175.19 0.0153
3F2 y 3D o

1 0 3949.79 0.0681
3F2 ? o

2 0 3930.99 0.0174
3F2 y 3G o

3 0 3636.50 0.223
3F2 w 3D o

1 0 3371.40 0.078
3F2 w 3D o

2 0 3359.24 0.13
3F2 x 3G o

3 0 3342.84 0.15
3F3 y 3F o

3 170.13 3990.88 0.0905
3F3 ? o

2 170.13 3957.46 0.0503
3F3 z 3P o

2 170.13 3948.89 0.016
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Table 9.3 contd.

configurations � u E�/hc ( cm
−1) λvac( Å) f�u Note

3F3 ? o
3 170.13 3925.64 0.0165

3F3 x 3F o
3 170.13 3742.12 0.0875

3F3 y 3G o
4 170.13 3643.71 0.198

3F3 w 3D o
2 170.13 3378.55 0.084

3F3 x 3G o
4 170.13 3355.60 0.15

3F4 y 3F o
4 386.87 3999.77 0.0979

3F4 ? o
3 386.87 3959.33 0.0740

3F4 y 3G o
5 386.87 3654.54 0.185

3F4 ? o
3 386.87 3386.92 0.067

3F4 x 3G o
5 386.87 3372.42 0.15

Ti II 3d24s− 3d24p 4F3/2 z 4G o
5/2

0 3384.74 0.281
4F5/2 z 4G o

7/2
94.1 3373.77 0.253

4F7/2 z 4G o
9/2

225.73 3362.18 0.23
Cr I 3d54s− 3d54p a 7S3 z 7P o

2 0 4290.93 0.0623
a 7S3 z 7P o

3 0 4276.00 0.0842
a 7S3 z 7P o

4 0 4255.55 0.110
3d54s− 3d44s4p a 7S3 y 7P o

2 0 3606.36 0.226
a 7S3 y 7P o

3 0 3594.52 0.291
a 7S3 y 7P o

4 0 3579.71 0.366
Mn I 3d54s2 − 3d54s4p a 6S5/2 z 6P o

3/2
0 4035.62 0.0257

a 6S5/2 z 6P o
5/2

0 4034.21 0.0403
a 6S5/2 z 6P o

7/2
0 4031.90 0.055

Fe I 3d64s2 − 3d64s4p 5D4 z 5D o
4 0 3861.005 0.0217

3d64s2 − 3d64s4p 5D4 z 5F o
5 0 3720.993 0.0411

Co I 3d74s2 − 3d74s4p a4F9/2 z4F o
9/2

0 3527.86 0.024
a4F9/2 z4G o

11/2
0 3466.79 0.020

a4F9/2 z4D o
7/2

0 3413.61 0.017
a4F9/2 z4F o

7/2
816.00 3576.38 0.018

a4F9/2 z4G o
11/2

816.00 3514.48 0.018
Ni I 3d84s2 − 3d84s4p 3F4 ? o

3 0 3370.54 0.024
3d94s− 3d94p 3D3

3P o
2 204.787 3525.55 0.13

3d94s− 3d84s4p 3D3
3F o

4 204.787 3462.64 0.062
3d94s− 3d94p 3D3

3F o
3 204.787 3434.54 0.030

3D3
3F o

4 204.787 3415.74 0.12
3d94s− 3d94p 3D3 ? o

3 204.787 3393.96 0.041
3d94s− 3d94p 3D2

3F o
3 879.816 3516.06 0.11

3d94s− 3d94p 3D2
3P o

1 879.816 3493.96 0.11
3d94s− 3d94p 3D2 ? o

3 879.816 3473.53 0.03
3d94s− 3d84s4p 3D2

5F o
3 879.816 3453.88 0.025

3d94s− 3d94p 3D2
3D o

2 879.816 3447.25 0.078
a Limited to elements with abundance (X/H)� > 8× 10−8

b Transition data from NIST Atomic Spectra Database v4.0.0 (Ralchenko et al. 2010)

radial velocity of the Na I or K I lines.
Ca II is a more interesting case, because under some circumstances it may be

the dominant ion stage. Ca I, if at all abundant, can be observed with a strong
transition at 4228 Å. However, the energy required to photoionize Ca II→Ca III is
only 11.87 eV (see Appendix D), and therefore, even in an H I region, some of the
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Ca will be in the form of Ca III, which is unobservable. But from the Ca I/Ca II
the ionization conditions can be characterized, and the amount of Ca III estimated,
allowing the total gas-phase column density of Ca to be estimated. Unfortunately,
an unknown (but usually large) fraction of the Ca is generally locked up in dust
grains (this will be discussed in Chapter 23), and therefore from the Ca I and Ca II
observations alone, one cannot reliably estimate the total amount of H associated
with the observed Ca II absorption.

Another interesting case is Ti, where Ti I and Ti II, the two dominant ion stages
for Ti in an H I cloud, both have resonance lines in the optical, allowing the total
column of gas-phase Ti to be determined from ground-based observations. How-
ever, Ti also shares with Ca the problem that a large, but unknown, fraction of the
Ti is generally locked up in dust.

Most of the abundant atoms and ions, with a few exceptions (e.g., He, Ne, O II)
have permitted absorption lines in the vacuum ultraviolet with wavelengths long-
ward of 912 Å so that they will not photoionize hydrogen. Table 9.4 lists selected
resonance lines with 912 Å < λ < 3000 Å.

Table 9.4 Selected Resonance Linesa with λ < 3000 Å

Configurations � u E�/hc( cm
−1) λvac( Å) f�u

C IV 1s22s− 1s22p 2S1/2
2P o

1/2
0 1550.772 0.0962

2S1/2
2P o

3/2
0 1548.202 0.190

N V 1s22s− 1s22p 2S1/2
2P o

1/2
0 1242.804 0.0780

2S1/2
2P o

3/2
0 1242.821 0.156

O VI 1s22s− 1s22p 2S1/2
2P o

1/2
0 1037.613 0.066

2S1/2
2P o

3/2
0 1037.921 0.133

C III 2s2 − 2s2p 1S0
1P o

1 0 977.02 0.7586
C II 2s22p− 2s2p2 2P o

1/2
2D o

3/2
0 1334.532 0.127

2P o
3/2

2D o
5/2

63.42 1335.708 0.114
N III 2s22p− 2s2p2 2P o

1/2
2D o

3/2
0 989.790 0.123

2P o
3/2

2D o
5/2

174.4 991.577 0.110

C I 2s22p2 − 2s22p3s 3P0
3P o

1 0 1656.928 0.140
3P1

3P o
2 16.40 1656.267 0.0588

3P2
3P o

2 43.40 1657.008 0.104
N II 2s22p2 − 2s2p3 3P0

3D o
1 0 1083.990 0.115

3P1
3D o

2 48.7 1084.580 0.0861
3P2

3D o
3 130.8 1085.701 0.0957

N I 2s22p3 − 2s22p23s 4S o
3/2

4P5/2 0 1199.550 0.130
4S o

3/2
4P3/2 0 1200.223 0.0862

O I 2s22p4 − 2s22p33s 3P2
3S o

1 0 1302.168 0.0520
3P1

3S o
1 158.265 1304.858 0.0518

3P0
3S o

1 226.977 1306.029 0.0519
Mg II 2p63s− 2p63p 2S1/2

2P o
1/2

0 2803.531 0.303
2S1/2

2P o
3/2

0 2796.352 0.608
Al III 2p63s− 2p63p 2S1/2

2P o
1/2

0 1862.790 0.277
2S1/2

2P o
3/2

0 1854.716 0.557
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Table 9.4 contd.

Configurations � u E�/hc ( cm
−1) λvac( Å) f�u

Mg I 2p63s2 − 2p63s3p 1S0
1P o

1 0 2852.964 1.80
Al II 2p63s2 − 2p63s3p 1S0

1P o
1 0 1670.787 1.83

Si III 2p63s2 − 2p63s3p 1S0
1P o

1 0 1206.51 1.67
P IV 2p63s2 − 2p63s3p 1S0

1P o
1 0 950.655 1.60

Si II 3s23p− 3s24s 2P o
1/2

2S1/2 0 1526.72 0.133
2P o

3/2
2S1/2 287.24 1533.45 0.133

P III 3s23p− 3s3p2 2P o
1/2

2D3/2 0 1334.808 0.029
2P o

3/2
2D5/2 559.14 1344.327 0.026

Si I 3s23p2 − 3s23p4s 3P0
3P o

1 0 2515.08 0.17
3P1

3P o
2 77.115 2507.652 0.0732

3P2
3P o

2 223.157 2516.870 0.115
P II 3s23p2 − 3s3p3 3P0

3P o
1 0 1301.87 0.038

3P1
3P o

2 164.9 1305.48 0.016
3P2

3P o
2 469.12 1310.70 0.115

S III 3s23p2 − 3s3p3 3P0
3D o

1 0 1190.206 0.61
3P1

3D o
2 298.69 1194.061 0.46

3P2
3D o

3 833.08 1200.07 0.51
Cl IV 3s23p2 − 3s3p3 3P0

3D o
1 0 973.21 0.55

3P1
3D o

2 492.0 977.56 0.41
3P2

3D o
3 1341.9 984.95 0.47

P I 3s23p3 − 3s23p24s 4S o
3/2

4P5/2 0 1774.951 0.154
S II 3s23p3 − 3s23p24s 4S o

3/2
4P5/2 0 1259.518 0.12

Cl III 3s23p3 − 3s23p24s 4S o
3/2

4P5/2 0 1015.019 0.58

S I 3s23p4 − 3s23p34s 3P2
3S o

1 0 1807.311 0.11
3P1

3S o
1 396.055 1820.343 0.11

3P0
3S o

1 573.640 1826.245 0.11
Cl II 3s23p4 − 3s3p5 3P2

3P o
2 0 1071.036 0.014

3P1
3P o

2 696.00 1079.080 0.00793
3P0

3P o
1 996.47 1075.230 0.019

Cl I 3s23p5 − 3s23p44s 2P o
3/2

2P3/2 0 1347.240 0.114
2P o

1/2
2P3/2 882.352 1351.657 0.0885

Ar II 3s23p5 − 3s3p6 2P o
3/2

2S1/2 0 919.781 0.0089
2P o

1/2
2S1/2 1431.583 932.054 0.0087

Ar I 3p6 − 3p54s 1S0
2[1/2] o 0 1048.220 0.25

a Transition data from NIST Atomic Spectra Database v4.0.0 (Ralchenko et al. 2010)

Note that the ultraviolet resonance lines allow detection of many different ioniza-
tion stages of a given element: a prime example is carbon, which can be detected
as C I, C II, C III, or C IV. On the other hand, λ > 912 Å ultraviolet absorption
spectroscopy cannot detect neon at all, while oxygen can be detected via permitted
ultraviolet absorption lines only if either neutral or 5-times ionized.
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9.11 Abundances in H I Gas

The gas phase abundances of many elements relative to H have been determined
on many different sightlines using interstellar absorption lines. Such studies re-
quire that the dominant ionization states be measured. This requirement prevents
determination of the abundances of some elements, such as Ne or Na, where the
dominant ionization state (Ne0 or Na+) lacks resonance lines with λ > 912 Å.

The observed gas-phase abundances vary from one sightline to another, which is
presumed to reflect primarily variations in the amounts of various elements trapped
in dust grains. Such removal of elements from the gas is known as interstellar
depletion. Some elements, like Fe, are extremely underabundant in the gas phase,
with gas-phase abundances that are typically only a few percent of the solar abun-
dance, shown in Table 1.4.

Jenkins (2009) analyzed absorption line measurements on many sightlines. Jenk-
ins found that the abundances of different elements can be empirically reproduced
to fair accuracy by a fitting formula:

log10(X/H)gas = log10(X/H)� + CX +AXF
 , (9.36)

where CX and AX < 0 are constants, and F
 is a parameter that varies from one
region to another, scaled so that the highest abundance regions have F
 ≈ 0, and
low-abundance diffuse regions have F
 ≈ 1. Sightlines with F


>∼ 0.8 often have
more than trace of amounts of H2 present.

As was discussed in §1.1, neutral H in the ISM is thought to occur in several
distinct “phases,” with different levels of depletion of the elements. In Table 9.5,
we use the depletion parameters AX and CX found by Jenkins to estimate the
abundances of selected elements in different phases of the ISM.

Interstellar H I is often classified as “warm neutral medium” (WNM), “cold neu-
tral medium” (CNM), and “diffuse H2.” We estimate that WNM material typically
has F
 ≈ 0.1, and CNM material typically has F
 ≈ 0.4. We include abundance
estimates for the “warm ionized medium” (WIM), for which we take F
 = −0.1,
and for diffuse H2, for which we take F
 ≈ 0.8.

Table 9.5 lists the gas-phase abundances estimated from Eq. (9.36) using AX and
CX values obtained from Jenkins (2009), with two adjustments. For carbon, Sofia
& Parvathi (2010) find that the oscillator strength for C II ] 2325Å – used for many
of the published measurements of the dominant ionization state C II – was too low
by a factor of ∼2; hence we have lowered Jenkins’s values for CC by log10 2. For
sulfur, we use Jenkins’s recommended values for CS and AS to estimate the gas-
phase abundances for the CNM and diffuse H2, but for the WIM and WNM, where
Jenkins’s fit would predict sulfur abundances in excess of solar, we assume solar
abundances.

With the exception of He, Ne, Na, Al, and Ca, Table 9.5 includes abundance
estimates for all elements with (X/H)� > 10−6, and additionally includes Ti,
which has a low abundance but is an example of an element that shows extreme
levels of depletion.
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Table 9.5 Gas-Phase Abundances Relative to H of Selected Elements (ppm) in H I
Regions

Element Solara WIM WNM CNM Diffuse H2

F�=−0.1 F�=0.1 F�=0.4 F�=0.8

C b 295. 114. 111. 109. 93.
N 74. 62. 62. 62. 62.
O 537. 592. 534. 457. 372.
Na 2.04 (2.) (2.) (2.) (2.)
Mg 43.7 28.1 17.8 8.9 3.6
Al 2.95 (0.54) (0.27) (0.097) (0.025)
Si 35.5 31.6 18.7 8.5 3.0
S 14.5 14.5 14.5 11.8 5.3
Ca 2.14 (0.39) (0.20) (0.070) (0.018)
Ti 0.089 0.013 0.0052 0.0013 0.0002
Fe 34.7 5.2 2.9 1.19 0.36
Ni 1.74 0.32 0.16 0.057 0.015
M+ c 432. 197. 168. 142. 107.
a From Table 1.4.
b Gas-phase C abundance from Jenkins (2009) reduced by factor 2 (see text).
c Photoionizable “metals”: M = C+Na +Mg + Si + S + Fe + 3.9×Ni.

As we will see in Chapter 16, elements with ionization potentials I < 13.6 eV
tend to be photoionized in H I clouds, and can make an important contribution to
the electron density in cool H I gas. The major electron contributors are C, Na,
Mg, Al, Si, S, Ca, Fe, and Ni. The depletion of Na is not well-determined, but
circumstantial evidence suggests that it does not strongly deplete (Weingartner &
Draine 2001b). Jenkins has not determined the depletion parameters for Al and
Ca; we provisionally assume that these have the same depletion as Ni (on the well-
studied sightline to ζOph, the depletion of Al is similar to Ni.) Thus, we take the
gas phase abundance of “metals” with IX < IH to be M/H = C/H+(Na/H)� +
Mg/H + Si/H + S/H + Fe/H + 3.9 × Ni/H, where the factor 3.9 allows for Al
and Ca. The resulting estimates for the abundance of photoionizable metals M+

are given in Table 9.5.



Chapter Ten

Emission and Absorption by a Thermal Plasma

A thermal plasma is a partially ionized gas where the particle velocity distribu-
tions are very close to Maxwellian distributions. Such plasmas are ubiquitous in
interstellar and intergalactic space, with temperatures ranging from ∼ 103 K to
∼ 108 K. There are three important emission processes in thermal plasmas:

1. Free–free transitions, where the emitting electron is inelastically scattered
from one free state to another, with emission of a continuum photon.

2. Free–bound transitions, where the emitting electron is initially free, but is
captured into a bound state, with emission of a continuum photon).

3. Bound-bound transitions, where the emitting electron makes a transition
from one bound state to another, with the difference in energy carried away
by one or two photons.

In this chapter, we describe the first two of these processes. free–free emission
and free–bound emission together produce a characteristic spectrum that, when
measured, can be used to estimate the temperature of the plasma. Bound-bound
transitions will be discussed in Chapters 14 and 17.

10.1 Free–Free Emission (Bremsstrahlung)

The electrons and ions in a thermal plasma scatter off one another. In classical
electromagnetism, an accelerating charge radiates electromagnetic energy; there-
fore, we expect these scattering events to produce electromagnetic radiation. The
electrons, with their much smaller mass, undergo much larger accelerations and
therefore dominate the radiation.1

The emission is a continuum extending from very low (radio) frequencies, up
to frequencies where the emitted photon energies are comparable to the thermal
energy kT . A classical analysis of the power radiated by electrons scattered by
ions with charge Zie leads one to write the free–free emissivity (power radiated

1In classical electromagnetism, the power radiated by an accelerated charge q is proportional to
|qa|2, where a is the instantaneous acceleration; hence, in an electron–proton plasma, the power radi-
ated by the protons is smaller by a factor (me/mp)2 = 3× 10−7 than that radiated by the electrons.
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per unit frequency, per unit volume, per steradian) as

jff,ν =
8

3

(
2π

3

)1/2

gff,i
e6

m2
ec

3

(me

kT

)1/2
e−hν/kTneZ

2
i ni (10.1)

=5.444× 10−41gffT
−1/2
4 e−hν/kTZ2

i nine erg cm
3 s−1 sr−1 Hz−1, (10.2)

where the dimensionless factor gff,i(ν, T ) is called the Gaunt factor for free–free
transitions. A classical treatment (Kramers 1923) gives gff = 1. The actual Gaunt
factor gff(ν, T ) differs from unity because of quantum effects. Note that if the
Gaunt factor were a constant, the emissivity jff,ν [Eq. (10.1)] would be independent
of frequency ν – i.e., “flat” – at frequencies ν � kT/h.

The power radiated per volume by free–free emission is

Λff =4π

∫ ∞

0

jff,νdν =
32π

3

(
2π

3

)1/2
e6

m2
ehc

3
(mekT )

1/2 〈gff〉TZ2
i nine , (10.3)

where

〈gff〉T ≡
∫ ∞

0

dhν

kT
e−hν/kT gff(ν, T ) (10.4)

is the frequency-averaged Gaunt factor. Because 〈gff〉T is almost independent of
T , the radiated power Λff ∝ nineT

0.5.

10.2� Gaunt Factor

The Gaunt factor takes into account quantum-mechanical effects. At very low
frequencies, approaching the “plasma frequency” νp = 8.98(ne/ cm

−3)1/2 kHz
(see §11.1), collective effects in the plasma become important, but for frequencies
ν � νp, we have just a two-body Coulomb scattering problem. For frequencies
νp � ν � kT/h, the Gaunt factor from quantum-mechanical calculations is ap-
proximately

gff ≈
√
3

π

[
ln

(2kT )3/2

πZie2m
1/2
e ν

− 5γ

2

]
(10.5)

=4.691

[
1− 0.118 ln

(
Ziν9/10

T
3/2
4

)]
(10.6)

≈ 6.155 (Ziν9)
−0.118 T 0.177

4 , (10.7)

where γ = 0.577216 . . . is Euler’s constant, ν9 ≡ ν/GHz = 30 cm/λ, and T4 ≡
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Figure 10.1 Gaunt factor gff(ν) for electron-proton free–free transitions. Broken
curves (labeled by temperature T ) are Eq. (10.9). The points are numerical results
from Hummer (1988), showing that Eq. (10.9) is accurate to ∼ 1%.

T/104 K. The power-law approximation (10.7) is accurate to ±10% for 0.14 <

Ziν9/T
3/2
4 < 250; for frequencies ν satisfying this condition [and the conditions

νp � ν � kT/h required by approximation (10.5)], the free–free emissivity

jff,ν ≈ 3.35×10−40Z1.882
i nineν

−0.118
9 T−0.323

4 erg cm3 s−1 sr−1 Hz−1 . (10.8)

Thus the radio and microwave free–free emission spectrum is almost flat, declining
with increasing frequency as ∼ ν−0.12.

At higher frequencies, the Gaunt factor has been calculated numerically; values
of gff(ν) calculated by Hummer (1988) are shown in Figure 10.1 for nine values of
T . The numerical results can be approximated by

gff(ν, T ) ≈ ln

{
exp

[
5.960−

√
3

π
ln
(
Ziν9T

−3/2
4

)]
+ e

}
, (10.9)

where e = 2.71828.... This analytic approximation, shown in Figure 10.1, is accu-
rate to within ∼ 1% over a wide range of temperatures and frequencies.

For T4 ≈ 1, the numerical results give gff ≈ 1 for ν >∼ 1014 Hz. With the
emissivity jν ∝ gff(ν)e

−hν/kT , it follows that most of the free–free power is near
hν ≈ kT .
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10.3 Frequency-Averaged Gaunt Factor

The frequency-averaged Gaunt factor (10.4) has been calculated numerically by
Karzas & Latter (1961) for 104.2 K < T/Z2 < 108.2 K. In the vicinity of 104 K,

〈gff〉T ≈ 1.34
(
T4/Z

2
i

)0.05
(10.10)

to within ∼2% for 0.1 < T4/Z
2
i < 3. Over the full temperature range 104.2 K ≤

(T/Z2
i ) ≤ 108.2 K, their results are reproduced to within 2% by the fitting function

〈gff〉T ≈ 1 +
0.44

1 + 0.058[ln(T/105.4Z2
i K)]2

, (10.11)

and the fitting function should remain applicable up to ∼ 109 K. Inserting Eq.
(10.11) into Eq. (10.3), we obtain the free–free power per volume for T ≥ 104.2 K:

Λff(T )≈1.422×10−25

{
1+

0.44

1+0.058[ln(T/105.4Z2
i K)]2

}
T

1/2
4 Z2

i nine
erg cm3

s
.

(10.12)

10.4 Free–Free Absorption

As we have seen in §7.4.1, absorption and emission are intimately related: if the
energy levels involved in the absorption and emission processes2 are populated
according to a thermal distribution with temperature T , the attenuation coefficient
κν and the emissivity jν must satisfy Kirchhoff’s law: κν = jν/Bν(T ), where
Bν is the Planck function. Thus, the attenuation coefficient due to free–free
absorption is obtained from the emissivity in Eq. (10.1):

κff,ν =
4

3

(
2π

3

)1/2
e6

m
3/2
e (kT )1/2hc ν3

[
1− e−hν/kT

]
Z2
i ninegff , (10.13)

where gff(ν, T ) is the Gaunt factor for free–free emission. Note that Eq. (10.13)
includes the correction for stimulated emission through the factor

[
1− e−hν/kT

]
,

2The energy levels involved are of course just the translational motions of the electrons – the emis-
sion process involves a loss of kinetic energy equal to hν. Electron–ion and electron–electron elastic
scattering will ensure that these kinetic energy states are populated according to a thermal distribution.
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In the “radio” limit hν � kT , we expand the exponential and obtain

κff,ν

nine
≈ 4

3

(
2π

3

)1/2
e6

(mekT )3/2c ν2
Z2
i gff (hν � kT ) (10.14)

=1.772× 10−26T−1.5
4 ν−2

9 Z2
i gff cm5 (10.15)

≈ 1.091× 10−25Z1.882
i T−1.323

4 ν−2.118
9 cm5 , (10.16)

where we have used eq (10.7). Equation (10.16) is valid for 0.14 <∼ ν9/T
1.5
4

<∼ 250.
We see from Eq. (10.16) that free–free absorption becomes strong at low fre-

quencies.

10.5 Emission Measure

The intensity Iν due to free–free emission from an ionized region is obtained by
integrating the equation of radiative transfer:

Iν(s)= Iν(0)e
−τν +

∫ s

0

ds′ jff,ν e−[τν(s)−τν(s
′)] (10.17)

= Iν(0)e
−τν +

∫ τν

0

dτ ′
[
jff,ν

κff,ν

]
e−(τ−τ ′) . (10.18)

If the ionized region has a uniform temperature T , then

Iν = Iν(0)e
−τν +

[
jff,ν

κff,ν

]
T

(
1− e−τν

)
(10.19)

= Iν(0)e
−τν +

(1− e−τν )

τν

[
jff,ν

nenp

]
T

EM , (10.20)

where the emission measure EM is defined by

EM ≡
∫

nenpds =

[
nenp

κff,ν

]
T

τν . (10.21)

For τ � 1, the factor [(1− e−τ )/τ ] ≈ 1, and Iν increases linearly with EM . The
optical depth τν is (setting Zi = 1)

τν =1.772× 10−26T−1.5
4 ν−2

9 gff

(
ni

np

)
EM cm5 (10.22)

≈ 1.091T−1.323
4 ν−2.118

9 cm5

(
ni

np

)
EM

1025 cm−5
. (10.23)

Bright H II regions may have ne ≈ np ≈ 103 cm−3 over pathlengths ∆s ≈ 1 pc,
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resulting in emission measures EM ≈ 106 cm−6 pc ≈ 1024.5 cm−5, with a wide
range around this value.3 Giant H II regions or very dense H II regions can have
EM ≈ 1026 cm−5 or even larger. Attenuation by free–free absorption is generally
negligible in the ISM for ν >∼ 10GHz, but H II regions can become optically thick
for ν <∼ 1GHz.

10.6 Free–Bound Transitions: Recombination Continuum

Free–free emission involves a transition of an electron from one “free” kinetic en-
ergy state to another. It is also possible for the electron to be captured by an ion,
making a transition from a free state to a specific bound energy level, with emission
of a photon: this is referred to as a “free → bound transition,” or “radiative recom-
bination,” and associated with this process is a specific and distinctive emission
spectrum.

The inverse of radiative recombination is photoionization, and we can use Kirch-
hoff’s law to relate the bound-free emissivity to the cross section for photoioniza-
tion:

jfb,ν =κbf,νBν(T ) = [nb]LTEσb,pi(ν)
[
1− e−hν/kT

]
Bν(T ) , (10.24)

where [nb]LTE is the number density of atoms in bound state b if in LTE at tempera-
ture T with electron and ion densities ni and ne, and σb,pi(ν) is the photoionization
cross section for bound state b. Statistical mechanics tells us how to relate [nb]LTE

to the number densities of electrons and ions – see Eq. (3.33). Using this result, we
obtain the free–bound emissivity

jfb,ν =
gb
gegi

h4ν3

(2πmekT )3/2c2
e(Ib−hν)/kT σb,pi(ν)neni , (10.25)

where gb is the degeneracy of bound state b, gi is the degeneracy of the ion (nor-
mally in its electronic ground state), ge = 2 is the degeneracy of the free electron
state, and Ib is the energy required to ionize from bound state b. Not surprisingly,
the free–bound emissivity jfb,ν is proportional to the product neni. Each bound
state b contributes a recombination continuum beginning at hν = Ib, cut off at high
frequencies by the factor exp(−(hν − Ib)/kT ). For hydrogen, Ib = IH/n

2 and
gb/gi = 2n2 for bound states of principal quantum number n. The spectrum of this
emission for a hydrogen plasma is illustrated in Figure 10.2.

10.7 Radio Recombination Lines

In a hydrogen plasma, collisional processes will maintain a population of H atoms
in very high quantum states with principal quantum number n >∼ 100 – referred

3We will see in Chapter 28 that the Orion Nebula has an rms electron density ne ≈ 3200 cm−3 and
a diameter 2R ≈ 0.5 pc, corresponding to a maximum emission measure EM ≈ 5×106 cm−3 pc ≈
1.5× 1025 cm−5.
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Figure 10.2 Solid line: The continuous emission spectrum of a T = 8000K hydrogen
plasma, including free–free emission, recombination continuum emission, and two-
photon emission from H 2s (see Chapter 14). Separate contributions of free–free and
2-photon emission are labeled. The two-photon component is suppressed at densities
ne

>∼ 103 cm−3 (see Chapter 14). Emission lines are not shown.

to as Rydberg states. These levels are populated mainly by three-body collisional
processes (see §3.7). For a given principal quantum number n, collisions maintain
the different angular momentum states � populated very nearly in proportion to
their degeneracies 2�+ 1.

These Rydberg levels can undergo spontaneous decay to lower levels. The n +
1 → n transitions, referred to as nα transitions, are at frequencies

νnα =
2n+ 1

[n(n+ 1)]
2

IH
h

≈ 6.479

(
100.5

n+ 0.5

)3

GHz . (10.26)

The 166α transition is frequently observed, because its 1.425-GHz frequency is
conveniently close to the 1.420-GHz (λ = 21.1 cm) transition of atomic hydrogen.
The nα transitions with n � 1 have Einstein coefficients (averaged over the �
states)4

An+1→n ≈ 6.130× 109(n+ 0.7)−5 s−1 . (10.27)

4Equation (10.27), obtained from an asymptotic formula by Menzel (1968), reproduces numerical
values An+1→n from Wiese et al. (1966) to within 1% for n ≥ 4.
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The attenuation coefficient κ for a radio recombination line is

κ(ν) = n�
λ2

8π

gu
g�

Au�φν

(
1− nu/gu

n�/g�

)
, (10.28)

where φν is the normalized line profile (
∫
φνdν = 1), and the negative term is the

correction for stimulated emission. Recall the definition of departure coefficient bn
in Eq. (3.45): for a level with principal quantum number n, nn/gn ∝ bne

IH/n2kT .
For nα transitions (levels � and u have principal quantum numbers n and n + 1,
respectively),(

1− nu/gu
n�/g�

)
= 1− bn+1

bn
exp

[
− (2n+ 1)

n2(n+ 1)2
IH
kT

]
. (10.29)

Salem & Brocklehurst (1979) define

βn ≡
1− nn+1/gn+1

nn/gn

1− e−hν/kT
, (10.30)

so that the attenuation coefficient for radiation in the nα transition becomes

κν = nn

λ2
n+1,n

8π

(
n+ 1

n

)2

An+1→nφνβn

(
1− e−hν/kT

)
, (10.31)

where hν = En+1 − En = (2n + 1)IH/[n(n + 1)]2. In LTE, the level popula-
tions would have βn = 1. If βn < 0, there is a population inversion, and maser
amplification will take place.

Figure 10.3 shows βn for three different electron densities. For the ne = 10 cm−3

case, βn < 0 for n <∼ 400: the competition between radiative decay and collisions
results in a population inversion for these levels – stimulated emission exceeds
absorption, and maser amplification of the line radiation will take place. For the
ne = 103 cm−3 case, a population inversion is present for n <∼ 300: collisions are
able to keep the n > 300 levels close enough to thermal so that the attenuation
coefficient remains positive. For the ne = 105 cm−3 case, corresponding to a very
dense H II region, collisions are rapid enough that masing occurs only for n <∼ 130.
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Figure 10.3 Stimulated emission correction factor β for nα radio recombination lines
(Salem & Brocklehurst 1979). When βn < 0, line intensities will be affected by maser
amplification. See Fig. 3.1 for the departure coefficients for these three cases.



Chapter Eleven

Propagation of Radio Waves through the ISM

Radio waves propagating through a plasma interact with the plasma particles, and,
as a result, the velocity of propagation of the wave differs from the speed of light
in vacuo. The interstellar electron density ne is tiny compared to the densities of
laboratory plasmas, so these effects are small, but because of the long pathlengths,
the small change in propagation speed can be measurable, thus providing informa-
tion about the electron density ne. In addition, the presence of a magnetic field
leads to a difference in the phase velocity for right- and left-circularly polarized
radio waves; this small difference results in measurable Faraday rotation of the
plane of polarization of linearly polarized radio waves, thus providing us with an
important diagnostic of the interstellar magnetic field.

Radio waves can also be refracted by inhomogeneities in the plasma, leading
to the phenomenon of interstellar scintillation; observations of this scintillation
provide valuable – and in some cases, perplexing – information about the density
structure of the ISM, with implications for interstellar turbulence.

11.1 Dispersion Relation for Cold Plasmas

In a cold plasma with electron density ne, electromagnetic waves propagating with
E ∝ eikx−iωt must satisfy the dispersion relation (Kulsrud 2005)

k2c2 = ω2 − ω2
p , (11.1)

where

ωp ≡
(
4πnee

2

me

)1/2

= 5.641× 104
( ne

cm−3

)1/2
s−1 (11.2)

is known as the plasma frequency. From this equation, it is evident that there
are no propagating modes with frequencies below the plasma frequency ωp. Radio
astronomical observations are in general conducted at frequencies ν >∼ 108 Hz, far
above the plasma frequency νp = ωp/2π = 8.979× 103(ne/ cm

−3)1/2 Hz, so we
can in general make the approximation ωp/ω � 1 when discussing propagation of
electromagnetic waves through the ISM.

The phase velocity – the speed of propagation of a surface of constant phase
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for a monochromatic wave – is

vphase ≡ ω

k
=

c√
1− (ωp/ω)2

> c , (11.3)

and the plasma has a refractive index

m(ω) ≡ c

vphase
=

(
1− ω2

p

ω2

)1/2

< 1 . (11.4)

11.2 Dispersion

A “wave packet” in a dispersive medium will propagate with the group velocity

vg(ω) =
dω

dk
. (11.5)

In a plasma, the group velocity is

vg = c

(
1− ω2

p

ω2

)1/2

. (11.6)

This is the speed at which information can be transmitted; note that vg < c.
Suppose that an astronomical object, e.g., a pulsar, emits a pulse of radiation at

t = 0. If the distance to the pulsar is L, the time of arrival of energy at frequency
ν = ω/2π is

tarrival =

∫ L

0

dL

vg(ω)
(11.7)

≈
∫ L

0

dL
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(
1 +

1

2

ω2
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)
(11.8)
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c
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1

2cω2
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ω2
p dL (11.9)

=
L

c
+

e2

2πmec

1

ν2
DM (11.10)

=
L

c
+ 4.146× 10−3

( ν

GHz

)−2 DM

cm−3 pc
s , (11.11)

where the time delay has been written in terms of the dispersion measure:

DM ≡
∫ L

0

nedL . (11.12)
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A typical dispersion measure to a pulsar ∼ 3 kpc away might be DM ≈ 102 cm−3 pc;
for this value of DM , the pulse arrival time at 1GHz would be delayed by ∼ 0.4 s
after traveling ∼ 104 years.

Because of the dependence on ν−2, low frequencies arrive later, and we speak
of the pulse as being “dispersed.” The actual pulse travel time tarrival is unknown,
but from measurement of the pulse arrival time at different frequencies, we can
observationally determine dtarrival/dν. Differentiating Eq. (11.10), we obtain

DM = −πmec

e2
ν3

dtarrival
dν

. (11.13)

This method has been used to determine the dispersion measure DM to many
hundreds of pulsars (Taylor & Cordes 1993; Cordes & Lazio 2003). If the distance

Perseus
Outer

Figure 11.1 The spiral pattern for the Milky Way as estimated from pulsar DM , where
spiral arms are assumed to coincide with regions of enhanced electron density ne.
Dashed line: Pattern favored by Cordes & Lazio (2003). Solid line: Pattern obtained
by Taylor & Cordes (1993). A similar pattern was inferred by Georgelin & Georgelin
(1976) based on the locations of bright H II regions. Figure from Cordes & Lazio
(2003).
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L to the pulsar can be estimated from other considerations, the measured DM
provides the mean value of the electron density along this line of sight: 〈ne〉 =
DM/L. A three-dimensional model for the electron density ne(x, y, z) can be
constrained by the DM measurements for many hundreds of pulsars. The electron
density model includes enhanced electron density in a four-arm logarithmic spiral
pattern, plus an overall density enhancement in a broad ring with radius ∼ 3.5 kpc
(for an assumed Galactic Center distance of RGC = 8.5 kpc). Figure 11.1 shows
the spiral pattern adopted by Cordes & Lazio (2003), and their estimate for the
electron density along a line passing through the Sun and the Galactic Center is
shown in Figure 11.2.

Figure 11.2 The electron density ne at the midplane (z = 0), on a line passing through
the Galactic Center (GC) and the Sun, as estimated by the NE2001 model of Cordes &
Lazio (2003). Spiral arm locations are indicated. The Sun is at y = 8.5 kpc.

Because of our greater knowledge of the solar neighborhood, the 3-D electron
density model of Cordes & Lazio (2003) includes structure near the Sun, including
enhanced electron density in a shell referred to as “Loop I” (thought to be material
that has been shock-compressed as the result of one or more supernova explosions),
an underdensity of electrons in the “Local Hot Bubble” with ne ≈ 0.005 cm−3

(also the result of supernovae), and enhanced electron density in the neighborhood
of the Vela supernova remnant and in the Gum Nebula. The Galactic Center
region has enhanced electron density, represented by Cordes & Lazio as ne ≈
10 cm−3 in a region of radius ∼ 145 pc in the Galactic plane, with a vertical scale
height of ∼ 26 pc.

The vertical structure of the electron distribution is shown at four locations in
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Figure 11.3 Electron density ne as a function of distance z above the plane at different
distances y from the Galactic Center, for the NE2001 model of Cordes & Lazio (2003).
The Sun is at y = 8.5 kpc.

Fig. 11.3; the curve for y = 8.5 kpc is for the location of the Sun. In the solar
neighborhood, the electron density is ∼ 0.045 cm−3 near the midplane. The elec-
tron density ne generally declines with increasing distance from the plane, reaching
∼ 0.002 cm−3 by z = 2kpc.

Figure 11.4 shows the azimuthally averaged surface density of H II, projected
onto the disk, as a function of galactocentric radius. The upper curve shows all of
the H II mass within ±10 kpc of the disk; the lower curve is limited to ±500 pc.
Integrated over the entire galaxy, the H II mass is M(H II) = 1.1 × 109 M�, or
about 20% of the total diffuse H. Approximately 50% of the free electrons are
located more than 500 pc from the plane.

11.3 Faraday Rotation

Now consider a static magnetic field B0 to be present in the plasma, and con-
sider the propagation of electromagnetic waves with angular frequency ω. In cold
plasma, the dispersion relation for circularly polarized waves is

k2c2 = ω2 − ω2
p

1± ωB

ω

, (11.14)
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Figure 11.4 Surface density of H II, as a function of galactocentric radius, for the
NE2001 electron density distribution (Cordes & Lazio 2003). The Sun is at R =
8.5 kpc.

where

ωB ≡ eB‖
mec

(11.15)

is the cyclotron frequency calculated for the component of the magnetic field that
is parallel to the direction of propagation. Since

ωB

2π
= 2.80

B‖
µG

Hz , (11.16)

and interstellar magnetic field strengths are typically in the µG range, the validity
condition ωB/ω � 1 will be satisfied for all interstellar conditions of interest. We
now calculate the velocity of propagation of surfaces of constant phase, or phase
velocity:

vphase(ω) ≡ ω

k(ω)
≈ c

[
1 +

1

2

ω2
p

ω2
∓ 1

2

ω2
pωB

ω3

]
, (11.17)

where the plus/minus sign in Eq. (11.17) applies to right/left circular polarization.1

1We follow the conventions of optical physicists, e.g., Born & Wolf (1999) or Bohren & Huffman
(1983), and use “right-handed” to refer to the mode where the E vector rotates clockwise as viewed by
the observer.
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The two circular polarization modes differ in phase velocity and k:

vphase,L − vphase,R = c
ω2
pωB

ω3
=

4πe3

m2
e

neB‖
ω3

(11.18)

∆k ≡ kR − kL =
ω

c

ω2
pωB

ω3
=

4πe3

m2
ec

2

neB‖
ω2

, (11.19)

where, for ωB > 0, the left-handed mode has larger vphase. Now consider the case
where the source (e.g., pulsar or active galactic nucleus, or AGN) emits linearly po-
larized radiation. Pure linear polarization can be decomposed into equal amounts
of left- and right-circularly polarized waves with an initial phase relationship de-
termined by the direction of the linear polarization at the source. In a vacuum,
the two circular polarization modes would each propagate at the speed of light,
maintaining the same phase relationship and therefore the same direction of linear
polarization. In a magnetized plasma, the two circular polarization modes have dif-
ferent phase velocities; after propagating a distance L, the two waves will differ in
phase by L∆k. The linear polarization mode obtained by adding the two circular
polarization modes together will be rotated counterclockwise relative to the linear
polarization of the source by a rotation angle

Ψ=
1

2

∫ L

0

∆k dL =

∫ L

0

ω2
pωB

2cω2
dL (11.20)

=
e3

2πm2
ec

2

1

ν2

∫ L

0

neB‖ dL (11.21)

=RM λ2 , (11.22)

where the rotation measure is defined to be

RM ≡ 1

2π

e3

m2
ec

4

∫ L

0

neB‖dL (11.23)

=8.120× 10−5

∫ L

0
neB‖dL

cm−3 µGpc
rad cm−2 . (11.24)

In general, we do not know, a priori, the direction of the linear polarization at the
source, but we can determine the RM if we measure the difference between the
linear polarization angles Ψ1 and Ψ2 at two different wavelengths λ1 and λ2:

RM =
Ψ2 −Ψ1

λ2
2 − λ2

1

. (11.25)

If the dispersion measure and rotation measure can both be measured, we can deter-
mine the electron-density-weighted mean value of the line-of-sight magnetic field:
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〈B‖〉 = 2πm2
ec

4

e3
RM

DM
, (11.26)

〈B‖〉
µG

=
RM

8.120× 10−5 rad cm−2
× cm−3 pc

DM
. (11.27)

Pulsars and AGNs are, in general, strongly linearly polarized (because they emit
synchrotron radiation), and can be used to determine the RM for many sightlines
through the Galactic ISM. Simultaneous measures of DM and RM for pulsars that
are nearby on the sky but at differing distances allows the line-of-sight component
of the magnetic field B‖ to be determined:

B‖ =
2πm2

ec
4

e3
∆RM

∆DM
. (11.28)

Using this method, Han et al. (2006) conclude that the magnetic field in the disk
generally follows the spiral structure, but with reversals of magnetic field direc-
tion from spiral arms to interarm regions. The spiral arm magnetic field strength

Figure 11.5 Large-scale ordered magnetic field in spiral arms and in interarm regions,
as estimated by Han et al. (2006). The spiral arm magnetic fields are all counterclock-
wise (as viewed from the North Galactic pole), while the interarm fields are clockwise.
Han et al. assumed a galactocentric distance of R = 8.5 kpc. Figure from Han et al.
(2006), reproduced by permission of the AAS.
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appears to be greater than the interarm value by a factor of ∼1.5 . The estimated
field strengths are shown in Figure 11.5. Nota & Katgert (2010) used published
rotation measures to reexamine the Galactic field in the fourth quadrant. They also
find counterclockwise fields in the spiral arms and clockwise fields in the interarm
regions, but their estimate for the strength of the ordered field is somewhat smaller
than the results of Han et al. (2006).

11.4� Refraction

The group velocity determines the speed of propagation of pulses (i.e., wave pack-
ets), but discussion of propagation (i.e., the effects of refraction) is best approached
through consideration of steady monochromatic waves, since the direction of prop-
agation is normal to surfaces of constant phase.

The ISM is inhomogeneous. Variations in the electron density ne cause radio
waves propagating through it to be refracted. Let us assume that we have a wave-
front that has propagated a distance D through the clumpy ISM. Suppose that the
variations in ne have a characteristic length scale L, with characteristic density
variations (∆ne)L,rms (deviations from the average density) and variations in phase
velocity

(∆vphase)L,rms =
c

2

(∆ω2
p)L,rms

ω2
=

2πe2c(∆ne)L,rms

meω2
, (11.29)

Figure 11.6 Refractive distortion of an electromagnetic wave propagating through
the ISM with electron density variations on a length scale ∼L. The characteristic
scattering angle is θ ≈ ∆x/L (see text).
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or variations in refractive index m with

(∆m)L,rms =
(∆vphase)L,rms

c
=

2πe2(∆ne)L,rms

meω2
. (11.30)

If we take a snapshot after the wavefront has traversed a single clump of thickness
L, the wavefront is advanced (relative to where it would be in the absence of the
density perturbation) by a distance

∆x = −L∆m . (11.31)

After traveling a distance D (see Fig. 11.6), the wavefront has crossed (D/L) in-
dependent clumps, and the rms advance or retardation of the wavefront will be
(D/L)1/2L(∆m)L,rms. Two rays separated by a transverse distance L will tra-
verse independent clumps, and the r.m.s. difference in advance of the wavefront
will be

∆x ∼
√
2(D/L)1/2L(∆m)L,rms = (2DL)1/2(∆m)L,rms. (11.32)

The wavefront surface will be tilted, and therefore the ray will be refracted, through
a characteristic refraction angle (see Fig. 11.6)

θs ≈ ∆x

L
≈ (2DL)1/2(∆m)L,rms

L
=

(
2D

L

)1/2
2πe2

meω2
(∆ne)L,rms (11.33)

=0.653 ′′
(

D/ kpc

L/1014 cm

)1/2
(∆ne)L,rms

10−3 cm−3
ν−2
9 . (11.34)

The source image would have angular size ∼ θs. This image broadening can in
some cases be observed with long baseline interferometry.

We have been discussing the wave propagation using the conceptual framework
of “ray optics.” This will be valid provided that the refraction angle ∼ (∆m)L,rms

for a single clump is large compared to the diffraction angle θdiff ≈ λ/L for an
object of size L: the ray optics treatment will be valid only for

ν � e2(∆ne)L,rmsL

2πmecν
= 130MHz

(∆ne)L,rms

10−3 cm−3

L

1014 cm
. (11.35)

If this condition is not satisfied, the analysis should be extended to include the
diffractive effects of the inhomogeneities.2

2It is curious to observe that the diffractive effects become important at high frequencies. This
happens because of the 1/ν2 dependence of the dielectric function — for a given structure, the refraction
angle varies as 1/ν2, while the diffraction angle varies only as 1/ν.
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11.5� Scintillation

Because of the refractive effects mentioned earlier, there may be more than one ray
path from the source to the observer. The wavefronts arriving on different paths will
interfere, perhaps destructively. If the medium between the observer and source
is changing (due to motion of the source, medium, or observer), the interference
conditions can vary, leading to variations in the intensity of the radiation reaching
the observer – this is referred to as scintillation. For example, scintillation resulting
from turbulence is responsible for the twinkling of stars when viewed through the
Earth’s atmosphere.

A complete description of scintillation due to the ISM would entail using a three-
dimensional representation of the inhomogeneities in electron density in the region
between source and observer, and modeling the distortion of a wavefront as it prop-
agates through the medium. A simpler approach is to approximate the scattering
by the ISM as being produced by a two-dimensional “scattering screen” approx-
imately halfway between the source and the observer. The scattering can be due
to refraction of the wave, with a characteristic scattering angle as estimated in Eq.
(11.34), or, at very high frequencies, it can be dominated by the diffractive effects
of the inhomogeneities, with characteristic scattering angles θs ≈ λ/L.

When the scattering angles are small, the slight curvature in the wavefront as it
reaches the observer will produce small changes in the flux from the source (i.e.,
variations in apparent brightness). When the fractional changes are small, this is
referred to as weak scattering.

However, when the scattering angles are sufficiently large, it is possible for rays
to reach the observer along multiple paths. For characteristic scattering angle θs,
Fig. 11.7 shows two ray paths reaching an observer at location A. The pathlength
difference between these two paths is

∆s = 2
√

(D/2)2 + (θsD/4)2 −D ≈ Dθ2s/8 , (11.36)

and the phase difference between these two paths to location A is

∆φ =
2π∆s

λ
=

πDθ2s
4λ

. (11.37)

If ∆φ � π, the arriving waves will interfere constructively. Because the path ge-
ometry is determined by the structure of a turbulent medium, the apparent bright-
ness of the source will vary as the medium moves across the line of sight, but the
brightness variations will not be extreme.

If, however, ∆φ > π, the phase differences are large enough for either con-
structive or destructive interference to occur, and we will have scintillation. For
refractive scattering, with θs given by Eq. (11.34), the condition for scintillation is
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simply θ2s > 4λ/D, or

ν <

(
e4D2

8π2m2
ecL

)1/3

(∆ne)
2/3
L,rms , (11.38)

ν < 2.0GHz

(
D

kpc

)2/3(
1014 cm

L

)1/3(
(∆ne)L,rms

10−3 cm−3

)2/3

. (11.39)

Therefore, scintillation effects will disappear at high frequencies. And, at a fixed
frequency ν, scintillation will not occur for sources that are close to us (small D).

Let us now inquire into the characteristics of the scintillation when it does occur.
Consider a surface located a distance D from the source – call this the “detection
plane”. The observer’s detector is located at one point on the detection plane. The
source, observer, and interstellar medium all have transverse motions, and, there-
fore, the ISM along the line from source to observer is varying with time. Let the
observer be moving with a transverse motion v⊥ in a coordinate frame where the
source and phase screen are both fixed.

Each point on the detection plane will be illuminated by a region of radius
∼ (θs/2)(D/2) = θsD/4 on the scattering screen, containing ∼π(θsD/4)2/L2

independent patches.

Figure 11.7 Scattering screen and multipath propagation.

Consider one position P on the phase screen, and two different points, A and
B, on the detection plane (see Figure 11.7), with point B a distance θsD/2 from
point A. The direct propagation distance to B will exceed that to A by Dθ2s/8,
corresponding to a phase shift φB − φA = πθ2sD/4λ. The wave from patch P will
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interfere with the wave from other patches; as we move from A to B on the detection
plane, we may expect to encounter ∼ θ2sD/4λ maxima, separated by distance ∼
(θsD/2)/(θ2sD/4λ) = 2λ/θs. The power detected by the moving observer will
vary over a scintillation time scale:

(∆t)scint. ≈ 2λ

θsv⊥
(11.40)

≈ 2
mec

e2

(
2L

D

)1/2
1

(∆ne)L,rms

1

v⊥
ν (11.41)

≈ 2× 104 s

(
L/1014 cm

D/ kpc

)1/2
10−3 cm−3

(∆ne)L,rms

30 km s−1

v⊥
ν9 . (11.42)

Returning to our discussion of the propagation distance to position B, we can
ask by how much the frequency must change for the phase shift due to this extra
pathlength to change by π radians. The condition

(∆ν)scin
d

dν
(φB − φA) = π (11.43)

yields the scintillation bandwidth:

(∆ν)scin =
4c

Dθ2s
(11.44)

=8π2m
2
ec

e4
L

D2

ν4

(∆ne)2L,rms

(11.45)

=390MHz
L/1014 cm

(D/ kpc)2

(
10−3 cm−3

(∆ne)L,rms

)2

ν49 . (11.46)

To observe strong scintillation, it is necessary to use a bandwidth smaller than
(∆ν)scin – otherwise, the scintillations are washed out. In fact, by measuring the
scintillation bandwidth (∆ν)scin, one can determine (∆ne)

2
L,rmsD

2/L.

11.6� Interstellar Electron Density Power Spectrum

The preceding discussion of scintillation has been framed in terms of a character-
istic length scale L for electron density fluctuations. The real, turbulent interstellar
medium actually contains electron density fluctuations over a wide range of length
scales. It is natural to describe the electron density fluctuations in terms of the
electron density power spectrum Pne(

�k), with normalization so that

〈(∆ne)
2〉 =

∫
d3k Pne

(�k) . (11.47)
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Figure 11.8 Electron density power spectrum Pne [see Eq. (11.48)], measured by
a number of different methods. The dotted line is eq. (11.48) with C2

n ≈ 5 ×
10−17 cm−20/3. From Chepurnov & Lazarian (2010). See Armstrong et al. (1995)
and Chepurnov & Lazarian (2010) for details.

Observations of scintillation in the nearby interstellar medium within ∼ 1 kpc (see
Fig. 11.8) appear to be consistent with a power-law spectrum for the fluctuations in
electron density over 11 decades: 10−18 cm−1 <∼ k <∼ 10−6.5 cm−1 (or 106.5 cm <∼
L/2π <∼ 1018 cm):

Pne(
�k) ≈ C2

n k−11/3 . (11.48)

Measurements for a single sightline determine an average C2
n for that sightline. By

comparing different sightlines, it is found that C2
n varies considerably with location,

as shown in Fig. 11.9. Within a few kpc of the Sun, it appears that the electron
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Figure 11.9 C2
n as a function of distance from Earth, from Cordes et al. (1985).

Points are sightlines to individual pulsars. Note: C2
n = 5 × 10−17 cm−20/3 =

1.1× 10−3 m−20/3.

density fluctuations have

C2
n ≈ 1× 10−3 m−20/3 ≈ 5× 10−17 cm−20/3 (11.49)

(Armstrong et al. 1995), although with large sightline-to-sightline variations (see
Fig. 11.9). The power-law dependence Pne

∝ k−11/3 corresponds to what would
be expected for incompressible turbulence – so-called Kolmogorov turbulence –
if the ionization fraction behaves like a passive tracer, with ionization fluctuations
“injected” on large scales and removed on very small scales.

With Pne from Eq. (11.48), we can integrate Eq. (11.47) from the largest length
scale Lmax = 2π/kmin = 6 × 1018 cm down to the smallest scales, to obtain
total rms electron density fluctuations 〈(∆ne)

2〉1/2 = 0.03 cm−3, comparable to
the mean electron density 〈ne〉 ≈ 0.04 cm−3 obtained from measurements of the
dispersion measure DM toward pulsars (see §11.2). Evidently, the electron density
has variations of order unity on length scales 2π/kmin ≈ 6 × 1018 cm and longer.
To find (∆ne)

2
L,rms, we integrate from 2π/L

√
e to 2π

√
e/L (one e-folding):

〈(∆n2
e)L〉1/2 =

6.4× 10−4

cm3

(
C2

n

5× 10−17 cm−20/3

)1/2(
L

1014 cm

)1/3

. (11.50)

With (∆ne)L,rms ∝ L1/3 (for L <∼ 6× 1018 cm), we see that electron density fluc-
tuations are largest on large scales. Nevertheless, small scales dominate some phe-
nomena, such as image broadening (11.34). A proper analysis of image broadening
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and scintillation should take into account the full spectrum of density fluctuations,
but that is beyond the scope of this text.

There are at least two remarkable aspects to Eq. (11.48):

• Why is the spectrum consistent with the simple Kolmogorov power-law?
There are two issues: (1) The Kolmogorov spectrum is expected for small-
amplitude, incompressible, hydrodynamic turbulence, but the ISM is com-
pressible, magnetized, and the turbulent fluctuations are large in amplitude
when k is small. (2) The Kolmogorov spectrum is expected only for scales
smaller than the smallest length scale on which the medium is being actively
stirred – yet the electron density fluctuations appear to obey the Kolmogorov
spectrum from 2 pc length scales on down, seemingly implying that the im-
portant “stirring” takes place only on scales larger than ∼ 2 pc.

• The power spectrum appears to continue down to length scales as short as
∼ 107 cm – this is shorter than the collisional mean free path for electrons
or ions for the plasma densities that are present. This must imply that the
density variations on the shortest length scales are occurring perpendicular
to the magnetic field direction, which is possible as long as the scale lengths
are larger than the ion gyroradius:

rg =
c

eB
(mpkT )

1/2
= 1.9× 107 cm

(
5µG

B

)
T

1/2
4 . (11.51)

The electron density power spectrum amplitude C2
n ≈ 5 × 10−17 cm−20/3 ap-

pears to be representative of the interstellar medium within ∼ 1 kpc of the Sun.
However, on some sightlines (e.g., to the Vela pulsar, to the pulsar 1641-45, or to
Sgr A
 at the Galactic Center), the interstellar scintillation is stronger – by up to
two orders of magnitude – than expected for electron density fluctuations corre-
sponding to Eq. (11.49). Figure 11.9 shows C2

n for sightlines to sources at various
distances from the Earth, showing strong enhancements in C2

n along some sight-
lines. It is not known what is responsible for these “enhanced scattering regions.”

In addition to scintillation, the electron density structure can be probed by ob-
serving temporal variation in the dispersion measure as structure in the interstellar
medium drifts in the direction perpendicular to the line of sight to a pulsar. The
density structure can also be probed by observing pulse broadening due to arrival
of the pulse along more then one path (e.g., Bhat et al. 2004).

11.7� Extreme Scattering Events

The scattering phenomena described above appear to be consistent with an ISM
with a power-law spectrum of electron density fluctuations, presumably resulting
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from interstellar turbulence. However, in the course of monitoring the fluxes of
compact extragalactic radio sources, Fiedler et al. (1987) discovered that one source
(0954+658), which had been steady for years, underwent remarkable changes in ap-
parent brightness over the course of ∼3 months. At 2.7 GHz, the source brightness
declined by a factor ∼2 for ∼0.15 yr, but with brightness peaks just before and just
after the minimum (see Figure 11.10). The 8.1 GHz light curve differed from the
2.7 GHz light curve, with an interval of strong brightness variations that seemed to
be of shorter duration than at 2.7 GHz.

It seems unlikely that the brightness variations are intrinsic to the source, and
most likely that they are instead the result of refraction as the waves propagate
through the ISM of the Milky Way – some plasma structure in the ISM acts as a
lens, either magnifying or demagnifying the source.

The plasma lens producing the refraction must be small – if it is moving across
the LOS at <∼ 250 km s−1, then the transverse size of the lensing structure must be
L <∼ (250 km s−1 × 0.2 yr) ≈ 10AU. If the lens is at a distance of d ≈ 10 kpc,
then the angular size is only θ ≡ L/d ≈ 1 milli-arc-sec. Order-unity changes in
brightness require that the blob be able to bend rays by an angle >∼ θ/2, which
requires that (|∆m|L)/(L/2) >∼ θ/2 = L/2d. Thus |∆m| >∼ L/4d ≈ 10AU/4d.
Evaluating this condition at 2 GHz, using Eq. (11.30) for ∆m, we find

ne =
meω

2

2πe2
|∆m| = 1× 103

(
5 kpc

d

)
cm−3 . (11.52)

Figure 11.10 The so-called “Fiedler event” reported by Fiedler et al. (1987), showing
remarkable changes in the brightnes of the the extragalactic radio source 0954+658 at
2.7 GHz and 8.1 GHz. The large brightness variations may be due to refraction by a
small but dense blob of ionized gas moving across the line-of-sight (see text). Figure
from Lazio et al. (2001).
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Ionized gas normally has T >∼ 104 K, with sound speed >∼ 10 km s−1, and therefore
the pressure in a blob with ne ≈ 103 cm−3 would far exceed the typical thermal
pressure p/k ≈ 3800 cm−3 K near the Galactic plane; well above and below the
plane the ambient pressures are even smaller. The overpressured plasma would
therefore expand supersonically, and would disperse on an expansion time scale
L/10 km s−1 ≈ 5 yr. Such blobs are therefore not expected to be present in the
ISM, except perhaps as rare transient events following a sudden strong compression
of ionized gas, or resulting from sudden ionization of cool dense gas by some very
strong source of ionization.

Monitoring of radio sources has turned up a total of 10 possible lensing events
– now referred to as extreme scattering events (ESEs) – in 594 source-years of
monitoring (Fiedler et al. 1994). The sources being monitored appeared to be un-
dergoing lensing events fully ∼0.1% of the time, implying that these plasma blobs
cover ∼0.1% of the sky! However, there are no known interstellar phenomena that
are expected to have such ionized structures associated with them. The lensing
events may be associated with prominent “loops” of synchrotron emission (Fiedler
et al. 1994), suggesting that interstellar blast waves viewed edge-on might provide
the plasma structures required to account for the ESEs. However, no satisfactory
models have been put forward that reproduce observed ESE light curves.



Chapter Twelve

Interstellar Radiation Fields

The physical state of interstellar gas is determined in large part by interaction of
the gas and dust with the radiation field. The chemical and ionization state of the
gas depends on the rates for photoionization and photodissociation. The thermal
state is strongly affected by the heating effects of photolectrons ejected from both
atoms and dust grains. Dust grains are heated by the radiation field and reradiate
the energy at longer wavelengths; the dust grain emission spectrum is determined
by the spectrum and intensity of the radiation field to which the dust is exposed.
The radiation field can also have dynamical consequences: radiation pressure from
anisotropic radiation can accelerate dust and gas, sometimes to high velocities.

The interstellar radiation field in the solar neighborhood is dominated by six
components:

• Galactic synchrotron radiation from relativistic electrons.

• The cosmic microwave background radiation.

• Far-infrared (FIR) and infrared (IR) emission from dust grains heated by
starlight.

• Emission from ∼ 104 K plasma – free–free, free–bound, and bound–bound
transitions.

• Starlight – photons from stellar photospheres.

• X-ray emission from hot (105 to 108 K) plasma.

The contribution of each of these to the interstellar radiation field will be briefly
discussed in this Chapter. Our objective is to gain an estimate for the specific energy
density uν to enable calculation of rates for photoexcitation, photoionization, and
photodissociation for atoms, ions, and molecules of interest; heating of dust grains;
and photoelectric emission from dust. Components will be discussed in order of
increasing frequency.

12.1 Galactic Synchrotron Radiation

The interstellar medium (ISM) contains relativistic electrons that emit synchrotron
radiation in the galactic magnetic field; this synchrotron radiation dominates the
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sky brightness at frequencies ν <∼ 1GHz. The synchrotron emissivity is spatially
variable, with enhancements near supernova remnants due in part to electron accel-
eration associated with the supernova blastwave and in part to increased magnetic
field strengths in the shocked gas.

The all-sky 408-MHz map by Haslam et al. (1982) – see Plate 4 – has a mean
intensity in the sychrotron component corresponding to an antenna temperature
〈TA〉 = 31.3K (Finkbeiner 2004, private communication). The spectrum is ap-
proximated by a power-law, (uν)synch ∝ νβ . La Porta et al. (2008) find β =
−0.95 ± 0.15 between 0.408 and 1.42 GHz for |b| > 5◦. Thus the sky-averaged
Galactic synchrotron background has

νuν ≈ 2.86× 10−19ν0.059 erg cm−3 (12.1)

between 408 MHz and 1.42 GHz. At higher frequencies, the synchrotron spectrum
appears to steepen. Finkbeiner (2004) finds uν ∝ ν−1.04 between 0.4 and 23 GHz
for the bright synchrotron-emitting structure known as “Loop I,” and assumes this
spectrum to be applicable throughout the high-latitude sky. The high-frequency
behavior depends on the processes responsible for accelerating the ultrarelativistic
electron population. In Figure 12.1, the synchrotron spectrum is approximated by

(νuν)synch ≈ 3.05× 10−19 ν0.19

1 + 0.04ν9
erg cm−3 ; (12.2)

this is consistent with what is known about the synchrotron background at ν ≤
23GHz.1 The sky-averaged antenna temperature due to synchrotron radiation is

〈∆TA〉synch ≈ 2.37
ν−2.9
9

1 + 0.04ν9
K , (12.3)

which gives 〈∆TA〉synch ≈ 705K at ν =140MHz – the radio sky is very bright!
From Eq. (12.3), it is apparent that the sky-averaged Galactic synchrotron intensity
equals the intensity of the T = 2.7K cosmic microwave background at ∼ 1GHz.
The total energy density in synchrotron radiation obtained by integrating Eq. (12.2)
over frequency is small (see Table 12.1).

12.2 Cosmic Microwave Background Radiation

The cosmic microwave background (CMB) is very close to blackbody radiation
with a temperature TCMB = 2.7255 ± 0.0006K (Fixsen 2009). The radiation
is essentially isotropic, with the primary departure from isotropy consisting of a
dipole perturbation due to motion of the Sun relative to the CMB rest frame with a
velocity v = 372±1 km s−1 toward �=(264.31±0.15) deg, b=(48.05±0.10) deg.
The CMB exceeds the Galactic synchrotron background at frequencies ν >∼ 1GHz.

1The functional form assumed in Eq. (12.2) to describe the steepening for ν 	 1GHz is rather
arbitrary, but of little consequence, as other radiation components dominate for ν >∼ 1GHz.
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Table 12.1 Interstellar Radiation Field (ISRF) Components

urad

Component ( erg cm−3)

Radio synchrotron [Eq. (12.2)] 2.7× 10−18

CMB, T =2.725K 4.19× 10−13

Dust emission 5.0× 10−13

Free–free,free–bound,two-photon 4.5× 10−15

Starlight: T1 = 3000K, W1 = 7× 10−13 4.29× 10−13

T2 = 4000K, W2 = 1.65× 10−13 3.19× 10−13

T3 = 7500K, W3 = 1× 10−14 2.29× 10−13

λ < 2460 Å UV (Eq. 12.7) 7.11× 10−14

Starlight total 1.05× 10−12

Hα 8× 10−16

Other λ ≥ 3648 Å H lines = 1.1×Hα: 9× 10−16

0.1− 2 keV x rays 1× 10−17

ISRF total 2.19× 10−12

12.3 Free–Free Emission and Recombination Continuum

The thermal plasma radiates free–free emission and recombination continuum, as
discussed in Chapter 10. Plate 3b shows an all-sky map of Hα emission (Finkbeiner
2003). The Hα intensity exceeds 100 R in many bright H II regions (see Plate 3b).
The all-sky-averaged Hα intensity is 8.04 R (Finkbeiner 2005, private communica-
tion), corresponding to a sky-averaged emission measure 〈EM〉 ≈ 18 cm−6 pc, if
the Hα is emitted from T ≈ 8000K gas. In Figure 12.1, we show the spectrum
calculated for plasma at T = 8000K and an angle-averaged emission measure
〈EM〉 = 18 cm−6 pc.2

12.4 Infrared Emission from Dust

Infrared emission from dust dominates the sky brightness between ν ≈ 500GHz
(λ = 600µm) and ∼ 6 × 1013 Hz (λ = 5µm). Plate 2 is an all-sky map of the
emission from dust at 100µm, produced by Schlegel et al. (1998) from observa-
tions by the Infrared Astronomy Satellite (IRAS) and the Diffuse Infrared Back-
ground Experiment (DIRBE) on the Cosmology Background Explorer (COBE)
satellite. About 2

3 of the power radiated by the dust is at λ > 50µm; this por-
tion of the emission spectrum can be approximated as thermal emission from dust
grains at a temperature Tdust ≈ 17K, with an angle-averaged optical depth τ(λ) ≈
1.5× 10−3(100µm/λ)1.7. (The optical properties of dust grains in the FIR will be

2The correlation of Hα and 43 GHz free–free emission at |b| >∼ 10◦ indicates a lower ratio of
43 GHz free-free to Hα than expected for T ≈ 8000K H II (Dobler et al. 2009), apparently because
some of the high-latitude Hα is actually reflected light, and some of the ionized gas is cooling and
recombining at temperatures less than ∼8000 K (Dong & Draine 2010).
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discussed in Chapter 24).
However, about 1

3 of the power radiated by dust is at λ < 50µm, and much
of this power is radiated in vibrational emission bands at 3.3, 6.2, 7.7, 8.6, 11.3,
and 12.7µm that are thought to be emitted by very small polycyclic aromatic hy-
drocarbon (PAH) particles that have undergone single-photon heating, as will be
discussed in Chapter 24.

Figure 12.1 shows the infrared emission spectrum calculated for the “DL07” dust
model (Draine & Li 2007) consisting of carbonaceous grains (including PAHs) and
amorphous silicate grains illuminated by a range of starlight intensities. The all-
sky average intensity is approximately reproduced by the dust emission from a
medium with hydrogen column density NH = 2.7 × 1021 cm−2, with the dust
grains illuminated by a range of radiation intensities, but with an average intensity
equal to 1.2 times the radiation field estimated by Mathis et al. (1983).

Figure 12.1 Interstellar continuum radiation field in an H I cloud in the solar neigh-
borhood (see text). Spectral lines are not included. Solid line is the sum of all com-
ponents for hν ≤ 13.6 eV. Squares show the measured sky brightness at 408MHz
(Haslam et al. 1982), the all-sky measurements by COBE-DIRBE in 10 broad bands
from 240µm to 1.25µm (Arendt et al. 1998), and all-sky measurements by ROSAT
between 150 eV and 2 keV (Snowden 2005, private communication). Dotted lines are
contours of constant photon occupation number nγ .
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12.5 Starlight in an H I Region

Within an H I region, there is very little radiation at energies between the hydrogen
ionization energy of 13.6 eV and ∼ 102 eV, because photons in this energy range
are very strongly absorbed by neutral H and He. In the energy range 1 to 13.6 eV,
most of the photons are starlight. Mathis et al. (1983) have approximated the local
starlight background as a sum of three dilute3 blackbodies:

νuν =

3∑
j=1

8πhν4

c3
Wj

ehν/kTj − 1
for λ > 2450 Å, (12.4)

and a piecewise power-law approximation for 912 Å < λ < 2450 Å [Eq. (12.7)
below]. To improve agreement with the COBE-DIRBE photometry, we have in-
creased the dilution factor W1 by 40%, from W1 = 5×10−13 to 7×10−13. This
estimate is plotted in Figure 12.1, and the blackbody parameters Tj , Wj are given
in Table 12.1.

Far-ultraviolet radiation is of considerable importance in the neutral ISM, be-
cause it can (1) photoexcite and photodissociate H2 and other molecules, (2) pho-
toionize many heavy elements, and (3) eject photoelectrons from dust grains. The
intensity of this ultraviolet radiation will be spatially variable, because the O and B
stars that are the primary emitters are neither numerous nor randomly distributed,
and because of the strong attenuating effects of interstellar dust in the far ultraviolet.
Figure 12.2 shows various estimates for the intensity of far-ultraviolet radiation in
the solar neighborhood.

Habing (1968) made an early estimate of the intensity of the ultraviolet radiation
field, νuν ≈ 4×10−14 erg cm−3 at λ = 1000 Å, i.e., hν = 12.4 eV. It is convenient
to reference other estimates of the intensity near 1000 Å to this canonical value, so
we define the dimensionless parameter

χ ≡
(νuν)

1000 Å

4× 10−14 erg cm−3
. (12.5)

χ is a good parameter for characterizing the radiation field when considering pho-
toexcitation of H2, or photoionization of species with ionization potentials I be-
tween 10 and 13.6 eV. For some purposes, a wider range of UV is of interest.
Habing’s UV spectrum, if integrated between 6.0 and 13.6 eV, gives an energy
density uHab(6− 13.6 eV) = 5.29×10−14 erg cm−3. We define a parameter

G0 ≡ u(6− 13.6 eV)

5.29×10−14 erg cm−3
, (12.6)

giving the overall 6 to 13.6 eV intensity relative to Habing’s estimate.
The ultraviolet background was estimated by Draine (1978) from published ob-

servations, and fitted by a polynomial. This estimate had G0 = 1.69 and χ = 1.71.

3A “dilute blackbody” is defined to be a spectrum equal to a blackbody multiplied by a “dilution
factor” W < 1.
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Mathis et al. (1983, henceforth MMP83) represented the local ultraviolet back-
ground between 2460Å and 912Å by three power-law segments:

νuν =

⎧⎨
⎩

2.373× 10−14(λ/µm)−0.6678 erg cm−3 1340− 2460 Å
6.825× 10−13(λ/µm) erg cm−3 1100− 1340 Å
1.287× 10−9(λ/µm)4.4172 erg cm−3 912− 1100 Å

. (12.7)

The MMP83 estimate for the ISRF has χ = 1.23 and G0 = 1.14.
Henry et al. (1980) measured the UV ISRF over 1/3 of the sky, and from this

estimated the full-sky radiation field in the UV; their results are shown in Fig. 12.2.
Gondhalekar et al. (1980) measured direct starlight in the UV; because they did
not measure diffuse radiation, this gives a lower bound4 on the ISRF. The available
evidence indicates that the MMP83 radiation field is a good estimate for the ISRF
in the solar neighborhood.5

Figure 12.2 Estimates for the ultraviolet background in the solar neighborhood, from
Habing (1968), Draine (1978), and Mathis et al. (1983, MMP83). The observational
determination by Henry et al. (1980, HAF80), and the observational lower bound from
Gondhalekar et al. (1980, GPW80) are also shown.

4Diffuse UV (mainly light scattered by dust plus fluorescent emission from H2) may be comparable
in energy density to the direct starlight.

5A very recent measurement of the 1370–1720Å radiation field by Seon et al. (2010) obtains inten-
sities approximately a factor 2 below previous measurements by HAF80 and GPW80.
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12.6 X Rays from Hot Plasma

Supernovae are estimated to inject energy into the ISM at a rate of ∼ 1051 erg/100 yr,
producing hot plasma as well as accelerating nuclei and electrons to ultrarelativistic
energies (see Chapters 39 and 40).

Most of the supernova kinetic energy goes into thermal plasma, and is eventually
radiated as x rays and extreme ultraviolet (EUV), with a broad range of energies.
The lower energy (EUV and soft X-ray) photons can be absorbed by small amounts
of neutral gas; as a result, the soft x ray background is highly variable within the
galaxy. We can measure it directly only at the location of the Sun.

The x-ray sky has been mapped by ROSAT in seven broad energy bands (Snow-
den et al. 1994). Plate 5 is an all-sky map of the 0.5–1.0 keV emission obtained by
the ROSAT satellite (Snowden et al. 1995). Snowden (2005, private communica-
tion) has integrated over the all-sky maps to determine the density of 0.1 to 2 keV
photons originating outside the solar system; the resulting energy density is plotted
in Figure 12.1. It is evident that the energy density in interstellar x rays is very
small, of order ∼ 10−6 of the total radiation field. Nevertheless, these x rays are of
some importance because of their ionizing properties.

In galaxies with active galactic nuclei, the x-ray intensities can be much higher
than in the Milky Way.

12.7 Radiation Field in a Photodissociation Region near a Hot Star

Consider a luminous massive star of spectral type O (accompanied by additional
lower luminosity stars) exciting an H II region adjacent to a molecular cloud – the
Orion Nebula (M42) is a nearby example. As will be discussed in Chapter 15,
the radiation from the star at energies between the hydrogen ionization threshold
of 13.6 eV and ∼ 100 eV will be absorbed within the H II region surrounding the
star. Radiation below 13.6 eV will arrive at the boundary of the H II region attenu-
ated only by absorption by dust. After crossing the ionization front separating the
ionized and neutral regions, the photons will enter what is referred to as a pho-
todissociation region, or PDR (the structure of PDRs is discussed in §31.7). Fig.
12.3 shows the spectrum of the radiation field within the PDR.

The PDR is illuminated by the same CMB and galactic synchrotron radiation as
a diffuse H I cloud. In addition, the radiation field includes:

• hν < 13.6 eV radiation from the nearby O star. (The photons with hν >
13.6 eV are absorbed within the H II region.)

• Free–free radiation from the H II region.

• Line emission from the H II region.

• Emission from the warm dust in the PDR.
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Figure 12.3 Radiation field in neutral gas adjacent to an H II region with peak EM
≈ 4 × 106 cm−6 pc. Starlight is from an O star with T = 3.5 × 104 K and dilution
factor W = 2 × 10−13 (e.g., at a distance d ≈ 6.4 × 1017 cm from a star of spectral
type O8V). Spectral lines, e.g., Hα, are not shown. The infrared emission from dust is
calculated for the DL07 dust model with a starlight heating rate 3000 times the ISRF
shown in Fig. 12.1. Dotted lines are contours of constant photon occupation number
nγ .

Bright H II regions, such as the Orion Nebula, have peak emission measures EM ≈
106−107 cm−6 pc. From the perspective of a point in the PDR, the H II region will
cover ∼50% of the sky, and the angle-averaged EM will be ∼ 1

4 of the peak value.
In Figure 12.3, we have assumed an angle-averaged EM ≈ 1× 106 cm−6 pc.

The hν < 13.6 eV starlight entering the PDR mostly ends up absorbed by dust,
with the energy reradiated in the IR. The energy density of this radiation will be
similar to the energy density of starlight entering the PDR. A simple estimate for
the IR radiation field is shown in Fig. 12.3.6

6The dust emission spectrum shown in Fig. 12.3 is for the DL07 dust model illuminated by starlight
with an intensity U = 3000 relative to the ISRF, with an angle-averaged column density NH =
5× 1021 cm−2.



PLATE 1. All-sky image of ∼ 5×108 stars detected by the 2MASS survey: Blue = 1.2µm,
green = 1.65µm, and red = 2.2µm. This Hammer equal-area projection has the Galactic Center
[(�, b) = (0, 0)] at the center of the image, � = 180◦ at left and right, with � increasing from
right to left. The stars are in a disk-like geometry, and in a stellar “bulge” concentrated around
the center. The ISM (seen by the obscuration and reddening produced by dust) is primarily
in a disk-like geometry. The LMC and SMC are visible below and to the right of center.
This mosaic image was obtained as part of the Two Micron All Sky Survey (2MASS), a joint
project of the Univ. of Massachusetts and IPAC/Caltech, funded by NASA and the NSF. Credit:
2MASS/J. Carpenter, T.H. Jarrett, & R. Hurt.

0.0 0.5 1.0 1.5 2.0 2.5–1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5

log10(MJy/sr)
PLATE 2. The 100µm sky, after subtracting the emission from warm interplanetary dust
particles within the Solar system. The LMC and SMC are visible at (�, b) = (280◦,−33◦)
and (303◦,−44◦). The bright emission near � = 80◦ (in Cygnus) corresponds to dust in the
Perseus spiral arm (see Fig. 11.1) and the Cygnus OB2 association, at a distance of ∼1.45 kpc.
Based on observations with the IRAS and COBE satellites. Image courtesy of D. Finkbeiner.
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PLATE 3. a: All-sky map of H I 21 cm line intensity from the LAB survey (Kalberla et al.
2005), with angular resolution ∼0.6◦. Scale gives log10 N(H I)(cm−2). The LMC and SMC
are visible (cf. Plate 1), with a connecting H I “bridge.” Image courtesy of P. Kalberla. b: Hα
from Finkbeiner (2003). Many bubble-like ionized structures are apparent, including the Orion
Nebula and Barnard’s Loop near (�, b) ≈ (209◦,−19◦); the Gum nebula (256◦,−9◦); and
the ζ Oph H II region (6◦, 23◦). Image courtesy of D. Finkbeiner. c: [C II]158µm from
Fixsen et al. (1999), reproduced by permission of the AAS. The map is smoothed to 10◦

resolution. Black stripes are unobserved regions. Scalebar shows [C II]158µm intensity in
nWm−2 sr−1.



PLATE 4. All-sky map of 408 MHz continuum emission (Haslam et al. 1982), synchrotron
radiation from highly relativistic electrons. In addition to bright emission along the Galactic
plane, there are conspicuous extensions above and below the plane, in particular the so-called
North polar spur, starting from the Galactic plane at � ≈ 15◦ and extending upward in a
loop-like geometry. Bright sources in the Galactic plane include: the Vela/Puppis SNR near
(261◦,−3◦), Sgr A at the Galactic Center; the Cygnus superbubble near (85◦, 0), and Cas A
at (112◦,−2◦). The LMC and SMC are visible. Image produced by NASA SkyView, using
data from Max-Planck Institüt für Radioastronomie.

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007

PLATE 5. ROSAT PSPC all-sky map (Snowden et al. 1995) in the 0.5-1.0 keV band. Color
bar shows ROSAT count rate in cts s−1 arcmin−2. Note the X-ray emission from the North
Polar Spur, from the Cygnus superbubble, and from the Vela/Puppis SNR, all with associated
radio synchrotron emission seen in Plate 6. Much of the emission seen toward the inner Galaxy
above and below the Galactic plane, including the North Polar Spur, is thought to be plasma
within a few hundred pc. Absorption is evident along the Galactic plane. Courtesy of Steve
Snowden (NASA/GSFC), based on data from the ROSAT All-Sky Survey (MPE/Garching).



PLATE 6. The Andromeda galaxy (M31), and its small companions M32 and NGC 205. Image
width = 3.5◦ = 47 kpc / 770 kpc; N is 50.0◦ left of vertical. Upper image: blue = 3.6µm (mainly
starlight), red = 8µm (mainly emission from PAHs). NGC 205 (above the center of M31) and
M32 (below and to the right of center) are easily seen in starlight, but have very little 8µm
emission. Lower left image is 3.6µm only, showing the relatively smooth distribution of stars.
Lower right image is 8µm only, showing the concentration of the ISM into rings and arms.
Image courtesy: NASA / JPL-Caltech / P. Barmby (Harvard-Smithsonian CfA).

PLATE 7. The nearby starburst galaxy M82. Blue = 1.5 keV X-rays, green = starlight,
red = 8µm (PAH emission). Image width = 10.7 ′ = 10.9 kpc / 3.5 Mpc. Energy released by
stars (stellar winds, SNe) appears to be driving a hot outflow (seen in X-rays) out of the stellar
disk. There is also extended 8µm emission from PAHs as much as ∼4 kpc above the disk,
presumably located in cooler gas, bounding the X-ray outflow, that has somehow been lifted
out of the disk. Credit: NASA / JPL-Caltech / STScI / CXC/ Univ. of Arizona.
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PLATE 8. M51a (NGC 5194, the Whirlpool) and its companion M51b (NGC 5195).
Vis.: Visible-light image, with conspicuous dust lanes located along the spiral arms.
IR: blue = 3.6µm, red = 8µm. The dust lanes, dark in the visible-light image, are glowing in
8µm PAH emission. Note the numerous “holes” where PAH emission is weak. The compan-
ion galaxy, M51b, is bright in starlight, but has very little PAH emission.
GMCs: Locations of GMCs with M>4×105 M� (detected in CO 1–0).
CO: CO 1-0 line intensity, smoothed over a 22 ′′ beam (circle in lower left corner); violet =
5Kkm s−1, red = 50Kkm s−1.
f(H2): H2 fraction 2N(H2)/[2N(H2)+N(H I)]: green = 0.5, white = 1.
5 GHz: 5 GHz emission (mainly synchrotron radiation from relativistic electrons).
�B: B-polarization of 5 GHz emission. The magnetic field is aligned with the spiral arms.
Credits: Vis. and IR: NASA/JPL-Caltech/R. Kennicutt (Univ. of Arizona)/DSS; GMCs, CO,
and f(H2): from Koda et al. (2009), reproduced by permission of the AAS; 5 GHz and
B: R. Beck (MPIfR Bonn), C. Horellou (Onsala Space Observatory). Image courtesy of
NRAO/AUI/NSF.



PLATE 9. The Orion Nebula (M42) (Henney et al. 2007). North is up. Image width = 30 ′

= 3.6 pc / 414 pc; red = Hα+ [N II]6584 + [S III]9071 + scattered starlight, green = [O III]5008
+ scattered starlight, blue = Hγ + Hδ + scattered starlight. The smaller (and more obscured)
M43 H II region is visible 8 ′ to the NNE. Credit: NASA, ESA, M. Robberto (Space Tele-
scope Science Institute/ESA) and the Hubble Space Telescope Orion Treasury Project Team.

PLATE 10. Center of the Orion Nebula, imaged by Hubble Space Telescope. The bright Orion
Bar is an edge-on ionization front separating neutral gas at the lower left from the H II region.
Red = [N II]6584, green = Hα, blue = [O III]5008. The 4 Trapezium stars are visible near the
image center. See Fig. 28.1 for a radio free-free image. At right are images of 4 protoplanetary
disks silhouetted against the H II region; each image is ∼ 4 ′′ wide (1700 AU / 414 pc). Credit:
NASA, C.R. O’Dell and S.K. Wong (Rice University), and M.J. McCaughrean (MPIA),



PLATE 11. The Trifid Nebula (M20). Image width = 17.3 ′ = 8.5 pc / 1.68 kpc. Left:
optical image, blue = 4400Å, green = 5500Å, red = 7000Å (incl. Hα). The Trifid Nebula is
an H II region powered by a single O7 star. The H II region is bright in Hα (red); the
blue haze to the North is starlight scattered by dust. Right: IR image (Rho et al. 2006)
with blue = 3.6µm+ 4.5µm (mainly starlight), green = 6 + 8µm (mainly PAH emission),
red = 24µm (hot dust). The dust lanes across the H II region are dark in the optical image,
but glow brightly in the IR image. Note the dark filaments to the NNW, that are opaque at 8
and 24µm. Credit: NOAO / NASA / JPL-Caltech / J. Rho (SSC/Caltech).

PLATE 12. The Cas A SNR. Left: Radio synchrotron image at 1.4, 5.0, and 8.4GHz. Image
width = 6.0 ′ = 5.9 pc / 3.4 kpc. Image courtesy of NRAO/AUI. Right: X-ray image, red = 0.5–
1.5 keV, green = 1.5–2.5 keV, blue = 4.0–6.0 keV. From the observed expansion the explosion
date is estimated to be 1681±19 (Fesen et al. 2006). The SNR has a jet-like extension toward
the NE. The hard X-ray emission at the outer edge is thought to be synchrotron emission from
relativistic electrons. Credit: NASA / CXC / MIT / UMass Amherst / M.D. Stage et al.



PLATE 13. The Helix Nebula NGC 7293, a planetary nebula. Red = Hα, blue = [O III]5008.
Top: Image width = 28.7 ′ = 1.67 pc / 200 pc; North is up. The central star temperature is ∼1.0×
105 K. The central zone, bright in [O III]5008, has a diameter ∼0.4 pc, and is surrounded by
a ring bright in Hα. Bottom: Image width = 4.7 ′ = 0.28 pc / 200 pc; North is 71◦ L of vertical.
Note the numerous dusty cometary filaments located in the inner edge of the gaseous ring. Each
cometary filament has a head with a bright ionization/dissociation front on the side facing the
central star. Credit: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner (STScI),
and T.A. Rector (NRAO).



Chapter Thirteen

Ionization Processes

The ionization state of the gas varies greatly from one region to another in both the
ISM and the IGM:

• In dense molecular clouds, the material is almost entirely neutral, with xe ≡
ne/nH

<∼ 10−6.

• In H I gas, elements such as C are photoionized by starlight, and the hydrogen
is partially ionized by cosmic rays, with resulting ionization fractions in the
range 10−3 <∼ ne/nH

<∼ 10−1, depending on the density, temperature, and
cosmic ray ionization rate.

• In an H II region around an early O star (e.g., spectral type O6), the hydro-
gen may be mostly ionized, the helium may be mostly singly ionized, and
elements like oxygen or neon mainly doubly ionized (O III and Ne III).

• In a “Lyman α cloud” with N(H I) <∼ 1017 cm−2 in the IGM, the hydrogen
and helium may be mostly ionized (H II, He III), with C triply ionized (C IV).

• In a supernova remnant, elements up through carbon may be fully ionized,
and elements like oxygen or neon may retain only electrons in the innermost
1s shell.

These variations in ionization arise primarily from the regional differences in the
rates for ionizing processes. The ionization state of gas is obviously critical to a
number of processes – the rate of radiative cooling, the rate at which the gas absorbs
ionizing photons from stars or active galactic nuclei, and the chemical processes
that can proceed within the gas. Furthermore, we are often in the situation where
we cannot observe the dominant ionization states directly and need to estimate
how much unseen material is present – an example is observation of H I Lyman α
absorption from a region where the hydrogen is mostly ionized. This chapter is
devoted to ionizing processes.

Consider some atom, molecule, or ion X . There are many different processes
acting to change its ionization state by removing one or more electrons:

• Photoelectric absorption: X + hν → X+ + e−.

• Photoelectric absorption followed by the Auger effect:
X + hν → (X+)∗ + e− → X+n + ne− (n ≥ 2).
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• Collisional ionization: X + e− → X+ + 2e−.

• Cosmic ray ionization: X + CR → X+ + e− + CR.

• Charge exchange: X + Y + → X+ + Y .

The first four processes will be discussed in this chapter; charge exchange will be
discussed in Chapter 14.

13.1 Photoionization

The nonrelativistic quantum mechanics of hydrogen and one-electron (i.e., “hydro-
genic”) ions is simple enough that the ground-state photoelectric cross section for
photons with energy hν > Z2IH is given by an analytic expression:

σpe(ν) = σ0

(
Z2IH
hν

)4
e4−4 arctan(x)/x

1− e−2π/x
, x ≡

√
hν

Z2IH
− 1 , (13.1)

where Z is the atomic number of the nucleus, and σ0, the cross section at threshold,
is given by

σ0 ≡ 29π

3e4
Z−2απa20 = 6.304× 10−18Z−2 cm2 , (13.2)

where e = 2.71828... in Eqs. (13.1 and 13.2). Over the energy range Z2IH <
hν < 102Z2IH, the exact (nonrelativistic) result (13.1) is reproduced reasonably
well by a simple power-law approximation:

σpe(ν) ≈ σ0

(
hν

Z2IH

)−3

for Z2IH < hν <∼ 102Z2IH . (13.3)

This approximation for H is shown in Figure 13.1a. At high energies, the asymp-
totic behavior of Eq. (13.1) is

σpe → 28

3Z2
απa20

(
hν

Z2IH

)−3.5

for hν � Z2IH . (13.4)

The hydrogen photoelectric cross section becomes equal to the Compton scatter-
ing cross section for hν ≈ 2.5 keV; above this energy photoionization of H is
dominated by Compton scattering rather than photoelectric absorption.

The photoionization cross section for H2 is also shown in Figure 13.1a. The
15.4 eV ionization threshold for H2 is 15% above that for atomic H. Note that for
hν >∼ 20 eV, the H2 photoionization cross section is approximately twice that for
H. The limiting value at high energy is σpe(H2) = 2.8σp.i.(H) (Yan et al. 1998).

For atoms with three or more electrons, the energy dependence of the photoion-
ization cross section can be considerably more complicated because there is more
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Figure 13.1 Photoionization cross sections for H, H2, He, C, and O. The dashed line
in (a) shows the power-law approximation (13.3) for H.

than one available state for the resulting ion – for example, in the case of pho-
toionization from the O I ground state 3P2 (1s22s22p4), the electron being photoe-
jected could come from the 1s, 2s or 2p levels. If a 2p electron is removed, and
13.6 eV < hν < 16.9 eV, the resulting O II ion will be in the 1s22s22p3 4S o

3/2

state, but if hν > 16.9 eV, the ion could also be left in the 1s22s22p3 2D o
3/2,5/2

state. The availability of multiple channels leads to complex structure in the pho-
toionization cross section. For ionization by continuum radiation, this detailed
structure can be smoothed and averaged over. Convenient analytic fits to the contri-
bution of individual shells to photoionization cross sections are given by Verner &
Yakovlev (1995) and Verner et al. (1996). Figure 13.1b shows the photoionization
cross sections for C and O, each of which has a conspicuous absorption edge at
the minimum photon energy for photoionization from the K shell (“K shell” ≡ 1s
shell). At high energies (i.e., above the K-edge), the 1s2 electrons provide a pho-
toionization cross section that is ∼ 104 times larger than the cross section for an H
atom. Thus at high energies, the heavy elements can dominate the total photoion-
ization cross section, even though the total abundance of heavy elements is only
∼10−3 that of H. Figure 13.2 shows photoionization cross sections for O, Ne, Mg,
and Si.
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Figure 13.2 Photoionization cross sections for O, Ne, Mg, Si.

The photoionization rate (the probability per unit time of photoionization) is

ζp.i. =

∫ ∞

ν1

σpe(ν) c
uν

hν
dν , (13.5)

where uνdν is the energy density of radiation in the frequency interval (ν, ν+ dν).
Photoionization rates have been calculated for selected atoms and ions, for two
estimates of the local interstellar radiation field (Draine 1978; Mathis et al. 1983).
The resulting photoionization rates are given in Table 13.1.

The rates for neutral atoms cover a wide range, from 7 × 10−12 s−1 for K to
3 × 10−10 s−1 for Si – this wide variation comes from the large differences in
hν < 13.6 eV photoionization cross sections. (The difference in σpe between Mg
and Si in Figure 13.2 accounts for the factor of ∼ 50 difference in photoionization
rates for Mg and Si.) It is curious that the two elements with the lowest ionization
potentials – Na and K – have relatively low photoionization rates.

Note that of the elements in Table 13.1, two – Ca and Ti – have two ion states
with ionization potentials I < IH. These elements can therefore be found in three
ionization states in H I regions: Ca I, Ca II, and Ca III; and Ti I, Ti II, and Ti III.
However, ionization of Ti II→Ti III can only be accomplished by the very few pho-
tons in the range 13.576-13.598eV, so the rate is very small (see Table 13.1).
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Table 13.1 Photoionization Ratesa for Elements with Abundance X/H> 1 × 10−8

and Ionization Potential (IP) < 13.60 eV, for Two Estimates of the ISRF

IP ISRF from MMP83b ISRF from D78c

Z X (eV) ζp.i.( s
−1) ζp.i.( s

−1)

6 C 11.2603 2.58× 10−10 3.43× 10−10

11 Na 5.1391 7.59× 10−12 1.13× 10−11

12 Mg 7.6462 5.39× 10−11 8.37× 10−11

13 Al 5.9858 1.05× 10−9 1.63× 10−9

14 Si 8.1517 2.77× 10−9 4.29× 10−9

15 P 10.4867 7.93× 10−10 1.14× 10−9

16 S 10.3600 9.25× 10−10 1.29× 10−9

17 Cl 12.9676 3.59× 10−10 3.17× 10−10

19 K 4.3407 6.85× 10−12 1.04× 10−11

20 Ca 6.1132 1.21× 10−10 1.88× 10−10

” Ca II 11.872 4.64× 10−12 5.77× 10−12

22 Ti 6.8281 1.45× 10−10 2.12× 10−10

” Ti II 13.576 1.13× 10−14 5.12× 10−15

23 V 6.7462 3.64× 10−11 4.59× 10−11

24 Cr 6.7665 4.67× 10−10 6.93× 10−10

25 Mn 7.4340 2.41× 10−11 3.77× 10−11

26 Fe 7.9024 1.92× 10−10 2.91× 10−10

27 Co 7.8810 3.96× 10−11 6.19× 10−11

28 Ni 7.6398 7.24× 10−11 1.13× 10−10

29 Cu 7.7264 1.45× 10−10 2.04× 10−10

30 Zn 9.3942 2.94× 10−11 4.49× 10−11

a σp.i. from Verner & Yakovlev (1995) and Verner et al. (1996).
b Mathis et al. (1983) radiation field [Eq. (12.7)], with χ = 1.231, and G0 = 1.137

[see Eq. (12.5 and 12.6) for definitions of χ and G0].
c Draine (1978) radiation field (χ = 1.71, G0 = 1.69).

13.2 Auger Ionization and X-Ray Fluorescence

When photoionization ejects an electron from an inner shell, it leaves the resulting
ion with an inner-shell vacancy. This highly excited state can, in principle, relax
radiatively, but it can instead undergo a radiationless two-electron transition, with
one electron dropping to fill the vacancy, and a second electron promoted to an
excited level. If the excited level is unbound, the second electron will escape: this
is referred to as the Auger effect.

Figure 13.3 shows the total number of electrons ejected following one photo-
electric absorption by the K-, L1-, or M1-shell in initially neutral atoms.1 For
neutral C, N, O, or Ne, photoionization from the K shell is followed by ejection of
one Auger electron (Kaastra & Mewe 1993). For atoms with larger atomic num-
bers, there can be a sequence of such transitions, with a number of Auger electrons

1K-shell = 1s subshell; L1-shell = 2s subshell; M1-shell = 3s subshell.
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Figure 13.3 Average number of electrons (including the photoelectron) emitted fol-
lowing photoelectric absorption by the K, L1, and M1 subshells of neutral atoms.
From Kaastra & Mewe (1993).

ejected following a single photoionization. For example, photoionization from the
K shell of a neutral Fe atom will, on the average, be followed by ejection of ∼4.7
Auger electrons (Kaastra & Mewe 1993). Auger ionization plays an important role
in the ionization of heavy elements by x rays. Gorczyca et al. (2003) discuss the
accuracy of the estimated Auger yields in Fig. 13.3.

It is also possible for a K-shell vacancy to be filled by a radiative transition as
an electron from the L-shell drops to the K-shell, with emission of a Kα photon.
Similarly, an electron from the M -shell can drop to the K-shell, with emission of
a Kβ photon. This is known as “Kα and Kβ fluorescence,” and is thought to be
an important source of Fe Kα and Kβ line emission from gas near x ray sources,
such as accretion disks around AGN. The energies of the Kα and Kβ lines, and
the Kα/Kβ intensity ratio, depend on the ionization state of the Fe ion that was
originally photoionized. Figure 13.4 shows estimates of Kaastra & Mewe (1993)
for the Kα fluorescence yield for Fe in ion stages running from Fe0 to Fe+22; see
also Palmeri et al. (2003).

13.3 Secondary Ionizations

The initial kinetic energy of a photoelectron ejected from shell s of an atom or ion
is just Epe = hν − Is, where Is is the threshold energy for photoionization from
shell s. In the case of photoionization by x rays, the photoelectron energy can easily
be 102 to 103 eV.

In a fully ionized plasma, an energetic photoelectron slows down by Coulomb
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Figure 13.4 Average number of Kα and Kβ fluorescence photons emitted following
creation of a K-shell vacancy, for all ions of Fe (stage 1 = Fe0; stage 22 = Fe+21). Solid
curves show results of Kaastra & Mewe (1993); dashed lines are results of Jacobs &
Rozsnyai (1986). From Kaastra & Mewe (1993).

scattering off thermal electrons, with all of its initial kinetic energy eventually con-
verted to heat. However, if there are bound electrons present (e.g., H atoms), the
photoelectron can also excite electrons to excited bound states (e.g., 1s → 2p) by
collisional excitation, or to free electron states (e.g., H → H+ + e−) by collisional
ionization. If molecules are present (e.g., H2), an energetic electron can also excite
rovibrational excited states of the molecule. To understand the effects of energetic
electrons in a partially ionized gas, it is necessary to carry out a statistical study of
slowing-down process.

The collisional ionizations by both the photoelectron and energetic secondary
electrons are referred to as secondary ionizations. The average number of sec-
ondary ionizations per photoelectron ≡ φs(Epe, xe) depends on the photoelectron
kinetic energy Epe and on the ionization state of the gas.

Numerical studies of ionization by E >∼ 50 eV electrons in partially ionized gas
(Dalgarno & McCray 1972; Voit 1991) are approximately reproduced by

φs(E, x) ≈
(
1− xe

1.2

) (E − 15 eV

35 eV

)
1

1 + 18x0.8
e / ln(E/35 eV)

, (13.6)

where xe ≡ ne/nH, the number of free electrons per H nucleon. According to
(13.6), in neutral gas each ionization costs about 35 eV. Energy loss to the thermal
electrons suppresses φs by a factor > 2 for xe

>∼ 0.027[ln(E/35 eV)]1.25.
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13.4 Collisional Ionization

Let the cross section for collisional ionization by an electron be σc.i.(E). The rate
coefficient for collisional ionization by the thermal electrons in a plasma is

kc.i. =

∫ ∞

I

σc.i.(E) vfEdE (13.7)

=

(
8kT

πme

)1/2 ∫ ∞

I

σc.i.(E)
E

kT
e−E/kT dE

kT
. (13.8)

From phase-space considerations, it can be seen that the cross section must rise
smoothly from zero at the threshold energy I . For moderate energies I < E <∼ 3I ,
the actual cross section can often be approximated by the simple form

σc.i.(E) ≈ Cπa20

(
1− I

E

)
, (13.9)

where C is a constant of order unity. For this simple form, the thermal rate coeffi-
cient is readily calculated and is given by is

kc.i. =Cπa20

(
8kT

πme

)1/2

e−I/kT (13.10)

=5.466× 10−9CT
1/2
4 e−I/kT cm3 s−1 . (13.11)

Collisional ionization cross sections are given by Bell et al. (1983) and Lennon
et al. (1988). The collisional ionization cross section for H is approximated by Eq.
(13.9) with C = 1.07 and I = IH.

13.5 Cosmic Ray Ionization

Most electrons and ions in interstellar space have velocities drawn from the lo-
cal thermal distribution, but a small fraction of the particles have energies that are
much larger than thermal – these “nonthermal” electrons and ions are referred to as
cosmic rays. The cosmic ray population in the solar neighborhood is observed to
extend to ultrarelativistic energies. Let ζCR be the rate of ionization of a hydrogen
atom exposed to the cosmic rays. Cosmic ray ionization produces electrons with
a spectrum of energies. The mean kinetic energy 〈E〉 ≈ 35 eV is essentially in-
dependent of the energy of the ionizing particle, as long as the particle is moving
fast compared to the “Bohr velocity” c/137. Just like photoelectrons produced by
x-ray ionization, the electrons produced by cosmic ray ionization may cause sec-
ondary ionizations. In neutral gas, the number of secondary ionizations is ∼ 0.67
(Dalgarno & McCray 1972), with the number of secondary ionizations decreasing
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with increasing fractional ionization approximately as

φs(CR) ≈
(
1− xe

1.2

) 0.67

1 + (xe/0.05)
. (13.12)

The total ionization rate per volume resulting from cosmic rays is(
dne

dt

)
CR

≈ 1.1nHζCR

(
1− xe

1.2

)
[1 + φs(CR)] . (13.13)

The cosmic ray ionization rate ζCR is uncertain. The density of H and He cosmic
rays can be measured near the Earth down to ∼ 20MeV/nucleon (Wang et al.
2002), but below ∼ 2GeV the observed flux (see Fig. 13.5a) must be corrected
for the effects of the solar wind. Webber & Yushak (1983) used data from the
Voyager probe to calibrate the modulating effects of the solar wind, and estimated
the interstellar proton flux down to 60 MeV. As seen in Figure 13.5, the (uncertain)
corrections for the solar wind are a factor of ∼3 at 1 GeV, and substantially larger
at E <∼ 0.3GeV.

For an assumed flux per unit solid angle F (E) of particles with energy less than
E, the primary ionization rate ζCR due to particles with E > Emin is

ζCR = 4π

∫ ∞

Emin

σci(E)E
dF

dE
· dE
E

, (13.14)

where the collisional ionization cross section σci for a particle with charge Ze and
velocity βc is given by (Bethe 1933):

σci = 0.285
2πe4Z2

mec2IHβ2

{
ln

[
2mec

2β2

IH(1− β2)

]
+ 3.04− β2

}
, (13.15)

for β >∼ .025. Smoothly extrapolating the Webber & Yushak (1983) estimate for
the proton flux (curve WY83 in Fig. 13.5a) down to 1 MeV, the primary ionization
rate for an H atom due to E > 1MeV protons is calculated to be ζCR,p = 6.6 ×
10−18 s−1. Allowance for the effects of helium and heavier ions raises the total
primary ionization rate to ζCR ≈ 2ζCR,p.2 Primary ionizations will be followed
by secondary ionizations, with the number of secondary ionizations of hydrogen
approximately given by Eq. (13.12). When the fractional ionization is low, xe

<∼
0.03 (as in a cool H I cloud), the total ionization rate per H (including ionization by
cosmic rays heavier than H) will be (1 + φs)ζCR ≈ 3ζCR,p.

From Figure 13.5b, it can be seen that ζCR,p is primarily due to energies E <
1GeV. Because of the uncertainty in correcting for the effects of the solar wind

2At fixed kinetic energy per nucleon, the ionization cross section (13.15) scales as Z2. For solar
abundances, He nuclei would contribute an ionization rate equal to 0.38ζCR,p, and Fe nuclei would
contribute 0.023ζCR,p. In fact, the cosmic-ray abundances relative to H of nuclei such as Si and Fe
are super-solar by as much as a factor of 20 (see Fig. 40.3). As a result, the total cosmic ray primary
ionization rate ζCR ≈ 2ζCR,p.
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Figure 13.5 (a) Symbols show Voyager measurements of cosmic ray protons (Webber
& Yushak 1983). Solid curve labeled WY83 is the estimate of Webber & Yushak
(1983) and Webber & Lockwood (2001) for the local interstellar cosmic ray protons.
Curves X1 – X4 are hypothetical spectra that match the observed high-energy proton
flux, but with larger numbers of low-energy particles than the Webber & Yushak (1983)
estimate. (b) H primary ionization rate per logarithmic interval in cosmic ray energy
E calculated for spectra X1 – X4 in (a).

at low energies, as well as the possibility that the low-energy cosmic ray spectrum
may vary from point to point in the ISM, Fig. 13.5a also shows four hypothetical
proton spectra, labeled X1–X4, where the maximum in E ·dF/dE = dF/d lnE
has been arbitrarily shifted to energies lower than estimated by Webber & Yushak
(1983) for the local interstellar cosmic rays. The primary ionization rates for the
proton spectra X1–X4 are ζCR,p = 2× 10−17 s−1, 5× 10−17 s−1, 1× 10−16 s−1,
and 2 × 10−16 s−1. Note that models X1–X4 all have nearly identical cosmic
ray fluxes at E > 2GeV, where the interstellar flux can be measured reliably by
spacecraft within the Solar System – they differ only at energies E < 1GeV, where
we do not have reliable measurements.

As will be discussed further in Chapter 16, studies of the products of ion–neutral
chemistry inside molecular clouds (Black & van Dishoeck 1991; Lepp 1992; Mc-
Call et al. 2003; Indriolo et al. 2007) can be used to estimate cosmic ray ionization
rates. In particular, the observed abundances of H+

3 in diffuse molecular clouds ap-
pear to require a cosmic ray primary ionization rate ζCR = (0.5− 3)× 10−16 s−1,
with an average value 2× 10−16 s−1 (Indriolo et al. 2007). If ∼50% of this is due
to protons, with the balance due to heavier nuclei, it is an indication that the inter-
stellar cosmic ray flux, in at least some clouds, may be similar to spectrum X3 in
Fig. 13.5, with dF/d lnE peaking near ∼ 100MeV.



Chapter Fourteen

Recombination of Ions with Electrons

Consider some atom or molecule X . If X is ionized, there are many different
processes that act to neutralize it, by “recombining” the ion with an electron:

• Radiative recombination: X+ + e− → X + hν.

• Dielectronic recombination: X+ + e− → X∗∗ → X + hν.

• Three-body recombination: X+ + e− + e− → X + e−.

• Charge exchange: X+ + Y → X + Y +.

• Dissociative recombination: AB+ + e− → A+B.

• Neutralization by grain: X+ + grain → X + grain+.

The relative importance of these different channels depends on the ion and on the
physical conditions. Each of these pathways is discussed in the following sections.

14.1 Radiative Recombination

Consider an ion with its electrons in some configuration that we will refer to as the
“core”. In a low-density thermal plasma, free electrons can undergo transitions to
bound states by emission of a photon:

X+(core) + e− → X(core + n�) + hν , (14.1)

where the electron is captured into some specific state n� that was initially un-
occupied. The cross section for electron capture via this “radiative recombination”
process is σrr,n�(E). As discussed in Chapter 3, if the photoionization cross section
σpi,n�(hν) is either measured or calculated for level X(core + n�), then the Milne
relation (3.31) can be used to obtain the electron capture cross section σrr,n�(E).

The thermal rate coefficient αn� for electron capture directly to level n�, with
emission of a photon of energy hν = In�+E (where In� is the energy required for
ionization from level n�), is

αn�(T ) =

(
8kT

πme

)1/2 ∫ ∞

0

σrr,n�(E)
E

kT
e−E/kT dE

kT
. (14.2)
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Table 14.1 Recombination Coefficients αn� (cm3 s−1) for H.a The approximation
formulae are valid for 0.3 <∼ T4

<∼ 3. For a broader range of T , see Eq. (14.5,14.6).

Temperature T

αn(
2L) 5× 103 K 1× 104 K 2× 104 K approximation

α1s 2.28×10−13 1.58×10−13 1.08×10−13 1.58×10−13T−0.539−0.014 lnT4
4

α2s 3.37×10−14 2.34×10−14 1.60×10−14 2.34×10−14T−0.537−0.016 lnT4
4

α2p 8.33×10−14 5.35×10−14 3.24×10−14 5.35×10−14T−0.681−0.061 lnT4
4

α2 1.17×10−13 7.69×10−14 4.84×10−14 7.69×10−14T−0.637−0.045 lnT4
4

α3s 1.13×10−14 7.81×10−15 5.29×10−15 7.81×10−15T−0.548−0.021 lnT4
4

α3p 3.17×10−14 2.04×10−14 1.23×10−14 2.04×10−15T−0.683−0.068 lnT4
4

α3d 3.03×10−14 1.73×10−14 9.09×10−15 1.73×10−14T−0.869−0.087 lnT4
4

α3 7.33×10−14 4.55×10−14 2.67×10−14 4.55×10−14T−0.729−0.059 lnT4
4

α4s 5.23×10−15 3.59×10−15 2.40×10−15 3.59×10−15T−0.562−0.028 lnT4
4

α4p 1.51×10−14 9.66×10−15 5.81×10−15 9.66×10−15T−0.689−0.064 lnT4
4

α4d 1.90×10−14 1.08×10−14 5.68×10−15 1.08×10−14T−0.871−0.081 lnT4
4

α4f 1.09×10−14 5.54×10−15 2.56×10−15 5.54×10−15T−1.045−0.099 lnT4
4

α4 5.02×10−14 2.96×10−14 1.65×10−14 2.96×10−14T−0.803−0.059 lnT4
4

αA 6.82×10−13 4.18×10−13 2.51×10−13 4.18×10−13T−0.721−0.021 lnT4
4

αB 4.54×10−13 2.59×10−13 1.43×10−13 2.59×10−13T−0.833−0.034 lnT4
4

a From Hummer & Storey (1987)

14.2 Radiative Recombination of Hydrogen

The most important element in astrophysics is, of course, hydrogen. Cross sections
σrr,n�(E) for radiative recombination of hydrogen to level n� have been calculated,
and the thermal rate coefficients for radiative recombination to level n� have been
obtained for every level n� using Eq. (14.2). Table 14.1 presents rate coefficients
αn� for direct recombination to level n�, for n = 1− 4.

An electron of kinetic energy E can undergo radiative recombination into any
level n� of the hydrogen atom, with emission of a photon of energy hν = E + In�,
where In� = IH/n

2 is the binding energy of an electron in level n�. Therefore,
when recombination takes place directly to the ground state (n = 1), a photon will
be emitted that can ionize hydrogen.

If the region under consideration has a significant amount of neutral hydrogen
present, the emitted photon will have a high probability of being absorbed by an-
other hydrogen atom very near the point of emission, with creation of a hydrogen
ion. Therefore, aside from the transport of the ionization energy a short distance, a
recombination directly to the ground state under these circumstances has virtually
no effect on the ionization state of the gas. This was first pointed out by Baker &
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Menzel (1938), who proposed distinguishing between two limits:

• Case A: Optically thin to ionizing radiation, so that every ionizing photon
emitted during the recombination process escapes. For this case, we sum the
radiative capture rate coefficient αn� over all levels n�.

• Case B: Optically thick to radiation just above IH = 13.60 eV, so that ioniz-
ing photons emitted during recombination are immediately reabsorbed, cre-
ating another ion and free electron by photoionization. In this case, the re-
combinations directly to n = 1 do not reduce the ionization of the gas: only
recombinations to n ≥ 2 act to reduce the ionization.

These two limiting cases are in fact realistic approximations for two physical sit-
uations. Photoionized nebulae around O and B stars – H II regions – usually have
large enough densities of neutral H so that free–bound photons emitted in recom-
binations to level n = 1 have a very small probability of escaping from the nebula
– for this situation, case B is an excellent approximation.

Regions where the hydrogen is collisionally ionized, on the other hand, are typ-
ically very hot (T >∼ 106 K) and contain a very small density of neutral hydrogen.
Because of the high T , the free-bound emission is also relatively hard (hν � IH),
so that the photoionization cross sections are well below the threshold value. As
a result, only a negligible fraction of photons emitted in recombinations to n = 1
will photoionize H within the nebula – for these shock-heated regions, case A is an
excellent approximation.

The effective radiative recombination rates for hydrogen for these two limiting
cases are

αA(T )≡
∞∑

n=1

n−1∑
�=0

αn�(T ) , (14.3)

αB(T )≡
∞∑

n=2

n−1∑
�=0

αn�(T ) = αA(T )− α1s(T ) . (14.4)

Good approximations to the radiative recombination rates for hydrogenic ions
(e.g., H+ or He++) are provided over the temperature range 30K < T/Z2 <
3× 104 K by the fitting formulae

αA(T ) ≈ 4.13× 10−13Z2(T4/Z
2)−0.7131−0.0115 ln(T4/Z

2) cm3 s−1 , (14.5)

αB(T ) ≈ 2.54× 10−13Z2(T4/Z
2)−0.8163−0.0208 ln(T4/Z

2) cm3 s−1 . (14.6)

These are plotted in Figure 14.1.

14.2.1 Hydrogen Recombination Emission Spectrum

The hydrogenic energy levels are designated by quantum numbers n = 1, 2, 3, 4, ...
and � = 0, 1, 2, 3, ..., n − 1 (or s, p, d, f, ...). With the exception of the 2s level,
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Figure 14.1 Case A and Case B rate coefficients αA and αB for radiative recom-
bination of hydrogen, multiplied by T

1/2
4 (equations 14.5,14.6). Note that no single

power-law fit can reproduce the T -dependence over a wide range in T .

every excited state n� of hydrogen has allowed radiative decays to one or more
lower levels n′�′, satisfying the selection rules n > n′ and � − �′ = ±1. Figure
14.2a shows the three different 4� → 2�′ transitions that contribute to the Balmer
series n = 4 → 2 transition, known as “H β,” with a wavelength 911.77 Å/( 14 −
1
16 ) = 4862.7 Å. Figure 14.2b shows all of the allowed transitions open to an
atom in the 4p state. Therefore, as radiative recombination takes place to excited
levels n�, these (except for 2s, which we discuss further in the following) promptly
decay to populate lower levels. The radiative decay process produces a distinctive
emission spectrum characteristic of hydrogen recombination.

The hydrogen recombination spectrum depends on temperature T , and therefore
measured line ratios can be used to estimate T . The power radiated in the recom-
bination lines can be used to determine the total rate of hydrogen recombination in
the ionized region. Measurements of the relative intensities of recombination lines
with different wavelengths can be used to estimate the reddening by dust between
us and the emitting region.

14.2.2 Case A Recombination Spectrum

In the optically thin limit where no emitted photons are reabsorbed – so-called Case
A – the emission spectrum of recombining hydrogen can be calculated. The power
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Figure 14.2 (a) The three transitions contributing to Hβ; (b) Allowed radiative transi-
tions depopulating the 4p level.

radiated per volume in the transition n� → n′�′ is just

4πj(n�→n′�′) = nen(H
+)

A(n� → n′�′)hνu�∑
n′′�′′ A(n� → n′′�′′)

×⎡
⎣α(n�) +

∑
n′′�′′,n′′>n

α(n′′�′′)PA(n
′′�′′, n�)

⎤
⎦ , (14.7)

where PA(n
′′�′′, n�) is the Case A probability that an atom in level n′′�′′ will follow

a decay path that takes it through level n�. The probabilities PA(n
′′�′′, n�) are

readily calculated from the known transition probabilities A(n� → n′�′) using
straightforward branching probability arguments.

14.2.3 Case B Recombination Spectrum

All np levels have allowed transitions to the ground state 1s, with large transition
rates Anp,1s for n <∼ 10 (see Table 9.1). In the ideal Case A limit, these photons
are all assumed to escape freely.

The resonant absorption cross section for Lyman α, Lyman β, and so on, are
much larger than photoionization cross sections. Any nebula that is optically thick
to Lyman continuum radiation – the defining condition for Case B – will therefore
be very optically thick to Lyman series n → 1 photons for small values of n. While
the cross sections for absorption in the n → 1 transitions is a declining function of
n, as n → ∞ this cross section becomes equal to the photoionization cross section
6.3×10−18 cm2 near threshold; thus, for Case B conditions, all of the Lyman series
transitions are optically thick.
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Therefore, Lyman series photons that are emitted will be resonantly absorbed by
other hydrogen atoms in the ground state, immediately exciting the absorber to the
same quantum state np as characterized the emitting atom.

Because the resonant absorption cross section is large, under Case B conditions,
a Lyman α, β, γ, . . . photon will travel only a short distance before being re-
absorbed. If we disregard the displacement – this is known as the on-the-spot
approximation – it is helpful to think about the radiative decay and resonant reab-
sorption process as though the photon were reabsorbed by the same atom as emitted
it. We will use such language in the following discussion.

Consider a hydrogen atom in level np, with n ≥ 3. It has allowed decays to
levels n′s where n′ < n. If n ≥ 4, (see Fig. 14.2b), there are also allowed decays
to levels n′d with 3 ≤ n′ < n. Therefore, if the upper state np decays by emission
of a Lyman series photon (np → 1s), the photon will immediately be resonantly
absorbed, returning the excitation back to the np state. After returning to the np
state, the atom will again decay along one of its allowed decay paths, based on its
branching probabilities. The atom may emit another Lyman series photon, which
will again be absorbed. This process will repeat until eventually a non-Lyman
decay occurs, taking the atom to level n′ > 1, with the emitted photon escaping
freely.1

Therefore, under Case B conditions, insofar as the spontaneous emission of pho-
tons from levels n ≥ 3 is concerned, it is just as though the Lyman series transitions
did not even occur – every time a Lyman series photon depopulates a level np, the
level is almost instantly repopulated by reabsorption of the photon, and, because
the levels np with n ≥ 3 always have at least one non-Lyman decay channel avail-
able, eventually the np level will depopulate by emission of a non-Lyman series
photon (e.g., a Balmer series photon). The case B emissivities jB(n� → n′�′)
can therefore be calculated using Eq. (14.7), but with the Anp→1s rates replaced by
zero, and with the probabilities PA(n�, n

′�′) replaced by probabilities PB(n�, n
′�′)

calculated with the Lyman series transition probabilities set to 0. Case B emissivi-
ties for selected lines are given in Table 14.2 for T = 5000, 10,000, and 20,000 K.
The two strongest lines are Hα 6564.6 Å and Hβ 4862.7 Å. The rate coefficients
for recombinations that result in emission of these lines can be approximated by

αeff,Hα ≈ 1.17× 10−13T−0.942−0.031 lnT4
4 cm3 s−1 , (14.8)

αeff,Hβ ≈ 3.03× 10−14T−0.874−0.058 lnT4
4 cm3 s−1 ; (14.9)

these approximations are accurate to within ∼ 2% for 0.1 < T4 < 3. Because
collisions can affect the high-n and 2s levels, the rate coefficients for emission of
recombination lines are weakly dependent on density. Equations (14.8 and 14.9)
are for ne ≈ 103 cm−3, but are valid to within a few percent for ne

<∼ 106 cm−3.

1This argument assumes that the population of hydrogen in excited states is too small to present
significant opacity, even for allowed transitions, such as Hα. As will be discussed later, this is not
always true, but it is usually an excellent approximation.
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Table 14.2 Case B Hydrogen Recombination Spectruma for ne = 103 cm−3

T (K)
5000 10,000 20,000

αB( cm
3 s−1) 4.53× 10−13 2.59× 10−13 1.43× 10−13

αeff,2s/αB 0.305 0.325 0.356
αeff,Hα( cm

3 s−1) 2.20× 10−13 1.17× 10−13 5.96× 10−14

αeff,Hβ( cm
3 s−1) 5.40× 10−14 3.03× 10−14 1.61× 10−14

4πjHβ/nenp( erg cm
3 s−1) 2.21× 10−25 1.24× 10−25 6.58× 10−26

Balmer-line intensities relative to Hβ 0.48627µm
jHα 0.65646/jHβ 3.03 2.86 2.74
jHβ 0.48627/jHβ 1. 1. 1.
jHγ 0.43418/jHβ 0.459 0.469 0.475
jHδ 0.41030/jHβ 0.252 0.259 0.264
jHε 0.39713/jHβ 0.154 0.159 0.163
jH8 0.38902/jHβ 0.102 0.105 0.106
jH9 0.38365/jHβ 0.0711 0.0732 0.0746
jH10 0.37990/jHβ 0.0517 0.0531 0.0540

Paschen (n → 3) line intensities relative to corresponding Balmer lines
jPα 1.8756/jHβ 0.405 0.336 0.283

jPβ 1.2821/jHγ 0.43418 0.399 0.347 0.305
jPγ 1.0941/jHδ 0.41030 0.391 0.348 0.311
jPδ 1.0052/jHε 0.39713 0.386 0.348 0.314
jPε 0.95487/jH8 0.38902 0.382 0.348 0.316
jP9 0.92317/jH9 0.38365 0.380 0.347 0.317
jP10 0.90175/jH10 0.37990 0.380 0.347 0.317

Brackett (n → 4) line intensities relative to corresponding Balmer lines
jBrα 4.0523/jHγ 0.43418 0.223 0.169 0.131
jBrβ 2.6259/jHδ 0.41030 0.219 0.174 0.141
jBrγ 2.1661/jHε 0.39713 0.212 0.174 0.144
jBrδ 1.9451/jH8 0.38902 0.208 0.173 0.145
jBrε 1.8179/jH9 0.38365 0.204 0.173 0.146
jBr10 1.7367/jH10 0.37990 0.202 0.172 0.146

Pfundt (n → 5) line intensities relative to corresponding Balmer lines
j65 7.4599/jHδ 0.41030 0.134 0.0969 0.0719
j75 4.6538/jHε 0.39713 0.134 0.101 0.0774
j85 3.7406/jH8 0.38902 0.130 0.101 0.0790
j95 3.2970/jH9 0.38365 0.127 0.100 0.0797
j10 5 3.0392/jH10 0.37990 0.125 0.0997 0.0801

Humphreys (n → 6) line intensities relative to corresponding Balmer lines
j76 12.372/jHε 0.39713 0.0855 0.0601 0.0435
j86 7.5026/jH8 0.38902 0.0867 0.0632 0.0471
j96 5.9083/jH9 0.38365 0.0850 0.0634 0.0481
j10 6 5.1287/jH10 0.37990 0.0833 0.0632 0.0486

a Emissivities from Hummer & Storey (1987)
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14.2.4 Emission of Lyman α

Let αeff2s and αeff2p be the effective rate coefficients for populating the 2s and 2p
states. It is clear that the case B radiative recombination process must eventually
take the atom to either the 2s level or the 2p level – thus αeff2s + αeff2p = αB .
The fractions f(2s) = αeff2s/αB ≈ 1

3 and f(2p) = αeff2p/αB ≈ 2
3 of the case

B recombinations that populate the 2s and 2p states are given in Table 14.3. What
happens after the electron enters either the 2s or 2p levels?

The only possible radiative decay path for the 2s state is 2s → 1s, and this is
strongly forbidden. The transition proceeds by two-photon decay, with A2s→1s =
8.23 s−1 (Drake 1986), emitting a continuous spectrum extending from ν = 0 to
νLα = 3IH/4h. Let P (2s)

ν dν be the probability that one of the emitted photons will
be in (ν, ν + dν). Energy conservation requires that P (2s)

ν (ν) = P
(2s)
ν (νLα − ν):

P
(2s)
ν must be symmetric around ν = νLα/2. In the low-density limit, where every

transition to 2s is followed by two-photon decay, the two-photon emissivity is

jν(2s → 1s) = nenpαeff,2s

[
hν

4π
P (2s)
ν

]
. (14.10)

The function P
(2s)
ν peaks at ν = νLα/2. The product hνP (2s)

ν appearing in Eq.
(14.10) can be found, e.g., in Osterbrock & Ferland (2006) (Table 4.12). The two-
photon decay spectrum is shown in Figure 10.2.

Because the radiative lifetime of the 2s level is long (0.122 s), it is possible for
collisions with electrons or protons to depopulate the 2s level before a spontaneous
decay occurs. Collisional deexcitation to the ground state 1s is possible, but the
collisional rates for 2s → 2p transitions are much larger, involving only a change
in orbital angular momentum with essentially no change in energy. The rate co-
efficients qe,2s→2p and qp,2s→2p are given in Table 14.4. Collisions with protons
dominate; since ne ≈ np, the critical density at which deexcitation by electron and
proton collisions is equal to the radiative decay rate is

ne,crit =
A2s→1s

qp,2s→2p + qe,2s→2p
≈ 1880 cm−3 . (14.11)

When this process is taken into account, the emissivity contributed by two-photon
decay becomes

Table 14.3 Fractiona of Case B Recombinations of Hydrogen that Populate 2s 2S1/2

and 2p 2P o
1/2,3/2.

T (K) f(2s) f(2p)

4000 0.285 0.715
10000 0.325 0.675
20000 0.356 0.644
a From Brown & Mathews (1970)
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Table 14.4 Rate Coefficientsa q for 2s → 2p transitions in H due to electron and
proton collisions at T = 104 K.

qp,2s→22P o
1/2

2.51× 10−4 cm3 s−1

qp,2s→22P o
3/2

2.23× 10−4 cm3 s−1

qe,2s→22P o
1/2

0.22× 10−4 cm3 s−1

qe,2s→22P o
3/2

0.35× 10−4 cm3 s−1

qp,2s→2p + qe,2s→2p 5.31× 10−4 cm3 s−1

a From Osterbrock (1974); Osterbrock & Ferland (2006).

jν =
nenpαeff2s

(1 + ne/ne,crit)

hν

4π
P (2s)
ν for 0 < ν < ν(Lyα) . (14.12)

Therefore, in bright H II regions (e.g., the Orion Nebula), the two-photon contin-
uum is suppressed by collisional processes: the fraction of radiative recombinations
that produce two-photon emission is a decreasing function of density ne. Thus,
measurement of the ratio of two-photon continuum to Hα, Hβ, or other recombi-
nation line from levels n ≥ 3 allows one to determine the electron density in an
ionized nebula.

An atom entering the 2p level (whether 2P o
1/2 or 2P o

3/2) has a radiative lifetime
of only 1/A2p→1s = 1.59 ns. At interstellar densities, the probability of collisional
depopulation of the 2p state is negligible.

The Lyman α optical depth at line center can be written

τ0(Lyα) = 8.02× 104
(
15 km s−1

b

)
τ(Ly cont) , (14.13)

where τ(Ly cont) = 6.30× 10−18 cm2N(H) is the optical depth due to photoion-
ization just above the H ionization edge. Case B conditions presume that the Lyman
continuum optical depth τ(Ly cont) > 1, so it is apparent that the Lyman α op-
tical depth is very large, τ(Lyα) >∼ 105. The Lyman α photons will therefore be
scattered (i.e., reabsorbed and reemitted in a different direction) many times. The
scattering is coherent: the frequency is essentially unchanged in the center-of-mass
frame of the incident photon and the H atom doing the scattering. However, be-
cause the H atoms have velocities ∼ 10 km s−1, each scattered photon undergoes a
random walk in frequency, which tends to take the photon away from line center
and into the wings of the profile, where the optical depth is smaller. The combined
effects of spatial diffusion and diffusion in frequency space will eventually allow
the photon to escape the nebula, if it is not first absorbed by some absorber other
than H — for example, dust — and if collisional deexcitation does not occur dur-
ing the ∼ 1.59 ns intervals between absorption and reemission. This is discussed
further in §15.7.
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14.3� Radiative Recombination: Helium

14.3.1 He++ + e− → He+

Massive stars with He in their atmospheres produce very little emission at hν >
54.4 eV = I(He+ → He++), and therefore He++ is not abundant in normal H II
regions. However, He++ can be abundant in the ionized gas around Wolf-Rayet
stars, in planetary nebulae, and around accreting compact objects (e.g., AGNs).
Radiative recombination of He++ to He+ at temperature T follows a radiative cas-
cade with the same branching probabilities as for H recombination at temperature
T/4. However, all of the He II Lyman series np → 1s are capable of ionizing
H. The resonance photon may therefore photoionize an H atom before undergoing
resonance absorption by He II, but because the resonance cross sections are very
large, this affects only a negligible fraction of the radiative cascades. Therefore,
when case B conditions apply for atomic H, the radiative recombination cascade
following recombination of He++ will proceed as though the 3p → 1s, 4p → 1s,
5p → 1s, ... transitions were forbidden, producing a recombination line spectrum
just as for H I but with all frequencies larger by a factor 4 [assuming, of course, that
n(He+)/nHe is not extremely small].

All of the He+ ions produced by radiative recombination of He++ will end up in
either the 2s or 2p states. The 2s state has A(2s → 1s) = 526.7 s−1 (Drake 1986),
which is fast enough so that collisional depopulation is generally not important
at nebular densities, and each recombination populating 2s will contribute a two-
photon continuum with hν1 + hν2 = 40.80 eV. Decay of the 2s level produces at
least one, and usually two, photons that are capable of ionizing H.

The 2p state will immediately decay to produce He II Lyα at λ = 304 Å, which
will undergo some number of resonant scatterings but will eventually photoionize
either H or He0. Recombination of He++ to He+ 2s and 2p produces Balmer
continuum radiation with hν > IH. In fact, in a nebula with n(He++)/n(H+) =
0.1 and T = 1×104 K, the production rate per volume of these H-ionizing photons
is equal to 80% of the H recombination rate per volume (Osterbrock 1989) – these
photons play an important role in the ionization of H in regions where He is doubly
ionized.

14.3.2 He+ + e− → He0

Recombination of He+ to He0 is more complex. The rate coefficients for recombi-
nation directly to the ground state, or recombination to any level except the ground
state, are approximated by

α1s2(He)=1.54× 10−13T−0.486
4 cm3 s−1 (14.14)

αB(He)=2.72× 10−13T−0.789
4 cm3 s−1 (14.15)

for 0.5 < T4 < 2 (Benjamin et al. 1999). In Case B, the recombinations directly
to the ground state 1s2 1S0 generate hν > 24.60 eV photons that can ionize either
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Figure 14.3 Radiative decay pathways for He0 (see text). Selected lines are labeled
by vacuum wavelength.

H0 or He0; the fraction y of these that ionize H is just

y≈ n(H0)σpi,H0(24.60 eV + kT )

n(H0)σpi,H0(24.60 eV + kT ) + n(He0)σpi,He0(24.60 eV + kT )

=

[
1 +

n(He0)

n(H0)

σpi,He0(24.60 eV + kT )

σpi,H0(24.60 eV + kT )

]−1

. (14.16)

For kT > 0, we have σpi,He0(24.6 eV + kT )/σpi,H0(24.6 eV + kT ) > 6.0. Thus
if n(He0) > 0.16n(H0), we will have y < 0.5.

The effective recombination rate for He+ → He0 is then

αeff(He) = αB(He) + yα1s2(He) , (14.17)

where αB is the recombination rate to all states except the ground state, and α1s2

is the recombination rate to the ground state 1s2 1S0.
Consider now the recombinations to excited states of He0. Approximately 25%

of these will be to states with total spin S = 0 – i.e., singlet states. Recombinations
to the singlet excited states of He0 (see Figure 14.3) are followed by a radiative
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Table 14.5 He+ → He0 Recombination Spectruma for ne = 102 cm−3 and
104 cm−3. Lines with j > 0.7j4472.73 are shown in bold.

ne = 102 cm−3 ne = 104 cm−3

T (K) 5000 10,000 20,000 5000 10,000 20,000
αeff,4472.73 (10

−14 cm3 s−1) 2.66 1.39 0.700 2.66 1.47 1.14
4πj4472.73/nen(He+)(10−26 erg cm3 s−1) 11.8 6.16 3.11 11.8 6.52 5.07

j2945.97/j4472.73 0.356 0.438 0.540 0.357 0.419 0.359
j3188.66/j4472.73 0.745 0.913 1.136 0.748 0.931 0.997
j3614.67/j4472.73 0.094 0.110 0.127 0.094 0.104 0.078
j3889.75/j4472.73 1.864 2.231 2.742 1.891 2.555 2.953
j3965.85/j4472.73 0.193 0.226 0.261 0.194 0.219 0.187
j4027.33/j4472.73 0.450 0.464 0.463 0.450 0.440 0.284
j4121.98/j4472.73 0.028 0.040 0.059 0.028 0.037 0.036
j4389.16/j4472.73 0.120 0.123 0.121 0.120 0.116 0.074
j4438.80/j4472.73 0.013 0.017 0.023 0.013 0.016 0.014
j4472.73/j4472.73 1.000 1.000 1.000 1.000 1.000 1.000
j4714.5/j4472.73 0.075 0.105 0.164 0.076 0.146 0.291
j4923.31/j4472.73 0.269 0.266 0.257 0.269 0.259 0.196
j5017.08/j4472.73 0.496 0.567 0.646 0.498 0.572 0.503
j5049.15/j4472.73 0.031 0.041 0.057 0.031 0.045 0.059

j5877.25,5877.60/j4472.73 2.989 2.743 2.591 2.966 2.933 3.118
j6679.99/j4472.73 0.857 0.778 0.702 0.849 0.775 0.554

j7067.14,7067.66/j4472.73 0.358 0.481 0.713 0.398 0.943 1.525
j7283.36/j4472.73 0.114 0.146 0.197 0.118 0.196 0.236
j9466.21/j4472.73 0.020 0.024 0.030 0.020 0.023 0.020

j10832.1,10833.2,10833.3/j4472.73 4.298 5.515 7.895 12.91 31.39 40.74
j11972.4/j4472.73 0.045 0.047 0.047 0.045 0.044 0.029
j12531.0/j4472.73 0.024 0.029 0.036 0.024 0.030 0.032
j12788.5/j4472.73 0.174 0.152 0.129 0.173 0.143 0.079
j12794.1/j4472.73 0.058 0.051 0.043 0.058 0.048 0.026
j12972.0/j4472.73 0.015 0.016 0.015 0.015 0.015 0.009
j15087.8/j4472.73 0.010 0.012 0.014 0.010 0.012 0.010
j17007.1/j4472.73 0.066 0.066 0.066 0.066 0.066 0.066
j18690.4/j4472.73 0.440 0.360 0.295 0.429 0.347 0.239
j18702.3/j4472.73 0.146 0.120 0.097 0.143 0.113 0.064
j19094.6/j4472.73 0.025 0.025 0.024 0.025 0.024 0.018
j19548.4/j4472.73 0.014 0.017 0.021 0.014 0.017 0.019
j20586.9/j4472.73 0.629 0.670 0.723 0.758 1.036 0.899
j21126/j4472.73 0.011 0.016 0.025 0.012 0.022 0.044

a Emissivities from Benjamin et al. (1999)

cascade down to the first two singlet excited states: approximately 1
3 end up in

1s2s 1S0, and approximately 2
3 in 1s2p 1P o

1 . The 1s2p 1P o
1 state has allowed de-

cays to the ground state (λ = 584.33 Å) or to the 1s2s 1S0 state (λ = 2.0587µm),
with branching ratio

A1s2p 1P o
1 →1s2s 1S0 2.0587µm

A
1s2p 1P o

1 →1s2 1S0 584.33 Å

=
1.976× 106 s−1

1.799× 109 s−1
= 1.098× 10−3 . (14.18)

Therefore, 99.9% of the decays of 1s2p 1P o
1 will be by emission of a 584.33Å

photon; under Case B conditions, this photon will either ionize a hydrogen atom or
will be absorbed by a nearby He0, exciting it to 1s2p 1P o

1 , which will then undergo
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another decay. The cycle will be repeated until the photon is absorbed by dust, it
produces a hydrogen ionization, or a spontaneous decay to 1s2s occurs.

Transitions leading to 1s2s 1S0 will be followed by two-photon decay with A =
51.0 s−1 (Drake 1986) and a total photon energy 20.62 eV; 56% of these two-
photon decays produce a photon with hν > 13.60 eV.

Approximately 75% of the recombinations to excited states will be to states with
spin S = 1 – i.e., the triplet states. As seen in Figure 14.3, recombinations to
triplet states of He0 will be followed by a rapid cascade down to the lowest triplet
state 1s2s 3S1. A large fraction of these cascades pass through the 1s2p 3P state,
resulting in emission of the He I 10833 Å triplet (the components are at 10832.1,
10833.2, 10833.3Å), with the strongest observable line2 produced by recombina-
tion of He+ to He0.

The 1s2s 3S1 level is metastable – it can decay by spontaneous emission of a sin-
gle 19.82 eV photon, but the transition is highly forbidden, with A1s2s 3S1→1s2 1S0

=
1.27 × 10−4 s−1. Spin-changing collisions with electrons can collisionally excite
1s2s 3S1 to 1s2s 1S0, requiring an energy 20.62 − 19.82 = 0.80 eV; at inter-
stellar densities, this will almost always be followed by two-photon decay to the
ground state with A = 51.0 s−1; 56% of these decays produce a photon with
hν > 13.60 eV. About 10% of the spin-changing collisions will collisionally ex-
cite 1s2p 1P o

1 , which immediately decays with emission of a 21.2 eVphoton. The
critical density for triplet-to-singlet conversion is

ncrit,e(1s2s
3S1)=

A1s2s 3S→1s2 1S

q1s2s 3S→1s2s 1S + q1s2s 3S→1s2p 1P
(14.19)

≈ 1100e1.2/T4T 0.5
4 cm−3 . (14.20)

For ne � ncrit,e(1s2s
3S1), nearly all recombinations to the triplet state are colli-

sionally converted to the singlet states before emission of a 625.6Å photon can take
place.

Non-spin-changing collisions can excite 1s2s 3S1 → 1s2p 3P o
0,1,2 (the energy

required is only 1.14 eV), which will be immediately followed by emission of
He I 10833 Å. Even at low densities, He I 10833 Å is a strong emission line, but at
high densities the line strength can be increased by this collisional excitation pro-
cess. For example, Table 14.5 shows that at T = 104 K, the ratio of j10833/j4472.7
increases by a factor of 5.7 as the density is increased from 102 cm−3 to 104 cm−3.
Because it is enhanced by collisional excitation, He I 10833 is also temperature-
sensitive: at ne = 104 cm−3, the ratio j10833/j4472.7 increases by a factor of 3.2 as
T varies from 5× 103 K to 2× 104 K.

Collisional excitation from the metastable 1s2s 3S1 level can also enhance the
intensity of the 7067.1 Å and 3889.7 Å lines; inspection of Table 14.5 shows that
these lines are indeed enhanced by increased density and increased temperature,
although not to the same degree as 10833 Å itself.

2Certain H-ionizing lines emitted in permitted transitions to the ground state, such as He I 584.33 Å,
are more powerful, but are unobservable.
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Table 14.6 Selected recombination rate coefficientsa αrr( cm
3 s−1) for H I regions

(T ≤ 104 K)

Reactants T = 30K T = 100K T = 103 K

HII + e− → H I (case B) 1.44× 10−11 7.01× 10−12 1.49× 10−12

He II + e− → He I 1.75× 10−11 8.42× 10−12 1.00× 10−12

C II + e− → C I 1.77× 10−11 8.63× 10−12 2.18× 10−12

Na II + e− → Na I 1.44× 10−11 6.77× 10−12 1.31× 10−12

Mg II + e− → Mg I 2.01× 10−11 7.18× 10−12 1.00× 10−12

Al II + e− → Al I 4.20× 10−11 1.60× 10−11 2.52× 10−12

Si II + e− → Si I 1.94× 10−11 9.39× 10−12 2.35× 10−12

P II + e− → P I 3.60× 10−11 1.70× 10−11 4.08× 10−12

S II + e− → S I 1.59× 10−11 7.46× 10−12 1.75× 10−12

Cl II + e− → Cl I 7.35× 10−11 3.02× 10−11 5.53× 10−12

KII + e− → KI 2.92× 10−11 1.11× 10−11 1.75× 10−12

Ca II + e− → Ca I 2.09× 10−11 7.07× 10−12 8.90× 10−13

Ca III + e− → Ca II 7.07× 10−11 2.70× 10−11 4.28× 10−12

Ti II + e− → Ti I 2.24× 10−11 7.59× 10−12 9.62× 10−13

Ti III + e− → Ti II 8.06× 10−10 2.85× 10−10 3.90× 10−11

Cr II + e− → Cr I 2.38× 10−11 8.10× 10−12 1.03× 10−12

Mn II + e− → Mn I 2.44× 10−11 8.33× 10−12 1.07× 10−12

Fe II + e− → Fe I 2.46× 10−11 8.52× 10−12 1.10× 10−12

Co II + e− → Co I 2.54× 10−11 9.77× 10−12 1.57× 10−12

Ni II + e− → Ni I 2.10× 10−11 9.04× 10−12 1.80× 10−12

Zn II + e− → Zn I 2.10× 10−11 9.04× 10−12 1.80× 10−12

a From Verner (1999)

14.4 Radiative Recombination: Heavy Elements

Radiative recombination of elements heavier than H or He proceeds similarly, with
the important exception that we do not concern ourselves with the possibility that
photons emitted from recombination to the ground state could be reabsorbed lo-
cally by another atom of the “recombined” species. That is, we assume Case A
conditions when studying the recombination of heavy elements. If recombination
radiation is going to produce ionization, the photons from recombination of H and
He will likely be of much greater importance than photons from recombination of
the heavier elements.

In regions where the gas temperature is <∼ 103 K, the H and He will generally
be predominantly neutral, and most ions that are present will be either singly or
doubly ionized. Table 14.6 provides radiative recombination rates for H II, He II,
and ions that can be produced by photoionization by hν < 13.6 eV photons, for
elements with solar abundances X/H > 4× 10−8.

In H II regions, higher ionization stages can be produced by photoionization.
Table 14.7 lists radiative recombination rates for ions with ionization potentials
< 100 eV; the table is limited to the elements with solar abundances greater than
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or equal to sulfur [(S/H)� = 1.8× 10−5].
Radiative recombination of elements such as O and Ne is accompanied by emis-

sion of characteristic recombination lines – the recombining electrons are captured
into excited states, which then emit a cascade of line radiation. For example, radia-
tive recombination of OIII sometimes populates the excited state 2s2p2(4P)3d, re-
sulting in OII 4462.86 Å [2s2p2(4P)3p − 2s2p2(4P)3d] and OII 4073.79,
4075.13 Å [2s2p2(4P)3s− 2s2p2(4P)3p] emission, in addition to other lines.

In H II regions and planetary nebulae, these recombination lines will be faint
compared to the recombination lines of H, simply because of the greatly reduced
abundance of the heavy elements compared to hydrogen, but can nevertheless be
measured. The line strengths allow the abundance of the recombining ion stage to
be inferred. Because the radiative recombination cross sections to different excited
states will have different temperature dependence, the ratios of recombination lines
can be used to determine the electron temperature. When the recombining ion
(e.g., O III) has fine structure splitting of the ground state, the recombination line
strengths will depend on the relative populations of the different fine structure states
of the recombining ion, and the line ratios will therefore also be density dependent.
It is important to choose recombination lines for observation that are unlikely to be
contaminated by emission resulting from starlight excitation in the nebula.

The abundances obtained from recombination lines should, in principle, agree
with the abundances derived from the much stronger collisionally excited lines,
such as [O III]4959,5007 (to be discussed in §18.5). Interestingly, recombina-
tion lines in the Orion Nebula give abundances that are larger than deduced from
collisionally excited lines of these species, by factors of 100.14±0.02 for O III,
100.39±0.20 for O II, 100.39±0.15 for C III, and 100.26±0.10 for Ne III (Esteban et al.
2004).

More extreme results are found in some planetary nebulae, with elemental abun-
dances derived from recombination lines exceeding the abundances based on colli-
sionally excited lines by factors ranging from 1.5 to 12 in a sample of 23 Galactic
planetary nebulae (Wesson et al. 2005). The optical recombination lines tend to
give abundance estimates that are significantly higher than those based on colli-
sionally excited lines (e.g., Wesson et al. 2005). The reason for these discrepancies
is uncertain. It has been interpreted as evidence for temperature variations within
the emitting gas (Esteban et al. 2004); the extreme discrepancies seen in some plan-
etary nebulae suggest that they may contain cool ionized gas where recombination
line emission is enhanced and collisionally excited emission is weak. This is a
puzzle that is yet to be resolved.

14.5 Dielectronic Recombination

For an electron that is initially free to be captured to a bound state of an atom or ion,
the electron must lose energy. Radiative recombination is relatively slow because it
is necessary to create a photon to remove this energy as part of the capture process,
and this can take place only during the brief time that the free electron is appreciably
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Table 14.7 Selected Recombination Rate Coefficients at T = 104 K

Reactants αrr( cm3 s−1) αdiel( cm
3 s−1) αdiel/αrr Reference

H II + e− → H I (case A) 4.18× 10−13 0 0 d
H II + e− → H I (case B) 2.54× 10−13 0 0 d
He II + e− → He I (case A) 4.26× 10−13 < 10−23 0 d
He II + e− → He I (case B) 2.72× 10−13 < 10−23 0 d
He III + e− → He II 2.19× 10−12 0 0 f
C II + e− → C I 5.48× 10−13 – – e
C III + e− → C II 2.48× 10−12 6.06× 10−12 2.44 e,b
C IV + e− → C III 5.12× 10−12 1.31× 10−11 2.56 f , b
N II + e− → N I 3.87× 10−13 – – e
N III + e− → N II 2.36× 10−12 2.04× 10−12 0.86 e, b
N IV + e− → N III 5.23× 10−12 2.16× 10−11 4.13 e, b
N V + e− → N IV 9.84× 10−12 1.54× 10−11 1.56 e, b
O II + e− → O I 3.25× 10−13 – – e
O III + e− → O II 1.99× 10−12 1.66× 10−12 0.83 e, b
O IV + e− → O III 5.76× 10−12 1.14× 10−11 1.98 e, b
O V + e− → O IV 1.00× 10−11 3.45× 10−11 3.45 e, b
Ne II + e− → Ne I 2.14× 10−13 – – e
Ne III + e− → Ne II 1.53× 10−12 – – e
Ne IV + e− → Ne III 5.82× 10−12 – – e
Ne V + e− → Ne IV 9.84× 10−12 – – e
Mg II + e− → Mg I 1.40× 10−13 7.06× 10−13 5.04 e, c
Mg III + e− → Mg II 1.22× 10−12 – – e
Mg IV + e− → Mg III 3.50× 10−12 – – e
Si II + e− → Si I 5.90× 10−13 4.19× 10−13 0.71 e, c
Si III + e− → Si II 1.00× 10−12 3.87× 10−12 3.87 e, c
Si IV + e− → Si III 3.70× 10−12 1.47× 10−11 3.97 e, c
S II + e− → S I 4.10× 10−13 6.04× 10−15 0.01 e
S III + e− → S II 1.80× 10−12 – – e
S IV + e− → S III 2.70× 10−12 – – e
Fe II + e− → Fe I 1.42× 10−13 5.79× 10−13 4.07 e, a
Fe III + e− → Fe II 1.02× 10−12 1.29× 10−17 1.3× 10−5 e
Fe IV + e− → Fe III 3.32× 10−12 – – e
Fe V + e− → Fe IV 7.79× 10−12 – – e

a Mazzotta et al. (1998) d Osterbrock & Ferland (2006)
b Nussbaumer & Storey (1983) e Verner (1999)
c Nussbaumer & Storey (1986) f Verner & Ferland (1996)

accelerated by the electric field of the ion.
However, if an ion has at least one bound electron to begin with, then it is pos-

sible to have a capture process where the incoming electron transfers energy to a
bound electron, promoting the bound electron to an excited state, and removing
enough energy from the first electron that it too can be captured in an excited state:
the ion now has two electrons in excited states. As long as the energy has not
been radiated away, the process is reversible: the doubly excited electronic state
is capable of autoionizing. However, either of the electrons can undergo a spon-
taneous radiative decay and remove enough energy from the system that it can no
longer autoionize. Because two electrons are involved, the process is referred to as
dielectronic recombination.

The rate coefficient for dielectronic recombination depends on detailed atomic
physics: the initial cross section for capture to a doubly excited state, and the prob-
abilities per unit time of autoionization and spontaneous radiative decay.
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Dielectronic recombination is important in high-temperature plasmas, where it
often exceeds the radiative recombination rate. At low temperatures, dielectronic
recombination is generally suppressed because of the need for the electron to have
sufficient energy to produce a doubly excited state. Nevertheless, for selected ions
– including recombination of Mg II, C III – dielectronic recombination is important
at the ∼ 104 K temperatures of H II regions.

Dielectronic recombination can also proceed via excitation of fine-structure lev-
els of the target ion, with the recombining electron captured into a high-lying
“Rydberg state” – this channel can be important in low-temperature gas (Bryans
et al. 2009), both in H I regions (with T ≈ 102 K) and in molecular clouds (with
T ≈ 20K). Examples of species where this could be important include recombi-
nation of C II → C I, Si II → Si I, and OIII → OII.

The dielectronic recombination process populates specific energy levels, which
then undergo radiative decay, with predicted line ratios that differ from those result-
ing from pure radiative recombination (Nussbaumer & Storey 1983, 1984, 1986).
For example, the C III 2296Å line in planetary nebulae is produced by dielectronic
recombination of C IV (Storey 1981).

There has been considerable recent work on dielectronic recombination: see Col-
gan et al. (2003), Zatsarinny et al. (2003), Altun et al. (2004), Colgan et al. (2004),
Gu (2004), Mitnik & Badnell (2004), Zatsarinny et al. (2004b,a)

14.6 Dissociative Recombination

When a molecular ion AB+ captures an electron, the electronic wave function
of the resulting molecule AB must of course be different from the wave function
of AB, because an additional electron is present. Because ionization potentials
generally exceed chemical binding energies, the newly recombined molecule will
have enough energy to dissociate, and normally will find itself in an electronic
state where the electronic energy can be reduced by increasing the separation of
the nuclei – i.e., a repulsive state. When this happens, A and B will begin to move
apart, with the nuclear motion accelerating on the vibrational time scale, ∼ 10−13 s.
The excited state can of course reduce its electronic energy by emitting a photon,
but the Einstein A coefficient for the transition will typically be <∼ 108 s−1 – the
time scale for radiative decay 1/A ≈ 10−8 s. Because the vibrational time scale is
only ∼ 10−5 of the time scale for spontaneous emission, photon emission is highly
improbable, and A and B will fly apart, with the difference between the ionization
energy IAB and the chemical binding energy of AB appearing as kinetic energy of
A and B.

The cross section for the molecular ion to capture an electron is similar to the
cross section for an excited ion to be deexcited by a thermal electron – as discussed
in §2.3, the rate coefficient for this process is typically kd ≈ 10−7T

−1/2
2 cm3 s−1,

albeit with significant differences from one reaction to another. Table 14.8 shows
some selected dissociative recombination rates.
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Table 14.8 Dissociative Recombination for Selected Molecular Ions

Reaction kd( cm
3 s−1) Reference

OH+ + e− → O+H 6.50× 10−8T−0.50
2 Le Teuff et al. (2000)

H2
+ + e− → H+H 1.1× 10−8T−0.89

2 Schneider et al. (1994)
CO+ + e− → C+O 3.39× 10−7T−0.48

2 Le Teuff et al. (2000)
H+

3 + e− → H2 +H 1.1× 10−7T−0.56
2 McCall et al. (2004)

CH+ + e− → C+H 2.38× 10−7T−0.42
2 Le Teuff et al. (2000)

14.7 Charge Exchange

In a collision between an ion A+ and a neutral B, sometimes the ion can seize one
of the electrons from the neutral: A+ + B → A+ B+ +∆E. The energy release
∆E = I(A)− I(B), where I(A) and I(B) are the ionization potentials for A and
B. (In the case of A, this should be the ionization potential for whatever electronic
state the electron is captured into – this need not be the ground state of A.)

A necessary (but not sufficient) condition is that the reaction either be exother-
mic (∆E > 0) or, if endothermic, that the energy required (−∆E) not be large
compared to kT : −∆E <∼ kT .

A second necessary condition is that there be “level crossing.” Let VA++B(r)
and VA+B+(r) be potential energy functions obtained by solving the Schrödinger
equation for the electrons for the nuclei at fixed separation r, where VA++B is
the energy of the eigenfunction that, for increasing r, evolves adiabatically into

Figure 14.4 Diagrams showing the effective potential, as a function of internuclear
separation rAB , for the A+ + B system and the A + B+ system. Left: The energy
levels cross at r = rx; charge exchange will occur in a large fraction of orbiting
encounters as the internuclear separation passes through rx. Right: The energy levels
do not cross, and charge exchange, even though exothermic, will not proceed.
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the incoming state A+ + B, and VA+B+ is the energy of the eigenfunction that
corresponds to A + B+ at large separation. In order for charge exchange to oc-
cur, these two potential energy functions must cross, so that the electronic wave
function can make a transition from one state to another when the internuclear sep-
aration is just right. Even though the reaction may be exothermic, level crossing
is not guaranteed: Figure 14.4 shows an example where level crossing does occur,
and another example where it does not. Furthermore, the level crossing must take
place at an energy that is within a few kT of the energy of the incoming electronic
state A+ + B, so that the approaching nuclei will have sufficient kinetic energy
to achieve the required internuclear separation. This condition tends to rule out
charge exchange reactions where the incoming species are both charged, or the
outgoing species are both charged, because the Coulomb repulsion prevents small
internuclear separations to be achieved.

If conditions are favorable, the electron transfer will occur whenever A+ and B
approach within ∼ 10−8 cm; the rate coefficient will therefore be approximately
equal to that for ion–neutral “orbiting” collisions, with k >∼ 10−9 cm3 s−1 (see the
discussion in §2.4).

14.7.1 Important Special Case: O+ + H ↔ O + H+

An important example is charge exchange between oxygen and hydrogen, H0 +
O+ ↔ H+ + O0. Atomic oxygen and hydrogen have almost identical ionization
potentials (IH = 13.5984 eV, IO(3P0) = 13.6181 eV, differing by only 0.0197 eV.
There are three different fine-structure levels of O I that could be produced when
an electron is exchanged; we must therefore consider the three separate channels:

H(1S1/2) + O+(4S o
3/2)→H+ +O(3P2) + .0197 eV (14.21)

→H+ +O(3P1) + .0001 eV (14.22)
→H+ +O(3P0)− .0084 eV . (14.23)

The first two reactions are exothermic, and proceed rapidly; the third is slightly
endothermic. The rate coefficients given by Stancil et al. (1999) are fit by

k0 ≈ 1.14× 10−9T 0.400+0.018 lnT4
4 cm3 s−1 , (14.24)

k1 ≈ 3.44× 10−10T 0.451+0.036 lnT4
4 cm3 s−1 , (14.25)

k2 ≈ 5.33× 10−10T 0.384+0.024 lnT4
4 e−97K/T cm3 s−1 . (14.26)

The fits are accurate to within ∼ 10% for 50 < T < 104 K. By detailed balance, the
rate coefficient for the reverse reaction H+ +O(3P2) → H0(2S1/2) + O+(4S o

3/2)
is

k0r =
g(2S1/2)g(

4S o
3/2)

g(H+)g(3P2)
k0 e

−.0197 eV/kT (14.27)

=
8

5
k0 e

−229K/T . (14.28)
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Similarly, the rates for the reactions H++O(3P1) → H+O+ and H++O(3P0) →
H+O+ are

k1r =
8

3
k1 e

−1K/T (14.29)

k2r =
8

1
k2 e

+97K/T . (14.30)

Consider now a region where the hydrogen is partially ionized. At low densities,
the excited fine-structure levels of O will decay radiatively to populate the ground
state O(3P2) before collisions with H+ take place. The oxygen ionization balance
will then be the steady state solution to

n(H)n(O+)(k0 + k1 + k2) = n(H+)n(O0)k0r , (14.31)

or

n(O+)

n(O0)
=

(
k0r

k0 + k1 + k2

)
n(H+)

n(H0)
. (14.32)

The excited fine-structure levels are efficiently depopulated by spontaneous decay
for nH < ncrit, where

ncrit =
A(3P1 →3 P2)

(n(H)/nH)k10(H) + (ne/nH)[k10(M+) + k10(e−)]
(14.33)

≈ 2.5× 105 cm−3

(n(H)/nH)T 0.40
2 + (ne/nH)(5.6 + 4.1T 0.19

2 )
. (14.34)

Under most conditions of interest, we will be in the low-density limit nH � ncrit.
At high densities n � ncrit, collisions will ensure that the O0 fine structure

levels 3P2,1,0 are populated according to a thermal distribution. In the low density
limit, the oxygen ionization balance in steady state will then satisfy

n(O+)n(H0) (k0+k1+k2)

= n(H+)
[
k0rn(O

0 3P2)+k1rn(O
0 3P1)+k2rn(O

0 3P0)
]

= n(H+)n(O0)

[
5k0r+3k1re

−228K/T +k2re
−326K/T

]
5 + 3e−228K/T + e−326K/T

. (14.35)

The ratio
[
n(O+)/n(O0)

]
/
[
n(H+)/n(H0)

]
is plotted in Figure 14.5 for the low-

and high-density limits.
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Figure 14.5 Dependence of oxygen ionization fraction on hydrogen ionization fraction
due to charge exchange. The low-density limit applies for nH

<∼ 104 cm−3.

At low temperatures, T <∼ 300K, ionized oxygen is suppressed by charge trans-
fer reactions with H0. However, for T >∼ 103 K, the oxygen ionization fraction
will be close to the hydrogen ionization fraction – this applies in an H II region pro-
vided that the rate of photoionization of O is slow compared to the rate of charge
exchange (k0r + k1r + k2r)n(H

+).

14.8 Ion Neutralization by Dust Grains

Astrophysical gas is commonly mixed with dust, and an ion A+ colliding with a
dust grain may capture an electron from the grain if the ionization potential I(A)
exceeds the “work function” W for the grain material – W is, essentially, the energy
required to ionize the grain material. The rate for this process will depend on the
charge state of the dust grains: positive ions will be repelled by positively charged
grains, but will have large collision rates with negatively charged grains due to
Coulomb focusing. Collision rates with neutral grains will also be enhanced by the
same induced-dipole interaction that leads to large ion-neutral collision rates.

This process has been discussed by Weingartner & Draine (2001b), who have
calculated the grain charge distribution for realistic dust models that include a pop-
ulation of very small polycyclic aromatic hydrocarbon (PAH) grains.

The rate per volume for recombination of some ion X+ via electron capture from



158 CHAPTER 14

Table 14.9 Parametersa for Fit (14.37) to Grain Recombination Rate coefficients
αgr(X

+) for Selected ions.

Ion C0 C1 C2 C3 C4 C5 C6

H+ 12.25 8.074×10−6 1.378 5.087×102 1.586×10−2 0.4723 1.102×10−5

He+ 5.572 3.185×10−7 1.512 5.115×103 3.903×10−7 0.4956 5.494×10−7

C+ 45.58 6.089×10−3 1.128 4.331×102 4.845×10−2 0.8120 1.333×10−4

Mg+ 2.510 8.116×10−8 1.864 6.170×104 2.169×10−6 0.9605 7.232×10−5

S+ 3.064 7.769×10−5 1.319 1.087×102 3.475×10−1 0.4790 4.689×10−2

Ca+ 1.636 8.208×10−9 2.289 1.254×105 1.349×10−9 1.1506 7.204×10−4

a From Weingartner & Draine (2001b)

grains can be written

d

dt
n(X+) = −nHαgr(X

+, G0/ne, T )n(X
+) , (14.36)

where αgr, the effective rate coefficient, depends on ne/G0 and T . Weingartner &
Draine (2001b) fit αgr with

αgr(X
+, G0/ne, T ) =

10−14C0 cm
3 s−1

1 + C1ψC2(1 + C3TC4ψ−C5−C6 lnT )
, (14.37)

where the charge state of the grains is determined by T and a dimensionless “charg-
ing parameter”

ψ ≡ G0

√
T/K

ne/ cm−3
. (14.38)

Here, G0 is the starlight intensity relative to Habing (1968) [see Eq. (12.6)]. We
will see in Chapter 25 why the grain charge depends on ψ. Table 14.9 gives the
fit parameters for selected ions, and Figure 14.6 shows the effective rate coefficient
αgr for recombination of H+, C+, and S+ as functions of the charging parameter
ψ, for three different temperatures.

The importance of grain-assisted recombination is illustrated in Chapter 16 (see
Figure 16.1), where it is found to lead to significant reductions in the ionization in
diffuse clouds. The rate coefficients αgr depend on both the physics of grain charg-
ing (see Weingartner & Draine 2001b) and on the assumed abundances of grains
of different sizes. The parameters in Table 14.9 and the rates shown in Figure 14.6
were calculated using a model for Milky Way dust that includes a substantial pop-
ulation of polycyclic aromatic hydrocarbons (PAHs). Most of the recombination
takes place on the smallest grains, as these dominate the total grain surface area,
and in addition are often neutral or even negatively charged. In low metallicity
galaxies, where the dust mass per H is reduced, grain-assisted recombination will
be less important than in the Milky Way.

In dense clouds, changes in the ultraviolet extinction curve indicate that the
abundances of the smallest grains are suppressed, presumably because of coagu-
lation with larger grains. This should reduce the effective rate coefficient for grain-
assisted recombination; the values of αgr in dense clouds are therefore expected to
be smaller than the values in Fig. 14.6.
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Figure 14.6 Effective rate coefficients αgr for grain-assisted recombination of H+,
C+, and S+ on dust grains in diffuse clouds, as a function of the grain charging pa-
rameter ψ, and for three gas temperatures. The values of ψ for nominal CNM and
WNM conditions are shown. ψ varies over a large range within a single dark cloud;
one possible value is indicated. Note that the values shown for αgr were calculated for
a model for dust in diffuse clouds; because of grain coagulation, αgr in dark clouds is
likely to be smaller than the values shown here.

14.9 Ionization Balance in Collisionally Ionized Gas

Consider hot gas where the ionization is dominated by collisional ionization. The
steady state balance between collisional ionization and radiative recombination is
given by

ne〈σv〉cin(Xn+) = ne〈σv〉rrn(X(n+1)+) . (14.39)

Above the threshold energy I , the collisional ionization cross section σci ≈ Cπa20(1−
I/E), where C is a constant of order unity (see §13.4). The collisional ionization
rate is given by Eq. (13.11):

〈σv〉ci ≈ Cπa20

(
8kT

πme

)1/2

e−I/kT . (14.40)

To estimate the radiative recombination rate, recall that the Milne relation (3.31)
relates the radiative recombination cross section σrr to the photoionization cross
section σpi:

σrr(E) =
g�
gu

(I + E)2

Emec2
σpi(hν = I + E) . (14.41)
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If fpi is the integrated oscillator strength for photoionization from the ground state,
then

∫∞
I

σpih dν = (πe2/mec)hfpi. If we assume that σpi ∝ (hν)−3 (c.f. Eq.
13.3) then

σpi(hν = I) ≈ 2πe2

mec
fpi

h

I
. (14.42)

With these two estimates, we can show that

〈σv〉rr
〈σv〉ci ≈ 4πα3 fpi

C

I

kT
eI/kT , (14.43)

where α ≡ e2/h̄c = 1/137.04... is the fine-structure constant. The radiative re-
combination cross section is small because the fine-structure constant α � 1.

For what temperature T will we have equal amounts of the two ionization stages,
n(X+n) = n(X+(n+1))? This will take place when 〈σv〉rr = 〈σv〉ci. For this to
be the case, the ratio I/kT must satisfy

I

kT
eI/kT =

C

4πfpi

1

α3
. (14.44)

If C ≈ 1 and fpi ≈ 1/2, this has solution I/kT ≈ 10.6. This is a good rule-
of-thumb: Balancing collisional ionization against radiative recombination leads to
a 50/50 balance of ion stages when kT ≈ I/10. If dielectronic recombination is
strong, it can raise the temperature at which 50/50 ion/neutral balance occurs.

If we apply this to hydrogen, for which I/k = 157,800K, we estimate n(H0) =
n(H+) when T = 15,000K. This is close to the value found using detailed colli-
sional ionization and radiative recombination rates.

For elements other than hydrogen, dielectronic recombination must be included,
so that the condition for the steady state “collisional ionization equilibrium” is

〈σv〉cinen(X
+j) = (〈σv〉rr + 〈σv〉diel)nen(X

+j+1) , (14.45)

where it is assumed that photoionization can be neglected. The ion ratios

n(X+j+1)

n(X+j)
=

〈σv〉ci
〈σv〉rr + 〈σv〉diel (14.46)

depend on temperature T but not on the electron density ne (in the low-density limit
where all species are assumed to have radiatively relaxed to the ground electronic
state before collisions).

Solutions for collisional ionization equilibrium have been calculated by many
authors. Figure 14.7 shows results calculated by Mazzotta et al. (1998) for C, O,
Ne, Si, and Fe. Low atomic number species such as C are readily stripped of their
electrons, with fully ionized C VII prevailing for T > 1.5 × 106 K. Iron, on the
other hand, is not fully stripped until T > 2× 108 K.
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Figure 14.7 Collisional ionization equilibrium, as a function of temperature T , for C,
O, Ne, Si, and Fe in a thermal plasma. Data from Mazzotta et al. (1998).



Chapter Fifteen

Photoionized Gas

Galaxies are powered primarily by the release of nuclear energy in stars, with part
of this energy transferred to the ISM in the form of starlight photons and mechanical
energy in stellar ejecta, including stellar winds and supernova explosions. A T =
35, 000K blackbody – corresponding to stellar type O8 V – emits 32% of its power
in hν > IH photons, and these photons can ionize a substantial fraction of the
surrounding ISM.

The photoionized gas surrounding a hot, luminous star is referred to as an H II
region. H II regions – the Orion Nebula (Plates 9 and 10) and the Trifid Nebula
(Plate 11) are beautiful examples – are conspicuous in telescopic observations of
the night sky, and are responsible for most of the optical emission lines present
in the spectra of star-forming galaxies. They have gas temperatures in the range
7000 − 15, 000K (depending on the metallicity of the gas and the temperature of
the exciting star). The brightest regions in the all-sky Hα map in Plate 3b are well-
known H II regions, including the Orion Nebula, the Gum Nebula, and the H II
region around the nearby star ζ Oph.

15.1 H II Regions as Strömgren Spheres

15.1.1 Hydrogen

Because it is the most abundant element, we are primarily concerned with ion-
ization of hydrogen. Following Strömgren (1939), we consider first the idealized
problem of a fully ionized, spherical region of uniform density – now known as a
Strömgren sphere – with the ionization assumed to be maintained by absorption
of the ionizing photons radiated by a central hot star. For the moment, assume
the gas to be pure hydrogen. We seek the steady state solution, where hydrogen
recombination is balanced by photoionization.

Let Q0 be the rate of emission of hydrogen-ionizing photons, i.e., hν > IH =
13.6 eV. The electrons and protons will be undergoing radiative recombination, but
it is assumed that every radiative recombination H++e− → H+hν is balanced by
a photoionization H+ hν → H+ + e−. Let the ionized hydrogen extend to radius
RS , and the hydrogen density be nH = n(H+). Equating the rates of photoioniza-
tion and radiative recombination (using the Case B recombination coefficient αB
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discussed in §14.2) gives the steady state condition for ionization balance:

Q0 =
4π

3
RS0

3 αB n(H+)ne . (15.1)

Since n(H+) = ne = nH, we can solve for the Strömgren radius:

RS0 ≡
(

3 Q0

4πnH
2αB

)1/3

(15.2)

=9.77× 1018 Q
1/3
0,49 n

−2/3
2 T 0.28

4 cm , (15.3)

where Q0,49 ≡ Q0/10
49 s−1, n2 ≡ nH/10

2 cm−3, and we take αB ≈ 2.56 ×
10−13T−0.83

4 cm3 s−1. At fixed density nH, the volume of the Strömgren sphere
is proportional to Q0, hence RS0 ∝ Q

1/3
0 ; at fixed ionizing input Q0, the volume

is proportional to nH
−2, hence RS0 ∝ nH

−2/3. When observed from distance
D � RS0, the mean emission measure [averaged over the solid angle π(RS0/D)2]
is

EM =
4

3
nH

2RS ≈ 4.22× 104 Q
1/3
0,49 n

4/3
2 T 0.28

4 cm−6 pc . (15.4)

For stellar temperatures T < 50, 000K, most of the photons with hν > 13.6 eV
will have hν < 20 eV – let us take 18 eV as the “typical” energy of hν > 13.6 eV
photons.1 In chapter 13 we saw that atomic hydrogen has a photoionization cross
section σp.i.(hν = 18 eV) = 2.95× 10−18 cm2.

The mean free path (mfp) of an 18 eV photon in neutral hydrogen is

mfp =
1

n(H0)σp.i.
= 3.39× 1017

(
cm−3

n(H0)

)
cm . (15.5)

For the values of Q0 appropriate to O stars (see Table 15.1), we see that mfp � RS0

in neutral gas of density nH
>∼ 1 cm−3. This tells us that the transition from ionized

gas to neutral gas at the boundary of the H II region will occur over a distance that
is small compared to RS0, and it is therefore reasonable to idealize the boundary
as a discontinous transition from fully ionized to neutral – this was Strömgren’s
insight.

15.1.2 Helium Ionization

Now, what about helium? At T ≈ 104 K, the Case B radiative recombination rate
for He++ e− → He0 is ∼ 1.9 times larger than for hydrogen. Since the abundance
ratio nHe/nH ≈ 0.096, it follows that in regions where the H is fully ionized and

1For a 35,000 K blackbody, hν > 13.6 eV photons have mean energy 〈hν〉i = 17.9 eV.
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Table 15.1 Radiative Properties of Massive Starsa.

SpTp M/M� Teff(K) log10(Q0/ s
−1) b Q1/Q

c
0 log10(L/L�) d

O3V 58.0 44850 49.64 0.251 5.84
O4V 46.9 42860 49.44 0.224 5.67
O5V 38.1 40860 49.22 0.209 5.49

O5.5V 34.4 39870 49.10 0.204 5.41
O6V 31.0 38870 48.99 0.186 5.32

O6.5V 38.0 37870 48.88 0.162 5.23
O7V 25.3 36870 48.75 0.135 5.14

O7.5V 22.9 35870 48.61 0.107 5.05
O8V 20.8 34880 48.44 0.072 4.96

O8.5V 18.8 33880 48.27 0.0347 4.86
O9V 17.1 32830 48.06 0.0145 4.77

O9.5V 15.6 31880 47.88 0.0083 4.68
O3III 56.0 44540 49.77 0.234 5.96
O4III 47.4 42420 49.64 0.204 5.85
O5III 40.4 40310 49.48 0.186 5.73

O5.5III 37.4 39250 49.40 0.170 5.67
O6III 34.5 38190 49.32 0.158 5.61

O6.5III 32.0 37130 49.23 0.141 5.54
O7III 29.6 36080 49.13 0.129 5.48

O7.5III 27.5 35020 49.01 0.105 5.42
O8III 25.5 33960 48.88 0.072 5.35

O8.5III 23.7 32900 48.75 0.0417 5.28
O9III 22.0 31850 48.65 0.0257 5.21

O9.5III 20.6 30790 48.42 0.0129 5.15
O3I 67.5 42230 49.78 0.204 5.99
O4I 58.5 40420 49.70 0.182 5.93
O5I 50.7 38610 49.62 0.158 5.87

O5.5I 47.3 37710 49.58 0.151 5.84
O6I 44.1 36800 49.52 0.141 5.81

O6.5I 41.2 35900 49.46 0.132 5.78
O7I 38.4 34990 49.41 0.115 5.75

O7.5I 36.0 34080 49.31 0.100 5.72
O8I 33.7 33180 49.25 0.079 5.68

O8.5I 31.5 32270 49.19 0.065 5.65
O9I 29.6 31370 49.11 0.0363 5.61

O9.5I 27.8 30460 49.00 0.0224 5.57
a After Martins et al. (2005).
b Q0 = rate of emission of hν > 13.6 eV photons.
c Q1 = rate of emission of hν > 24.6 eV photons.
d L = total electromagnetic luminosity.
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the He is singly ionized, the rate per volume of helium recombinations will be
∼ 18% of the hydrogen recombination rate.

Let Q1 be the rate of emission of photons with hν > IHe = 24.6 eV. The ra-
diative cascade following recombination of He+ in most cases2 produces a photon
that can ionize H (see Figure 14.3). To a first approximation, we can assume that
every stellar photon with hν > 24.6 eV will result in one He ionization and one H
ionization. Then, if Q1 < 0.18Q0, the He ionization zone will be smaller than the
H ionization zone. If Q1/Q0 ≥ 0.18, then the He will be singly ionized throughout
the region where the H is fully ionized.

From Table 15.1 we see that the hotter O stars – spectral types O6.1 V and earlier,
O5.3 III and earlier, and O4 I and earlier – have Q1/Q0

>∼ 0.18. For these stars, we
expect helium to be ionized throughout the Strömgren sphere.

We will revisit the question of He ionization in §15.5; a more refined treatment of
the ionizing effects of He recombination photons gives a somewhat lower estimate
for the minimum value of Q1/Q0 required for He to be ionized throughout the H II
region.

15.2 Time Scales

The Strömgren sphere analysis assumes a steady state solution. Is this a reasonable
idealization? What is the time scale for approach to the steady state?

Suppose that we start with a neutral region, and the ionizing source is suddenly
turned on. How long will it take to ionize the region? The total number of ions to
be created is (4/3)πR3

s0nH; the time to supply this many ionizations is

τioniz. ≡ (4/3)πRS0
3nH

Q0
=

1

αBnH
=

1.22× 103 yr

n2
. (15.6)

This is the time required for the ionization state of the gas to respond to an increase
in the supply of ionizing photons from the source.

Suppose that the ionizing source suddenly turns off. The ionized region will
recombine on the recombination time scale

τrec =
1

αBnH
=

1.22× 103 yr

n2
. (15.7)

Note that the recombination time scale τrec is identical to the ionization time scale

2The only exception is the path involving two-photon decays from 1s2s 1S0; 56% of the two-photon
decays from 1S0 will produce a photon with hν > 13.6 eV. For electron densities ne 
 4000 cm−3,
only about 10% of the radiative decays populate the 1s2s 1S0 state; thus about 95% of the decays
produce hydrogen-ionizing photons. The resonance-line photons (e.g., 1s2p 1Po

1 → 1s2 1S1) can be
scattered by He0 (with a small probability that the 1s2p level will decay to the 1s2s 1S0 level that
decays by two-photon emission), but the bottom line is that a large fraction of radiative recombinations
to He0 will produce a photon that will ionize H.



166 CHAPTER 15

τioniz.! For densities nH > 0.03 cm−3, the ionization/recombination time scale is
shorter than the main-sequence lifetime >∼ 5Myr for a massive star.

The other relevant time scale is the sound crossing time τsound. The ionized
region will likely be overpressured relative to its surroundings, in which case it
will expand on the sound crossing time. The isothermal sound speed in ionized
hydrogen is cs = (2kT/mH)

1/2 = 13T
1/2
4 km s−1; the time for a pressure wave

to propagate a distance equal to Strömgren radius is therefore

τsound =
RS0

cs
≈ 2.39× 105 yr

Q
1/3
0,49

n
2/3
2

. (15.8)

For Q0,49n2 > 1.3 × 10−7, we have τsound > τrec: the ionization responds on
a time scale short compared to the hydrodynamic time. But we also see that for
densities nH

<∼ 1 cm−3Q
1/2
0,49, the sound-crossing time will be comparable to the

lifetime of an O star.
We will discuss the propagation of ionization fronts and the expansion of H II

regions in Chapter 37.

15.3 Neutral Fraction within an H II Region

The Strömgren sphere approximation assumes the hydrogen to be fully ionized
within the radius RS0. What, in fact, is the fractional ionization within the H II
region?

Consider a pure hydrogen nebula for simplicity. We use the Case B approxima-
tion (i.e., we neglect direct recombinations to level n = 1). Let us further assume
that the ionizing radiation from the star has a median photon energy hν, and that
σp.i. is the photoionization cross section for this median photon energy.

Let Q(r) be the rate at which ionizing photons cross a spherical surface of radius
r. Clearly, Q(0) = Q0, where Q0 is the rate at which H-ionizing photons are
emitted from the star. (We assume that the radius of the star is negligible compared
to the radius of the H II region.) In a steady state,

Q(r) = Q0−
∫ r

0

nH
2αBx

24π(r′)2dr′ = Q0

[
1− 3

∫ r/RS0

0

x2y2dy

]
, (15.9)

where x ≡ n(H+)/nH = ne/nH, y ≡ r/RS0, and nH is assumed to be uniform.
At each point, the rate of Case B recombinations per volume must be balanced by
the rate of photoionization per volume:

nH
2αBx

2 =
Q(r)

4πr2
nH(1− x)σp.i. , (15.10)

which we rewrite as

x2

1− x
=

Q(r)

Q(0)

nHσp.i.RS0

3y2
=

Q(r)

Q(0)

τS0
3y2

, (15.11)
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where we define

τS0 ≡nHσp.i.RS0 (15.12)

=3360 (Q0,49)
1/3

n
1/3
2 . (15.13)

Because τS0 � 1, it follows from (15.11) that 1 − x � 1. The neutral fraction is
small:

1− x ≈ Q(0)

Q(r)

3y2

τS0
� 1 . (15.14)

If we now assume x ≈ 1 in Eq. (15.9), then

Q(r)

Q0
≈ 1− y3 = 1−

(
r

RS0

)3

, (15.15)

and

x2

1− x
≈ 1− y3

3y2
τS0 . (15.16)

At the center of the H II region, y → 0, and we see that x2/(1−x) → ∞, or x → 1.
At the boundary of the H II region, y → 1, and we see that x2/(1 − x) → 0, or
x → 0.

What is the “typical” fractional ionization in the H II region? The median frac-
tional ionization xm is found at the “half-mass” or “half-volume” radius, ym =
(1/2)1/3 = 0.794. At this point, the neutral fraction

(1− xm) =
3(0.5)2/3

0.5

x2
m

τS0
=

3.78

τS0
x2
m . (15.17)

Usually τS0 � 1 [see Eq. (15.12)], and the neutral fraction (1−xm) ≈ 3.78/τS0 �
1.

If we solve Eqs. (15.9) and (15.11) self-consistently, we would find that Q(r)
does not go to zero at y = 1, but decays exponentially at large radii. It is straight-
forward to integrate Eq. (15.9) numerically to obtain Q(r), but we have neglected
an important physical effect – absorption by dust – which we now bring into the
analysis.

15.4 Dusty H II Regions with Radiation Pressure

Thus far, the discussion has neglected the effects of dust. Dust is important in two
ways: (1) dust will absorb some of the hν > 13.6 eV photons emitted by the star,
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thus reducing the rate of photoionization of hydrogen and reducing the size of the
H II region; and (2) radiation pressure acting on the dust will also affect the density
structure of the H II region.

Petrosian et al. (1972) discussed the first effect – the absorption of ionizing pho-
tons by the dust and resulting reduction in size of the ionized region. Petrosian et al.
(1972) assumed that the density of the ionized gas was uniform, as in the original
treatment by Strömgren (1939).

However, radiation pressure acting on the dust (and gas) in the H II region will
result in nonuniform density, because gradients in the gas pressure will be required
to counteract the effects of radiation pressure. This will result in enhancement of
the ionized gas density near the edge of the H II region, and lowering of the gas
density near the star.

The theory of dusty H II regions, including the effects of dust and radiation pres-
sure, has been discussed by Draine (2010). We follow this treatment here.

Consider a star of luminosity L = Ln+Li = L3910
39 erg s−1, where Ln and Li

are the luminosities in hν < 13.6 eV and hν > 13.6 eV photons, respectively. The
mean energy of the ionizing photons is 〈hν〉i ≡ Li/Q0. Ignore He, and assume
the H to be nearly fully ionized, with photoionizations balancing Case B recombi-
nations in the “on-the-spot” approximation. If the gas is in dynamical equilibrium,
then the force per unit volume due to photon absorptions must be balanced by the
gradient of the gas pressure:

nHσdust
Lne

−τ + Liφ(r)

4πr2c
+ αBnH

2 〈hν〉i
c

− d

dr
(2nHkT ) = 0 , (15.18)

where nH(r) is the proton density, Liφ(r) is the power in hν > 13.6 eV photons
crossing a sphere of radius r, and σdust and τ(r) are the UV attenuation cross
section per H nucleon and attenuation optical depth due to dust, here assumed to
be independent of frequency. The functions φ(r) and τ(r) are determined by

dφ

dr
=

−1

Q0
αBnH

24πr2 − nHσdφ , (15.19)

dτ

dr
= nHσdust , (15.20)

where we have assumed the fractional ionization x ≈ 1 in Eq. (15.19). The bound-
ary conditions are φ(0) = 1 and τ(0) = 0. Defining

n0 ≡ 4παB

Q0

(
2ckT

αB〈hν〉i

)3

= 4.54× 105
T 4.66
4

Q0,49

(
18 eV

〈hν〉i

)3

cm−3 , (15.21)

λ0 ≡ Q0

4παB

(
αB〈hν〉i
2ckT

)2

= 2.47× 1016
Q0,49

T 2.83
4

( 〈hν〉i
18 eV

)2

cm , (15.22)

we switch to the dimensionless variables y ≡ r/λ0, u ≡ n0/n. The governing
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equations then become

du

dy
=−1− γ

(
βe−τ + φ

) u

y2
, (15.23)

dφ

dy
=−y2

u2
− γ

φ

u
, (15.24)

dτ

dy
=

γ

u
, (15.25)

with initial conditions φ(0) = 1 and τ(0) = 0 and dimensionless parameters

β ≡ Ln

Li
=

L

Li
− 1 = 3.47

(L/1039 erg s−1)

Q0,49

(
18 eV

〈hν〉i

)
− 1 , (15.26)

γ ≡
(

2ckT

αB〈hν〉i

)
σd = 11.2 T 1.83

4

(
18 eV

〈hν〉i

)( σd

10−21 cm2

)
. (15.27)

The parameter β depends only on the stellar spectrum. We take β = 3 as our
standard value, corresponding to the spectrum of a Tbb = 32, 000K blackbody, but
we also consider β = 2 (Tbb = 45, 000K) and β = 5 (Tbb = 28, 000K); the latter
value may apply to a cluster of O and B stars.

The parameter γ is proportional to σd, which is proportional to the dust-to-gas
mass ratio, but also depends on the distribution of grain sizes. γ also depends on the
gas temperature T and on the mean ionizing photon energy 〈hν〉i, but these are not
likely to vary much for H II regions around OB stars. Models for dust in the diffuse
interstellar medium (e.g., Weingartner & Draine 2001a) have σd ≈ 2× 10−21 cm2

from 13.6 to ∼ 18 eV, then declining to ∼ 0.7 × 10−21 cm2 at 50 eV. Dust within
H II regions has not been well-characterized. We will take γ = 10 as a standard
value, but will also consider γ = 5 and γ = 20. Low-metallicity systems would be
characterized by small values of γ.

The solutions are defined for 0 < y < ymax, where ymax is determined by the
boundary condition φ(ymax) = 0. For each solution u(y), the root-mean-square
density is

nrms ≡ n0

[
3

y3max

∫ ymax

0

y2

u2
dy

]1/2
. (15.28)

The radius is R = ymaxλ0. The fraction of the hν > 13.6 eV photons that are
absorbed by H is

fion =

(
R

Rs0

)3

, Rs0 ≡
(

3Q0

4πn2
rmsαB

)1/3

, (15.29)

where Rs0 is the radius of a dustless Strömgren sphere.
For a given β and γ, varying the initial conditions on the function u(y) generates

a family of solutions, each with a different value of nrms/n0. The solutions are
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Figure 15.1 Density profiles for static equilibrium H II regions with radiation pressure,
for β = 3, γ = 10, and selected values of Q0,49nrms. From Draine (2010).

parameterized by β, γ, and a third parameter, which may be taken to be the dust
optical depth along a path with density nrms and length Rs0:

τd0 ≡ nrmsRs0σd = 2.10 (Q0,49nrms,3)
1/3

T 0.28
4 σd,−21 . (15.30)

Examples of solutions for β = 3, γ = 10 are shown in Figure 15.1. The solution
with τd0 = 0.21 has nearly uniform density, except for a small cavity near the
center, where radiation pressure on the dust has forced the gas away from the star.
As τd0 is increased, the fractional size of the central cavity increases, and as the
central cavity enlarges, the gradient in the gas density in the outer regions becomes
stronger.

The change in the density structure produced by radiation pressure leads to
changes in the fraction of the ionizing photons that are absorbed by dust. Figure
15.2 shows fion, the fraction of the H-ionizing photons that produce photoioniza-
tions (i.e., that escape absorption by dust). Results are shown for γ = 10 [i.e.,
σd,−21 = 0.89T−0.83

4 (〈hν〉i/18 eV)]. For small τd0, the value of fion is nearly
the same as was calculated assuming a uniform density H II region (see Fig. 15.2).
However, for τd0 >∼ 2, the central cavity results in significantly higher values of
fion compared to what Petrosian et al. (1972) found assuming uniform density.
The center-to-edge optical depth τ(R), shown in Fig. 15.3, is also much lower
than was found assuming uniform density. A significant fraction (e−τ(R)) of the
non-ionizing radiation from the star escapes absorption within the H II region.
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The emission measure profile

EM(b) = 2

∫ R

b

[n(r)]2
rdr√
r2 − b2

, (15.31)

where b is the transverse distance from the central star, has been computed for
these solutions; examples are shown in Fig. 15.4. For Q0,49nrms

>∼ 103 cm−3, the
emissivity profile becomes conspicuously ring-like rather than centrally peaked as
in a uniform density H II region.

Observed H II regions often have central cavities where the density is much lower
than the average value, resulting in a ring-like appearance. The H II region desig-
nated N49 (Watson et al. 2008) is a very nice example of ring-like morphology
seen in free–free emission. However, the actual cavity appears to be larger than
would be expected from radiation pressure alone (Draine 2010). It is likely that
the wind from the central stars contributes to formation of the N49 bubble. Stellar
wind bubbles are discussed in Chapter 38.

Figure 15.2 fion = fraction of hν > 13.6 eV photons that escape absorption by dust,
as a function of the parameter τd0 defined in Eq. (15.30). Results are shown for static
equilibrium H II regions with radiation pressure, and also (dashed line) for uniform
density H II regions.
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Figure 15.3 Dust optical depth from center to edge of dusty H II regions, as a function
of τd0 defined in Eq. (15.30).

15.5 Ionization of Helium and Other Elements

Because helium is abundant, it strongly affects both the spectrum of emission from
O stars and the ionization structure of H II regions. The He0 opacity in stellar
atmospheres causes the emission from B stars and late O-type stars to have very
little emission about the He ionization edge at 24.59 eV. Figure 15.5 shows the
fraction of H-ionizing photons that are also capable of ionizing He for stars with
spectral types between B0 and O4.

For low values of Q1/Q0, the radius R(He+) of the region where He will be
ionized will be smaller than the radius R(H+) of the H II region. Let y be the
fraction of He-ionizing photons that are absorbed by H rather than He, and let z be
the fraction of the He recombinations to excited levels that produce a photon with
hν > 13.6 eV. The number of H+ and He+ ions can be estimated by balancing
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Figure 15.4 Emission measure profiles for the H II regions in Fig. 15.1. From Draine
(2010).

recombinations with photoionizations:

N(He+)ne [αB(He) + yα1S(He)] = (1− y)Q1 , (15.32)

N(H+)neαB(H) = (Q0 −Q1) +yQ1

+N(He+)ne [zαB(He) + yα1S(He)] , (15.33)

which can be combined to obtain

N(He+)

N(H+)
=

(1− y)αB(H)(Q1/Q0)

αB(He) + yα1S(He)− (1− y)(1− z)(Q1/Q0)αB(He)
. (15.34)

Both y and z depend on conditions in the H II region. We expect H to be more
highly ionized than He even near the center of the H II region, and therefore y <∼ 0.6
[see Eq. (14.16)]. In an accurate calculation, y would be obtained from the actual
ratio n(He0)/n(H0) using Eq. 14.16. Here we will assume y ≈ 0.2 to be a rea-
sonable estimate for the fraction of the hν > 24.6 eV photons that are absorbed by
H rather than He. The fraction z of He Case B recombinations that produce an H-
ionizing photon varies from z ≈ 0.96 at low densities ne � ne,crit(He0 2 3S1) ≈
1100e1.2/T4T 0.5

4 cm−3 to z ≈ 0.67 at high densities ne � ne,crit(He0 2 3S1). Tak-
ing an intermediate value z ≈ 0.8, setting T = 8000K and y = 0.2, we obtain
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Figure 15.5 Q1/Q0 = ratio of rate of emission of hν > 24.6 eV photons to rate of
emission of hν > 13.6 eV photons, as a function of Teff , for luminosity classes V, III,
and I (see Table 15.1). Q1/Q0

>∼ 0.15 is required for He to be ionized throughout the
H II region, corresponding to Teff

>∼ 37000K.

N(He+)

N(H+)
≈ 0.68(Q1/Q0)

1− 0.17(Q1/Q0)
. (15.35)

Full ionization of the He is achieved when N(He+)/N(H+) = nHe/nH = 0.096,
which is attained for Q1/Q0 ≈ 0.15.

For N(He+)/N(H+) < nH/nHe, the radius of the He+ zone is smaller than the
H+ zone:

R(He+)

R(H+)
≈
[

(nH/nHe)(1− y)αB(H)(Q1/Q0)

αB(He) + yα1S(He)− (1− y)(1− z)(Q1/Q0)αB(He)

]1/3
.

(15.36)

Ions that require hν > 24.6 eV for their formation will be present only in the He+

zone. A list of these ions is given in Table 15.2.
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Table 15.2 Abundant Ions in H II Regionsa

H II and He I zoneb H II and He II zonec

Element Ion hν (eV)d Ion hν (eV)d

H H II 13.60 H II 13.60
He He I 0 He II 24.59
C C II 11.26 C III e 24.38

C IV 47.88
N N II 14.53 N III 29.60

N IV 47.45
O O II 13.62 O III 35.12
Ne Ne II 21.56 Ne III 40.96
Na (Na II)f 5.14 (Na II)f 5.14

Na III 47.29
Mg Mg II 7.65 (Mg III)f 15.04

(Mg III)f 15.04
Al Al III 18.83 (Al IV)f 28.45
Si Si III 16.35 Si IV 33.49

(Si V)f 45.14
S S II 10.36 S III 23.33

S III 23.33 S IV 34.83
Ar Ar II 15.76 Ar III 27.63

Ar IV 40.74
Ca Ca III 11.87 Ca IV 50.91
Fe Fe III 16.16 Fe IV 30.65
Ni Ni III 18.17 Ni IV 35.17

a Limited to elements X with NX/NH > 10−6.
b Ions that can be created by radiation with 13.60 < hν < 24.59 eV.
c Ions that can be created by radiation with 24.59 < hν < 54.42 eV.
d Photon energy required to create ion.
e Ionization potential is just below 24.59 eV.
f Closed shell, with no excited states below 13.6 eV.

15.6 Planetary Nebulae

Planetary nebulae are a special class of H II regions, where the ionized gas is a
dense stellar wind that is ionized when the central star evolves quickly from being
a cool red giant to an extremely hot “planetary nebula nucleus.”

There are two ways in which planetary nebulae can differ from classical H II
regions produced by O or B0 stars.

• First, the dense gas being ionized is limited to the outflowing wind. A typical
planetary nebula precursor can have a mass loss rate Ṁw ≈ 10−4M�/ yr for
∼ 2000 yr, with a wind velocity vw ≈ 15 km s−1. A spherically symmetric
steady outflow with these properties would have a r−2 density profile, but
in fact the density profiles in planetary nebulae are much more complicated,



176 CHAPTER 15

with a visually beautiful morphology that often has bipolar symmetry. The
complex morphology of the Helix nebula (see color Plate 13) includes many
dusty cometary filaments.

• Second, the central stars are generally much hotter than O stars, with ef-
fective temperatures T
 often exceeding 105 K. For example, the hot white
dwarf at the center of the Helix Nebula (NGC 7293) has T
 ≈ 1.0 × 105 K
(Mendez et al. 1988; Napiwotzki 1999), and the central star in NGC 7027 has
T
 ≈ 2.2× 105 K (Zhang et al. 2005). As a result, helium is generally fully
ionized (to He++), and elements such as C or O can be ionized to high stages
(such as O IV, Ne IV, or Ne V) that are not present in classical H II regions
ionized by O stars. The harder photons also produce greater photoelectric
heating per photoionization event, and gas temperatures in planetary nebulae
are generally higher (up to ∼ 16,000 K – see, e.g., Zhang et al. 2004) than in
classical H II regions (e.g., 7,000 to 10,000 K).

15.7� Escape of Lymanα

15.7.1 Escape from the H II Region

The recombining hydrogen in the H II region generates Lymanα radiation. Under
Case B conditions at densities ne

<∼ 103 cm−3, the rate of production of Lymanα
photons is equal to f(2p)fionQ0, where f(2p) ≈ 2

3 is the fraction of Case B re-
combinations that populate the 2p level (see §14.2.4). We have seen earlier that the
gas in the H II region is highly ionized, but the Lymanα photons can be resonantly
scattered by the small amount of neutral hydrogen present. This inhibits escape of
the Lymanα photons from the ionized region. We can think of the Lymanα photon
as bouncing around inside the nebula, until it finally escapes or is destroyed.

Scattering of Lymanα radiation is a resonant process, involving absorption and
reemission of the photon. Prior to the scattering, the H atom is in the ground state.
The photon is absorbed, and then reemitted, with the H atom returning to the ground
state. Except for the possibility that the initial and final states may be different
hyperfine levels, the energy of the photon in the center of mass frame of the photon
and H atom is unchanged. However, the H atom producing the scattering will in
general be moving relative to the gas, and the emitted photon will be radiated in
a direction differing from the incident direction; the net result is that the photon
undergoes a shift in frequency. Therefore, a photon involved in a sequence of
scattering events will undergo a random walk in frequency space. At the same time,
it also does a random walk in position space. These two random walks, together,
will tend to take the photon away from the initial frequency, and away from the
initial location.

The initial photon tends to be emitted in the “Doppler core” of the line profile.
As it migrates away from the Doppler core into the wings of the line profile, the
cross section for scattering goes down, and the mean-free-path between scatterings
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goes up. After a sufficient number of scatterings, the photon will have travelled
sufficiently far from its point of emission that we will count it as having “escaped.”

The problem of resonant scattering has been considered by a number of authors,
both numerically (e.g., Bonilha et al. 1979) and analytically (e.g., Neufeld 1990).
Here we present a very simple analysis that captures the essential features. For the
moment, let us consider a dustless H II region.

First, let us consider the diffusion in frequency space. If an H atom moving
with velocity v produces the scattering, then the mean-square frequency shift for
the scattered photon will be 〈(∆ν)2〉 = 2

3ν
2(v/c)2, if the direction of the absorbed

photon and emitted photon are uncorrelated with one another,3 and with the velocity
vector of the H atom.4 Averaging over the velocity distribution, 〈v2〉 = 3

2b
2, the

frequency shift ∆ν from each scattering event has

〈(∆ν)2〉 = ν2(b/c)2 . (15.37)

Earlier, we assumed that the direction of propagation of the absorbed photon is
uncorrelated with the vector velocity of the H atom. This is not the case for photons
in the “core” of the line, but it is a good approximation in the “wings,” and it is the
scattering in the wings that concerns us here. Let

z ≡ (ν − ν0)/ν0
b/c

(15.38)

measure the displacement from line center in terms of the Doppler broadening pa-
rameter b. Then, from Eq. (15.37), after Ns scatterings,

〈z2〉 = Ns + 1/2 . (15.39)

The originally “injected” photons tend to be in the Doppler core of the line (with
〈z2〉 = 1

2 ), but after a few scatterings the photons move out to frequencies where
the Voigt profile for the thermal H atoms is approximated by the Lorentzian wings
[see Eq. (6.40)]:

σ(z) ≈ σw

z2
, (15.40)

σw ≡ gu
g�

λ2Au�

32π3

γλu�

b2
= 2.59× 10−17 cm2 b−2

6 , (15.41)

b6 ≡ b

10 km s−1 = 1.29 T
1/2
4 . (15.42)

3Consider an atom with velocity v. If n̂a, n̂s = the direction of propagation of the absorbed and
emitted photons, then ∆ν = (ν0/c)(n̂s − n̂a) · v, (∆ν)2 = (ν0/c)2[n2

s‖ − 2ns‖na‖ + n2
a‖]v

2,
where ns‖v ≡ n̂s·v, na‖v ≡ n̂a·v. The scattering process has 〈ns‖na‖〉 = 0. In the damping wings,
the scattering cross section is nearly independent of v; hence 〈n2

s‖〉 = 〈n2
a‖〉 ≈ 1

3
, and 〈(δν)2〉 =

(ν0/c)2(
1
3
+ 1

3
)〈v2〉.

4While not true for frequencies in the Doppler core of the line, the scattering cross section in the
damping wings is nearly independent of the random motions of the atoms.
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Now consider the random walk away from the point of emission. In the line wings,
the photon mean-free path is

mfp=L0z
2 , (15.43)

L0 ≡ 1

n(H0)σw
. (15.44)

If r is the displacement from the point of emission, we can approximate5

d〈r2〉
dNs

= 2
(
L0z

2
)2 ≈ 2L2

0

(
Ns +

1

2

)2

. (15.45)

Integration yields

〈r2〉 = 2

3
L2
0

[(
Ns +

1

2

)3

− 1

8

]
. (15.46)

In the case of an H II region, a reasonable criterion for “escape” would be when
〈r〉2 ≈ R2

S0. The number of scatterings required to accomplish this is

Ns ≈
(
3R2

S0

2L2
0

)1/3

. (15.47)

Because the mfpincreases as z2, most of the displacement is accomplished during
the last portion of the scattering sequence, when the photon is relatively far from
line-center. The number of scatterings depends on the ratio

RS0

L0
≈ τS0

nHσpi
(1− xm)nHσw ≈ 33.2b−2

6 , (15.48)

where we have used Eq. (15.17), and taken σpi = 2.95 × 10−18 cm2, appropriate
for hν = 18 eV. Thus,

Ns ≈ 11.8 b
−4/3
6 . (15.49)

This is a modest number of scatterings, but sufficient to frequency-shift a typical
photon out to z2 ≈ 12, at which point the mfp, evaluated using the neutral fraction
(1− xm), is ∼ 0.37RS0. Note also that when z2 ≈ 12, we are (barely) far enough
from line-center for the line profile to be well-approximated by just the damping
wings [see Eq. (6.42)], as has been assumed in Eq. (15.43).

To estimate the effects of dust absorption, we first estimate the total pathlength s
traveled by an escaping photon. We can write

ds

dNs
≈ L0z

2 ≈ L0

(
Ns +

1

2

)
. (15.50)

5The mean step size = mfp, but the mean (step size)2 = 2(mfp)2.
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Integrating this, we find the pathlength s:

s≈ 1

2
L0

[(
Ns +

1

2

)2

− 1

4

]
, (15.51)

s

RS0
≈ L0

RS0

N2
s

2
≈ 2.10b

−2/3
6 . (15.52)

In order to “escape,” the Lymanα photon needs to escape being absorbed by dust.
The escaping fraction is

fesc ≈ exp(−nHσd s) = exp(−2.1b
−2/3
6 τd0). (15.53)

Dust can therefore suppress the escape of Lymanα photons even in H II regions
with only moderate dust optical depths τd0. However, it must also be noted that
Eq. (15.53) assumes that the Lymanα photon must achieve a displacement ∼RS0

from the point of emission to escape; in fact, photons that are created near the
edge of the H II region can escape with a smaller displacement (if they happen to
random-walk in the outward direction), and thus (15.53) underestimates the overall
Lymanα escape fraction.

15.7.2 Lyman α Photons in an H I Region

The escape of Lymanα from the H II region is facilitated by the low neutral fraction
in the H II region, resulting in a relatively large mfp. Now suppose that the photon
enters a surrounding cloud of atomic H. We repeat the preceding analysis, but now
consider a photon to be injected at the center of a slab with total column density
N(H0). We will use superscript (HI) to denote the Doppler broadening parameter
characterizing the H I cloud: b(HI) ≡ b

(HI)
5 km s−1.

As before, let z measure the frequency shift ∆ν in units of ν0b(HI)/c. If x is
the coordinate normal to the slab, then the criterion for escape from the slab is that
∆x = ±0.5N(H0)/nH, or

〈r2〉 ≈ 3
[
0.5N(H0)/nH

]2
. (15.54)

The number of scatterings required is [from Eq. (15.51)]

Ns ≈ 1

2

[
3N(H0)σ(HI)

w

]2/3
(15.55)

≈ 2.0× 104
[

N(H0)

1021 cm−2

]2/3 (
b
(HI)
5

)−4/3

. (15.56)

The total pathlength s traveled before reaching the cloud boundary is

s ≈ 1

2
L0N

2
s ≈ 7.4× 1022 cm

[
cm−3

n(H0)

] [
N(H0)

1021 cm−2

]4/3 (
b
(HI)
5

)−4/3

.

(15.57)
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The probability of escaping absorption by dust is

fesc ≈ exp

{
−74σd,21

[
N(H0)

1021 cm−2

]4/3 (
b
(HI)
5

)−4/3
}

. (15.58)

Therefore, we see that for slabs with N(H0)/b
(HI)
5

>∼ 1020 cm−2 and dust abun-
dances characteristic of the Milky Way (σd,21 ≈ 1), the probability of photon es-
cape is small. Most of the Lymanα photons generated within a typical H I cloud
will, therefore, be absorbed by dust within the cloud

The Lymanα photons that enter from an adjacent H II region (which we imagine
to be surrounded by a spherical shell of H I) begin their random-walk in the H I with
z2 ≈ 12(b(HII)/b(HI))2 ≈ 102 (for b(HI) ≈ 3 km s−1). This is small compared to
Ns estimated from Eq. (15.55), and, therefore, fesc will not be substantially reduced
by the fact that the Lymanα photons from the H II region “begin” with a headstart
z2 ≈ 102: the Lymanα photons from the H II region will likely be absorbed in the
surrounding H I.

Escape of Lymanα photons from galaxies therefore requires either very low dust
abundances or “breakout” of the ionization front so that, in at least some directions,
the H II is not bounded by dusty H I gas.

15.8� Ionization by Power-Law Spectra

Although energy release in stellar flares, or radiation-driven shocks in fast stellar
winds, may result in x-ray emission in addition to the thermal emission from the
stellar photosphere, the bulk of the power radiated by normal stars can be approx-
imated by a thermal (blackbody) spectrum. An active galactic nucleus (AGN), on
the other hand, emits a large fraction of its luminosity via synchrotron emission
from a population of relativistic electrons. The resulting spectrum is often approx-
imated by a power-law Lν ∝ ν−α, with α ≈ 1.2. Gas that is irradiated by such
a power-law spectrum is heated and ionized, and the x-ray component of the spec-
trum can produce highly ionized species that are not present in normal H II regions.

The state of gas exposed to a power-law spectrum will depend primarily on the
ratio of photoionization rates (proportional to the energy density uν) to radiative
and dielectronic recombination rates (proportional to electron density ne). It is
customary to define the dimensionless ionization parameter

U ≡ 1

nH

∫ ∞

ν0

uνdν

c hν

(
where ν0 ≡ IH

h

)
, (15.59)

which is simply the ratio of the number density of photons with hν > IH to the
number density of H nuclei. At densities that are low enough that collisional deex-
citation is not important, the steady state temperature and ionization of the gas will
be determined by U , by the shape of the ionizing spectrum (the spectral index α),



PHOTOIONIZED GAS 181

and by the composition of the gas (the abundances of coolants). Note that some au-
thors (e.g., Krolik et al. 1981) use a different definition of “ionization parameter”:

Ξ ≡ u(IH < hν < 103IH)

p
, (15.60)

where u is the radiation energy density between IH and 103IH, and p ≈ 2.3nHkT
is the gas pressure. The two parameters U and Ξ are directly related. If 〈hν〉 ≡∫
IH/h

uνdν/
∫
IH/h

(uν/hν)dν is the mean energy of hν > IH photons, and the
energy above 103IH is negligible, then

Ξ ≡ nH

n

〈hν〉
kT

U ≈ 5
〈hν〉
100 eV

U

T4
. (15.61)

The equilibrium gas temperature rises monotonically with increasing U . For
10−4.5 <∼ U <∼ 10−2 (or 10−3.5 <∼ Ξ <∼ 10−1), photoionization heats the gas to
1 <∼ T4

<∼ 1.5, but as U is increased further, T rises as the gas becomes highly
ionized, reducing its ability to cool by collisional excitation of bound electrons.
For large values of U or Ξ, T depends on the spectrum of the ionizing source. For
a standard quasar spectrum, Krolik et al. (1981) found a limiting T ≈ 1.5× 108 K
for Ξ >∼ 10, or U >∼ 3×104. The ionizing continuum from the quasar can evidently
sustain a T >∼ 108 K plasma, which can pressure-confine higher-density gas that is
heated to T ≈ 104 K and accounts for the observed optical and UV emission lines.



Chapter Sixteen

Ionization in Predominantly Neutral Regions

In this chapter, we discuss the degree of ionization expected in predominantly neu-
tral interstellar clouds. The abundance of free electrons in the gas determines the
ionization balance of various species (e.g., Ca+/Ca0). Collisions with free elec-
trons play a role in determining the charge state for interstellar grains. Electrons
also play a key role in interstellar chemistry and, under some conditions, to cooling
of the gas via collisional excitation.

There are three quite distinct regimes:

• Diffuse H I regions, where the metals are photoionized by starlight. Cosmic
rays create small amounts of H+ and He+. The gas may be “cold,” with T ≈
102 K (the cold neutral medium or CNM) or “warm,” with T ≈ 5000K
(the warm neutral medium, or WNM).

• Diffuse molecular clouds (visual extinction 0.3 <∼ AV
<∼ 2 mag), where most

of the hydrogen is in H2, and the metals are still predominantly photoionized
by starlight. Cosmic rays produce H2

+, which leads to the formation of H+
3 .

The cosmic ray ionization rate ζCR can be determined through measurements
of the H+

3 abundance in these clouds. Observations toward the bright star
ζ Per indicate a cosmic ray ionization rate ζCR ≈ 1× 10−16 s−1.

• Dark molecular clouds (visual extinction AV
>∼ 3 mag), where there is insuf-

ficient ultraviolet radiation to photoionize elements such as C and S. Cosmic
rays can maintain only a very small fractional ionization xe ≡ ne/nH ≈
10−7(104 cm−3/nH)

1/2. The low fractional ionization in dense molecular
clouds has implications for coupling of the magnetic field to the gas and
damping of MHD waves; these will be discussed in later chapters.

16.1 H I Regions: Ionization of Metals

Carbon is the fourth most abundant element, following hydrogen, helium, and oxy-
gen. The abundance of C in the local ISM is approximately equal to the solar value,
∼ 2.5× 10−4. Of this, approximately 60% appears to be in solid grains, leaving a
gas phase abundance nC/nH ≈ 1× 10−4 (see Table 9.5).

With an ionization threshold of 11.26 eV, carbon can be photoionized by starlight
that can penetrate into neutral H I clouds. Let ζ(C0) be the probability per unit time
of ionization of a carbon atom; this will be primarily due to photoionization by
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starlight but, in principle, also includes photoionization by x rays and collisional
ionization by cosmic rays. Pulsar dispersion measures indicate a mean electron
density 〈ne〉 ≈ 0.04 cm−3 near the midplane of the disk, and within about 1 kpc of
the Sun (see Fig. 11.2).

Consider the ionization state of carbon in a region with the mean electron den-
sity ne ≈ 0.04 cm−3. Let nC be the density of C nuclei in the gas phase, with
neutral fraction x(C0) ≡ n(C0)/nC. Under steady state conditions, ionization and
recombination must balance; if the dominant recombination process is radiative
recombination, with rate coefficient αrr, we have

αrr(C
+)ne

[
1− x(C0)

]
= ζ(C0)x(C0) , (16.1)

giving a neutral fraction

x(C0) =
αrr(C

+)ne

αrr(C+)ne + ζ(C0)
. (16.2)

Inserting ζ(C0) = 2.58 × 10−10 s−1 (see Table 13.1) and αrr(C
+) = 8.63 ×

10−12 cm3 s−1 for T = 100K (see Table 14.6), we find x(C0) = 1.3 × 10−3.
According to this estimate, then, ∼99.9% of the gas phase carbon is ionized –
photoionization of C is much faster than radiative recombination of C+ for the
densities of electrons and ultraviolet photons found in the diffuse ISM. A similar
conclusion is found for other heavy elements with ionization potentials I < 13 eV.

16.1.1 Grain-Assisted Recombination

The process of grain-assisted recombination, discussed in Chapter 14, can under
some circumstances be faster than radiative recombination. Let us examine the
importance of grain recombination for our example of carbon ionization.

We write the grain-assisted recombination rate per volume as nHαgrn(C
+),

where αgr, the effective rate coefficient, depends on the ion (in this case, C+), the
UV intensity ∝ G0 [see Eq. (12.6)], the electron density ne, and the gas tempera-
ture T . Using the parameters in Table 14.9 and assuming G0 ≈ 1 and T ≈ 100K,
we calculate the charging parameter ψ ≈ 250 and obtain an effective rate coeffi-
cient αgr ≈ 2.83× 10−14 cm3 s−1. Grain-assisted recombination is faster than ra-
diative recombination by a factor nHαgr/neαrr ≈ 2.5. With grain-assisted recom-
bination included, we would now estimate a larger neutral fraction x(C0) ≈ .0045,
but this is still � 1. Therefore, even with grain-assisted recombination included,
99.5% of the gas-phase carbon would be photoionized in our hypothetical region
with ne = 0.04 cm−3 and T = 100K. Hence we can assume that nearly all of the
carbon and other gas-phase species (e.g., S) with ionization potential < 13.6 eV
will be photoionized in diffuse H I regions.

Let n(M+) be the number density of ions of species with ionization potentials
IX < 13.6 eV. Table 9.5 gives estimates for xM ≡ n(M+)/nH in different types



184 CHAPTER 16

of H I gas, with

xM ≈
⎧⎨
⎩

1.68× 10−4 in the WNM.
1.42× 10−4 in the CNM.
1.07× 10−4 in diffuse H2.

(16.3)

16.2 Cool H I Regions: Ionization of Hydrogen

Typical cool H I regions, the so-called cold neutral medium (CNM), may have
a density nH ≈ 30 cm−3 and half-thickness ≈ 1 pc, giving a column density
N(H I) ≈ 1020 cm−2. Starlight will not ionize H or He within an H I region,
because the 13.6 < hν < 54.4 eV ionizing photons cannot penetrate into the cloud
(see Fig. 13.1), but x rays of sufficiently high energy can reach the cloud inte-
rior. A photon with energy hν = 150 eV has an absorption cross section per H of
1.8× 10−20 cm2 (mostly due to He); x rays with hν > 150 eV can therefore affect
the ionization within the interiors of H I clouds.

Let ζCR be the rate of primary ionizations per H atom by either cosmic rays
or x rays, and let φs be the average number of secondary ionizations per primary
ionization of H. The extremely rapid rate of photoionization of C and S ensures
that they will be almost fully ionized in diffuse H I, contributing an electron density
∼ nHxM . In a steady state, the hydrogen ionization fraction x(H+) ≡ n(H+)/nH

must obey

ζCR (1+φs)nH

[
1− x(H+)

]
= αrr(H

+)nH
2
[
x(H+) + x(M+)

]
x(H+) + αgr(H

+)nH
2x(H+) , (16.4)

where αrr is the rate coefficient for radiative recombination of H+, and αgr is the
effective rate coefficient for grain-assisted recombination of H+ (see §14.8). This
is a quadratic equation for x(H+) with solution

x(H+)=

[
(β + γ + xM )2 + 4β

]1/2 − (β + γ + xM )

2
, (16.5)

β≡ ζCR(1 + φs)

αrrnH
, (16.6)

γ≡ αgr

αrr
. (16.7)

The rate coefficient αgr depends on the charge state of the grains, which in turn
depends on the electron density ne (through the “charging parameter” ψ [defined
in Eq. (14.38)]. We therefore iterate: assume some ne to calculate ψ, with this
ψ calculate αgr, with this αgr solve Eq. (16.5), with this ne recalculate ψ, and
iterate to converge on the self-consistent steady state solution for ne. Figure 16.1
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Figure 16.1 Solid lines show fractional ionization xe in the CNM as a function of
cosmic ray ionization rate ζCR, for two gas temperatures, T = 50 and 100K (see text).
Dashed-dotted curves show ne calculated if grain-assisted recombination is neglected.
For ζCR ≈ 1 × 10−16 s−1 determined from observations of diffuse molecular clouds
(see §16.4), the CNM electron density ne ≈ 0.010 cm−3.

shows the electron density in the CNM with nH ≈ 30 cm−3, given by Eq. (16.5).
For a given cosmic ray ionization rate, grain-assisted recombination significantly
lowers the electron density. It is therefore important to include this process to obtain
realistic estimates of the electron density in diffuse H I clouds. If the cosmic ray
ionization rate ζCR(1+φs) <∼ 2×10−16 s−1, the electron density ne

<∼ 0.01 cm−3.
At this time, there is considerable uncertainty regarding the ionization rate ζCR, but
observations of diffuse molecular clouds (see §16.4) provide some constraints.

16.3 Warm H I Regions

A considerable fraction of the atomic hydrogen is located in regions of density
nH ≈ 0.5 cm−3 and temperature T ≈ 5000K – the so-called warm neutral medium
(WNM). What fractional ionization is expected for such regions?

If there is no local source of x rays, the hydrogen ionization will be primarily
due to cosmic rays, just as for the CNM. Just as in the CNM, photoionization of
elements with ionization potentials I < IH will contribute electrons, with xM ≈
1.7 × 10−4. Figure 16.2 shows the resulting fractional ionization. For the cosmic
ray ionization rate ζCR ≈ 1 × 10−16 s−1 inferred from observations of diffuse
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molecular clouds, about 2% of the hydrogen will be ionized in the WNM. This
conclusion is not appreciably altered when cosmic ray ionization of He is included.

Figure 16.2 Fractional ionization of the WNM as a function of cosmic ray ionization
rate ζCR. For ζCR ≈ 1 × 10−16 s−1 (indicated by observations of diffuse molecular
clouds), the WNM electron density ne ≈ 0.010 cm−3.

16.4 Diffuse Molecular Gas

In regions where the hydrogen is molecular, most ionizations produced by cosmic
rays or x rays (including secondary electrons) detach an electron from H2 to create
H2

+. If it encounters a free electron, the H2
+ will dissociatively recombine, H2

++
e− → H + H, with a rate coefficient k ≈ 2 × 10−8 cm3 s−1 (see Table 14.8).
Because the electron fraction in molecular gas tends to be low, most of the H2

+

will undergo the fast exothermic ion–molecule reaction:

H2
+ +H2 → H+

3 +H , k16.8 = 2.08× 10−9 cm3 s−1 , (16.8)

followed by dissociative recombination

H+
3 + e− →H2 +H , k16.9 = 4.1× 10−8T−0.52

2 cm3 s−1 , (16.9)
H+

3 + e− →H+H+H , k16.10 = 7.7× 10−8T−0.52
2 cm3 s−1 , (16.10)
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or an exchange reaction such as

H+
3 +O→OH+ +H2 , k16.11 = 8.40× 10−10 cm3 s−1 , (16.11)

H+
3 +O→H2O

+ +H , k16.12 = 3.60× 10−10 cm3 s−1 , (16.12)

followed by, for example,

OH+ + e− → O+H , k16.13 = 6.5× 10−8T−0.50
2 cm3 s−1 . (16.13)

Rate coefficients k16.8, k16.9, k16.10, k16.11, k16.12, and k16.13 are from the UMIST
2006 Database for Astrochemistry (Woodall et al. 2007), where the original sources
are given.

In a diffuse region with fractional ionization xe
>∼ xM ≈ 1.9×10−4, destruction

of H+
3 will be dominated by Eqs. (16.9 and 16.10), and the abundance of H+

3 will
be given by

n(H+
3 )

n(H2)
≈ 2ζCR(1 + φs)

(k16.9 + k16.10)nHxe
. (16.14)

Thus the cosmic ray ionization rate can be obtained:

ζCR(1 + φs) ≈ (k16.9 + k16.10)nHxe
N(H+

3 )

2N(H2)
. (16.15)

Consider now the diffuse molecular cloud located on the sightline toward the
bright star ζ Per. Taking the observed N(H+

3 ) = 8 × 1013 cm−2 (McCall et al.
2003) and N(H2) = 5.0× 1020 cm−2 (Bohlin et al. 1978), and adopting a density
nH ≈ 100 cm−3 and temperature T ≈ 60K (van Dishoeck & Black 1986; Le
Petit et al. 2004) and fractional ionization xe ≈ xM ≈ 1.9 × 10−4, we obtain
ζCR(1 + φs) ≈ 2.2 × 10−16 s−1 in the diffuse molecular gas toward ζ Per. With
φs ≈ 0.67 [see Eq. (13.12)], the primary ionization rate is estimated to be ζCR ≈
1.3× 10−16 s−1.

This is strong evidence that in at least some interstellar clouds, the cosmic ray
ionization rate ζCR ≈ 1× 10−16 s−1. H+

3 detections on 14 diffuse cloud sightlines
lead to ζCR estimates in the range (0.5 to 3) × 10−16 s−1, with an average of
2× 10−16 s−1 (Indriolo et al. 2007). The free electrons in diffuse molecular clouds
come almost entirely from photoionization of C, S, and other gas-phase atoms with
I < IH, with total abundance xM ≈ 1.1 × 10−4 – the molecular ions make only
a very small contribution. For example, the H+

3 ion has a fractional abundance
N(H+

3 )/2N(H2) ≈ 8× 10−8, and other molecular ions, such as OH+ or HCO+,
have similarly low abundances.
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16.5 Dense Molecular Gas: Dark Clouds

When the visual extinction exceeds AV ≈ 3 mag, ultraviolet starlight is sufficiently
attenuated so that elements like C and S will be predominantly neutral in the gas
phase, and most of the free electrons are the result of cosmic ray ionization. What
fractional ionizations are present within these dark regions? Here we follow the
treatment by McKee (1989).

Under these conditions, cosmic ray ionization will produce H+
3 ions via

H2 +CR→H2
+ + e , (16.16)

H2
+ +H2 →H+

3 +H . (16.17)

For fractional ionizations xe
<∼ 10−5, dissociative recombination of the H+

3 ions
will be of secondary importance, and most of the H+

3 ions will react with atoms or
molecules M (e.g., CO) to form

H+
3 +M → MH+ +H2 . (16.18)

The generic molecular ion MH+ (e.g., HCO+) can recombine dissociatively:

MH+ + e− → M +H : k16.19 ≈ 1× 10−7T−0.5
2 cm3 s−1 , (16.19)

or it can capture an electron from a grain:

MH+ + grain− → MH+ grain : k16.20 , (16.20)

or it can exchange charge with a neutral metal atom such as S:

MH+ + S → MH+ S+ : k16.21 ≈ 1× 10−9 cm3 s−1 . (16.21)

The S+ will finally be neutralized by capturing an electron from a grain:

S+ + grain− → S + grain
S+ + grain → S + grain+

}
: k16.22 , (16.22)

where polycyclic aromatic hydrocarbon (PAH) particles are included in the grain
population. If every H+

2 that is created leads to formation of MH+, then the for-
mation rate of H+

2 should equal the rate of destruction of MH+:

nHζCR(1 + φs) = n(MH+) (k16.19ne + k16.20nH + k16.21nS) . (16.23)

If the net charge contributed by the grains is small, then

ne ≈ n(MH+) + n(S+) ≈ n(MH+)

(
1 +

k16.21nS

k16.22nH

)
. (16.24)
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Figure 16.3 Fractional ionization in a dark cloud, estimated using Eq. (16.25), with
the grain recombination rate coefficients set to k16.20 = k16.22 = 10−14 cm3 s−1

(see Fig. 14.6). The dashed line is a simple power-law approximation xe ≈ 1 ×
10−5(nH/ cm

−3)−1/2.

Substituting (16.24) into (16.23), we obtain a quadratic equation for n(MH+)/nH,
from which we obtain

ne

nH
=

[
B2 + 4k16.19ζCR(1 + φs)/nH

]1/2 −B

2k16.19
, (16.25)

A= k16.19

(
1 +

k16.21
k16.22

nS

nH

)
, (16.26)

B= k16.20 + k16.21
nS

nH
. (16.27)

The fractional ionization estimated using Eq. (16.25) is shown in Figure 16.3,
where it is seen to vary approximately as 1/

√
nH, reaching fractional ionizations

of ∼ 10−7 for nH ≈ 104 cm−3 for an assumed cosmic ray ionization rate ζCR ≈
1× 10−16 s−1.

From this, we see that at points deep enough within a dark molecular cloud,
where starlight cannot maintain a high ionization fraction for elements with IM <
IH, cosmic rays can maintain only a very low fractional ionization. This has impli-
cations for the magnetohydrodynamics of the magnetized gas.



Chapter Seventeen

Collisional Excitation

Collisional excitation is important in the ISM for two reasons:

1. It puts ions, atoms, and molecules into excited states from which they may
decay radiatively; these radiative losses result in cooling of the gas.

2. It puts species into excited states that can serve as diagnostics of the physical
conditions in the gas. If the level populations can be determined observation-
ally, from either emission lines or absorption lines, we may be able to infer
the density, temperature, or radiation field in the region where the diagnostic
species is located.

Throughout this chapter and the rest of the book, we will be making use of
rate coefficients and transition rates. We will use the notation kif ≡ 〈σv〉i→f

for collisional rate coefficients, and Aif ≡ Ai→f to denote radiative transition
probabilities, where the first subscript in kif or Aif denotes the initial state, and
the second the final state. For energy-level differences, we will set Eu� ≡ Eu−E�.

17.1 Two-Level Atom

In some cases, it is sufficient to consider only the ground state and the first excited
state – when attention is limited to these two states, we speak of the “two-level
atom.” Consider first the case where there is no background radiation present, and
the only processes acting are collisional excitation, collisional deexcitation, and
radiative decay. Let the ground state be level 0, and the excited state be level 1.
Let nj be the number density of the species in level j. For collisional excitation by
some species (e.g., electrons) with density nc, the population of the excited state
must satisfy

dn1

dt
= ncn0k01 − ncn1k10 − n1A10 . (17.1)

The steady state solution (dn1/dt = 0) is simply

n1

n0
=

nck01
nck10 +A10

. (17.2)

The upward rate coefficient k01 is given in terms of the downward rate coefficient
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by

k01 =
g1
g0

k10 e
−E10/kTgas , (17.3)

where g0, g1 are the level degeneracies, and Tgas is the kinetic temperature of the
gas. In the limit nc → ∞, it is easy to see that n1/n0 → (g1/g0) exp(−E10/kTgas).

Now suppose that radiation is present. Let uν be the specific energy density at
frequencies near ν = E10/h. It is convenient to use instead the dimensionless
(angle- and polarization-averaged) photon occupation number:

n̄γ ≡ c3

8πhν3
uν . (17.4)

Then,

dn1

dt
= n0

[
nck01 + n̄γ

g1
g0

A10

]
− n1 [nck10 + (1 + n̄γ)A10] . (17.5)

The rate of photoabsorption is n̄γ(g1/g0)A10n0, and the rate of stimulated emis-
sion is n̄γA10n1 (see Chapter 6). The steady-state solution with radiation present
is

n1

n0
=

nck01 + n̄γ(g1/g0)A10

nck10 + (1 + n̄γ)A10
. (17.6)

This is the fully general result for a two-level system.
It is instructive to examine Eq. (17.6) in various limits:

• If n̄γ → 0, then we recover our previous result (17.2).

• If nc → 0, then n1/n0 → (g1/g0)n̄γ/(1 + n̄γ). If we have a blackbody
radiation field with temperature Trad [i.e., nγ = 1/(eE10/kTrad − 1)], then
n1/n0 = (g1/g0)e

−E10/kTrad .

• If we have a blackbody radiation field with temperature Trad = Tgas, then
n1/n0 = (g1/g0)e

−E10/kTrad independent of the gas density nc! The pho-
tons alone are sufficient to bring the two level system into LTE, and additional
(thermal) collisions have no further effect on the level populations.

17.2 Critical Density ncrit,u

For a collision partner c, we define the critical density ncrit,u(c) for an excited state
u to be the density for which collisional deexcitation equals radiative deexcitation,
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Table 17.1 Critical Densities for Fine-Structure Excitation in H I Regions

nH,crit(u)
E�/k Eu/k λu� T = 100K T = 5000K

Ion � u (K) (K) (µm) ( cm−3) ( cm−3)

C II 2P o
1/2

2P o
3/2

0 91.21 157.74 2.0× 103 1.5× 103

C I 3P0
3P1 0 23.60 609.7 620 160

3P1
3P2 23.60 62.44 370.37 720 150

O I 3P2
3P1 0 227.71 63.185 2.5× 105 4.9× 104

3P1
3P0 227.71 326.57 145.53 2.3× 104 8.4× 103

Si II 2P o
1/2

2P o
3/2

0 413.28 34.814 1.0× 105 1.1× 104

Si I 3P0
3P1 0 110.95 129.68 4.8× 104 2.7× 104

3P1
3P2 110.95 321.07 68.473 9.9× 104 3.5× 104

including stimulated emission1:

ncrit,u(c) ≡
∑

�<u [1 + (nγ)u�]Au�∑
�<u ku�(c)

. (17.7)

Note that the definition (17.7) applies to multilevel systems, but each excited level
u may have a different critical density. The definition (17.7) is appropriate when
the gas is optically thin, so that the radiated photons can escape. When the emitting
gas is itself optically thick at the emission frequency, we have “radiative-trapping,”
and the criterion for the critical density must be modified (see Chapter 19).

Note that this definition of ncrit,u depends on the intensity of ambient radiation
at frequencies where level u can radiate. For many transitions of interest, we have
(n̄γ)u� � 1, and this correction is unimportant, but for radio frequency transitions
– e.g., the 21-cm line of atomic hydrogen – it is important to include this correction
for stimulated emission.

Critical densities ncrit for the fine structure levels of C I, C II, O I, Si I, and Si II
are given in Table 17.1.

17.3 Example: H I Spin Temperature

Consider the ground state of the hydrogen atom (electron in the 1s orbital, electron
spin antiparallel to nuclear spin, g0 = 1), and the hyperfine excited state (1s orbital,
electron spin and nuclear spin parallel, g1 = 3). The energy level structure is
illustrated in Fig. 17.1.

The energy difference between the excited state (nuclear and electron spins par-
allel, g1 = 3) and the ground state (nuclear and electron spins antiparallel) is only
E10 = 5.87µeV, corresponding to a photon wavelength λ = 21.11 cm. The spon-
taneous decay rate is A10 = 2.884 × 10−15 s−1, corresponding to a lifetime of
∼ 107 yr.

1The definition of critical density is not completely standard. Some authors include collisional exci-
tation channels in the denominator of Eq. (17.7).
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Figure 17.1 Hyperfine splitting of the 1s level of H.

The rate coefficient for collisional dexcitation of the hyperfine excited state due
to collisions with other H atoms (Allison & Dalgarno 1969; Zygelman 2005) can
be approximated by

k10 ≈
{

1.19×10−10T 0.74−0.20 lnT2
2 cm3 s−1 (20K < T < 300K)

2.24×10−10T 0.207
2 e−0.876/T2 cm3 s−1 (300K < T < 103 K)

. (17.8)

We obtain k01 from the principle of detailed balance (3.21):

k01 = 3k10 e
−0.0682K/T . (17.9)

What is the value of the photon occupation number n̄γ in the diffuse ISM?
The radiation field near 21 cm is dominated by the cosmic microwave background
(CMB) plus Galactic synchrotron emission. Including the contribution2 from syn-
chrotron radiation, the angle-averaged background near 21 cm corresponds to an
antenna temperature TA ≈ TCMB + 1.04K (see Chapter 12), where TCMB =
2.73K. Thus

n̄γ ≡ 1

exp(hν/kTB)− 1
(17.10)

≡ kTA

hν
≈ 3.77K

0.0682K
≈ 55 . (17.11)

For the present case of a two-level system,

ncrit(H)≡ (1 + n̄γ)A10

k10
(17.12)

=1.7× 10−3(T/100K)−0.66 cm−3 (50K <∼ T <∼ 200K). (17.13)

2Near 21 cm, even the CMB is in the Rayleigh-Jeans limit, so the antenna temperature TA and
brightness temperature TB are approximately equal.
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where we have taken n̄γ = 55, appropriate for H I in the diffuse interstellar medium.
In the absence of collisions, the CMB plus Galactic synchrotron radiation would
give optically thin H I an excitation temperature Texc ≈ 3.77K. If we consider
only collisions with atomic H, we can solve Eq. (17.6) for various gas densi-
ties nH and temperatures T . Figure 17.2 shows the resulting “spin temperature”
Tspin ≡ 0.0682K/ ln(n0g1/n1g0) as a function of density nH.

Figure 17.2 H I spin temperature as a function of density nH, including only 21 cm
continuum radiation (with brightness temperature TB = 3.77K, i.e., nγ = 55) and
collisions with H atoms. Lyman α scattering is not included. Filled circles show ncrit

for each curve.

For densities n � ncrit, we expect Tspin ≈ Tgas, while for densities n � ncrit,
we expect Tspin ≈ TB(ν), or 3.77K for the radiation field assumed here. The
results in Fig. 17.2 are consistent with the expected asymptotic behavior, but it is
important to note that one requires n � ncrit in order to have Tspin within, say,
10% of Tgas, particularly at high temperatures. The points in Figure 17.2 show
ncrit(Tgas) for each Tgas; it is apparent that high values of Tspin are achieved only
for n � ncrit.

Collisions with protons and electrons can also be important for hyperfine ex-
citation of H I; the rate coefficient for deexcitation by electrons is (Furlanetto &
Furlanetto 2007)

k10(e
−) ≈ 2.26× 10−9(T/100K)0.5 cm3 s−1 (1 <∼ T <∼ 500K), (17.14)

a factor ∼ 10 larger than k10(H); electrons will, therefore, be of minor importance
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in regions of fractional ionization xe
<∼ 0.03, such as the CNM or WNM (see Figs.

16.1 and 16.2).
Resonant scattering of Lyman-α photons can also change the populations of the

hyperfine levels (Wouthuysen 1952; Field 1958).3 Let P01 be the probability per
unit time of a transition from the hyperfine ground state to 2p, followed by spon-
taneous decay from 2p to the hyperfine excited state, and P10 the probability per
time of a transition from the hyperfine excited state to 2p, followed by decay to
the hyperfine ground state. The Lymanα profile depends on the kinetic temper-
ature of the hydrogen atoms that are emitting and scattering the Lymanα. If the
hydrogen atoms have a Maxwellian velocity distribution, Field (1959) showed that
P01 ≈ 3P10e

−0.0682K/TH , where TH ≡ mHσ
2
V /k, and σV is the one-dimensional

velocity dispersion of the H atoms that are scattering the Lymanα photons. There-
fore, this process acts essentially like a collisional process, except that the tem-
perature TH characterizing the Lymanα line profile includes a contribution from
turbulent motions, in addition to microscopic thermal motions. Liszt (2001) esti-
mates the Lymanα intensities expected in the warm neutral medium (WNM), and
concludes that collisions and Lymanα together are not fast enough to thermalize
the H I hyperfine transition. As a result, we should expect Tspin < Tgas in the
WNM.

17.4 Example: C II Fine Structure Excitation

The ground electronic state 1s22s22p 2P o of C II contains two fine-structure lev-
els (see Fig. 17.3), 2P o

1/2 and 2P o
3/2. Will the populations of these two levels be

thermalized in the ISM? Radiative decay of the 2P o
3/2 excited fine-structure state

produces a photon with λ = 158µm. At this wavelength, the continuum back-
ground in the interstellar medium has nγ � 1. In fact, from Figure 12.1, we
estimate nγ ≈ 10−5 in the diffuse ISM. Hence, if we are considering regions that
are optically thin in the 158µm line, we can neglect stimulated emission.

The 2P o
3/2 fine-structure level can be excited by collisions of 2P o

1/2 with elec-
trons, H, He, and (in a molecular cloud) H2. For electrons, the collision strength is
(Keenan et al. 1986)

Ω(2P o
1/2,

2 P o
3/2) ≈ 2.1 , (17.15)

3 The Wouthuysen-Field effect can be understood semiclassically. When a Lymanα photon is ab-
sorbed, the H atom enters a 2p state with its electronic angular momentum L in some direction that is
related to the direction of propagation and polarization of the absorbed photon, but is unrelated to the
orientation of the nuclear or electron spins. During the ∼ 10−9 s lifetime of the 2P o

1/2
or 2P o

3/2
excited

state, spin-orbit coupling will cause both the electron spin S and orbital angular momentum L to precess
around L + S. When the Lymanα photon is emitted, the electron spin will be in a different direction,
and thus its orientation relative to the nuclear spin will change some fraction of the time. Note that
while the spin-orbit coupling in H is weak, it is not zero: the 0.366 cm−1 fine-structure splitting be-
tween 2P o

3/2
and 2P o

1/2
corresponds to an electron precession frequency ∼ 8×1010 Hz – the ∼ 1.6 ns

lifetime of the excited state corresponds to ∼ 102 precession periods.
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Figure 17.3 Fine-structure levels of C+.

Figure 17.4 Excitation of the 2P o
3/2 excited fine-structure level of C+. The background

radiation is assumed to have nγ ≈ 10−5 at 158µm.

so that

k10(e
−) ≈ 4.53× 10−8T

−1/2
4 cm3 s−1 , (17.16)

while for H atoms (Barinovs et al. 2005):

k10(H) ≈ 7.58× 10−10T 0.1281+0.0087 lnT2
2 cm3 s−1 . (17.17)
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Thus the critical densities are

ncrit(H)≈ 3.2 × 103T−0.1281−0.0087 lnT2
2 cm−3 , (17.18)

ncrit(e
−)≈ 53T

1/2
4 cm−3 . (17.19)

Therefore, we see that for both CNM and WNM conditions, the densities are well
below critical, and the C II fine-structure levels will be subthermally excited. It fol-
lows that collisional excitations of C II 2P o

3/2 will usually be followed by radiative
decays, removing energy from the gas. The [C II] 158µm transition is the principal
cooling transition for the diffuse gas in star-forming galaxies. Plate 3c is an all-sky
map of [C II] 158µm emission from the Galaxy, made by the Far InfraRed Ab-
solute Spectrophotometer (FIRAS) on the COsmic Background Explorer (COBE)
satellite (Fixsen et al. 1999).

The preceding discussion neglects radiative excitation of C II 2P o
3/2, appropriate

for clouds that are optically thin in the [C II] 158µm line. When the clouds become
optically thick, the [C II] 158µm line intensity can increase to the point where self-
absorption makes an important contribution to the excitation of C II 2P o

3/2. We will
return to the question of excitation under such conditions in Chapter 19.

17.5� Three-Level Atom

If we consider the ground state and two excited states, we refer to this as a “three-
level atom.” The equations for the evolution of the level populations are

dn2

dt
=R02n0 +R12n1 − (R20 +R21)n2 , (17.20)

dn1

dt
=R01n0 +R21n2 − (R10 +R12)n1 , (17.21)

where the rates Rif are:

R10 =C10 + (1 + nγ,10)A10 , (17.22)
R20 =C20 + (1 + nγ,20)A20 , (17.23)
R21 =C21 + (1 + nγ,21)A21 , (17.24)

R01 =(g1/g0)
[
C10e

−E10/kT + nγ,10A10

]
, (17.25)

R02 =(g2/g0)
[
C20e

−E20/kT + nγ,20A20

]
, (17.26)

R12 =(g2/g1)
[
C21e

−E21/kT + (g2/g1)nγ,21A21

]
. (17.27)

The rates Cu� for collisional deexcitation are summed over all collision partners c:

Cu� ≡
∑
c

ncku�(c) , (17.28)
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and we assume each colliding species to have a thermal velocity distribution cor-
responding to temperature T . For the three-level system, the solution is tractable:

n1

n0
=

R01R20 +R01R21 +R21R02

R10R20 +R10R21 +R12R20
, (17.29)

n2

n0
=

R02R10 +R02R12 +R12R01

R10R20 +R10R21 +R12R20
. (17.30)

For systems with more than three energy levels, the steady state level populations
are usually found using numerical methods to solve the system of linear equations.

17.6� Example: Fine Structure Excitation of C I and O I

C I (1s22s22p2) and O I (1s22s22p4) are two important examples of atoms with
triplet (S = 1) ground states (see Fig. 17.5). Using collisional rate coefficients
from Appendix F, we can solve for excitation of these levels. Results for n1/n0

for C I are shown in Fig. 17.6, and n1/n0 for O I are shown in Fig. 17.7. For both
cases, we have assumed a fractional ionization ne/nH = 10−3 characteristic of H I
clouds or photodissociation regions.

Figure 17.5 Fine-structure levels of C I and O I.

17.7� Measurement of Density and Pressure Using C I

The fine-structure excited states of C I, with energies E1/k = 23.6K and E2/k =
62.5K, can be collisionally populated even at low temperatures, and the level pop-
ulations can be measured using C I’s rich spectrum of ultraviolet absorption lines
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Figure 17.6 Excitation of C I 3P1, source of 609.1µm emission.

Figure 17.7 Excitation of O I 3P1, source of 63.18µm emission.

(see Appendix E). Because the critical density nH,crit (see Table 17.1) is higher
than the densities in typical diffuse clouds, the population of the C I fine struc-
ture levels can be used to constrain the density and temperature (Jenkins & Shaya
1979). A recent study by Jenkins & Tripp (2010) used high-quality spectra of UV
absorption lines of C I on 89 sightlines to characterize the distribution of thermal
pressures in diffuse clouds.

For a given gas composition (fractional ionization and H2 fraction), temperature
T , and density, the fractions f1 ≡ N(3P1)/N(C I) and f2 ≡ N(3P2)/N(C I) of
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the C I that are in the first and second excited states 3P1 and 3P2 of the ground
electronic state 3P can be calculated theoretically (e.g., Fig. 17.6 shows f1/f0).
For a given T , varying the thermal pressure p will generate a track in the f1–f2
plane. Theoretical tracks for T = 30K, 80 K, and 300 K are shown in Figure
17.8, with each track generated by varying the pressure from p/k = 102 cm−3 K
to 107 cm−3 K.

Figure 17.8 f1 and f2 are the fractions of C I that are in the 3P1 and 3P2 excited fine
structure states. Solid lines are theoretical tracks for three different temperatures (30 K,
80 K, 300 K), as the pressure is varied from p/k = 102 cm−3 K to 107 cm−3 K, with
numbers indicating the value of log10[p/k( cm

−3 K)]. Data points are measurements
for different velocity components on 89 sightlines. The area of each dot is proportional
to N(C I). The white × is the “center of mass” value (f1, f2) = (0.21, 0.068). Taken
from Jenkins & Tripp (2010).

Observed values of (f1, f2) are also plotted in Figure 17.8. Typically f1 ≈
0.20 of the C I is found to be in the 3P1 level, and f2 ≈ 0.07 is in the 3P2 level,
although on some sightlines f2 can exceed 0.50. Note that the observed values
of (f1, f2) usually fall somewhat above and to the left of the theoretical tracks.
Jenkins & Tripp (2010) interpret this tendency as resulting from superposition of
two components: a dominant component with moderate pressure p plus a small
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amount of high-pressure material.4 UV pumping can also populate the excited
fine-structure levels, and Jenkins & Tripp (2010) correct for this in their estimates
for p.

Figure 17.9 Distribution of thermal pressures measured using C I absorption lines (see
text). Taken from Jenkins & Tripp (2010).

The distribution of pressures found by Jenkins & Tripp (2010) is shown in Fig.
17.9. The observed distribution can be approximated by a log-normal distribution
with a peak at p/k ≈ 103.575 cm−3 K ≈ 3800 cm−3 K.

In many cases it was possible to determine the gas temperature using the H2

J = 1 − 0 rotation temperature Trot. The inset in Fig. 17.9 shows the distribution
of p and Trot; there appears to be no correlation between Trot and p. For the
“typical” p/k ≈ 3800 cm−3 K, the H2 rotation temperatures range from ∼ 50K to
∼ 250K.

Jenkins & Tripp (2010) conclude that interstellar clouds routinely contain a small
amount of gas that is at the same bulk velocity but at a pressure that is much higher
than the average pressure in the cloud – this is the only way that they can explain
the tendency of the data points in Fig. 17.8 to fall above and to the left of the theo-
retical tracks. This is a very surprising result, as there is no obvious explanation for

4Jenkins & Tripp (2010) assume the high-pressure material to have (f1, f2) = (0.38, 0.50).
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why a small fraction of the cloud material should be overpressured without being
at a significantly different velocity. It may be conjectured that the overpressured
regions are the result of highly localized intermittent heating, perhaps due to turbu-
lent dissipation, but the situation remains unclear. It is at least conceivable that the
problem could be with the collisional rate coefficients – if, for example, the cur-
rent theoretical rates have too small a value of C20/C10, then the true tracks at the
low-pressure end of Fig. 17.8 would have a larger slope, perhaps passing through
the cloud of points near (0.2,0.06) in Fig. 17.8, and removing the need to invoke an
admixture of high pressure material.



Chapter Eighteen

Nebular Diagnostics

The populations of excited states of atoms and ions depend on the local density and
temperature. Therefore, if we can determine the level populations from observa-
tions, we can use atoms and ions as probes of interstellar space. In this chapter, we
focus on ions that allow us to probe the density and temperature of photoionized
gas (“emission nebulae”) in the temperature range 3000 <∼ T <∼ 3× 104 K.

To be a useful probe, an atom or ion must be sufficiently abundant to observe,
must have energy levels that are at suitable energies, and must have radiative transi-
tions that allow us to probe these levels, either through emission lines or absorption
lines.

There are two principal types of nebular diagnostics. The first (discussed in
§18.1) uses ions with two excited levels that are both “energetically accessible” at
the temperatures of interest, but with an energy difference between them that is
comparable to kT , so that the populations of these levels are sensitive to the gas
temperature. The level populations are normally observed by their line emission.

The second type of diagnostic (discussed in §§ 18.2 and 18.3) uses ions with
two or more “energetically accessible” energy levels that are at nearly the same
energy, so that the relative rates for populating these levels by collisions are nearly
independent of temperature. The ratio of the level populations will have one value
in the low-density limit, where every collisional excitation is followed by sponta-
neous radiative decay, and another value in the high-density limit, where the levels
are populated in proportion to their degeneracies. If the relative level populations
in these two limits differ (as, in general, they will), then the relative level popula-
tions (determined from observed emission line ratios) can be used to determine the
density in the emitting region.

The temperature of ionized gas can also be measured using the “Balmer jump”
in the emission spectrum of the recombining hydrogen (§18.4.1), or by observing
emission lines that follow dielectronic recombination (§18.4.2).

Once the temperature of the gas has been determined, abundances of emitting
species can be estimated using the strengths of collisionally excited emission lines
relative to the emission from the ionized hydrogen (§18.5). When fine-structure
emission lines are used, the inferred abundances are quite insensitive to uncertain-
ties in the temperature determination.
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Figure 18.1 Energy levels for temperature diagnostic 2p2 ions N II and O III. Transi-
tions are labeled by vacuum wavelength (Å).

18.1 Temperature Diagnostics: Collisionally Excited Optical/UV Lines

18.1.1 np2 and np4 Ions

Atoms or ions with six electrons have 2p2 as their lowest configuration: the ground
state term is 3P, and the first two excited terms are 1D and 1S. If the 1S term is
at a low enough energy (E/k <∼ 70, 000K), so that the rate for collisional exci-
tation in gas with T ≈ 104 K is not prohibitively slow, and the abundance of the
ion itself is not too low, then the ion can produce observable line emission from
both the 1D and 1S levels. Because these levels are at very different energies, the
relative strengths of the emission lines will be very sensitive to the temperature; the
measured intensity ratio can be used to determine the temperature in the nebula.

Candidate 2p2 ions are C I, N II, O III, F IV, Ne V, and so on. C I is easily pho-
toionized, and will have very low abundance in an H II region. The ionization
potentials of F IV, Ne V, and so on exceed 54.4 eV, and we do not expect such high
ionization stages to be abundant in H II regions excited by main-sequence stars with
effective temperatures kTeff

<∼ 5 eV. This leaves N II and O III as the only 2p2 ions
that will be available in normal H II regions.1

Systems with eight electrons will have 2p4 configurations that will also have 1D
and 1S as the first two excited terms. For O I, F II, and Ne III, the 1S term is at
E/k < 70, 000K.

1F IV and Ne V may be present in planetary nebulae and active galactic nuclei, where the ionizing
radiation is harder (with significant power above 54.4 eV).
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Similar considerations for systems with 14 or 16 electrons in H II regions pho-
toionized by main-sequence stars leave P II and S III as the only 3p2 ions, and Cl II,
Ar III, and K IV as the only 3p4 ions, that can be used for temperature determination
by comparison of emission lines from the 1D and 1S levels.

Figure 18.1 shows the first two electronic excited terms of the 2p2 ions N II and
O III. It is easy to calculate what happens in the limit of very low densities, in which
case essentially all of the N II and O III ions will be in the ground state 3P0. Let C03

and C04 be the rates for collisional excitation from the ground state to the 1D2 and
1S0 excited states. At low densities, every collisional excitation will be followed
by radiative decays returning the ion to the ground state, with branching ratios that
are determined by the Einstein coefficients Au�. For example, after excitation of
level 4, the probability of a 4 → 3 radiative transition is A43/(A41 + A43). Thus
the power radiated per unit volume in the 4 → 3 and 3 → 2 transitions is

P (4 → 3)=E43 [n0C04]
A43

A43 +A41
, (18.1)

P (3 → 2)=E32

[
n0C03 + n0C04

A43

A43 +A41

]
A32

A32 +A31
, (18.2)

where

C�u = 8.629× 10−8T
−1/2
4

Ω�u

g�
e−Eu�/kT ne cm

3 s−1 . (18.3)

Thus, in the limit ne → 0, the emissivity ratio

j(4 → 3)

j(3 → 2)
=

A43E43

A32E32

(A32 +A31)Ω04 e
−E43/kT[

(A43 +A41)Ω03 +A43Ω04 e−E43/kT
] . (18.4)

Therefore, in the low-density limit, the emissivity ratio depends only on the atomic
physics (Au�, Eu�, Ωu�) and the gas temperature T . If the atomic physics is known,
the observed emissivity ratio can be used to determine T . The low-density limit
applies when the density is below the critical density for both 1D2 and 1S0. The
critical densities for N II and O III are given in Table 18.1

The steady-state level populations have been calculated as a function of T for N II
and O III, and the ratios of emission lines from the 1S0 and 1D2 levels are shown in
Figure 18.2. We see that if ne � ncrit for the 1D2 level (ncrit = 8× 104 cm−3 for
N II, and 6 × 105 cm−3 for O III), the line ratio is independent of the density, and
depends only on the temperature. Fortunately, these values of ncrit are high enough
so that these temperature diagnostics are useful in many ionized nebulae (e.g., the
Orion Nebula, with ne ≈ 3000 cm−3 – see Chapter 28).

Note that the fine-structure excited states of the ground 3P term have values of
ncrit that are considerably lower than ncrit for 1D2 and 1S0 levels, because the fine-
structure levels of the ground term have radiative lifetimes that are much longer
than the excited terms.
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Table 18.1 Critical Electron Density ncrit(e
−) ( cm−3) for Selected np2 and np4 Ions

ncrit(e) at T = 104 K
Configuration Ion 3P0

3P1
3P2

1D2
1S0

1s22s22p2 C I – 7.37×100 1.21×101

N II – 1.67×102 2.96×102 7.68×104 1.23×107

O III – 1.74×103 3.79×103 6.40×105 2.78×107

Ne V – 3.19×105 3.48×105 1.44×108 9.58×108

1s22s22p4 O I 3.11×103 2.87×104 – 1.62×106 4.04×108

Ne III 3.02×104 2.76×106 – 9.47×106 1.37×108

Mg V 4.36×106 4.75×107 – 1.07×109 8.07×109

1s22s22p63s23p2 Si I – 7.72×102 1.92×103

S III – 4.22×103 1.31×104 7.33×105 1.52×107

Ar V – 1.09×107 1.16×107 3.65×108 2.49×108

1s22s22p23s23p4 S I 1.04×105 1.55×105 – 4.12×107 1.38×109

Ar III 2.49×105 2.67×106 – 1.26×107 4.54×108

Table 18.2 Critical Electron Density ncrit(e
−) ( cm−3) for Selected np3 Ions, for

T = 104 K

ncrit(e) at T = 104 K
Configuration Ion 2D o

3/2
2D o

5/2
2P o

1/2
2P o

3/2

1s22s22p3 N I 2.18×104 1.19×104 7.11×107 3.15×107

O II 4.49×103 3.31×103 5.30×106 1.03×107

Ne IV 1.40×106 4.66×105 4.17×108 2.79×108

1s22s22p63s23p3 S II 1.49×104 1.57×103 1.49×106 1.91×106

Ar IV 1.35×106 1.55×104 1.06×107 1.81×107

However, when L-S coupling is a good approximation, quantum-mechanical cal-
culations of the collision strengths Ωu� for different fine-structure levels � within
a single term (e.g., 3P0,1,2) have Ωu�/Ωu�′ ≈ g�/g�′ . When this is true, the col-
lisional rate coefficients for excitation out of the different fine-structure levels will
be nearly the same for the different fine-structure levels, so it does not matter
whether these levels are populated thermally or whether the only level occupied
is the ground state 3P0.

Ions with 14 electrons – S III is an example – have 1s22s22p63s23p2 config-
urations with the same term structure as 1s22s22p2, and therefore can be used
for temperature determination in the same way. Figure 18.2 shows how the ratio
[S III]6313.8/[S III]9533.7 serves as a temperature diagnostic.

A fundamental assumption is that the levels producing the observed lines are
populated only by collisional excitation. The 1D2 level is at sufficiently high en-
ergy that as the temperature T is lowered below ∼ 5000K, the rate of collisional
excitation becomes very small. This means that the line becomes very weak and
difficult to observe; it also means that if the next ionization state (N III, O IV, S IV)
has an appreciable abundance, radiative recombination with electrons may make a
significant contribution to population of the 1D2 level. As a result, the observed
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Figure 18.2 Line ratios that are useful as temperature diagnostics (see text). Curves
are labeled by ne (cm−3). For each ion, the low density limit is shown, as well as
results for higher densities, showing deviations from the low density behavior.
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line ratios may not be suitable for temperature determination when the intensity
I(1D2 → 1S0) <∼ 10−3I(1S0 → 3PJ).

18.1.2 np3 Ions

Atoms or ions with seven electrons have 1s22s22p3 as their lowest configura-
tion: the ground term is 4S o

3/2, and the first two excited terms are 2D o
3/2,5/2 and

2P o
1/2,3/2. Candidate ions are N I, O II, F III, Ne IV, and so on. N I will be pho-

toionized in H II regions, leaving O II, F III, and Ne IV as the 2p3 ions suitable for
observation in H II regions.

Atoms or ions with 15 electrons have 1s22s22p63s23p3 as their lowest configu-
ration. Just as for 2p3, the ground term is 4S o

3/2, and the first two excited terms are
2D o

3/2,5/2 and 2P o
1/2,3/2. Candidate ions are P I, S II, Cl III, and Ar IV. P I is easily

photoionized, leaving S II, Cl III, and Ar IV as the 3p3 ions that will be present in
regions with hν > 13.6 eV radiation extending possibly up to 54.4 eV.

The ratio of the intensities of lines emitted by the 2P o term to lines from the 2D o

term is temperature-sensitive. Figure 18.2 shows [O II](7322+7332)/(3730+3727)
and [S II](6718+6733)/(4070+4077) as functions of temperature. For these two

Figure 18.3 First five energy levels of the 2p3 ion O II, and the 3p3 ions S II and Ar IV.
Transitions are labeled by wavelength in vacuo.
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Figure 18.4 [O II], [S II], and [Ar IV] optical line intensity ratios useful for density
determination. Wavelengths are in vacuo.

ions, the critical density for 2D o is relatively low (see Table 18.2), so that these
T -sensitive line ratios are also sensitive to ne for ne

>∼ 300 cm−3. Because of
this sensitivity, the np3 ions are only useful if ne is known, or is known to be
≤ 102 cm−3.

18.2 Density Diagnostics: Collisionally Excited Optical/UV Lines

Ions with 7 or 15 electrons have 2s22p3 and 3s23p3 configurations, with energy-
level structures that make them suitable for use as density diagnostics: the ground
state is a singlet 4S o

3/2, and the first excited term is a doublet 2D o
3/2,5/2 (see Figure

18.3). At low densities, every collisional excitation of either the 2D o
3/2 or 2D o

5/2

level will be followed by radiative decay. Therefore, in the low-density limit, the
power radiated in each of the two decay lines from the 2D o term (the 3729.8 and
3727.1Å lines in the case of O II) is simply proportional to the collision rates. Be-
cause the fine-structure splitting is small (E21 � E10, E21 � kT ), the emissivity
ratio

j(2 → 0)

j(1 → 0)
=

Ω20

Ω10

E20

E10
e−E21/kT ≈ Ω20

Ω10
. (18.5)

At high densities, however, the levels become thermalized, and the emissivity ratio
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becomes

j(2 → 0)

j(1 → 0)
=

g2
g1

e−E21/kT
E20A20

E10A10
≈ g2A20

g1A10
. (18.6)

Because the low-density and high-density limits (18.5 and 18.6) will in general
differ, the observed intensity ratio provides information concerning the density: we
can either determine the density, or establish an upper or lower limit. Figure 18.4
shows the density dependence of this emissivity ratio for O II, S II, and Ar IV.

The 2D o levels of O II have critical densities of ∼ 3300 cm−3 and 4500 cm−3,
and we see from Figure 18.4 that the [O II] line ratio is sensitive to variations in the
density over the range 102 to 4000 cm−3. In the case of S II, the 2D o

5/2 level has
ncrit = 1600 cm−3, so the line ratios begin to vary with density above ∼ 102 cm−3

– similar to O II – but the 2D o
3/2 level has ncrit = 1.5 × 104 cm−3, so the S II

line ratio continues to be sensitive up to ∼ 104 cm−3. Because of larger radiative
transition rates, the Ar IV line ratio is density-sensitive over 103 to 105 cm−3.

18.3 Density Diagnostics: Fine-Structure Emission Lines

Ions with triplet ground states – in particular, the 3P0,1,2 terms for np2 and np4

configurations – allow density determination from the ratios of mid-infrared and
far-infrared fine-structure lines. Examples are the 2p2 ions N II,O III, and Ne V; the
2p4 ion Ne III; and the 3p2 ion S III. If these ions are approximated as three-level
systems (i.e., neglecting population of the fine-structure levels by radiative decay
from higher terms), then in the low-density limit, the emissivity intensity ratio is
simply

j(2 → 1)

j(1 → 0)
≈ Ω20 e

−E21/kT

Ω10 +Ω20 e−E21/kT

E21

E10
, (18.7)

where we have assumed that A20 � A21, which is the case because ∆J = 2
radiative transitions are strongly suppressed. In the high-density limit, the levels
are thermally populated, and

j(2 → 1)

j(1 → 0)
=

g2A21E21

g1A10E10
e−E21/kT ≈ g2A21E21

g1A10E10
. (18.8)

Figure 18.5 shows the fine-structure line ratios calculated for N II, O III, S III,
Ne III, Ne V, Ar III, and Ar V (including transitions to and from the 1D and 1S
terms). Because of their long wavelengths, these lines are relatively unaffected
by dust extinction, and therefore ne can be deduced from the observed line ratio,
independent of uncertainties in the reddening.

Collisional deexcitation of these ions is dominated by electron–ion collisions,
with rates that scale as neΩij/

√
Te. If the collision strengths Ωij were independent

of T , and the electron temperature is sufficiently high that E21/kTe � 1, each
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Figure 18.5 Fine-structure line ratios that can be used for density determination (see
text).

line ratio would depend only on ne/
√
Te, and the measured line ratio allows one

to infer ne/
√
Te. However, the collision strengths are not independent of T , and

E21/kT may also not be negligible (especially for ions with large fine-structure
splitting, e.g., Ar V with E21/k = 1818K). Therefore the line ratio will depend
on both ne/

√
T and Te. In Figure 18.6 we show the [S III] line ratios as a function

of ne/
√
Te for several different values of the electron temperature Te. Tommasin

et al. (2008) measured [S III] fine-structure line ratios for a number of AGN. In a
number of cases they obtained [S III]33.48/[S III]18.7 between 2.2 and 3.5, above
the low-density limit for T = 104 K. Figure 18.6 shows that values as large as 3
can be produced if the emission is coming from regions with T <∼ 5000K. Because
Auger emission allows a single x ray photon to ionize S I→S III (see Figure 13.3), it
is reasonable to suppose that there may be “warm” x-ray-heated regions containing
S III.
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Figure 18.6 [S III]33.48µm/[S III]18.71µm as a function of ne/
√
Te, for four values

of Te. As the temperature is lowered, the line ratio rises both at low density and at high
density.

18.4� Other Diagnostic Methods

18.4.1� Temperature from Recombination Continuum: The Balmer Jump

It is possible to determine the temperature from the strengths of the discontinuities
in the recombination continuum relative to the strengths of recombination lines.
The most commonly used discontinuity is the “Balmer jump” at λ = 3645.1 Å:
BJ ≡ Iλ(λBJ,blue) − Iλ(λBJ,red), where λBJ,blue is chosen to be just blueward
of the jump, and λBJ,red is chosen to be slightly redward of the jump, and to be
located between H recombination lines. For example, λBJ,red = 3682.6 Å would
fall between the H20 and H21 lines.

The “jump” discontinuity is produced by recombining electrons with zero kinetic
energy, and is therefore proportional to the electron energy distribution at E = 0,
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and therefore BJ ∝ EM × T−3/2, where EM is the emission measure.
The strength of a recombination line such as the H11 line (n = 11 → 2 at λ =

3769.7 Å) is proportional to rates of radiative recombination to levels n ≥ 11. The
effective recombination rate coefficient for emitting H11 will vary approximately as
T−0.8 near the temperatures of interest, and the intensity of the recombination line
I(H11) ∝ EM × T−0.8. Thus we expect BJ/I(H11) ∝ T−0.7: the dependence
on T is strong enough that this is a useful diagnostic.

Allowance must be made for the contribution from helium: doubly ionized he-
lium recombining to level n = 4 contributes to the observed Balmer jump, and
He II n = 22 → 4 coincides with H11.

This method has been used to determine the electron temperature in H II regions
and planetary nebulae. In a sample of 23 planetary nebulae, temperatures Te,BJ

derived from the Balmer jump are generally lower than the temperature Te,[O III]

determined from collisional excitation of [O III] optical lines, with Te,BJ/Te,CE ≈
0.75±0.25 (Wesson et al. 2005). The reason for the discrepancy is unclear; Wesson
et al. (2005) suggest that cool, dense, metal-rich knots may be present in planetary
nebulae.

18.4.2� Temperatures from Dielectronic Recombination

For some ions, it is possible to observe both collisionally excited lines and lines
emitted following dielectronic recombination. For example, electrons colliding
with C IV can produce collisionally excited levels of C IV, but can also produce ex-
cited levels of C III by dielectronic recombination. Because the rate coefficients for
collisional excitation and for dielectronic recombination will have different tem-
perature dependences, the ratio of dielectronic lines to collisionally excited lines
will be temperature-sensitive, and therefore useful as a temperature diagnostic. Ex-
amples of useful line ratios are C III 2297/C IV 1549, O II 4705/O III] 1665, and
C II 4267/C III] 1909 (see Fig. 5.4 of Osterbrock & Ferland 2006).

18.4.3� Densities from the Balmer Decrement

The “Balmer decrement” refers to the sequence of line ratios I(Hα)/I(Hβ), 1,
I(Hγ)/I(Hβ), I(Hδ)/I(Hβ), and so on. These line ratios are relatively insen-
sitive to the electron temperature, and at low density are independent of density.
Therefore, comparison of the observed line ratios to theoretical line ratios is usu-
ally used to determine the degree of reddening by dust. However, at high densities
the line ratios are affected by collisional effects, with systematic enhancement of
the high-n levels relative to Hα and Hβ, and these line ratios can therefore be used
to constrain the electron density when ne > 104 cm−3.
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18.5 Abundance Determination from Collisionally Excited Lines

The abundance of He relative to H is determined from comparison of the strengths
of radiative recombination lines of H and He in regions ionized by stars that are
sufficiently hot (Teff

>∼ 3.9 × 104 K – see Table 15.1) so that the He is ionized
throughout the H II zone.

The abundances relative to H of elements heavier than He can be inferred by
comparing the strengths of emission lines excited by collisions with electrons to
emission resulting from recombination of electrons with H+. We will consider
oxygen as an example; similar considerations apply to other heavy elements.

The abundance of O++ relative to H can be obtained from the ratio of [O III]5008
to Hβ. In the low-density limit ne < 104 cm−3,

I([O III]5008)

I(Hβ)
=

nen(O III)k03E32A32/(A31 +A32)

nen(H+)αeff,HβEHβ
, (18.9)

where

k03 = 8.629× 10−8T
−1/2
4

Ω03

g0
e−E30/kT cm3 s−1 , (18.10)

and E30/k = 29170K. Since αeff,Hβ ∝ T−0.87
4 for T4 ≈ 1 (see Table 14.2), and

Ω03 is approximately independent of Te, we have

n(O III)

n(H+)
= C

I([O III]5008)

I(Hβ)
T−0.37
4 e2.917/T4 , (18.11)

where C is a known constant. Therefore, if the temperature T is known, the abun-
dance n(O III)/n(H+) can be obtained from the measured line ratio. Unfortu-
nately, the derived abundance is sensitive to the temperature: if T4 ≈ 0.8, the
derived abundance in Eq. (18.11) varies as ∼T 3.3

4 , so that a 10% uncertainty in
T4 translates into a 33% uncertainty in the derived abundance. This sensitivity to
the uncertain temperature plagues abundance determinations based on collisionally
excited optical lines.

Fine-structure lines can also be used to determine abundances of ions with fine-
structure splitting of the ground state. [O III] is a good example: the 3P1 → 3P0

and 3P2 → 3P1 transitions at 88.36µm and 51.81µm can be used to determine the
OIII abundance. In the low-density limit ne

<∼ 102 cm−3 (see Fig. 18.5), the emis-
sivity j ∝ nen(O III)T−0.5, and is therefore much less sensitive to uncertainties in
the temperature; in fact, the T−0.5 temperature dependence is similar to that of the
H recombination lines. Unfortunately, these far-infrared lines cannot be observed
from the ground. However, they have the advantage of being nearly unaffected
by interstellar extinction; the fine-structure line emission can be compared to free–
free emission observed at radio wavelengths, enabling abundance determinations
that are not compromised by uncertain reddening corrections.

To determine the total abundance, one must sum over all the important ion stages.
In an H II region ionized by a B0 star, most of the oxygen will be O II, because
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there will be few photons above the OII → OIII ionization threshold of 35.1 eV.
However, in H II regions ionized by hotter stars, or in planetary nebulae, much of
the oxygen may be present as OIII.

18.6� Abundances from Optical Recombination Lines

Abundance determination from collisionally excited optical or ultraviolet lines re-
quires knowledge of the temperature T , and we have seen that this is often un-
certain. Optical recombination lines of an ion X+r are the result of radiative re-
combination of X+r+1, which will depend on T (and ne) in a way very similar
to radiative recombination of H+, thus allowing straightforward comparison of the
X+r+1/H+ ratio.

Care must be taken to select lines that will not be excited by optical pumping in
the nebula; this can be done, for example, by using lines from levels with different
total spin than the ground electronic state of X+r. Another caution is that if the
ground term of the recombining species X+r+1 has fine structure, the recombina-
tion spectrum will depend on the relative populations of the different fine-structure
levels, and therefore on ne. Alert to these concerns, observers have used what
appear to be suitable recombination lines for abundance determinations. The re-
sults, however, are surprising. In H II regions, the abundances inferred from optical
recombination lines (ORLs) are moderately higher than had been estimated from
analysis of the collisionally excited lines (CELs). In planetary nebulae, however,
the discrepancy between CEL- and ORL-based abundances estimates can be very
large. The CEL-based estimates tend to be close to solar abundances, whereas the
ORL-based abundances are often much higher, sometimes by factors as large as 10.
The reason for this is not yet understood. Wesson et al. (2005) suggest that plane-
tary nebulae may contain photoionized regions with elevated abundances of heavy
elements; the enhanced cooling would keep them cool so that they do not con-
tribute to the collisionally excited optical line emission, but they would be effective
emitters of recombination radiation.

18.7� Ionization/Excitation Diagnostics: The BPT Diagram

The optical line emission from star-forming galaxies is usually dominated by emis-
sion lines from H II regions. Some galaxies, however, have strong continuum and
line emission from an active galactic nucleus (AGN). The line emission is thought
to come from gas that is heated and ionized by x rays from the AGN. Even in a
star-forming galaxy with line emission from H II regions, the emission lines from
the AGN may dominate the overall spectrum of the galaxy.

The AGN spectrum normally includes strong emission lines from high-ionization
species like C IV and Ne V, which are presumed to be ionized by x rays from the
AGN; these are called Seyfert galaxies, after Seyfert (1943), who discovered that
some galaxies had extremely luminous, point-like nuclei, with emission line widths
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in some cases exceeding 4000 km s−1.
In other cases the nucleus has strong emission lines but primarily from low-

ionization species – these are termed LINERS, for “Low Ionization Nuclear Emis-
sion Region.”

Baldwin, Phillips & Terlevich (1981) pointed out that one could distinguish star-
forming galaxies from galaxies with spectra dominated by active galactic nuclei by
plotting the ratio of [O III]λ5008/Hβ vs. [N II]λ6585/Hα – this is now referred to as
the BPT diagram. Hα, Hβ, [N II]λ6585, and [O III]λ5008 have the advantage of
being among the strongest optical emission lines from H II regions. Furthermore,
the line ratios employ pairs of lines with similar wavelengths (5008 and 4863 Å;
6585 and 6565 Å) so that the line ratios are nearly unaffected by whatever dust
extinction may be present.

From our understanding of H II regions (see Chapter 15), we can predict where
H II regions should fall in the BPT diagram. As seen in Table 15.2, in H II regions
where He is neutral (no photons above 24.6eV), N and O will be essentially 100%
singly ionized throughout the zone where H is ionized. For O stars that are hot
enough to have an appreciable zone where He is ionized, the stellar spectrum will
extend to 54.4 eV (the ionization threshold for He II) and the N and O in this zone
can be doubly ionized. Because N and O have similar second ionization potentials
(29.6 and 35.1 eV, respectively), to a good approximation H II regions will have
N+/N ≈ O+/O, and N2+/N ≈ O2+/O. Essentially all of the gas-phase O and N
in the H II region will be either singly or doubly ionized.

If we assume the N abundance to be solar, and the O abundance to be 80% solar
(the other 20% is presumed to be in silicate grains), then for an assumed elec-
tron temperature T we can produce a theoretical curve of [O III]5008/Hβ versus
[N II]6585/Hα by varying the fraction ξ ≡ N+2/(N++N+2) = O+2/(O++O2+)
of the N and O that is doubly ionized. In the low-density limit,

[O III]λ5008

Hβ
≈ 214 ξ T 0.494+0.089 lnT4

4 e−2.917/T4

(
nO/nH

0.8×5.37×10−4

)
(18.12)

[N II]λ6585

Hα
≈ 12.4(1− ξ)T 0.495+0.040 lnT4

4 e−2.204/T4

(
nN/nH

7.41× 10−5

)
, (18.13)

where we have used Eqs. (14.8,14.9) for Hα and Hβ, electron collision strengths
for N II and O III from Appendix F, and branching ratios A32/(A31+A32) = 0.745
and 0.748 for OIII and N II, respectively.

Figure 18.7a shows theoretical tracks calculated by varying ξ from 0 to 1 while
holding T fixed. Curves are shown for T = 7000, 8000, and 9000 K. The curves
in Fig. 18.7a were calculated for non-LTE excitation of the lowest 5 levels (3P0,1,2,
1D2, 1S0) at nH = 102 cm−3, but it can be verified that the tracks are close to
Eqs. (18.12 and 18.13). The critical densities for [N II]λ6585 and [O III]λ5008 are
8×104 cm−3 and 6×105 cm−3 (see Table 18.1), hence the theoretical tracks should
be valid for nH

<∼ 104 cm−3.
H II regions with near-solar metallicity and densities 102 − 104 cm−3 are ex-

pected to have T ≈ 7000− 8000K (see Fig. 27.3), and this is confirmed by obser-



NEBULAR DIAGNOSTICS 217

vations. Hence we expect star-forming galaxies with near-solar metallicity to fall
between the 7000K and 8000K curves in Fig. 18.7.

Fig. 18.7b shows where real galaxies2 fall in the BPT diagram. Many of the
spectra are clustered in a well-defined locus lying within the zone

log10 ([O III]5008/Hβ) < 1.10− 0.60

0.01− log10 ([N II]6585/Hβ)
, (18.14)

with line ratios characteristic of ordinary H II regions. Fully 76.6% (93820/122514)
of the galaxies fall on the star-forming galaxy side of (18.14). Because for fixed T ,
the theoretical curves depend linearly on N/H and O/H, at first sight the compact-
ness of the distribution seems remarkable, suggesting a narrow range in metallic-
ities. However, there is a thermostatic effect operating: lowering the metal abun-
dance results in increased T , because the metal lines have to radiate away the heat
deposited by photoionization. The combined power in all the metal lines is essen-
tially proportional to the H ionization rate, thus the combined power in the “metal
lines” is proportional to the recombination lines Hα and Hβ. Thus if [N II]λ6585
and [O III]λ5008 carry an approximately constant fraction of the total metal line
power, then scaling elemental abundances up or down will have essentially no ef-
fect on [N II]λ6585/Hα and [O III]λ5008/Hβ. Now the tightness of the distribution
of the “star-forming” points in Fig. 18.7b seems less surprising.

The broken curve labeled K03 in Fig. 18.7b shows the empirical boundary to
the star-forming region obtained by Kauffmann et al. (2003). Eq. (18.14) seems to
provide a somewhat better boundary to the locus of star-forming galaxies.

Some galaxies have [O III]λ5008/Hβ and [N II]λ6584/Hα falling to the right
and above Eq. (18.14). The “Seyfert” region is defined by [N II]λ6585/Hα > 0.6
and [O III]λ5008/Hβ > 3. Sources in the Seyfert region have both T > 104 K
(required to have ([N II]λ6585/Hα > 0.6) and relatively high ionization (enhanced
[O III]λ5008/Hβ), consistent with heating and ionization by x rays.

The “LINER” region is defined by [N II]λ6585/Hα > 0.6, [O III]λ5008/Hβ <
3. LINERs have T > 104 K (required to have ([N II]λ6585/Hα > 0.6) but rela-
tively low ionization ([N II]λ6585/Hα > 0.6 but [O III]5008/Hβ < 3). LINERs
appear to be systems where an AGN is emitting hard x rays that only partially ion-
ize nearby gas (Veilleux & Osterbrock 1987). The hard x rays, photoelectrons and
secondary electrons partially ionize the gas, and the photoelectrons and electrons
heat the partially ionized gas to ∼ 104 K. While there is some O III, most of the
oxygen is O I and O II, resulting in relatively weak [O III]λ5008. This interpreta-
tion is supported by the fact that LINERS have significant [O I]λ6302 emission,
with [O I]λ6302/Hα > 0.16, whereas [O I]λ6302 emission is very weak in H II
region spectra because there is very little neutral oxygen present. LINERS are
nicely separated from H II galaxies in a diagram plotting [O III]λ5008/Hβ versus
[O I]λ6302/Hα (Ho 2008).

2Data are from SDSS DR7 (Abazajian et al. 2009). Line fluxes were obtained from the MPA-JHU
DR7 release http://www.mpa-garching.mpg.de/SDSS/DR7/raw data.html. As recommended, formal
line uncertainties were scaled by factors 1.882, 1.566, 2.473, and 2.039 for Hβ, [O III]5008, Hα, and
[N II]6585. Of the 927552 galaxy spectra in DR7, 122514 have S/N> 5 for all 4 lines.
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Figure 18.7 The so-called “BPT” diagram (Baldwin et al. 1981) showing
[O III]5008/Hβ vs [N II]6585/Hα. The “reddening vector” shows the displacement
on the plot due to reddening by Milky Way dust with AV = 10 mag – it is clear that
the BPT diagram is almost completely unaffected by reddening. (a) Solid curves show
emission ratios calculated for gas with solar abundances, for three gas temperatures.
Along each curve the oxygen and nitrogen vary from singly ionized at the bottom, to
doubly ionized at the upper left. (b) Line ratios for 122514 galaxies in SDSS DR7 with
S/N> 5. The curve labeled K03 is the boundary proposed by Kauffmann et al. (2003)
to separate star-forming galaxies from AGN. Eq. (18.14) shows an improved boundary.
70.0% of the galaxies fall in the star-forming region defined by Eq. 18.14. 12.8% fall
in the AGN region defined by [N II]6585/Hα > 0.6.



Chapter Nineteen

Radiative Trapping

In many situations of astrophysical interest, there is sufficient gas present so that,
for some species X , a photon emitted in a transition Xu → X� will have a high
probability of being absorbed by another X� somewhere nearby, and, therefore,
a low probability of escaping from the emitting region. This phenomenon – re-
ferred to as radiative trapping – has two effects: (1) it reduces the emission in the
Xu → X� photons emerging from the region, and (2) it acts to increase the level
of excitation of species X (relative to what it would be were the emitted photons to
escape freely).

An exact treatment of the effects of radiative trapping is a complex problem of
coupled radiative transfer and excitation – it is nonlocal, because photons emitted
from one point in the cloud affect the level populations at other points. However,
radiative trapping occurs frequently, and it is important to have an approximate
treatment of its effects. The escape probability approximation is a simple way to
take into account the effects of radiative trapping.

19.1 Escape Probability Approximation

Suppose that at some point r in the cloud, the optical depth τν(n̂, r) in direction n̂
and at frequency ν is known. We can define the “escape probability” βν for photons
with frequency ν emitted from location r:

β̄ν(r) ≡
∫

dΩ

4π
e−τν(n̂,r) , (19.1)

where the bar indicates averaging over direction n̂. Now let 〈β(r)〉 represent the
direction-averaged escape probability β̄ν(r) averaged over the line profile:

〈β(r)〉 =
∫

φν β̄ν(r)dν , (19.2)

where φν is the normalized line profile (
∫
φνdν = 1).

Now we make two approximations: First, we will approximate the excitation
in the cloud as uniform. Second, we make the “on-the-spot” approximation: we
assume that if a radiated photon is going to be absorbed, it will be absorbed so
close to the point of emission that we can approximate it as being absorbed at the
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point of emission.1 These approximations replace a difficult nonlocal excitation
problem with a much simpler local one!

For simplicity, consider a two-level system, and a single collision partner c.
(Generalization to multiple levels and collision partners is straightforward.) Re-
call that the rate of change of the level populations is given by

dnu

dt
=

(
nck�u + nγ

gu
g�

Au�

)
n� − (ncku� +Au� + nγAu�)nu , (19.3)

where nγ is the photon occupation number.
Since we assume uniform excitation (and, therefore, uniform source function

jν/κν) within the cloud, the intensity at a point within the cloud is (see §7.4)

Iν = Iν(0)e
−τν +Bν(Texc)(1− e−τν ) . (19.4)

From the definitions of nγ and Texc, it follows that

nγ(ν) = n(0)
γ e−τν +

1− e−τν

(n�gu)/(nug�)− 1
, n(0)

γ ≡ c2

2hν3
Iν(0) . (19.5)

Now e−τν is just the escape probability βν for a photon traveling in a particular
direction. Replacing e−τν → βν , averaging over direction, and averaging over the
line profile, we obtain

〈nγ〉 = 〈β̄〉n(0)
γ +

1− 〈β̄〉
(n�gu/nug�)− 1

, (19.6)

where we have assumed the externally incident intensity Iν(0) to be isotropic and
constant across the line profile.

Substituting 〈nγ〉 from Eq. (19.6) into (19.3), the equation for the rate of change
of the level populations becomes

dnu

dt
= nck�un� − ncku�nu − 〈β̄〉Au�nu + n�

gu
g�

〈β̄〉Au�n
(0)
γ

(
1− nug�

n�gu

)
.

(19.7)

This is called the escape probability approximation. It is a deceptively simple re-
sult! Recall that we started with an equation that included both photoexcitation and
stimulated emission, including the effects of photons emitted by the cloud material
itself – Eq. (19.7) therefore includes these physical processes. However, Eq. (19.7)
is also the equation that we would write down if

1. There were no internally generated radiation field present

1This second assumption actually follows from the first: if the excitation is uniform, then it makes
no difference how far an emitted photon travels before it is absorbed.
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2. The cloud were transparent to the external radiation field Iν(0)

3. The actual Einstein A coefficient were replaced by an “effective” value 〈β̄〉Au�.

If the value of the escape probability 〈β̄〉 is known, it allows us to write down the
equation that the level populations must satisfy, taking into account all radiative
processes (absorption, spontaneous emission, and stimulated emission), and pho-
tons both originating externally and emitted within the cloud.

Because Eq. (19.7) shows that the rate of change of the level populations is as
though the rate of spontaneous decay is only 〈β̄〉Au�, the critical density for a
level u is the density at which collisional deexcitation is equal to the effective rate
of deexcitation by spontaneous decay is, for a collision partner c,

ncrit,u(c) ≡
∑

�<u〈β̄u�〉Au�∑
�<u ku�(c)

. (19.8)

19.2 Homogeneous Static Spherical Cloud

The angle-averaged escape probability β̄ν(r) defined in Eq. (19.1) depends on the
geometry and velocity structure of the region. For the case of a finite cloud, β̄ν will
depend on position – it will be highest at the cloud boundary, and smallest at the
cloud center. We now define 〈β〉cloud to be β̄ν averaged over the line profile and
over the cloud volume. For a uniform density spherical cloud,

〈β〉cloud =
3

4πR3

∫ R

0

〈β(r)〉 4πr2dr , (19.9)

where 〈β〉 in the integrand is defined in Eq. (19.2). Figure 19.1 shows the mass-
averaged escape probability 〈β〉cloud calculated numerically for the case of a ho-
mogeneous spherical cloud, as a function of

τ0 ≡ gu
g�

Au�λ
3
u�

4(2π)3/2σV
n�R

(
1− nug�

n�gu

)
, (19.10)

the optical depth at line-center from the center of the cloud to the surface. The gas
is assumed to have a Gaussian velocity distribution (6.31) with one-dimensional
velocity dispersion σV .

As can be seen from Fig. 19.1, a satisfactory approximation is provided by the
simple fitting function

〈β〉cloud ≈ 1

1 + 0.5τ0
. (19.11)

There is a simple interpretation of 〈β〉cloud: it is approximately the fraction of the



222 CHAPTER 19

Figure 19.1 Average escape probability 〈β〉cloud for a homogeneous spherical cloud.
τ0 is the line-center optical depth from the center of the cloud to the surface.

cloud mass that is within optical depth ∼ 2
3 of the cloud surface. Photons emitted

near the surface have a high probability of escape, and photons emitted far below
the surface have a negligible probability of escape; the average escape probability
is, in effect, just the fraction of the emitted photons that are emitted from the surface
layer.

Of course, before we can determine 〈β〉cloud, we need to know the level popula-
tions nu and n� so that we can calculate the optical depth:

τν =
gu
g�

Au�

8π
λ2
u�φν

∫
n�

(
1− nu

n�

g�
gu

)
ds . (19.12)

Therefore, in practice this becomes an iterative problem: guess a trial value of 〈β〉;
then solve for the level populations nu, n�; find the new value of 〈β〉; and iterate to
find the self-consistent excitation nu, n�.

19.3 Example: CO J =1–0

The J=1→0 rotational line of CO at ν = 115GHz (λ=0.260 cm), is a frequently
observed tracer of molecular gas. The J=1 level has A10 = 6.78×10−8 s−1. Con-
sider a diffuse molecular cloud with nH = 103n3 cm

−3, radius R = 1019R19 cm,
and CO abundance n(CO)/nH ≈ 7 × 10−5 (i.e., about 25% of the carbon is in
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CO).2 If the CO has a Gaussian velocity distribution (6.31), then the attenuation
coefficient

κν = n�

(
1− nu

n�

g�
gu

)
λ2

8π

gu
g�

Au�
1√
π

λ

b
e−(∆v/b)2 , (19.13)

and the line-center optical depth, from cloud center to edge, is

τ0 =κν0
R = n�R

(
1− nu

n�

g�
gu

)
λ3

8π3/2b

gu
g�

Au� (19.14)

=281n3R19

[
n(CO)/nH

7× 10−5

][
n(J = 0)

n(CO)

](
2 km s−1

b

)(
1− nu

n�

g�
gu

)
. (19.15)

Equation (19.15) requires an estimate of the fraction of the CO that is in the J = 0
and J = 1 levels.

19.3.1 CO Partition Function

Let us suppose that the CO rotational excitation is characterized by an excitation
temperature (or “rotation temperature”) Texc. The fraction of CO in a given rota-
tional level will then be

n(CO, J)

n(CO)
=

(2J + 1)e−B0J(J+1)/kTexc∑
J(2J + 1)e−B0J(J+1)/kTexc

, (19.16)

where B0 is the “rotation constant” [see Eq. (5.3)]. For rotation temperatures of
interest, we can approximate the partition function in the denominator of (19.16)
by

Z ≡
∑
J

(2J + 1)e−B0J(J+1)/kTexc ≈
[
1 + (kTexc/B0)

2
]1/2

. (19.17)

The approximation is exact in the limits kTexc/B0 → 0 and kTexc/B0 � 1, and
is accurate to within ±6% for all Texc. For 12C16O, B0/k = 2.77K, so that

τ0 ≈ 281n3 R19

[
n(CO)/nH

7× 10−5

]{ (
1− e−5.53K/Texc

)
[1 + (Texc/2.77)2]1/2

}(
2 km s−1

b

)
. (19.18)

For a typical CO rotation temperature Texc ≈ 8K, Eq. (19.18) becomes

τ0 ≈ 46n3R19

[
n(CO)/nH

7× 10−5

] [
2 km s−1

b

]
. (19.19)

Thus the CO 1–0 transition is expected to be often quite optically thick.

2The mean visual extinction to the center of this cloud would be AV ≈ 5n3R19 mag. We will see
in Chapter 29 that AV ≈ 5 is common.
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19.3.2 Critical Density for CO

The rate coefficient for collisional deexcitation of CO(J = 1) by collisions with
H2 is

k10 ≈ 6× 10−11T 0.2
2 cm3 s−1 (19.20)

for 10K <∼ T <∼ 250K (Flower & Launay 1985; Flower 2001). In an opti-
cally thin region, the critical density for thermalizing CO would be A10/k10 ≈
1100T−0.2

2 cm−3.
For a cloud with n3R19 ≈ 1, b ≈ 2 km s−1, and Texc = 8K, Eq. (19.19)

gives τ0 ≈ 46, corresponding to a cloud-averaged escape probabilty 〈β10〉cloud ≈
1/(1 + 0.5τ0) ≈ 0.04, and the effective critical density – after taking account of
radiative trapping – would be

ncrit,H2
(CO, J=1) =

〈β10〉A10

k10
≈ 50T−0.2

2 cm−3 . (19.21)

Therefore, we see that at least the J =1 level of CO is expected to be thermalized
in molecular clouds with nH

>∼ 102 cm−3.

19.4� LVG Approximation: Hubble Flow

Earlier, we considered a static cloud with a uniform Gaussian velocity distribution
functon. Let us now consider the case where a velocity gradient is present, with
point-to-point velocity differences across the flow field that are large compared to
the width of the velocity distribution at a given point. This is called the large
velocity gradient (LVG) approximation. First introduced by Sobolev (1957), it is
often referred to as the Sobolev approximation.

The simplest case to consider is the case of “Hubble flow”: spherical expansion
with velocity proportional to radius, v = (dv/dr)r, where dv/dr is assumed to be
independent of r. The density is assumed to be uniform. We know that all points in
this flow field are equivalent, so we need only consider the escape of photons emit-
ted from r = 0. For a photon propagating radially, the local attenuation coefficient
is

κν(r) = K φ

[
ν − ν0

(
1 +

dv

dr

r

c

)]
, (19.22)

where ν0 is the resonant frequency for gas at rest, φ(x) is the local line profile, with
normalization

∫
φ(ν)dν = 1, and

K ≡
∫

κνdν =
guAu�

8π
λ2
u�

(
n�

g�
− nu

gu

)
. (19.23)
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Consider a photon emitted with frequency ν from r = 0; as it travels, it appears
increasingly redshifted relative to the local material through which it is traveling.
The optical depth to infinity is

τ(ν) =

∫ ∞

0

drK φ

[
ν − ν0

(
1 +

dv

dr

r

c

)]
. (19.24)

Define

ξ ≡ ν − ν0 − ν0
dv

dr

r

c
. (19.25)

Then,

τ(ν) =
Kλu�

dv/dr
y(ν − ν0) , y(ξ) ≡

∫ ξ

−∞
φ(ξ′)dξ′ . (19.26)

The escape probability e−τ averaged over the line profile is

〈β〉 =
∫ ∞

−∞
φ(ν − ν0) e

−τ(ν)dν . (19.27)

The integral is easily evaluated by change of variable to dy = φ(ξ)dξ:

〈β〉 = 1− e−τLVG

τLVG
, τLVG ≡ Kλu�

|dv/dr| . (19.28)

τLVG has a simple interpretation: it is the total optical depth across the region for
any frequency in ν0 [1± (R/c)(dv/dr)].

Uniform spherical expansion is mathematically convenient but may not be the
appropriate velocity field for other flows. For flows with well-defined monotonic
velocity fields – stellar winds and shock waves would be two examples – the radia-
tive transfer problem is purely local: if a photon is able to travel any appreciable
distance, the Doppler shift carries it out of resonance, after which the photon is not
affected by line absorption. Given a velocity field v(r), the optical depth τν(n̂) can
be evaluated, and the escape probability 〈β〉 calculated by averaging over direction
n̂ and the local line profile φν .

19.5 Escape Probability for Turbulent Clouds

The LVG approximation is sometimes applied to radiative trapping in turbulent
molecular clouds, but in this case one faces the question of what value to use for the
velocity gradient dv/dr in Eq. (19.28). Rather than use the LVG approximation, it
is more appropriate to use the homogeneous spherical cloud result (19.11) but with
the turbulent velocities included in the one-dimensional velocity dispersion σV .
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A uniform density cloud of mass M = 4.9 × 103n3R
3
19 M� has gravitational

self-energy −3GM2/5R. If magnetic energy is not important, and the cloud is
self-gravitating, the virial theorem yields a mass-weighted one-dimensional veloc-
ity dispersion σ2

V = GM/5R. If the velocities are mostly from fluid motions (i.e.,
turbulence) rather than thermal motions, then all species will have this same veloc-
ity dispersion, corresponding to a broadening parameter

b = 1.6n
1/2
3 R19 km s−1 . (19.29)

The optical depth at line-center from center to edge of the cloud will be

τ0 =
gu
g�

Au�λ
3
u�

8π

(
5

2πG

)1/2
n�R

3/2

M1/2

(
1− nu

n�

g�
gu

)
. (19.30)

The luminosity of the cloud in a spectral line is

Lu� =

∫
dr4πr2nuAu�hνu�〈β〉cloud (19.31)

≈ 4π

3
R3nuAu�hνu�

1

1 + 0.5τ0
. (19.32)

If we now assume τ0 � 1 (which we have seen was appropriate for the CO 1–0
transition) and use Eq. (19.30), then the line luminosity per unit mass is

Lu�

M
≈ 32π2

(
2G

15

)1/2
hc

λ4
u�

1

〈ρ〉1/2
1(

ehν/kTexc − 1
) . (19.33)

Note that for a given spectral line, the luminosity per unit mass depends on the
cloud density ρ and on the excitation temperature Texc characterizing the popula-
tion ratio nu/n� of the upper and lower levels in the transition. More importantly,
the luminosity is independent of the actual abundance of the emitting species, pro-
vided that it is sufficiently large for the transition to have τ0 � 1.

If the cloud is larger than our antenna beam, we can relate the antenna tempera-
ture integrated over the J = 1 → 0 line,

∫
TA(1− 0)dv ≡ (λ3/2k)

∫
Iνdν, to the

total H column density (averaged over the beam solid angle):

NH∫
TA(1− 0)dv

=
1

4π

kλ

hc

(
15

2.8GmH

)1/2

(nH)
1/2
(
ehν/kTexc − 1

)
. (19.34)

This theoretical estimate for the line luminosity of a cloud is about as good as can
be done for this simple “one-zone” model of a cloud. Real molecular clouds are
inhomogeneous, and the excitation of the emitting molecules will vary considerably
between the lower-density outer layers of the cloud to the denser central regions.
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19.6 CO 1–0 Emission as a Tracer of H2 Mass: CO “X-Factor”

Equation (19.34) applies to any optically thick line radiated by a self-gravitating
cloud. The CO 1–0 transition, with λ = 0.260 cm, is often used as a tracer of
molecular cloud mass. If we assume N(H2) = 0.5NH, Eq. (19.34) becomes

XCO ≡ N(H2)∫
TAdv

=
1

8π

kλ

hc

(
15

2.8GmH

)1/2

(nH)
1/2
(
ehν/kTexc − 1

)
(19.35)

=1.58× 1020n
1/2
3

(
e5.5K/Texc − 1

) cm−2

Kkms−1 . (19.36)

For nH = 103 cm−3 and Texc = 8K, this yields N(H2)/
∫
TAdv = 1.56 ×

1020 cm−2/Kkms−1.
Recent observational determinations of XCO ≡ N(H2)/WCO (where WCO ≡∫
TAdv integrated over the CO line) find XCO = (1.8±0.3)×1020 cm−2/Kkms−1

(Dame et al. 2001), where infrared emission from dust (Schlegel et al. 1998) was
used as a mass tracer. This appears to be the most reliable determination for XCO

in the solar neighborhood. Earlier studies using diffuse galactic γ-ray emission
as a mass tracer found similar values of XCO: e.g., XCO = (1.56 ± 0.05) ×
1020 cm−2/Kkms−1 (Hunter et al. 1997). The most recent determination using
γ rays finds XCO = (1.76 ± 0.04) × 1020H2 cm

−2/(K km s−1) for the Orion A
GMC (Okumura et al. 2009).

Our theoretical value (19.35) for XCO is sensitive to the values adopted for the
cloud density nH and the CO excitation temperature Texc. The fact that the ob-
served values of XCO fall close to Eq. (19.36) suggests that nH ≈ 103 cm−3 and
Texc = 8K may be representative of self-gravitating molecular clouds in the local
ISM.

The study by Dame et al. (2001) included ∼ 98% of the CO emission at |b| <
32◦. Some of this emission presumably comes from clouds that are partially con-
fined by the pressure of the ISM, in which case the the observed value of XCO

would be expected to be smaller than the value of XCO that is obtained in Eq.
(19.36) if it is assumed that the observed velocity dispersion must be bound by
self-gravity. It must, therefore, be regarded as somewhat fortuitous that the ob-
served XCO is numerically close to the value estimated in Eq. (19.36).

The theoretical XCO factor depends explicitly on both nH and Texc. It would,
therefore, not be at all surprising if the value of XCO in other galaxies were to
differ appreciably from the value found for the Milky Way, or if the value of XCO

showed cloud-to-cloud or regional variations within the Milky Way.
In addition, real molecular clouds have an outer layer where the hydrogen is

molecular, but where the CO abundance is very low because it is not sufficiently
shielded from dissociating radiation. This gas does not show up in H I 21-cm or
CO 1–0 surveys – leading Wolfire et al. (2010) to refer to it as “the dark molecular
gas”’ – but since it does contain dust, it does contribute to the far-infrared emission.
The thickness of this transition layer will depend on the dust abundance, which
will in turn depend on the metallicity of the gas. Wolfire et al. (2010) estimate that
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∼ 30% of the molecular mass in a typical Galactic molecular cloud may be in this
envelope.

At constant n3 and Texc, this low-CO layer will result in an increase in XCO.
This is in agreement with recent observations indicating that XCO in Local Group
galaxies is of order ∼ 4 × 1020 cm−2/Kkms−1 (Blitz et al. 2007), with large
variations from one galaxy to another. An indirect estimate of the molecular gas
mass based on modeling the infrared emission from a sample of nearby galaxies
also favored XCO ≈ 4× 1020 cm−2/Kkms−1 (Draine et al. 2007).



Chapter Twenty

Optical Pumping

As seen in previous chapters, excited states of molecules, atoms, and ions can be
populated by collisional excitation, and also by radiative recombination of ions
to excited states. Collisional excitation is responsible for emission lines such as
[N II]6550,6585Å, while radiative recombination is responsible for Hα6565Å.

A third process – optical pumping – can also be important for populating excited
states. “Optical pumping” refers to the process of excitation from a lower level �
by absorption of a photon either directly to u, or to a level x that lies above u, but
which can decay to u by spontaneous emission of one or more photons.

The basic idea is extremely simple: The species of interest has some lower level
� that can absorb radiation at wavelength λ�x, with probability per unit time ζ�x,
resulting in a transition to level x. Level x then has some probability px,u of spon-
taneously emitting one or more photons to arrive in level u.

20.1 UV Pumping by Continuum

Under many circumstances, the radiation responsible for optical pumping forms a
continuum – for example, the emission from an active galactic nucleus (AGN), the
flash from a gamma-ray burst (GRB), starlight, or infrared continuum from dust
grains. The photoexcitation rate is

ζ�x = n̄γ,�x
gx
g�

Ax� , (20.1)

where n̄γ,�x is the angle- and polarization-averaged photon occupation number at
wavelength λx� [see eq. (6.12)]. Normally, n̄γ,�x � 1, and stimulated emission
from level x can be neglected.

Considering spontaneous decays only, it is straightforward to calculate branching
probabilities

pij =
Aij∑
k<i Aik

, (20.2)

where the notation assumes the levels to be indexed in order of increasing energy.
Then the probability per unit time that level x will be populated following pho-
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toexcitation out of level � can be written

β�u = ζ�u +
∑
x>u

ζ�x

⎡
⎣pxu +

∑
u<i<x

pxipiu +
∑

u<i<x

pxi
∑

�<j<i

pijpju + ...

⎤
⎦ ;

(20.3)

where the first term in the square brackets represents direct decays x → u, the
second term arrivals at u after emitting two photons, and so on. Often the “direct”
term ζ�u is completely negligible, either because � → u may be forbidden, or
because the radiation field near wavelengths λ�u may be weak.

UV pumping by continuum radiation absorbed by atoms or ions can produce
populations in excited states in excess of what would be produced by collisional
excitation (or radiative recombination). One example of this would be excited fine-
structure levels: in N II, for example (see Fig. 6.1), absorption of a 1084.6Å photon
by the ground state 3P0 excites the 3D o

1 state; a fraction of the spontaneous decays
then populate the excited fine-structure levels 3P1 and 3P2 of the ground state.

A more important example is H2: optical pumping via UV lines is responsible

Figure 20.1 Pumping of the v = 1 level of H2 via a Lyman-band transition to the
v = 5 level of B1Σ+

u . The single-photon decay path (labeled “one”) is shown, as well
as sample decay paths involving two and three steps. The rotational substructure of the
vibrational levels is not shown.
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for much of the vibrationally excited H2 in galaxies. The pumping is primarily via
the strong Lyman-band and Werner-band transitions. Figure 20.1 shows some of
the pathways that can lead to population of the v = 1 level of H2. This excitation
process will be discussed further in Chapter 31.

20.2� Infrared Pumping: OH

Optical pumping can also be driven by infrared radiation. OH maser emission
present in some regions is thought to be the result of infrared pumping. The maser
emission is the result of population inversions among the Λ-doubling sublevels of
the ground electronic state of OH. As discussed in §5.1.8, the ground electronic
state of OH has two fine-structure levels, 2Π3/2 (the ground state) and 2Π1/2. Each
of these fine structure states has two “Λ-doubling” levels, and each of these is split
into two levels by interaction with the proton magnetic moment. In addition, the
molecule can have rotational angular momentum, resulting in a “rotational ladder”
of states with increasing rotational angular momentum.

Because OH has a large dipole moment (1.67 D), the rotational transitions are

Figure 20.2 Pumping of the hyperfine levels of OH 2Π3/2(J = 3/2) via infrared
pumping to J = 1/2, J = 3/2, and J = 5/2 levels of the 2Π1/2 rotational ladder.
Each of the “lines” shown here is actually a multiplet of transitions between hyperfine
levels of the upper and lower rotational level.
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strong. The OH ground state 2Π3/2(J= 3
2 ) can absorb infrared radiation in groups

of lines near 119µm, 79µm, 53µm, and 35µm. These radiative excitations are
followed by spontaneous decays, which end up repopulating the four sublevels of
2Π3/2(J= 3

2 ). Figure 20.2 outlines the pumping transitions and the radiative decay
paths that follow the absorption.

OH masers come in a number of “flavors.” Some OH masers are found in the
photodissociation regions around “ultracompact” H II regions. These are usually
strongest in the 1667 and 1665 MHz “mainline” transitions (see Fig. 5.3). OH
masers present in the dusty outflows from some evolved stars (“OH-IR stars,” see
§38.2) are usually strongest in the 1612 MHz line. Last, very powerful “OH mega-
masers” are seen in a small fraction of galaxies, including both starburst galaxies
and Seyfert 2 galaxies; OH megamasers are usually strongest in the 1667 MHz
line. In some objects, OH maser emission has been seen in transitions involving
rotationally excited levels.

The IR pumping of OH depends on the relative strength of the far-infrared emis-
sion at the four wavelengths (119, 79, 53, 35µm) where absorption from 2Π3/2 can
take place, and therefore the relative strengths of the different maser lines is ex-
pected to depend on the temperature of the dust emitting the far-infrared radiation
exciting the OH. In addition, the small hyperfine splitting of the far-infrared lines
allows line overlap to occur, depending on the velocity dispersion in the gas; when
the absorption lines become optically thick, the relative importance of different
pumping routes will depend on line overlap, and therefore on the velocity distri-
bution of the OH. Thus object-to-object variations in the infrared spectrum and
velocity dispersion can lead to variations in maser line ratio. In addition, of course,
collisional processes can also affect the level populations.

20.3� UV Pumping by Line Coincidence: Bowen Fluorescence

Because certain ultraviolet lines – such as Lyman α – can be very intense in and
near ionized regions, these lines can also contribute to optical pumping. We have
in fact already considered optical pumping when we discussed the fate of Lyman β
photons in H II regions – a Lyman β photon will almost always be absorbed by an
H atom, “pumping” that H atom to the 3p level. The 3p state has a finite probability
of decaying to 2s, which is in effect “ultraviolet pumping” of H2s. Thus Case B
recombination is a situation where the 2s level is pumped by Lyman β, γ, and so
on.

However, H and He resonance-line photons can also pump other species when
there is an accidental coincidence with a resonance line, resulting in emission in
specific longer-wavelength lines as part of the radiative decay cascade from the
UV-pumped level. This mechanism was identified by I. Bowen (1934), who noted
that He II emission could pump O III; another line coincidence allows O III emis-
sion to then pump N III (Bowen 1935). Lyman β radiation can pump O I and Mg II
(Bowen 1947). The general process is referred to as Bowen fluorescence. In prin-
ciple, there can be Bowen-type fluorescent excitation using photons that are emitted



OPTICAL PUMPING 233

Figure 20.3 Pathway for pumping of OIII by He II Lyα, and for pumping N III
by OIIIλ374.432 Å. Pumping of OIII by He IILyα results in observable Bowen
fluorescence of, e.g., OIIIλλ3133.70, 3445.04, 3429.61 Å. Pumping of N III by
OIIIλ374.432 Å results in observable Bowen fluorescence of N IIIλ4641.94Å and
N IIIλ4098.51Å. Energy level diagram is not to scale, and some other possible transi-
tions have been omitted for clarity. Wavelengths are all in vacuo, and in Å.

by any species, but, in practice, species other than H and He are simply not abun-
dant enough for their radiation to affect the excitation of other species appreciably.
Hence Bowen fluorescence in astrophysics is limited to excitation by emission lines
from H I, He I, and He II.

20.3.1� Bowen Fluorescent Excitation of O III and N III

Bowen fluorescence explains a number of observed emission lines of O III. The
O III 2p2 3P2 − 2p3d 3P o

2 λ = 303.80 Å transition happens to coincide with He II
Lyman α at λ = 303.78 Å. Absorption of an He II Lymanα photon excites O III
to the 2p3d 3P o

2 level. This level has probabilities p1 = 0.738 of reemitting a
303.80 Å photon (which can again be resonantly scattered by He II) and p2 = 0.246
of emitting a 303.62 Å photon in a transition to the 3P1 fine-structure level of the
ground state, which can be reabsorbed by another OIII 3P1, repopulating the 3P o

2

level. For each excitation of 2p3d 3P o
2 , there is a probability p3 = 0.0105 of

radiating a 3133.77 Å photon, which then emerges as part of the observable spec-
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trum of the H II region.1 Summing over the full radiative cascade is tedious but
straightforward, and provides an explanation for various observed emission lines
of O III (e.g., λλ2837.14, 3133.70, 3429.61, 3445.09 Å) that cannot be explained
by collisional excitation.

A fraction of the excitations of OIII by He Lyα end with emission of a 374.432 Å
photon that can be resonantly absorbed by N III 2P3/2, resulting in N III Bowen
fluorescence, with emission lines at 4641.94 Å and 4098.51 Å that would otherwise
not be excited.

Bowen fluorescence of OIII and then N III is driven by He II Lyα, produced
by radiative recombination of He2+. Bowen fluorescence of OIII and N III is not
important in H II regions excited by O or B stars, as these have very little He2+.
However, the central stars of planetary nebulae can be very hot, producing substan-
tial amounts of He2+, and Bowen fluorescence of OIII and N III is observed in
some planetary nebulae.

20.3.2� Bowen Fluorescent Excitation of O I

There is also a wavelength coincidence between H I Lymanβ 1025.72 Å and
OI 2p4 3P2 − 2p33d 3D o

1,2,3 1025.76 Å. About 78% of the excitations will be to
OI 2p33d 3D o

3 ; this level can of course decay by reemitting a 1025.76 Å photon (or
1027.43, 1028.16 Å photons in transitions to the fine-structure excited states 3P1

and 3P0), but 29% of the excitations of O I 2p33d 3D o
3 decay instead by emission

of a 1.1290µm photon, followed by an 8448.68 Å photon, followed by emission
of a photon in the 1302.17, 1304.86, 1306.03 Å triplet. Because there is apprecia-
ble O I present in the partially ionized gas at the edge of an H II region, the O I
1.1290µm and 8448.68 Å lines are observed in H II region spectra.2 The predicted
intensity ratio is I(8448.68 Å)/I(1.1290µm) = (1.1290/.8448) = 1.336. An ob-
served intensity ratio smaller than this value would be an indication of differential
attenuation by dust.

20.3.3� Bowen Fluorescent Excitation of Other Species

Other Bowen-type processes can also occur. Shull (1978) noted a near-coincidence
in wavelength between H I Lymanα 1215.67 Å and the H2 Lyman-band 1–2 P(5)
1216.07 Å absorption from H2(v = 2, J = 5) to B1Σ+

u (v = 1, J = 4), which can
potentially modify the H2 level populations in regions where Lyman α is present.

Neufeld (1990) has discussed the transfer of H Lyman α radiation in astrophysi-
cal media, including the effects of resonant absorption and reemission by H, scatter-
ing and absorption by dust, and possibly resonant absorption by H2(v=2, J=5).

1Lines at 3445.05 Å and 3429.61 Å are also emitted, but are weaker than 3133.77 Å.
2The 1302.17, 1304.86, 1306.03 Å lines are also present, but are in the vacuum ultraviolet and

hence more difficult to observe.



Chapter Twenty-one

Interstellar Dust: Observed Properties

Dust plays an important role in astrophysics, and the need to characterize and un-
derstand dust is increasingly appreciated. Historically, interstellar dust was first
recognized for its obscuring effects, and the need to correct observed intensities
for attenuation by dust continues today. But with the increasing sensitivity of IR,
FIR, and sub-mm telescopes, dust is increasingly important as a diagnostic, with
its emission spectrum providing an indicator of physical conditions, and its radi-
ated power bearing witness to populations of obscured stars of which we might
otherwise be unaware.

More fundamentally, dust is now understood to play many critical roles in galac-
tic evolution. By sequestering selected elements in the solid grains, and by cat-
alyzing formation of the H2 molecule, dust grains are central to the chemistry of
interstellar gas. Photoelectrons from dust grains can dominate the heating of gas
in regions where ultraviolet starlight is present, and in dense regions the infrared
emission from dust can be an important cooling mechanism. Last, dust grains can
be important in interstellar gas dynamics, communicating radiation pressure from
starlight to the gas, and coupling the magnetic field to the gas in regions of low
fractional ionization.

We begin with a brief review of some of the observational evidence that informs
our study of interstellar dust. Unfortunately, it is not yet possible to bring represen-
tative samples of interstellar dust into the laboratory, and we must rely on remote
observations. Our strongest constraints on interstellar dust come from observations
of its interaction with electromagnetic radiation:

• Wavelength-dependent attenuation (“extinction”) of starlight by absorption
and scattering, now observable at wavelengths as long as 20µm (“mid-infrared”),
and as short as 0.1µm (“vacuum ultraviolet”). The extinction includes a
number of spectral features that provide clues to grain composition.

• Polarization-dependent attenuation of starlight, resulting in wavelength-dependent
polarization of light reaching us from reddened stars.

• Scattered light in reflection nebulae.

• Thermal emission from dust, at wavelengths ranging from the sub-mm to
2µm.

• Small-angle scattering of x rays, resulting in “scattered halos” around x-ray
point sources.
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• Microwave emission from dust, probably from rapidly spinning ultrasmall
grains.

• Luminescence when dust is illuminated by starlight – the so-called extended
red emission.

In addition to these electromagnetic studies, our knowledge of dust is also informed
by other, less direct, evidence:

• Presolar grains preserved in meteorites – a selective but not well-understood
sampling of the interstellar grains that were present in the solar nebula 4.5Gyr
ago.

• “Depletion” of certain elements from the interstellar gas, with the missing
atoms presumed to be contained in dust grains.

• The observed abundance of H2 in the ISM, which can only be understood if
catalysis on dust grains is the dominant formation avenue.

• The temperature of interstellar diffuse H I and H2, in part a result of heating
by photoelectrons ejected from interstellar grains.

21.1 Interstellar Extinction

Barnard (1907, 1910) was apparently the first to realize that some stars were dimmed
by an “absorbing medium.” This was confirmed by Trumpler (1930), who showed
that the stars in distant open clusters were dimmed by something in addition to
the inverse square law, and concluded that interstellar space in the galactic plane
contained “fine cosmic dust particles of various sizes . . . producing the observed
selective absorption.” Over the succeeding eight decades, we have built on these
pioneering studies, but many aspects of interstellar dust – including its chemical
composition! – remain uncertain. Let us, therefore, begin by reviewing the differ-
ent ways in which nature permits us to study interstellar dust.

Trumpler analyzed the interaction of light with interstellar dust, and this remains
our most direct way to study interstellar dust. Using stars as “standard candles,”
we study the “selective extinction” – or “reddening” – of starlight by the dust. It
is assumed that we know what the spectrum of the star is before reddening by dust
takes place; this is usually accomplished by observation of another star with similar
spectral features in its atmosphere but with negligible obscuration between us and
the star. (This is known as the “pair method”.)

With the assumption that the extinction (≡ absorption + scattering) goes to zero
at wavelengths λ → ∞, and including observations of the star at sufficiently long
wavelength where extinction is negligible, one can determine the attenuation of the
starlight by dust as a function of wavelength. Because atomic hydrogen absorbs
strongly for hν > 13.6 eV, it is possible to measure the contribution of dust to the
attenuation of light only at hν < 13.6 eV, or λ > 912 Å. Astronomers customarily
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Figure 21.1 Extinction versus inverse wavelength λ−1 on a typical sightline in the
local diffuse ISM. The inset shows the extinction at λ > 2µm.

characterize the attenuating effects of dust by the “extinction” Aλ at wavelength λ.
The extinction Aλ – measured in “magnitudes” – is defined by

Aλ

mag
= 2.5 log10

[
F 0
λ/Fλ

]
, (21.1)

where Fλ is the observed flux from the star, and F 0
λ is the flux that would have been

observed had the only attenuation been from the inverse square law. The extinction
measured in magnitudes is proportional to the optical depth:

Aλ

mag
= 2.5 log10 [e

τλ ] = 1.086 τλ . (21.2)

21.1.1 The Reddening Law

A typical “extinction curve” – the extinction Aλ as a function of wavelength or
frequency — is shown in Figure 21.2, showing the rapid rise in extinction in the
vacuum ultraviolet. Because the extinction increases from red to blue, the light
reaching us from stars will be “reddened” owing to greater attenuation of the blue



238 CHAPTER 21

Figure 21.2 Extinction at wavelength λ, relative to the extinction in the Cousins I
band (IC = 8020 Å), as a function of inverse wavelength λ−1, for Milky Way regions
characterized by different values of RV ≡ AV /(AB − AV ) ≡ AV /E(B − V ),
where AB is the extinction at B = 0.44µm, AV is the extinction at V = 0.55µm,
and the “reddening” E(B − V ) ≡ AB − AV . The curves shown are from the one-
parameter family of curves fCCM

1 (λ) parameterized by RV (see §21.2). Also shown
is the extinction curve toward the star HD210121 (with RV = 2.1), showing that it
differs from the CCM extinction curve fCCM

1 for RV = 2.1. Note the rapid rise in
extinction in the vacuum ultraviolet (λ <∼ 0.15µm) for regions with RV

<∼ 4. The
normalization per H nucleon is approximately AIC/NH ≈ 2.9× 10−22mag cm2/H.
The silicate absorption feature (see §23.3.2) at 9.7µm and the diffuse interstellar bands
(see §23.3.4) are barely visible.

light. The detailed wavelength dependence of the extinction – the “reddening law”
– is sensitive to the composition and size distribution of the dust particles.

Observed extinction curves vary in shape from one line of sight to another. The
slope of the extinction at visible wavelengths is characterized by the dimensionless
ratio

RV ≡ AV

AB −AV
≡ AV

E(B − V )
, (21.3)

where AB and AV are the extinctions measured in the B (4405 Å) and V (5470 Å)
photometric bands, and E(B − V ) ≡ AB −AV is the “reddening.”

Sightlines through diffuse gas in the Milky Way have RV ≈ 3.1 as an average
value. The extinction Aλ, relative to AV , is given in Table 21.1 for a number of
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Table 21.1 Extinction for Standard Photometric Bands for RV = 3.1

Band λ(µm) Aλ/AIC Band λ(µm) Aλ/AIC

M 4.75 0.0573 i 0.7480 1.125
L′ 3.80 0.0842 RC 0.6492 1.419
L 3.45 0.101 RJ 0.6415 1.442
K 2.19 0.212 r 0.6165 1.531
H 1.65 0.315 V 0.5470 1.805
J 1.22 0.489 g 0.4685 2.238
z 0.893 0.830 B 0.4405 2.396
IJ 0.8655 0.879 U 0.3635 2.813
IC 0.8020 1.000 u 0.3550 2.867

standard photometric bands for sightlines characterized by RV ≈ 3.1. The smallest
well-determined value is RV = 2.1 toward the star HD 210121 (Welty & Fowler
1992); the extinction toward HD 201021 is shown in Fig. 21.2. Sightlines through
dense regions tend to have larger values of RV ; the sightline toward HD 36982 has
RV ≈ 5.7 (Cardelli et al. 1989; Fitzpatrick 1999).

21.2 Parametric Fits to the Extinction Curve

A very useful parametrization of the extinction curve within the Milky Way was
provided by Cardelli et al. (1989), who showed that the extinction relative to some
reference wavelength λref can be well-described as a function of λ by a fitting
function

Aλ/Aλref
≈ fCCM

7 (λ) , (21.4)

where fCCM
7 has seven adjustable parameters. At wavelengths 3.5µm > λ >

3030 Å, the function fCCM
7 (λ) depends only on λ and the single parameter RV .

Six parameters are required to describe the UV extinction. Three parameters
specify the strength, central wavelength, and width of the 2175 Å “bump” (rela-
tive to AV ), and three specify the slope and curvature of the continuous extinction
underlying the bump and extending to shorter wavelengths. So-called CCM extinc-
tion curves are obtained using the function fCCM

7 (λ) with suitable choices for the
seven fit parameters.

Cardelli et al. (1989) showed that if the single quantity RV is known, it is possi-
ble to estimate the values of the other six parameters so that the optical-UV extinc-
tion can be approximated by a one-parameter family of curves:

Aλ/Aλref
≈ fCCM

1 (λ;RV ) . (21.5)

Fitzpatrick (1999) recommends a slightly modified function fCCM
1 (λ,RV ), which



240 CHAPTER 21

has been used to generate the synthetic extinction curves in Fig. 21.2 for RV = 2.1,
2.5, 3.1, 4.0, and 5.5. The extinction was extended into the infrared following
Draine (1989a).

We will discuss dust grain optics in Chapter 22, but it is clear that if the dust
grains were large compared to the wavelength, we would be in the “geometric
optics” limit, and the extinction cross section would be independent of wavelength,
with RV = ∞. The tendency for the extinction to rise with decreasing λ, even at
the shortest ultraviolet wavelengths where we can measure it, tells us that grains
smaller than the wavelength must be making an appreciable contribution to the
extinction at all observed wavelengths, down to λ = 0.1µm. As we will see in the
following, “small” means (approximately) that 2πa/λ <∼ 1. Thus interstellar dust
must include a large population of grains with a <∼ .015µm.

The dust responsible for interstellar extinction appears to be relatively well-
mixed with the gas; the gas and dust go together, with

NH

E(B − V )
= 5.8× 1021Hcm−2mag−1 (21.6)

(Bohlin et al. 1978; Rachford et al. 2009). For sightlines with RV ≡ AV /E(B −
V ) ≈ 3.1, this implies that

AV

NH
=

3.1

5.8× 1021Hcm−2mag−1
= 5.3× 10−22mag cm2H−1 . (21.7)

21.3 Polarization by Interstellar Dust

The polarization of starlight was discovered serendipitously in 1949 (Hall 1949;
Hall & Mikesell 1949; Hiltner 1949a,b). When it was realized that the degree
of polarization tended to be larger for stars with greater reddening, and that stars
in a given region of the sky tended to have similar polarization directions, it be-
came obvious that the polarization is produced by the ISM: initially upolarized
light propagating through the ISM becomes linearly polarized as a result of prefer-
ential extinction of one linear polarization mode relative to the other. Figure 21.3
shows the direction of polarization and the strength of polarization for 5453 stars
with galactic latitudes b between −80◦ and +80◦. The large-scale organization of
the polarization vectors can be understood if dust grains are somehow aligned by
the interstellar magnetic field.

The polarization percentage typically peaks near the V band (5500 Å), and can
be empirically described by the “Serkowski law” (Serkowski 1973):

p(λ) ≈ pmax exp[−K ln2(λ/λmax)] , (21.8)

with λmax ≈ 5500 Å and K ≈ 1.15. The peak polarization pmax is found to fall
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Figure 21.3 Linear polarization of starlight plotted in galactic coordinates, for stars
within 1 kpc, and for all stars in the catalog of Heiles (2000). The length of each line
segment is proportional to the degree of polarization.

within an envelope

0 < pmax ≤ 0.09

[
E(B − V )

mag

]
≈ 0.03

[
AV

mag

]
, (21.9)

or 0 < pV <∼ 0.03τV .
The polarization is produced by dust grains that are somehow partially aligned

by the interstellar magnetic field. It appears that the grains are aligned with their
shortest axes tending to be parallel to the magnetic field direction. The largest
values of pmax/E(B − V ) are presumed to arise on sightlines where the mag-
netic field is uniform and perpendicular to the line of sight. While the Serkowski
law was originally put forward as an empirical fit to the observed polarization at
0.3µm <∼ λ <∼ 1µm, it turns out to give a surprisingly good approximation to the
measured linear polarization in the vacuum ultraviolet (Clayton et al. 1992; Wolff
et al. 1997), although there are some sightlines where the Serkowski law underpre-
dicts the UV polarization, and one sightline where the 2175Å feature appears to be
weakly polarized.

The mechanism responsible for the grain alignment remains a fascinating puz-
zle (see Chapter 26). Independent of the grain alignment mechanism, however, we
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can infer the sizes of the interstellar grains responsible for this polarization by not-
ing that the extinction rises rapidly into the UV. whereas the polarization declines
(Kim & Martin 1995). This can be understood if the grains responsible for the po-
larization have diameters 2a such that a ≈ (λmax/2π) ≈ 0.1µm: as one proceeds
into the UV, one moves toward the “geometric optics” limit where both polariza-
tion modes suffer the same extinction, so the polarization goes to zero. Thus we
conclude that:

• The extinction at λ ≈ 0.55µm has an appreciable contribution from grains
with sizes a ≈ 0.1µm. These grains are nonspherical and substantially
aligned.

• The grains with a <∼ 0.05µm, which dominate the extinction at λ <∼ 0.3µm,
are either spherical (which seems unlikely) or minimally aligned.

21.4 Scattering of Starlight by Interstellar Dust

When an interstellar cloud happens to be unusually near one or more bright stars,
we have a reflection nebula, where we see starlight photons that have been scat-
tered by the dust in the cloud. (The blue nebulosity to the North of the Trifid Nebula

Figure 21.4 Albedo and scattering asymmetry factor 〈cos θ〉 inferred from observa-
tions of the diffuse galactic light, reflection nebulae, and dark clouds.
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in Plate 11 is primarily scattered light.) The spectrum of the light coming from the
cloud surface shows the stellar absorption lines, thus demonstrating that scattering
rather than some emission process is responsible. By comparing the observed scat-
tered intensity with the estimated intensity of the starlight incident on the cloud, it
is possible to infer the albedo ω of the dust – the ratio of scattering cross section to
extinction cross section. It is also possible to infer 〈cos θ〉 for the dust, where θ is
the scattering angle.

Figure 21.4 shows ω and 〈cos θ〉 for (1) the dust in the general diffuse ISM pro-
ducing the “diffuse galactic light.” (2) dust in individual clouds illuminated by the
general starlight, and (3) dust in clouds that are illuminated by a nearby bright star.
In the optical, the interstellar dust mixture has an albedo ω ≈ 0.5 – scattering is
about as important as absorption – and the grains are somewhat forward-scattering,
with 〈cos θ〉 ≈ 0.5. Rayleigh scattering by particles small compared to the wave-
length has 〈cos θ〉 ≈ 0, so this tells us that

• The particles dominating the scattering at λ ≈ 0.6µm
have a >∼ λ/2π ≈ 0.1µm.

21.5 Size Distribution of Interstellar Dust

Based on observations of ultraviolet extinction, scattering of visible light, and po-
larization of starlight, it is clear that the interstellar grain population must have a
broad size distribution, extending from sizes as small as a ≈ 0.01µm (or even
smaller) to sizes a ≈ 0.2µm (or even larger). In fact, we will see that observations
of 3 to 12µm infrared emission require that the size distribution extend down to
grains containing as few as ∼ 50 atoms, corresponding to volume-equivalent radii
a ≈ 3.5 Å.

We will discuss the grain size distribution in more detail later; here it is sufficient
to remark that the size distribution has most of the mass in the larger grains, and
most of the surface area in the smaller grains.

21.6� Purcell Limit: Lower Limit on Dust Volume

Purcell (1969) pointed out that the Kramers-Kronig relations can provide useful
constraints in dust modeling. The Kramers-Kronig relations are general relations
that apply to a “linear response function” (e.g., a dielectric function) which specifies
the response (e.g., the electric polarization) to an applied stress (e.g., the applied
electric field). The only assumptions are that (1) the response is linear, and (2) the
system is causal – the response can depend on the stress applied in the past, but
cannot depend on the future. The Kramers-Kronig relations can be derived from
these very general assumptions [see Landau et al. (1993) for a derivation]. Applied
to the complex dielectric function ε(ω) = ε1 + iε2, the Kramers-Kronig relations
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are

ε1(ω)= 1 +
2

π
P

∫ ∞

0

dx
xε2(x)

x2 − ω2
, (21.10)

ε2(ω)=
2

π
ω P

∫ ∞

0

dx
[ε1(x)− 1]

ω2 − x2
, (21.11)

where P indicates that the principal value of the integral is to be taken.
Thus the real and imaginary parts of ε(ω) are not independent – if one is specified

at all frequencies, the other is fully determined.

21.6.1 Grain Volume per Hydrogen Atom

Purcell applied the Kramers-Kronig relations directly to the ISM itself. Let εISM(ω)
be the dielectric function of the ISM. Electromagnetic plane waves E(x, t) ∝
eikx−iωt propagate through the ISM, undergoing attenuation by scattering and ab-
sorption. If we consider only the response to electric fields, Maxwell’s equations
require that k2 = εISMω2c2. The attenuation coefficient for power is

ngrCext(ω) = 2 Im(k) = 2ωc Im (
√
εISM ) ≈ ωc Im(εISM) , (21.12)

where ngr is the number density of dust grains, and Cext(ω) is the extinction cross
section of a dust grain. Purcell then used (21.10) with ω = 0 to determine the
contribution of dust to the static polarizability εISM,1(ω = 0) of the ISM.1 If ngr is
the number density of grains with volume Vgr and extinction cross section Cext(λ),
then

ngrVgr

nH
=

1

3π2F (shape, ε0)

∫ ∞

0

dλ
ngr

nH
Cext(λ) , (21.13)

where the dimensionless function F (shape, ε0) is the ratio of the orientationally
averaged static polarizability of grains of specified shape and composed of ma-
terial with dielectric function ε0 divided by the polarizability of an equal-volume
conducting sphere. For spheroids,

F (a/b, ε0) =
ε0 − 1

3

[
1

(ε0 − 1)3La + 3
+

2

(ε0 − 1)3(1− La)/2 + 3

]
,

(21.14)

where La is a “shape factor,” with La = 1 for a/b → 0 (pancake), La = 1
3 for a

sphere, and La → 0 for a/b → ∞ (needle). Insulating materials have finite ε0, and
ε0 = ∞ for conductors.

The function F is shown for selected spheroidal shapes in Fig. 21.5. F de-
pends on shape, but relatively weakly, except for conducting materials and extreme
shapes.

1Considering only the response of the dust – it is assumed that no free charge is present.
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Figure 21.5 Function F (a/b, ε0) for spheroids, for selected values of the axial ratio
a/b. After Purcell (1969). For 0.5 <∼ a/b <∼ 2 and ε0 > 4, we have 0.5 < F < 1.2.

The extinction produced by dust is difficult to measure at very long wavelengths
because it is small, and at wavelengths λ < 912 Å because of the strong absorption
by atomic hydrogen, but we do have empirical knowledge of the extinction curve
between 0.1µm and, say, 30µm:∫ 30µm

0.1µm

τext
NH

dλ ≈ 1.1× 10−25 cm3/H . (21.15)

Approximately half of this integral is contributed by 0.1 < λ < 1µm, and half by
1 < λ < 30µm. This gives us a lower bound on the volume of grain material per
H nucleon:

ngrVgr

nH

>∼ 3.7× 10−27F−1 cm3/H , (21.16)

or, if the grain material has solid density ρgr, a lower bound on the mass of grain
material relative to H mass:

Mgr

MH

>∼ 0.0056

(
1.2

F

)(
ρgr

3 g cm−3

)
, (21.17)

where the reference density ρgr = 3g cm−3 is intermediate between the density of
graphite (ρ = 2.24 g cm−3) and olivine MgFeSiO4 (ρ ≈ 3.8 g cm−3).

This lower bound is model-independent, except through the dependence on the
unknown shape factor F . However, we see from Figure 21.5 that for materials with
ε0 > 4, grains with moderate shapes 0.5 < a/b < 2 have 0.5 <∼ F <∼ 1.2. The only
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way to have F > 1.2 is to have an extreme shape (a/b > 10 or a/b < 0.1) and
a dielectric function ε0 >∼ 10. Note also that we have entirely ignored extinction
at λ < 0.1µm or λ > 30µm; these additional contributions to the integral in
Eq. (21.13) are what make Eq. (21.17) only a lower limit. Thus, if we assume
that F <∼ 1.2, and if interstellar grains have solid densities ρgr ≈ 3 g cm−3, the
Kramers-Kronig integral implies a grain mass Mgr/MH

>∼ 0.0056 × (1.2/F ). A
reasonable estimate for F might be F ≈ 0.8 (see Fig. 21.5), in which case the
Kramers-Kronig argument gives

ngrVgr

nH

>∼ 4.6× 10−27 cm3/H , (21.18)

Mgr

MH

>∼ 0.0083

(
ρgr

3 g cm−3

)
. (21.19)

This lower bound on the grain mass places a strong constraint on grain models.

21.6.2 Asymptotic Behavior at Long Wavelengths

Suppose that Cext ∝ λ−β as λ → ∞. The Kramers-Kronig integral
∫
dλCext in

Eq. (21.13) would obviously be divergent unless β > 1, and if β is only slightly
larger than 1, then the lower bound we obtained by considering only the λ < 30µm
extinction might seriously underestimate the total volume of grain material. It
seems much more likely that β ≈ 2, in which case wavelengths λ > 30µm make
only a modest contribution to the integral. We will see in §22.4 that β ≈ 2 is
expected for simple models of both insulating and conducting materials.

21.7 Infrared Emission

Dust grains are heated by starlight, and cool by radiating in the infrared. Plates 6,
7, and 8 show the 8µm emission from PAHs in the Andromeda galaxy, M31, the
starburst galaxy M81, and the Whirlpool galaxy, M51.

An all-sky map of the dust emission at 100µm is shown in Plate 2. The emission
from dust at high galactic latitudes has been studied by a number of satellites.
Figure 21.6 shows the emission spectrum from 800µm to 3µm. The 3 to 12µm
spectrum is estimated from observations of the Galactic plane near l ≈ 45◦, if we
assume that the ratio of 3 to 12µm emission to the 100µm emission is unchanged
in going from observations of the Galactic plane to high galactic latitudes. The
correlation of the IR emission with H I 21-cm emission at high latitudes is used to
estimate the power radiated per H nucleon: 5.0× 10−24 erg s−1/H.

Interstellar dust is heated primarily by starlight (as will be discussed in Chap-
ter 24), and the total power radiated requires, therefore, that the absorption cross
section of interstellar dust be such that the power absorbed per H (for the esti-
mated spectrum of the starlight heating the dust) match the observed emission,
5 × 10−24 erg s−1H−1. The infrared spectrum provides very strong constraints
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Figure 21.6 Observed infrared emission per H nucleon from dust heated by the av-
erage starlight background in the local Milky Way. Crosses: IRAS (Boulanger &
Perault 1988); squares: COBE-FIRAS (Wright et al. 1991); diamonds: COBE-DIRBE
(Arendt et al. 1998); heavy curve: IRTS (Onaka et al. 1996; Tanaka et al. 1996). The
interpolated dotted line is used to estimate the total power.

on grain models, as the dust must include a component that can account for the
fact that ∼ 35% of the radiated power is shortward of 50µm, including the strong
emission features at ∼ 12µm and 6 − 8µm. Models for interstellar dust that can
reproduce this emission spectrum will be discussed in §24.

21.8� Luminescence

The energy absorbed by dust grains is primarily reradiated in the mid- and far-IR,
but there is evidence that dust grains also emit light at optical and near-IR wave-
lengths. Studies of reflection nebulae indicate that there is more light emerging
at wavelengths 6000 − 8000 Å than can be accounted for by scattering alone, and
this excess is ascribed to luminescence from dust grains following absorption of
shorter-wavelength photons [see the review by Witt & Vijh (2004)]. Luminescence
at 6000 to 8000 Å is also termed “extended red emission,” or ERE. Luminescence
in the blue has also been reported (Vijh et al. 2005). Candidate materials to ex-
plain this luminescence must of course reproduce the observed luminescence spec-
trum. The luminescing materials have not yet been conclusively identified. The
blue luminescence may be produced by neutral PAHs (Vijh et al. 2005), and PAH
di-cations (PAH++) may be responsible for the ERE (Witt et al. 2006).



Chapter Twenty-two

Scattering and Absorption by Small Particles

22.1 Cross Sections and Efficiency Factors

A number of different quantities are used to characterize the absorption, scattering,
and emission of electromagnetic radiation by a (nonrotating) dust grain:

• The absorption cross section at wavelength λ, Cabs(λ).

• The scattering cross section Csca(λ).

• The extinction cross section Cext(λ) ≡ Cabs + Csca.

• The albedo

ω ≡ Csca

Cabs + Csca
=

Csca

Cext
. (22.1)

• The differential scattering cross section

dCsca(θ)

dΩ
(22.2)

for incident unpolarized light to be scattered by an angle θ. This is related to
the dimensionless Muller matrix element S11 by

dCsca

dΩ
≡ S11(θ)

k2
, (22.3)

where k ≡ 2π/λ.

• The mean value of cos θ for scattered light

〈cos θ〉 = 1

Csca

∫ π

0

cosθ
dCsca

dΩ
2π sin θdθ. (22.4)
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• The radiation pressure cross section

Cpr(λ) ≡ Cabs(λ) + (1− 〈cos θ〉)Csca(λ) . (22.5)

• The degree of polarization P (θ) for light scattered through an angle θ (for
incident unpolarized light).

For a given direction of incidence relative to a fixed grain, we would obviously need
two angles (θ, φ) to fully specify the scattering direction. However, for spherical
grains, or for an ensemble of randomly oriented grains, the scattering properties
can be described as a function of a single scattering angle θ.

In some cases, one wants to consider scattering of polarized light. For this case,
it is usual to use the four-element Stokes vector to specify the intensity and state of
polarization of radiation propagating in a particular direction. The ability of a grain
to scatter radiation with incident Stokes vector Vin to outgoing Stokes vector Vsca

is conveniently specified by a 4× 4 dimensionless scattering matrix Sij , known as
the Muller matrix. [See Bohren & Huffman (1983) or Mishchenko et al. (2000) for
discussions of scattering concepts and terminology.]

It is convenient to normalize the absorption and scattering cross sections Cabs

and Csca to some area characterizing the grain. In the case of a spherical grain, it
is natural to use the grain geometric cross section πa2.

For nonspherical grains, some authors choose to normalize using the geomet-
ric cross section as seen from the direction of the incident radiation; other authors
choose to normalize using the average geometric cross section for random orienta-
tions.

Here, we will instead normalize to the geometric cross section of an equal-
solid-volume sphere. For a target with solid volume V (V does not include the vol-
ume of any voids, if present), we define efficiency factors Qsca, Qabs and Qext ≡
Qabs +Qsca by

Qsca ≡ Csca

πa2eff
, Qabs ≡ Cabs

πa2eff
, aeff ≡

(
3V

4π

)1/3

. (22.6)

Here, aeff is the radius of an equal-volume sphere. This is a natural choice, because
it relates the scattering and absorption cross sections directly to the actual volume
of grain material.

22.2 Dielectric Function and Refractive Index

In order to calculate scattering and absorption of electromagnetic waves by targets,
we need to characterize the response of the target material to the local oscillating
electric and magnetic fields. At submillimeter frequencies and above, real materi-
als have only a negligible response to an applied magnetic field – this is because
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the magnetization of materials is the result of aligned electron spins and electron
orbital currents, and an electron spin (or orbit) can change direction only on time
scales longer than the period for the electron spin (or orbit) to precess in the local
(microscopic) magnetic fields within atoms and solids. These fields are at most
Bi

<∼ 10 kG, and the precession frequencies are ωp ≈ µBBi/h̄ <∼ 1010 s−1, where
µB is the Bohr magneton. When a weak applied field oscillates at frequencies
ω � 1010 s−1, the magnetization of the material cannot respond. As a result, for
frequencies ν >∼ 10GHz we normally set the magnetic permeability µ = 1, and
consider only the material’s response to the oscillating electric field.

The response of material to an applied oscillating electric field E = E0e
−iωt is

characterized by a complex dielectric function

ε(ω) = ε1 + iε2 . (22.7)

The electrical conductivity σ, if any, can be absorbed within the imaginary part of
the dielectric function, with the replacement

ε → ε+
4πiσ

ω
. (22.8)

The complex refractive index m(ω) is related to the complex dielectric function
by m =

√
ε.

There are two sign conventions for the imaginary part of the dielectric function
or refractive index. If we choose to write oscillating quantities ∝ eik·r−iωt, then
Im(ε) > 0 and Im(m) > 0 for absorbing, dissipative materials, where a propagat-
ing wave is attenuated. This is the convention that we will use.1 In terms of the
refractive index, the wave vector

k = m(ω)
ω

c
(22.9)

and, therefore, the electric field

E ∝ eikx−iωt ∝ e−Im(m)ωx/c (22.10)

and the power in the wave (∝ |E|2) decays as exp [−2 Im(m)ωx/c]. Therefore,
the attenuation coefficient κ and attenuation length Labs ≡ 1/κ for the wave are
simply

κ(ω) = 2 Im(m)
ω

c
, Labs(ω) =

c

2ω Im(m)
=

λ

4πIm(m)
. (22.11)

where λ = 2πc/ω is the wavelength in vacuo.

1Alternatively, if one chooses to write quantities ∝ eiωt−ik·r, then Im(ε) < 0 and Im(m) < 0 for
absorbing materials. This sign convention is used, e.g., by van de Hulst (1957).
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22.3 Electric Dipole Limit: Size � λ

We are often interested in situations where the grain is much smaller than the wave-
length of the incident electromagnetic wave. In this situation, the small grain is
subject to an incident applied electric field that is nearly uniform in space. The
electric field inside the grain will be proportional to the applied external electric
field Re

(
E0e

−iωt
)
. Averaged over one cycle, the rate per volume at which energy

is absorbed within the grain is proportional to ωε2E
2
0 .

The absorption and scattering cross sections can be written

Cabs =
4πω

c
Im(α) , (22.12)

Csca =
8π

3

(ω
c

)4
|α|2 , (22.13)

where α is the electric polarizability of the grain: the electric dipole moment of
the grain P = αE, where E is the instantaneous applied electric field. Calculating
the polarizability in the limit ωa/c → 0 becomes a problem in electrostatics.

22.3.1 Ellipsoids

Analytic solutions are known for ellipsoids (with spheres or spheroids as special
cases). If the electric field is oriented parallel to one of the principal axes j of the
ellipsoid, the polarizability is

αjj =
V

4π

[
ε− 1

(ε− 1)Lj + 1

]
, (22.14)

where Lj is called the “shape factor” for E along axis j. For a spheroid with length
2a along the symmetry axis, and diameter 2b perpendicular to the symmetry axis,
the shape factors are given by

La =
1− e2

e2

[
1

2e
ln

(
1 + e

1− e

)
− 1

]
, for a > b (prolate spheroid), (22.15)

=
1 + e2

e2

[
1− 1

e
arctan(e)

]
, for a < b (oblate spheroid), (22.16)

Lb =
1

2
(1− La) , (22.17)

e2 ≡ ∣∣1− (b/a)2
∣∣ . (22.18)

Needles (a/b → ∞) have La → 0, and pancakes (a/b → 0) have La → 1. For a
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sphere, La = Lb = 1/3, and

Cabs =18π
ε2

(ε1 + 2)2 + ε22

V

λ
, (22.19)

Csca =24π3

∣∣∣∣ε− 1

ε+ 2

∣∣∣∣2 V 2

λ4
. (22.20)

From Eqs. (22.12 and 22.13), we see that Cabs ∝ V and Csca ∝ V 2. Therefore,
in the limit V → 0, absorption dominates: Cabs � Csca provided only that the
material itself is absorptive (i.e., ε2 > 0). At wavelengths that are long compared
to the particle size, the opacity is simply proportional to the total volume of grain
material, independent of the sizes of the individual particles.

22.4 Limiting Behavior at Long Wavelengths

22.4.1 Insulators

At sufficiently long wavelengths (at frequencies well below the lowest frequency
resonance in the solid), insulators tend to have

ε1 → ε0 = const. , (22.21)
ε2 → Aω , (22.22)

where A = const. (with dimensions of time). In this limit, it is easy to see from
Eqs. (22.19) and (22.20) that, for a sphere of volume V ,

Cabs → 36π2 Ac

(ε0 + 2)2
V

λ2
, (22.23)

Csca → 24π3 (ε0 − 1)2

(ε0 + 2)2
V 2

λ4
. (22.24)

Therefore, for insulators, we expect Cabs ∝ λ−2 at long wavelengths. We also see
that if A �= 0, absorption will dominate over scattering as λ → ∞.
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22.4.2 Conductors

For conductors with conductivity σ0 at zero frequency, the low-frequency limiting
behavior of the dielectric function is2

ε1 → ε0 = const. , (22.25)

ε2 → Aω +
4πσ0

ω
. (22.26)

In the long wavelength limit, we then have

Cabs → 4πc

σ0

V

λ2
, (22.27)

Csca → 24π3V
2

λ4
. (22.28)

Note that at long wavelengths, Cabs ∝ 1/σ0: materials with high conductivities are
weak absorbers. This is because for highly conducting materials, the electric field
is screened from the interior by surface charge.

Note also that, just as in the case of insulators, conducting materials at long
wavelengths have Cabs ∝ λ−2. Therefore, it is rather natural to expect absorption
by interstellar grains to vary as λ−2 at very long wavelengths.

22.5 Sizes Comparable to Wavelength: Mie Theory

At optical and ultraviolet wavelengths, the dust particles are not necessarily small
compared to the wavelength, and the electric dipole approximation is no longer
applicable. We must find the solution to Maxwell’s equations with an incident
plane wave, for an object of specified size and shape, composed of material with a
specified dielectric function ε or refractive index m.

For the special case of a sphere, an elegant analytic solution was found by Mie
(1908) and Debye (1909), and is known as Mie theory. In brief, the electromag-
netic field inside and outside the sphere can be decomposed into spherical harmon-
ics with appropriate radial functions, with coefficients determined by the need to

2A simple model for a conductor has

ε(ω)=1 +∆εbound(ω) +
iω2

pτ

ω(1− iωτ)
,

ε1(ω)=1 +∆εbound1 (ω)− (ωpτ)2

1 + (ωτ)2
,

ε2(ω)=∆εbound2 (ω) +
ω2
pτ

ω
[
1 + (ωτ)2

] ,

where ∆εbound is the contribution from the bound electrons, and the free electrons are characterized
by a plasma frequency ωp and damping time τ .
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Figure 22.1 Absorption efficiency factors Qabs for spheres with various refractive
indices m.

give an incident plane wave at infinity and to satisfy the continuity conditions at the
surface of the sphere.3 Computer programs to evaluate the Mie theory solution are
widely available.4

The character of the electromagnetic scattering will depend on the dimensionless
ratio a/λ and on the dimensionless refractive index m(ω). One relevant parameter
will be the phase shift of a wave traveling a distance equal to the grain radius
within the grain, expressed in radians. For nonabsorptive material, this would be
just 2πa|m − 1|/λ. Figures 22.1 to 22.3 show five examples, where we plot the
absorption, scattering, and extinction efficiency factors against this phase shift.

The details depend on the refractive index m, but the general trend is for Qext to
rise to a value Qext ≈ 3− 5 near |m− 1|2πa/λ ≈ 2. For dielectric functions with
small imaginary components [i.e., weakly absorbing material, Im(m) � 1] Qext

as a function of a/λ shows oscillatory behavior due to interference effects, but the
oscillations are minimal for strongly absorbing materials [Im(m) >∼ 1].

For (a/λ) → ∞, all of these examples have Qext → 2. This is a general result,
sometimes referred to as “the extinction paradox”:

• For x ≡ 2πa/λ → ∞ and |m − 1|x → ∞, the extinction cross section is
equal to exactly twice the geometric cross section.

3The Mie theory solution is effectively a series expansion in powers of x = 2πa/λ. The series is
convergent, but the number of terms that must be retained is ∼O(x).

4For example, the program bhmie.f available at http://www.astro.princeton.edu/∼draine/scattering.html .
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Figure 22.2 Scattering efficiency factors Qsca for spheres with various refractive in-
dices m.

Figure 22.3 Extinction efficiency factors Qext for spheres with various refractive in-
dices m. Note that Qext → 2 for |m− 1|a/λ → ∞.
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Ray-tracing arguments would lead us to expect the extinction cross section to be
equal to the geometric cross section, but diffraction around the target leads to addi-
tional small-angle scattering, with the total extinction cross section equal to twice
the geometric cross section.

22.6� Nonspherical Particles

Mie theory is a powerful and robust computational tool with which one can effi-
ciently calculate scattering and absorption by spheres with a wide range of dielec-
tric constants, for x ≡ 2πa/λ <∼ 104. For x > 104, cancellation in the alternating
series leads to roundoff errors on machines with 64-bit arithmetic, but for the size
distributions that are present in the ISM, scattering by the dust mixture is usually
dominated by particles with x ≈ 1, and particles with x � 1 can generally be
ignored except at x-ray energies.

However, one thing we know for certain about interstellar grains: the observed
polarization of starlight implies that they are not spherical. If the grains are not
spherical, how are we to calculate scattering and absorption cross sections? Ele-
gant analytic treatments do exist for spheroids or infinite cylinders, but for more
general shapes it is necessary to resort to brute force treatments. One approach that
has proven useful is to approximate the actual target (with its particular geometry
and dielectric function) by an array of “point dipoles.” For a target illuminated
by an incident monochromatic electromagnetic wave, each of these dipoles is as-
signed a complex polarizability α(ω). Each dipole has an instantaneous dipole
moment Pj = αjEj , where αj is the polarizability tensor for dipole j, and Ej is
the electric field at location j due to the incident wave plus all of the other dipoles.
This method, pioneered by Purcell & Pennypacker (1973), is known as the discrete
dipole approximation (DDA) or coupled dipole approximation.5

DDA calculations are CPU-intensive, but many problems of practical interest
can be handled by a desktop computer.6 For example, the DDA has been used to
study absorption and scattering by graphite particles (Draine & Malhotra 1993) and
by random agglomerates (Shen et al. 2008).

22.6.1 X-Ray Regime

Figure 22.4 shows the real and imaginary components of the dielectric function
for MgFeSiO4 In the optical and ultraviolet, normal solids have refractive indices
|m − 1| >∼ 0.3. At x-ray energies, however, |m − 1| � 1, and the character of
the scattering changes considerably. The wavelength λ = 0.00124( keV/hν)µm
is small compared to the sizes a ≈ 0.2µm of the particles containing most of the
grain mass. The result is that the x-ray scattering is very strongly peaked in the

5For more details on the DDA, see the review by Draine & Flatau (1994).
6Public-domain DDA codes are available, e.g., DDSCAT (http://code.google.com/p/ddscat/).
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Figure 22.4 Dielectric function ε for MgFeSiO4 material. Various absorption edges
are labelled in the plot of Im(ε). This dielectric function, and its continuation at lower
energies, will be referred to as “astrosilicate”. From Draine (2003b), reproduced by
permission of the AAS.

forward direction, with a characteristic scattering angle

θ ≈ λ

πa
≈ 800 ′′

(
keV

hν

)(
0.1µm

a

)
. (22.29)

For spherical grains, the scattering can be calculated using Mie theory. which,
consists of a series expansion where ∼ 2πa/λ terms must be retained in the sums.
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Figure 22.5 Differential scattering cross section for a = 0.1 and 0.2µm silicate
spheres at E = 0.5, 1.0, and 2.0 keV. Solid curve is Mie theory, dots show results cal-
culated using anomalous diffraction theory (ADT). The results are indistinguishable,
showing that ADT provides an excellent approximation. From Draine & Allaf-Akbari
(2006), reproduced by permission of the AAS.

When a/λ >∼ 103, roundoff errors may prevent accurate evaluation of the necessary
sums, limiting the practical applicability of Mie theory. However, when Mie theory
becomes impractical, x-ray scattering and absorption by grains can be calculated
using an approximation called “anomalous diffraction theory” (ADT), originally
introduced by van de Hulst (1957) and recently applied by Draine & Allaf-Akbari
(2006). The validity criteria for ADT are very simple:

2πa

λ
� 1 , (22.30)

|m− 1|� 1 . (22.31)

The first condition ensures that the ray-optics approximation is valid, and the sec-
ond condition ensures that refraction (and reflection) are unimportant when the ray
crosses the grain surface. As can be seen from Fig. 22.5, anomalous diffraction the-
ory provides excellent accuracy within its domain of applicability. One advantage
of ADT is that it can be applied to nonspherical grains.

22.7 Interstellar Grains

Above we have discussed calculational methods for various regimes. We can now
calculate scattering and absorption cross sections for micron- or submicron-sized
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Figure 22.6 Qext ≡ Cext/πa
2 for a = 0.01, 0.1, 1, and 10µm amorphous silicate

spheres, for wavelengths ranging from λ = 10−4 µm = 1 Å (hν = 12.4 keV) to
λ = 103 µm = 1mm. At short wavelengths, the a = 0.01 and 0.10µm grains show
discontinuities in Qext at x-ray absorption edges. In the IR, the a = 0.01, 0.1, 1µm
grains show prominent silicate absorption features at 9.7 and 18µm, but these features
are suppressed when a = 10µm.

grains from x-ray to sub-mm wavelengths. Figure 22.6 shows the extinction effi-
ciency Qext calculated for grains of amorphous silicate (“astrosilicate”) from the
x-ray to the submm, for four different sizes. There are several noteworthy features:

1. Qext shows sharp discontinuities at x-ray absorption edges. The amorphous
silicate material is assumed to have composition MgFeSiO4. Two conspic-
uous edges are the Fe K edge at 1.75 Å (7.1 keV) and the O K edge at 23 Å
(528 eV). Note that the appearance of these edges depends on grain size.
As the grains become larger, scattering makes an appreciable contribution to
Qext, and the long-wavelength side of the O K edge is “filled in” by scatter-
ing.

2. a = 1µm grains are, in effect, optically thick (with Qext ≈ 2) for 0.001 <∼
λ <∼ 2µm; for λ < 10−3 µm (hν > 1.24 keV), the absorption length ex-
ceeds the grain diameter, and for λ > 2µm, the grain is smaller than the
wavelength. Similarly, the a = 10µm grain is optically thick for 10−4 µm <∼
λ <∼ 10µm.

3. The silicate absorption features at 9.7 and 18µm are prominent absorption
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features for the a = 0.01, 0.1, 1µm cases shown, but are suppressed in the
a = 10µm example, because the grain is, in effect, optically thick at wave-
lengths on either side of the silicate features.

Figure 22.7 Qext for astrosilicate spheres (upper) and carbonaceous spheres (lower)
for wavelengths ranging from λ = 0.1µm to λ = 4µm. The locations of the B
(4405 Å) and V (5470 Å) bands are shown. Curves are labeled by radius a.

Figure 22.7 shows the behavior of Qext for wavelengths running from the vacuum
ultraviolet into the infrared. The upper panel shows the extinction efficiency factors
Qext for spheres with the “astrosilicate” dielectric function. For the wavelength
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range shown here, there are no spectral features, although small particles do show
a rise in extinction for λ <∼ 0.2µm due to the onset of ultraviolet absorption in
silicates. Scattering becomes important for λ <∼ 2πa (i.e., x = 2πa/λ >∼ 1), and
Qext

>∼ 2 for λ <∼ 4a.

Figure 22.8 1/RV ≡ (Cext(B) − Cext(V ))/Cext(V ) as a function of radius a
for astrosilicate and carbonaceous spheres (B = 0.44µm, V = 0.55µm). The
carbonaceous spheres are assumed to be graphitic for a > 0.01µm, and PAHs
for a < 0.005µm, with a continuous transition between 0.005 and 0.01µm. For
a <∼ 0.02µm, scattering is unimportant, and RV is determined by the absorptive prop-
erties of the grain material. For a >∼ 0.12µm, scattering resonances move through the
wavelength range between B and V , and 1/RV has oscillatory behavior. The dust in
the diffuse ISM is observed to have RV ≈ 3.1, shown by the dotted line. RV ≈ 3.1
for a ≈ 0.08µm or 0.14µm for graphitic and astrosilicate grains, respectively.

For the adopted optical constants (Draine & Li 2007), the small a <∼ 0.02µm)
carbonaceous particles show a strong absorption feature near 2175 Å, closely match-
ing the observed interstellar feature near this wavelength. However, the theoretically-
calculated feature broadens as the grain size increases to 0.03µm, and disappears
for larger grains because the grain becomes optically thick not only at the wave-
length of the resonance, but also at wavelengths above and below the resonance.

As discussed earlier, interstellar extinction curves are often characterized by
RV ≡ AV /(AB − AV ), and it is of interest to see what value of RV would ap-
ply to the extinction produced by grains of a single size and composition. Because
RV is singular when AB = AV , it is preferable to instead consider 1/RV ≡
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(AB−AV )/AV , which is proportional to the slope of the extinction curve between
V and B. Figure 22.8 shows 1/RV versus grain radius for carbonaceous grains and
astrosilicate grains. For very small grains, scattering is negligible compared to ab-
sorption, and the value of RV in the limit a → 0 depends on the wavelength depen-
dence of the optical constants – hence the very different limiting values for PAHs
and astrosilicates. As the grain radius is increased, scattering begins to contribute
significantly to the extinction, but we see that neither the silicate nor carbonaceous
particles ever reach the value of 1/RV = 1/0.726 appropriate to Rayleigh scat-
tering by particles with a polarizability that is wavelength independent. This is
because, for our assumed dielectric functions, when the particles are small enough
to be in the Rayleigh limit, absorption makes an important contribution to the ex-
tinction.
RV ≈ 3.1 is attained by graphitic grains for a ≈ 0.08µm, and by astrosilicate7

grains for a ≈ 0.15µm. Although a broad size distribution is required to match the
full extinction curve, grain models that reproduce the observed extinction should
have the extinction in the visible dominated by grains with a ≈ 0.1µm.

7Astrosilicate grains also have RV ≈ 3.1 for a ≈ 0.02µm, but such small grains produce much
more extinction in the ultraviolet than in the visible (see Fig. 22.7), implying that they contribute only a
small fraction of the extinction in the visible.



Chapter Twenty-three

Composition of Interstellar Dust

There is ample evidence for the presence of substantial amounts of submicron-sized
dust particles in interstellar space. What is this dust made of? This question has
been difficult to answer.

The preferred approach would be spectroscopy: ideally, we would observe spec-
troscopic features that would uniquely identify the materials, and, furthermore, al-
low us to measure the amounts of each material present. This is the approach that
is followed for atoms, ions, and small molecules, but unfortunately it is difficult to
apply to solid materials because: (1) the optical and UV absorption is largely a con-
tinuum; and (2) the spectral features that do exist are broad, making them difficult
to identify conclusively.

An alternative approach is to ask: What materials could plausibly be present
in the interstellar medium in quantities sufficient to account for the observed ex-
tinction? We have seen in §21.6.1 that a Kramers-Kronig integral over the ob-
served extinction indicates that the total grain mass relative to total hydrogen mass
Mdust/MH

>∼ 0.0083.
In §9.11 we discussed that fact that certain elements appear to be underabundant,

or “depleted,” in the gas phase. In this chapter, we first consider what observed
depletions tell us about the major elemental composition of interstellar dust. Fol-
lowing this, we review candidate materials, including spectroscopic evidence if
any.

23.1 Abundance Constraints

The available evidence indicates that the overall abundances in the ISM are close
to the values in the solar photosphere. Because there is no way to have hydrogen
contribute appreciably to the grain mass [even polyethylene (CH2)n is 86% carbon
by mass], and He and Ne are chemically inert, the only way to have a dust/H mass
ratio of 0.0056 or higher is to build the grains out of the most abundant condensible
elements: C, O, Mg, Si, S, and Fe.

As discussed in §9.11, absorption-line spectroscopy of C, Mg, Si, and Fe in the
gas phase shows that these elements are in fact underabundant in the gas (“de-
pleted”), with about 2

3 of the C and 90% or more of Mg, Si, and Fe presumed to
be incorporated in dust grains in the typical diffuse interstellar cloud. Perhaps the
best-studied sightline in the ISM is toward the star ζ Ophiuchi, a bright O9.5V
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Figure 23.1 Gas-phase abundances (relative to solar) in the diffuse cloud toward
ζ Oph, plotted versus “condensation temperature” Tcond (see text). Data from Morton
(1975), Savage et al. (1992), Cardelli et al. (1993), Federman et al. (1993), Crinklaw
et al. (1994). Solid symbols: major grain constituents C, Mg, Si, Fe. The C abundance
has been calculated assuming f(C II]2325 Å) = 1.0× 10−7 (see text). The apparent
overabundance of S may be due to observational error, but may also arise because of
S II absorption in the H II region around ζ Oph.

star only 138 pc away. Absorption-line spectroscopy has allowed the gas-phase
abundances of many of the elements to be measured. These abundances, relative to
solar, are shown for 20 elements in Fig. 23.1.

Table 23.1 gives the gas-phase abundances for 10 major elements. Determination
of the column density of C II (accounting for most of the gas-phase carbon) relies on
knowledge of the oscillator strength of the weak intersystem line C II]2325 Å. Ta-
ble 23.1 gives the gas-phase carbon abundances estimated using f(C II]2325 Å) =
4.78×10−8 from Morton (2003), but also for f(C II]2325 Å) = 1.0×10−7, as ap-
pears to be required to reconcile abundances estimated using the 2325 Å line (Sofia
et al. 2004) with C II abundances estimated using strong lines (Sofia & Parvathi
2010).

If we assume that the total abundance of each element is equal to the current
best-estimate of the solar abundance, then the difference between solar abundance
and the observed gas-phase abundance will tell us what contribution that element
makes toward the dust mass in the cloud toward ζ Oph. This inventory is carried
out in Table 23.1.
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Table 23.1 Inferred Elemental Composition of Dust toward ζOph

X (NX/NH)� a NX,gas/NH
b NX,dust/NH 103MX,dust/MH

(ppm) (ppm) (ppm)
C 295± 36 135± 33 d,e 160± 49 1.92± 0.59 e

85± 20 d,f 210± 41 2.52± 0.49 f

N 74.1± 9.0 78± 13 g −14± 16 0
O 537± 62 295± 36 d 242± 72 3.87± 1.15

[383] c 154± 8 c 2.46± 0.13 c

Mg 43.7± 4.2 4.9± 0.5 g 39± 4 0.94± 0.10
Al 2.8± 0.2 0.005± 0.001 h 2.8± 0.2 0.08± 0.01
Si 35.5± 3.0 1.7± 0.5 i 34± 3 0.95± 0.08
S 14.5± 1.0 28± 16 j −14± 16 0
Ca 2.3± 0.2 0.0004± 0.0001 k 2.2± 0.2 0.09± 0.008
Fe 34.7± 3.3 0.13± 0.01 g 35± 3 1.96± 0.17
Ni 1.7± 0.2 0.0030± 0.0002 j 1.7± 0.2 0.10± 0.01

Total if f(C II]2325) = 4.78× 10−8 (see text) 9.9± 1.3 e

Total if f(C II]2325) = 1.0× 10−7 (see text) 10.5± 1.3 f

Total if f(C II]2325) = 1.0× 10−7, NO,dust/NH = 154 ppm (see text) 9.1± 0.6 c

a Asplund et al. (2009). g Savage et al. (1992).
b Assuming N(H)+2N(H2)=1021.13±0.03 cm−2. h Morton (1975).
c Assuming NO,dust/NH = 154 ppm. i Cardelli et al. (1994).
d Cardelli et al. (1993). j Federman et al. (1993).
e If f(C II]2325 Å) = 4.78× 10−8 (Morton 2003). k Crinklaw et al. (1994).
f If f(C II]2325 Å) = 1.00× 10−7 (see text).

The reported depletion of oxygen from the gas toward ζ Oph is difficult to un-
derstand, because it is not clear what compounds can account for it (Jenkins 2009;
Whittet 2010). As will be discussed in the following, on a sightline like that to-
ward ζ Oph, negligible amounts of H2O are present, and gas-phase species such
as CO and OH contain only a small fraction of the O. If we consider silicates with
olivine-like composition MgxFe2−xSiO4, we can account for only ∼ 4×(34±3) =
136± 12 ppm of O in silicates; adding other metal oxides,1 the solid-phase oxygen
can be raised to ∼ 154 ppm, yet observations seem to indicate that 242 ± 72 ppm
are missing from the gas on the sightline toward ζ Oph – some of the oxygen seems
to have gone missing! On the other hand, according to Table 9.5, the typical CNM
cloud appears to have a gas-phase O abundance of ∼ 457 ppm; if the total O abun-
dance is the current solar value of 537 ppm, this corresponds to only ∼ 80 ppm of
O in grains – only ∼ 60% of the amount that we estimate to be present in the dust.
Thus on these sightlines we seem to have somewhat more oxygen in the gas than
we expect.

At this time, it is simply not clear where all of the oxygen resides. One should
keep in mind the possibility that there may be some error in our estimation of the
oxygen budget in Table 23.1.

If we use the carbon abundances estimated using the lower oscillator strength
f(C II]2325 Å) = 1.0× 10−7 (Sofia & Parvathi 2010), we arrive at Mdust/MH ≈

1E.g., if the composition is 34MgxFe2−xSiO4+3Fe2O3+1.4Al2O3 + 2.2CaO+0.85Ni2O3, with
x = 39/34 = 1.15.



266 CHAPTER 23

0.0091 (see Table 23.1), with ∼ 28% of the dust mass contributed by carbon, and
72% by compounds containing Mg, Al, Si, Ca, Fe, Ni and O, presumably mainly
in silicates. If the carbonaceous material has a density ρ ≈ 2.2 g cm−3, and the
silicate density is ρ ≈ 3.8 g cm−3, then the total grain volume per H is Vtot ≈
4.8× 10−27 cm3/H, with silicates accounting for ∼ 60% of Vtot.

The grain volume Vtot ≈ 4.8 × 10−27 cm3/H and grain mass Mdust/MH ≈
0.0091 are consistent with Purcell’s Kramers-Kronig argument (§21.6.1), which
obtained [see Eqs. 21.18 and 21.19] Vtot

>∼ 4.6× 10−27 cm3/H and Mdust/MH
>∼

0.0083. We must remember, however, that the Kramer-Kronig analysis is only a
lower bound, as it neglected the extinction at λ < 0.1µm and λ > 30µm.

Figure 23.1 shows gas-phase abundances, relative to solar abundances, plotted
against the condensation temperature Tcond, the temperature at which 50% of the
element in question would be incorporated into solid material in a gas of solar abun-
dances, at LTE at a pressure p = 102 dyn cm−2 (Lodders 2003). The condensation
temperature indicates whether an element is able to form stable solid compounds in
gas of solar composition. We see that there is a strong tendency for elements with
high Tcond to be underabundant in the gas phase, presumably because most of the
atoms are instead in solid grains.

With the elements providing the bulk of the grain volume identified, we can limit
consideration to the following possible materials:

• Silicates, e.g., pyroxene composition MgxFe1−xSiO3, or olivine composi-
tion Mg2xFe2−2xSiO4 (0 ≤ x ≤ 1)

• Oxides of silicon, magnesium, and iron (e.g., SiO2, MgO, Fe3O4)

• Carbon solids (graphite, amorphous carbon, and diamond)

• Hydrocarbons (e.g., polycyclic aromatic hydrocarbons)

• Carbides, particularly silicon carbide (SiC)

• Metallic Fe

Other elements (e.g., Ti, Cr) are also present in interstellar grains, but, because of
their low abundances, they contribute only a minor fraction of the grain mass.

23.2 Presolar Grains in Meteorites

Certain meteorites have been found to contain grains whose formation predated
the solar system. For the most part, these grains have been identified by virtue of
anomalous isotopic composition, indicating not only that these grains are presolar,
but also that many of them formed in outflows from stars with anomalous isotopic
composition. The presolar grain abundances vary from meteorite to meteorite, but
are highest in the meteorites that appear to be most primitive (i.e., have under-
gone the least amount of heating) – the meteorite class referred to as carbona-
ceous chondrites. Table 23.2 lists the major types of presolar materials found in



COMPOSITION OF INTERSTELLAR DUST 267

Table 23.2 Types and Properties of Major Presolar Materialsa,b Identified in
Meteorites and IDPs.

Material Source Grain Size Abundancec

(µm) (ppm)†
Amorphous silicates Circumstellar 0.2–0.5 20–3600
Forsterite (Mg2SiO4)
Enstatite (MgSiO3)

} Circumstellar 0.2–0.5 10–1800

Diamond ∼ 0.002 ∼ 1400
P3 fraction Not known
HL fraction Circumstellar

Silicon carbide Circumstellar 0.1–20 13–14
Graphite Circumstellar 0.1–10 7–10
Spinel (MgAl2O4) Circumstellar 0.1–3 1.2
Corundum (Al2O3) Circumstellar 0.5–3 0.01
Hibonite (CaAl12O19) Circumstellar 1–2 0.02
a Other presolar materials include TiC, MoC, ZrC, RuC, FeC, Si3N4, TiO2,

and Fe-Ni metal.
b See Huss & Draine (2007) for details and references therein.
c Abundance in fine-grained fraction (= matrix in primitive chondrites).

meteorites. Surprisingly, the principal carbonaceous material by mass consists of
extremely small (∼ 20 Å) particles of diamond. These “nanodiamonds” make up
fully 0.14% of the mass of the fine-grained matrix material in primitive carbona-
ceous chondrites.

While some of the nanodiamonds are definitely of presolar origin, it is possible
that the bulk of the nanodiamond material might have been produced in the solar
system – the provenance of the nanodiamond material is not yet known.

23.3 Observed Spectral Features of Dust

23.3.1 The 2175 Å Feature

The extinction curves in Fig. 21.2 show a conspicuous extinction feature at λ−1 =
4.6µm−1, or λ = 2175 Å. The feature is well-described by a Drude profile (Eq.
G.9). The central wavelength is nearly identical on all sightlines, but the width
varies significantly from one region to another (Fitzpatrick & Massa 1986).

The strength of this feature implies that the responsible material must be abun-
dant (Draine 1989b): it must be made from H, C, N, O, Mg, Si, S, or Fe. Small
graphite grains would have a strong absorption peak at about this frequency, due to
π → π∗ electronic excitations in the sp2-bonded carbon sheets (Stecher & Donn
1965; Draine 1989b). Because the carbon skeleton of polycyclic aromatic hydro-
carbon (PAH) molecules resembles a portion of a graphite sheet, such molecules
also tend to have strong electronic transitions at about this frequency. Although al-
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ternatives have been suggested [e.g., OH− on small silicate grains (Steel & Duley
1987; Bradley et al. 2005)], it seems most likely that the 2175 Å feature is due to
some form of sp2-bonded carbon material.

23.3.2 Silicate Features at 9.7 µm and 18 µm

There is a conspicuous infrared absorption feature at 9.7µm, shown in Fig. 23.2
(and later in Fig. 23.6). Silicate minerals generally have strong absorption reso-
nances due to the Si-O stretching mode near 10µm, and it seems virtually certain
that the interstellar 9.7µm feature is due to silicates. This conclusion is strength-
ened by the fact that the 10µm emission feature is seen in the outflows from
oxygen-rich stars (which would be expected to condense silicate dust) but not in
the outflows from carbon-rich stars. The interstellar 9.7µm feature is seen both
in emission [e.g., in the Trapezium region in Orion (Gillett et al. 1975a)] and in
extinction in the interstellar medium (Roche & Aitken 1984). Sightlines within a
few kpc of the Sun have AV /∆τ9.7 ≈ 18.5± 2 (see Table 1 of Draine 2003a), but
sightlines to sources near the Galactic Center have AV /∆τ9.7 = 9 ± 1 (Roche &
Aitken 1985).

Near 18µm, interstellar dust shows another feature, attributable to the Si-O-Si
bending mode in amorphous silicates.

Figure 23.2 Infrared extinction curve. The 8 to 13µm silicate profile is as observed
toward the Galactic Center by Kemper et al. (2004), but with AV /∆τ9.7µm = 18.5,
as appropriate for sightlines through diffuse gas within a few kpc of the Sun (see Table
1 of Draine 2003a). The 3.4µm C–H stretching feature is indicated.
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23.3.3 The 3.4µm Feature

There is a broad absorption feature at 3.4µm that is almost certainly due to the C–H
stretching mode in hydrocarbons. Pendleton & Allamandola (2002) concluded that
hydrocarbons with a mixed aromatic (ring) and aliphatic (chain) character provided
a good fit to the observed interstellar absorption, including the 3.35− 3.53µm re-
gion. This included hydrocarbon films deposited following laser-ablation of amor-
phous carbon in Ar, followed by exposure to atomic H (Mennella et al. 1999) or
from a weakly ionized plasma produced by laser-ablation of graphite in hydrogen
(Scott & Duley 1996a; Duley et al. 1998). Pendleton & Allamandola (2002) con-
cluded that the carbonaceous material was ∼ 85% aromatic and ∼ 15% aliphatic.
However, a separate study by Dartois et al. (2004) concluded that the at most 15%
of the carbon is aromatic. The aromatic/aliphatic ratio remains uncertain.

Somewhat surprisingly, the 3.4µm C–H feature is found to be weaker (relative
to the overall extinction) in dark clouds than in diffuse clouds (Shenoy et al. 2003),
which has been interpreted as evidence that the C–H bonds responsible for the
3.4µm feature are destroyed in molecular clouds, perhaps as the result of cosmic
ray irradiation, and regenerated when carbonaceous grains are exposed to atomic
hydrogen in diffuse clouds (Mennella et al. 2003).

23.3.4 Diffuse Interstellar Bands

The three features at 2175 Å, 9.7µm, and 18µm are by far the strongest features
seen in diffuse interstellar dust. There are, in addition, numerous weaker features
in the optical known as the diffuse interstellar bands or DIBs. These are features
that are too broad (FWHM >∼ 1 Å) to be absorption lines of atoms, ions, or small
molecules. The first DIBs were discovered 88 years ago (Heger 1922), and their
interstellar nature was established 76 years ago (Merrill 1934).

DIBs are present in Fig. 21.2, but appear much more clearly in the expanded
plot in Fig. 23.3, showing the extinction for 1.5µm−1 < λ−1 < 1.75µm−1, with
several conspicuous DIBs present, most notably the DIB at 5780 Å. The strongest
DIB falls at 4430 Å (not shown in Fig. 23.3). Hobbs et al. (2009) report a total of
414 DIBs between 3900 and 8100 Å!

It is embarassing that Nature has provided astrophysicists with this wealth of
spectroscopic clues, yet as of this writing not a single one of the DIBs has been
convincingly identified! It seems likely that some of the DIBs may be due to free-
flying large molecules (i.e., ultrasmall dust grains); this hypothesis has received
support from high resolution spectra of the 5797 Å feature (see Figure 23.4) show-
ing intrinsic ultrafine structure (Sarre et al. 1995; Kerr et al. 1998). Similar fine
structure is also seen in some other bands (Galazutdinov et al. 2003, 2005), and it
now seems likely that at least a substantial fraction of the DIBs are due to free-flying
molecules, possibly ionized. However, one would expect that a given molecule
would have multiple absorption lines to different vibrational states of the electronic
excited state. In a careful correlation study, McCall et al. (2010) found what ap-
pears to be a nearly perfect correlation between the strengths of DIBs at 6196.0 and
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Figure 23.3 Extinction at wavelength λ (relative to the extinction at IC = 8020 Å)
for 6667 Å > λ > 5714 Å, showing some of the diffuse interstellar bands, based on
the compilation by Jenniskens & Desert (1994).

Figure 23.4 Fine structure, possibly due to molecular rotation, in the λλ5797 Å DIB,
on 3 different sightlines. This and similar structure seen in other bands strongly sug-
gests that at least some DIBs arise in large free-flying molecules = ultrasmall dust
grains. From Kerr et al. (1998), reproduced by permission of the AAS.
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6613.6Å (air wavelengths), suggesting that these may be two absorption features
produced by a single absorber.

23.3.5 Ice Features in Diffuse and Dark Regions

In dark molecular clouds, a number of additional absorption features appear, most
notably a strong band at 3.1µm which is produced by the O-H stretching mode
in H2O ice. The spectrum of the Becklin-Neugebauer (BN) object in Figure 23.5
shows a very strong H2O absorption feature at 3.1µm, as does the spectrum of Sgr
A∗ in Figure 23.6.

However, the 3.1µm feature is not seen on sightlines that pass only through
diffuse interstellar clouds, even when the total extinction is large – the sightline
to the B5 hypergiant star Cyg OB2-12 has ∆τ(3.05µm)/∆τ(9.7µm) < 0.037,
implying that less than 0.4% of the O atoms on this sightline are in H2O (Gillett
et al. 1975b; Knacke et al. 1985; Whittet et al. 1997). We have seen [eq. (21.19)]
that Mgr/MH > 0.0083; it follows that if any H2O is present on this sightline, it
contributes < 0.5% of the grain mass. In the diffuse ISM, ices, if present at all, are
not a significant part of the dust mixture.

Although dust in the diffuse ISM appears to be ice-free, H2O can contribute a
significant fraction of the dust mass in dark clouds. Whittet et al. (1988) found
that in the Taurus dark cloud complex, the strength of the 3.1µm feature is approx-
imately given by

∆τ3.1 ≈
{

0 for AV
<∼ 3.3 mag ,

0.093(AV − 3.3mag) for AV
>∼ 3.3 mag ,

(23.1)

which suggests that ice is present only in regions that are shielded from the diffuse
starlight background by AV

>∼ 1.65 mag. The dust shielding is probably needed to
suppress H2O removal by photodesorption.

When a strong 3.1µm feature appears in absorption, a number of other ab-
sorption features are also seen, including features due to CO (4.67µm), CH3OH
(3.53µm), and CO2 (15.2µm). The shape of the 3.1µm H2O feature is indica-
tive of the type of ice and the impurities present in it. The relative strengths of the
various features indicate that H2O is the dominant “ice” species, with NH3, CO,
CH3OH, and CO2 as secondary constituents.

23.4 Silicates

Geologists are familiar with a great variety of silicate minerals, found in the crust
of the Earth, the Moon, and Mars, and in meteorites. In all cases, crystalline silicate
minerals exhibit strong absorption bands near 10µm (stretching of the Si-O bond)
and near 20µm (bending of the O-Si-O structure).

There is unequivocal evidence for substantial amounts of silicate material in the
interstellar medium. On sightlines in the Milky Way with sufficient column den-
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Figure 23.5 Upper panels: spectrum of the BN Object in the Orion Molecular Cloud
OMC-1. Lowe panels: estimated absorption optical depth τ . Strong absorption fea-
tures are seen at 3.1µm (O-H stretching mode in H2O), 4.27µm (C-O stretch in CO2),
6.02µm (H-O-H bend in H2O), 9.7µm (Si-O stretch in amorphous silicate), 18µm
(O-Si-O bend in amorphous silicate), with additional weaker absorption features. Nar-
row lines from gas-phase H2 and CO appear in emission. From Gibb et al. (2004),
reproduced by permission of the AAS.

sities, we observe strong absorption with a broad profile, peaking at λ = 9.7µm,
with FWHM ≈ 2.32µm (Kemper et al. 2004). Figure 23.5 shows the 2.5–30µm
spectrum of the Becklin-Neugebauer object (a bright infrared source in the OMC-1
molecular cloud). The spectrum shows strong absorption features due to amor-
phous silicate material at 9.7µm and 18µm (as well as additional absorption fea-
tures due to ices). Figure 23.6 shows spectrophotometry for three sources in the
Galactic Center region; in each case, a deep absorption feature with a minimum at
9.7µm is present, together with a weaker feature with a minimum near 18µm.

Interstellar dust grains heated by intense radiation fields – for example, the dust
near the Trapezium stars in the Orion Nebula (Gillett et al. 1975a) – exhibit strong
emission near 10µm, with a profile that resembles the absorption profile seen to-
ward the Galactic Center. Hot dust present in outflows from stars with oxygen-
rich atmospheres (with O/C > I) also shows a very similar emission feature near
10µm, whereas this emission feature is not seen in outflows from carbon stars (with
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Figure 23.6 Spectra of the Galactic Center (Sgr A�), and two infrared sources GCS3
and GCS4 located near the Galactic Center. In all cases there is strong absorption in the
9.7µm silicate feature, with associated weaker absorption in the 18µm feature. There
is also absorption in the 3.1µm feature of H2O ice toward Sgr A�, with weaker ice
absorption seen toward GCS 3. From Kemper et al. (2004), reproduced by permission
of the AAS.

C/O > 1), where the gas-phase chemistry is not expected to allow formation and
growth of silicates.

Identification of silicate material as a major component of interstellar grains
seems incontrovertible, but the specific chemical composition has been difficult to
determine. The observed interstellar absorption is broad and smooth, quite unlike
the highly structured absorption profiles measured for crystalline silicate minerals
in the laboratory. It appears that the interstellar material is amorphous rather than
crystalline. Amorphous silicates with absorption profiles that closely resemble the
observed interstellar profiles can be produced in the laboratory by ion bombard-
ment of initially crystalline material (Kraetschmer & Huffman 1979), formation in
smokes (Day 1979), rapid quenching of a melt (Jaeger et al. 1994), or deposition
following evaporation (Koike & Tsuchiyama 1992; Stephens et al. 1995; Scott &
Duley 1996b).

Based on nondetection of sharp features that would be produced by crystalline
silicates, upper limits can be placed on the fraction of interstellar silicates that are
crystalline. Li & Draine (2001) found that not more than 5% of interstellar Si atoms
could be in crystalline silicates, and more recent work has lowered the upper limit
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on the crystalline fraction to <∼ 2.2% (Kemper et al. 2005).
However, the infrared spectra of some AGB stars (de Vries et al. 2010), as well

as some comets (e.g., Comet Hale-Bopp: Wooden et al. 1999) and disks around
T Tauri stars, (Olofsson et al. 2009) do show fine structure characteristic of crys-
talline silicates. The fine structure indicates that the crystalline material present is
predominantly of an olivine (Mg2xFe2−2xSiO4) structure, with a magnesium frac-
tion x ≈ 0.8.

In crystalline silicates, the Mg/Fe ratio can be diagnosed by well-defined shifts
in spectral features, but determining the Mg/Fe ratio in amorphous silicates is much
more challenging. From the observed interstellar extinction, Kemper et al. (2004)
infer that Mg/(Mg+Fe)≈ 0.5; Min et al. (2007), on the other hand, conclude that
Mg/(Mg+Fe)≈ 0.9 .

The overall strength of the silicate absorption feature requires that a substan-
tial fraction of interstellar silicon atoms reside in amorphous silicate grains. See
Henning (2010) for a recent review of silicates in the ISM and around stars.

23.5 Polycyclic Aromatic Hydrocarbons

The infrared emission spectra of spiral galaxies show conspicuous emission fea-
tures at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7µm that are attributable to vibrational
transitions in polycyclic aromatic hydrocarbon (PAH) molecules. PAH molecules
are planar structures consisting of carbon atoms organized into hexagonal rings,
with hydrogen atoms attached at the boundary. Figure 23.7 shows the 5 to 15µm

Figure 23.7 The 5 to 15µm spectrum of the reflection nebula NGC 7023 (Cesarsky
et al. 1996).
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Figure 23.8 5.5 to 36.5µm spectra of the central regions of various galaxies.
Various emission lines (e.g., [Ne II]12.81µm, [Ne III]15.55µm, H2S(1)17.04µm,
[S III]18.71µm, [Fe II]25.99µm, [S III]33.48µm, and [Si II]34.82µm) are visible,
but the spectra are dominated by strong PAH emission features peaking at 6.2, 7.7,
8.6, 11.3, 12.7, 16.4, and 17µm. From Smith et al. (2007), reproduced by permission
of the AAS.

spectrum of the bright reflection nebula NGC 7023, showing the features at 6.2, 7.7,
8.6, 11.3, and 12.7µm. Weaker features are also present at 12.0 and 13.55µm. The
integrated emission from dusty spiral galaxies (see Figure 23.8) shows the same
PAH emission features as seen in NGC 7023 – PAH emission features can account
for as much as 20% of the total infrared luminosity of a star-forming galaxy. A
complex of emission features is present near 17µm; this complex correlates with
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the 6.2, 7.7, and 11.3µm features, and is presumed to also be emitted by PAHs.2

The 3.3µm feature (not shown in Fig. 23.7 or Fig. 23.8) is produced by the
C–H stretching mode in PAHs. The features at 6.2 and 7.7µm are produced by
vibrational modes of the carbon skeleton. The feature at 8.6µm is associated with
in-plane C–H bending modes, and the features at 11.3, 12.0, 12.7, and 13.55µm are
due to out-of-plane C–H bending modes, of H atoms at “mono,” “duo,” “trio,” or
“quartet” sites, defined by the number of adjacent H atoms. Figure 23.9 shows four
examples of PAHs, with examples of mono, duo, trio, or quartet sites indicated.

Figure 23.9 Structure of four PAHs. Examples of singlet, doublet, trio, and quartet H
atoms are indicated.

Interstellar PAHs may not be as perfect as the examples in Fig. 23.9 – for exam-
ple, one or more of the peripheral H atoms may be missing, perhaps replaced by
radicals such as OH or CN, or one of the carbons may be replaced by a nitrogen
(Hudgins et al. 2005).

A neutral PAH can be photoionized by the hν < 13.6 eV starlight in diffuse
clouds, creating a PAH+ cation, and large PAHs can be multiply ionized. Collision
of a neutral PAH with a free electron can create a PAH− anion. The fundamental
vibrational modes – C–H stretching and bending, and vibrational modes of the
carbon skeleton – remain at nearly the same frequency, although the electric dipole
moment of the different modes can be sensitive to the ionization state. For example,
the “solo” C–H out-of-plane bending mode at 11.3µm is much stronger for neutral
PAHs than for PAH ions, while the 7.7µm vibrational mode of the carbon skeleton
has a much larger electric dipole moment in PAH ions than in neutrals (see Draine
& Li 2007, and references therein).

2Table 1 of Draine & Li (2007) has a list of PAH features found in galaxy spectra.
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The fraction of interstellar carbon that is incorporated into PAH material is un-
certain. Based on the observed strength of the PAH emission features, it appears
that ∼ 10–15% of the interstellar carbon resides in PAHs containing fewer than
∼ 500 C atoms. For example, the dust model of Draine & Li (2007) has 20 ppm C
in PAHs with 30 to 100 C atoms, and another 20 ppm C in PAHs with 100 to 500
C atoms; together, these account for ∼ 14% of the total C abundance in Table 1.4.

The PAH emission features are excited only in PAHs that are sufficiently small
so that absorption of a single optical or UV photon can heat the grain to T >∼ 250K.
Additional PAH material may be incorporated into larger grains. In principle, this
material could be detected in absorption. The most-easily detected absorption fea-
ture may be the C-C bending mode at 6.2µm. Chiar & Tielens (2001) report an
upper limit on the strength of an interstellar absorption feature at this wavelength
that is slightly below the absorption strength predicted by the PAH model of Draine
& Li (2007).

More information about interstellar PAHs can be found in the review by Tielens
(2008).

23.6� Graphite

Graphite is the most stable form of carbon (at low pressures), consisting of infinite
parallel sheets of sp2-bonded carbon. A single (infinite) sheet of carbon hexagons
is known as graphene; each carbon atom in graphene has three nearest neighbors,
with a nearest-neighbor distance of 1.421 Å. Crystalline graphite consists of regu-
larly stacked graphene sheets, with an interlayer separation of 3.354 Å and a density
ρ = 2.26 g cm−3. The sheets are weakly bound to one another by van der Waals
forces. Carbon in which the graphene sheets are parallel, but not regularly stacked,
is known as turbostratic carbon; densities range from 2.21 – 2.26 g cm−3.

Graphite is a semimetal, with nonzero electrical conductivity even at low tem-
peratures. It is a strongly anisotropic material; the response to applied electric
fields depends on the orientation of the electric field relative to the “basal plane”
(i.e., graphene plane). Stecher & Donn (1965) noted that small, randomly oriented
graphite spheres would be expected to produce strong UV absorption with a profile
very similar to the observed “extinction bump” near 2175 Å. This absorption is due
to π → π
 transitions in the graphite. A C atom in the “interior” of a large PAH
molecule is bonded to 3 nearest-neighbor C atoms, just as in graphite. The electron
orbitals of the C atoms in the interior of a large PAH molecule are therefore very
similar to the electron orbitals in graphite, and PAHs therefore also have strong
absorption near 2175 Å due to π → π∗ electronic transitions.

Given the abundance of PAHs required to account for the observed IR emission
features, it now seems possible that the observed interstellar 2175 Å extinction fea-
ture may be produced primarily by absorption in PAH molecules, or clusters of
PAHs, rather than particles of graphite.
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23.7� Diamond

Diamond consists of sp3-bonded carbon atoms, with each carbon bonded to four
equidistant nearest neighbors. As mentioned earlier (see Table 23.2), diamond
nanoparticles are relatively abundant in primitive meteorites. Based on isotopic
anomalies associated with them, we know that some fraction of the nanodiamond
was of presolar origin, and thus was present in the interstellar medium prior to the
formation of the Sun; therefore, some nanodiamond is presumably present in the
ISM today, but its abundance is not known (see Jones & D’Hendecourt 2004).

23.8� Amorphous Carbons, Including Hydrogenated Amorphous Carbon

Graphite and diamond are ideal crystals, but carbonaceous solids are often dis-
ordered mixtures of both sp2- and sp3-bonded carbon, often with hydrogen also
present (see Robertson 2003). Amorphous carbon is a mixture of sp2- and sp3-
bonded carbon – one can think of it as a jumble of microcrystallites with more-
or-less random orientations, with the microcrystallites connected haphazardly by
interstitial carbon atoms. Amorphous carbon is not a well-defined material, and
its properties depend on the method of preparation. Densities are typically in the
range 1.8 to 2.1 g cm−3.

Hydrogenated amorphous carbon (HAC) is a class of materials obtained when
sufficient hydrogen is present, with H:C ratios ranging from 0.2:1 to 1.6:1 (Angus
& Hayman 1988). As with amorphous carbon, the properties of HAC depend on the
method of preparation. HAC is a mixture of sp2- and sp3-bonded carbon, giving it
a diamondlike character; the properties of HAC depend on the sp2 :sp3 ratio. HAC
is a semiconductor, with a bandgap. Jones et al. (1990) discuss the properties of
HAC as a candidate interstellar grain material.

Glassy or vitreous carbon (Cowlard & Lewis 1967), consisting primarily of
sp2-bonded carbon, but without long-range order, is another form of solid carbon
that is generally considered to be distinct from amorphous carbon. The density is
∼ 1.5 g cm−3. Vitreous carbon is electrically conducting, with a conductivity sim-
ilar to the conductivity of graphite for conduction in the basal plane. By contrast,
“amorphous” carbon (with a significant sp3 fraction) is an insulator.

23.9� Fullerenes

Fullerenes are cage-like carbon molecules, including C60, C70, C76, and C84, where
the carbon is sp2-bonded with 3 near-coplanar nearest neighbors, but where a few
of the hexagons are replaced by pentagons to allow the surface to close upon itself.
C60, also known as buckminsterfullerene, is the most stable fullerene. Fullerenes
have been proposed as likely to be present in the ISM (Kroto & Jura 1992).
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Foing & Ehrenfreund (1994) found diffuse interstellar bands at 9577 Å and
9632 Å that were consistent, within uncertainties, with lab measurements of ab-
sorption by matrix-isolated C+

60, but the identification remains tentative because
of uncertain “matrix shifts” in the lab measurements, and failure to detect associ-
ated features expected near 9366 Å and 9419 Å (Jenniskens et al. 1997). Foing &
Ehrenfreund (1994) estimated that 0.3–0.9% of interstellar carbon in C+

60 would be
required to account for the observed DIBs at 9577 Åand 9632 Å.

Sellgren et al. (2010) reported observation of three infrared emission features, at
7.04, 17.4, and 18.9µm, that appear to confirm the presence of neutral C60 in the
reflection nebula NGC 7023. They estimate that 0.1–0.6% of interstellar carbon in
C60 is required to account for the strength of the emission bands. Cami et al. (2010)
report detection of IR bands of C60 and C70 in a young, carbon-rich, planetary
nebula. In this source they estimate that at least 1.5% of the available carbon is
present in each of the species, although the estimate is quite uncertain.

The detection of C60 in the reflection nebula NGC 7023 appears to confirm the
presence of fullerenes in the general interstellar medium. The abundances are un-
certain, but current evidence suggests that the fullerene family might contain as
much as 1% of the interstellar carbon. While significant, this would be an order
of magnitude below the estimated abundance of carbon in the PAH population.
Fullerenes altogether probably account for less than 1% of the total dust mass.

23.10 Models for Interstellar Dust

A model for interstellar dust must specify the composition of the dust as well as
the geometry (shape and size) of the dust particles. If the model is to reproduce
the polarization of starlight, at least some of the grains should be nonspherical and
aligned.

From the observational data available to us, it is not yet possible to arrive at a
unique grain model. A class of models that has met with some success assumes the
dust to consist of two materials: (1) amorphous silicate, and (2) carbonaceous ma-
terial. Mathis et al. (1977) showed that models using silicate and graphite spheres
with power-law size distributions dn/da ∝ a−3.5 for amin < a < amax [frequently
referred to as the Mathis-Rumpl-Nordsieck, or “MRN,” size distribution] could re-
produce the observed extinction from the near-infrared to the ultraviolet. Draine &
Lee (1984) presented self-consistent dielectric functions for graphite and silicate,
and showed that the graphite-silicate model appeared to be consistent with what
was known about dust opacities in the far-infrared.

With the recognition that PAH particles are an important component, it is nat-
ural to add them to the graphite-silicate model, either as a third component, or as
the small-particle extension of the graphitic material. (This is appropriate because
PAHs are, essentially, graphene fragments with hydrogen attached at the periphery.)
The carbonaceous material is assumed to be PAH-like when the particles are small
(a <∼ 0.005µm), but when the particles are large (a >∼ 0.02µm), the carbonaceous
material is approximated by graphite. Grain models based on amorphous silicate,
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graphite, and PAHs have been put forward by a number of authors (Desert et al.
1990; Weingartner & Draine 2001a; Zubko et al. 2004; Gupta et al. 2005; Draine
& Li 2007; Draine & Fraisse 2009). The size distributions should reproduce the
observed extinction curve (see Fig. 21.1), using amounts of grain material that are
consistent with the abundance limits in Table 23.1.

If a suitable shape is assumed (e.g., spheroids with some specified axial ratio),
such models are capable of reproducing both the wavelength-dependent extinction
and the wavelength-dependent polarization of starlight, provided the grains have a
suitable size distribution, and the degree of alignment is allowed to vary with grain
size (Kim & Martin 1995; Draine & Allaf-Akbari 2006; Draine & Fraisse 2009;
Das et al. 2010).

Figure 23.10 shows size distributions found by three independent studies, all
based on silicate, graphite, and PAH material. Weingartner & Draine (2001a, here-
after WD01) found size distributions that reproduce the observed extinction from
the infrared (4µm) to the vacuum ultraviolet (0.1µm). The half-mass grain radius
(50% of the mass in grains with a > a0.5) is a0.5 ≈ 0.12µm for both silicate and
carbonaceous grains. The model does a good job of reproducing the observed ex-
tinction (see Figure 23.11), but the assumed mass in dust exceeds estimates based
on elemental abundances and observed depletions. Table 23.3 shows the amounts
of the different elements that the WD01 model consumes. The WD01 model ap-
pears to require (231−186)/186= 24% more C in dust, and (48−27)/27= 78%
more Si in dust, than is indicated by observations of the CNM, although the dis-
crepancy is less severe if we use gas phase abundances measured toward ζ Oph: the
WD01 model requires only (231−210)/210=10% more C, and (48−34)/34=41%
more Si, than is indicated by observations toward ζ Oph.

As previously discussed in §23.1, the oxygen abundance is very problematic
(Jenkins 2009; Whittet 2010). The observed variations in the gas phase abundance
of oxygen in diffuse clouds imply that the abundance of oxygen in the solid phase
seemingly varyies from 80 ppm in the CNM to 242 ppm toward ζ Oph. The prob-
lem is that H2O ice is not present on these diffuse sightlines (see §23.3.5), and the
abundances of Mg, Fe, Si, etc. do not allow silicates or metal oxides to account for

Table 23.3 Abundances of Major Elements in Grains

Model Vcar Vsil C/Hd O/He Mg/He Si/Hg Fe/Hf

(cm3/H) (cm3/H) (ppm) (ppm) (ppm) (ppm) (ppm)
WD01a 2.09× 10−27 3.64× 10−27 231 193 48 48 48
ZDA04b 2.21× 10−27 2.71× 10−27 244 144 36 36 36
DF09c 1.89× 10−27 3.20× 10−27 209 170 42 42 42

Observed for typical CNM. f 186 80 35 27 34
Observed toward ζ Oph. g 210 242 39 34 35
a Weingartner & Draine (2001a). e Nominal composition MgFeSiO4, density 3.8 g cm−3.
b Zubko et al. (2004). f For CNM, from Table 9.5.
c Draine & Fraisse (2009). g Toward ζ Oph, from Table 23.1.
d Assumed carbon density 2.2 g cm−3.
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Figure 23.10 Size distributions for silicate and carbonaceous grains for dust models
from (a) Weingartner & Draine (2001a), (b) Zubko et al. (2004), and (c) Draine &
Fraisse (2009). The quantity plotted, (4πa3/3)dn/d ln a is the grain volume per H
per logarithmic interval in a. In each case, tick-marks indicate the “half-mass” radii
for the silicate grains and carbonaceous grains.

the large amount of oxygen that is missing from the gas. One possibility is that the
oxygen is somehow associated with the hydrocarbon material. The large variations
in gas-phase oxygen abundance, in regions where ices are not present, are, at this
time, not understood, and the dust models do not pretend to account for them.

The size distribution of the “BARE-GR-S” model of Zubko et al. (2004, herafter
ZDA04), composed of bare graphite grains, bare silicate grains, and PAHs, differs
significantly from the WD01 size distribution. There is much less mass in grains
with radii a >∼ 0.2µm – the half-mass radius is only 0.06µm for carbonaceous
grains, and 0.07µm for silicate grains. Both numbers are significantly smaller than
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Figure 23.11 Upper: Average observed extinction for RV = 3.1 (Fitzpatrick 1999)
and extinction curves calculated for the WDO1 silicate-carbonaceous model (Wein-
gartner & Draine 2001a) and for the ZDA04 BARE-GR-S silicate-carbonaceous model
(Zubko et al. 2004). The WD01 model provides considerably more extinction in the
infrared (1 to 4µm) than the ZDA04 model (see text). Lower: Separate contributions
of silicate and carbonaceous grains.
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the WD01 values. The reduced abundance of the larger grains in the ZDA04 model
appears to be the result of different values adopted for the “observed” extinction.
This can be seen in Figure 23.11, showing the “observed” extinction adopted by
WD01, as well as the extinction calculated for the WD01 and ZDA04 models.
The WD01 and ZDA04 models have similar extinction for λ < 1µm, but the
ZDA04 model does not reproduce the “observed” extinction in the infrared, where
the WD01 model provides substantially more extinction than the ZDA04 model.
The extra extinction in the infrared in the WD01 model is provided by additional
mass in (a >∼ 0.2µm) grains, which appears to be required in order to reproduce
the adopted “observed” extinction in the infrared.

It is sometimes suggested that nonspherical grains might be able to account for
the observed extinction using less mass. Draine & Fraisse (2009, hereafter DF09)
used grain models with spheroidal graphite and silicate grains to reproduce both
the observed extinction and polarization. The resulting size distributions for one
of their models is shown in Figure 23.10, and the elemental abundances consumed
are given in Table 23.3. The DF09 model uses (209−186)/186 = 12% more C
than is estimated to be available, well within the uncertainties, but overconsumes
Si by 55%, which is a large enough discrepancy to be worrisome. It may indi-
cate that there is a problem with the grain model, or it may indicate that the actual
extinction/H in the infrared may not be as large as the “observed” value that was
adopted to constrain the WD01 and DF09 dust models. Measuring both IR extinc-
tion and the totaly hydrogen column density is difficult, and further study of the
absolute extinction in the infrared would be very valuable. It is also possible that
the interstellar Si abundance may be larger than the current estimate for the Solar
abundance of Si.

23.10.1 Radiation Pressure Cross Sections

The radiation pressure cross section per H nucleon is

σrad.pr.(ν) = σabs(ν) + (1− 〈cos θ〉)σsca(ν) , (23.2)

where σabs and σsca are absorption and scattering cross sections per H, and θ is
the scattering angle. For a spectrum Lν , the spectrum-averaged radiation pressure
cross section per H is

〈σrad.pr.〉 ≡
∫
dνLνσrad.pr.(ν)∫

dνLν
. (23.3)

Figure 23.12 shows the spectrum-averaged radiation-pressure cross section calcu-
lated for the WD01 and ZDA04 dust models, for blackbody spectra Lν , as a func-
tion of the blackbody temperature T rad. Results are shown both for the WD01
model and for the ZDA04 model; note that the results are very similar.

For low values of the blackbody temperature, the radiation pressure cross section
is small, but it rises to a peak value ∼ 2 × 10−21 cm2/H for blackbody tempera-
tures ∼ 5000K. As we move to higher temperatures, 〈σrad.pr.〉 declines for two
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Figure 23.12 Planck-averaged radiation pressure cross section per H 〈σrad.pr.〉 for
the WD01 dust model and the ZDA04 BARE-GR-S dust model, as a function of the
blackbody temperature T rad. Dashed lines show 〈σrad.pr.〉 averaged over only the
hν < 13.6 eV portion of the spectrum, as would be appropriate in neutral gas. Also
indicated is the value 〈σrad.pr.〉 = 2.80 × 10−22 cm2/H calculated for the ISRF of
Mathis et al. (1983). For comparison, 1.2σT is shown, where σT is the Thompson
cross section.

reasons: the scattering is increasingly in the forward direction (〈cos θ〉 → 1), and
the absorption cross section begins to decline for high photon energies.

The interstellar radiation field is contributed by stars of many different temper-
atures, with the stellar radiation filtered through differing amounts of interstellar
dust. The radiation pressure cross section appropriate to the spectrum of the inter-
stellar radiation field in the solar neighborhood (taken from Mathis et al. 1983) is
found to be

〈σrad.pr.〉ISRF = 2.80× 10−22 cm2 H−1 , (23.4)

with nearly the same value found for the WD01 and ZDA04 size distributions. This
value is the same as for a ∼ 6000 K blackbody.

The radiation pressure cross section appropriate to fully ionized gas with He/H = 0.1
is also shown in Figure 23.12. It is apparent that for the dust abundance of the local
Milky Way, radiation pressure on dust dominates over free-electron scattering for a
broad range of radiation fields.



Chapter Twenty-four

Temperatures of Interstellar Grains

The “temperature” of a dust grain is a measure of the internal energy Eint present
in vibrational modes and possibly also in low-lying electronic excitations. If the
dust grain has internal energy E, the temperature T can be taken to be the thermo-
dynamic temperature for which the expectation value 〈Eint〉T = E. For very small
internal energies Eint, the concept of “temperature” becomes problematic, but this
is only an issue when Eint becomes comparable to the energy of the first excited
state of the grain.1 Such low degrees of excitation are rarely of interest. Therefore,
we will find it convenient to specify the energy content of a grain by its temperature
T .

Energy can be added or removed from the grain by absorption or emission of
photons, or by inelastic collisions with atoms or molecules from the gas.2 In diffuse
regions, where ample starlight is present, grain heating is dominated by absorption
of starlight photons; however, in dense dark clouds, grain heating can be dominated
by inelastic collisions.

The dust grains responsible for the bulk of the observed extinction at optical
wavelengths – grains with radii a >∼ 0.03µm – can be considered “classical.”
These grains are macroscopic – absorption or emission of single quanta do not
appreciably change the total energy in vibrational or elecronic excitations – and
their temperatures are discussed in §24.1.

The grain population also includes ultrasmall particles, ranging down to large
molecules, where quantum effects are important (this includes the “spinning” dust
grains responsible for microwave emission). Heating and cooling of these ultra-
small grains is the subject of §24.2.

24.1 Heating and Cooling of “Classical” Dust Grains

24.1.1 Radiative Heating

When an optical or ultraviolet photon is absorbed by a grain, an electron is raised
into an excited electronic state. If the electron is sufficiently energetic, it may be
able to escape from the solid as a “photoelectron.” In rare cases, the grain will

1The assignment of a nominal “temperature” to grains in very low states of excitation is discussed
by Draine & Li (2001).

2Grain–grain collisions will also heat grains, but are too infrequent to contribute significantly to the
infrared emission.
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Figure 24.1 Absorption efficiency Qabs(λ) divided by grain radius a for spheres of
amorphous silicate (left) and graphite (right). Also shown are power-laws that provide
a reasonable approximation to the opacity for λ >∼ 20µm.

“luminesce”: the excited state will decay radiatively, emitting a photon of energy
less than or equal to the energy of the absorbed photon.3 In most solids or large
molecules, however, the electronically excited state will deexcite nonradiatively,
with the energy going into many vibrational modes – i.e., heat.

Ignoring the small fraction of energy appearing as luminescence or photoelec-
trons, the rate of heating of the grain by absorption of radiation can be written(

dE

dt

)
abs

=

∫
uνdν

hν
× c× hν ×Qabs(ν)πa

2 . (24.1)

Here, uνdν/hν is the number density of photons with frequencies in [ν, ν + dν];
the photons move at the speed of light c and carry energy hν; and the grain has
absorption cross section Qabs(ν)πa

2.
Figure 24.1 shows Qabs(λ)/a (which is proportional to the absorption cross sec-

tion per unit volume) for graphite and silicate spheres with radii a = 0.01, 0.1, and

3Luminescence is referred to as “fluorescence” when it occurs promptly, and “phosphorescence”
when it involves slow decay from a metastable level.
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Figure 24.2 Absorption efficiency 〈Qabs〉ISRF averaged over the ISRF spectrum of
Mathis et al. (1983) for spheres of amorphous silicate and aromatic carbonaceous ma-
terial (graphite/PAH), as a function of radius a.

1µm. It is convenient to define a spectrum-averaged absorption cross section:

〈Qabs〉
 ≡
∫
dν u
νQabs(ν)

u

, u
 ≡

∫
dν u
ν , (24.2)

so that the radiative heating rate is simply(
dE

dt

)
abs

= 〈Qabs〉
πa2u
c . (24.3)

We use the subscript � because starlight is often the dominant source of radiation
heating the dust. Figure 24.2 shows 〈Qabs〉
 as a function of radius a for graphite
and silicate grains, and the spectrum of the interstellar radiation field (ISRF) from
Mathis et al. (1983) (see Chapter 12). The numerical results in Fig. 24.2 can be
approximated by

〈Q〉ISRF ≈ 0.18(a/0.1µm)0.6 , for silicate, 0.01 <∼ a <∼ 1µm , (24.4)

≈ 0.8(a/0.1µm)0.85 , for graphite, 0.005 <∼ a <∼ 0.15µm . (24.5)

The starlight energy density u
 = 1.05× 10−12U erg cm−3, where U = 1 for the
ISRF estimated by Mathis et al. (1983) (see Table 12.1).
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24.1.2 Collisional Heating

Consider a neutral, spherical grain of radius a, at rest in a gas with temperature
Tgas. The net rate of collisional heating by the gas can be written(

dE

dt

)
gas

=
∑
i

ni

(
8kTgas

πmi

)1/2

πa2 × αi × 2k(Tgas − Tdust) , (24.6)

where the sum is over different gas species i (H, He, H2, e−, H+, . . . ).4 The
term (8kTgas/πmi)

1/2 is the mean speed of species i. The mean kinetic energy
of thermal particles colliding with a surface is 2kTgas – larger than the mean ki-
netic energy 3

2kTgas in the gas because the more energetic particles collide more
frequently.

The net rate of energy transfer vanishes if Tgas = Tdust. The accommodation
coefficient 0 ≤ αi ≤ 1 measures the degree of inelasticity for collisions of particle
i with the solid surface. Perfectly elastic collisions would have αi = 0, whereas if
impinging particles “stick” to the surface for more than ∼ 10−12 s, the accommo-
dation coefficient αi ≈ 1. The value of αi for H, He, and H2 incident on interstellar
grain materials depends on Tgas and on the (uncertain) composition and roughness
of the grain surface (and on the grain temperature). At this time, our ignorance
of the surface physics is considerable, and it is usual to assume simply that for
Tgas

<∼ 104 K, αi will be less than 1 but of order unity – say, αi ≈ 0.5 .
In atomic H, the ratio of collisional heating to radiative heating is

(dE/dt)gas
(dE/dt)abs

=
nH(8kT/πmH)

1/22αHkT

〈Qabs〉
u
c
× 1.05 (24.7)

=
3.8× 10−6

U

αH

〈Qabs〉

( nH

30 cm−3

)( Tgas

102 K

)3/2

, (24.8)

where the factor 1.05 allows for He with n(He)/nH = 0.1.
We see, then, that for CNM conditions (Table 1.3), collisional heating is <∼ 10−5

of radiative heating, and can be ignored. Collisional heating can, however, be im-
portant within dark clouds, where the high gas density and very low intensity of
optical or UV radiation make collisional heating competitive.

24.1.3 Radiative Cooling

Grains lose energy by infrared emission, at a rate(
dE

dt

)
emiss.

=

∫
dν 4πBν(Td)Cabs(ν) = 4πa2〈Qabs〉Td

σT 4
d , (24.9)

4The contribution of ions or electrons to the heating is modified by the effects of electrostatic focusing
or repulsion. In the case of a neutral grain, the collision rate and heating rate are modified by polarization
effects. In the case of a charged grain, ions and electrons are subject to either Coulomb focusing or
repulsion. See Draine & Sutin (1987) for further details.
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Figure 24.3 Planck-averaged absorption efficiency divided by grain radius as a func-
tion of grain temperature T for spheres of amorphous silicate (left) and graphite/PAH
(right).

where σ is the Stefan-Boltzmann constant, and the Planck-averaged emission ef-
ficiency is defined by

〈Qabs〉T ≡
∫
dνBν(T )Qabs(ν)∫

dνBν(T )
. (24.10)

If Qabs(ν) can be approximated as a power-law in frequency,

Qabs(ν) = Q0 (ν/ν0)
β
= Q0 (λ/λ0)

−β
, (24.11)

then the Planck average can be obtained analytically:

〈Q〉 = 15

π4
Γ(4 + β)ζ(4 + β)Q0

(
kT

hν0

)β

, (24.12)

where Γ(x) and ζ(x) are the usual gamma function and Riemann ζ-function, re-
spectively. From Fig. 24.1, we see that

Qabs ≈ 1.4× 10−3

(
a

0.1µm

)(
λ

100µm

)−2

, silicate, λ >∼ 20µm, (24.13)

≈ 1.0× 10−3

(
a

0.1µm

)(
λ

100µm

)−2

, graphite, λ >∼ 30µm. (24.14)
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The Planck averages are then5

〈Qabs〉T ≈ 1.3× 10−6(a/0.1µm)(T/K)2 (silicate) (24.15)

≈ 8× 10−7(a/0.1µm)(T/K)2 (graphite). (24.16)

These are plotted in Fig. 24.3, and are seen to agree very well at T <∼ 102 K with
the Planck averages calculated using the actual Qabs(ν).

24.1.4 Steady State Grain Temperature

We can now determine the steady state grain temperature Tss by requiring that
cooling balance heating:

4πa2〈Qabs〉TssσT
4
ss = πa2〈Qabs〉
u
 c , (24.17)

where 〈Qabs〉
 is the grain absorption cross section averaged over the spectrum of
the radiation (usually starlight) heating the grain (see Eq. 24.2), with energy density
u
. If Qabs = Q0(λ/λ0)

−β in the infrared, the solution is

Tss =

(
hν0
k

)β/(4+β) [
π4〈Qabs〉
 c

60Γ(4 + β)ζ(4 + β)Q0σ

]1/(4+β)

u
1/(4+β)

 . (24.18)

If we assume the spectrum of the ISRF, and the absorption properties of silicate and
graphite, then

Tss ≈ 16.4 (a/0.1µm)
−1/15

U1/6 K , silicate, 0.01 <∼ a <∼ 1µm (24.19)

≈ 22.3 (a/0.1µm)
−1/40

U1/6 K , graphite, 0.005 <∼ a <∼ 0.15µm (24.20)

for U <∼ 104. Figure 24.4 shows that the above approximations agree very well
with numerical results for the steady-state grain temperature.

24.2 Heating and Cooling of Ultrasmall Dust Grains: Temperature Spikes

Above we evaluated the steady-state temperature Tss at which the time-averaged
power radiated by the grain is equal to the time-averaged rate of heating the grain.
When the grain is at this temperature, the vibrational energy content of the grain is

Evib(Tss) =

∫ Tss

0

C(T )dT , (24.21)

5Γ(6) = 5! = 120 and ζ(6) = 1.0173
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Figure 24.4 Equilibrium temperature for astrosilicate and carbonaceous grains heated
by starlight with the spectrum of the local radiation field, and intensity U times the
local intensity. Also shown are the power-laws T = 16.4U1/6 K and T = 22.3U1/6

for a = 0.1µm from Eqs. (24.19 and 24.20).

where C(T ) is the heat capacity of the grain at temperature T . If Evib(Tss) <∼
〈hν〉abs, where 〈hν〉abs is the mean energy per absorbed photon, then individual
photon absorptions will cause pronounced upward jumps in the grain tempera-
ture. It will also be the case that substantial radiative cooling of the grain will
take place between photon absorptions. As the result, the grain temperature T will
be a strongly fluctuating quantity, with large excursions above and below Tss.

Figure 24.5 shows the temperature histories of five graphitic grains over the span
of 105 s (∼ 1 day). For the grain sizes shown here, Qabs(λ) ∝ a, so that Cabs ∝
a3, and the starlight photon absorption rate ∝ a3U ≈ 1 × 10−6U(a/10 Å)3 s−1.
Because the time to cool below ∼ 5K is only ∼ 104 s – independent of grain size
for a <∼ 200 Å – a small grain can cool to a very low temperature between photon
absorptions, as seen for a <∼ 50 Å for U = 1. When a photon absorption does
take place, the small heat capacity of the grain results in a high peak temperature.
It is clear that one cannot speak of a representative grain temperature under these
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Figure 24.5 Temperature versus time during 105 s (∼ 1 day) for five carbonaceous
grains in two radiation fields: the local starlight intensity (U = 1; left panel) and 102

times the local starlight intensity (U = 102; right panel). The importance of quantized
stochastic heating is evident for the smaller sizes.

conditions – one must instead use a temperature distribution function. As the grain
size is increased, however, photon absorption events occur more frequently, the
temperature rise at each event is reduced by the increased heat capacity, and the
temperature varies over only a small range, as seen for the a = 200 Å grain in
Figure 24.5.

To calculate the emission from small, stochastically heated grains, one requires
the probability distribution function dP/dT , where P (T ) is the probability that
the grain will have temperature less than or equal to T . The temperature distribu-
tion function dP/dT will depend on grain size a, composition, and the intensity
(and spectrum) of the radiation illuminating the grains. While dP/dT can be ob-
tained from a Monte Carlo simulation of T (t) (Draine & Anderson 1985), it is far
more efficient to solve directly for the discretized steady state distribution function
(Guhathakurta & Draine 1989; Draine & Li 2001).

Figure 24.6 shows temperature distribution functions calculated for graphite/PAH
dust grains of selected radii, exposed to the ISRF of Mathis et al. (1983). We see
that dP/dT for a grain with a = 10 Å extends to T = 400K – this is the tempera-
ture that this grain will be heated to when it absorbs a single photon with energy just
below the Lyman limit cutoff at 13.6 eV. While the probability of finding the grain
at T > 100K is very small, nevertheless most of the energy radiated by the grain
is radiated while it is at temperatures above 100K – the typical absorbed photon
raises the grain temperature to T >∼ 200K, and the grain must radiate away most
of this heat before the temperature drops to 100K. Grains such as these radiate
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Figure 24.6 Temperature distribution function dP/d lnT for seven carbonaceous
grains in ISRF with U = 1. Curves are labeled by grain radius a. For the a = 10
and 20 Å curves, the dot indicates the first excited state, and P (0) is the fraction in the
ground state.

strongly in the PAH features at 7.7, 8.6, and 11.3µm.
It should also be noted that dP/dT shown for the a = 10 Å grain does not extend

below ∼ 23K. This is because this “temperature” corresponds the grain having a
single vibrational quantum in the lowest vibrational mode.

For U = 1 and radii a >∼ 50 Å, dP/dT has a well-defined peak, and the distri-
bution becomes narrower as a is increased. Note that for a = 316 Å, dP/d lnT
peaks at 22K, close to Tss = 23K predicted by Eq. (24.20).

24.3 Infrared Emission from Grains

In a typical spiral galaxy, perhaps 1
3 of the energy radiated by stars is absorbed

by dust grains, and reemitted in the infrared. The spectrum of this emission is
determined by the temperatures and composition of the dust grains.

Ultimately, infrared emission is a quantum process – a radiative transition be-
tween an upper and lower energy level of the grain. However, it has been shown
(Draine & Li 2001) that a “thermal” approach provides an excellent approxima-
tion – the power per unit frequency radiated by a grain containing energy Eu is
approximated as Pν = 4πBν(T )Cabs(ν), where T is the temperature for which
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Figure 24.7 Infrared emission spectrum for model with silicate and graphite/PAH
grains in ISRF intensity scale factor U from 0.1 to 104 (U = 1 is the local ISRF).
Spectra are scaled to give power per H nucleon per unit U , calculated using the model
of Draine & Li (2007).

〈Eint〉T = Eu. Therefore, the emissivity of a population of grains can be written

jν =
∑
i

∫
da

dni

da

∫
dT

(
dP

dT

)
i,a

Cabs(ν; i, a)Bν(T ) , (24.22)

where (dni/da)da is the number density of grains of type i with radii in [a, a+da].
Calculation of jν , therefore, requires a grain model to provide the size distribu-

tions dni/da for each composition i, the absorption cross sections Cabs(ν; i, a),
and the temperature distribution functions (dP/dT )i,a. For large grains, the tem-
perature distribution function is sufficiently narrow that it may be approximated
by a delta function dP/dT → δ(T − Tss), where Tss is the steady-state temper-
ature for which the time-averaged cooling equals the time-averaged heating, but
for a <∼ 0.01µm, one should use a realistic temperature distribution dP/dT rather
than a delta-function.

Model infrared emission spectra have been calculated by Draine & Li (2007)
for a grain model that consists of carbonaceous grains and amorphous silicate
grains, with size distributions that reproduce the average interstellar extinction
curve. Spectra for this grain model are shown in Fig. 24.7. The spectra are nor-
malized by U . We see that the power per logarithmic interval has a peak in the far-
infrared that corresponds to emission from “large” grains with more-or-less steady
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temperatures Tss ≈ 20U1/6 K. As expected, this peak shifts toward shorter wave-
lengths as U is increased and the grains become warmer. The long wavelength peak
in λIλ occurs at λpeak ≈ 140U−1/6 µm, consistent with the expected variation of
Tdust ∝ U1/6 from Eqs. (24.19 and 24.20).

There are additional peaks at shorter wavelengths that are due to vibrational
modes of PAH grains (see §23.5); these features account for ∼ 25% of the total
power, but (when normalized by the total power) these features hardly change as
the radiation intensity is changed. The PAH emission occurs following single-
photon heating of very small grains. Increasing U causes the “temperature spikes”
to occur more frequently, but even for U = 104, grains with a <∼ 10 Å are able to
cool thoroughly during the time between photon absorptions, losing all of the ab-
sorbed photon energy before the next absorption takes place. Therefore, the PAH
features each contain a nearly constant fraction of the total energy radiated.

Figure 24.7 shows emission spectra for dust heated by different starlight inten-
sities U . A star-forming galaxy will contain regions with a wide range of starlight
intensities, and a weighted sum over U is appropriate, although at this time we lack
an a-priori understanding of what distribution function over U is appropriate. Us-
ing simple distribution functions, model spectra can be obtained that appear to be
consistent with the observed spectra for star-forming galaxies (Draine et al. 2007).

24.4 Collisionally Heated Dust

In an ionized gas, the ratio of collisional heating to radiative heating by starlight is

(dE/dt)coll
(dE/dt)


≈ 2nekT

u

× γe

〈Qabs〉
 × (8kT/πme)
1/2

c
, (24.23)

where the factor γe allows for Coulomb focusing/repulsion of the electrons, as
well as for the possibility that only a fraction of the kinetic energy of the impact-
ing electron may be converted to heat. Normally, the thermal pressure 2nekT is
comparable to the starlight energy density u
, and collisional heating is negligible
because the electron thermal speed (8kTe/πme)

1/2 is small compared to c. How-
ever, in a hot dense plasma, collisional heating can dominate – an example is the
shock-heated gas produced by the interaction between the ejecta from SN 87a and
the preexisting equatorial ring. Dwek et al. (2010) show that the IR emission be-
tween days 6000 and 8000 was dominated by ∼ 180K silicate dust, heated by a
plasma with ne ≈ 3 × 104 cm−3 and T ≈ 5 × 106 K. Collisionally heated dust
is also seen in the supernova remnant Cas A (Arendt et al. 1999; Rho et al. 2008),
where ne ≈ 400 cm−3 and T ≈ 4× 106 K in the shocked knots.

Stochastic heating can be important for small grains, because a single electron
impact may deposit ∼ 2kTe ≈ 700(Te/4× 106 K) eV of heat.



Chapter Twenty-five

Grain Physics: Charging and Sputtering

25.1 Collisional Charging

Consider a spherical dust grain of radius a and charge Zgre. If we assume that an
approaching “projectile” with charge Zproje does not perturb the charge distribu-
tion on the grain, then we can approximate the interaction potential as a monopole
interaction:

V (r) =
ZprojZgre

2

r
. (25.1)

Let the projectile have initial kinetic energy E, and impact parameter b, and suppose
the distance of closest approach is rmin. Angular momentum is conserved, so that
the speed at closest approach is (2E/mproj)

1/2b/rmin; energy conservation then
requires

E =

(
b

rmin

)2

E +
ZgrZproje

2

rmin
. (25.2)

Consider projectiles with energy E: they will collide with the grain surface if, and
only if, rmin ≤ a. By setting rmin = a, we can solve Eq. (25.2) for the maximum
impact parameter bmax(E), and obtain the collision cross section

σ(E) = πb2max(E) = πa2
[
1− ZgrZproje

2

aE

]
. (25.3)

The rate at which projectiles collide with the grain in a thermal gas is obtained by
integrating over the Maxwellian distribution of energies, [see Eq. (2.5)]:(

dN

dt

)
proj

=nproj

∫ ∞

Emin

σ(E) vfE dE (25.4)

=πa2nproj

(
8kT

πmproj

)1/2

F (Zprojφ) , (25.5)

φ≡ Zgre
2

akT
, F (x) ≡

{
(1− x) if x < 0 ,
e−x if x > 0 .

(25.6)

The function F defined in Eq. (25.6) is the amount by which Coulomb focusing
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changes the collision rate relative to the rate for an uncharged grain. Consider now
a plasma. Let ne be the electron density, and ni be the density of ions with charge
Zie. An initially uncharged grain will collide more frequently with electrons than
with ions, and will acquire negative charge until the rate of collisions with ions
balances the rate of collisions with electrons. The condition for this is

Zinisim
−1/2
i (1− Ziφ) = nesem

−1/2
e eφ , (25.7)

where si and se are the “sticking” coefficients for ions and electrons. For a hydro-
gen plasma, if we assume se = si, this becomes

(1− φ)e−φ =
√
1836.1 . (25.8)

This transcendental equation has solution φ = −2.504: the grain will charge to a
potential U = −2.504kT/e = −2.16T4V. The grain charge is

Zgr =
Ua

e
= −2.504

akT

e2
= −150

(
a

0.1µm

)
T4 . (25.9)

Charge quantization will be important when aT <∼ 102 µmK.
When the grain is neutral, an approaching electron or ion will polarize the grain,

attracting the projectile to the grain. This can significantly enhance the charging
rate for neutral grains (Draine & Sutin 1987) and is especially important for very
small grains, which may have an appreciable probability of being neutral.

25.2 Photoelectric Emission

When an energetic photon is absorbed in the grain, it may excite an electron to
a sufficiently high energy so that the electron may escape from the grain, Such
an ejected electron is referred to as a “photoelectron.” The “photoelectric yield”
Ype(hν, a, U) is just the probability that absorption of a photon of energy hν will
result in a photoelectron; Y will depend on the photon energy, the composition of
the grain, the grain size a, and the potential U to which the grain is already charged.
The rate at which photoelectrons are ejected is(

dN

dt

)
pe

=

∫
dν

uνc

hν
πa2QabsYpe . (25.10)

Photoelectric emission from solids can be measured in the laboratory, but is dif-
ficult to calculate theoretically because it involves calculating the probability that
an excited electron will travel from the point of photon absorption and across the
grain surface without losing too much of its initial kinetic energy along the way.
In the case of photoelectric emission from small grains, there are three additional
complications:



298 CHAPTER 25

Figure 25.1 Photoelectric yield Y for uncharged carbonaceous grains for selected radii,
as a function of photon energy. For sufficiently small grains, Y can exceed unity
because of secondary electron emission for hν >∼ 14 eV, and Auger electron emission
for hν > 291 eV. From Weingartner et al. (2006), reproduced by permission of the
AAS.

1. Even if the grain is initially neutral, an escaping photoelectron leaves behind
a positively charged grain; after traversing the grain surface, an electron must
overcome a Coulomb potential in order to escape to infinity. This causes
the “ionization potential” for very small grains to be larger than the “work
function” for the bulk solid.

2. An electron outside a solid polarizes the nearby solid material, inducing a
positive charge density that produces an attractive potential. In the case of
a small grain, this “image charge” effect is modified relative to that for bulk
material. This alters the potential that an electron has to overcome in order
to escape to infinity.

3. When the grain is small compared to the photon absorption length Labs [see
Eq. (22.11)], photon absorption events will, in general, be closer to the sur-
face than in a bulk sample. Therefore, the probability of being able to travel
to the surface without energy loss is increased, resulting in an increase in the
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photoelectric yield Ype.

The bottom line is that we have only approximate estimates for Ype(hν, a, U) for
small particles of likely interstellar grain materials. Weingartner et al. (2006) have
recently estimated photoelectric yields for silicate grains and carbonaceous grains.

25.3 Grain Charging in the Diffuse ISM

In the diffuse ISM, the density of UV photons is comparable to the electron density,
but photons move at the speed of light, much faster than the electrons. If Qabs is
of order unity, the photon absorption rate will be large compared to the rate at
which electrons collide with the grain. Therefore, if Ype is not small, photoelectric
charging can drive the grain to a positive potential. As the grain becomes positively
charged, Ype declines, because some electrons that would have been able to escape
from a neutral grain do not have enough energy to overcome the potential from
a positively charged grain. Furthermore, Coulomb focusing increases the rate at
which electrons collide with the grain. The resulting grain potential U will satisfy
the equation

nisi

(
8kT

πmi

)1/2

F (eU/kT )+

∫
dν
(uνc

hν

)
QabsYpe(hν, a, U) =

nese

(
8kT

πme

)1/2

F (−eU/kT ) . (25.11)

where F is defined in Eq. (25.6). This equation can be solved for U , and the grain
charge Zgr = Ua can be calculated. In Eq. (25.11), the grain charge has been
treated as continuous. If the resulting |Zgr| � 1, this is a good approximation,
but if |Zgr| <∼ 10, then charge quantization will be important, and it is necessary
to solve for the charge distribution function f(Zgr; a). This can then be used to
calculate charge-dependent processes, such as the Lorentz force on a moving grain.

Figure 25.2 shows the charge distribution function f(Zgr) for selected grain sizes
for conditions corresponding to the CNM. Charge quantization is important for
a <∼ 200 Å.

The time-averaged electrostatic potential 〈U〉 as a function of grain size is shown
in Fig. 25.3 for grains exposed to the average starlight background in CNM, WNM,
and WIM conditions. For our current best estimates of grain photoelectric yields,
it appears that the ultraviolet radiation in the average starlight background is able
to drive grains with radii a >∼ 0.01µm to positive potentials.

25.4� Secondary Electron Emission

Because infrared emission is so effective at cooling grains, they can remain cool
even in very hot (e.g., T >∼ 106 K) plasma, for the plasma densities that are found
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Figure 25.2 Charge distribution function for carbonaceous grains and silicate grains
of selected radii in the diffuse ISM with the MMP83 interstellar radiation field (Mathis
et al. 1983). The grain radius and mean charge 〈Z〉 is given in each panel. After Draine
(2004).

in the interstellar or intergalactic medium. However, just as energetic electrons
can collisionally ionize an atom, they can also eject bound electrons from a solid
grain. This process is called secondary electron emission. Secondary emission
yields have been estimated by Draine & Salpeter (1979). For selected energies and
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Figure 25.3 Time-averaged potential U as a function of grain size for silicate and car-
bonaceous grains for 3 different environments: CNM, WNM, and WIM. Also shown
are potentials for Z = ±1; away from the (shaded) region bounded by these two
curves, charge quantization is of secondary importance.

grain sizes, the secondary electron yield can exceed the sticking coefficient for the
incident electron, so that the net effect of electron collisions is to cause the grain to
become positive, even in the absence of photoelectric emission!

25.5� Electron Field Emission

When bombarded by energetic electrons, the grain potential may be driven to large
negative values, resulting in a large electric field at the grain surface. If the electric
field exceeds ∼ 107 V cm−1, electrons begin to be ejected from the grain via a
quantum-mechanical tunneling process – this is known as electron field emission.



302 CHAPTER 25

25.6� Ion Field Emission and Coulomb Explosions

If collisions with hot plasma or x-ray irradiation drive the grain to sufficiently large
positive potential, the electric field at the grain surface can become large enough
so that one of two things will happen. If the grain is structurally weak, then the
Coulomb repulsion between the positive charge on different parts of the grain may
result in a Coulomb explosion, where the grain fragments into two or more parts.

If, however, the mechanical strength of the grain is comparable to the strengths of
ideal materials, the situation is different: before the electric field is strong enough
to fracture the grain, individual ions will begin to be emitted from the surface,
carrying away positive charge. This process is known as ion field emission. The
electric field has to approach 3× 108 V cm−1 for ion field emission to occur.

Grains near gamma-ray bursts are exposed to very high x-ray fluxes, which can
lead to either ion field emission (Waxman & Draine 2000) or Coulomb explosions
(Fruchter et al. 2001). Current uncertainties concerning the structure of interstellar
grains leave both possibilities open.

25.7 Sputtering in Hot Gas

If the gas temperature is sufficiently high, then impinging atoms or ions can erode
the grain, one atom at a time, through a process known as sputtering. The sput-
tering yield Ysput(E), depends on the impact energy E of the projectile ion, on
the composition of the target, and also on the mass and charge of the impacting
ion. It is not yet possible to calculate Ysput(E) reliably from first principles, but
experiments have been carried out for various materials, and formulae have been
found that approximately reproduce the measured yields and that allow us to esti-
mate yields for projectile-target combinations that have not yet been studied – see
Draine (1995) for a review.

In high-temperature gas, sputtering rates can be rapid. For a stationary grain, the
thermal sputtering rate is just

da

dt
= −mx

4ρ

∑
i

ni

∫ ∞

Emin

dEfE

(
2E

mi

)1/2(
1− ZieU

E

)
Ysput(E−ZieU),

(25.12)

where fE is the energy distribution function [Eq. (2.5)], the sum is over projectile
species i (e.g., H+, He++), the (1−ZieU/E) term is the Coulomb focusing factor,
the sputtering yield is evaluated using the kinetic energy at impact, and Emin =
max(0, ZieU). If the grain is moving relative to the gas, as in shocked gas, the
sputtering rate is calculated using the velocity distribution as seen by the grain
(Draine & Salpeter 1979).

Figure 25.4 shows thermal sputtering rates estimated for graphite and silicate
grains. For 105 <∼ T <∼ 109 K the calculated sputtering rates for graphite, silicate,
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Figure 25.4 Thermal sputtering rates (Draine & Salpeter 1979). For 106 <∼ T <∼
109 K all three refractory materials (iron, silicate, graphite) have (1/nH)|da/dt| ≈
10−2 cm3 Å yr−1

or iron grains can be approximated by

da

dt
≈ −1× 10−6

1 + T−3
6

( nH

cm−3

)
µmyr−1 , (25.13)

corresponding to a grain lifetime

τ =
a

|da/dt| ≈ 1× 105
[
1 + T−3

6

] (a/0.1µm)

(nH/ cm−3)
yr . (25.14)

Thus, in a supernova remnant with nH ≈ 1 cm−3 and T6
>∼ 1, a grain with initial

radius a = 0.1µm could survive for ∼ 105 yr. In the x-ray emitting gas of the
Coma cluster, with T ≈ 9.6×107 K (kT ≈ 8.25 keV) and nH = 2.9×10−3 cm−3

(Hughes et al. 1988; Herbig et al. 1995), a 0.1µm dust grain would have a lifetime
τ ≈ 3× 107 yr, short compared to the cluster age.



Chapter Twenty-six

Grain Dynamics

The motion and rotation of interstellar grains is determined by the forces and
torques that act upon them. Grain motion is important because it can result in
separation of dust from gas, because rapid motions can lead to grain destruction,
and because the moving grains may help couple the neutral gas to the magnetic
field in regions where the fractional ionization is low.

26.1 Translational Motion

26.1.1 Gas Drag

A grain moving relative to gas or plasma is subject to drag forces. If the grain is
spherical, and if the colliding atoms or ions are assumed to either stick or undergo
specular reflection, the drag force is given by (Spitzer 1962; Baines et al. 1965;
Draine & Salpeter 1979)

Fdrag =2πa2kT

{∑
i

ni

[
G0(si) + z2i φ

2 ln(Λ/zi)G2(si)
]}

, (26.1)

G0(s)≡
(
s2 + 1− 1

4s2

)
erf(s) +

1√
π

(
s+

1

2s

)
e−s2 , (26.2)

≈ 8s

3
√
π

(
1 +

9π

64
s2
)1/2

, (26.3)

G2(s)≡ erf(s)

s2
− 2

s
√
π
e−s2 , (26.4)

≈ s

(3
√
π/4 + s3)

, (26.5)

φ≡ eU/kT , (26.6)

si ≡
(
miv

2/2kT
)1/2

, (26.7)

Λ≡ 3

2ae|φ|
(

kT

πne

)1/2

. (26.8)

The approximation (26.3) is accurate to within 1%, and (26.5) to within 10%; both
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are exact in the limits s → 0 and s → ∞. The sums over i run over the atomic
and ionic species in the gas, with masses mi and charges zie. U = zgraine/a is
the electrostatic potential at the grain surface. The electron contribution to Fdrag

is generally negligible. Note that the “Coulomb drag” term ∝ φ2 ln Λ G2 can be
large if s <∼ 1 and φ2 ln Λ � 1.

Let τM be the time for a stationary grain to collide with its own mass Mgr of gas.
In gas with n(H)/nH = 1, n(He)/nH = 0.1:

τM =
(4π/3)ρa3

πa2nH(8mHkT/π)1/2 × 1.2
(26.9)

=1.45× 105
(

ρ

3 g cm−3

)
a−5

(
30 cm−3

nH

)
T

−1/2
2 yr , (26.10)

where

a−5 ≡ a

10−5 cm
≡ a

0.1µm
. (26.11)

In the absence of other forces, the slowing-down time, or drag time, is

τdrag ≡ Mgrv

Fdrag
. (26.12)

In neutral gas, for subsonic motion (sH � 1):

τdrag =
3

4
τM (26.13)

=1.1× 105
(

ρ

3 g cm−3

)
a−5

(
30 cm−3

nH

)
T

−1/2
2 yr . (26.14)

In diffuse clouds, gas drag is able to decelerate grains on relatively short time scales
of only ∼ 105 yr.

26.1.2 Lorentz Force

Grains with a velocity component transverse to the local magnetic field B will
experience a Lorentz force if they have a nonzero charge, as is often the case. We
write

FB = Mgr�v × �ωB �ωB ≡ Q

Mgrc
�B . (26.15)

A grain charged to a potential U = Q/a will orbit around the magnetic field with a
period

τB =
2π

ωB
= 2π

Mgrc

|Q|B = 450

(
ρ

3 g cm−3

)
a2−5

(
Volt

|U |
)(

5µG

B

)
yr. (26.16)
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26.1.3 Radiation Pressure and Recoil Forces

The interstellar radiation field is, in general, quite anisotropic. The radiation pres-
sure force on a grain is

Frad = 〈Qpr〉πa2∆urad , (26.17)

where ∆urad = Fnet/c, Fnet is the net (vector) radiative flux, and 〈Qpr〉 is Qpr(λ)
averaged over the spectrum of Fnet. Radiation pressure can drive grains through
the gas with appreciable velocities.

In addition to the direct force due to absorption or redirection of photon mo-
menta, anisotropic radiation fields can result in large forces on dust grains if there
is preferential ejection of either atoms or electrons from the “illuminated” side of
the grain. The recoil from ejected electrons or atoms can be large, resulting in a
large time-averaged force (Weingartner & Draine 2001c).

26.1.4 Poynting-Robertson Effect

Consider a particle in a circular orbit with radius R and velocity vorb around a
star with luminosity L
. Because of aberration of starlight, in the instantaneous
rest frame of the orbiting particle, the radiative flux from the star has a component
βL/4πR2 in the direction antiparallel to the motion of the grain, where β ≡ vorb/c.
This radiation therefore acts to reduce the orbital angular momentum J of the par-
ticle. This is called the Poynting-Robertson effect; the torque(

dJ

dt

)
PR

= −β
L


4πR2c
〈Qpr〉
πa2R , (26.18)

leads to orbital decay on a time scale that depends on the grain size:

τPR =
J

−(dJ/dt)PR
=

16π

3

ρac2R2

〈Qpr〉
L

(26.19)

=8.3× 107 yr

(
ρ

3 g cm−3

)( a

cm

)( R

AU

)2
1

〈Qpr〉

L�
L


, (26.20)

where 〈Qpr〉
 is the radiation pressure efficiency factor averaged over the stel-
lar spectrum. The mean photon energy for a blackbody of temperature T
 is ∼
3kT
, and we expect Qpr ≈ 1 for x ≡ 2πa/λ >∼ 1. Thus 〈Qpr〉
 ≈ 1 for
a >∼ (1/2π)hc/3kT
 ≈ 0.15µm × (5000K/T
). Poynting-Robertson drag can
lead to orbital decay on <∼ Gyr time scales for particles up to ∼ 10 cm in size.
Micron-sized particles have very short orbital lifetimes near stars.

26.1.5 Radiation-Pressure-Driven Drift

If an anisotropic radiation field is present, it will cause grain drift. If a magnetic
field is present, we must distinguish between motions parallel and perpendicular to
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Figure 26.1 Drift velocity for silicate grains, as a function of grain size, in two envi-
ronments, cold neutral medium (CNM) and warm neutral medium (WNM), showing
drift velocity calculated for radiation pressure only (dotted-dashed curve), and includ-
ing force from photoelectric emission and photodesorption (solid curves). The mini-
mum in vd at a ≈ 350 Å occurs because for this size photodesorption occurs primarily
on the “far” side of the grain, so that the photodesorption recoil force acts opposite
to the radiation pressure force. From Weingartner & Draine (2001c), reproduced by
permission of the AAS.

B: drift perpendicular to B is strongly suppressed if ωBτdrag � 1. Figure 26.1
shows estimated drift speeds for silicate grains, as a function of grain size, for the
case where the magnetic field is parallel to the direction of starlight anisotropy. The
starlight intensity and anisotropy are appropriate for the solar neighborhood.

26.2 Rotational Motion

A spherical dust grain with rotational kinetic energy Erot = 3
2kTrot will have

rotation frequency

ω

2π
=

1

2π

(
45

8π

kTrot

ρa5

)1/2

(26.21)

=4.6× 104 Hz

(
Trot

100K

)1/2(
0.1µm

a

)5/2

. (26.22)
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For grain sizes ∼ 0.1µm, this rotation rate is not extreme. A point on the equator
has a speed ωa ≈ 2.9 cm s−1a

−3/2
−5 .

If, however, we consider very small grains, the rotation rates can be extreme:

ω

2π
= 29GHz

(
Trot

100K

)1/2(
0.001µm

a

)5/2

. (26.23)

The observed infrared emission from interstellar grains requires a large population
of PAH particles with very small heat capacities, so that single-photon heating can
raise them to high vibrational temperatures. (See the size distribution shown in
Fig. 23.10.) If these particles have rotational temperatures Trot ≈ 102 K, and if
they have electric dipole moments, they will generate detectable levels of electric
dipole radiation.

26.2.1 Suprathermal Rotation of Large Grains

The rotational dynamics of dust grains is rich in physics. For many years it was
assumed that the rotational excitation of “classical” grains would be dominated by
random collisions with gas atoms, and that this would result in “Brownian rotation”
with Trot ≈ Tgas. However, Purcell (1979) pointed out that because the ISM is not
in LTE, interstellar grains will act as “heat engines,” and can achieve “suprather-
mal” rotation rates with Trot � Tgas. There are at least four processes that can
drive rapid rotation:

1. Formation of H2 on the grain surface, followed immediately by impulsive
ejection of the newly formed H2 (Purcell 1979).

2. Emission of photoelectrons from grains exposed to UV radiation (Purcell
1979).

3. Irregular grain surfaces, together with Tgas �= Tgrain (Purcell 1979).

4. Radiative torques due to absorption and scattering of (possibly anisotropic)
starlight by irregular grains (Draine & Weingartner 1996).

Each of these processes results in a systematic torque on the grain. The first three
torques are fixed in “body-coordinates,” and the fourth would also be fixed in body
coordinates if the starlight were isotropic. Such torques, because they are system-
atic, can drive suprathermal rotation. However, the effects of the first three of these
torques can be suppressed by the phenomenon of “thermal flipping” (see below).

When achieved, suprathermal rotation is not rapid enough to disrupt the grain
(unless the grain is extremely fragile), but can have very important consequences
for our understanding of the process of grain alignment with the interstellar mag-
netic field.
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Figure 26.2 Dust-correlated microwave emission, expressed as microwave intensity
per unit column density of hydrogen. The curve labeled DL98 is a theoretical esti-
mate of rotational emission (Draine & Lazarian 1998a,b). Also shown are the low-
frequency tail of the thermal emission from larger grains, and possible contributions
of synchrotron and free–free emission toward L1622. The solid curve is the sum of
all components. Observational data from Kogut et al. (1996), Leitch et al. (1997), de
Oliveira-Costa et al. (1997, 1998, 1999, 2000), and Finkbeiner et al. (2002).

26.2.2 Rotation of Small Grains: Microwave Emission

The systematic torques identified above are not sufficient to drive grains with a <∼
0.05µm to suprathermal rotation rates, because of thermal fluctuation within the
grain that cause the grain to change its orientation at constant angular momentum –
a phenomenon referred to as “thermal flipping” – resulting in what has been termed
“thermal trapping” (Lazarian & Draine 1999b).

The rotational dynamics of the smallest grains a <∼ 0.001µm, is complex. Pro-
cesses that have important effects on the angular momentum of a very small grain
include

1. Random collisions with neutral gas atoms.

2. Collisions of neutral or negatively charged grains with positive ions, where
the colliding ion can hit the grain with a substantial angular momentum.

3. Fluctuating electric fields due to passing ions acting on the permanent electric
dipole moment of the grain.
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4. Angular momentum deposition by absorbed starlight photons.

5. Angular momentum loss to radiated infrared photons.

6. Angular momentum loss in electric dipole radiation from the spinning grain.

The balance among these processes depends on the grain size and upon the local
environmental conditions (Draine & Lazarian 1998b). The net result is that the
smallest grains generally tend to have rotational distribution functions that are ac-
tually somewhat subthermal, with Trot < Tgas. Nevertheless, the rotation rates are
large enough so that the electric dipole radiation from the smallest grains in the in-
terstellar grain mixture appears to be able to account for what has been referred to as
the “anomalous” microwave emission associated with interstellar dust. Figure 26.2
shows the emission spectrum predicted by Draine & Lazarian (1998a,b), together
with some of the early observational determinations. A number of subsequent pa-
pers have confirmed the existence of dust-correlated microwave emission from dust
in our Galaxy with intensity and spectrum consistent with the spinning dust model
(see, e.g., Finkbeiner 2004; Finkbeiner et al. 2004; Watson et al. 2005; Fernández-
Cerezo et al. 2006; Davies et al. 2006; Bonaldi et al. 2007; Miville-Deschênes et al.
2008; Casassus et al. 2008; Dickinson et al. 2009; Dobler et al. 2009; Scaife et al.
2009). Microwave emission from spinning dust in the nearby galaxy NGC 6946
has also been reported (Murphy et al. 2010). Recent studies (Ali-Haı̈moud et al.
2009; Hoang et al. 2010) have improved the theoretical treatment of the rotational
excitation process.

26.3� Alignment of Interstellar Dust

Interstellar grains are observed to be systematically aligned with their short axis
(i.e., the axis of largest moment of inertia) tending to be parallel to the local mag-
netic field. How this comes about has not yet been worked out in detail, but we
think that we have identified the important elements of the dynamical story.

Interstellar grain alignment actually involves two separate alignment problems:
(1) alignment of the grain angular momentum J with the magnetic field B0, and (2)
alignment of the nonspherical body of the grain with the grain angular momentum.

A theory of grain alignment must account for the observed alignment of grains
as a function of grain size: grains with sizes a >∼ 0.1µm are observed to be sub-
stantially aligned, a <∼ 0.05µm grains are not appreciably aligned.

26.3.1 Precession of �J around �B

The shortest time scale in the rotational dynamics of the grain is just the rotation
period itself – a time that can range from milliseconds to less than a nanosecond. In
astrophysical problems, it is always reasonable to average over the grain rotation.

A spinning grain will in general have a magnetic moment parallel (or antipar-
allel) to the instantaneous angular velocity. This can arise from two independent



GRAIN DYNAMICS 311

effects. If the grain has a net charge Q �= 0 (with the net charge tending to reside
on the grain surface), grain rotation implies an electric current that will generate a
magnetic dipole field (Martin 1971). For a spherical grain, with uniform surface
charge density Q/4πa2 = U/4πa, rotation will result in a magnetic moment

µ =
Qa2ω

3
. (26.24)

In the presence of a static magnetic field, this will cause the angular momentum �J
to precess around B with a precession frequency

ΩL =
5

8πρ
UB = 1.7× 10−8

(
3 g cm−3

ρ

)(
U

Volt

)(
B

5µG

)
s−1 . (26.25)

The precession period, 2π/ΩL ≈ 10 yr, is relatively short.
In fact, however, a spinning grain is expected to have a much larger magnetic mo-

ment arising from the Barnett effect – a spinning body will spontaneously mag-
netize with a magnetization that is proportional to the rotation rate. This occurs
because the unpaired electrons – which in a nonrotating body would be evenly di-
vided between spin-up and spin-down – preferentially occupy the spin state with
spin angular momentum parallel to the angular velocity, resulting in a net magne-
tization that is antiparallel to the angular velocity. The role of the Barnett effect in
grain dynamics was pointed out by Dolginov & Mytrophanov (1976).

The rotationally induced magnetic moment µ is proportional to ω and to the
zero-frequency magnetic susceptibility χ(0) of the grain material:

µ = −χ(0)V
h̄ω

gµB
, (26.26)

where µB is the Bohr magneton, and g ≈ 2 is the gyromagnetic ratio. Normal
paramagnetism in interstellar grains is expected to result in

χ(0) ≈ 10−4

(
20K

Tgr

)
. (26.27)

The precession period of a spherical grain in a static magnetic field will then be

τBarnett =
2π

ΩB
=

2πIω

µB0
=

4πgµBρa
2

5h̄χ(0)B0
(26.28)

≈ 0.8a2−5

(
ρ

3 g cm−3

)[
10−4

χ(0)

](
5µG

B0

)
yr . (26.29)

This is a very short precession period – whatever population of partially aligned
grains is present, the properties should be averaged over the precession cone for
each grain.
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The rapid precession resulting from the Barnett effect has another important dy-
namical consequence: if the direction of the magnetic field �B0 changes slowly (on
time scales longer than the precession period τBarnett), the projection of the an-
gular momentum along the magnetic field will be an adiabatic invariant, and the
precessing grains will maintain a constant “cone angle” θBJ , where θBJ is the
instantaneous angle between the grain angular momentum �J and the ambient mag-
netic field �B.

Hydromagnetic waves will usually change the field direction only on time scales
longer than τBarnett; even C-type shock waves (to be discussed in Chapter 36)
may change the magnetic field direction only on time scales longer than τBarnett.
Aligned grains will, therefore, remain aligned with the local magnetic field in the
presence of MHD waves and weak shock waves.

26.3.2 Alignment of the Grain Body with �J

The moment of inertia tensor of the grain has three eigenvalues, I1 ≥ I2 ≥ I3.
Let â1, â2, and â3 be unit vectors along the three principal axes of the grain. If the
grain has fixed angular momentum J, the rotational kinetic energy is minimized
when â1 ‖ J, with value Erot = J2/2I1. For the simple case of an oblate spheroid,
with I1 > I2 = I3, the rotational kinetic energy is

Erot =
J2

2I1
+

J2(I1 − I2)

2I1I2
sin2 θ , (26.30)

where θ is the angle between �J and â1. If �J is not aligned with one of the principal
axes of the grain, then the grain will “tumble,” and several different mechanisms
will lead to dissipation of the rotational kinetic energy, causing θ → 0; the lost
rotational kinetic energy appears as heat, i.e., an increase in the vibrational en-
ergy of the grain. The fluctuation–dissipation theorem, however, requires that the
rotational kinetic energy can also be increased by exchange of energy from the
vibrational modes to the rotational modes. Thus the grain alignment will not be
perfect. However, if the rotation is suprathermal (J2/I1 � kT ), then

〈sin2 θ〉 →∼ I1kT

J2

I2
I1 − I2

� 1 , (26.31)

assuming that the grain is appreciably nonspherical (I1 is appreciably larger than
I2). This is one important consequence of suprathermal rotation: excellent align-
ment between �J and â1 is rapidly achieved by internal dissipation within the grain.
Dissipation processes include viscoelastic damping, damping associated with the
Barnett effect acting on the electrons, and damping associated with the Barnett
effect acting on the nuclear spin system (Lazarian & Draine 1999a).

26.3.3 Alignment of �J with �B

The angle θBJ measures the alignment of the angular momentum with B, and the
major challenge of grain alignment is to explain why this 〈cos2 θBJ〉 � 1/3. Davis
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& Greenstein (1951) showed that ordinary paramagnetic dissipation within a grain
spinning in a static magnetic field produces a torque acting to reduce the component
of the angular momentum perpendicular to �B, leaving the component parallel to �B
unchanged. In grain “body coordinates,” the grain material sees a magnetic field
with a rotating component, and the material tries to become magnetized in response
to this field. Because the magnetization is varying, there will be dissipation, with
rotational kinetic energy converted to heat. The rate of dissipation is proportional
to Im[χ(ω)]. In the absence of other torques acting to change θBJ , one can show
that the angle θBJ decays, with

tan θBJ(t)= tan θBJ(0) e
−t/τDG (26.32)

τDG =
2ρa2

5KB2
0

, K(ω) ≡ Im[χ(ω)]

ω
(26.33)

τDG =1.5× 106 a2−5

(
ρ

3 g cm−3

)[
10−13 s

K(ω)

](
5µG

B0

)2

yr . (26.34)

For normal paramagnetic materials,

K ≈ 10−13

(
18K

Tgr

)
s, (26.35)

(Jones & Spitzer 1967; Draine 1996); K ≈ 10−13 s therefore appears to be a rea-
sonable estimate that would apply to carbonaceous materials as well as amorphous
silicate material. We see that for these materials, in the absence of other torques
that could change θBJ , the Davis-Greenstein alignment process would bring about
grain alignment on a time scale τDG ≈ 1.5 × 106a2−5 yr. This time is short com-
pared to the lifetimes of interstellar dust or interstellar clouds, but unfortunately
random collisions with gas atoms will also act to change θBJ . If the angular mo-
mentum J is purely thermal [i.e., J2 ≈ 3

2IkT ], then random collisions with gas
atoms will act to change the direction of �J on the time scale τM for the grain
to collide with its own mass of gas [see Eq. (26.9)]. If grains were indeed rotat-
ing thermally, and the Davis-Greenstein alignment mechanism operated, then we
would expect the degree of grain alignment to be an increasing function of the
ratio τM/τDG ∝ a−1; we would not expect alignment of a >∼ 0.1µm grains be-
cause these have τM/τDG

<∼ 0.1, but we would expect alignment of �J with �B for
a <∼ 0.01µm grains. However, the opposite is observed: large grains tend to be
aligned, while the small grains are not! Obviously, there must be more to the story.

Purcell (1979) pointed out the importance of suprathermal rotation (see §26.2.1).
If systematic torques that are fixed in body coordinates act to give the grain J2 �
3
2IkT , then the time scale for random collisions with gas atoms to change the direc-
tion of �J is increased by a factor ∼ J2/IkT . Note that the time scale τDG does not
depend on the grain rotation rate if K = constant (as is expected to be a good ap-
proximation), and therefore suprathermal rotation supresses the disalignment from
random collisions without affecting the Davis-Greenstein alignment rate, and we
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therefore expect grains that rotate suprathermally to become aligned on time scales
of a few Myr.

The difficulty here is that the systematic torques identified by Purcell – H2 for-
mation on the grain surface, photoelectric emission, and variations in accomodation
coefficient over the grain surface – are all sensitive to the surface properties of the
grain, and these appear likely to change on time scales � τDG, as the result of
accretion or desorption of species from the grain, or sticking of a small grain to the
surface of a large grain. If the grain surface properties change, then the systematic
torques will change in a random way. This may lead to “spin down” of the grain
to a state with low angular momentum. During the time that the grain has very low
angular momentum state – known as a “crossover event” – the direction of �J can
be very easily changed by random collisions with gas atoms. If the only system-
atic torques are the three identified by Purcell, then it seems likely that crossovers
would be frequent, and only minimal grain alignment would take place. Further-
more, the process of thermal flipping (Lazarian & Draine 1999b) appears able to
prevent a <∼ 1µm grains from ever achieving suprathermal rotation: at constant
�J , the grain flips rapidly from one “flip state” to the other. Since the three torques
identified by Purcell are essentially fixed in body coordinates, if the grain spends
50% of the time in each flip state, then in inertial coordinates the time-average
torque is zero. For systematic torques that are fixed in grain coordinates, thermal
flipping appears to be rapid enough to suppress suprathermal rotation for grain radii
a <∼ 1µm (Lazarian & Draine 1999b).

Radiative torques appear to save the day: if the starlight background is anisotropic
(as is generally the case) then the starlight torque does not average to zero if the
grain spends 50% of the time in each of the two flip states. The radiative torque
alone can drive the grain to suprathermal rotation – provided that the radiative
torque is sufficiently strong. In the “electric dipole” limit, the radiative torque goes
to zero: for the radiative torque to be appreciable, the grain must be large enough
that its response to an incident electric field cannot be simply approximated as an
induced electric dipole. This requires a >∼ λ/2π. Because the starlight background
has a characteristic wavelength λ ≈ 0.5µm (determined by the typical temper-
atures of the stars that dominate the diffuse starlight background), the radiative
torque is only strong for grains that have a >∼ λ/2π ≈ 0.1µm. This is won-
derful – we appear to have identified the reason why large grains are aligned, but
small grains are not: Large grains are driven to suprathermal rotation by radiative
torques, but small grains do not achieve suprathermal rotation, and are subject to
rapid disalignment by collisions with gas atoms.

This would already be sufficient to establish radiative torques as a central part
of the grain alignment story, but it turns out they have an even more direct effect:
when an anisotropic radiation field is present, radiative torques can change the di-
rection of �J as well as its magnitude. The dynamics are complex, but it appears
that radiative torques can often bring an irregular grain into alignment with �B on
the gas-drag time scale τM � τDG (Draine & Weingartner 1997; Weingartner &
Draine 2003; Hoang & Lazarian 2009).



Chapter Twenty-seven

Heating and Cooling of H II Regions

Hot stars photoionize the gas around them; the photoionized gas is referred to as
an H II region, because the hydrogen is predominantly ionized. We discussed the
ionization conditions in H II regions in Chapter 15, but in that discussion we pre-
supposed that the temperature was T ≈ 104 K. In Chapter 18, we discussed nebular
diagnostics that allow us to determine the gas temperature from observations.

Here, we discuss the physical processes that actually regulate the temperature in
H II regions. The dominant heating process is photoionization: ionizing photons
have energies larger than the ionization threshold, and the resulting photoelectron
will have nonzero kinetic energy, adding to the thermal energy of the gas. At the
same time, recombination processes (primarily radiative recombination) are remov-
ing electrons from the plasma, along with the kinetic energy that they possessed
just before the recombination event, and thermal energy is also lost when electron
collisions excite ions from lower to higher energy levels, followed by emission of
photons. The temperature of the gas is determined by a balance between the heating
and cooling processes.

27.1 Heating by Photoionization

Consider photoelectric absorption creating a photoelectron with kinetic energy KE:

X+r + hν → X+r+1 + e− +KE . (27.1)

If σpe(ν) is the photoionization cross section for X+r in its ground electronic state,
the probability per unit time for photoionization is [see Eq. (13.5)]

ζ(X+r) =

∫ ∞

ν0

σpe(ν)c
[uν

hν

]
dν , (27.2)

where hν0 is the threshold energy for photoionization from the ground state. Each
photoionization event injects a photoelectron with kinetic energy (hν − hν0) into
the plasma; the heating rate per unit volume from this process is

Γpe = n(X+r)

∫ ∞

ν0

σpe(ν)c
[uν

hν

]
(hν − hν0) dν . (27.3)
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The mean photoelectron energy is

Epe(X
+r) =

Γpe

n(X+r)ζ(X+r)
, (27.4)

which will depend on the spectrum uν of the photons responsible for the photoion-
ization.

To gain an understanding of what we expect for Epe in the photoionized nebula
around a hot star, let us suppose first of all that the radiation leaving the star can be
approximated by a blackbody spectrum with color temperature Tc, and define the
dimensionless ratio

ψ ≡ Epe

kTc
. (27.5)

We anticipate that ψ will be of order unity, but we need to calculate it.
Near the star, the effects of absorption on the radiation field will be negligible;

the stellar radiation will be attenuated by the inverse-square law, but will have the
same shape: uν ∝ Bν(Tc). Here, we will have ψ = ψ0, where

ψ0kTc ≡
∫∞
ν0

[Bν(Tc)/hν]σpe(ν)(hν − hν0)dν∫∞
ν0

[Bν(Tc)/hν]σpe(ν)dν
. (27.6)

ψ0kTc is the photoelectron energy weighted by (Bν/hν)σpe(ν). For the important
case of photoionization of H, we know from the discussion of Strömgren spheres
that essentially all of the photons with hν > hν0 = IH will produce a photoioniza-
tion somewhere in the H II region. We can obtain the average photoelectron energy

〈ψ〉kTc =

∫∞
ν0

[Bν(Tc)/hν] (hν − hν0)dν∫∞
ν0

[Bν(Tc)/hν] dν
. (27.7)

Values of ψ0 and 〈ψ〉 are given in Table 27.1 for selected values of Tc. The im-
portant thing to note is that both ψ0 and 〈ψ〉 are of order unity over a broad range
of Tc. This is because the values of Tc in the table are all small compared to
IH/k = 157, 800K, so the dominant behavior in the integrands is the rapid falloff
in Bν with increasing ν.

The heating rate Γpe in Eq. (27.3) depends on the abundance n(X+r) of the
species that is being photoionized. If the H II region is in photoionization equilib-
rium, then the condition

ζ(X+r)n(X+r) = αne n(X
+r+1) , (27.8)

(where α is the rate coefficient for recombination X+r+1 + e− → X+r) can be
used to obtain the local heating rate:

Γpe = αne n(X
+r+1)ψkTc . (27.9)
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Equation (27.9) simply states that Γpe, the rate per unit volume of injection of
photoelectron energy rate, is equal to the recombination rate per unit volume times
the mean photoelectron energy Epe = ψkTc. The advantage of writing it this way
is that in an H II region, the dominant element, H, will be nearly fully ionized,
n(H+) ≈ nH, so that the rate of heating due to photoionization of H is

Γpe(H → H+) ≈ αB nH ne ψkTc . (27.10)

It should be kept in mind that real stellar spectra are not blackbodies, but it
is reasonable to use the stellar effective temperature in place of Tc. A precision
calculation of Epe using a model atmosphere will give numerical values of Epe that
differ slightly from ψkTc, even for a pure hydrogen nebula. Real nebulae of course
have He, and if the star is hot enough to photoionize He, many of the photons with
hν > 24.6 eV will be absorbed by He rather than H. Furthermore, the calculation
of Epe for hydrogen should include the photoionizations of H by He recombination
radiation. Last, real nebulae dust are dusty, and the dust grains will absorb some of
the ionizing photons. However, for normal H II regions these complications result
in only minor numerical corrections to the rate of photoelectric heating.

27.2 Other Heating Processes

In “normal” H II regions [with τS0
>∼ 102 – see Eq. (15.12)], heating of the gas

is dominated by photoionization of H and He. However, other heating processes
can sometimes make important contributions to the heating, and we briefly review
them here.

27.2.1 Photoelectric Emission from Dust

Photoelectric absorption by dust grains can produce energetic photoelectrons. These
can be important under two circumstances: (1) when the radiation field in the H II
region has lots of UV photons with 10 <∼ hν < 13.6 eV, unable to ionize H, but
able to ionize a dust grain; and (2) when the parameter τd0 >∼ 1, so that an ap-
preciable fraction of the hν > 13.6 eV photons are absorbed by dust rather than
H.

Table 27.1 Mean Photoelectron Energy Epe/kTc

Tc(K) 8000 16000 32000 64000
ψ0 0.959 0.922 0.864 0.775
〈ψ〉 1.101 1.199 1.380 1.655

From Spitzer (1978).
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Calculating the photoelectric heating by the dust requires determination of the
dust charging, because the photoelectric yield is suppressed if a dust grain is driven
to a large positive potential by the photoelectric emission process itself, and those
photoelectrons that do escape to infinity lose part of their initial kinetic energy in
overcoming the attractive Coulomb potential.

The contribution of photoelectric emission from dust grains to the heating of
photoionized gas has been examined in several recent papers. It can be important
in planetary nebulae (Dopita & Sutherland 2000; Stasińska & Szczerba 2001), in
the diffuse “warm ionized medium” (WIM) (Weingartner & Draine 2001d), and
perhaps even in intergalactic Lymanα clouds (Inoue & Kamaya 2010).

27.2.2� Cosmic Rays

Cosmic rays can heat the gas by two processes: (1) interaction with bound electrons
resulting in ejection of an energetic secondary electron; and (2) transfer of kinetic
energy to free electrons by elastic scattering. An H atom exposed to the cosmic ray
background will have a probability per unit time ζCR of being ionized by a passing
cosmic ray. These cosmic rays will also transfer energy to the electron plasma at a
rate that can be written (Goldsmith et al. 1969)

ΓCR = Ane ζCR , (27.11)

where the coefficient A depends weakly on the energy spectrum of the cosmic
rays, with A = 5.6 × 10−10 erg for 2 MeV protons, or A = 3.8 × 10−10 erg for
2 GeV protons. Note that for fixed cosmic ray flux (i.e., fixed ζCR), the heating
rate ΓCR ∝ ne, whereas Γpe ∝ n2

e. Plasma drag may therefore make a significant
contribution to the overall heating in low-density H II regions, but is likely to be
negligible in high-density regions.

27.2.3� Damping of MHD Waves

In inhomogeneous (clumpy) H II regions, pressure gradients will drive gas flows,
which may excite MHD waves, in some cases even shock waves. Shock waves
will directly heat the gas, and other MHD waves will in general be damped, with
conversion of the wave energy into heat. Suppose that the plasma contains waves
with energy density ∆uwave, that the wave propagates at speed vwave, and that
Ldamp is the damping length for the wave. The heating rate due to wave dissipation
would then be

Γwave ≈ (∆uwave)vwave/Ldamp (27.12)

≈ 8.9× 10−25nHT4

(
∆uwave

2nHkT

)(
vwave

10 km s−1

)(
pc

Ldamp

)
erg s−1. (27.13)

The factor (∆uwave)/2nHkT is the ratio of the wave pressure to the gas pressure,
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and is expected to be smaller than unity. The wave speed vwave will not significantly
exceed the thermal sound speed ∼ 10 km s−1 for T ≈ 104 K.

27.3 Cooling Processes

Earlier, we considered various heating mechanisms – processes that add to the
translational kinetic energy of the particles in the gas. Now, we consider processes
that remove thermal kinetic energy from the gas.

In a time-dependent flow, calculating the thermal evolution of the gas requires
careful accounting for changing numbers of particles if molecules are forming or
being dissociated, or if electrons are recombining with ions, or being liberated by
ionization processes. If, however, the gas is in a steady state, with the number of
free particles constant, discussing the heating and cooling is much more straightfor-
ward. Here we will consider the balance between heating and cooling processes in
a plasma that is in ionization equilibrium, where every ionization event is balanced
by a recombination event.

27.3.1 Recombination Radiation

Every time an electron recombines with an ion, the plasma loses the kinetic energy
of the recombining electron: the rate per unit volume at which thermal energy is
lost is

Λrr = αB ne n(H
+) 〈Err〉 , (27.14)

where αB is the rate coefficient for Case B radiative recombination (see Chapter
14), and 〈Err〉 is the mean kinetic energy of the recombining electrons.

Suppose that we approximate the cross section for radiative recombination by a
power-law:

σrr(E) = σ0(E/E0)
γ . (27.15)

The rate coefficient is then

〈σv〉 =
( me

2πkT

)3/2 ∫ ∞

0

4πv2dv e−E/kTσv (27.16)

=

(
8kT

πme

)1/2

σ0

(
kT

E0

)γ

Γ(2 + γ) (27.17)

∝ T γ+1/2 ,

where Γ is the usual gamma function.
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Consider now recombination of the most important ion, H+. The rate coeffi-
cients αA and αB (see Fig. 14.1) are not actually power-laws in T , and therefore
the recombination cross sections σrr(E) are not strictly power-laws in E. Nev-
ertheless, we can obtain an effective power-law index by taking the logarithmic
derivative of the rate coefficient:

γ +
1

2
=

d ln〈σv〉
d lnT

. (27.18)

The fits (14.5 and 14.6) to αA and αB give

γA =−1.2130− 0.0230 ln(T4/Z
2) , (27.19)

γB =−1.3163− 0.0416 ln(T4/Z
2) , (27.20)

for the effective values of the exponent γ for Case A and Case B recombination.
For the power-law dependence from Eq. (27.15), the mean kinetic energy per

recombining electron is

〈Err〉 =
∫
v2dv e−E/kTσvE∫
v2dv e−E/kTσv

=
Γ(3 + γ)

Γ(2 + γ)
kT = (2 + γ)kT . (27.21)

Thus, the mean energy per recombining electron is

〈Err〉A =
[
0.787− 0.0230 ln(T4/Z

2)
]
kT , (27.22)

〈Err〉B =
[
0.684− 0.0416 ln(T4/Z

2)
]
kT . (27.23)

for Case A and Case B, respectively. The recombining electrons are, on average,
less energetic than the mean electron kinetic energy of 1.5kT , for the simple reason
that the cross section for radiative recombination is larger for low energy electrons.

27.3.2 Free–Free Emission

Free electrons scattering off free ions produce free–free emission with power per
unit volume given by Eq. (10.12). In a pure H plasma near 104 K the free–free
emission energy per recombining electron is (using Eqs. 10.10 and 14.6)

Λff

nen(H+)αB
= 0.54T 0.37

4 kT . (27.24)

Thus, for T4 ≈ 1, radiative recombination and free–free emission together cause
the plasma to lose (0.68+0.54)kT = 1.22kT of kinetic energy per Case-B recom-
bination.
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Figure 27.1 (a) Photoelectric heating function Γpe and radiative cooling function Λ as
functions of gas temperature T in an H II region with Orion-like abundances and den-
sity nH = 4000 cm−3. Heating and cooling balance at T ≈ 8050K. (b) Contributions
of individual lines to Λce.

27.3.3 Collisionally Excited Line Radiation

In an H II region, most of the hydrogen will be ionized. Even if some He or He+

is present, the energy of the first excited state is so far above the ground state that
the rate for collisional excitation is negligible. However, if heavy elements such as
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oxygen are present, there may be ions – such as O I, O II, or O III – with energy lev-
els that can be collisionally excited by electrons with kinetic energies of just a few
eV. If the collisional excitation is followed by a collisional deexcitation, the kinetic
energy of the gas will be unchanged. If the only excitation process is collisional
(i.e., optical pumping and recombination to excited states are both negligible), the
rate of energy loss by the gas by collisional excitation is just

Λce =
∑
X

∑
i

n(X, i)
∑
j<i

Aij(Ei − Ej) , (27.25)

where the sum is over species X and excited states i. Collisionally excited emission
lines have been discussed in Chapter 18. In Eq. (27.25), we sum over all line
emission that results from collisional excitation.

27.4 Thermal Equilibrium

The gas will stabilize at a temperature where heating balances the total cooling:
Γpe = Λ = Λce+Λrr+Λff . Figure 27.1 shows the T -dependence of Γpe and Λ(T )
for gas with composition (∼ solar), density (nH = 4000 cm−3), and ionization
balance similar to that in the Orion Nebula H II region, assuming heating by a
T = 3.5 × 104 K blackbody. If we have identified all the heating and cooling
processes and evaluated them accurately, it appears that the gas temperature should
be T ≈ 8050K.

Table 27.2 Principal Collisionally Excited Cooling Lines in H II Regions

ion lines
N II 6585 Å, 6550 Å
O II 3730 Å, 3727 Å
O III 88.36µm, 51.81µm, 5008 Å, 4960 Å
Ne II 12.81µm
S II 6733 Å, 6718 Å
S III 33.48µm, 18.71µm, 9071 Å, 9533 Å

For abundances that are similar to solar abundances, and ionizations similar to
those in the Orion Nebula, Table 27.2 lists some of the stronger collisionally excited
lines. Some of these are fine-structure transitions, appearing in the mid- and far-
infrared, and some are transitions from electronic excited states, with lines in the
near-infrared through ultraviolet.

The equilibrium temperature is obviously sensitive to the abundance of the coolant
species – lowering the abundances will cause the steady state temperature to in-
crease. As seen in Figure 27.2, if we reduce the abundances of elements beyond
helium by a factor of 10, as might be appropriate in a low-metallicity galaxy, the
thermal equilibrium temperature rises to ∼ 15, 600K. Conversely, if we raise the
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Figure 27.2 (a) Photoelectric heating function Γpe and radiative cooling function Λ as
functions of temperature T in an H II region with abundances that are (a) only 10%, or
(b) enhanced by a factor of 3 relative to the Orion Nebula. A density nH = 4000 cm−3

is assumed. Thermal equilibrium occurs for T ≈ 15600K and ∼ 5400K for the two
cases.

heavy-element abundances by a factor of 3, as might be appropriate in the cen-
tral regions of a mature spiral galaxy, the H II region temperature drops to just
∼ 5400K.
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Figure 27.3 Cooling function Λ(T ) for different densities nH. The gas is assumed
to have Orion-like abundances and ionization conditions. As the gas density is var-
ied from 102 cm−3 to 105 cm−3, the equilibrium temperature varies from 6600 K to
9050 K, because of collisional deexcitation of excited states.

For a given ionizing star and gaseous abundances, the H II region temperature
will also be sensitive to the gas density. When the density exceeds the critical
density of some of the cooling levels, the cooling will be suppressed, and the
equilibrium temperature will rise. Figure 27.3 shows how, at fixed Orion Nebula-
like abundances and ionization balance, the cooling function Λ(T )/nHne responds
to changes in the density. As the density is increased from nH = 102 cm−3

to nH = 105 cm−3, the thermal equilibrium temperature shifts from 6600 K to
9050 K.

27.5 Emission Spectrum of an H II Region

When the gas is near thermal equilibrium, the principal cooling lines are shown in
Fig. 27.1(b), and listed in Table 27.2.

The optical spectrum of an H II region is dominated by the major hydrogen re-
combination lines (Hα 6565 Å, Hβ 4863 Å, H γ 4342 Å), and collisionally excited
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lines of [S II]6733,6718 Å, [N II]6585,6550 Å, and [O II]3727,3730 Å. If there is
an appreciable He+ ionization zone, then there will also be He recombination
lines (He I 5877 Å, He I 4473 Å, and He I 3890 Å are the strongest) as well as strong
[O III]4960,5008 Å.

In the near-infrared, the [S III]9071,9533 Å doublet is usually strong. If there
is an He+ ionization zone, the He I 1.083µm triplet will be very strong. The
Paschenα 1.876µm recombination line is also strong, but does not fall in an at-
mospheric window.

The fine-structure lines are major coolants, principally [Ne II]12.81µm,
[S III]18.71µm, [O III]51.81µm, and [S III]33.48µm. [Ne II]12.81µm can be ob-
served from the ground through an atmospheric window, but the other fine structure
lines require observations from above the atmosphere.

The [O III] and [S III] lines will be suppressed in H II regions around cooler stars,
where the oxygen and sulfur will be mainly singly ionized.

27.6 Observed Temperatures in H II Regions

As discussed in Chapter 18, observed emission line ratios can be used to measure
the actual temperatures in H II regions. The most useful species for this purpose are
[O III], [N II], and [S III] (see Fig. 18.2). The gas temperature can also be estimated
from the spectrum of the recombination continuum (see §18.4.1).

Because the ionization structure and the radiation field in an H II region are not
uniform, the temperature in the H II region is expected to also vary radially. Dif-
ferent ions will measure the temperature in different regions. Therefore, we do
not expect temperatures estimated from different diagnostics to be in perfect agree-
ment.

Osterbrock & Ferland (2006) compare temperature determinations in H II re-
gions and planetary nebulae. When more than one estimator is used for a single
nebula, differences are typically at the ±10% level, which seems satisfactory. The
estimated temperatures at different locations in the Orion Nebula are in the 8000
to 10,000 K range (Baldwin et al. 1991), only slightly higher than T = 8050K de-
termined from Figure 27.1. At the densities of the Orion Nebula, it seems unlikely
that heating by cosmic rays or wave dissipation could be significant, but dust photo-
electric heating might not be negligible, helping to bring the theoretical temperature
closer to the observed values.

In summary, both theory and observation tell us that the photoionized gas in
H II regions and planetary nebulae should be heated to temperatures T ≈ 6000 to
15, 000K, depending on the metallicity, the density of the gas, and the spectrum of
the radiation from the star.



Chapter Twenty-eight

The Orion H II Region

The Orion Nebula (= M 42 = NGC 1976) is the brightest H II region in our sky – not
because it is an especially luminous H II region, but simply because it happens to
be the nearest dense H II region, at a distance of only ∼ 414 ± 7 pc (Menten et al.
2007). Its proximity has allowed studies at relatively high spatial resolution, so that
the Orion Nebula now informs much of our understanding of H II regions. O’Dell
(2001) has a nice review of M 42. Plates 9 and 10 show the Orion Nebula at optical
wavelengths.

28.1 Trapezium Stars

The Orion H II region contains a cluster of stars referred to as the Orion Nebula
Cluster, or ONC. With a core radius of ∼ 0.2 pc and a central stellar density ∼
2× 104 stars pc−3, the ONC contains ∼ 2300 stars within a radius 2.06 pc, with a
total stellar mass ∼ 1800M�, formed within the past ∼ 2× 106 yr (Hillenbrand &
Hartmann 1998). The median stellar mass in the ONC is probably ∼ 0.3M�.

The four brightest members at the center of the ONC form the the θ1 Ori “Trapez-
ium” system – see Table 28.1. The most massive star, θ1 Ori C, of spectral type
O7V (Stahl et al. 2008), produces ∼ 80% of the H-ionizing photons. θ1 Ori C
is ∼ 10 ′′ (0.02 pc) S of the center of the ONC. The second most massive star,
θ1 Ori D, of spectral type O9.5V, contributes ∼ 15% of the ionization. The radia-
tive properties of the O stars are from Table 15.1. Those for the B stars are from
Smith et al. (2002).

The O9V star θ2 Ori is located 135 ′′ SE of θ1 Ori C. Although not located in the

Table 28.1 Trapezium Stars and θ2 Ori

Star Spectral Type Teff (K) L(105 L�) Q0(10
48 s−1)

θ1 Ori C O7V 36,900 1.4 5.6
θ1 Ori D O9.5V 31,880 0.48 0.76
θ1 Ori A B0.5V 28,100 0.4 0.10
θ1 Ori B B3V 17,900 0.017 —
θ2 Ori O9V 32,830 0.59 1.15
Total 2.9 7.6
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brightest part of M 42, θ2 Ori contributes to ionization of the lower density portion
of the H II region.

28.2 Distribution of Ionized Gas

The Trapezium stars ionize the hydrogen around them, maintaining an H II region.
The H II region was presumably initially surrounded (and contained) by molecular
gas. The combination of ionizing radiation and the overpressure of the ionized gas
resulted in expansion of the H II region, and development of a “blister” geometry
(Israel 1978). The high-pressure ionized gas was eventually able to break out of
the blister. Once it has broken out of the confining molecular gas, the ionized gas
is able to exhaust into the lower density interstellar medium, in what is termed a
“champagne flow” (Tenorio-Tagle 1979). As a result, the H II region does not have
the simple geometry of an idealized Strömgren sphere. The actual geometry is best
visualized by maps of the free–free continuum emission at radio frequencies, unaf-
fected by foreground dust. Figure 28.1 shows an image of the free–free emission
from the central region of M 42.

The geometry is obviously not a simple uniform-density sphere, but the princi-
pal ionizing source, θ1 Ori C, is near the center of the emission, and most of the
emission is coming from a region with an angular diameter of about 4 ′, or a diam-
eter ∼ 0.5 pc. The peak emission measure, averaged over a 43 ′′ beam, is EM ≈
5×106 cm−3 pc (Felli et al. 1993). If the line-of-sight path through the ionized gas
is ∼ 0.5 pc, the rms electron density along this path is 〈n2

e〉1/2 ≈ 3200 cm−3.
The electron density and temperature in the H II region can be determined us-

ing [S II]6718/6733 and other line ratios. Esteban et al. (2004) estimate ne ≈
8900± 200 cm−3 for the region with the highest surface brightness (∼ 20 ′′ SW of
θ1 Ori C). The temperature is found to be Te ≈ 10000±400K from emission lines
of N II, S II, and O II, and Te ≈ 8320±40K from emission lines of O III, S III, and
Ar III. Radio observations of the H64α recombination line give an average temper-
ature Te = (8300± 200)K (Wilson et al. 1997).

The total H recombination rate can be estimated from the total free–free radia-
tion, or from extinction-corrected observations of H recombination lines. Observa-
tions of Hα integrated over a 16 ′ × 16 ′ area have been used to estimate a total H
recombination rate of 8.2×1048 s−1 (Wen & O’Dell 1995) (corrected for a distance
D = 414 pc). This is slightly above the estimated total rate Q0 ≈ 7.6 × 1048 s−1

of emission of hν > 13.6 eV photons by the Trapezium stars plus θ2 Ori (see Table
28.1), but well within the uncertainties of the estimate for Q0.

Given that the estimate for Q0 does not exceed the recombination rate derived
from the observed Hα, it appears that the fraction of the hν > 13.6 eV photons
emitted by θ1 Ori C, θ1 Ori D, and θ2 Ori that produce photoionizations is fion ≈ 1.

What is expected? θ1 Ori has Q0,49 = 0.64, and the H II region has nrms ≈
3200 cm−3. From Eq. (15.30), a static H II region with Q0,49nrms ≈ 2000 cm−3

would have τd0 ≈ 2.6σd,−21. If σd,−21 ≈ 1, then from Fig. 15.2, we estimate
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fion ≈ 0.45, whereas observations indicate that fion ≈ 1. This suggests that
perhaps the stellar ionizing output Q0 may have been underestimated, or perhaps
σd in the ionized gas is significantly smaller than 1× 10−21 cm2H−1.

28.3 Orion Bar

A conspicuous feature in optical images of the Orion H II region (see Plate 10) is
the bright bar-like feature running NE to SW, passing ∼ 110 ′′ SE of the Trapezium.
This feature shows up as a local maximum just interior to a conspicuous disconti-
nuity in the free–free radio emission (see Fig. 28.1). For a point on the Orion Bar,
Pogge et al. (1992) found ne ≈ 3000 cm−3 from [S II]6718/6733, significantly
lower than ne ≈ 9000 cm−3 in the bright area 30 ′′ SW of θ1 Ori C.

The Orion Bar is a photoionization/photodissociation front viewed nearly edge-
on. Infrared spectroscopy of the Orion Bar shows strong emission in vibration–
rotation transitions of H2 just outside the ionized gas (van der Werf et al. 1996;
Allers et al. 2005). The zone with strong H2 line emission is ∼ 5 ′′ thick, corre-
sponding to a projected thickness ∆r ≈ 3×1016 cm. Outside the region with strong
H2 emision, there is an extended region of molecular gas seen in CO J = 1 → 0.

While the Orion Bar stands out, it is important to realize that a photodissociation
region (PDR – see §31.7) is present at all points where the ionized gas abuts the
molecular material that partially surrounds the H II region – the PDR extends to
the E, NE, and N of the Trapezium and, in fact, also behind the central portion of
the H II region. The Orion Bar is conspicuous as a result of the geometric accident
that our line of sight happens to be approximately tangential to the PDR, leading to
enhanced observed intensities.

Wen & O’Dell (1995) have constructed a three-dimensional model of the Orion
Nebula. In their model, the distance from θ1 Ori C to the Orion Bar ionization
front is ∼ 7.8 × 1018 cm. The region of highest surface brightness, ∼ 30 ′′ SW of
θ1 Ori C, corresponds to a point where the ionization front along the “back” of the
H II region is located only 3.6×1017 cm from θ1 Ori C: the nebula is brighter there
because the flux of ionizing photons is ∼(7.8/3.6)2 ≈ 4.7 times higher than at the
Bar.

28.4 Gas Kinematics

The gas in the brightest part of M 42 has a thermal pressure p/k ≈ 1.6×108 cm−3 K;
this is ∼ 104.5 times greater than the typical pressures in the diffuse ISM. The H II
region is able to “vent” into the diffuse ISM as though it were a near-vacuum, with
flow speeds approaching or exceeding the isothermal sound speed (kT/µ)1/2 =

11.4T
1/2
4 km s−1 in the ionized gas.

The dense molecular gas adjacent to M 42 has a heliocentric radial velocity of
(vOMC)r = +28 km s−1. H64α observations (Wilson et al. 1997) of the ionized
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Figure 28.1 Maps of M 42 at λ = 20 cm, with HPBW ≈ 6.2 ′′, from Felli et al.
(1993). The Orion Bar ionization front is ∼ 110 ′′ SE of θ1Ori C, with a projected
separation of 0.22 pc = 6.8 × 1017 cm. The lower map is an expanded view of the
brightest region, with only the brightest contours shown.
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gas show a radial velocity vr = 18.4 km s−1 at the radio brightness peak. Thus,
relative to the molecular cloud, the ionized gas is streaming toward us, with (v −
vOMC)r = −10 km s−1. At a location 80 ′′ SW of θ1 Ori C, the ionized gas has
(v − vOMC)r = −14 km s−1. It seems likely that the gas flow has a component
in the plane of the sky, so that |v − vOMC| ≈ 20 km s−1, of order 1.5–2 times
the isothermal sound speed ∼ 11 km s−1 in the ionized gas. This Mach ∼ 2 flow
is approximately what is expected for an H II region that is “venting” into a low-
pressure surrounding medium.

28.5 PIGS, Proplyds, and Shadows

High-resolution imaging of the Orion Nebula reveals a number of curious small-
scale structures:

• Herbig-Haro objects: These are small emission regions located near the end
of high velocity jet-like outflows from young stellar objects. The H-H object
is thought to be shocked gas where the material in the jet is stopped by the
ambient medium.

• Proplyds: Proplyd (from “Protoplanetary disk”) refers to a young stellar
object with a dusty gaseous disk. A number of these are found exposed to
the ultraviolet radiation in the H II region. They can be seen in silhouette
against the bright background from the H II region, but some show evidence
of luminosity from a star at the center of the disk. Such objects were actu-
ally first detected in radio continuum maps made with the Very Large Array
(VLA) interferometer. These maps revealed about 25 ultracompact sources
of free–free emission within 30 ′′ of θ1 Ori C, with apparent sizes ∼ 1015 cm
(∼ 0.15 ′′), which Garay et al. (1987) interpreted as partially ionized globules
(PIGs). The PIGs appear to be protoplanetary disks undergoing photoioniza-
tion and “photoevaporation” resulting from being illuminated by the ionizing
radiation from θ1 Ori C. This interpretation was confirmed by optical imag-
ing with Hubble Space Telescope (O’Dell et al. 1993), as can be seen in Plate
11.

• Radiation Shadows: These are shadows cast by the proplyds. Because the
bulk of the ionizing radiation is coming from a single star, θ1 Ori C, the pro-
plyd casts a shadow. The shadowed region will still be exposed to a diffuse
ionizing background, produced by recombination to the H ground state, but
this radiation is much “softer” than the emission from hot star, and not able
to ionize OII → OIII, which requires hν > 35.1 eV. As a result, the gas
in the shadow does not radiate in [OIII]5008. These shadows can be seen as
linear dark features in a map of [OIII]5008/Hα (O’Dell et al. 2009).



Chapter Twenty-nine

H I Clouds: Observations

Approximately 60% of the gas in the Milky Way is in H I regions – regions where
the hydrogen is predominantly atomic.1 The H I can be surveyed using the 21-cm
line (in emission or absorption), by measuring absorption lines in the spectra of
stars, and by observing infrared emission from dust that is mixed with the H I. The
magnetic field in the clouds can be visualized through the starlight polarization
produced by aligned dust grains, and in some cases the line-of-sight component of
the magnetic field can be measured using the Zeeman effect in H I.

29.1 21-cm Line Observations

Except for directions and radial velocities where the 21-cm line becomes optically
thick, observations of 21-cm emission directly measure the total column density
of H I. Plate 3a is an all-sky map of the 21-cm line emission. If a background ra-
dio source is available, observations of the 21-cm line in absorption can be used
to determine the H I spin temperature Tspin, which is normally close to the kinetic
temperature (see §8.3 and §17.3). The spin temperature is a function of position,
and therefore of the radial velocity of the gas. Some observers report radial ve-
locities in a heliocentric coordinate frame where the Sun is at rest, but sometimes
the radial velocity is measured relative to a hypothetical Local Standard of Rest
(LSR).2

Figure 29.1 shows the emission and absorption profiles measured toward the
quasar 3C48, and the derived velocity distribution dN/dv. The most recent emission–
absorption surveys (Heiles & Troland 2003) support the idea that, in the solar neigh-
borhood (i.e., within ∼ 500 pc of the Sun), interstellar H I is found primarily in two
distinct phases: the cold neutral medium (CNM) and the warm neutral medium
(WNM). About 40% of the H I (by mass) is in the CNM, with a median spin tem-
perature T ≈ 70K. The remaining 60% of the H I is in the WNM phase, which
appears to have a volume filling factor fWNM ≈ 50% near the disk midplane.

1Approximately 23% of the hydrogen is ionized, and ∼ 17% is in molecular clouds (see Table 1.2).
2The LSR is defined to be the velocity of a closed orbit around the Galactic Center passing through

the location of the Sun (Binney & Merrifield 1998). Unfortunately, the motion of the LSR is not yet
well-determined, and authors are not always clear on what they assume. Some authors (e.g., Allen
1973) take the LSR to be such that velocity of the Sun relative to the LSR is (v�)LSR = 19.7 km s−1

toward (�, b) = (57◦, 22◦). A more recent estimate (Binney & Merrifield 1998) has (v�)LSR =
13.4 km s−1 toward (�, b) = (27.5◦, 32.6◦).
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Figure 29.1 Left panels: Observed H I emission (off the quasar 3C48) and absorption
(toward 3C48, at �=134◦, b=−28.7◦). Lower right: spin temperature Tspin(v) as a
function of LSR velocity. Tick marks labeled 0, 1, 2, and 4 on abscissa of left panels
show the LSR velocity expected for gas at a distance of 0,1,2,4 kpc (for an assumed
Galactic rotation curve). Upper right: dN(H I)/dv for different assumptions regarding
the relative (foreground/background) locations of cold absorbing gas and warm gas
seen only in emission. From Dickey et al. (1978).

The Sun is, fortuitously, very near the midplane of the disk. If the disk were
plane-parallel, then toward galactic latitude b we would expect the H I column
density to vary as N(H I, b) = N(H I, b = 0)/ sin |b| = N0 csc |b|. Figure 29.2
shows that there are appreciable deviations from the plane-parallel ideal, but a
reasonable estimate for the half-thickness of the H I disk at the solar circle is
N0 ≈ 3× 1020 cm−2.

Because warm H I absorbs very weakly, for some of the WNM material it is only
possible to determine a lower bound on Tspin. Figure 29.2 shows the distribution of
spin temperatures found by Dickey et al. (1978). Heiles & Troland (2003) conclude
that > 48% of the WNM has 500 < Tspin < 5000K – as we will see in §30.4, at
these temperatures the gas is expected to be thermally unstable.

29.2 Distribution of the H I

Differential rotation of gas in the Galactic disk means that – except for the direc-
tions � = 0 or � = 180◦ – regions at different distances from the Sun will have
different radial velocities (see, e.g., Binney & Merrifield 1998). Therefore, for an
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Figure 29.2 Left: N(H I) versus csc |b| ≡ 1/ sin |b|. The dashed line 2.9 ×
1020 csc |b| cm−2 shows the average relation from a southern survey (Radhakrishnan
et al. 1972). Right: Distribution of Tspin for gas at high (10 directions), intermediate
(8 directions), and low (9 directions) galactic latitudes. Gas with only a lower bound
on Tspin constitutes 54% of the emission at |b| > 45◦, and 26% at 25◦ < |b| < 45◦.
After Dickey et al. (1978).

assumed Galactic rotation curve, the measured 21-cm intensity vs. radial velocity
can be used to map out the 3-dimensional distribution of H I in the Galaxy.

Because the gas in fact has noncircular motions, the inferred distance is uncer-
tain; in addition, for the inner galaxy (90◦ < � < −90◦ and R < 8.5 kpc) there
are distance ambiguities, where two different distances correspond to the same ra-
dial velocity. Nevertheless, maps of the distribution of H I gas within the Milky
Way have been produced (see, e.g., Fig. 9 of Nakanishi & Sofue 2003). The radial
distribution of H I derived by Nakanishi & Sofue (2003) is shown in Figure 29.3.

29.3 Zeeman Effect

For the weak (∼5µG) B fields in the diffuse ISM, the Zeeman effect (see §4.7) re-
sults in a very small frequency shift between the left- and right-circularly polarized
21-cm emission. The frequency shift is proportional to B‖, the magnetic field com-
ponent along the emission direction. The frequency shift is small compared to the
line widths, even for narrow 21-cm lines, but the systematic shift can be obtained
from the difference of the left- and right-circularly polarized spectra. In regions
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Figure 29.3 Radial distribution of H I from Nakanishi & Sofue (2003). At R >∼
11 kpc, the H I surface density declines exponentially. Also shown is the radial distri-
bution of H II from Figure 11.4

with simple line profiles, it is possible to measure this frequency shift and thereby
determine B‖.

The number of Zeeman measurements using H I is very limited, because the
observations are difficult. Some selected results are given here:

• Diffuse H I clouds studied in absorption against background extragalactic
radio sources have a median B ≈ 6.0 ± 1.8µG (Heiles & Crutcher 2005).
The implied magnetic pressure is large: B2/8πk ≈ 1.0 × 104 cm−3 K –
several times larger than the gas pressure nT ≈ 3000 cm−3 K.

• The H I gas surrounding the Orion A GMC (see Chapter 32) has B‖ =
+10µG (+ means B points away from the observer). (Heiles & Troland
1982)

• The magnetic fields in five shell-like structures [including the North Celestial
Pole Loop, the North Polar Spur loop (= “Loop I”), and the shell around
the Eridanus superbubble] were found to be strong, with 〈|B‖|〉 ≈ 6.4µG
(Heiles 1989). The total fields are expected to be larger, on average, by a
factor 2, so that we estimate |B| ≈ 13µG in these shells. Each H I shell is
thought to be compressed gas behind expanding shock waves, with the cavity
inside the shell (largely devoid of H I) pressurized by multiple supernova
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explosions. The compression of the H I in the shells appears to be limited by
the magnetic pressure.

29.4 Optical and UV Absorption Line Studies

The H I gas can also be studied using absorption lines. Lymanα observations mea-
sure N(H I) directly. O I is a reliable tracer of the H I because (1) most of the
oxygen remains in the gas phase, and (2) both O I and H I are the dominant ioniza-
tion states (and in partially ionized gas, the O I/O II ratio is nearly the same as the
H I/H II ratio – see Fig. 14.5). Other species, such as Na I or Ca II are useful for
studying the kinematics of the H I, but do not provide accurate information on the
total amount of H I.

Measurement of the fine-structure excitation of species such as C I and C II can
be used to constrain the density and temperature in the H I. An extensive study of
C I excitation in the CNM (see §17.7) found nT ≈ 2800 cm−3 K (Jenkins & Tripp
2010). For the median Tspin ≈ 70K found above, this implies nH ≈ 35 cm−3.

29.5 Infrared Emission

Because the H I gas is dusty, dust can be used a tracer of the ISM. The dust can be
detected via reddening and polarization of starlight. It can also be detected through
infrared emission. At high galactic latitudes, the dust is heated by diffuse starlight,

Figure 29.4 100µm intensity measured by DIRBE, after subtraction of zodiacal emis-
sion, plotted against N(H I) obtained from 21-cm observations. Left: The north eclip-
tic pole region (� ≈ 124◦, b ≈ 27◦). Right: The region with |b| > 25◦ and ecliptic
latitude |β| > 25◦ covered by the Bell Laboratories H I survey. The best-fit linear
relationship is shown in each case; data above and to the right of the short lines inter-
secting the fitted lines were not used in the fit. From Arendt et al. (1998), reproduced
by permission of the AAS.
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and the dust temperatures are expected to be similar from one diffuse region to
another. If the dust to gas ratio is constant, and the dust temperature is uniform,
then the infrared emission will be proportional to the 21-cm emission.

The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Back-
ground Explorer (COBE) satellite made an all-sky map of the 100-µm sky bright-
ness. Figure 29.4 shows the 100-µm intensity, after subtraction of zodiacal emis-
sion, versus 21-cm column density, toward high-latitude regions. It is clear that
the 100-µm emission and 21-cm emission are highly correlated. The good corre-
lation tells us that (1) dust and gas are well-mixed, and (2) the starlight heating
the dust must be fairly uniform. In the right-hand panel there are points with sub-
stantial (∼ 30%) excess 100-µm emission relative to H I – these are likely to be
diffuse regions where a significant amount of H2 is present, with the dust in the H2

contributing to the 100-µm emission.



Chapter Thirty

H I Clouds: Heating and Cooling

Most of the interstellar gas in the Milky Way is neutral, and ∼ 78% of the neutral
hydrogen is atomic, or H I. What temperatures do we expect H I gas to be at in a
galaxy like the Milky Way? Here, we discuss the heating and cooling processes,
and the equilibrium temperature where heating and cooling can balance. We will
find that, under some circumstances, more than one equilibrium solution is possi-
ble. This leads to a model where the H I in the interstellar medium can be thought
of as two distinct “phases,” in pressure equilibrium.

30.1 Heating: Starlight, Cosmic Rays, X Rays, and MHD Waves

Possible mechanisms for heating H I regions include

• Ionization by cosmic rays

• Photoionization of H and He by x rays

• Photoionization of dust grains by starlight UV

• Photoionization of C, Mg, Si, Fe, etc. by starlight UV

• Heating by shock waves and other MHD phenomena

The observed spectrum of cosmic rays was discussed in §13.5, where we saw
that the primary ionization rate for an H atom is ζCR

>∼ 7 × 10−18 s−1, with a
substantially larger rate being allowed by uncertainties regarding the flux of cosmic
rays below 1GeV/nucleon. In §16.4, we saw that observations of H+

3 appear to
indicate a cosmic ray ionization rate ζCR ≈ (0.5 − 3) × 10−16 s−1 in diffuse
molecular gas.

As discussed in §13.5, each “primary” ionization by a cosmic ray creates a “sec-
ondary” electron with mean kinetic energy ∼ 35 eV. Some of this kinetic energy
will go into secondary ionization and excitation of bound states of H, H2, and He
that will then deexcite radiatively, but a fraction of the secondary electron energy
will ultimately end up as thermal kinetic energy. The heating efficiency depends
upon the fractional ionization. If the ionization is high, then the primary electron
has a high probability of losing its energy by long-range Coulomb scattering off
free electrons, and ∼ 100% of the initial kinetic energy will be converted to heat.
However, when the gas is neutral, a fraction of the primary electron energy goes
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into secondary ionizations or excitation of bound states. In the limit where the ion-
ization fraction x → 0, the fraction of the energy going into heat is ≈ 0.2. The
heat per primary ionization in partially ionized atomic gas has been calculated by
Dalgarno & McCray (1972). Their numerical results can be approximated by

Eh ≈ 6.5 eV + 26.4 eV

(
xe

xe + 0.07

)1/2

, xe ≡ ne

nH
. (30.1)

The heating rate due to cosmic ray ionization is then

ΓCR,n ≈
[
n(H0) + n(He0)

]
ζCREh (30.2)

≈ 1.03× 10−27nH
erg

s

(
ζCR

10−16 s−1

)[
1 + 4.06

(
xe

xe + 0.07

)1/2
]
, (30.3)

where we have taken the cosmic ray ionization cross section for He to be similar to
H. Cosmic rays also interact with free electrons. The heating rate is

ΓCR,e ≈ AζCR ne , (30.4)

where the coefficient A depends weakly on the CR energy (Goldsmith et al. 1969)
with A ≈ 4.6 × 10−10 erg if the ionization is dominated by ∼ 50MeV protons,
as appears likely if the primary ionization rate is as large as ∼ 10−16 s−1 (see Fig.
13.5).

X rays emitted by compact objects or hot interstellar plasma can impinge on neu-
tral regions. Photoelectrons produced by x-ray ionization of H will have energies
E = hν − 13.6 eV, and, per primary ionization, secondary ionizations and heating
are greater than for cosmic ray ionization. The photoabsorption cross section per
H nucleon for a 0.4 keV x ray is ∼ 4 × 10−22 cm2, with H, He, and the combined
heavy elements (C, O, Ne, Mg, Si) each contributing about 1

3 of the total. Thus, a
0.4 keV x ray can penetrate a column NH ≈ 2.5× 1021 cm−2. Higher energies are
more penetrating, but lower energy x rays will only be able to heat the surface layer
of a neutral cloud.

From Fig. 12.1, we see that the local x-ray background can be approximated by
νuν ≈ 1 × 10−18(hν/400 eV)2 erg cm−3 for (0.4 − 1) keV. The hν > 0.4 keV
x-ray background contributes some ionization and heating, but at a level well below
the effects of cosmic ray ionization. X rays will be an important source of heating
only in clouds that happen to be close to strong sources of <∼ 200 eV x rays.

30.2 Photoelectric Heating by Dust

Photoelectrons emitted by dust grains dominate the heating of diffuse H I in the
Milky Way. The work function for graphite is 4.50 ± 0.05 eV (e.g., Moos et al.
2001), and, therefore, large neutral carbonaceous grains can in principle be pho-
toionized by photons with energies down to ∼ 4.5 eV. Similarly, the work function



H I CLOUDS: HEATING AND COOLING 339

for lunar surface material has been measured to be 5.0 eV (Feuerbacher et al. 1972).
However, near threshold are small, and we expect photoelectric heating by dust to
be dominated by photons with hν >∼ 8 eV.

For an order-of-magnitude estimate of the photoelectric heating rate due to dust,
let n(8− 13.6 eV) be the number density of 8 < hν < 13.6 eV photons; let 〈σabs〉
be the total dust photoabsorption cross section per H nucleon, averaged over the 8
to 13.6 eV spectrum; let 〈Y 〉 be the photoelectric yield averaged over the spectrum
of 8 to 13.6 eV photons absorbed by the interstellar grain mixture; let 〈Epe〉 be the
mean kinetic energy of escaping photoelectrons; and let 〈Ec〉 be the mean kinetic
energy of electrons captured from the plasma by grains. Then,

Γpe

nH
≈ 1.4×10−26 erg

s

[
n(8−13.6 eV)

3×10−3 cm−3

] 〈σabs〉
10−21 cm2

〈Y 〉
0.1

(〈Epe〉−〈Ec〉)
1 eV

. (30.5)

For the nominal values of 〈Y 〉 and (〈Epe〉 − 〈Ec〉) appearing in Eq. (30.5), com-
parison with Eq. (30.3) shows that photoelectric heating from dust may be an order
of magnitude larger than the cosmic ray heating rate, Eq. (30.3), even for cosmic
ray ionization rates ζCR ≈ 10−16 s−1. Photoelectrons from dust grains appear to
be the dominant heating mechanism in the diffuse neutral ISM.

Grain charging was discussed in Chapter 25. To model the charging of grains
in the ISM or IGM, it is necessary to estimate the photoelectric yield and distribu-
tion of photoelectron kinetic energies as a function of grain size, grain charge, and
photon energy, for photon energies extending from the ultraviolet to x rays (Wein-
gartner et al. 2006). With this in hand, one must next determine the probability
distribution f(Z) for the grain charge, again as a function of grain size and com-
position. Then, one can evaluate Γpe/nH as a function of ne, T and the spectrum
of the incident radiation field. In diffuse neutral gas, only hν < 13.6 eV photons
need be considered.

Because the photoelectric heating power per volume is proportional to the dust
density, the starlight intensity, and a function that depends on the grain charge, we
may write

Γpe = nH G0 × g (G0/ne, Te) , (30.6)

where G0 is a measure of the starlight intensity. The function g(G0/ne, Te) de-
pends on G0/ne and Te because the grain charge depends on these two quantities;
g also depends on the composition and size distribution of the grains.

Because small grains account for most of the UV absorption to begin with, and
because photoelectric yields Y (a, hν) are enhanced for small grains, Γpe is domi-
nated by photoelectrons from very small grains, including the PAHs.

30.3 Cooling: [C II] 158 µm, [O I] 63 µm, and Other Lines

An example of the “cooling function” Λ for predominantly neutral gas, as a func-
tion of temperature, is shown in Figure 30.1 for abundances appropriate to diffuse
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Figure 30.1 Cooling rate for neutral H I gas at temperatures 10 <∼ T <∼ 2 × 104 K
for two fractional ionizations. For T < 104 K, the cooling is dominated by two fine
structure lines: [C II]158µm and [O I]63µm.
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H I in the Milky Way, and for two different fractional ionizations: xe = 0.017
(WNM conditions) and xe = 4 × 10−4 (CNM conditions). For 10 <∼ T <∼ 104 K,
the [C II]158µm fine structure line is a major coolant. The [O I]63µm fine struc-
ture line is important for T >∼ 100K. Lymanα cooling dominates only at T >∼
1× 104 K.

The critical densities for [C II]158µm and [O I]63µm are ∼ 4 × 103 cm−3 and
∼ 105 cm−3, respectively (see Table 17.1), implying that collisional deexcitation
of these levels is unimportant in the diffuse ISM of the Milky Way. Thus, for
fixed composition (and ionization fraction xe), the cooling power per volume Λ ∝
nH

2 × λ(T ), where the cooling rate coefficient λ depends only on T .

30.4 Two “Phases” for H I in the ISM

A thermal equilibrium must have heating and cooling balanced, i.e., Γ = Λ(T ).
If we vary the H nucleon density nH, we can find the thermal equilibrium as a
function of nH. We include cosmic ray ionization of the H, and we take the oxy-
gen ionization to be coupled to the hydrogen ionization by charge exchange, as
discussed in §14.7.1.

The resulting steady state temperatures Teq are plotted versus nH in Figure
30.2(a), with Teq(nH) seen to be a monotonically decreasing function of nH.

Now we ask the question: if we fix the pressure p = nkT , what will be the
temperature T where heating and cooling balance? Figure 30.2(b) shows T versus
pressure p. At low pressures, heating balances cooling at T ≈ 6000K – these are
warm neutral medium (WNM) conditions. At high pressures, heating and cool-
ing balance for T ≈ 100K – these are cold neutral medium (CNM) conditions.
However, there is an intermediate pressure range where, for a given pressure, there
are three possible solutions. The upper and lower solutions are stable – if the gas
temperature is perturbed away from the equilibrium, it will return to it. However,
the intermediate solution is thermally unstable – if T is perturbed upward, the gas
will warm up to the stable WNM solution, and if T is perturbed downward, it will
cool to the stable CNM branch. Thus, for our current best estimates of cosmic
ray ionization, photoelectric heating, and cooling processes in the diffuse ISM, we
conclude that an ISM that is in thermal equilibrium and dynamic equilibrium (uni-
form pressure) would have diffuse atomic gas in two distinct phases, provided the
pressure p falls in the range 3175 <∼ p/k <∼ 4425 cm−3 K.

This “two-phase” model of the ISM was first developed by Field et al. (1969).
Because their model did not include photoelectric heating by dust, they required a
cosmic ray ionization rate ζCR ≈ 4 × 10−16 s−1 to sustain a two-phase medium
at pressure p/k <∼ 1800 cm−3 K. After the importance of photoelectric heating by
dust was recognized, the two-phase model was revisited a number of times (e.g.,
Draine 1978; Wolfire et al. 1995, 2003) with differing assumptions regarding grain
photoelectric heating, grain-assisted recombination, inelastic collision cross sec-
tions for cooling processes, and abundances of coolants (particularly C+). The
steady-state temperaure and ionization equilibria shown in Figure 30.2 were calcu-
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Figure 30.2 (a) Steady state temperature T as a function of density nH, for gas heated
by cosmic rays and photoelectric heating by dust grains. Two lines of constant nHT
are shown. (b) Steady state temperature T as a function of thermal pressure p. For
3200 <∼ p/k <∼ 4400 cm−3 K there are three possible equilibria – a high-T WNM
solution, a low-T CNM solution, and an intermediate temperature equilibrium that is
thermally unstable.
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lated using the dust photoelectric heating of Weingartner & Draine (2001d), with
PAHs containing ∼ 25% of the interstellar carbon (60 ppm of C per H, out of a
total ∼ 250 ppm); with grain-assisted recombination of H+ following Weingartner
& Draine (2001b); with a gas-phase carbon abundance C/H = 1.0 × 10−4 (Sofia
& Parvathi 2010); and for cosmic ray ionization rate ζCR = 1 × 10−16 s−1, as
indicated by observations of H+

3 in diffuse molecular clouds (see §16.4).

30.5 Emission Spectrum of an H I Cloud

According to the preceding discussion, we may expect that much of the H I gas
in the Milky Way has density and temperature characteristic of the WNM or CNM
solutions for p/k ≈ 3800 cm−3 K. In Table 30.1 we list the emission per H nucleon
from each phase. Note that the 100µm emission from dust is the same for the two

Table 30.1 Conditions at Stable Thermal Equilibria for p/k = 3800 cm−3 K

CNM WNM
T (K) 160. 5512
nH( cm

−3) 21.5 0.626
ne( cm

−3) 0.00925 0.0116
ne/nH 0.00043 0.0185
n(H+)/nH 0.000272 0.0167
4πνjν(dust, 100µm)/nH (10−26 erg s−1H−1) 240. 240.
4πj/nH (10−26 erg s−1H−1): [C II]158µm 2.85 0.385

[O I]63.2µm 2.00 1.05
[O I]145µm 0.119 0.0875
[O I]6302 Å — 0.0317
[Si II]34.8µm 0.0341 0.0474
[S II]6733 Å — 0.100
[S II]6718 Å — 0.148
[Fe II]5.34µm — 0.0216
[Fe II]26.0µm 0.00101 0.00904

phases, as the dust is heated by the same radiation field. The line emission varies
considerably between the two phases. For the CNM solution at T = 160K, the
strongest coolant is [C II]158µm, but for the WNM solution at T = 5512K, the
strongest coolant is [O I]63.2µm. Note that the T = 160K temperature of the
CNM solution is above the median spin temperature T ≈ 70K found in 21-cm
studies, but the distribution of spin temperatures in Figure 29.2 shows that it is
not uncommon to have temperatures in the 100 to 200K range. At T = 160K,
[O I]63.2µm emission is providing 40% of the total cooling. It is also of interest to
note that the total line cooling power per H is lower for the WNM solution than for
the CNM solution – this is because positive charging of dust grains in the WNM is
lowering the dust photoelectric heating rate per H.



Chapter Thirty-one

Molecular Hydrogen

31.1 Gas-Phase Formation of H2

When two free H atoms, both in the ground electronic state, approach one another,
by symmetry there is no electric dipole moment. As a result, there is no electric
dipole radiation that could remove energy from the system and leave the two H
atoms in a bound state. Electric quadrupole transitions are possible, but the rates are
very low. Thus the rate coefficient for H+H → H2+hν is so small that this reaction
can be ignored in astrochemistry. The three-body reaction 3H → H2 + H + KE
can occur, with the third body carrying off the energy released when H2 is formed,
but the rate for this three-body reaction is negligible at interstellar or intergalactic
densities.1

The dominant channel for H2 formation in the gas phase begins by formation of
H− by radiative association:

H+ e− → H− + hν , k31.1 ≈ 1.9× 10−16T 0.67
2 cm3 s−1, (31.1)

followed by formation of H2 by associative detachment:

H− +H → H2(v, J) + e− +KE , k31.2 ≈ 1.3× 10−9 cm3 s−1 (31.2)

(Le Teuff et al. 2000); this is an exothermic ion–molecule reaction.
The rate for formation of H2 by associative detachment is proportional to the

density of H−, which tends to be very low in diffuse regions because formation of
H− by radiative association is slow and destruction of H− is rapid. In addition to
the H2-forming reaction (31.2), H− can also be destroyed by reaction with protons:
(Moseley et al. 1970)

H− +H+ →H+H , k31.3 ≈ 6.9× 10−7T
−1/2
2 cm3 s−1 (31.3)

or other positive ions (Dalgarno & McCray 1972):

H− +M+ →H+M , k31.4 ≈ 4× 10−7T
−1/2
2 cm3 s−1 , (31.4)

1At the high densities of a protostar or protoplanetary disk, 3H → H2 + H is able to convert H to
H2, but at interstellar or intergalactic densities, three-body reactions are extremely slow.
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or by photodetachment:

H− + hν → H+ e− , ζ31.5 ≈ 2.4× 10−7G0 s
−1 , (31.5)

in the interstellar radiation field (Le Teuff et al. 2000). In the diffuse ISM, where
n(H+) ≈ 0.01 cm−3, most of the H− that is formed by (31.2) is destroyed by
photodetachment, resulting in a very low formation rate for H2.

In the absence of dust (e.g., in the early universe), H− + H → H2 + e− is the
dominant channel for forming H2. Glover et al. (2006) discuss uncertainties in the
rate coefficients for destruction of H−.

31.2 Grain Catalysis of H2

The dominant process for H2 formation in the Milky Way and other galaxies is
via grain catalysis, a process first discussed by Gould & Salpeter (1963) and Hol-
lenbach & Salpeter (1971). The idea is that a first H atom arrives at a grain and
becomes bound to the grain surface. Initially, the binding may be weak enough that
the H atom is able to diffuse (i.e., random-walk) some distance on the grain surface,
until it happens to arrive at a site where it is bound strongly enough that it becomes
“trapped” – thermal fluctuations at the low temperature (Tgr ≈ 20K) of the grain
are unable to free it for further exploration of the grain surface. Subsequent H atoms
arrive at random locations on the grain surface and undergo their own random walks
until they also become trapped, but eventually one of the newly arrived H atoms en-
counters a previously bound H atom before itself becoming trapped. When the two
H atoms encounter one another, they react to form H2. The energy released when
two free H atoms react to form H2 in the ground state is ∆E = 4.5 eV. This energy
is large enough to overcome the forces that were binding the two H atoms to the
grain, and the H2 molecule is ejected from the grain surface.

Let

Σgr ≡ Σ−21 × 10−21 cm2H−1 ≡ 1

nH

∫
da

dngr

da
πa2 (31.6)

be the total grain geometric cross section per H nucleon. The observed UV extinc-
tion reaches values τ(λ = 0.1µm) ≈ 2 × 10−21 cm2/H. This suggests that the
grain population has

Σ−21
>∼ 1 . (31.7)

This is a lower bound: Σ−21 could conceivably be much larger than the lower
bound (31.7) if a large population of very small a <∼ 50 Å grains is present. All
grain models that reproduce the interstellar extinction have Σ−21 > 1; models
that include PAHs to also explain the observed IR emission have Σ−21

>∼ 5, with
∆Σ−21 ≈ 0.5 coming from the a >∼ 0.01µm grains.
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Suppose that a fraction εgr of the H atoms that collide with a grain in the ISM
depart from the grain as H2 – this fraction may be a function of both grain size a
and composition. The rate for H2 formation via grain catalysis would then be(

dn(H2)

dt

)
gr

= RgrnHn(H) , (31.8)

where the effective “rate coefficient” Rgr is given by

Rgr =
1

2

(
8kT

πmH

)1/2

〈εgr〉Σgr ; (31.9)

the leading factor of 1
2 is because two H atoms are required to form H2, and

〈εgr〉 ≡ 1

Σgr

∫
da

dngr

da
πa2εgr(a) (31.10)

is the formation efficiency averaged over the grain surface area. Numerically,

Rgr = 7.3× 10−17 cm3 s−1

(
T

100K

)1/2

〈εgr〉Σ−21 . (31.11)

Jura (1975) used ultraviolet spectroscopy of diffuse clouds to determine that Rgr ≈
3 × 10−17 cm3 s−1 in gas with T ≈ 70K, which is consistent with Eq. (31.11) if
〈εgr〉Σ−21 ≈ 0.5. The silicate-graphite-PAH grain model of Weingartner & Draine
(2001a) has Σ−21 ≈ 6.0; thus for this grain model, the observed Rgr would appear
to indicate 〈εgr〉 ≈ 0.08. This average could be the result of a very low value of εgr
for the PAHs, which dominate the surface area, and εgr >∼ 0.5 for the a >∼ 0.01µm
“classical” silicate and carbonaceous grains.

31.3 Photodissociation of H2

Photodissociation (H2 + hν → H + H + KE) is the principal process destroy-
ing interstellar H2 in galaxies. The first step in H2 photodissociation is absorp-
tion of a resonance line photon, raising the H2 from an initial level X(v, J) of the
ground electronic state X 1Σ+

g to a level B(v, J) or C(v, J) of the first and sec-
ond electronic excited states, B 1Σ+

u and C 1Πu. The original photoexcitation is
via a permitted absorption line, and therefore the newly excited level B(v′, J ′) or
C(v′, J ′) is guaranteed to have electric dipole-allowed decay channels. In general,
the excited level B(v′, J ′) or C(v′, J ′) is most likely to decay to vibrationally ex-
cited bound levels X(v′′, J ′′) of the ground electronic state, and such decays occur
∼ 85% of the time. Sometimes, however, spontaneous decay of the excited level
B(v′, J ′) will be to the vibrational continuum of the ground electronic state: the
H2 molecule will fly apart in ∼ 10−14 s, separating into two free H atoms. Each
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Table 31.1 Photoexcitation and Photodissociation Ratesa for Unshielded H2

level � ζphotoexc,�/χ
b ζdiss,�/χ 〈pdiss〉�

(v, J) (10−10 s−1) (10−11 s−1)
(0,0) 3.08 4.13 0.134
(0,1) 3.09 4.20 0.136
(0,2) 3.13 4.23 0.135
(0,3) 3.15 4.57 0.145
(0,4) 3.21 4.94 0.154
(0,5) 3.26 5.05 0.155
a From Draine & Bertoldi (1996).
b χ ≡ (νuν)

1000Å
/(4× 10−14 erg cm−3)

electronically excited level u has some probability pdiss,u of spontaneous decay to
the vibrational continuum.

The probability per unit time of photoexcitation of H2 from lower level � to upper
level u is given by

ζ�→u =
πe2

mec2h
f�uλ

3
�u(uλ)�u . (31.12)

There are many transitions out of a given lower vibration-rotation level �. The total
rate of photoexcitation out of � is

ζphotoexc,� =
∑
u

ζ�→u (31.13)

and the photodissociation rate is obtained by summing over all of the photoexci-
tation channels, each multiplied by the probability pdiss,u that the upper level will
decay to the vibrational continuum:

ζdiss,� =
∑
u

ζ�→updiss,u (31.14)

The dissociation probability averaged over the photoexcitation channels is just

〈pdiss〉� ≡ ζdiss,�
ζphotoexc,�

. (31.15)

In the absence of shielding from the interstellar radiation field, the rates for pho-
toexcitation and photodissociation of H2 in various (v, J) levels are given in Table
31.1. Note that the unshielded rates ζphotoexc,� and ζdiss,� are nearly independent
of the level �. The ultraviolet radiation field was taken to be

νuν = χ× (4× 10−14 erg cm−3
)( λ

1000 Å

)
(31.16)

over the 1100–912Å wavelength range where H2 absorbs UV in a neutral region.
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Near 1000Å the spectrum (31.16) has a color temperature of 29000K, correspond-
ing to a B0 star. Because H2 only absorbs strongly over a limited range of wave-
lengths, the photodissociation rates depend mainly on the intensity near 1000Å
measured by

χ ≡
(νuν)

1000 Å

4× 10−14 erg cm−3
(31.17)

and are insensitive to modest variations in the spectral slope. The scaling factor
χ = 1 for the Habing (1968) radiation field, χ = 1.71 for the ISRF of Draine
(1978), and χ = 1.23 for the ISRF of Mathis et al. (1983). Thus in the local
diffuse neutral ISM the H2 photodissociation rate ζdiss ≡ 〈pdiss〉ζphotoexc ≈ 4 ×
10−11χ s−1 ≈ 5× 10−11 s−1.

The steady state abundance of H2 will be determined by a balance between for-
mation on grains and photodissociation, resulting in a very low steady state abun-
dance:

ζdissn(H2) = RgrnHn(H) , (31.18)

n(H2)

nH
=

Rgrn(H)

ζdiss
(31.19)

≈ 1.8× 10−5

(
n(H)

30 cm−3

)(
Rgr

3×10−17 cm3 s−1

)(
5×10−11 s−1

ζdiss

)
.(31.20)

In the absence of self-shielding, diffuse H I clouds will contain only trace amounts
of H2.

31.4 Self-Shielding

Self-shielding refers to the phenomenon where the photoexcitation transitions be-
come optically thick, so that the molecule in question is “shielded” from starlight
by other molecules. The H2 molecule is an important example of self-shielding.
Suppose that the ultraviolet radiation is coming from a single direction, and that
the gas between the point of interest and the illuminating stars has column den-
sity N [H2(v, J)] in the different rotation-vibration levels of H2. If we ignore the
possibility that two different lines may accidentally overlap, then the rate of pho-
toexcitation from level � = X(v, J) to level u = B(v′, J ′) or C(v′, J ′) is

ζphotoexc,�→u =

(
cuλ

hc/λ

)
�u

d(Wλ)�u
dN�

(31.21)

=

(
λcuλ

hc/λ

)
�u

dW�u

dN�
, (31.22)

where W�u [see Eq. (9.3)] is the dimensionless equivalent width in the line � → u.
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In the optically thin limit, dW�u/dN� → (πe2/mec
2)f�uλ�u. Therefore, relative

to the optically thin value, the photoexcitation rate for a specific transition � → u
is reduced by the self-shielding factor:

fshield,�u ≡ dW�u/dN�

(πe2/mec2)f�uλ�u
< 1 , (31.23)

where uλ is the radiation energy density per unit wavelength in the absence of H2

line absorption. Self-shielding occurs on a line-by-line basis, with stronger self-
shielding (i.e., smaller fshield,�u) for the stronger lines (large oscillator strengths
f�u) from levels with large populations N�.

The photodissociation rate for H2 in level � is reduced by self-shielding:

ζdiss,� =
πe2

mec2h

∑
u

f�uλ
3
�uuλfshield,�u . (31.24)

The photodissociation rate per H2 is obtained by averaging (31.24) over the popu-
lated levels. A reasonably accurate approximation is given by (Draine & Bertoldi
1996):

ζdiss ≈ ζdiss,0fshield,disse
−τ1000 , (31.25)

fshield,diss ≈ 0.965

(1 + x/b5)2
+

0.035

(1 + x)0.5
exp

[−8.5× 10−4(1 + x)0.5
]
, (31.26)

x≡ N(H2)

5× 1014 cm−2
, b5 ≡ b

km s−1 , (31.27)

where ζdiss,0 is the photodissociation rate in the absence of dust extinction or self-
shielding, and τd,1000 is the optical depth for attenuation of the radiation field by
dust at 1000 Å.

31.5� Excitation of Vibration and Rotation by UV Pumping

Photoexcitation to some level B(v′, J ′) or C(v′, J ′) will be followed, within a few
nanoseconds, by spontaneous decay to some level X(v′′, J ′′) of the ground elec-
tronic state. Every excited level B(v′, J ′) can decay into a number of different
rotation-vibration levels. The B(v = 2, J = 1) state, for example, has a probabil-
ity p = 0.959 of decaying to a vibrationally excited level of the ground electronic
state. As a result, UV pumping of H2 populates the vibrationally excited levels
of the ground electronic state. At low densities, these vibrationally excited levels
will spontaneously decay to lower vibrational levels via electric quadrupole transi-
tions, usually with ∆v=−1. This “radiative cascade” populates many lower levels,
finally reaching the ground vibrational level.
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Table 31.2 Einstein A Coefficients and Critical Densities for H2(v=0, J)
at T = 70K

J AJ→J−2
a ncrit,H

b ncrit,H2
c

( s−1) ( cm−3) ( cm−3)
2 2.94× 10−11 1.5× 103 4.1× 101

3 4.76× 10−10 1.2× 104 9.2× 102

4 2.76× 10−9 6.8× 104 2.0× 104

5 9.83× 10−9 1.1× 106 3.4× 105

a Wolniewicz et al. (1998)
b Forrey et al. (1997)
c Le Bourlot et al. (1999)

In the low density limit, the radiative cascade process is completely determined
by the Einstein A coefficients, and an electronically excited level u has some prob-
ability q(u; v′, J ′) of populating level X(v′, J ′) in the course of the radiative cas-
cade. In the absence of collisions, the population of level X(v, J) can, therefore,
be calculated from

N(v, J)Atot(v, J) =
∑
�

N�

∑
u

ζpump,�→uq(u; v, J) , (31.28)

where Atot(v, J) is the total spontaneous decay rate from level (v, J).

31.6� Rotational Level Populations

The vibrationally excited levels have radiative lifetimes of only ∼ 106 s, and colli-
sional deexcitation by collisions with H, H2, or He is unlikely at densities nH

<∼
104 cm−3. In the ground vibrational state, however, the lifetimes of the lowest rota-
tional levels are long enough that collisional effects can play a role in depopulating
the lowest J levels. The Einstein A coefficients and critical densities for a few of
the rotationally excited levels of H2 are given in Table 31.2. The populations of the
lowest J levels are, therefore, sensitive to the density nH and temperature T of the
gas.

The pumping rate is of course affected by self-shielding, so we cannot discuss the
rotational excitation of the H2 without specifying (1) the ultraviolet intensity in the
absence of self-shielding and (2) the amount of H2 between the point of interest and
the ultraviolet source. We must specify not only the total column N(H2) providing
the self-shielding, but also the amount in each rotational level. For illustration,
the H2 providing the shielding is assumed to have a thermal rotational distribution,
with Trot = 100K. Figure 31.1 shows the relative rotational level populations for
H2 exposed to the MRN radiation field but shielded by various column densities
N(H2).
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Figure 31.1 Rotational excitation of H2 in diffuse clouds, for various N(H2). Also
shown is the rotational excitation of H2 in diffuse clouds falling on sightlines to the
AGNs 3C273 and NGC 7469 (Gillmon et al. 2006).

This plot shows several interesting features:

• For low levels of self-shielding [N(H2) <∼ 1015 cm−2] the rotational distri-
bution function for J > 2 is relatively insensitive to the gas temperature –
the rotational excitation for J ≥ 2 is the result of UV pumping.

• The rotational levels J ≥ 3 have relative populations that can be approxi-
mately characterized by rotational temperature Trot ≈ 400K, but this has
nothing to do with the actual kinetic temperature of the gas: it is entirely the
result of the branching ratios in the vibration-rotation “cascade” that popu-
lates the high J levels.

• As the shielding column density N(H2) increases, the UV pumping rates
decline, and the fraction of H2 in levels J > 3 declines.

• For N(H2) >∼ 1018 cm−2, the UV pumping rates are small enough so as to
not appreciably raise the abundance of J = 2, and the relative populations
of levels J = 0 and J = 2 can be used as a thermometer to estimate the gas
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temperature:

Tgas ≈ 510K

ln [5N(0, 0)/N(0, 2)]
. (31.29)

• The ratio of J = 1 to J = 0 tends to be larger than the thermal equilibrium
value. This is because the larger statistical weight of the J = 1 level leads
to N(J = 1) > N(J = 0), resulting in more effective self-shielding and a
reduced photodissociation rate for J = 1.

When a sufficiently bright ultraviolet source is located behind a gas cloud, the H2

rotational-level populations can be determined by the usual techniques of absorp-
tion line spectroscopy. Figure 31.1 shows the degree of rotational excitation in two
Milky Way gas clouds, using absorption lines in the spectra of background AGNs.

For the two examples shown, the rotational excitation is larger than what was
expected for the actual column densities. In part, this is because the observations
sum over all the H2, some of which is closer to the cloud surface, less self-shielded,
and therefore more strongly pumped. In the following, we will consider models
where we take into account the variation in the pumping rate with distance from
the cloud surface.

31.7� Structure of a Photodissociation Region

Stars are formed out of molecular gas, and when a massive star forms, it may
strongly irradiate the remaining molecular clouds with ultraviolet radiation, re-
sulting in photodissociation and photoionization. The photoionized gas, heated
to ∼ 104 K, will be overpressured, which will drive a compressive wave (possibly
a shock wave) in the molecular cloud, and will also cause the ionized gas to try to
flow toward lower-pressure regions nearby.

The interface between the H II region and the dense molecular cloud is called a
photodissociation region, or PDR. It will be bounded by an ionization front – the
surface where the hydrogen is 50% ionized – and will contain a photodissociation
front – the surface where the hydrogen is 50% atomic and 50% molecular (by
mass). If we adopt a frame of reference in which the photodissociation front is at
rest, then the molecular gas will flow toward the photodissociation front where it
is dissociated, after which the atomic gas flows away from the photodissociation
front toward the ionization front. The structure of a PDR at the interface between
an H II region and a dense molecular cloud is illustrated in Fig. 31.2.

If the flow velocities are sufficiently small, the ionization, chemistry, and heating
and cooling may all be considered to be in steady state balance. In particular, H2

formation and destruction must locally balance, as in Eq. (31.18). Diffuse molec-
ular clouds have a qualtitatively similar structure, although they may lack both the
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Figure 31.2 Structure of a PDR at the interface between an H II region and a dense
molecular cloud.

hottest and the coolest regions shown in Fig. 31.2, depending on whether they are
bounded by photoionized gas, on the one hand, and how thick they are, on the other.

Fig. 31.3 shows the profile of a model plane-parallel cloud with an H I/H2 tran-
sition. For simplicity, the cloud is assumed to be illuminated from one side by
unidirectional radiation with the energy density and spectrum of the interstellar ra-
diation field. The gas is assumed to be at uniform pressure p/k = 3000 cm−3 K,
with a cosmic ray ionization rate ζCR = 2×10−16 s−1 and standard dust properties
for attenuation of starlight, photoelectric heating, and formation of H2. The gas is
further assumed to be in thermal and chemical equilibrium at each point, with heat-
ing = cooling, ionization = recombination, and H2 destruction = formation. As the
radiation field entering from the left is attenuated by dust, the gas makes a transition
from the warm (WNM) phase to the cool (CNM) phase.

The H2 abundance in the WNM is very low, <∼ 10−6. The steady state H2

abundance rises as one enters the CNM phase, as a result of both the increased
gas density (promoting H2 formation), and growing self-shielding (lowering the
photodissociation rate). The zone where the gas is more than 50% atomic has
NH = 3.9 × 1020 cm−2, and a dust column with E(B − V ) = 0.066mag, AV =
3.1E(B − V ) = 0.2mag. The H2 in the cloud is undergoing UV pumping, which
results in destruction of the H2 ∼ 15% of the time; the remaining ∼ 85% of the UV
excitations create a population of rotationally excited H2 in the cloud.
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Figure 31.3 Profile of the H I/H2 transition in a diffuse molecular cloud, for an as-
sumed pressure p/k = 3000 cm−3 K. The dotted lines delimit the surface layer of
cool gas where more than 50% of the hydrogen is H I.

Ultraviolet spectroscopy of extragalactic sources frequently shows absorption
lines from H2 in diffuse gas in the Galaxy. This diffuse H2 will usually be ex-
cited by an ultraviolet radiation field resembling the local ISRF, and hence we ex-
pect rotationally excited H2 to be present in these clouds due to the effects of UV
pumping. Figure 31.4 shows the column densities in the J = 2, 3, 4, 5 rotational
levels of the ground vibrational state, plotted against the total H2 column density.
The solid curves are adapted from the model cloud in Fig. 31.3, where we show
the integrated columns of (2/ cos θ)×N(H2, J) versus (2/ cos θ)×N(H2, total)
integrated from the WNM to a point within the cloud to simulate clouds of varying
total thicknesses. The factor of 2 allows for the fact that a cloud will have two
surfaces; the factor of 1/ cos θ allows for inclination of the plane-parallel cloud
relative to the sightline to the AGN. The curves shown are for cos θ = 0 and 0.5.
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Figure 31.4 Solid curve: H2 column densities N(J) for rotational levels J = 2, 3, 4, 5
for diffuse clouds of varying total thickness, for the pressure and UV illumination as-
sumed in Fig. 31.3. N(H2) is the total H2 column density through the cloud. Also
shown are N(J) in diffuse clouds observed toward various AGNs (Wakker 2006; Gill-
mon et al. 2006). The observed column densities of excited H2 are significantly higher
than predicted by the UV pumping model.

Also shown are column densities measured for a number of AGN sightlines
(Wakker 2006; Gillmon et al. 2006). For N(H2, total) <∼ 1017 cm−2, the observed
column densities of rotationally excited H2 appear to be in agreement with the UV
pumping model, whereas clouds with N(H2) >∼ 1018 cm−2 almost always show
more rotationally excited H2 than predicted by the UV pumping model. In cloud
after cloud, the amount of H2 in the J = 3 level is an order of magnitude larger
than predicted by UV pumping alone.

The reason for this discrepancy is unknown; one possibility is that a large frac-
tion of diffuse clouds contain small regions with high gas temperatures T >∼ 500K
where the rotational levels J = 3, 4, 5 can be collisionally excited. This inter-
pretation requires some mechanism to heat the gas locally; MHD shock waves or
intermittent decay of strong turbulence are two possibilities.
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31.8 Dense PDRs

In star-forming galaxies, an appreciable fraction (∼ 10%) of the total luminosity of
the galaxy is reprocessed through dense PDRs at the interface between molecular
clouds and H II regions. Here, energy originally radiated by hot stars is absorbed
by molecules and dust grains in the PDR, and reradiated at longer wavelengths as
IR emission from dust and PAHs, and line emission from atoms and molecules in
the gas. Part of the starlight energy goes into changing the physical state of the gas
from cold and molecular to hot, photodissociated, and possibly photoionized if an
ionization front is present.

The Orion Bar (see §28.2) is an example of a dense PDR. Moving outward from
θ1 Ori C, it includes a high pressure layer of photoionized gas, an ionization front,
a photodissociation zone where the hydrogen is neutral but primarily atomic, and a
photodissociation front. Tielens et al. (1993) provide a nice overview of the Orion
Bar.

The overall physics and chemistry of PDRs is complex – see the review by Hol-
lenbach & Tielens (1999). There are a number of outstanding issues, such as
whether clumpiness of the gas is of major importance, how the dust population
evolves as the photodissociation and photoionization fronts approach and pass by,
and the processes, such as photoelectric heating, responsible for heating the gas
in the PDR. For example, Allers et al. (2005) discuss the heating of the gas and
evidence for evolution of the grain properties in the Orion Bar PDR.



Chapter Thirty-two

Molecular Clouds: Observations

32.1 Taxonomy and Astronomy

Molecular gas is abundant in star-forming galaxies like ours, and occurs over a very
wide range of densities. Individual clouds are separated into categories based on
a their optical appearance: diffuse, translucent, or dark, depending on the visual
extinction AV through the cloud, as shown in Table 32.1.

Table 32.1 Cloud Categories

Category AV (mag) Examples
Diffuse Molecular Cloud <∼ 1 ζ Oph cloud, AV = 0.84 a

Translucent Cloud 1 to 5 HD 24534 cloud, AV = 1.56 b

Dark Cloud 5 to 20 B68 c, B335 d

Infrared Dark Cloud (IRDC) 20 to >∼ 100 IRDC G028.53-00.25 e

a van Dishoeck & Black (1986). d Doty et al. (2010).
b Rachford et al. (2002). e Rathborne et al. (2010).
c Lai et al. (2003).

Diffuse and translucent clouds have sufficient ultraviolet radiation to keep gas-
phase carbon mainly photoionized throughout the cloud. Such clouds are usually
pressure-confined, although self-gravity may be significant in some cases. The
typical dark cloud has AV ≈ 10mag, and is self-gravitating. Some dark clouds
contain dense regions that are extremely opaque, with AV

>∼ 20 mag. In some
cases, dark clouds with AV

>∼ 102 mag are observed; these infrared dark clouds
(IRDCs) are opaque even at 8µm, and can be seen in silhouette against a back-
ground of diffuse 8µm emission from PAHs in the ISM (see Plate 15).

The terminology in Table 32.1 describes the total surface density of the cloud,
in terms of the visual extinction AV through the cloud. Because molecular clouds
do not form a one-parameter family, terminology has developed to describe other
characteristics of the clouds. Unfortunately, the terminology has not been standard-
ized, and different investigators may use the terms “clump” and “core” differently.
We follow the usage outlined by Bergin & Tafalla (2007).

The giant molecular cloud (GMC) and dark cloud categories are distinguished
mainly by total mass. Groups of distinct clouds are referred to as cloud com-
plexes. Structures within a cloud (self-gravitating entities) are described as clumps.
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Table 32.2 Terminology for Cloud Complexes and Their Components

Categories Size nH Mass Linewidth AV Examples
(pc) ( cm−3) (M�) ( km s−1) (mag)

GMC Complex 25− 200 50− 300 105−106.8 4− 17 3− 10 M17, W3, W51
Dark Cloud Complex 4− 25 102 − 103 103−104.5 1.5− 5 4− 12 Taurus, Sco-Oph
GMC 2− 20 103 − 104 103−105.3 2− 9 9− 25 Orion A, Orion B
Dark Cloud 0.3− 6 102 − 104 5− 500 0.4− 2 3− 15 B5, B227
Star-forming Clump 0.2− 2 104 − 105 10− 103 0.5− 3 4− 90 OMC-1, 2, 3, 4
Core 0.02−0.4 104 − 106 0.3− 102 0.3− 2 30−200 B335, L1535

Clumps may or may not be forming stars; in the former case they are termed star-
forming clumps. Cores are density peaks within star-forming clumps that will
form a single star or a binary star. Table 32.2 gives representative properties for the
different categories.

Molecular clouds are sometimes found in isolation, but in many cases molecular
clouds are grouped together into complexes. Since large clouds generally have
substructure, the distinction between “cloud” and “cloud complex” is somewhat
arbitrary. Delineation of structure in cloud complexes is guided by the intensities
and radial velocities of molecular lines (e.g., CO J = 1−0) as well as maps of
thermal emission from dust at submm wavelengths. Table 32.2 provides a guide to
the terminology.

Much of the molecular mass is found in large clouds known as “giant molecular
clouds” (GMCs), with masses ranging from ∼ 103 M� to ∼ 2 × 105 M�. These
have reasonably well-defined boundaries, but the molecular gas within them has
considerable substructure.

A GMC complex is a gravitationally bound group of GMCs (and smaller clouds)
with a total mass >∼ 105.3 M�. The largest GMC complexes have masses ∼ 6 ×
106 M�.

The nearest example of a GMC complex is the Orion Molecular Cloud (OMC)
complex, with a total mass M ≈ 3 × 105 M�, located ∼ 414 pc from the Sun. A
map of the distribution of molecular gas in the OMC complex is shown in Figure
32.1. There are six GMCs shown on the map, three of which (Orion A, Orion B,
and Northern Filament) form the Orion GMC complex; the other three GMCs on
the map have different radial velocities and are thought to be background objects.

For the currently favored distance d=414 pc, the Orion A, Orion B, and North-
ern Filament GMCs have virial masses 1.2×105 M�, 0.6×105 M�, and 0.8×105 M�
if magnetic fields are neglected. If magnetic fields are dynamically important, as
appears to be the case, the virial mass estimates will increase by a factor of up to
∼ 2. The GMCs are embedded within a lower density H I envelope, with a total H I
mass ∼ 6×104 M�. The Orion A GMC, the most massive of the three GMCs in
the Orion complex, hosts the famous Orion Nebula (M42 = NGC1976) H II region
(see Chapter 28). Plates 13 and 14 show the Orion Nebula; the dust around it is
made visible both by scattering light and by obscuring some parts of both M 42 and
M 43.
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Figure 32.1 Schematic diagram showing the boundaries of molecular clouds in the
Orion region. There are three GMCs forming the Orion GMC complex: Orion A,
Orion B, and the Northern Filament, with virial masses ∼1.2×105 M�, 0.6×105 M�,
and 0.8×105 M�. The Orion A and Orion B clouds have similar radial velocities and
may be connected. The Orion Nebula is associated with the Orion A cloud. The NGC
2149 cloud, the Southern Filament, and Mon R2 are thought to be background features
not associated with Orion A or Orion B. For clarity, the NGC 2149 cloud is shown 8◦

south of its actual location. The shaded arc is Barnard’s Loop, seen in Hα (and visible
in Plate 3b). After Maddalena et al. (1986).

Each of the GMCs in Orion contains a number of clumps. In projection, the
Orion A cloud is ∼ 20 pc×75 pc. About 50% of the total mass of Orion A is in
the Orion A Ridge, a ∼ 3 pc×32 pc filament of enhanced density running along
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Figure 32.2 Locations of prominent molecular clouds along the Milky Way. From
Dame et al. (2001), reproduced by permission of the AAS.

the long axis of the cloud. There are a number of density peaks, or clumps, along
this filament. The most massive is OMC-1 (∼ 103 M�) centered behind the Orion
H II region. OMC-2 and OMC-3, with masses ∼ 102 M�, are located ∼ 1.7 pc and
2.8 pc N of OMC-1, and OMC-4 is located ∼ 1.4 pc S of OMC-1.

OMC-1 appears to be the site of the most vigorous current star formation in the
Orion A molecular cloud, containing within it a cluster of young stars with total
luminosity L ≈ 105 L�. The most luminous sources in OMC-1 are the Becklin-
Neugebauer object, a B3-B4 star (8–12M�, L ≈ 2500 − 104 L�), and Source I,
a heavily obscured star or protostar with L ≈ 5×104 L�. Source I appears to be
responsible for a spectacular high velocity outflow in OMC-1, expanding radially
outward, and visible in line emission from vibrationally excited H2, rotationally
excited OH, and high-J CO. Genzel & Stutzki (1989) give an excellent review of
the molecular gas and star-formation in the Orion GMC complex.

Figure 32.2 shows the location of prominent molecular clouds projected onto
the sky, and Fig. 32.3 shows the distribution of molecular clouds within 1 kpc
of the Sun, projected onto the disk. The nearest molecular clouds are the Taurus
Molecular Cloud complex, at a distance of ∼ 140 pc, and the R Cor A, ρOph, and
Lupus clouds, at D ≈ 150, 165, and 170 pc, respectively. The Taurus, Lupus, and
ρOph clouds each have M ≈ 3×104 M�; the R Cor A cloud is considerably less
massive, with M ≈ 3×103 M�.

CO line surveys can detect GMCs at large distances, allowing the total number in
the Galaxy to be estimated. Excluding the molecular material within a few hundred
pc of the Galactic Center, the overall mass distribution of GMCs in the Milky Way
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Figure 32.3 Molecular clouds within 1 kpc of the Sun. From Dame et al. (1987),
reproduced by permission of the AAS.

can be approximated by a power-law:

dNGMC

d lnMGMC
≈ Nu

(
MGMC

Mu

)−α

for 103 M� <∼ MGMC < Mu , (32.1)
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with Mu ≈ 6 × 106 M�, Nu ≈ 63, and α ≈ 0.6 (Williams & McKee 1997). For
the distribution (32.1), most of the mass is in the most massive GMCs: ∼ 80% of
the molecular mass is in GMCs with M > 105 M�.

Plate 8 shows the distribution of GMCs and GMC complexes in the face-on spiral
galaxy M51, with numerous GMC complexes with masses M > 107 M� (Koda
et al. 2009).

32.2 Star Counts

Molecular clouds were originally discovered by star counts: Herschel (1785) no-
ticed that there were patches along the Milky Way where very few stars were seen.
Herschel incorrectly attributed this to a real absence of stars; we now understand
that the apparent deficiency of stars is the result of obscuration by dusty clouds.
Star counts using background stars continue to be a good way to study the structure
of these regions. Because the visual obscuration can be very large, studies of dark
clouds using star counts are now usually done in the J, H, or K bands (e.g., the
study of the Pipe Nebula by Lombardi et al. 2006).

32.3 Molecular Radio Lines

The most common way to study molecular gas is through molecular line emission,
and the primary line used is the J = 1 → 0 transition of CO. This transition is
often optically thick, but, as discussed in §19.6, the CO 1–0 luminosity of a cloud
is approximately proportional to the total mass.

Velocity-resolved mapping of CO 1–0 together with an assumed rotation curve
and an adopted value of the “CO to H2 conversion factor” XCO have been used
to infer the surface density of H2 over the Milky Way disk (Nakanishi & Sofue
2006). The H2 surface density shown in Figure 32.4 was obtained for the value of
XCO = 1.8 × 1020H2 cm

−2/Kkms−1 recommended by Dame et al. (2001). It
is important to keep in mind that the value of XCO is quite uncertain (see Chapter
19).

Table 32.3 gives the total masses of H I and H2 in the Milky Way from the anal-
ysis of Nakanishi & Sofue (2003, 2006). Molecular gas accounts for ∼ 22% of the

Table 32.3 Mass of H I and H2 in the Milky Way

Phase M(109 M�)
Total H II (not including He) 1.1
Total H I (not including He) 2.9
Total H2 (not including He) 0.84

Total H II, H I and H2 (not including He) 4.8
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Figure 32.4 Gas surface densities Σ as a function of galactocentric radius R. The
Sun is assumed to be at R = 8.5 kpc. H2: Surface density of H2 estimated from
CO 1–0 observations (Nakanishi & Sofue 2006). H II: Surface density of H II derived
from pulsar dispersion measures (Cordes & Lazio 2003) (see Fig. 11.4). H I: Surface
density of H I from 21-cm studies (Nakanishi & Sofue 2003). H II + H I + H2: Total
gas surface density. Beyond ∼11 kpc, the total gas surface density (dominated by H I)
declines approximately exponentially, with a ∼3.5 kpc scale length.

mass of the ISM in the Milky Way, contributing a mass M(H2) ≈ 8.4 × 108 M�.
For comparison, the total molecular gas mass of M31 is ∼ 3.6 × 108 M� (Nieten
et al. 2006, using XCO = 1.9 × 1020H2 cm

−2/Kkms−1) – about 40% of the
molecular mass in the Milky Way.

32.4 FIR Emission from Dust

The CO 1–0 line is the classic tracer of molecular gas, but the observed line in-
tensity is usually limited by radiative trapping effects, and estimation of the total
molecular mass requires adoption of a value for the XCO factor relating CO J =
1→0 luminosity to H2 mass. As we have seen previously (§19.6), the actual value
of XCO should, in principle, depend both on cloud density and on the excitation
temperature of the CO. Cloud mass estimates based on the CO 1–0 luminosity must
therefore be treated with caution.

We would like an independent way to estimate masses of molecular clouds. One



364 CHAPTER 32

way is through the far-infrared and submillimeter continuum emission from dust
grains. Except in dark clouds where grains acquire ice mantles, measured deple-
tions of elements like C, Mg, Si, and Fe from the gas show that H I clouds and H2

clouds have very similar dust/gas mass ratios. At wavelengths λ >∼ 300µm, this
emission is generally optically thin, so that radiative transfer corrections are un-
necessary, and the dust mass Mdust = FνD

2/κνBν(Tdust), where κν is the dust
opacity (absorption cross section per unit mass of dust) at frequency ν, and Bν(T )
is the blackbody function. From the shape of the emission spectrum, or our general
expectations regarding dust temperatures, we can usually estimate Tdust to within
a factor 1.3 (say). If we are in the Rayleigh-Jeans limit, Bν(T ) ∝ T , then the main
uncertainty is the value of the dust opacity κν . If the dust were identical to that in
H I clouds, then we could use κν determined from observations of the H I “cirrus,”
which has been reasonably well-determined from comparisons of sub-mm emis-
sion and H I 21-cm emission. However, the dust in molecular clouds could differ
in composition from dust in diffuse clouds, and, in principle, κν might also depend
on the temperature of the dust. Nevertheless, in practice, sub-mm observations are
a good way to estimate the total mass of dust present in a molecular cloud.

32.5 γ rays

There are four principal channels for production of γ rays by the ISM:

CRp+ p → CRp+ p+ π0 ,

π0 → 2γ (pion decay), (32.2)
CRe+ p → CRe+ p+ γ (bremsstrahlung), (32.3)

CRe+

⎧⎨
⎩

CMB
FIR from dust

starlight

⎫⎬
⎭ → CRe+ γ (inverse Compton), (32.4)

e+ + e− → 2γ or 3γ (e+e− annihilation), (32.5)

where CRp is a cosmic ray proton (or He nucleus), and CRe is a cosmic ray elec-
tron. The first two channels arise from cosmic rays colliding with interstellar gas.
If the density of cosmic ray nuclei and electrons is assumed to be spatially uniform,
then the γ-ray intensity from a given direction will have a component proportional
to the mass surface density

∫
ρdr. By calibrating on H I clouds where we can de-

termine
∫
ρdr from 21-cm observations, we use the observed γ-ray intensity to

determine the mass surface density
∫
ρdr of a molecular cloud. This relies on the

assumption that the cosmic ray density inside the molecular cloud is the same as in
diffuse regions.

Comparing cloud surface densities inferred from E > 70MeV γ-ray images
with H I 21-cm and CO 1–0 images, Bloemen et al. (1986) estimated XCO =
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2.8 × 1020H2 cm
−2/(K km s−1). Subsequent work using 1-30MeV data from

COMPTEL gave XCO = (1.26± 0.3)× 1020H2 cm
−2/(K km s−1) (Strong et al.

1994), but the result from the higher-energy data may be more reliable as the cos-
mic rays required to produce it have higher penetrating power. Observations with
the Fermi Gamma-Ray Space Telescope of E > 100MeV γ rays from the Orion
molecular cloud have recently been used to estimate XCO = (1.76 ± 0.04) ×
1020H2 cm

−2/(K km s−1) for the Orion A GMC, and XCO = (1.27 ± 0.06) ×
1020H2 cm

−2/(K km s−1) for the Orion B GMC (Okumura et al. 2009). The value
of XCO for Orion A agrees well with XCO = (1.8±0.3)×1020H2 cm

−2/(K km s−1)
determined using infrared emission from dust as the mass tracer (Dame et al. 2001).
The discrepancy between the values of XCO for Orion A and Orion B is very puz-
zling.

32.6� Compact, Ultracompact, and Hypercompact H II Regions

Most of the gas and dust in a GMC is relatively cold. However, most GMCs have
already had some star formation prior to the time when we observe them. The
most conspicuous sites of recent star formation will be those where one or more
massive (M >∼ 30M�) O-type or B-type stars have recently formed. The ionizing
photons from an O-type or early B-type star will create an H II region, which will
initially be very small because the gas is dense and dusty. In order of decreasing
density, H II regions in dense clouds are termed hypercompact (ne

>∼ 106 cm−3),
ultracompact (105 − 106 cm−3), or compact (104 − 105 cm−3).

These objects were first discovered as compact sources of free–free radio emis-
sion, but are very bright in the far-infrared and mid infrared, and are now easily
detected as bright infrared sources.

From the theory of dusty H II regions (see §15.4), it is clear that if the dust to gas
ratio is anything like “normal,” then an ultracompact or hypercompact H II region
is expected to be strongly affected by radiation pressure, and should exhibit a shell-
like morphology if it is static. In dense H II regions, we expect the dust to absorb a
significant fraction of the ionizing radiation, as well as a substantial fraction of the
recombination radiation, particularly Lymanα [see Eq. (15.53)]. Because dense
H II regions are small, the radiation intensities are high and the dust can be quite
warm. Thus, these regions stand out as sources that are bright at 24µm or even
10µm.

If the stellar source of ionizing radiation is stationary relative to the gas, then the
time scale for expansion of a hypercompact or ultracompact H II region is very short
– of order the radius of the dusty Strömgren sphere divided by the ∼ 15 km s−1

sound speed – and we would expect these objects to be relatively rare. The observed
numbers of these sources is, however, larger than expected, and it is thought that
this is likely to be due to motion of the star relative to the gas: in the direction of
motion of the star, the H II region ceases to expand when the expansion velocity
of the gas is equal to the velocity of the star relative to the gas. In this scenario,
the ionized gas should have a “cometary” appearance: flattened on the leading
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edge of the H II region, with a “tail” trailing behind the star. This morphology is
sometimes seen. Alternatively, some of the ultracompact H II regions appear to be
cases where a disk or other dense structure near the star is gradually being ablated
by photoionization, providing a reservoir of gas to replace the gas removed by the
expanding ionized outflow. If a disk is involved, the outflows may be bipolar. A
nice review of ultracompact H II regions is provided by Hoare et al. (2007).

32.7� IR Point Sources

Low-mass stars are much more numerous than the massive stars that power H II
regions. Because of the dust that is present, stellar sources will produce IR nebulae
with characteristic sizes

R ≈ (nHσdust)
−1 ≈ 2× 1018

103 cm−3

nH
cm, (32.6)

for a dust attenuation cross section (at optical/UV wavelengths) σdust ≈ 5 ×
10−22 cm2/H. In high density regions (nH

>∼ 104 cm−3), the resulting IR neb-
ulae will be small, and may appear point-like depending on the distance and the
angular resolution of the telescope.

32.8� Masers

OH and H2O masers are frequently found near the boundaries of compact and
ultracompact H II regions. In a survey of ultracompact H II regions, 67% had H2O
masers and 70% had NH3 masers located outside the ionized region. H2CO and
CH3OH masers are also frequently seen.

The physical conditions in the masing regions remain poorly understood. In
some cases, the pumping can result from the infrared emission from dust; in other
cases, the population inversions are thought to results from collisional excitation
in warm gas. In all cases, the maser emission should peak along maximum-gain
paths, where projected velocity gradients are minimum.

32.9 Size–Linewidth Relation in Molecular Clouds

Larson (1981) noted that observations of molecular clouds in spectral lines of
CO, H2CO, NH3, OH, and other species, were broadly consistent with a size–
linewidth relation, where a density peak of characteristic size L tends to have a
three-dimensional velocity dispersion given by

σv ≈ 1.10 Lγ
pc km s−1 , γ ≈ 0.38 for 0.1 <∼ Lpc

<∼ 102 , (32.7)
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where L = Lpc pc is the maximum projected dimension of the density peak. Lar-
son noted that the power-law index γ ≈ 0.38 was curiously close to the index 1

3

found by Kolmogorov (σv ∝ L1/3) for a turbulent cascade in an incompressible
fluid. It therefore is tempting to refer to the observed fluid motions as “turbulence,”
although in reality the motions are some combination of thermal motions, rotation,
MHD waves, and turbulence.

The power-law index γ ≈ 0.38 found by Larson has been questioned. A study of
273 molecular clouds (Solomon et al. 1987) found σv ≈ (1.0±0.1)L0.5±0.05

pc km s−1,
somewhat steeper than Larson’s result. A recent study by Heyer & Brunt (2004)
found σv ≈ (0.96 ± 0.17)L0.59±0.07

pc km s−1, again somewhat steeper than Lar-
son’s original result. The following discussion will leave γ as a variable, but, for
illustration, will evaluate expressions assuming Larson’s result γ ≈ 0.38. The
reader should keep in mind that the power-law approach is only an approximate
representation of complicated data. Note that the various studies do agree that
σv ≈ 1 km s−1 when L = 1pc.

For scales L >∼ 0.02 pc, σv from Eq. (32.7) exceeds the isothermal sound speed
(kT/µ)1/2 ≈ 0.23(T/15K)1/2 km s−1 in the cold gas – the fluid motions are
supersonic. Extending the studies to scales as small as 0.01 pc, the linewidth σv

appears to go to a constant ∼ 0.2 km s−1 for very small clumps, L <∼ 0.02 pc: the
linewidths are nearly thermal, with only a small contribution from rotation, waves,
or turbulence (e.g., Goodman et al. 1998).

The density peaks are generally self-gravitating. If we assume them to be in
approximate virial equilibrium, and consider only the kinetic energy associated

Figure 32.5 The three-dimensional internal velocity dispersion σ versus maximum
linear dimension L of the density peak. The dashed line is given by Eq. (32.7). From
Larson (1981).
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with fluid motions (i.e., we neglect magntic fields and external pressure) we can
estimate the clump mass using the virial theorem (see §35.5). For a uniform density
sphere with diameter L, virial equilibrium requires 〈σ2

v〉 = 6GM/5L, and we can
therefore estimate the clump mass

M ≈ 5σ2
vL

6G
≈ 230L2γ+1

pc M� → 230L1.76
pc M� , (32.8)

the characteristic density

nH ≈ 1.3× 104L2γ−2
pc cm−3 → 1.3× 104L−1.24

pc cm−3 , (32.9)

and the characteristic column density

NH = nHL = 4.0× 1022L2γ−1
pc cm−2 → 4.0× 1022L−0.24

pc cm−2 . (32.10)

If γ < 0.5, smaller clouds tend to be darker, whereas for γ = 0.5, small clouds
and large clouds would all have the same NH. We recall that for the dust in diffuse
clouds, AV /NH = 1.87× 1021 cm2, and we would have

AV ≈ 21L2γ−1
pc mag → 21L−0.24

pc mag. (32.11)

The dust in dense clouds differs from that in the diffuse ISM, and AV /NH could be
either larger or smaller than in the diffuse ISM, but this gives a reasonable estimate
of the visual extinction through the cloud.

According to Eqs. (32.9 and 32.11), if γ ≈ 0.38, then a GMC complex with
L ≈ 50 pc would have M ≈ 2 × 105 M�, mean density 〈nH〉 ≈ 100 cm−3 and
〈AV 〉 ≈ 8 mag, whereas a core with diameter L = 0.1 pc would have M ≈ 4M�,
nH ≈ 2× 105 cm−3, and AV ≈ 40 mag.

The scaling relation (32.7) for σv is only an approximate description of observed
trends, and individual regions may deviate from it by factors of two, but the overall
trend does generally describe the molecular structures in the nearby Milky Way.

Expressing these same relations with density as the independent variable, we
obtain (again, using Larson’s relation with γ = 0.38)

Lpc = (n3/13)
1/(2γ−2) → 7.94 n−0.81

3 , (32.12)

σv = 1.1(n3/13)
γ/(2γ−2) km s−1 → 2.43 n−0.31

3 km s−1 , (32.13)

M = 230(n3/13)
(2γ+1)/(2γ−2) M� → 8940 n−1.42

3 M� , (32.14)

AV = 21(n3/13)
(2γ−1)/(2γ−2) mag → 13 n0.19

3 mag , (32.15)
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Figure 32.6 |B‖| versus nH from 137 Zeeman measurements (69 HI, 54 OH, and 14
CN) with 1σ uncertainties, from Crutcher et al. (2010) (original data from Crutcher
1999; Heiles & Troland 2004; Troland & Crutcher 2008; Falgarone et al. 2008). The
solid line [Eqs. (32.16), (32.17)] is the median total magnetic field strength B0.5 as
a function of nH from the Bayesian analysis by Crutcher et al. (2010), with B0.5 ∝
nH

0.65 for nH > 300 cm−3.

where n3 ≡ nH/(10
3 cm−3), and the relations on the extreme right are for Larson’s

value γ ≈ 0.38.
Note that AV in Eq. (32.15) is only weakly dependent of n3. As already noted

above, if γ in Larson’s relation is increased to ∼ 0.5 (as advocated by Solomon
et al. (1987) and Heyer & Brunt (2004)), the virial analysis above gives AV ∝
n0
3. Observationally, many self-gravitating molecular clouds – from individual dark

clouds to GMC complexes – tend to have AV ≈ 10 mag. There is, however,
an observed tendency for smaller structures to have higher AV , consistent with
exponent γ < 0.5. For this reason, we will retain Larson’s value γ = 0.38 in the
discussion below.

32.10 Magnetic Fields in Molecular Clouds

The virial estimate for the mass in Eq. (32.8) assumes that the cloud is supported by
turbulence alone. However, there is strong evidence showing that magnetic fields
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are dynamically important in molecular clouds. In H I gas the line-of-sight compo-
nent B‖ of the magnetic field can be measured using the Zeeman effect on the 21-
cm line. The Zeeman effect on the OH Λ-doubling lines (1.665, 1.667, 1.720GHz)
or on the CN 1 − 0 rotational transition (113GHz) can be used to measure the
line-of-sight component B‖ of the magnetic field in molecular clouds.

Crutcher et al. (2010) collected Zeeman measurements of B‖ for 66 H I clouds
and 72 molecular clouds, with density estimates for each case; the data are shown
in Figure 32.6. Crutcher et al. (2010) show that near any given density nH, the
distribution of the measured |B‖| requires that there be a distribution of magnetic
field strengths. For clouds with density nH = 104n4 cm

−3, Crutcher et al. (2010)
deduce a median field strength

B0.5 ≈ 5µG for n4 < 0.03 (32.16)
≈ 49n0.65

4 µG for 0.03 < n4 . (32.17)

Thus, for n4
>∼ 0.03, the median magnetic field strength estimated by Crutcher

et al. (2010) implies a median Alfvén speed

(vA)0.5 ≈ 0.90n0.15
4 km s−1 for n4

>∼ 0.03; (32.18)

with vA exceeding this value ∼ 50% of the time.
The ratio of the magnetic energy density B2/8π to the kinetic energy density

1
2ρσ

2
v is simply (vA/σv)

2, where σv is the 3-dimensional velocity dispersion. The
dynamical importance of the magnetic field can, therefore, be seen by comparing
vA to σv from Eq. (32.13):

(vA)0.5
σv

≈ 0.85
( n4

1.3

)0.15+γ/(2−2γ)

→ 0.75n0.46
4 (32.19)

where the n0.46
4 dependence is for γ = 0.38.1

If vA is comparable to σv , it follows that the energy in the magnetic field is com-
parable to the turbulent kinetic energy, and the magnetic field is contributing sig-
nificantly to supporting the cloud against self-gravity. Given the observed strength
of the magnetic field for nH

>∼ 104 cm−3, what we have been referring to as “tur-
bulence” should instead be thought of as MHD waves. If the magnetic field energy
is comparable to the kinetic energy, it also follows that Eq. (32.8) underestimates
the mass for Lpc

<∼ 5, affecting the derived scaling relations Eqs. (32.9 – 32.15)
for Lpc

<∼ 5, or n4
>∼ 1.6. However, if the magnetic and kinetic energy are compa-

rable, then the cloud mass estimate is increased by only a factor ∼√
2, which will

not lead to any qualitative changes in the discussion.
An independent way to estimate the magnetic field strength is to use observations

of aligned dust grains – either through maps of the polarization of background stars
seen through the cloud, or maps of the polarization of the far-infrared or sub-mm

1The scaling exponent γ ≈ 0.5 favored by some authors would give (vA)0.5/σv ≈ 0.72n0.65
4 .



MOLECULAR CLOUDS: OBSERVATIONS 371

emission from dust in the cloud. For example, Houde et al. (2004) used polarized
350µm emission from dust to map the dust distribution and trace the magnetic field
in the Orion A cloud.

If the magnetic field were weak, then the turbulence in the cloud would result in
dispersion in directions of polarization over the map; if the dispersion is small, this
indicates that the magnetic field is strong enough to resist substantial distortion by
the turbulence. This is known as the Chandrasekhar-Fermi (CF) method to esti-
mate the strength of the magnetic field. Crutcher (2004) applied the CF method to
clouds with NH ranging from 1021.4 cm−2 to 1024 cm−2, finding that the magnetic
energy is comparable to the turbulent kinetic energy for NH

>∼ 1021.6 cm−2, or
AV

>∼ 2 mag. Novak et al. (2009) have applied the CF method to two GMCs, again
finding that the magnetic energy must be at least as large as the turbulent kinetic
energy.

The CF method is based on variations in the direction of linear polarization
across the surface of the cloud. However, the relatively large (several %) linear
polarization of the submillimeter thermal emission from dust (Novak et al. 2009,
and references therein) requires the field to be coherent along the line of sight.
The observed polarization, of course, requires that the grains must be fairly well-
aligned by the local magnetic field at each point.2 The large observed polarization
implies that the transverse component of the magnetic field is relatively uniform
in direction along the line of sight, since if the magnetic field were “tangled,” the
net polarization measured along a sightline would be small, even if the grains are
well-aligned with the local magnetic field.

In summary, all of the evidence points to the presence of dynamically important
magnetic fields in molecular cloud clumps with nH

>∼ 3000 cm−3.

32.11 Energy Dissipation in Molecular Clouds

As we have seen, the fluid motions in molecular clouds are supersonic for L >∼
0.02 pc, and strongly supersonic for L >∼ 1 pc. If the magnetic field were not
present, and the observed velocity dispersion were due to “random” motions of
fluid elements, one would expect strong shocks to develop on a time scale

τcross ≈ L/σv ≈ 9× 105L0.62
pc yr . (32.20)

For shock speeds of a few km s−1 and the densities of molecular clouds, the
shocked gas would cool quickly, and much of the original kinetic energy would
be radiated away. Unless there is an additional energy source to inject energy into
the turbulent motions, clumps and cores would be expected to dissipate their kinetic
energy and to collapse on time scales given by Eq. (32.20). This would result in
what would appear to be unacceptably short lifetimes for molecular clouds.

2Lacking a quantitative understanding of the grain alignment mechanism, we are not yet able to
determine the field strength from the local alignment.
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One possibility is that once the first protostars form in a cloud, outflows from
them inject enough kinetic energy to sustain the “turbulence.” Another possibility
is that the time scale for dissipation of the “turbulent” kinetic energy is in fact
much longer than given by Eq. (32.20). The strong magnetic field implies that the
fluid motions are subalfvénic, and the time scale for the waves to damp could be
considerably longer than suggested by Eq. (32.20). While this conjecture seems
in many ways attractive, numerical simulations appear to find rapid dissipation of
MHD turbulence (see Stone et al. 1998, and references therein).

The actual rate of dissipation of kinetic energy in molecular clouds remains un-
clear. Perhaps the rapid dissipation in MHD simulations is an artifact of assump-
tions regarding the turbulent spectrum or magnetic field geometry. Alternatively,
Elmegreen (2007) argues that dense molecular clouds do collapse rapidly, once
they are assembled – this can be seen from the fact that giant molecular clouds in
M51 appear to form stars very rapidly after they are assembled in spiral arms. In
addition, the small spread of ages of stars in dense clusters suggests that most of
the star formation is over in ∼ 3Myr (although this could be in part because star
formation near O stars is suppressed as soon as they begin to shine).

We recall the hierarchical structure of molecular clouds (see Table 32.1): GMCs
have sizes 3 <∼ Lpc

<∼ 20. A GMC consists of a low-density molecular envelope
and denser “cores.” The cores have sizes 0.3 <∼ Lpc

<∼ 3. Upon entering a spiral
arm density wave, the GMCs grow by accretion and the cores appear to begin
forming stars on approximately the turbulent “crossing time” given by Eq. (32.20).
OB associations form, and disperse some, but not all, of the GMC envelope. Some
fraction of the molecular gas in the GMC envelope survives and travels through the
interarm region, eventually reaching the next spiral arm.

The nearby face-on spiral galaxy M51 (see Plates 10-12) has been mapped at
many wavelengths. Sensitive interferometric observations in CO 1–0 using the
CARMA array, together with single-dish observations using the Nobeyama 45-m
telescope, reveal the detailed distribution of CO 1–0 emission in M51, allowing
individual GMCs to be identified (Koda et al. 2009) – see Plate 8. With the usual
assumption of a constant CO “X-factor,” the CO 1–0 map shows the distribution of
molecular mass.

Combining the CO map with a high-resolution 21-cm map, Koda et al. (2009)
show that the molecular fraction does not appear to change as the gas moves from
spiral arm to interarm region: the majority of the molecular gas remains molecular
from arm entry, star formation in the arm, and travel through the interarm region
to the next spiral arm. Evidently, most of the molecular mass survives the star
formation processes that are concentrated in the spiral arms.



Chapter Thirty-three

Molecular Clouds: Chemistry and Ionization

In the Milky Way, about 22% of the interstellar gas is in molecular clouds, where
the bulk of the hydrogen is in H2 molecules. As discussed in Chapter 31, in the
Milky Way, H2 is formed primarily by dust grain catalysis. Destruction of H2 is
primarily due to photodissociation, but self-shielding results in very low photodis-
sociation rates in the central regions of molecular clouds.

Once the H2 has been formed, other chemistry can follow. Most of the gas will
be neutral, but, because of the presence of cosmic rays, there will always be some
ions present in the gas. In the outer layers of molecular clouds, there may also
be sufficient ultraviolet radiation to photoionize species with ionization potentials
I < 13.6 eV.

There are five types of reactions that can be important:

1. Photoionization: AB + hν → AB+ + e−.
Many molecules (but not H2) can be photoionized by photons with hν <
13.6 eV present in the ISRF in H I or diffuse H2 clouds. The ionization
threshold for H2 is 15.43 eV, hence H2 will not be photoionized even in H I
regions. For molecules with ionization threshold < 13 eV, photoionization
rates in the ISRF are typically in the range 10−11–10−9 s−1.

2. Photodissociation: AB + hν → AB∗ → A+B.
For some molecules (including the important species H2 and CO), photoex-
citation leading to dissociation occurs via lines rather than continuum. This
allows such species either to self-shield (H2 being the prime example), or to
be partially shielded if there is accidental overlap between important absorp-
tion lines with strong lines of H2, which will be self-shielded. This is the
case with CO.

3. Neutral–neutral exchange reactions: AB + C → AC +B.
Most species in molecular clouds are neutral, and neutral–neutral collisions
are, therefore, frequent. However, even when a neutral–neutral reaction is
exothermic, there will often (although not always) be an energy barrier that
must be overcome for the reaction to proceed: even though the reaction is
exothermic, the ABC “complex” must pass through intermediate states that
may have higher energy than the initial AB+C. For example, the exothermic
reaction

OH+H → O+H2 , k33.1 = 1.5×10−12T 2.8
2 e−19.50/T2 cm3 s−1, (33.1)
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(for 300 < T/K < 2500; Woodall et al. 2007) has an energy barrier ∆E/k =
1950K, which causes the reaction to be negligibly slow at T <∼ 102 K. On
the other hand, the neutral–neutral reaction responsible for CO formation,

C+OH → CO+H , k33.2 = 1×10−10 cm3 s−1 , (33.2)

(10K < T < 300K; Woodall et al. 2007) does not have any significant
energy barrier, and can proceed at the low temperatures of molecular clouds.

4. Ion–neutral exchange reactions: AB+ + C → AC+ +B.
Ion–neutral reactions are very important in interstellar chemistry, for two
reasons: (1) exothermic reactions generally lack energy barriers, allowing
the reaction to proceed rapidly even at low temperature, and (2) the induced-
dipole interaction results in ion–neutral rate coefficients that are relatively
large, of order ∼ 2× 10−9 cm3 s−1.

5. Radiative association reactions:

A+B
kf→←
kd

(AB)∗ kr→ AB + hν . (33.3)

The reaction first creates an excited complex AB∗. The complex will fly
apart in one vibrational period, ∼ 10−14 s, unless a photon is emitted first;
it can be thought of as having a probability per unit time kd ≈ 1014 s−1 of
spontaneously dissociating. If AB has an apreciable electric dipole moment
(i.e., is not homonuclear), the probability per unit time that AB∗ will emit a
photon in an electronic transition is kr ≈ 106 s−1. Thus, a fraction kr/(kr +
kd) of the AB∗ complexes formed will result in formation of stable AB. The
effective rate coefficient for radiative association will be

kra =
kfkr

kd + kr
. (33.4)

For ion–neutral reactions, orbiting collisions (see §2.4) provide a rate coeffi-
cient for “complex formation” kf ≈ 10−9 cm3 s−1, and hence the rate coef-
ficient for radiative association will be kra ≈ 10−17 cm3 s−1. For example,
formation of CH+ by radiative association

C++H → CH++hν , k33.5 ≈ 4.46× 10−17T
−1/2
2 e−0.229T

−2/3
2 cm3 s−1

(33.5)

(Barinovs & van Hemert 2006, for 5K < T < 103 K), with k33.5 = 3.5 ×
10−17 cm3 s−1 at T = 100K.
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Table 33.1 Photodissociation and Photoionization Rates for Selected Species

Reaction Rates ( s−1)a pM
f Reference

AV =0b AV =0.5c AV =1d AV =3e

H2 + hν → 2H 4.2(-11) g g g – DB96
CH+ hν → C+H 8.6(-10) 2.2(-10) 3.9(-11) 1.2(-13) 730 R91
CH+ + hν → C+H+ 2.5(-10) 2.2(-11) 1.6(-12) 2.2(-18) 180 R91
C2 + hν → 2C 1.5(-10) 240 vD88
CN+ hν → C+N 1.1(-9) 9.7(-11) 7.0(-12) 7.5(-18) 11000 R91
CO+ hν → C+O 2.6(-10) h h h – V09
OH+ hν → O+H 3.5(-10) 6.3(-11) 8.9(-12) 6.1(-15) 510 R91
H2O+ hν → H+OH 5.9(-10) 1.1(-10) 1.7(-11) 1.2(-14) 970 R91
HCN+ hν → H+CN 1.3(-9) 1.8(-10) 2.1(-11) 2.1(-15) 3100 R91
HCO+ hν → CO+H 1.1(-9) 420 vD88
H2CO+ hν → H2 +CO 1.4(-9) 3.0(-10) 4.4(-11) 2.7(-14) 2700 R91
O2 + hν → O+O 6.9(-10) 1.4(-10) 2.1(-11) 9.4(-15) 750 R91
CH+ hν → CH+ + e− 7.6(-10) 0 vD88
OH+ hν → OH+ + e− 1.6(-12) 0 W07
H2O+ hν → H2O

+ + e− 3.3(-11) 0 vD88
C2 + hν → C+

2 + e− 1.5(-10) 2.2(-11) 2.6(-12) 4.1(-16) 0 R91
CN+ hν → CN+ + e− 0 i 0
CO+ hν → CO+ + e− 0 j 0
OH+ hν → OH+ + e− 1.6(-12) 0 W07
H2O+ hν → H2O

+ + e− 3.3(-11) 0 vD88
HCN+ hν → HCN+ + e− 0 k 0
HCO+ hν → HCO+ + e− 5.6(-10) 7.7(-11) 8.4(-12) 5.3(-16) 1170 R91
H2CO+ hν → H2CO+ + e− 4.7(-10) – vD88
O2 + hν → O+

2 + e− 5.6(-11) 4.6(-12) 3.1(-13) 2.2(-19) 120 R91
a X × 10Y is written X(Y ) i I = 14.1 eV
b For ISRF of Draine (1978). j I = 14.01 eV.
c At center of slab with AV = 1 mag. k I = 13.65 eV.
d 10% of way through slab with AV = 10 mag. DB96=Draine & Bertoldi (1996).
e 30% of way through slab with AV = 10 mag. R91=Roberge et al. (1991).
f ∆ζM = pM ζCR due to cosmic rays (see text). vD88=van Dishoeck (1988).
g Self-shielding is important. V09=Visser et al. (2009).
h Line shielding by H2 and self-shielding are important. W07=Woodall et al. (2007).

33.1 Photoionization and Photodissociation of Molecules

The general ultraviolet background provided by starlight is lethal to small molecules,
with either photodisociation or photoionization occuring rapidly. Rates for pho-
todissociation and photoionization of selected species are given in Table 33.1. In
the diffuse interstellar radiation field, small molecules have photodissociation rates
that range from ∼ 4 × 10−11 s−1 (e.g., H2) to ∼ 10−9 s−1 (e.g., CN and H2CO).
In clouds, the ultraviolet radiation is attenuated by dust, and the photodissocia-
tion rates are reduced. The rate depends on the overall column density through
the cloud, and the location within the cloud. For some of the species in Table
33.1, Roberge et al. (1991) have carried out radiative transfer calculations using
realistic dust properties for clouds with plane-parallel geometry, with each surface
illuminated by the average ISRF (over 2π sr). Rates in Table 33.1 are given in the
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unattenuated ISRF, at the center of a diffuse molecular cloud with total AV ≈ 1,
and at points in a cloud of total thickness AV = 10 (typical of GMCs, as seen in
§32.9). In GMCs, the photodissociation rate at a “depth” AV ≈ 3 can be reduced
by factors of ∼ 103 − 105, rendering unimportant photodissociation by photons
originating outside the cloud.

This does not, however, mean that photodissociation and photoionization are
unimportant within dark clouds. Cosmic rays penetrating the cloud not only ionize
H2 and He, they also cause electronic excitation of H2 by two processes. First, the
electric field of passing cosmic rays can excite electrons to bound states (e.g., the
1Σ+

u and 1Πu states of H2) followed by spontaneous emission of an ultraviolet pho-
ton. Second, the secondary electrons produced by cosmic ray ionization events can
themselves excite electronic states of H2. Together, these two processes result in
generation of H2 Lyman- and Werner-band UV photons with a rate that is propor-
tional to the CR ionization rate (Prasad & Tarafdar 1983). These photons will either
be absorbed by dust or by a permitted transition of an atom or molecule present
in the medium. Let the total cosmic ray ionization rate per volume be ζCRnH.
For a given molecule M , the increase to the photoionization or photodissociation
rate contributed by cosmic-ray-generated Lyman- and Werner-band photons can be
written ∆ζM = pMζCR. The coefficients pM given in Table 33.1 are based on
Woodall et al. (2007).1

The cosmic ray ionization rate was discussed in §13.5, with observations point-
ing to a cosmic ray primary ionization rate ζCR ≈ (0.5− 3)× 10−16 s−1 in diffuse
molecular clouds. The interiors of dark clouds may be partially shielded from
low-energy cosmic rays, but it now appears reasonable to consider that ζCR ≈
10−16 s−1 may prevail in at least some dark clouds. The photodissociation rate for
HCN, for example, would then be ∼ 3× 10−13 s−1 for AV

>∼ 2.

33.2� Ion–Molecule Chemistry in Cold Gas

Molecular gas is usually (although not always) quite cold, with T < 100K. If H2

is already present, and ultraviolet radiation is present, then the chemical network is
dominated by ion–molecule reactions because they are fast (k ≈ 10−9 cm3 s−1),
even at low temperatures.

33.2.1� Formation of CO

As an example, let us look at the part of the chemical network that is important
for formation of the abundant and important CO molecule. In diffuse molecular
clouds, most of the gas-phase carbon is in the form of C+, and most of the H is in
the form of H2. CO is formed primarily by the sequence of reactions: (rates from

1The pM values from Woodall et al. (2007) have been multiplied by a factor 2, because our ζCR is
the CR ionization rate per H, while their ζ is the CR ionization rate per H2.
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Woodall et al. (2007))

C+ +H2 → CH+
2 + hν , k33.6 = 5.0× 10−16T−0.2

2 cm3 s−1 , (33.6)

CH+
2 +e− →

⎧⎨
⎩

CH+H (25%)
C + H2 (12%)
C+H+H (63%)

⎫⎬
⎭ , k33.7=1.24× 10−6T−0.60

2

cm3

s
, (33.7)

CH+O → CO+H k33.8 = 6.6× 10−11 cm3 s−1 , (33.8)

CO+ hν → C+O k33.9 = 2.3× 10−10 s−1 × fshield(CO) , (33.9)

C+ hν → C+ + e− k33.10 = 2.6× 10−10 s−1 . (33.10)

The first step, radiative association, is slow but steadily produces the radical CH+
2 ,

which then reacts rapidly with electrons, producing CH about 25% of the time. The
CH+

2 produced in (33.6) can also be removed by photodissociation or reaction with
H2 (rates from Woodall et al. 2007):

CH+
2 + hν →

⎧⎨
⎩

CH+H+ (1/3)
CH+ +H (1/3)
C+ +H2 (1/3)

⎫⎬
⎭ , k33.11=1.38× 10−10 s−1, (33.11)

CH+
2 +H2 → CH+

3 +H , k33.12 = 1.60× 10−9 cm3 s−1 . (33.12)

For densities typical of diffuse molecular gas (ne ≈ 0.01 cm−3, n(H2) ≈ 30 cm−3),
photodestruction of CH+

2 is of secondary importance compared to dissociative re-
combination (33.7) or reaction with H2 (33.12), the two channels that dominate the
destruction of CH+

2 .
The CH produced by dissociative recombination of CH+

2 can then react with O
to produce CO via reaction (33.8), but it is also susceptible to photoionization and
photodissociation (see Table 33.1):

CH+ hν →
{

CH+ + e− (47%)
C + H (53%)

}
k33.13 = 1.62× 10−9 s−1 . (33.13)

These are the chemical pathways that appear to account for production of CO in
diffuse clouds where the carbon is primarily in the form of C+. Aside from the
initial production of H2 via grain catalysis, it is assumed that all other reactions
resulting in formation of CO take place in the gas phase. Whether this is actually
the case is uncertain. For example, one could imagine that C and O atoms might
stick to silicate grains and react to form CO, with the CO molecules returned to the
gas phase either by the energy released in formation of CO, or by photodesorption.
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33.2.2� Formation of OH

Another important species is OH. In a diffuse H2 cloud, OH is formed primarily by
the reaction sequence: (rates from Woodall et al. 2007)

O+H+
3 →OH+ +H , k33.14 = 8.40× 10−10 cm3 s−1, (33.14)

OH+ +H2 →H2O
+ +H , k33.15 = 1.01× 10−9 cm3 s−1, (33.15)

H2O
+ + e− →

⎧⎨
⎩

OH+H (20%)
O + H2 (9%)
O + H+H (71%)

⎫⎬
⎭ k33.16 = 4.30× 10−7 cm3 s−1, (33.16)

H2O
++H2 →H3O

+ +H , k33.17 = 6.40× 10−10 cm3 s−1, (33.17)

H3O
++e− →

⎧⎪⎪⎨
⎪⎪⎩

O+H2+H (1%)
OH+H2 (14%)
OH+H+H (60%)
H2O+H (25%)

⎫⎪⎪⎬
⎪⎪⎭ k33.18=7.48×10−7T−0.5

2

cm3

s
.(33.18)

The OH formed by reactions (33.16) and (33.18) is destroyed primarily by pho-
todissociation (Table 33.1):

OH+ hν→O+H , k33.19 = 3.50× 10−10 s−1 . (33.19)

The reaction chain is initiated by H+
3 , which is generated by cosmic ray ionization

of H2+CR → H2
++ e− followed rapidly by H2

++H2 → H+
3 +H; as discussed

in §16.4. Diffuse molecular clouds appear to have n(H+
3 )/nH ≈ 5×10−8 (Indriolo

et al. 2007).

33.2.3� Formation of H2O

In a dense molecular cloud, shielded from external ultraviolet radiation, the ion-
ization is produced by cosmic rays. Gas-phase production of H2O is mainly by
the reaction sequence (33.14 to 33.18), where ∼ 25% of the dissociative recombi-
nations of H3O

+ produce H2O. For an assumed n(H+
3 ) ≈ 1 × 10−5 cm−3, this

sequence of gas-phase reactions would convert the gas-phase O to H2O on time
scales (1× 10−5 × 8.4× 10−10)−1 ≈ 4× 106 yr, yielding n(H2O)/nH ≈ 10−4.

The problem is that observations indicate very low gas-phase abundances of
H2O, n(H2O)/nH

<∼ 3 × 10−8 (Snell et al. 2000), far below the predicted abun-
dance of H2O. The solution appears to be that the gas-phase H2O is removed by
freeze-out on grains, producing H2O ice mantles which can contain a substantial
fraction of the total oxygen. Hollenbach et al. (2009) model this in detail, including
the role of CO, and desorption of frozen CO and H2O by ultraviolet radiation and
cosmic rays.
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33.3� The CH+ Problem

The first interstellar molecules to be identified were CH (Swings & Rosenfeld
1937), CN (McKellar 1940), and CH+ (Douglas & Herzberg 1941) because these
three species have resonance lines at optical wavelengths. As modern models of
chemistry in diffuse molecular clouds were developed, it was found that the ob-
served abundances of CH and CN were in general agreement with what was ex-
pected from steady state chemistry in diffuse molecular clouds. However, this is
emphatically not the case for CH+. In molecular gas with T <∼ 102 K, the principal
channels for producing CH+ would be radiative association C++H → CH++hν
(Eq. 33.5) or photoionization of CH (Eq. 33.13).

Once formed, CH+ is rapidly destroyed by

CH+ + hν→C+H+ (see Table 33.1) , (33.20)
CH+ + e− →C+H k33.21 = 2.38× 10−7T−0.42

2 cm3 s−1 ,(33.21)
CH+ +H→C+ +H2 k33.22 = 7.50× 10−10 cm3 s−1 , (33.22)
CH+ +H2 →CH+

2 +H k33.23 = 1.20× 10−9 cm3 s−1 . (33.23)

In diffuse H I or H2, the CH+ lifetime is short, <∼ 109 s. If radiative association
were the dominant source of CH+, the abundance of CH+ would be very low.

The abundance of CH+ varies from sightline to sightline, but is typically two or
more orders of magnitude larger than the predictions of steady-state chemistry in
cool, quiescent molecular clouds (Dalgarno 1976).

The most likely explanation is that CH+ is formed in diffuse molecular regions
that have been temporarily heated to high enough temperatures so that the endother-
mic reaction

C+ +H2 + 0.40 eV→CH+ +H . (33.24)

can take place. For this reaction to proceed rapidly, the gas must have T >∼ 103 K
to overcome the 0.40 eV energy barrier. The mechanism responsible for heating
the regions where CH+ formation takes place remains uncertain. The hot zone
could be the postshock gas behind a shock wave that is propagating through the
molecular cloud. Single-fluid shock models (Elitzur & Watson 1978) succeeded
in producing CH+ but produced OH in excess of observations, but models based
on two-fluid MHD shocks (see §36.6) with shock speeds in the range 7 km s−1 <∼
vs <∼ 12 km s−1 may be able to reproduce the observed CH+ column densities
(1012 cm−2 <∼ N(CH+) <∼ 1013.5 cm−2) without violating other observational
constraints (Draine & Katz 1986a,b; Draine 1986; Pineau des Forets et al. 1986).

If the observed CH+ is produced by MHD shocks, the frequency with which
CH+ is detected requires that a sightline traversing E(B − V ) = 1 mag of red-
dening would be expected to intersect one shock front with vs >∼ 8 km s−1 (Draine
& Katz 1986b). This shock frequency is, in fact, approximately what is expected
based on the observed motions of interstellar gas, thus supporting the hypothesis
that interstellar CH+ is produced mainly in shocks.
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However, there are clear kinematic expectations for the shock models: they re-
quire that sightlines with CH+ should have two distinct velocity components – one
representing the preshock gas, and one the postshock gas. The CH+ should be
at a velocity close to that of the postshock gas, but slightly displaced. Whether
the observed kinematics are consistent with the shock models is not yet clear, and
alternative explanations for CH+ have been sought.

It is known that dissipation of turbulence in a fluid does not take place uniformly:
“intermittency” refers to the phenomenon of the dissipation at any instant being
concentrated in a small fraction of the volume of the fluid. It has been suggested
(Godard et al. 2009) that intermittency in turbulent interstellar clouds creates small
regions where turbulent dissipation is able to raise the gas temperature to >∼ 103 K,
allowing the endothermic reaction (33.24) to generate CH+.

Dissipation of turbulence in low-fractional-ionization molecular gas is compli-
cated by the decoupling of the ion and neutral fluids on small scales (i.e., ambipolar
diffusion), and the resulting ion–neutral “friction” may cause the turbulent dissipa-
tion to be spread out over a large enough volume that it cannot raise the gas tem-
perature to the T >∼ 103 K required to drive CH+ production. As of yet, there
have not been three-dimensional numerical simulations of turbulent dissipation in
magnetized molecular gas that would be capable of revealing the proposed levels
of intermittency – this question remains unresolved.



Chapter Thirty-four

Physical Processes in Hot Gas

Within the Galaxy, hot (T >∼ 106 K) gas is produced by fast stellar winds, and by
blastwaves from novae and supernovae. Beyond the Galaxy, much of the inter-
galactic medium is thought to be at ∼ 106 K temperatures, and enormous masses
of very hot (107 − 108 K) plasma are present in galaxy clusters. In some cases, the
gas is detected via absorption lines of highly ionized species, such as O VI; in some
cases, x-ray emission is observable.

In Chapter 25, we discussed the physics of dust grains immersed in hot gas. Here,
we discuss gas-phase processes that affect the temperature of the gas: radiative
cooling, thermal conduction, and electron–ion energy equipartition.

34.1 Radiative Cooling

Collisional excitation of ions in low-density plasma results in radiative cooling. The
emitted power depends on the ionization state, and the plasma is often assumed to
be in collisional ionization equilibrium, or CIE. CIE assumes that the plasma is in
a steady state, and that collisional ionization, charge exchange, radiative recombi-
nation, and dielectronic recombination are the only processes altering the ionization
balance, in which case the ionization fractions for each element depend only on the
gas temperature, with no dependence on the gas density.

At temperatures T > 104 K, ionization of hydrogen provides enough free elec-
trons so that collisional excitation of atoms or ions is dominated by electron colli-
sions. At low densities, every collisional excitation is followed by a radiative decay,
and the rate of removal of thermal energy per unit volume can therefore be written

Λ=nenH × fcool(T ) , (34.1)

where the radiative cooling function fcool(T ) ≡ Λ/nHne is a function of temper-
ature and of the elemental abundances relative to hydrogen.

At high densities, radiative cooling can be suppressed by collisional deexcita-
tion, and fcool will then depend on density nH, in addition to T and elemental
abundances. Finally, if ionizing radiation is present, the ionization balance may
depart from CIE, and the radiative cooling function Λ/nenH will also depend on
the spectrum and intensity of the ionizing radiation.

The cooling function Λ/nenH for T > 104 K has been calculated by a number of
groups over the years (e.g., Boehringer & Hensler 1989; Schmutzler & Tscharnuter
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Figure 34.1 Radiative cooling function Λ/nenH for solar-abundance plasma in CIE,
computed with the CHIANTI code (Dere et al. 2009). Dashed lines show simple
power-law approximations for 105 < T < 107.3 K and for T > 107.5 K.

Figure 34.2 Same as Fig. 34.1, but for different abundances. Z/Z� is the abundance
of elements heavier than He relative to solar abundances.
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1993; Sutherland & Dopita 1993; Landi & Landini 1999; Smith et al. 2008; Dere
et al. 2009; Schure et al. 2009). While the calculated cooling rates are in approx-
imate agreement with one another, with some differences attributable to different
adopted elemental abundances, there appear to also be significant differences in the
adopted atomic physics. For example, near 105 K the cooling function of Schure
et al. (2009) is a factor ∼ 2.5 higher than the cooling function of Dere et al. (2009).

Figure 34.1 shows the radiative cooling function Λ/nHne for plasma with so-
lar abundances, based on calculations with the CHIANTI atomic database (Dere
et al. 2009), kindly calculated for nH = 1 cm−3 by K. Dere (2009, private com-
munication). At temperatures T < 107 K, the cooling is dominated by colli-
sional excitation of bound electrons. At high temperatures, the ions are fully
stripped of electrons, and bremsstrahlung (i.e., free–free) cooling dominates, with
Λ/nenH ∝ T 0.5. The cooling function for solar abundances can be approximated
by

Λ/nenH ≈ 1.1× 10−22T−0.7
6 erg cm3 s−1 , for 105 < T < 107.3 K , (34.2)

Λ/nenH ≈ 2.3× 10−24T 0.5
6 erg cm3 s−1 , for T > 107.3 K . (34.3)

These two power-law fits are shown in Fig. 34.1.
In some cases (e.g., supernova ejecta), the plasma may have unusual abundance

patterns, but in most applications the abundances of elements beyond He can be as-
sumed to scale up and down together. Figure 34.2 shows radiative cooling functions
for metallicities ranging from zero (H and He only) to twice solar.

Before using a rate coefficient for radiative cooling such as that shown in Figure
34.1, it is important to recognize its limitations:

• CIE requires that photoionization be unimportant.

• CIE requires that the plasma had time to attain collisional ionization equi-
librium. If the gas has been suddenly shock-heated, time is required for
collisional ionization to raise the ionization level to CIE. If the gas is cool-
ing, the cooling rate should be slow enough that recombination processes are
able to keep the ionization from lagging too far behind the ionization state
corresponding to CIE.

• Figure 34.3 shows the contribution to the cooling from each of the 10 most
important elements: H, He, C, N, O, Ne, Mg, Si, S, and Fe. For 105.8 <
T < 107.2 K, radiative cooling is dominated by Mg, Si, and Fe – elements
that in cold gas are normally depleted by factors of 5 or more. If these el-
ements are underabundant in the plasma, the radiative cooling function will
be suppressed. An accurate treatment of radiative cooling requires following
the changing abundances in the gas phase as dust grains undergo sputtering
in T >∼ 106 K plasma (see Fig. 25.4).

• In real problems, heating and cooling may be sufficiently rapid so that the
ionization state of the gas lags behind CIE. This is particularly likely if the



384 CHAPTER 34

Figure 34.3 Solid line: radiative cooling function Λ/nenH from Fig. 34.1, with con-
tributions from selected elements shown.

gas has just been shock-heated, resulting in a sudden increase in the kinetic
temperature of the gas, but can also be true when the gas is cooling rapidly,
e.g., at 104.9 < T < 105.4 K, where the radiative cooling function peaks.

In these cases, the actual radiative cooling rate can be slower than CIE (when
the gas is cooling faster than it can recombine, so that heavy elements have
fewer bound electrons than they would in CIE), or faster than CIE (when
the gas temperature has been suddenly increased, so that heavy elements are
under-ionized). Underionization of elements such as Mg, Si, or Fe can also
be an issue when atoms are being sputtered off of dust grains, since they are
expected to enter the hot gas as neutral atoms.

34.2 Radiative Cooling Time

If the plasma cools at constant volume, the cooling time is given by Eq. (35.34).
The cooling time is shown in Fig. 34.4 for metallicities ranging from 0 to 3 times
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Figure 34.4 nHtcool,isochoric for isochoric cooling with the cooling function from Fig.
34.1, for different metal abundances relative to solar. The dashed line is the approxi-
mation (34.4) for Z ≈ Z� and 105 K < T < 107.3 K.

solar. The cooling time for solar abundance plasma can be approximated by

τcool,isochoric ≈ 1.1× 105T 1.7
6 yr

nH/ cm−3
for 105 K <∼ T <∼ 107.3 K . (34.4)

34.3� Thermal Conduction

In the absence of magnetic fields, a fully ionized H-He plasma has a “classical”
thermal conductivity (Spitzer 1962):

κclass(T )≈ 0.87
k7/2T

5/2
e

m
1/2
e e4 ln Λ

, (34.5)

where ln Λ ≈ 30 is the usual Coulomb logarithm, given by Eq. (2.17), and the
numerical factor 0.87 includes the effects of the electric field that normally accom-
panies a temperature gradient in a uniform-pressure plasma (Spitzer 1962).
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If a magnetic field is present, as is normally the case in the ISM, the thermal
conductivity becomes a tensor. In a coordinate frame where x ‖ B, the ther-
mal conductivity tensor is diagonal, with diagonal elements (κ‖, κ⊥, κ⊥), where
κ‖ = κclass The ratio κ⊥/κ‖ ≈ 1/(ωBtcoll)

2, where ωB = eB/mec is the electron
gyrofrequency, and tcoll is the mean collision time. For normal interstellar con-
ditions, ωBtcoll � 1, hence κ⊥ � κ‖, and we need consider only the heat flow
resulting from the component of ∇T along the local magnetic field direction.

When the temperature gradient becomes very large, the heat conduction “sat-
urates,” with the heat flux approaching a value qsat ≈ 5ρ(kT/µ)3/2 (Cowie &
McKee 1977). For finite ∇T , the heat flux can be written

q≈−κclass∇T · b̂b̂
1 + σT

, (34.6)

where b̂ ≡ B/|B| is a unit vector parallel to the magnetic field, and the “saturation
parameter”

σT ≡ κclass|∇T · b̂|
qsat

(34.7)

= 2.53
k2 T |∇T · b̂|
nH e4 ln Λ

(34.8)

= 0.39

(
T

107 K

)( |∇T · b̂|
107 Kpc−1

)(
cm−3

nH

)(
30

lnΛ

)
. (34.9)

34.4� Cloud Evaporation in Hot Gas

Consider now a cold spherical cloud, with temperature Tc and radius Rc, sur-
rounded by very hot gas, with temperature Th � Tc. Suppose that Th

>∼ 106 K, so
that the rate coefficient for radiative cooling (see Fig. 34.1) is relatively low. What
is the temperature profile near the cloud?

Let us first neglect radiative losses. Further assume that there is negligible heat
flow into the cold cloud itself. Then, at each radius, the inward thermal conduction
must be balanced by outward advective transport of heat. For a steady constant-
pressure outward flow, mass conservation and energy conservation give

5ṀkT

2µ
=−4πr2κ

dT

dr
, (34.10)

where Ṁ is the rate of mass flow out of the cloud. If we assume a thermal conduc-
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tivity κ = κh(T/Th)
5/2, then one finds

T =Th

(
1− Rc

r

)2/5

, (34.11)

Ṁ =
16πµRcκh

25k
∝ RcT

5/2
h . (34.12)

What about cooling? The temperature just outside the cloud surface must pass
through T ≈ 105 K where the cooling function peaks (see Fig. 34.1). There
are two limiting cases: (1) the small temperature gradient regime, where thermal
conduction is small and cannot balance radiative cooling from the region where
T ≈ 105 K; and (2) the evaporative regime where radiative cooling is negligible,
and there is an “evaporative flow” away from the cloud.

Cowie & McKee (1977) defined a “global saturation parameter”:

σ0 ≡ (2/25)κhTh

ρh(kTh/µ)3/2Rc
= 0.4

(
Th

107 K

)2(
cm−3

nH,h

)(
pc

Rc

)
(34.13)

and found three regimes:

σ0
<∼ 0.027 : cooling flow onto the cloud, (34.14)

0.027 <∼ σ0
<∼ 1 : classical evaporation flow, (34.15)

1 <∼ σ0 : saturated evaporation flow. (34.16)

If we are in the regime 0.03 <∼ σ0
<∼ 1 where the classical evaporation mass loss

rate (34.12) applies, the cloud lifetime against evaporation is

tevap =
3M

2Ṁ
=

75× 2.3 (nH)c R
2
c m

1/2
e e4 ln Λ

8× 0.87 (kTh)2.5
(34.17)

=5.1× 104 yr

(
(nH)c

30 cm−3

)(
Rc

pc

)2(
Th

107 K

)−2.5

. (34.18)

Therefore, if the classical thermal conductivity applies, small (Rc
<∼ 1 pc) clouds

will be thermally evaporated by hot (Th
>∼ 107 K) gas in a few ×104 yr.

34.5� Conduction Fronts

Earlier, we discussed a spherical cloud in an infinite medium. Other geometries
yield different behavior. Consider a planar cold cloud brought suddenly into contact
with an infinite region of hot gas. At t = 0, the temperature profile is a step
function. The conduction front then begins to heat some of the cold gas, bringing
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it to intermediate temperatures. As long as the front is thin, radiative losses are
negligible compared to the heat flux into the intermediate temperature zone, and
the continuing heat flux causes this intermediate temperature zone to grow. As
the conduction front thickens and temperature gradients drop, the radiative losses
increase, the conductive flux decreases, and the front approaches an asymptotic
solution where evaporation ceases and thermal conduction is balanced by radiative
losses.

If Th
>∼ 106 K, then the conduction front will contain ions such as C IV, Si IV,

N V, S VI, and O VI, which have strong ultraviolet absorption lines that can be used
as diagnostics. Borkowski et al. (1990) carried out simulations of planar conduc-
tion fronts including magnetic fields. The O VI abundance, for example, rises to
N(OVI) ≈ 1013 cm−2 on a time scale of ∼ 105 yr if B = 0 or if B is perpendic-
ular to the interface. If a magnetic field is present and inclined to the normal, the
conduction front becomes thinner, and the ionic column densities are reduced.



Chapter Thirty-five

Fluid Dynamics

The interstellar medium is a fluid, and we need to understand how this fluid moves
in response to pressure gradients within it, gravitational forces, and electromagnetic
stresses. This chapter will develop the basic equations of motion for magnetized,
conducting fluids.

As a conceptual aid, it is helpful to consider the dynamics of a fluid element –
a small region of the fluid bounded by a closed surface S. The region is assumed
to be large compared to the mean free path of the particles making up the fluid,
but small compared to the length scales over which the fluid properties vary. The
surface S is assumed to move with the fluid: the velocity of the surface at each
point on the surface is equal to the local fluid velocity, so that there is no motion of
fluid across the surface. Therefore, the mass within the fluid element is conserved.
The fluid is decribed by

ρ(r, t)=mass density, (35.1)
v(r, t)= velocity, (35.2)
p(r, t)=pressure. (35.3)

We will want to evaluate the rate of change of variables associated with the moving
fluid element. This is provided by the convective derivative

D

Dt
≡ ∂

∂t
+ v · ∇ . (35.4)

Df/Dt ≡ ∂f/∂t + (v · ∇)f is the rate of change of a local variable f (e.g., ρ or
T ) that would be measured by an observer moving with the fluid.

35.1 Mass Conservation

Let Ω(t) be the comoving volume of our fluid element. The mass of fluid in the
comoving volume is constant: ρΩ = constant, so that

D

Dt
(ρΩ)= ρ

DΩ

Dt
+Ω

Dρ

Dt
= 0 , (35.5)

but
DΩ

Dt
=

∫
v · dS =

∫
(∇ · v)dΩ → Ω∇ · v . (35.6)
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Substitution into (35.5) gives Dρ/Dt = −ρ∇ · v, or

∂ρ

∂t
+∇ · (ρv) = 0 . (35.7)

35.2 Conservation of Momentum: MHD Navier-Stokes Equation

Let Ω(t) be the volume of the moving fluid element, and let F be the total force
applied to the matter in this fluid element by the rest of the universe. Then Newton’s
law ma = F can be written

(ρΩ)
D

Dt
v = Fpressure + FEM + Fgrav + Fviscosity , (35.8)

where the terms on the right-hand side are, respectively, the force exerted on the
fluid element by (1) the pressure of the surrounding fluid, (2) the electromagnetic
field, (3) the gravitational field, and (4) viscous stresses. We will now examine each
of these in turn.

Let the surface element dS be a vector pointing in the outward direction from the
closed surface S. The pressure of the external fluid pushes inward at each point on
the surface, and the net pressure force on the fluid element is

Fpressure =

∫
(−p dS) (35.9)

=

∫
−∇p dΩ (by Gauss’s theorem) → − Ω ∇p . (35.10)

We will assume the fluid element to have zero net charge, in which case there is
no net force exerted by whatever E field may be present. However, there may be
an electric current density J in the fluid element, in which case there is a force per
volume (1/c)J×B:

FEM =

∫
dΩ

J

c
×B → Ω

J

c
×B . (35.11)

Writing the force in this way requires that J be known. It is convenient to eliminate
J using Maxwell’s equation

∇×B =
4π

c
J+

1

c

∂D

∂t
. (35.12)

For the moment, let us assume the fluid to have infinite electrical conductivity. Then
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in the fluid frame, finite J implies E → 0 and D → 0, and

J=
c

4π
∇×B , (35.13)

FEM =
Ω

4π
(∇×B)×B (35.14)

=
Ω

4π

[
−1

2
∇B2 + (B · ∇)B

]
, (35.15)

where we have used the vector identity (∇×B)×B ≡ [(B · ∇)B− 1
2∇B2

]
.

For future reference, let us reverse Gauss’s theorem and write the force FEM as
an integral over the surface S bounding the volume: Using ∇ · B = 0, one can
show that1

FEM,i =−
∫

dSi
BjBj

8π
+

∫
dSj

BiBj

4π
, (35.16)

where summation over repeated indices is implied in (35.16). Thus, the magnetic
field can be thought of as exerting forces on the boundaries of a fluid element.

Let Φgrav(r, t) be the gravitational potential. The gravitational force is just

Fgrav = (ρΩ)(−∇Φgrav) . (35.17)

Last, we turn to viscous stresses. These are, in general, described by the viscous
stress tensor σik(r, t), defined so that the viscous force on the fluid element is

(Fviscous)i ≡
∫

σijdSj , (35.18)

=

∫
∂

∂xj
σijdΩ (by Gauss’s theorem), (35.19)

→Ω
∂

∂xj
σij , (35.20)

with summation over the repeated index j in Eqs. (35.18 to 35.20) again implied.
This result is for a general stress tensor σik. The viscous stress tensor depends on
gradients of the velocity field. If the “bulk” viscosity coefficient is assumed to be
zero, the viscous stress tensor σij = −η[∂vi/∂xj+∂vj/∂xi−(2/3)δij∇·v], where
η is the viscosity coefficient. We will usually neglect viscous stresses, but they
become very important when fluid variables (e.g., velocity) change appreciably
over length scales comparable to the mean-free-path of the fluid particles, as is
often the case in shock waves.

We now note that each of the force expressions is proportional to Ω, so we can
divide by Ω to obtain the general equation of momentum conservation2:

ρ
Dv

Dt
= −∇

(
p+

B2

8π

)
+

1

4π
(B · ∇)B− ρ∇Φgrav + x̂i

∂

∂xj
σij . (35.21)

1Making use of [(B · ∇)B − (1/2)∇B2]i = (Bj∂/∂xj)Bi − (1/2)(∂/∂xi)BjBj =
(∂/∂xj)BiBj − (1/2)(∂/∂xi)BjBj , where we have used (∂/∂xj)Bj = 0.

2If B = 0 and ∇Φgrav = 0, this is called the Navier-Stokes equation.
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We will usually neglect the viscous term on the right-hand side, but we include it
here to show how viscous effects are treated.

35.3 Heating and Cooling

The preceding equations involve unknown fields v, ρ, and p. Thus far, we have
equations for the rate-of-change v of and ρ; we now need one for p. Let U(t)
be the “internal energy” of the fluid element Ω. This includes the kinetic energy
in random motions of the particles, the energy in internal degrees of freedom of
the molecules (rotation, and vibration) and “chemical energy.” The pressure itself
arises only from the kinetic energy in random translational motions, and we will
need to know the relationship between U and the gas pressure.

Recall that we use the convective derivative D/Dt for the rate of change when
moving with the fluid element. The first law of thermodynamics is simply

DU = −pDΩ+DQ . (35.22)

pDΩ is the work done on the rest of the fluid when our fluid element expands by
an amount DΩ. DQ is the energy added to the fluid element by the rest of the
universe by processes other than compressive work:

DQ

Dt
=+ΩΓ− ΩΛ+ Ω∇ · (κ∇T ) . (35.23)

Here, Γ is the rate/volume of deposition of thermal energy by processes such as
photoionization, photoelectron emission from dust grains, etc., plus heating by vis-
cous dissipation; Λ is the rate/volume of energy removal by radiation; and −κ∇T
is the conductive heat flux.

Let N = nΩ be the number of free particles in Ω, and let f be the number of
effective degrees of freedom per free particle. A monatomic gas has f = 3 (only
translational degrees of freedom); a diatomic gas at temperatures high enough to
excite rotation but not vibration has f = 3 + 2 = 5. The internal thermal energy is
Uthermal = NfkT/2. If the chemical state of the gas does not change (N = const,
f = const), then

DU =D

(
f

2
NkT

)
, (35.24)

D

Dt

(
f

2
nΩkT

)
=−nkT

DΩ

Dt
+ (Γ− Λ)Ω + Ω∇ · (κ∇T ) , (35.25)

D

Dt

(
f + 2

2
nΩkT

)
−Ω

D

Dt
(nkT ) = (Γ− Λ)Ω + Ω∇ · (κ∇T ) , (35.26)

DT

Dt
=

(Γ− Λ) +∇ · (κ∇T ) + (D/Dt)(nkT )

(f + 2)nk/2
. (35.27)
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Note that Eq. (35.27) for the time evolution of the temperature depends not only on
the cooling but also on the time-dependence of the pressure.

Isobaric cooling: If the pressure remains constant, Eq. (35.27) becomes

DT

Dt
=

(Γ− Λ) +∇ · (κ∇T )

(f + 2)nk/2
(35.28)

→ (Γ− Λ) +∇ · (κ∇T )

(5/2)nk
for a monatomic gas. (35.29)

The numerator is the rate/volume of removal of heat, and the denominator (f +
2)nk/2 in Eq. (35.28) is just the heat capacity per unit volume for heating or cool-
ing at constant pressure.

Isochoric cooling: If the density n remains constant, then Eq. (35.27) becomes

DT

Dt
=

(Γ− Λ) +∇ · (κ∇T )

(f/2)nk
(35.30)

→ (Γ− Λ) +∇ · (κ∇T )

(3/2)nk
for a monatomic gas. (35.31)

The cooling time τcool for a fluid element is defined to be the characteristic time
for the temperature to decrease if Γ = 0 and there is no thermal conduction:

τcool ≡ T

|DT/Dt|Γ=0,κ∇T=0
(35.32)

→ (f + 2)nkT

2Λ
→ 5nkT

2Λ
for isobaric cooling (nkT = const), (35.33)

→ fnkT

2Λ
→ 3nkT

2Λ
for isochoric cooling (n= const), (35.34)

where n is the number density of free particles (molecules + atoms + ions + elec-
trons), and the number of degrees of freedom per particle f = 3 if no molecules
are present.

The radiative cooling time depends on the density, temperature, and composi-
tion of the gas. τcool is evaluated for 104 < T < 109 K in Fig. 34.4, for metal
abundances Z ranging from Z = 0 to Z = 3Z�.

35.4 Electrodynamics in a Conducting Fluid: Flux-Freezing

The fluid state is characterized by two vector fields, v(r, t) and B(r, t), and two
scalar fields, ρ(r, t) and T (r, t). Thus far, we have obtained expressions for the



394 CHAPTER 35

time derivatives of ρ (35.7), v (35.21), and T (35.27). We now consider evolution
of the magnetic field B.

Any astrophysical fluid will have some nonzero electrical conductivity σ, defined
so that the electric current

J = σE′ . (35.35)

In general, magnetic fields will be present and σ will be a tensor, but for purposes
of this discussion we will treat σ as a scalar. The electric field E′ in Eq. (35.35) is
the field that would be measured by an observer moving with the fluid:

E′ = E+
1

c
v ×B , (35.36)

where v is the fluid velocity. Thus

E =
J

σ
− 1

c
v ×B . (35.37)

We now use one of Maxwell’s equations:

1

c

∂B

∂t
= −∇×E = −∇×

(
J

σ
− 1

c
v ×B

)
, (35.38)

and use another of Maxwell’s equations to replace J by (c/4π)∇×B−(1/4π)∂D/∂t
to obtain

∂B

∂t
= ∇× (v ×B)− c2

4πσ
∇× (∇×B) +

c

4πσ
∇× ∂D

∂t
. (35.39)

Now, ∇× (∇×B) ≡ ∇ (∇ ·B)−∇2B. With ∇ ·B = 0, we obtain

∂B

∂t
≈ ∇× (v ×B) +

c2

4πσ
∇2B , (35.40)

where we have dropped the term (c/4πσ)∇× ∂D/∂t.3

Suppose now that we draw a closed loop L in the fluid, and assume that the loop
L moves with the fluid. Let Φ(t) be the magnetic flux through the loop:

Φ(t) ≡
∫

dS ·B , (35.41)

where the integral is over a surface S bounded by the loop L. The rate of change
of Φ comes from (1) changes in B, and (2) motion of the loop:

dΦ

dt
=

∫
dS · ∂B

∂t
+

∮
B · (v × dL) (35.42)

=

∫
dS · ∂B

∂t
+

∮
dL · (B× v) , (35.43)

3(c/4πσ)∇× ∂D/∂t is smaller than (c2/4πσ)∇2B by a factor (v/c)2.
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where we have used the vector identity B · (v × dL) ≡ dL · (B × v). Now use
Stokes’s theorem to convert the integral over the loop to a surface integral:

dΦ

dt
=

∫
dS · ∂B

∂t
+

∫
dS · ∇ × (B× v) (35.44)

=

∫
dS ·

[
∂B

∂t
+∇× (B× v)

]
(35.45)

≈
∫

dS · c2

4πσ
∇2B , (35.46)

where we have used Eq. (35.40) to go from (35.45) to (35.46). Thus, we see that in
the limit of infinite conductivity σ → ∞, we have dΦ/dt = 0: the flux Φ through
the loop is a conserved quantity. By assumption, the loop moves with the fluid; the
constancy of the flux is exactly what we would have if every magnetic field line
were “frozen” into the fluid. Equation (35.40) with σ → ∞ therefore describes
“flux-freezing.”

The conductivity is, of course, finite. The time scale for magnetic field decay is

τdecay ≈ B

(∂B/∂t)decay
≈ B

(c2/4πσ)(B/L2)
≈ 4πσL2

c2
. (35.47)

For a fully ionized hydrogen plasma, the electrical conductivity is

σ ≈ 0.59
(kT )3/2

e2m
1/2
e ln Λ

= 4.6× 109 s−1

(
T

100K

)3/2(
30

lnΛ

)
, (35.48)

where the “Coulomb logarithm” ln Λ is given by Eq. (2.17). The time scale for
magnetic field decay is

τdecay =
4πσL2

c2
≈ 5× 108 yr

(
T

100K

)3/2(
30

lnΛ

)(
L

AU

)2

. (35.49)

In ionized gas, such magnetic field decay due to finite conductivity (referred to as
“Ohmic” decay) might possibly be of importance on very short length scales (L <∼
AU), but for L >∼ 102 AU ≈ 10−3 pc, τdecay exceeds the age of the Universe!

35.5� Virial Theorem

In this section, we present a global dynamical condition that must be satisfied for
an inviscid fluid. The virial theorem is a powerful mathematical result, based on
the equation of momentum conservation:

ρ

(
v · ∇+

∂

∂t

)
v = −∇

(
p+

B2

8π

)
+

1

4π
(B · ∇)B− ρ∇Φgrav . (35.50)
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We consider a system bounded by a closed surface S. The surface S is assumed
to move with the local fluid velocity v, so that there is no mass flow across the
surface: the mass within S is conserved. The pressure p and magnetic field B
are not required to vanish at S, but we will assume that the material exterior to S
contributes negligibly to the gravitational acceleration ∇Φgrav. Define the quantity

I ≡
∫

dV r2ρ ; (35.51)

I has the same dimensions as a moment of inertia. The virial theorem (see Ap-
pendix J for the derivation) states that

1

2
Ï = 2EKE + 3Π + Emag + Egrav

−
∮

dS · r
(
p+

B2

8π

)
+

1

4π

∮
dS ·B(r ·B) , (35.52)

EKE ≡
∫

dV ρ
v2

2
, Π ≡

∫
dV p , Emag ≡

∫
dV

B2

8π
, (35.53)

Egrav ≡ −1

2

∑
i

∑
j �=i

Gmimj

|ri − rj | = −G

2

∫
dV1

∫
dV2

ρ(r1)ρ(r2)

|r1 − r2| , (35.54)

where the factor of 1
2 in Eq. (35.54) allows for the fact that each pair appears twice

in the double sum. If the pressure and magnetic field have uniform values p0 and
B0 at the bounding surface S, then the surface integrals can be evaluated, and the
virial theorem becomes

1

2
Ï = 2EKE + 3(Π−Π0) + (Emag − Emag,0) + Egrav , (35.55)

Π0 ≡ p0V , Emag,0 ≡ B2
0

8π
V , (35.56)

where V is the enclosed volume. The usual application of the virial theorem is to
systems that are in a steady state, with time-average 〈Ï〉 = 0. Then,

0 = 2〈EKE〉+ 3〈Π−Π0〉+ 〈Emag − Emag,0〉+ 〈Egrav〉 . (35.57)
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Shock Waves

A shock wave is defined here to be a pressure-driven disturbance propagating faster
than the signal speed for compressive waves, resulting in an irreversible change
(i.e., an increase in entropy). The literature on shock waves is vast (e.g., Landau
& Lifshitz 2006; Zeldovich & Raizer 1968; Whitham 1974) with a review of in-
terstellar shock waves by Draine & McKee (1993). This chapter will focus on the
basic equations applicable to shocks, and will mention the different types of shocks
that arise in different astrophysical settings – adiabatic shocks; radiative shocks;
collisionless shocks; C-, C∗-, and J-type two-fluid shocks.

We will speak of shock fronts – the shock front is the transition zone where the
fluid properties (e.g., density) change from preshock values to postshock values.

36.1 Sources of Interstellar Shocks

Shocks are common in the ISM, occuring in a number of different circumstances,
for example:

• Stellar explosions – novae and supernovae – drive shocks into the ISM.

• The gas in fast stellar winds is eventually decelerated when it “runs into” the
ISM; the deceleration involves passage of the wind material through a shock
front.

• Expanding H II regions can drive shock waves into surrounding neutral gas.

• In spiral galaxies, the gas in the interstellar medium is accelerated by gravity
as it enters a spiral arm, and may pass through a shock transition involving
deceleration (relative to the spiral arm) and compression.

• The ISM in a star-forming galaxy is “stirred up” by injection of energy from
stars (H II regions, stellar winds, supernovae) and clouds moving supersoni-
cally will sometimes collide, driving shock waves into both of the colliding
clouds.
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36.2 Jump Conditions: Rankine-Hugoniot Relations

The sharp change in fluid properties (density, velocity, pressure) in a shock transi-
tion is called a jump. Our goal in this section is to obtain a set of jump conditions
that relate the preshock and postshock state of the fluid. The jump conditions are
often referred to as Rankine-Hugoniot relations, after 19th century physicists Rank-
ine and Hugoniot.

36.2.1 Conservation of Mass

Shock waves are intrinsically transient phenomena, but it is often useful to approx-
imate real time-dependent shocks by steady (time-independent) shocks. When this
is the case, it is advantageous to adopt a frame of reference that is moving with the
shock: we call this the shock frame.

In the shock frame, the shock structure appears to be stationary, although the fluid
itself is moving; in the shock frame, a steady shock has ∂/∂t = 0 for all variables.
It is further advantageous if we can approximate the shock front as plane-parallel;
then, if x̂ is the direction normal to the shock, we have ∂/∂y = ∂/∂z = 0. With
these conditions, the equation of mass conservation ∂ρ/∂t = −∇· (ρv) reduces to

0 = − ∂

∂x
(ρvx) , (36.1)

which is readily integrated from x1 to x2 to obtain

(ρvx)1 = (ρvx)2 . (36.2)

36.2.2 Conservation of Momentum

The equation for momentum conservation, including viscous stresses, is a vector
equation, Eq. (35.21). For a steady, plane-parallel shock, the x component of the
equation reduces to

ρvx
∂vx
∂x

= − ∂

∂x

(
p+

B2

8π

)
+

1

4π
Bx

∂

∂x
Bx − ρ

∂

∂x
Φgrav +

∂

∂x
σxx , (36.3)

which can be written (making use of ρvx = const) in terms of the divergence of a
conserved momentum flux

∂

∂x

(
ρv2x + p+

(B2
y +B2

z )

8π
− σxx

)
= −ρ

∂Φgrav

∂x
, (36.4)

with a “source term” on the right-hand side. We now integrate across the shock
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transition. The viscous stress tensor σxx is large only in a narrow transition layer;
we choose a preshock location x1 and postshock location x2 just outside this shock
transition layer, so that (σxx)1 ≈ 0, (σxx)2 ≈ 0. We further assume that x1 and x2

are sufficiently close together so that we can neglect the integral over ρ∂Φgrav/∂x.
The equation of momentum conservation then becomes(

ρv2x + p+
B2

y +B2
z

8π

)
1

=

(
ρv2x + p+

B2
y +B2

z

8π

)
2

. (36.5)

36.2.3 Conservation of Energy

We now consider energy conservation. To calculate all of the mechanical work
done on the fluid element (including viscous stresses), it is convenient to calculate
what is happening at the surface, since the pressure force acts across the surface,
and we have seen in Eq. (35.16) that the electromagnetic forces can also be eval-
uated as acting at the surface. The work per unit time done by the force acting at
each point is obtained by taking the dot product of the force vector with the velocity
at that point. The rate at which work is being done on the fluid element by external
forces is therefore(

dE

dt

)
mech

=

∫
dSivi

(
−p− B2

8π

)
+

∫
dSjvi

(
BiBj

4π
+ σij

)

−
∫

dV ρvi
∂

∂xi
Φgrav . (36.6)

In addition to the mechanical power, there is a net heating rate per volume (Γ −
Λ) plus heat conduction across the surface. These all add up to change the total
energy in the comoving fluid element. Using Gauss’s theorem to convert the surface
integrals to volume integrals, we can now evaluate the rate of change of the sum of
bulk kinetic energy, internal energy, and magnetic energy in the fluid element:

D

Dt

[
1

2
ρΩv2 +ΩU +Ω

B2

8π

]
= Ω

∂

∂xi

[
−pvi − B2

8π
vi + vj

BiBj

4π
+ vjσji

]

− Ωρvi
∂

∂xi
Φgrav +Ω(Γ− Λ)− Ω∇ · (−κ∇T ) . (36.7)

Equation (36.7) is fully general. If we now set ∂/∂y = ∂/∂z = ∂/∂t = 0, it
simplifies to

∂

∂x

[
1

2
ρvxv

2 + Uvx + pvx +
(B2

y +B2
z )

8π
vx − BxByvy

4π
− BxBzvx

4π

− vjσjx − κ
dT

dx
+ ρvxΦgrav

]
= Γ− Λ . (36.8)
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We now integrate this from preshock point 1 to postshock point 2, where we again
assume that 1 and 2 are sufficiently far from the shock transition that (σjx)1 ≈
(σjx)2 ≈ 0. We also assume that 1 and 2 are sufficiently close together that∫ 2

1
(Γ − Λ)dx ≈ 0, and (Φgrav,2 − Φgrav,1) ≈ 0. We further assume that the

internal energy per unit volume is proportional to the thermal pressure:

U =
p

(γ − 1)
, (36.9)

where γ ≡ cp/cv = (f + 2)/f is the ratio of specific heat at constant pressure to
specific heat at constant volume. For a monatomic gas or plasma, γ = 5/3.

The energy jump condition is then{[
ρv2

2
+

γp

(γ − 1)

]
vx +

(B2
y+B2

z )

8π
vx − (ByBx +BzBx)

4π
vx − κ

dT

dx

}
1

=

{[
ρv2

2
+

γp

(γ − 1)

]
vx +

(B2
y +B2

z )

8π
vx − (ByBx+BzBx)

4π
vx − κ

dT

dx

}
2

. (36.10)

36.2.4 Conservation of Magnetic Flux

In addition to mass, momentum, and energy conservation, we have one more con-
straint from Maxwell’s equations and the assumption of infinite electrical conduc-
tivity: Eq. (35.40) gives

∂B

∂t
= ∇× (v ×B) . (36.11)

With ∂/∂t = ∂/∂y = ∂/∂z = 0 the y and z components of this equation give

0 = − ∂

∂x
(vxBy − vyBx) , (36.12)

0 = − ∂

∂x
(vzBx − vxBz) . (36.13)

36.2.5 Jump Conditions

The preceding equations are general for plane-parallel steady shocks. We now
specialize to the case Bx = 0 (purely transverse magnetic field) and κ∇T = 0



SHOCK WAVES 401

(negligible thermal conductivity), and we choose a frame where vy = vz = 0 in
the preshock gas (if Bx = 0, the postshock gas will then also have vy = vz = 0),
and Bz = 0. The conservation laws for mass, momentum, energy, and magnetic
flux can then be rewritten

ρ1u1 = ρ2u2 , (36.14)

ρ1u
2
1 + p1 +

B2
1

8π
= ρ2u

2
2 + p2 +

B2
2

8π
, (36.15)

ρ1u
3
1

2
+

γ

γ − 1
u1p1 +

u1B
2
1

8π
=

ρ2u
3
2

2
+

γ

γ − 1
u2p2 +

u2B
2
2

8π
, (36.16)

u1B1 = u2B2 , (36.17)

where u ≡ vx, and B = By . We assume that ρ1, u1, p1 and B1 are given. We
have four equations in four unknowns: ρ2, u2, p2, and B2. The trivial solution
(ρ2 = ρ1, u2 = u1, p2 = p1, and B2 = B1) always exists, but what is the condition
for a second physical solution to exist? Define vs ≡ u1, and let x ≡ ρ2/ρ1 be
the compression ratio. From mass conservation, we have u2 = vs/x, and flux
conservation gives B2 = xB1. The momentum and energy equations become

ρ1v
2
s + p1 +

B2
1

8π
=

ρ1v
2
s

x
+ p2 +

B2
1

8π
x2 , (36.18)

1

2
ρ1v

3
s +

γ

γ − 1
p1vs +

B2
1

8π
vs =

1

2

ρ1v
3
s

x2
+

γ

γ − 1

p2vs
x

+
B2

1

8π
vsx . (36.19)

Now we have two equations in two unknowns: compression x and postshock pres-
sure p2. If we solve the first for p2, and substitute into the second, we obtain a
cubic equation for x. Remembering that x = 1 must be a solution, we can factor
out (x − 1) to reduce this to a quadratic. The solution for the compression ratio x
is

x =
2(γ + 1)

D +
√
D2 + 4(γ + 1)(2− γ)M−2

A

, (36.20)

D ≡ (γ − 1) + 2M−2 + γM−2
A ,

M ≡ vs√
γp1/ρ1

,

MA ≡ vs
B1/

√
4πρ1

.

The condition for a compressive (i.e., x > 1) solution to exist is that

vs > Vms ≡
√

γp1
ρ1

+
B2

1

4πρ1
, (36.21)
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where the magnetosonic speed Vms is the speed of small-amplitude compressive
waves propagating perpendicular to B. For a shock wave to exist, it must propagate
faster than small-amplitude compressive waves in the preshock medium.

With the compression factor x from Eq. (36.20), one can immediately obtain
the postshock velocity v2 = vs/x and density ρ2 = xρ1. The pressure p2 can be
obtained from Eq. (36.18), and the temperature T2 = p2µ/ρ2k, where µ is the mass
per particle.

When M ≡ vs/Vms � 1, the shock is termed a strong shock; the strong shock
jump conditions are

x ≡ ρ2
ρ1

→ γ + 1

γ − 1
= 4 for γ = 5/3 , (36.22)

u2 → γ − 1

γ + 1
vs =

1

4
vs for γ = 5/3 , (36.23)

T2 → 2(γ − 1)

(γ + 1)2
µv2s
k

=
3

16

µv2s
k

for γ = 5/3 . (36.24)

For a strong shock, the postshock temperature T2 depends on both the shock speed
and the molecular weight. Including helium (with nHe/nH = 0.1):

µ =
1.4mH

1.1
= 1.273mH for neutral H I, (36.25)

µ =
1.4mH

2.3
= 0.609mH for fully ionized gas. (36.26)

For a strong shock, the postshock temperature is

T2 ≈ 3

16
µv2s = 2890K

(
µ

1.273mH

)(
vs

10 km s−1

)2

(36.27)

= 1.38× 107 K

(
µ

0.609mH

)(
vs

1000 km s−1

)2

. (36.28)

36.2.6 Postshock Cooling and “Isothermal” Shocks

We have used the conservation laws to obtain the immediate postshock compression
and temperature. Suppose now that the hot gas cools by emitting radiation, cooling
until it reaches a temperature T3 = T1. A shock where the postshock gas cools to
the initial temperature T1 is sometimes referred to as an isothermal shock. This is
misleading – the gas temperature does not remain constant.
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Figure 36.1 Structure of a nonmagnetic radiative shock. The fluid is assumed to have
γ = 5/3, and the shock has Mach number M = 4.

Energy has been removed, so energy conservation equations do not apply, but
mass, momentum, and magnetic flux remain conserved. Thus set T3 = T1, p3 =
x3p1; momentum conservation gives

ρ1v
2
s + p1 +

B2
1

8π
=

ρ1v
2
s

x3
+ x3p1 +

B2
1

8π
x2
3 . (36.29)

The nonmagnetic case (B1 = 0) gives a quadratic equation for x3, with one trivial
root (x3 = 1) and the nontrivial root

x3 = M2
iso ≡ ρ1v

2
s

p1
, (36.30)

where the “isothermal Mach number” Miso is the ratio of the shock speed vs to the
isothermal sound speed

√
p1/ρ1.

Now consider the more general case where B1 �= 0. Equation (36.29) now gives



404 CHAPTER 36

a cubic equation for x3; one root is x3 = 1, the other physical root is

x3 =
√
2MA

[
1 +

1

8M2
A

(
1 + 2

M2
A

M2
iso

)2
]1/2

− 1

2
− M2

A

M2
iso

(36.31)

→
⎧⎨
⎩

√
2MA for M2

iso � M2
A > 1

M2
iso for MA � M2

iso > 1
. (36.32)

The structure of a single-fluid nonmagnetic shock is shown in Figure 36.1.

36.3 Cooling Time and Cooling Length

For a steady shock, the peak temperature occurs immediately behind the shock
front. If the shock has been propagating long enough, the shocked gas is able to
cool radiatively, resulting in further compression of the gas. The cooling behind
the shock is approximately isobaric, so the cooling time for this gas is given by Eq.
(35.33). For a strong shock in ionized gas, with ρ2 ≈ 4ρ1, and temperature given
by Eq. (36.28), the time tcool for a just-shocked fluid element scales as 1/nH,0

where nH,0 is the preshock density. Figure 36.2a shows nH,0tcool as a function of
shock speed. We see that shocks with vs <∼ 100 km s−1 cool very rapidly, but the
gas behind a high-velocity shock takes very long to cool.

For 80 <∼ vs <∼ 1200 km s−1, the cooling time can be approximated by (see Fig.
36.2a)

tcool ≈ 7000

(
cm−3

nH,0

)(
vs

100 km s−1

)3.4

yr . (36.33)

The cooling length – the spatial extent of the radiative zone in Fig. 36.1 – is
Lcool = (vs/4)tcool ∝ 1/nH,0. The column density of material in the radiative
zone NH,cool = (4nH,0)Lcool = nH,0vstcool depends on vs but not the preshock
density nH,0. The cooling column density NH,cool is shown as a function of shock
speed in Fig. 36.2b.

36.4� Collisionless Shocks

In the discussion thus far, we have assumed that viscous dissipation is capable
of effecting the shock transition, dissipating much of the initial kinetic energy and
converting it to heat. In collisional shocks this is accomplished by elastic scattering
of molecules, atoms, or ions, and the shock transition has a thickness that is of order
the mean free path against 90◦ scattering. From Chapter 2, the mean free path
(mfp) in ionized gas at the immediate postshock temperature Ts = (3/16)µv2s/k
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Figure 36.2 (a) nH,0tcool as a function of shock speed vs for shocks propagating into
H II, for the cooling function shown in Fig. 34.1. Strong shock jump conditions (for
γ = 5/3) are assumed. nH,0 is the preshock density, and tcool is the isobaric cooling
time for the immediate postshock gas. The cooling function Λ(T ) is taken from Fig.
34.1. Curves are labeled by the metallicity relative to solar Z/Z�. (b) The cooling
column density NH,cool = nH,0vstcool.

and immediate postshock density n = 4n1 is

mfp= v1tdefl =
34µ2v4s

213πn1e4 ln Λ
(36.34)

=2.4× 1017 cm

(
vs

103 km s−1

)4(
cm−3

ne

)
, (36.35)

where we have evaluated the mfpfor a proton with E = (3/2)kTs. For shock
speeds vs >∼ 103 km s−1, the mean free path against collisional scattering is very
long, yet we see evidence of relatively well-defined shock transitions in young
supernova remnants, and in interplanetary space.

The shock transition requires that the particle velocities be isotropized (in the
postshock frame), but this can be done by large-scale electric and magnetic fields
resulting from collective motions in the plasma. Shocks where the deflection of
ions is accomplished by collective effects are referred to as collisionless shocks.
The collective motions that generate the large-scale electric and magnetic fields are
excited by instabilities driven by the streaming of the undeflected ions and electrons
through previously decelerated plasma. If the preshock plasma is already magne-
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tized, then the already-present magnetic field is available to deflect streaming ions
and electrons. Instabilities in collisionless shocks can substantially amplify the
magnetic field, beyond the factor of ∼ 4 compression that would result in a plane-
parallel strong shock with flux-freezing (Bell 2004). Even if no magnetic field is
initially present, the Weibel instability (Weibel 1959) is able to generate magnetic
fields in strong collisionless shocks.

36.5� Electron Temperature

The existence of collisionless shocks is established by observations, showing that
the bulk kinetic energy of the preshock flow is substantially converted to kinetic
energy in random motions. Elastic scattering processes will relatively quickly
isotropize the velocity distribution functions. Scattering of ions by ions, and elec-
trons by electrons, will cause the ions and electrons to each relax to Maxwellian
velocity distributions.

Almost all of the kinetic energy is originally in the ions. Isotropization of the
velocity distribution function would result in initial ion and electron temperatures
with Ti/Te ≈ (mp/me) = 1836. Coulomb scattering will cause the electrons to
be heated on an equilibration time scale

τequil ≡ Ti − Te

d(Te − Ti)/dt
≈ mp

me
× tdefl(e by p) (36.36)

≈ 1.4× 1010 s

(
Te

106 K

)3/2(
cm−3

ne

)(
25

lnΛ

)
. (36.37)

The long time scale for electron–ion temperature equilibration prevents the elec-
trons from equilibrating with the ions just behind fast shock waves in young super-
nova remnants, or following shock-heating of the intergalactic medium in galaxy
clusters.

When the electrons are much colder than the ions, there may be collective insta-
bilities that will raise the electron temperature up to some fraction (e.g., ∼ 1/10) of
the ion temperature, but the final electron-ion temperature equilibration appears to
take place via elastic scattering.

36.6� Two-Fluid MHD Shocks in Low Fractional Ionization Gas

Earlier we discussed the jump conditions in ordinary shock waves, where some
process – either collisional viscosity or some collective instability – decelerates
and heats the inflowing preshock gas. This applies to fast shocks, or to shocks in
ionized gas.

Much of the ISM has an appreciable magnetic pressure but low fractional ion-
ization (see Chapter 16). In H I clouds (the “CNM”), the fractional ionization
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xe ≈ 3 × 10−4 (see Fig. 16.1). In diffuse molecular clouds, ultraviolet radi-
ation maintains ionization of species such as C+, and the fractional ionization
xe ≈ 1.5 × 10−4. In dark clouds, the fractional ionization is much lower, with
xe ≈ 10−7 in a region with density nH ≈ 104 cm−3 (see Fig. 16.3).

The gas can be thought of as two distinct fluids coexisting in space: a neutral fluid
consisting of atoms and molecules, and a plasma, consisting of the ions, electrons,
and magnetic field. When the fractional ionization is sufficiently low, a neutral par-
ticle will undergo many scatterings by other neutrals before it is scattered by an ion,
so the neutrals act like a fluid with a Maxwellian velocity distribution. The long
range of the Coulomb interaction means that the ions or electrons may undergo
many Coulomb scatterings off other ions or electrons before interacting with a neu-
tral – so the ions and electrons act like a separate fluid, although the mass mismatch
between ions and electrons means that energy exchange between ions and electrons
is slow, so that the electron and ion velocity distributions can be characterized by
separate temperatures, Ti and Te. Hence, it makes sense to speak of the neutrals
and ions as distinct fluids, weakly coupled to one another via ion–neutral collisions.

Because the fractional ionization is low, even a modest magnetic field strength
can imply a large value for the magnetosonic speed for compressive waves in the
plasma:

Vims ≈ B0√
4πρi

≈ 112 km s−1

(
B0

5µG

)(
102 cm−3

nH

10−4

xi

)1/2

, (36.38)

where we have assumed a mass per ion mi ≈ 12mH. If the shock speed vs < Vims,
then compressive waves in the plasma can propagate upstream ahead of the shock,
producing compression in the plasma before it arrives at the shock transition in the
neutral gas.

The neutral particles are not directly affected by the magnetic field, but the
charged particles experience Lorentz forces when they move perpendicularly to
the magnetic field. This means that when the magnetic field is strong enough to
be dynamically important, it can only affect the neutral gas via ion–neutral scat-
tering. But when the fractional ionization is low, the collisional coupling between
neutrals and ions is weak. This leads to an interesting new type of shock structure
– two-fluid MHD shocks.

To understand the structure of two-fluid MHD shocks, it is helpful to think about
a sequence of two-fluid shocks, starting from a shock where the magnetic field is
very weak, and considering the effect of gradually increasing the magnetic field
strength – see Figure 36.3. In the upper panel, the magnetic field is assumed to be
dynamically weak, but to be large enough that Vims > vs. The compressive waves
propagating upstream in the plasma ahead of the shock are damped by ion–neutral
friction since the neutral gas is not participating in the compression. This results
in a magnetic precursor of finite extent. We can estimate the extent L of the
magnetic precursor by simply looking at the equation of motion for the ions:

ρi
Dvi

Dt
= −∇pi −∇B2

8π
+

(B · ∇)B

4π
+ nnni〈σv〉inµ(vn − vi) , (36.39)
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Figure 36.3 Sequence of two-fluid shocks, with different values of preshock magnetic
field strength B0. As the magnetic field strength B0 is increased, the magnetic pre-
cursor extends further ahead of the viscous subshock (the discontinuity in the neutral
velocity), and produces more deceleration of the neutrals. For large enough B0, the
neutrals are decelerated entirely by the magnetic precursor, and the shock becomes
C-type.

where we now have a source term on the right-hand side, representing the rate
per volume at which the ion momentum is changed as a result of collisions with
neutrals. For plane-parallel, steady flows this becomes (using ∇ ·B = 0)

ρivix
dvix
dx

= − d

dx
pi − d

dx

B2

8π
+ nnni〈σv〉inµ(vnx − vix) , (36.40)

where µin ≡ mnmi/(mn+mi) is the reduced mass in collisions between neutrals
of mass mn and ions of mass mi. Because ρi and pi are small, Eq. (36.40) requires
approximate balance between the two dominant terms, and we can solve for the
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length scale L:

d

dx

(
B2

8π

)
≈ nnni〈σv〉inµ(vnx − vix) , (36.41)

(2B0)
2

8πL
≈ nH(2xinH)〈σv〉in mnmi
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2

, (36.42)

L ≈ 2
v2A0
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(mn +mi)

mi

1

ni0〈σv〉in (36.43)

≈ 1× 1015 cm

(
vA0

km s−1

)2(
10 km s−1

vs

)(
0.01 cm−3

ni0

)
, (36.44)

where vA0 is the Alfven speed in the preshock medium, and ni0 is the number
density of ions (= number density of electrons) in the preshock medium.

If the magnetic field is weak (v2A0 is small), the magnetic precursor does not
extend very far upstream and the neutral gas, with its much greater inertia, is hardly
affected by the ion–neutral collisions taking place in the very short precursor (see
Fig. 36.3a). The deceleration and heating in the overall shock is almost entirely
due to the viscous stresses arising in a transition layer that we term the viscous
subshock, with thickness of order the mean free path for a neutral atom against
elastic scattering by another neutral. Two-fluid shocks where a viscous “jump” is
present are referred to as J-type shocks (Draine 1980).

If the preshock magnetic field strength is increased, the precursor extends far-
ther (see Fig. 36.3b). The zone within which ion–neutral collisions are occuring
is enlarged, and the amount of momentum removed from the streaming neutrals
becomes appreciable, causing the flow velocity of the neutrals to decline notice-
ably before the neutrals reach the viscous shock transition. In addition to reducing
the momentum (and bulk kinetic energy) of the preshock neutral flow, frictional
heating by ion–neutral scattering also heats the neutral gas. Because of these two
effects, the viscous subshock is weakened, with a reduced compression ratio, but
the shock is still J-type.

As the magnetic field strength is further increased (Fig. 36.3c), the magnetic pre-
cursor extends further, the momentum transfer and frictional heating in the mag-
netic precursor region increases, and the strength of the viscous subshock further
decreases. If the magnetic field is increased sufficiently (Fig. 36.3d), the viscous
subshock entirely disappears, and we have an entirely new type of shock – referred
to as a C-type shock (Draine 1980) – where all of the momentum transfer and
dissipation take place as the result of ion–neutral streaming.

For a shock to be C-type, the neutral flow must remain supersonic throughout. If
the magnetic field is strong enough (i.e., the preshock Alfvén number vs/vA0 is low
enough), this can be accomplished even without radiative cooling. However, even
when the Alfvén number is large, the distributed heating by ion–neutral scattering
may be countered by local radiative cooling, and it is often possible for radiative
cooling to keep the neutral fluid cool enough that it remains supersonic.
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Figure 36.4 Structure of J-type, C*-type, and C-type 2-fluid MHD shocks (see text).
In C-type shocks the neutral flow remains supersonic throughout. In J-type shocks the
neutral flow makes a supersonic to subsonic transition via a viscous subshock, and as
it cools it passes smoothly through a sonic point to become supersonic downstream. In
C�-type shocks, the neutral flow passes smoothly through two sonic points as it first
heats up from ion-neutral friction, and then cools down.

For fixed preshock conditions (nH, T , B0, ne), low-speed shocks will be C-
type, but as the shock speed increases, heating of the neutral flow will make it
subsonic. If we assume that radiative cooling in the postshock region will cause
the downstream neutral flow to be supersonic, then we see that the neutral flow
must have a supersonic→subsonic transition at one point in the flow, followed by
a subsonic→supersonic transition further downstream (see Fig. 36.4). In J-type
shocks, the supersonic→subsonic transition is accomplished by a viscous sub-
shock, but it is also possible for the transition to take place smoothly, without a
viscous subshock. Such a shock is termed C
-type (Chernoff 1987; Roberge &
Draine 1990).

Single-fluid shocks dissipate most of the ordered kinetic energy in a narrow vis-
cous transition, with the heating taking place too rapidly for cooling to affect the
peak temperature reached. In two-fluid shocks, on the other hand, much of the en-
ergy dissipation is continuous rather than impulsive, and radiative cooling is able
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to keep the gas cool even when the shock velocity is quite high.
The Orion Molecular Cloud shows strong infrared emission in vibration–rotation

lines of H2, with line profiles indicating that some of the emitting H2 is moving at
> 30 km s−1. Models of single-fluid shocks propagating into H2 gas showed that
the H2 will be fully dissociated if the shock speed exceeds ∼ 24 km s−1 (Kwan
1977), but two-fluid MHD shocks can have minimal H2 dissociation and strong
H2 line emission for shock speeds as large as ∼ 40 km s−1 (Chernoff et al. 1982;
Draine & Roberge 1982).

Because radiative cooling is effective, especially in molecular gas where the ro-
tational lines of H2 are strong coolants, shocks in interstellar H I clouds and molec-
ular clouds are expected to be often C-type or C
-type. Shocks are expected to
be common: Draine & Katz (1986b) estimated that a sightline traversing a path
through one or more clouds with total E(B − V ) = 1mag would be expected to
intersect one shock wave with vs > 8 km s−1, and argued that C-type shocks in in-
terstellar clouds could account for the observed abundance of the enigmatic species
CH+ via the endothermic reaction C+ +H2 → CH+ +H (see §33.3).



Chapter Thirty-seven

� Ionization/Dissociation Fronts

Chapter 15 discussed the sizes of Strömgren spheres, assuming them to be static,
with a stationary boundary separating the ionized from the neutral gas. This bound-
ary is known as an ionization front, or I-front. I-fronts are common in the inter-
stellar medium. The Orion Bar in Plate 10 is an example of an I-front, there are
I-fronts bounding the bright Hα emission in the Trifid Nebula (Plate 11), and there
are I-fronts at the surfaces of the many neutral cometary filaments in the Helix
Nebula (Plate 13).

In general, an I-front is not stationary relative to the gas. This chapter discusses
the gas dynamics that is associated with moving I-fronts.

Stars are formed by gravitational collapse in cold, dense molecular gas. Mas-
sive stars reach the main sequence quickly, and begin emitting hard ultraviolet
radiation while still surrounded by dense molecular gas. The molecules in the
nearby gas are photodissociated, and the gas is photoionized. The photodissocia-
tion/photoionization process increases the number of free particles (H2 → 2H →
2H+ +2e−) and raises the gas temperature to ∼ 104 K; the thermal pressure there-
fore increases by a factor ∼ 103, and this high-pressure gas will expand by push-
ing away the surrounding lower-pressure atomic and molecular gas. Under some
circumstances, this high pressure can drive a shock wave into the surrounding
medium, so that the neutral gas that the I-front encounters has already been shock-
compressed – this is called a D-type I-front. Under other circumstances, the I-front
is not preceded by a shock – this is referred to ask an R-type I-front.

37.1� Ionization Fronts: R-Type and D-Type

Consider a plane-parallel geometry, and adopt a coordinate system that is moving
at the same speed as the I-front. Let J be the flux/area of ionizing photon arriving
at the I-front. Let subscript 1 denote fluid variables in the neutral gas ahead of the
I-front, and subscript 2 denotes fluid variables in the ionized gas behind the I-front.
Mass conservation gives us

ρ1u1 = ρ2u2 = Jµi , (37.1)

where ρ and u are the density and velocity of the gas relative to the I-front, and µi

is the mass per ion in the ionized gas. If He remains neutral, µi = 1.4mH; if He is
singly ionized, µi = (1.4/1.1)mH.
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Equation (36.5) applies with only a slight modification:

ρ1u
2
1 + ρ1c

2
1 +

B2
1

8π
= ρ2u

2
2 + ρ2c

2
2 +

B2
2

8π
− Jhν

c
, (37.2)

where c1 and c2 are the isothermal sound speeds in region 1 and region 2, and
we have included the momentum flux Jhν/c from the ionizing photons that are
assumed to be absorbed at the I-front. We assume that ρ1 and u1 = Jµ/ρ1 are
known, and we seek to solve for the unknown u2 and ρ2 = ρ1u1/u2.

If all the terms in Eq. (37.2) are retained, one obtains a cubic equation, which
is tractable but tedious to solve. Cases of astrophysical interest will normally have
u2 � u1, ρ2 � ρ1, and, as a consequence, B2

2/8π (the magnetic pressure in the
ionized gas) will be small compared to the other terms. In addition, it is easy to see
that Jhν/c = ρ1u1hν/µic � ρ1(u

2
1+c21+B2

1/8π). If we drop B2
2/8π and Jhν/c

from Eq. (37.2), we obtain a simple quadratic equation for x ≡ u2/u1 = ρ1/ρ2:

u2
1x

2 −
(
u2
1 + c21 +

v2A1

2

)
x+ c22 = 0 , (37.3)

with roots
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(37.4)

The roots are real if and only if

u2
1 + c21 +

v2A1

2
> 2u1c2 , (37.5)

which requires

u1 > uR ≡ c2 +

[
c22 − c21 −

v2A1

2

]1/2
, (37.6)

or

u1 < uD ≡ c2 −
[
c22 − c21 −

v2A1

2

]1/2
. (37.7)

Normally, c2 ≈ 10 km s−1, and c22 � v2A1, c22 � c21, and

uR ≈ 2 c2 , xR ≈ 1
2 +

2c21+v2
A1

16c22
,

uD ≈ 2c21+v2
A1

4c2
, xD ≈ 4c22

2c21+v2
A1

,

(37.8)
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where xR and xD are the density ratios ρ1/ρ2 for I-fronts with u = uR and u = uD,
respectively. Ionization fronts with u = uR are called R-critical, and I-fronts with
u = uD are termed D-critical. The solutions with u1 ≥ uR and the solutions with
u1 ≤ uD are quite different in nature.

37.1.1 R-Type I-Fronts

If

J =
ρ1u1

µ
>

ρ1
µ
uR , (37.9)

then u1 > uR and the I-front is called R-type. There are two mathematical solu-
tions, depending on which root of (37.4) is taken. The solutions corresponding to
the larger root are called strong R-type. Strong R-type solutions have only a small
density change across the I-front, with the density change going to zero in the limit
of very fast-moving I-front. Both upstream and downstream flows are supersonic,
and waves cannot propagate upstream.

What about the other solution branch, obtained if the negative root in (37.4) is
taken? These solutions, referred to as weak R-type, also satisfy conservation of
mass and momentum, but for u1 � uR, the ionized gas is much denser than the
neutral gas (ρ1/ρ2 � 1 in Figure 37.1). This can only occur if there is a large
pressure gradient across the I-front – the I-front is also a shock front. Because the
downstream flow is subsonic, it is physically possible for the postshock region to
be pressurized by some “piston” that is acting on it (e.g., a stellar wind), but such
a combined ionization–shock front requires that the pressure be just right so that
the compressive shock front advances at the same speed as the I-front, whose speed
depends on J . Such a situation generally does not arise in astrophysical I-fronts.
Hence, only strong R-type I-fronts are physically relevant.

37.1.2 D-Type I-Fronts

Conversely, if

J =
ρ1u1

µ
<

ρ1
µ
uD , (37.10)

then u1 < uD and the I-front is called D-type. The solution corresponding to larger
root in Eq. (37.4) is termed weak D-type. The ionized gas is at much lower density
than the neutral gas, and it flows away from the I-front at a speed that is close to
the sound speed c2. In this case, it is the “rocket effect” that is responsible for the
large pressure increase as one moves from the ionized gas into the neutral gas – it
is this pressure gradient (which we do not resolve when we treat the I-front as a
discontinuity) that accelerates the ionized gas away from the I-front.

The other solution, obtained by taking the smaller root in (37.4), is termed strong
D-type. For u1 � uD, this solution corresponds to very slow flow in the neutral
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Figure 37.1 u2/u1 = ρ1/ρ2, as a function of the velocity u1 of the I-front relative
to the neutral gas just ahead of the I-front, for D-type and R-type ionization front
solutions (see text) for an example with c1 = 1km s−1, vA1 = 2km s−1, and c2 =
11.4 km s−1. The astrophysically relevant solutions are the weak D-type and strong
R-type cases, shown as heavy curves. There are no solutions with u1 between uD and
uR.

medium, with approximate pressure equilibrium between the neutral gas and the
ionized gas. This is the solution that would correspond to the late-stage evolution
of an H II region in an initially uniform medium, where the ionized gas is essentially
in pressure equilibrium with the neutral gas around it.

We have discussed solutions for u1 < uD and u1 > uR. What happens if we
have a neutral medium with density ρ0, and we suddenly “turn on” an ionizing flux
J such that uD < Jµ/ρ0 < uR? Since J is imposed, what has to happen is that
the density ρ1 of the neutral gas just ahead of the I-front must be increased so that
Jµ/ρ1 < uD. This is accomplished by a pressure wave that travels forward into
the neutral gas, compressing it from density ρ0 to a density ρ1 such that Jµ/ρ1 <
uD. Because compression requires that the pressure be significantly larger than the
initial pressure, the pressure wave will be a shock wave.

In this case, there are two fronts to consider: (1) the shock front where the as-yet
unperturbed medium with density ρ0 is compressed to a density ρ1, and accelerated
in the process, and (2) the I-front, propagating into the compressed postshock gas.
The shock front must, of course, move faster than the I-front so that it remains
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ahead of it.
The solution will be D-critical, with u1 ≈ uD. Substituting uD into Eq. (37.4),

one finds a density ratio(
ρ1
ρ2

)
D

≡ xD ≈ 1

2
+

4c22
(2c21 + v2A1)

. (37.11)

The density in the neutral gas must be increased to a value ρ1 ≈ Jµ/uD. If the ini-
tial density is ρ0, then the shock compression factor must be ρ1/ρ0 = Jµ/(uDρ0).
The compression in an isothermal shock is given by Eqs. (36.31 and 36.32).

37.2� Expansion of an H II Region in a Uniform Medium

We can now discuss the expansion of an H II region in an initially uniform medium
of density (nH)0 ≡ n0. For simplicity, we will neglect helium. Suppose that a
star suddenly turns on, emitting H-ionizing photons at a rate Q0. At early times,
the I-front will be strong-R-type, propagating at a speed u � uR ≈ 2c2, where
c2 = 11.4T

1/2
4 km s−1 is the isothermal sound speed if He remains neutral. Let

Ri(t) be the radius of the I-front. With the gas remaining at rest, the propagation
of the I-front is determined by

n04πR
2
i dRi =

[
Q0 − 4π

3
R3

iαBn
2
0

]
dt , (37.12)

dRi

dt
=

Q0

4πn0R2
i

− n0αBRi

3
, (37.13)

which can be integrated to obtain Ri(t) and the velocity Vi(t):

R3
i =R3

S0

[
1− e−t/τ

]
; RS0 ≡

(
3Q0

4παBn2
0

)1/3

, τ ≡ (n0αB)
−1, (37.14)

Vi ≡ dRi

dt
=

(
Q0n0α

2
B

36π

)1/3
e−t/τ(

1− e−t/τ
)2/3 (37.15)

=842

(
Q0

1048 s−1

)1/3 ( n0

103 cm−3

)1/3 e−t/τ(
1− e−t/τ

)2/3 km s−1 . (37.16)

The velocity Vi of the I-front decreases with increasing time, until it approaches
uR ≈ 2c2 ≈ 23 km s−1. From Eq. (37.16), we see that (for our nominal parameters
Q0 = 1048 s−1 and n0 = 103 cm−3), the I-front remains R-type until e−t/τ ≈
23/842, or t/τ ≈ ln(842/23) ≈ 3.6, by which time the I-front has reached Ri ≈
(1− 23/842)1/3RS0 = 0.99RS0 .

Until this time, the neutral gas remained at rest as the I-front advanced into it,
and the growth law Eq. (37.14) remains valid. However, when Vi falls below uR,
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the character of the expansion will suddenly change: a shock wave will now move
ahead of the I-front, and will compress and accelerate the neutral gas so that the
I-front is moving into gas that has been both compressed and set into motion. The
I-front will now be weak D-type, but it will be advancing into neutral gas that is
already moving radially outward as the result of the shock. This geometry is shown
in Figure 37.2.

Figure 37.2 A D-type ionization front preceded by a shock wave.

Once the I-front becomes D-type, and a shock precedes it, analytic approxima-
tions to the expansion become less accurate even if the original medium is assumed
to be uniform. Here, we follow the treatment developed by Spitzer (1978).

Let Ri be the radius of the I-front, moving with velocity (relative to the star)
Vi = dRi/dt. After the I-front becomes D-type, it is subsonic, and the ionized
gas, in particular, can be assumed to be in pressure equilibrium, i.e., with a nearly
uniform density interior to the I-front. Let vi(ri) be the velocity (relative to the
star), of ionized gas at radius ri < Ri interior to the I-front. Because the density
is uniform, it follows that ρir3 is constant for a fluid element within the expanding
H II region, hence

1

ρi

dρi
dt

= − 3

ri

dri
dt

= −3
vi(ri)

ri
. (37.17)

As the density of the ionized gas goes down, the stellar radiation is able to ionize
more material, and the I-front advances into neutral gas. Neglecting absorption
by dust, and assuming the recombination time 1/(neαB) is short compared to the
expansion time Ri/Vi, radiative recombinations approximately balance photoion-
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izations, hence ρ2iR
3
i ≈ const, and

3

Ri

dRi

dt
≈ − 2

ρi

dρi
dt

, (37.18)

Vi ≡ dRi

dt
≈ −2

3

Ri

ρi

dρi
dt

= 2vi(Ri) . (37.19)

Since Vi = vi + ui2, the velocity of the ionized gas relative to the I-front is

ui2 =
1

2
Vi . (37.20)

The density of the neutral gas into which the I-front is advancing will be determined
by compression behind the shock wave moving ahead of the I-front. The shock
wave will be moving at a speed vs that will be close to (just slightly larger than) the
speed of the I-front:

vs ≈ Vi . (37.21)

After the I-front becomes D-type, the expanding H II region will be surrounded
by a shell of shock-compressed gas. Let us assume that the ambient medium, with
density ρ0, is magnetized with a magnetic field B0 that is transverse to the direction
of propagation of the shock. Further suppose that the magnetic pressure is large
compared to the thermal pressure in the ambient medium — B2

0/8π � ρ0c
2
s0,

where cs0 is the isothermal sound speed in the ambient medium. If the shock
front and the I-front are propagating at almost the same speed, we can apply the
conservation of momentum flux across the two fronts:

ρ0V
2
s ≈ ρ2

(
u2
i2 + c2s2

)
= ρ2

(
V 2
i

4
+ c2s2

)
. (37.22)

If we now assume that Vi ≈ Vs, we obtain

V 2
s =

ρ2
ρ0

c2s2
(1− ρ2/4ρ0)

. (37.23)

Since ρ2 ≤ ρ0, we may neglect ρ2/4ρ0 in the denominator, and obtain

Vi ≈ Vs ≈
(
ρ2
ρ0

)1/2

cs2 . (37.24)

The rate at which new ions must be created at the ionization front is 4πR2
inui2 =

2πR2
inVi. If Q0 � 2πR2

inVi, then the expanding H II region has ρ22R
3
i = const,
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hence ρ2 = ρ0(RD/Ri)
3/2, and

R
3/4
i

dRi

dt
=R

3/4
D cs2 , (37.25)

Ri =RD

[
1 +

7

4

cs2(t− tD)

RD

]4/7
for t > tD , (37.26)

where RD ≈ RS0 and tD are the radius and time when the I-front first becomes
D-type. This result was first obtained by Spitzer (1978).

To illustrate the evolution of an H II region, Fig. 37.3 shows the radius Ri and
velocity Vi of the ionization front as a function of time for the H II region created
by a star that at t = 0 suddenly begins emitting ionizing photons at a rate Q0 =
1049 s−1, in an initially uniform medium of density n0 = 103 cm−3. The R-type
phase lasts only to t ≈ 540 yr, at which time the I-front which has become R-
critical, switches from R-type to D-type. Immediately after becoming D-type, the
velocity Vi of the ionization front is ∼ 10 km s−1, but it gradually slows, dropping
to Vi < 2 km s−1 at t = 106 yr.

The evolution of real H II regions may depart substantially from Eq. (37.26), for
two important reasons:

1. The ambient gas around a real H II region will, in general, not be uniform and
at rest. Nonuniformities will allow the H II region to expand more rapidly in
lower-density regions, with a “champagne flow” (Tenorio-Tagle 1979) re-
sulting if the high-pressure H II region is able to “vent” into a low-density
region.

2. The illuminating star will in general be moving relative to the ambient medium,
resulting in a nonspherical geometry even if the ambient density is uniform.

37.3� Photodissociation Fronts

Above we have discussed the expansion of an H II region surrounded by neutral
gas. It is often the case that the ambient gas was originally molecular. Under some
circumstances, there will be a photodissociation front (PD-front) preceding the
I-front.

As discussed in §31.3, H2 can be photodissociated by photons with 11.2 eV <
hν < 13.6 eV. Within the H II region, these photons suffer only extinction by
dust. In neutral gas with a high fraction of H2, a large fraction of the 11.2 to
13.6 eV photons will be absorbed by H2, and ∼ 15% of the photoabsorptions will
be followed by a photodissociation. If Fi is the flux of hν > 13.6 eV photons at the
I-front, and Fd is the flux of 11.2 eV < hν < 13.6 eV photons, then the PD-front
will be able to propagate ahead of the I-front if 2×0.15Fd > Fi. For the expanding
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Figure 37.3 Upper panel: radius RI of the ionization front versus time for expansion
of an H II region into an initially uniform neutral cloud with n0 = 103 cm−3, for an
ionizing source with Q0 = 1049 s−1. Dust absorption is neglected. For this example,
the ionization front makes the transition from R-type to D-type at time tD ≈ 540 yr.
Lower panel: Velocity VIF of the ionization front, and velocity vi (relative to the star)
of the gas just interior to the ionization front.

H II region discussed here, using Vi = 2vi from Eq. (37.19),

Fi =(Vi − vi)
ρ2
µ

=
ρ2Vi

2µ
(37.27)

=
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)9/4

(37.28)

=
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, (37.29)

while the flux of H2-dissociating photons crossing the I-front is

Fd =
Ṅ(11.2− 13.6 eV)

4πR2
D

(
1 +

7

4

cs2(t− tD)

RD

)−8/7

. (37.30)

The PD-front will move ahead of the I-front if Fd > Fi/0.30, or

Ṅ(11.2− 13.6 eV)

4πR2
D

>
1

0.30

ρ0cs2
2µ

(
1 +
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4
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)−1/7

. (37.31)
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Using Q0 ≈ (4π/3)αBn
2
0R

3
D, it follows that the stellar spectrum must have

Ṅ(11.2− 13.6 eV)

Ṅ(> 13.6 eV)
> 5

(
cs2/RD

n0αB

)(
1 +

7

4

cs2(t− tD)

RD

)−1/7

(37.32)

in order for a photodissociation front to propagate ahead of the IF. A typical H II re-
gion has n0αB � cs2/RS0 (recombination time � sound-crossing time); therefore
the condition (37.32) will generally be satisfied. Note, however, that this analysis
has assumed a D-type I-front, and therefore is valid only for t > tD.

At very early times t � 1/(n0αB), the PD-front will propagate ahead of the
I-front only if

Ṅ(11.2− 13.6 eV)

Ṅ(> 13.6 eV)
>

1

0.30
= 3.3 . (37.33)

For a blackbody, this condition is satisfied only for T < 13800K, which is well
below the T >∼ 3 × 104 K temperature of a star powering a typical H II region.
Therefore, in the very early stages of an R-type I-front, the PD-front will be merged
with the I-front, rather than propagating ahead of it as it will do when the I-front
becomes D-type.



Chapter Thirty-eight

� Stellar Winds

Stellar winds inject mass, momentum, and energy into the ISM, and can carve out
conspicuous structures in the ISM in the vicinity of the star. The most important
stellar winds come from hot, young, massive O stars; from red giants and super-
giants; and from the progenitors of planetary nebulae. We do not attempt to discuss
either stellar evolution or the mechanisms driving the winds; our concern here is on
the impact of the wind on the ISM.

38.1� Winds from Hot Stars: Stellar Wind Bubbles

Stellar winds normally have terminal speeds Vw (the asymptotic speed of the wind
after it has traveled many stellar radii from the star) that are of order the escape
velocity from the stellar surface. For O-type massive stars, 1500 <∼ Vw/ km s−1 <∼
2500, with estimated mass loss rates Ṁ ranging from 10−6.5 to 10−5 M� yr−1

(Markova et al. 2004). B supergiants also have fast winds, with velocities ranging
from ∼ 1500 km s−1 for B0.5 I to ∼ 300 km s−1 for B9 I, and estimated Ṁ in the
range 10−7 to 10−6 M� yr−1 (Markova & Puls 2008). However, the mass loss
rates for OB stars may actually be as much as an order of magnitude lower than the
above estimates if, as suspected, clumping is important (Puls et al. 2008).

The structure of the stellar wind bubble around an O-type star is illustrated in
Fig. 38.1. The ionizing radiation from the star will have already created an H II
region into which the wind will blow – this is the ambient medium in Fig. 38.1,
with density ρ0. Assume that the gas in the H II region is at rest. Assume that the
star is also at rest, so that the bubble is spherical.

Because Vw greatly exceeds the sound speed in the H II, the wind will initially
drive a shock into the H II region – the outer shock in Fig. 38.1 – with radius Rs

and velocity Vs. The shocked ambient medium accumulates in a shell behind the
outer shock front. There will also be a second shock front where the stellar wind
is decelerated; the shocked stellar wind material accumulates in a shell exterior
to the shock front, and interior to the spherical contact discontinuity separating
the shocked ambient medium from the shocked wind material. If there were no
instabilities, and diffusion can be neglected, these two regions would not mix. The
innermost region contains the unshocked stellar wind.

Suppose that the wind begins abruptly at t = 0 with constant mass loss rate Ṁ ≡
10−6Ṁ6 M� yr−1 and wind velocity Vw ≡ 103Vw,8 km s−1. The mechanical
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Figure 38.1 Structure of the bubble produced by a fast stellar wind (not to scale).

power in the wind is considerable: Ė = ṀV 2
w/2 = 3.2× 1035Ṁ−6V

2
w,8 erg s

−1.
Let the ambient medium have density nH = ρ0/1.4mH = 103n3 cm

−3. At very
early times, the wind undergoes essentially free expansion, with Rs ≈ Vwt until
the wind mass and swept-up mass are comparable: Ṁt ≈ (4π/3)ρ0(Vwt)

3. The
free expansion phase ends at a time

t0 ≈
(

3Ṁ

4πρ0V 3
w

)1/2

= 2.54n
−1/2
3 Ṁ

1/2
−6 V

−3/2
w8 yr . (38.1)

This is such a short time that the free expansion phase is unlikely to be observed.
At early times, radiative losses from the shocked wind region will be negligi-

ble – this is the energy-conserving phase. The stellar wind is the energy source,
hence the total energy E(t) = (1/2)ṀV 2

wt. It is reasonable to estimate that this
will be divided approximately equally between thermal energy and ordered kinetic
energy.1 Most of the mass will be swept-up gas, thus M(t) ≈ (4π/3)ρ0R

3
s . Let

us assume power-law behavior: Rs = Atη . Then Vs = ηRs/t. The gas just inte-
rior to the outer shock will be moving radially with velocity 3

4Vs. Taking this as
the rmsvelocity of the shocked ISM, and assuming an equal amount of energy in
thermal motions, we have

E(t)≈ 2× 1

2

4π

3
R3

sρ0

(
3ηRs

4t

)2

=
1

2
ṀV 2

wt , (38.2)

R5
s =A5t5η ≈ 2

3πη2
ṀV 2

w

ρ0
t3 , (38.3)

1This is confirmed by detailed modeling (e.g., Koo & McKee 1992).
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from which it is evident that η = 3/5 and
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(
50ṀV 2
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)1/5
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≈ 66
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2/5
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1/5
3

t
−2/5
3 km s−1 , (38.5)

at time t ≡ 103t3 yr. The outer shock speed Vs ≡ 100Vs7 km s−1 is decreasing
with t. Figure 36.2a shows that the cooling time becomes shorter as Vs decreases,
with tcool ≈ 7V 3.4

s7 n−1
3 yr for 0.8 < vs7 < 12. The energy-conserving phase will

end at a time t = trad such that t = tcool(t), or
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, (38.6)

trad ≈ 67
(
Ṁ−6V

2
w8

)0.29
n−0.71
3 yr , (38.7)

Rs,rad ≈ 6.9× 1016
(
Ṁ−6V

2
w8

)0.37
n−0.63
3 cm , (38.8)

Vs,rad ≈ 190
(
n3Ṁ−6V

2
w8

)0.08
km s−1 . (38.9)

The outer shock, therefore, becomes radiative almost immediately, and the gas
cools and collapses into a thin shell. The ionizing radiation from the O star will
keep the material in the shell photoionized and at T ≈ 104 K. As the zone with
shocked ISM cools and collapses into a thin shell, the expansion briefly slows, but
then resumes as the pressure from the hot gas in the interior continues to act.

The shocked wind material is very hot (just beyond the wind shock the gas has
T ≈ 1.4 × 107V 2

w8 K), and the density is low. As a result, radiative cooling is
very slow (again, see Fig. 36.2a). There will be a long phase during which the
shocked wind material loses energy primarily by continuing to do work on the
dense shell. Aside from a short time at the onset of cooling behind the outer shock
(when the shell expansion will have a sudden drop, followed by a partial recovery),
the subsequent shell expansion has the same power-law dependence on t as in the
energy-conserving phase:

Rs ≈ 0.85

(
50ṀV 2

w

27πρ0

)1/5

t3/5 = 3× 1017

(
Ṁ−6V

2
w8

n3

)1/5

t
3/5
3 cm , (38.10)

Vs = η
Rs

t
= 60

(
Ṁ−6V

2
w8

n3

)1/5

t
−2/5
3 km s−1 , (38.11)
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where the prefactor 0.85 in Eq. (38.10) is introduced to reproduce the results of
more detailed modeling (e.g., Koo & McKee 1992).

As the expansion velocity drops, the shock becomes weaker, with a decreasing
compression ratio. When Vs falls to the ambient sound speed, ∼ 15 km s−1 in an
H II region, the outer shock will disappear, with the pressure pulse propagating
away as an acoustic wave. The inner bubble of fast stellar wind and hot shocked
stellar wind will remain as an x-ray-emitting cavity in pressure equilibrium with
the H II region. For our nominal parameters (Ṁ−6V

2
w8/n3 = 1), the outer shock

disappears at t ≈ 3× 104 yr, leaving behind the inner bubble containing the stellar
wind and the shell of x-ray-emitting plasma created when the fast stellar wind is
shocked.

When will the gas in the hot interior of the bubble begin to cool by radiative
losses? Unlike the outer shell, the hot gas in the interior does not make a sudden
transition from predominantly hot to predominantly cold.2 The wind material near
the contact discontinuity cools rapidly to T ≈ 104 K, resulting in a thin layer of
cooled stellar wind material in contact with the cool shell of ISM material, even
while much or most of the shocked stellar wind material is still hot.

An O7 Ia star (Q0 ≈ 1049.41 s−1; see Table 15.1) would create a Strömgren
sphere with radius 3 × 1018n

−2/3
3 cm; the stellar wind bubble will be easily con-

tained within the H II region.
The preceding discussion has allowed for radiative cooling but not for ther-

mal conduction. In the absence of magnetic fields, thermal conduction would be
expected to be important at the inner edge of the cool shell, where heat could
flow from the hot gas into the cool shell. The resulting conduction front (see
§34.5) contains material at intermediate temperatures, and at intermediate ioniza-
tion states. Weaver et al. (1977) estimated that the conduction front would have
N(OVI) ≈ 2 × 1013 cm−2, and proposed that such circumstellar shells could
account for the O VI absorption lines frequently seen in the spectra of hot stars.
However, surveys of O VI (e.g., Bowen et al. 2008) find the O VI to be predomi-
nantly of interstellar rather than circumstellar origin, with distant stars having larger
N(OVI) than more nearby ones.

The role of thermal conduction remains unclear. Conduction perpendicular to
magnetic field lines is strongly suppressed. If the thermal conduction is magneti-
cally suppressed, the conduction front becomes thinner, with smaller column den-
sities of species like OVI.

2The reason is that even in the absence of radiative cooling, there is a temperature gradient in the
shocked wind material, as a result of the shock speed itself increasing with time, and differing amounts
of adiabatic cooling.
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38.2� Winds from Cool Stars

The winds from cool stars can also produce bubbles. These winds are molecular
and dusty, and typically have low outflow velocities Vw ≈ 15 − 30 km s−1. Mass
loss rates can vary from ∼ 10−7 M� yr−1 for M giant stars to ∼ 10−4 M� yr−1 for
AGB stars (e.g., “OH/IR” stars). The free-expansion phase will end at

t0 ≈
(

3Ṁ

4πρ0V 3
w

)1/2

= 8.0× 104Ṁ−6V
−3/2
w6 n

−1/2
0 yr , (38.12)

Rs0 ≈ 2.5× 1018Ṁ
1/2
−6 n

−1/2
0 cm , (38.13)

where Vw6 ≡ Vw/10 km s−1. For t >∼ t0, the bubble expansion will decelerate.
The gas is relatively dense, and molecules are effective coolants. As a result, these
bubbles are generally strongly radiative, consisting of a supersonic stellar wind
impacting a cold dense shell. The “push” on the inner edge of the cold shell now
comes from the momentum deposited by the wind.

If the pressure of the ambient medium can be ignored (i.e., the cool shell is
moving supersonically) and the stellar wind is continuing, then

4π

3
ρ0R

3
svs ≈ ṀVwt . (38.14)

If we assume Rs ∝ tη , we find η = 1
2 and

Rs ≈
(
3ṀVw

2πρ0

)1/4

t1/2 = 3.4× 1017

(
Ṁ−6Vw6

n0

)1/2

t
1/2
3 cm , (38.15)

Vs =53

(
Ṁ−6Vw,6

n0

)1/2

t
−1/2
3 km s−1 , (38.16)

for t > t0.
An AGB star might have Ṁ = 10−4 M� yr−1 and Vw ≈ 20 km s−1, losing

∼ 1M� over ∼ 104 yr. From Eq. (38.12), we see that in the general ISM (n0 ≈ 1),
such an outflow will be in the free-expansion phase during the ∼ 104 yr duration
of the wind. The gas leaving the photosphere is molecular. If C/O < 1, the O in
the stellar wind will be mainly in CO and H2O. As it moves away from the star,
the molecules become exposed to the general interstellar radiation field. An H2O
molecule will therefore travel a only distance

ROH ≈ Vw

ζd,H2O
≈ 3× 1015Vw,6

(
6× 10−10 s−1

ζd,H2O

)
cm , (38.17)

where ζd,H2O is the photodissociation rate for H2O. At the radius ROH, the H2O
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is destroyed and OH is produced. In the ISRF, ζd,H2O ≈ 6× 10−10 s−1 (see Table
33.1). However, the dusty outflow will provide some attenuation of the ultraviolet
from external starlight, and ROH ≈ 1016 cm. The OH is also subject to photodisso-
ciation OH+ hν → O+H, with ζd,OH ≈ 3× 10−10 s−1. As a result, the outflow
will have a spherical shell where the OH abundance is high. The Λ-doubling lev-
els of OH can be inverted by infrared radiation from warm dust in the outflow
(see §20.2), resulting in OH maser emission. For effective maser amplification, the
velocity gradient should be small along the direction of propagation. For the ex-
panding shell geometry, this favors radial paths, and paths that are tangential to the
OH shell. Thus, OH/IR stars can have maser emission in a ring around the star, and
also in a spot coinciding with the position of the star.

38.3� Stellar Wind Bow-Shock

Suppose now that a star is moving through the medium with velocity V
. If V


exceeds the ISM sound speed cISM, a bow shock will develop ahead of the star.
Stellar winds are usually supersonic, with wind speed Vw > cw, where cw is the
sound speed in the wind from the star, in which case the stellar wind will be decel-
erated in a shock front, usually referred to as the termination shock. Thus there
are two shock waves, with a contact discontinuity separating the shocked stellar
wind from the shocked ISM. (The contact discontinuity is an idealization – in a
real flow there will be some mixing of the two shocked fluids.) The geometry is
shown schematically in Figure 38.2. The region within the bow shock is termed the
astrosphere; in the case of the Sun, this is called the heliosphere.

Figure 38.2 Stellar wind and interstellar wind in a reference frame where the star is
stationary. R is the standoff distance of the bow shock.

How far ahead of the star does the bow shock extend? It is easiest to analyze the
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flow in the reference frame comoving with the star. In a steady flow situation, there
will be a stagnation point on the contact discontinuity where the gas velocity is
zero. Let R be the distance of the stagnation point from the star. The thickness of
the two shocked layers will depend on the Mach number of each of the shocks, and
also on how the cooling time compares with the characteristic flow times ∼R/V


(in the case of the shocked ISM) or ∼ R/Vw (in the case of the shocked wind),
but the pressure at the stagnation point (see Fig. 38.2) can be estimated from the
momentum flux in the stellar wind evaluated at radius ∼R, which must be balanced
by the momentum flux from the ISM:

ṀVw

4πR2
≈ ρISM

(
c2ISM + V 2




)
, (38.18)

R=

[
ṀVw

4πρISM (c2ISM + V 2

 )

]1/2
(38.19)

≈ 1.5× 1018

(
Ṁ−6 Vw,6

n0

)1/2
1

V∗,6
cm . (38.20)

The preceding estimates assume that both the ISM and the stellar wind can be
treated as collisional fluids. In some cases – including the heliosphere of the Sun
– the size of the astrosphere will be smaller than or comparable to the collisional
mean free path for neutral particles. In this case, the neutral atoms in the interstellar
“wind” will be able to traverse the bow shock and enter into the astrosphere on
ballistic trajectories. In such a situation, the bow shock standoff distance estimate
in Eq. (38.18) will be an underestimate unless the mass density ρISM is limited to
the mass in charged particles. If the fractional ionization of the ISM is low, the bow
shock may be C-type, with deflection of the ions upstream from the shock.

Our own heliosphere, including the termination shock and the bow shock are the
subject of intense study. The Voyager 1 and 2 spacecraft have crossed the termina-
tion shock, providing in-situ measurements in both the unshocked and shocked
solar wind. Studies of backscattered resonance lines from ballistic H and He
atoms in the interstellar wind allow an accurate determination of the velocity V
 =
26.2± 0.5 km s−1 of the Sun relative to the local ISM (Möbius et al. 2004).

Other astrospheres have also been studied, both by absorption line spectroscopy
(e.g., Wood et al. 2003) and by direct imaging. Spectacular examples include ultra-
violet imaging of the bow shock and turbulent wake produced by Mira (o Ceti)
moving through the ISM at ∼ 130 km s−1 (Martin et al. 2007), and the carbon star
IRC +10216 = CW Leo, with a huge mass-loss rate Ṁw ≈ 2× 10−5 km s−1, seen
in both the ultraviolet (Sahai & Chronopoulos 2010) and the far-infrared (Ladjal
et al. 2010).



Chapter Thirty-nine

Effects of Supernovae on the ISM

The dynamical state of the ISM in the Milky Way and other galaxies is strongly
affected by supernova explosions. The light emitted by a supernova (SN) is spec-
tacular, but it is the high-velocity ejecta that have the dominant effect on the ISM.
Here, we discuss the blastwaves created by these explosions – supernova remnants.
Plate 12 shows images of the Cas A SNR in radio synchrotron emission and in
X-ray emission.

39.1 Evolution of a Supernova Remnant in a Uniform ISM

Consider first the simplest case of a spherically symmetric explosion of a star in a
uniform medium with hydrogen density nH ≡ n0 cm

−3 and temperature T0.

39.1.1 Free-Expansion Phase

The SN explosion ejects a mass Mej with a kinetic energy E0 ≡ 1051E51 erg.
Although some unusual Type II supernovae (SNe) have kinetic energies as large as
∼ 1052 erg (e.g., Rest et al. 2009), it is thought that the typical SN has E51 ≈ 1.

Depending on the supernova type, the ejecta mass can range from ∼ 1.4M� (a
Type Ia supernova, produced by explosion of a white dwarf near the Chandrasekhar
limit) to perhaps ∼ 10 − 20M� for Type II supernovae following core collapse in
massive stars. The ejecta will have a range of velocities, with the outermost material
moving fastest. The rms velocity of the ejecta is

〈v2ej〉1/2 =

(
2E0

Mej

)1/2

= 1.00× 104 km s−1E
1/2
51

(
M�
Mej

)1/2

. (39.1)

This velocity is far greater than the sound speed in the surrounding material, and the
expanding ejecta will therefore drive a fast shock into the circumstellar medium.
We will refer to all of the matter interior to this shock surface as the supernova
remnant, or SNR. In the first days after the explosion, the density of the ejecta far
exceeds the density of the circumstellar medium, and the ejecta continue to expand
ballistically at nearly constant velocity – this is referred to as the “free expansion
phase.” At these early times, there is only one shock of interest – the shock wave
propagating outward into the ambient medium.
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As the density of the expanding ejecta drops (as t−3), the pressure of the shocked
circumstellar medium soon exceeds the thermal pressure in the ejecta, and a re-
verse shock is driven into the ejecta. The remnant now contains two shock fronts:
the original outward-propagating shock (the blastwave) expanding into the circum-
stellar/interstellar medium, and the reverse shock propagating inward, slowing and
shock-heating the ejecta (which had previously been cooled by adiabatic expan-
sion). The reverse shock becomes important when the expanding ejecta material
has swept up a mass of circumstellar or interstellar matter comparable to the ejecta
mass. The radius of the blastwave when this occurs is

R1 =

(
3Mej

4πρ0

)1/3

= 5.88× 1018 cm

(
Mej

M�

)1/3

n
−1/3
0 , (39.2)

and the time when it occurs is

t1 ≈ R1

〈v2ej〉1/2
= 186 yr

(
Mej

M�

)5/6

E
−1/2
51 n

−1/3
0 . (39.3)

The free-expansion phase applies only for t <∼ t1.
In the case of Type II supernova resulting from core collapse in massive stars,

the supernova explosion is often preceded by a red supergiant phase, leaving a
relative dense circumstellar medium with a ∼ r−2 density profile rather than the
uniform density ambient medium considered here. The Cas A SNR (see Plate 11),
resulting from an explosion occuring in 1681 ± 19 (Fesen et al. 2006) has been
modeled with Mej ≈ 4M�, E51 ≈ 2, expanding into a circumstellar medium with
nH ≈ 7(r/pc)−2 cm−3 left by a red supergiant phase (van Veelen et al. 2009).
The reverse shock is now located at ∼ 60% of the outer shock radius – much of the
Cas A ejecta is still in the free expansion phase.

39.1.2 Sedov-Taylor Phase

For t >∼ t1, the reverse shock has reached the center of the remnant, all of the
ejecta are now very hot, and the free-expansion phase is over. The pressure in the
supernova remnant is far higher than the pressure in the surrounding medium. The
hot gas has been emitting radiation, but if the densities are low, the radiative losses
at early times are negligible.

The SNR now enters a phase that can be approximated by idealizing the prob-
lem as a “point explosion” injecting only energy E0 into a uniform-density zero-
temperature medium of density ρ0: we neglect (1) the finite mass of the ejecta, (2)
radiative losses; and (3) the pressure in the ambient medium.

We can use simple dimensional analysis to find out the form of the time evolu-
tion of the remnant. Let the radius of the spherical shock front be Rs, and let the
explosion occur at t = 0. Suppose that

Rs = AEα ρβ tη , (39.4)
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where A is dimensionless. We can determine α, β, and η by dimensional analysis,
by equating the powers to which mass, length, and time appear in Eq. (39.4):

Mass : 0=α+ β , (39.5)
Length : 1= 2α− 3β , (39.6)
Time : 0=−2α+ η , (39.7)

which are easily solved to obtain α = 1/5, β = −1/5, and η = 2/5:

Rs = AE1/5 ρ
−1/5
0 t2/5 , (39.8)

where the dimensionless coefficient A = 1.15167 is found from the exact solution
(see below). Thus

Rs =1.54× 1019 cm E
1/5
51 n

−1/5
0 t

2/5
3 , (39.9)

vs =1950 km s−1 E
1/5
51 n

−1/5
0 t

−3/5
3 , (39.10)

Ts =5.25× 107 K E
2/5
51 n

−2/5
0 t

−6/5
3 , (39.11)

where t3 ≡ t/103 yr.
We have been assuming that the internal structure of the remnant is given by a

similarity solution: by this we mean that the hydrodynamical variables (density,
velocity, pressure) can be written

ρ(r) = ρ0 f(x) , (39.12)

v(r) =
Rs

t
g(x) , (39.13)

p(r) =
ρ0R

2
s

t2
h(x) , (39.14)

where x ≡ r/Rs(t), and f(x), g(x), and h(x) are dimensionless functions. If Eqs.
(39.12 to 39.14) are inserted into the fluid equations, with the Rankine-Hugoniot
relations (see §36.2) used for boundary conditions on f(1), g(1), and p(1), one
obtains a set of ordinary differential equations that can be solved numerically to
obtain f(x), g(x), and h(x) for 0 < x < 1. This is known as the Sedov-Taylor
solution, having been found independently by Taylor (1950) and Sedov (1959) in
connection with the development of nuclear weapons. The Sedov-Taylor solution
is shown in Fig. 39.1.

The initial conditions for a real blastwave will of course differ from the assump-
tions of the Sedov-Taylor solution. However, provided the ambient medium is uni-
form away from the immediate neighborhood of the explosion, the blastwave will



432 CHAPTER 39

Figure 39.1 Sedov-Taylor solution for γ = 5
3

gas. The temperature profile (not shown)
can be obtained from the ratio of the pressure and density profiles. The density falls
inward, and the temperature rises inward, with ρ/ρ0 → 0 and T/Ts → ∞ as x → 0.

evolve toward the Sedov-Taylor solution. Even in the absence of radiative cooling,
the actual SNR will deviate from the Sedov-Taylor solution because the original
explosion injected a mass Mej (as opposed to the point injection of pure energy
at t = 0 assumed for the Sedov-Taylor solution), leaving waves reverberating in
the remnant even after the reverse shock has reached the center (Cioffi et al. 1988).
Nevertheless, once the swept-up mass exceeds Mej, the Sedov-Taylor solution will
be reasonably close to the actual density and temperature over most of the rem-
nant. This is known as the Sedov-Taylor phase (or often just “Sedov phase”) in
the evolution of the blastwave.

The hot gas interior to the shock front is, of course, radiating energy. When
the radiative losses become important the blastwave will enter a “radiative” phase,
where the gas in the shell just interior to the shock front is now able to cool to
temperatures much lower than the temperature Ts =

3
16µv

2
s/k at the shock front.

To estimate when the SNR will leave the Sedov-Taylor phase, we idealize the
cooling function as

Λ ≈ C T−0.7
6 nHne , C = 1.1× 10−22 erg cm3 s−1 , (39.15)
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As shown in Fig. 34.1, this is a fair approximation for solar-metallicity gas for
temperatures 105 < T < 107.3 K. Thus

dE

dt
=−

∫ Rs

0

Λ 4πr2dr (39.16)

=−1.2C(nH)
2
0

(
106 K

Ts

)0.7
4π

3
R3

s

〈( ρ

ρ0

)2(
Ts

T

)0.7 〉
, (39.17)

where 〈...〉 denotes a volume-weighted average over the blastwave. As long as the
energy loss is small, we can use the density and temperature profile for the Sedov-
Taylor solution from Fig. 39.1 to obtain 〈(ρ/ρ0)2(Ts/T )

0.7〉 = 1.817, and we can
take Rs(t) and vs(T ) from the Sedov-Taylor solution to obtain

∆E(t)=−1.2C
4π

3
(nH)

2
0 × 1.817

∫ t

0

dtR3
s T

−0.7
s6 , (39.18)

where Ts6 ≡ Ts/10
6 K. Now use Eqs. (39.9 and 39.11) to obtain the fractional

energy loss by time t:

∆E(t)

E0
≈ −2.38× 10−6n1.68

0 E−0.68
51 t3.043 . (39.19)

If we now suppose that we leave the Sedov-Taylor phase and enter the “radiative”
phase when ∆E(trad)/E0 ≈ −1/3, we can solve for the cooling time trad, and for
the radius and shock speed at the end of the Sedov-Taylor phase:

trad =49.3× 103 yrE0.22
51 n−0.55

0 , (39.20)

Rrad =7.32× 1019 cmE0.29
51 n−0.42

0 , (39.21)

vs(trad)= 188 km s−1
(
E51/n

2
0

)0.07
, (39.22)

Ts(trad)= 4.86× 105 K
(
E51/n

2
0

)0.13
, (39.23)

kTs(trad)= 41 eV
(
E51/n

2
0

)0.13
. (39.24)

39.1.3 Snowplow Phase

When t ≈ trad, cooling causes the thermal pressure just behind the shock to drop
suddenly, and the shock wave briefly stalls. However, the very hot gas in the interior
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of the SNR has not cooled, and its outward pressure forces the SNR to continue its
expansion. The blastwave now leaves the Sedov-Taylor solution and enters what is
called the snowplow phase, with a dense shell of cool gas enclosing a hot central
volume where radiative cooling is unimportant. This is called the snowplow phase
because the mass of the dense shell increases as it “sweeps up” the ambient gas.
Let Ms be the mass of the shell; the gas in the shell has a radial velocity that is
almost the same as the shock speed. The gas cools by adiabatic expansion, with
pV γ = const, or p ∝ V −γ ∝ R−3γ

s = R−5
s , so that the pressure pi in the interior

evolves as

pi = p0(trad)

(
Rrad

Rs

)5

. (39.25)

The pressure exerted by the hot center causes the “radial momentum” of the shell
to increase:

d

dt
(Msvs) ≈ pi4πR

2
s = 4πp0(trad)R

5
radR

−3
s . (39.26)

Suppose that there is a power-law solution, Rs ∝ tη . Equation (39.26) then requires
4η − 2 = −3η, or η = 2/7. Thus we approximate the expansion by

Rs ≈Rs(trad)(t/trad)
2/7 , (39.27)

vs ≈ 2

7

Rs

t
=

2

7

Rs(trad)

trad

(
t

trad

)−5/7

, (39.28)

for t > trad. Because the effect of the internal pressure has been included, this
solution is referred to as the pressure-modified snowplow phase. Note that with
this construction, Rs(t) is continuous from the Sedov-Taylor phase to the pressure-
modified snowplow phase, but vs(t) undergoes a discontinuous drop by ∼ 30% at
t = trad; this mimics the behavior seen in time-dependent fluid-dynamical simula-
tions (e.g., Cioffi et al. 1988).

39.1.4 Fadeaway

For typical interstellar parameters, the shock speed at the beginning of the snow-
plow phase is ∼ 150 km s−1, which results in a very strong shock when propagat-
ing through interstellar gas with T <∼ 104 K. However, the shock front gradually
slows, and the shock compression declines. This proceeds until the shock speed
approaches the effective sound speed in the gas through which the blastwave is
propagating, at which point the compression ratio → 1, and the shock wave turns
into a sound wave. Suppose that cs is the one-dimensional velocity dispersion in
the preshock medium (including both thermal and turbulent motions) over scales
of a few pc. It is reasonable to estimate that the snowplow blastwave simply “fades
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away” when its expansion velocity has slowed to cs. This gives a “fadeaway time”

tfade ≈
(
(2/7)Rrad/trad

cs

)7/5

trad (39.29)

≈ 1.87× 106 yrE0.32
51 n−0.37

0

(
cs

10 km s−1

)−7/5

, (39.30)

Rfade ≈ 2.07× 1020 cmE0.32
51 n−0.37

0

(
cs

10 km s−1

)−2/5

. (39.31)

39.2� Overlapping of SNRs

We have been thinking about the evolution of a single SNR, and we have seen that
it does not fade away until it reaches an age tfade, by which time it has expanded
to fill a volume (4π/3)[Rs(tfade)]

3. What is the probability that another SN will
occur within this volume and affect the evolution of the original SNR before it has
faded away?

Suppose that supernovae (SNe) occur at random in the disk of the Galaxy, with
a SN rate per volume S ≡ 10−13S−13 pc

−3 yr−1. The SN rate in the Milky Way
has been estimated from records of historical SNe and from observations of similar
galaxies; the SN frequency in the Galaxy is estimated to be one event every 40 ±
10 yr (Tammann et al. 1994).1 Suppose that we consider the “disk” to have a radius
15 kpc and a thickness 200 pc, and suppose that the SN rate within this volume is
1/60 yr. This gives a SN rate per volume S ≈ 1.2 × 10−13 pc−3 yr−1, or S−13 ≈
1.2.

The expectation value for the number of additional SNe that will explode within
the volume Vfade during the lifetime tfade of the original SNR is

NSN =S
4π

3
R3

fade tfade (39.32)

≈ 0.24S−13 E
1.26
51 n−1.47

0

(
cs

10 km s−1

)−2.6

. (39.33)

The two-phase model of the ISM postulated that most of the interstellar volume
was filled by warm H I gas (the warm neutral medium, WNM) with density n0 ≈ 1

1We know of only 3 or 4 SNRs associated with SNe occuring in the past 500 years – Tycho’s SN
(1572), Kepler’s SN (1604), Cas A (1681±19; Fesen et al. 2006), and perhaps SNR G1.9+0.3 (1880±
30; Reynolds et al. 2008; Borkowski et al. 2010) – whereas if the SN rate for the Galaxy is one per
40 ± 10 yr the expected number over this period would be 10 to 17. If the estimate for the rate is
correct, historical records and surveys for young SNRs must have missed ∼ 75% of the Galactic SNe
occuring in the past 5 centuries. Obscuration by dust, and the fact that half of the events would be more
than 10 kpc away, make this plausible.
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and cs ≈ 6 km s−1, corresponding to the one-dimensional velocity dispersion for
T = 6000K. For E51 = 1, S−13 ≈ 1.2, n0 ≈ 1, and cs ≈ 6 km s−1, we obtain
NSN ≈ 1.1. Therefore, we must conclude that if we were to start with the gas
distributed as in the two-phase model, in a matter of ∼ 2 Myr, the initially near-
uniform WNM will be destroyed by the effects of SNe: SNRs will overlap and
ocupy a major fraction of the disk volume. This implies that, at least for the Milky
Way, SNRs will create a multiphase ISM, consisting of low-density regions in the
interior of the SNRs, and dense regions containing most of the gas mass. We will
consider the global structure of the ISM further in §39.4.

39.3� Supernova Remnants in an Inhomogeneous Medium

The preceding discussion of a spherical blastwave assumed that the SN explosion
took place in a uniform medium, but we have just seen that SN explosions will
disrupt an initially uniform ISM in only ∼ 2 Myr. How will the evolution of a
SNR be altered by preexisting inhomogeneities in the ISM? The importance of
inhomogeneities was first emphasized by Cox & Smith (1974), who idealized the
ISM as a “hot network of tunnels.” McKee & Ostriker (1977) instead envisaged an
ISM where most of the volume was occupied by the hot phase, with discrete cool
clouds dispersed through it; this is the geometry we will consider here.

Figure 39.2 Cloud engulfed by supernova blastwave, shown before the blastwave
arrival, and as the blastwave is passing around it. A shock is driven into the cloud with
shock speed vcs ≈ (ρICM/ρc)

1/2 vs.
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The blastwave propagates more rapidly in a low density medium. The lowest
density phase in the ISM is the hot ionized medium (HIM), with temperatures T ≈
106 K, a substantial volume filling factor, and a density (nH)HIM ≈ 0.005 cm−3.
A typical supernova blastwave will be expanding into such gas, with the blastwave
passing around any high-density clouds that may be present. If the clouds were
rigid, and had a small filling factor, they would have little effect on the propagation
of the blastwave, but of course real clouds are compressible, and can be heated and
“evaporated” by contact with hot gas. These effects will now be briefly considered.

Let ρICM be the density of the intercloud medium (ICM). The blastwave is propa-
gating through the ICM with shock speed vs. When the blastwave comes in contact
with a cloud, it applies a pressure p ≈ ρICMv2s to the cloud surface. This overpres-
sure will drive a shock into the cloud. The speed vcs of this “cloud shock” can be
readily estimated by noting that the pressure ∼ ρcsv

2
cs in the shocked cloud mate-

rial must be in approximate pressure equilibrium with the pressure ρICMv2s in the
shocked intercloud medium. This gives a very simple result:

vcs =

√
ρICM

ρc
vs . (39.34)

Consider an intercloud medium with (nH)ICM ≈ 0.005 cm−3, and a cloud density
(nH)c ≈ 30 cm−3. A blastwave propagating at 1000 km s−1 through the ICM will
drive a shock into the cloud with a shock speed of only vcs ≈ 13 km s−1. The
density contrast protects the material in the cloud from the direct effects of very
fast shocks.

The shock passing through the cloud will set the cloud material into motion, but
with velocity gradients in the shocked material. If the cloud is not self-gravitating,
these velocity gradients can act to “shred” the cloud. However, the magnetic field
that is almost certainly already present in the cloud may be able to oppose these
shearing effects.

After the blastwave has passed over the cloud, the cloud finds itself engulfed in
hot gas resulting from the shock-heating of the low density intercloud medium. As
discussed in §34.3 and §34.4, thermal conduction will transport heat from the hot
plasma into the cool cloud. If the cloud is sufficiently small, this thermal conduction
can lead to “evaporation” of cloud material, resulting in mass loss from the cloud,
and an increase in the mass density of the shocked intercloud medium. The increase
in the mass density will be accompanied by a drop in the temperature, as the thermal
energy is shared by more particles. The combined effects of increased density and
lowered temperature act to promote radiative cooling.

39.4 Three-Phase Model of the ISM

In §39.2, we saw that an initially uniform ISM consisting of warm H I would be
transformed by SNRs into a medium consisting of low-density hot gas and dense
shells of cold gas. This transformation would take place in just a few Myr. McKee
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& Ostriker (1977) developed a model of the ISM that took into account the effects
of these blastwaves. They envisaged an ISM consisting of three distinct phases:
cold gas – the cold neutral medium (CNM); warm gas – the warm neutral medium
(WNM) and warm ionized medium (WIM); and hot gas – the hot ionized medium
(HIM). A SNR blastwave expands into this composite medium, as illustrated in
Fig. 39.3.

Figure 39.3 Left: Structure of a typical cold cloud in the three-phase model of McKee
& Ostriker (1977). Right: Close-up of a supernova blastwave. From McKee & Ostriker
(1977).

McKee & Ostriker (1977) argued that the pressure in the ISM was maintained
by SNe – if initially the ISM had a low pressure, then SNRs would expand to large
radii before “fading,” with resulting overlap. The pressure in the ISM will rise until
the SNRs tend to overlap just as they are fading, at which point the pressure in
the ISM is the same as the pressure in the SNR. According to this argument, the
condition NSN ≈ 1 can be used to predict the pressure in the ISM.

We previously obtained an equation (39.32) for NSN in terms of the supernova
rate per volume S, E51, n0, and cs. If we write p = 1.4nHmHc

2
s, we can eliminate

cs in favor of the pressure p. The expectation value for overlap then becomes

NSN = 0.24S−13 E
1.27
51 n−1.11

0 c
−13/5
s,6 (39.35)

= 0.48S−13 E
1.27
51 n−0.19

0 p−1.30
4 , p4 ≡ p/k

104 cm−3 K
. (39.36)

Setting NSN = 1, we solve for the pressure:

p

k
= S0.77

−13 n−0.15
0 × 5700 cm−3 K . (39.37)

The derived pressure depends weakly on n0; if we set n0 ≈ 1 (the mean den-
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sity in the ISM in the solar neighboorhood) and S−13 ≈ 1.2, we obtain p/k ≈
6600 cm−3 K, comparable to the observed thermal pressure (p/k ≈ 3800 cm−3 K
– see §17.7) in the ISM today. This is a remarkable result: given (1) the observed
SN rate/volume (S−13 ≈ 1.2); (2) the observed kinetic energy per supernova
(E51 ≈ 1); and (3) the atomic physics of the cooling function (using observed
abundances) – from these alone (McKee & Ostriker 1977, hereafter MO77) were
able to predict the interstellar pressure!

The MO77 model envisaged three phases of the ISM: cold neutral gas (CNM),
warm neutral and ionized gas (WNM and WIM), and hot ionized gas (HIM). MO77
did not explicitly consider molecular gas, because it occupied a very small volume
filling factor, and can be considered part of the CNM. Our current view of the ISM
continues to identify these as major phases, and follows the central ideas of the
MO77 model:

• Pressurization of the ISM by SNRs.

• Mass exchange between the phases: cold clouds “evaporated” and converted
to diffuse gas, and diffuse gas swept up by SN blastwaves and compressed in
the high-pressure shells of radiative SNRs.

• Injection of high-velocity clouds by fragmentation of the dense shell present
in radiative SNRs.

The principal shortcoming of the MO77 model is the failure to predict the sub-
stantial amount of warm H I that is present in the ISM. The model parameters given
by MO77 have only 4.3% of the H I mass in the warm phase (WNM and WIM). As
seen in Chapter 29, 21-cm line observations indicate that more than 60% of the H I
within 500 pc of the Sun is actually in the warm phase (Heiles & Troland 2003).



Chapter Forty

� Cosmic Rays and Gamma Rays

40.1 Cosmic Ray Energy Spectrum and Composition

The ISM is pervaded by cosmic rays – a population of very energetic nuclei and
electrons. The energy spectrum of low-energy cosmic rays was discussed in con-
nection with ionization processes in the ISM (see Fig. 13.5). Most of the energy
density in cosmic rays comes from transrelativistic particles with kinetic energies
per nucleon E ≈ 1GeV. However, the cosmic ray energy spectrum extends to
extraordinarily high energies, as shown in Fig. 40.1. Between ∼ 10GeV and
∼ 107 GeV, the observed particle flux ΦCR is well-described by a power law
dΦCR/dE ∝ E−2.65. There is a slight steepening at E ≈ 106.5 GeV, referred
to as the “knee,” with dΦCR/dE changing from ∼E−2.65 to ∼E−3. There appear
to also be further changes in slope at higher energies (“2nd knee” and “ankle” in
Fig. 40.1).

At all energies (except possibly the very highest), the cosmic ray composition is
dominated by protons. Relativistic electrons are also present, but with a flux that is
small compared to the protons. Figure 40.2 shows the composition of cosmic ray
nuclei at 1GeV/nucleon. The plot is normalized to the abundance of Si (= 100).
Note two points:

1. As noted above, protons dominate, with He next in importance.

2. The elements Li, Be, and B (Z = 3, 4, 5) are greatly overabundant rela-
tive to solar abundances. A large fraction of the Li, Be, and B nuclei in
cosmic rays are the result of spallation, where (for example) a cosmic ray
oxygen nucleus, colliding with a proton at rest, can fragment into spallation
products that include 6Li, 7Li, 9Be, 10B, and 11B. The observed abundances
of these isotopes in the cosmic rays, in primitive meteorities, and in stellar
atmospheres are consistent with spallation by cosmic rays over the age of
the Galaxy, with cosmic rays being generated continuously and traversing a
column density of ∼ 6 g cm−2 of interstellar matter (Meneguzzi et al. 1971)
before escaping from the Galaxy. Big-bang nucleosynthesis appears able to
account for the observed 7Li, but 6Li, 9Be, 10B, and 11B appear to be pri-
marily spallation products.
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40.2� Theory of Diffusive Shock Acceleration

The origin of high-energy cosmic rays has been a long-standing problem. Fermi
(1949) proposed that cosmic rays could be accelerated by scattering off the random
motions of magnetized gas clouds, but this mechanism, now referred to as second-
order Fermi acceleration, produced a random walk in energy, and was unable to
explain the observed spectrum. In 1977–1978, several authors (Axford et al. 1977;
Krymskii 1977; Bell 1978; Blandford & Ostriker 1978) showed that interstellar
shock waves could systematically accelerate particles, and could naturally produce
a spectrum close to that observed. This mechanism – particle acceleration in the
converging flow of a shock wave – is referred to as diffusive shock acceleration.
It is an example of first-order Fermi acceleration. Here, we outline the theory.

Consider a shock in a frame of reference where the shock front is stationary.
The “upstream” (preshock) fluid is flowing toward the shock front with velocity
vs. Consider an energetic particle with kinetic energy E0 � kTs in the postshock
region, moving with speed w � vs/r. If the velocity of this particle happened
to be directed back toward the shock front, and the particle is sufficiently close to
the shock, the particle could, in principle, travel back across the shock front and
reenter the upstream preshock region. Electromagnetic fields in the preshock flow
will eventually scatter the particle (elastically), and it will be carried back toward
the shock and will enter the postshock region with a increased energy E > E0.
These scattering processes (due to electromagnetic fluctuations) also occur in the
postshock region, so that the particle in question may return to the shock front and
again cross into the preshock region. With each repetition, the particle energy is
increased.

We can develop a simple theory to determine the form of the steady-state energy
spectrum of the cosmic rays near the shock front. Let p be the (scalar) momentum
of a particle. For a point at the shock front, let

f(p)dp ≡ the density of particles with momentum ∈ [p, p+ dp] .

Because the cosmic rays are moving freely back and forth across the shock front,
with gyroradii that are large compared to the thickness of the shock transition, the
function f(p) is continuous across the shock.

A fraction of the particles at the shock front will return to the preshock region
and be scattered back to the shock, returning to the shock front and entering the
postshock region with increased energy. It is as though the particle was trapped
between two converging mirrors, one moving with the velocity of the preshock
fluid, and the other moving with the velocity of the postshock fluid. Let

∆v = (1− 1/r)vs (40.1)

denote the velocity difference between the preshock and postshock fluids, where r
is the compression ratio. Consider a particle that has just crossed the shock from
downstream to upstream, and is reflected back downstream. Averaging over the
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direction of motion of the particle, assumed to be at an angle θ relative to the shock
normal both before and after reflection, the reflection will increase p by an amount
∆p, with

〈∆p〉=
∫ π/2

0
(w cos θ)( 2∆v

w p cos θ) sin θdθ∫ π/2

0
(w cos θ) sin θdθ

(40.2)

=2
∆v

w
p

∫ π/2

0
cos2 θ sin θdθ∫ π/2

0
cos θ sin θdθ

=
4∆v

3w
p . (40.3)

The particle has some probability per unit time t−1
refl of being reflected back toward

the shock by turbulent fluctuations in the B field. The acceleration time tacc is

t−1
acc(p)≡〈(d/dt) ln p〉 (40.4)

=
1

p
〈∆p〉 t−1

refl =
4∆v

3w
t−1
refl . (40.5)

The cosmic rays are scattered by fluctuations in the magnetic field, which is essen-
tially a stochastic process as far as a single cosmic ray is concerned. Let t−1

esc(p)
be the probability per unit time that a particle with momentum p will get swept
downstream by the postshock flow, not to cross the shock front again.

The continuity equation in phase space is

∂

∂p
(fṗ) +

∂f

∂t
=

(
∂f

∂t

)
source−sink

, (40.6)

where the source-sink term represents the escape process:(
∂f

∂t

)
source−sink

= − f

tesc
. (40.7)

If we assume a steady state ∂f/∂t = 0, the continuity equation becomes

d

dp

(
f

p

tacc

)
= − f

tesc
. (40.8)

If we now assume that (d/dp)tacc = 0, we obtain

p

f

df

dp
= −

(
1 +

tacc
tesc

)
. (40.9)

with solution

f ∝ p−α , α = 1 +
tacc
tesc

. (40.10)

We will now see that the ratio tacc/tesc can be related to the compression in the
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shock. Let fs(p) be the phase space density at the shock front. Because the rela-
tivistic particles cross the shock front with impunity, f(p) is continuous across the
shock front. The CR flux from upstream crossing the shock is (w/4)fs(p). The
CR flux far downstream from the shock is v2f2. Therefore the probability that a
CR particle crossing the shock will “escape” downstream (i.e., fail to be reflected
back across the shock) is

escape probability =
v2f2
wfs/4

≈ 4v2
w

. (40.11)

Let r = vs/v2 be the compression ratio for the shock. Then,

escape probability =
4vs
rw

. (40.12)

Therefore, the probability per unit time that a given CR will escape is

t−1
esc =

4vs
rw

× t−1
refl , (40.13)

and

tacc
tesc

=
(3w/4∆v)trefl
(rw/4v1)trefl

=
3vs
r∆v

=
3

r − 1
. (40.14)

Thus we expect the cosmic rays to have f ∝ p−α, with

α = 1 +
tacc
tesc

= 1 +
3

r − 1
=

r + 2

r − 1
. (40.15)

A strong nonradiative shock has r = 4, giving α = 2, which is not far from the
observed power-law index α ≈ 2.65 for 10 <∼ E/GeV <∼ 107, lending support
to the notion that interstellar shock waves play an important role is acceleration
of cosmic rays. Cosmic rays can be lost to diffusion out of the Galaxy; since this
would be more rapid at increasing energy, this process will steepen the interstellar
cosmic ray spectrum – α will be somewhat larger than given by Eq. (40.15).

In order for cosmic rays to be scattered by the magnetic field, the magnetic field
must be “turbulent” on a length scale ∼ pc/eB. It appears that these fluctuations
can be generated by the cosmic rays themselves – cosmic rays can excite the MHD
waves that are needed for cosmic ray acceleration.

40.3� Injection Problem

The preceding section discussed acceleration of cosmic rays that are already present.
The details of “injection” into the low-energy end of the spectrum are not yet under-
stood. Because very low energy particles can be quickly thermalized by Coulomb
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Figure 40.3 Elemental abundance in ∼ 1 GeV/nucleon Galactic cosmic rays (GCRs)
relative to solar abundance, versus “condensation temperature” (see Fig. 23.1 for a
plot of gas-phase abundances versus condensation temperature). Elements with high
condensation temperature appear to be enhanced in cosmic rays. After Meyer et al.
(1997).

scattering, the injection problem consists of explaining how a small fraction of the
ions can enter the cosmic ray energy spectrum with enough energy so that diffu-
sive shock acceleration can overcome loss of energy to Coulomb scattering off the
thermal plasma.

Epstein (1980) proposed that the puzzle mentioned earlier – overrepresentation
in cosmic rays of the elements that are normally depleted into grains – may be con-
nected to the injection process. The plasma passing through the shock transition is
more-or-less thermalized, either collisionally or by the fluctuating electromagnetic
fields in a collisionless shock transition. Dust grains, with a much lower ratio of
charge to mass, travel across the shock transition almost undeflected. With their
large “rigidity” pc/q, where q is the charge, dust grains in some ways behave like
cosmic rays. Compression in the cooling postshock flow can lead to “betatron
acceleration” of the dust grains (Spitzer 1976), and in some cases the dust grain
trajectory may return it to the preshock medium, where it will undergo first-order
Fermi acceleration and be returned to the postshock medium with an increased mo-
mentum (Slavin et al. 2004). As a result, dust grains may be moving through the
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postshock gas with velocities exceeding vs. Sputtering will inject high-velocity
atoms into the plasma, which will quickly be ionized; the ions will populate the
extreme tail of the velocity distribution function, and should be candidates for sub-
sequent acceleration. This may explain the apparent enhancement of elements like
Mg, Si, and Fe in cosmic rays.

40.4� Upper Limits on Cosmic Ray Energy

Interstellar shock waves are produced by discrete events, such as supernova explo-
sions, and, therefore, have a finite size and duration. The gyroradius for a cosmic
ray in a magnetic field B⊥ is

Rgyro =
pc

eB⊥
= 1.11× 1012

( pc

GeV

)(3µG

B⊥

)
cm . (40.16)

For any acceleration to occur, a cosmic ray must be scattered by the magnetic field
in the postshock gas, which can only occur if the postshock region has a spatial
extent L >∼ Rgyro. If the magnetic field strength in the SNR blastwave is BSNR,
then there is a critical energy Emax and momentum pmax above which acceleration
should be ineffective:

Emax = cpmax = eBSNRL . (40.17)

The compressed shell in a SN blastwave with radius R has a typical thickness
∼ 0.05R (see Fig. 39.1). We might take L ≈ 0.05Rrad, where Rrad is the radius
at which a SNR becomes radiative [see Eq. (39.21)]. Then, for typical parameters
(E51 ≈ 1, n0 ≈ 1), we find

Emax ≈ 107.0 GeV

(
Rrad

7× 1019 cm

)(
BSNR

10µG

)
. (40.18)

At this energy, a cosmic ray would be scattered only once by a given expanding
SNR, but acceleration could proceed by scattering off one expanding SNR after an-
other. The observed cosmic ray energy spectrum in fact has a “knee” at ∼ 107 GeV,
with the spectrum steepening from ∼ p−2.65 to ∼ p−3. It is at least plausible that
this steepening could be related to the maximum energy (40.18).

Supernova blastwaves appear to be very effective at particle acceleration, with
cosmic rays making an appreciable contribution to the pressure in the shocked gas.
In the SNR RCW 86, it has been argued that >∼ 50% of the postshock pressure is
provided by cosmic rays rather than thermal motions (Helder et al. 2009).

Relativistic electrons are accelerated by the same processes that accelerate nu-
clei. However, very energetic electrons lose energy by synchrotron emission and
inverse Compton scattering, which can suppress the population of such electrons.

The local spectrum of cosmic ray electrons can be directly measured. At E =
1TeV the electrons have EdΦe/dE ≈ 1.2× 10−4 m−2 s−1 sr−1 (Fermi LAT col-
laboration 2010), smaller than the 1 TeV hadronic cosmic ray flux in Fig. 40.1 by a
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factor ∼ 250. The electron spectrum falls off more steeply with increasing energy
than does the proton spectrum.

Figure 40.4 (a) The gyroradius of a cosmic ray proton with kinetic energy E in a mag-
netic field with B⊥ = 3µG. Even 106 GeV protons have gyroradii small compared to
1 pc. (b) The H column density to stop a proton of energy E due to ionization losses in
neutral gas. Above ∼0.3 GeV, energy loss due to pion production becomes important.

40.5� Cosmic Ray Propagation

The gyroradius of a cosmic ray proton is shown in Fig. 40.4a, where we have as-
sumed a 3µG magnetic field, typical of the ISM within ∼ 150 pc of the midplane.
For E <∼ 105 GeV, cosmic rays are effectively trapped on whatever magnetic field
line they are orbiting. Scattering (both in pitch angle and onto adjacent magnetic
field lines) will be dominated by magnetic fluctuations (MHD waves) with wave-
lengths ∼Rgyro and occasional nuclear collisions. Protons with E <∼ 105 GeV
have Rgyro < 10−4 pc. Propagation of cosmic rays is normally approximated as a
diffusive process (Strong et al. 2007). Because of their small gyroradii, the arrival
directions of low-energy cosmic rays are essentially isotropic.

In the absence of acceleration, cosmic rays will gradually lose energy to ioniza-
tion of neutral gas and Coulomb scattering by the thermal plasma. In neutral re-
gions, the ionization losses dominate. Above proton kinetic energy E = 0.28GeV,
pion production in p-p collisions becomes possible, and dominates the energy loss
at higher energies (Mannheim & Schlickeiser 1994). Using the cross section in Eq.
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(13.15), and assuming an average energy loss per ionization of 13.6 eV due to ion-
ization and ∼ 35 eV of kinetic energy to the electron, we can evaluate the column
density NH,stop required to stop a cosmic ray of initial kinetic energy E. The result
is shown in Fig. 40.4b. A 100-MeV proton can penetrate even a dense cloud with
NH ≈ 1023 cm−3, whereas a 1-MeV proton would be stopped by even a diffuse
H I cloud.

Compression of the magnetic field in the cloud can lead to “magnetic mirror”
reflection of cosmic rays with large pitch angles. But the magnetic pinch does not
exclude cosmic rays from the compressed region. If the magnetic field is static, and
the incident cosmic ray flux is isotropic in pitch angle, then the small pitch angle
particles will enter the compressed regions, resulting in a cosmic ray density within
the cloud that is the same as outside the cloud. The only way to exclude cosmic
rays from dense regions is to have magnetic field lines that do not connect to the
diffuse ISM where the particles are presumed to be accelerated, or to have such
large column densities that the lower energy cosmic rays are stopped by ionization
losses.

40.6� Synchrotron Emission and Supernova Remnants

Direct evidence for particle acceleration in shocks is provided by synchrotron emis-
sion produced by relativistic electrons in supernova remnants. In some objects,
such as the Crab Nebula, the relativistic electrons may be coming from the rotating
neutron star, but in many SNRs, such as Cas A (see Plate 12) the synchrotron emis-
sion appears to come from the shocked gas, and provides evidence for acceleration
of electrons in supernova blastwaves.

The synchrotron emission from SNRs is easily observed at radio frequencies,
but in some cases can be detected at optical (e.g., the Crab Nebula, although in
this case the relativistic electrons appear to come from the pulsar wind) or x-ray
energies (e.g., the Crab, Tycho’s SNR, and Cas A (see Plate 12).

40.7� Gamma Ray Emission from Interstellar Clouds

High-energy cosmic rays ions (mainly protons) or electrons colliding with nuclei
in the gas or dust can result in emission of gamma rays. There are three principal
channels for gamma-ray production (see, e.g., Bloemen 1987):

CRp+ p→ p+ p+ pions ; π0 → 2γ (π0 decay), (40.19)

CRe+ p→ e+ p+ γ (bremsstrahlung), (40.20)

CRe+ γ→ e+ γ′ (inverse Compton). (40.21)
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γ rays in the 50 MeV to 3 GeV range are produced primarily by cosmic rays with
energies of 1 to 10 GeV/nucleon. For the interstellar spectrum of cosmic ray pro-
tons and electrons, the π0 → 2γ channel dominates production of E > 150MeV
γ-rays, while bremstrahhlung dominates for E <∼ 150MeV.

If the E >∼ 1GeV cosmic ray flux is more-or-less uniform, then an interstellar
cloud will emit γ rays with an intensity I(γ) = C × NH. The constant C can be
calibrated by observing H I clouds for which NH can be determined from 21-cm
emission; gamma ray observations of molecular clouds can then be used to measure
their column densities. This is one of the methods used to determine empirically
the ratio between CO J=1–0 luminosity and molecular gas mass.

40.8� 26Al in the ISM

The stable isotope of Al is 27Al; the isotope 26Al is unstable against

26Al → 26Mg∗ + e+ + ν̄e(1.16MeV) (40.22)

26Mg∗ → 26Mg + γ(1.81MeV) , (40.23)

with a half-life τ1/2(
26Al) = 7.4 × 105 yr. Interest in interstellar 26Al first arose

when it was discovered that certain Ca-Al-rich inclusions (CAIs) in the Allende
meteorite contained excess 26Mg relative to 24Mg, the dominant isotope of Mg.
The implication was that the inclusions solidified with 26Al present, which then
decayed into 26Mg. The observed 26Mg/27Al in some CAIs implies that they had
26Al/27Al ≈ 5 × 10−5 (MacPherson et al. 1995) when they solidified. This was
surprising, because it required enrichment of the gas with 26Al not more than a few
Myr before solidification of the CAIs.

Recent mapping of the 26Mg∗ 1.80865 MeV line by the INTEGRAL satellite
shows that the Milky Way has ∼ 2.7 ± 0.7M� of 26Al in the ISM. (Wang et al.
2009) – this corresponds to an average 26Al/27Al ≈ 9 × 10−6 in the ISM. This
average value of 26Al/27Al is a factor of 6 below the highest values in the CAIs,
but with the short lifetime of 26Al it would not be suprising if the 26Al/27Al ratio
in the ISM showed strong spatial variations.

The origin of the interstellar 26Al is uncertain. Some is produced by spallation
of, e.g., 28Si and 40Ar by cosmic ray protons, but the bulk is thought to be injected
by winds from massive stars and core-collapse supernovae (Voss et al. 2008). If
massive stars dominate the injection of 26Al, we expect the 26Al abundance to be
higher in massive star-forming regions.
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40.9� Positrons and Positronium in the ISM

Decaying 26Al injects positrons into the ISM at a global rate ∼ 4 × 1042 s−1. In-
terstellar positrons are also generated by decay of other radionuclides, by cosmic
ray interactions with the ISM (CRp+ p → CRp+ p+ π+ + π−, followed by, e.g.
π+ → µ+ + ν̄µ, followed by µ+ → e+ + ν̄e + νµ), and by pair production in the
jets from some compact objects. What is the fate of these positrons?

A relativistic positron traveling through the ISM can lose energy to synchrotron
radiation, to inverse Compton scattering, and to Coulomb scattering. There are
several different annihilation channels:

1. Direct annihilation on free electrons: e+ + e− → 2γ.

2. Direct annihilation on atomic H: e+H → H+ + 2γ.

3. Formation of positronium, followed by annihilation.

Positronium (Ps) consists of an electron and a positron in a bound state. The
energy spectrum of Ps is just like that of H, except that the energies are all a factor
of 2 smaller because the reduced mass of positronium is me/2. Positronium can
form either by radiative recombination

e+ + e− → Ps + hν , (40.24)

or by charge exchange

e+ +H → Ps + H+ . (40.25)

The charge exchange process has an energy barrier of 6.8 eV, and therefore requires
energetic positrons.

The positronium can form with the electron and positron spins parallel (the triplet
state 3S1, with spin S = 1) or antiparallel (the singlet state 1S0, with spin S = 0);
∼ 75% of radiative recombinations will form the triplet state, and ∼ 25% will form
the singlet state.

The distinction between the singlet and triplet states is important, because they
have different annihilation channels:

Ps 3S1 → 3γ , τ = 1.4× 10−7 s , (40.26)

Ps 1S0 → 2γ , τ = 1.25× 10−10 s . (40.27)

The triplet state decays into a three γ-ray continuum, extending from 0 to 511 keV.
The singlet state decays into two 511 keV photons. The γ rays from positronium
annihilation have been observed from the inner Galaxy, and exhibit the expected
3:1 ratio of triplet to singlet decay channels (for a review, see Diehl & Leising
2009).



Chapter Forty-one

Gravitational Collapse and Star Formation: Theory

Gravity is responsible for gathering gas into self-gravitating structures ranging in
size from stars to giant molecular cloud complexes. Star formation involves ex-
treme compression: part of a gas cloud collapses from a size ∼ 1018 cm down to
a stellar size, ∼ 1011 cm, with an accompanying increase in density by a factor
∼ 1021.

Here, we consider the conditions necessary for gravitational collapse to occur.
There are several barriers to gravitational collapse. Gravity must of course over-
come the resistance of pressure, both gas pressure and magnetic pressure. If the
collapse is to produce a huge increase in density (as is necessary to form a star),
then nearly all of the angular momentum in the collapsing gas must be transferred
to nearby material. Last, the observed magnetic fields of young stars require that
most of the magnetic field lines initially present in the gas not be swept into the
forming protostar.

41.1 Gravitational Instability: Jeans Instability

Consider first the simplest case: a nonrotating and unmagnetized gas. We recall
from Chapter 35 the equations expressing conservation of mass and momentum in
an unmagnetized fluid, and the equation for the gravitational potential:

∂ρ

∂t
+∇ · (ρv)= 0 , (41.1)

∂v

∂t
+ (v · ∇)v=−1

ρ
∇p−∇φ (41.2)

∇2φ=4πGρ . (41.3)

Suppose that there exists an equilibrium steady state solution ρ0(r), v0(r), p0(r),
φ0(r) satisfying Eqs. (41.1 to 41.3) with ∂v0/∂t = ∂ρ0/∂t = 0.

To determine the conditions under which this equilibrium solution is unstable to
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gravitational collapse, we introduce a small perturbation, denoted by subscript 1:

v=v0 + v1 , (41.4)
ρ= ρ0 + ρ1 , (41.5)
p= p0 + p1 , (41.6)
φ=φ0 + φ1 . (41.7)

We now linearize the equations, retaining only terms that are first-order in the per-
turbations. Conservation of mass and momentum, and Poisson’s equation, give the
equations that the perturbations must obey:

∂ρ1
∂t

+ v0 · ∇ρ1 + v1 · ∇ρ0 = −ρ1∇ · v0 − ρ0∇ · v1 , (41.8)

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 =

ρ1
ρ20

∇p0 − 1

ρ0
∇p1 −∇φ1 , (41.9)

∇2φ1 = 4πGρ1 . (41.10)

Up to this point, the analysis is fully general (for B = 0) and for an arbitrary
equation of state. If we now consider an isothermal gas (p = ρc2s), Eq. (41.9)
simplifies to

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 = −c2s∇

(
ρ1
ρ0

)
−∇φ1 . (41.11)

This gives us three equations (41.8, 41.10, and 41.11) for the three unknown func-
tions (ρ1, v1, and φ1).

Jeans (1928) considered the problem of an initially uniform, stationary gas, with
∇ρ0 = 0, ∇φ0 = 0, v0 = 0. Taking the divergence of Eq. (41.11), and using
(41.8) and (41.10), one obtains

∂2ρ1
∂t2

= c2s∇2ρ1 + (4πGρ0)ρ1 . (41.12)

If we now consider plane-wave perturbations,

ρ1 = const× exp [i (k · r− ωt)] , (41.13)

we obtain the dispersion relation

ω2 = k2c2s − 4πGρ0 . (41.14)

Defining k2J ≡ (4πGρ0)/c
2
s, the dispersion relation becomes

ω2 = (k2 − k2J)c
2
s . (41.15)
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Therefore, ω is real if and only if k ≥ kJ: if k < kJ, ω becomes imaginary,
corresponding to exponential growth. The Jeans instability therefore occurs for
wavelength

λ > λJ ≡ 2π

kJ
=

(
πc2s
Gρ0

)1/2

, (41.16)

and we define the Jeans mass:

MJ ≡ 4π

3
ρ0

(
λJ

2

)3

=
1

8

(
πkT

Gµ

)3/2
1

ρ
1/2
0

=0.32M�

(
T

10K

)3/2(
mH

µ

)3/2(
106 cm−3

nH

)1/2

. (41.17)

It is gratifying that when we substitute densities and temperatures observed for
quiescent dark clouds, we find a mass typical of stars! In the limit of k � kJ (long
wavelength), the exponentiation time or “growth time” is

τJ =
1

kJcs
=

1√
4πGρ0

=
2.3× 104 yr√
nH/106 cm−3

. (41.18)

To understand the value of the growth time τJ, note that a uniform pressureless
sphere of initially stationary gas with density ρ0 will collapse with all shells reach-
ing the center simultaneously in a finite time known as the free-fall time (Spitzer
1978),

τff =

(
3π

32Gρ0

)1/2

=
4.4× 104 yr√
nH/106 cm−3

. (41.19)

The free-fall time τff is only slightly longer than the Jeans growth time τJ.
The preceding analysis is elegant but, unfortunately, deeply flawed. The as-

sumption that ∇φ0 = 0 is completely unphysical – we cannot have ∇φ0 = 0
everywhere, as this implies ∇2φ0 = 0 everywhere, and therefore ρ0 = 0: we are
discussing a vacuum. For this reason, Binney & Tremaine (2008) referred to the
above derivation of MJ as “the Jeans swindle.” However, for finite systems, rigor-
ous analyses give instability criteria that are close to Jeans’s, with critical masses
for unstable growth that depend in detail on the geometry, but are close to the Jeans
mass (41.17).

41.2� Parker Instability

Jeans’s analysis applies to a more-or-less uniform, stationary, unmagnetized cloud,
but gravitational instability can arise in many geometries. Parker (1966) considered
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the equilibrium of a plane-parallel system with a magnetic field, with z being the
coordinate normal to the plane. Let the gas have density ρgas(z) and one dimen-
sional velocity dispersion cs (arising from both thermal motions and “turbulence”),
assumed to be independent of z, so that the effective pressure is p(z) = ρgas(z)c

2
s.

Let there be a magnetic field B(z) = B(z)x̂ present. Suppose also that cosmic
rays (trapped on the magnetic field lines) contribute a pressure pCR(z).

To keep things simple, assume that the magnetic pressure and cosmic ray pres-
sure are each proportional to the gas pressure:

B2

8π
=α ρgasc

2
s , (41.20)

pCR =β ρgasc
2
s . (41.21)

From study of the motions of stars in the gravitational potential of the disk, the av-
erage midplane mass density ρtot(z = 0) ≈ 0.10M� pc−3 = 6.8× 10−24 g cm−3

(Kuijken & Gilmore 1989). This mass density is dominated by stars. At the mid-
plane, the vertical gravity vanishes: ∇φ = 0. Near the midplane of the disk, we
can approximate the total mass density ρtot ≈ const (provided we do not depart
too far from the midplane) and integrate (41.10) to obtain

∇φ ≈ 4πGρtot z ẑ . (41.22)

With this potential, the equation of momentum conservation becomes

0=−∇pgas −∇pCR −∇
(
B2

8π

)
+

(B · ∇)B

4π
− ρgas∇φ (41.23)

=−(1 + α+ β)c2s
dρgas
dz

− 4πGρtotρgasz , (41.24)

d ln ρgas
dz

=
−4πGρtot

(1 + α+ β)c2s
z , (41.25)

ρgas = ρgas,0 exp[−(z/h)2] , (41.26)

h≡
[
2(1 + α+ β)c2s

4πGρtot

]1/2
(41.27)

=140 (1 + α+ β)
1/2

(
cs

7.4 km s−1

)
pc . (41.28)

Mast & Goldstein (1970) measured the radial velocities of 268 high-latitude H I
clouds, and obtained a 1-D velocity dispersion cs = 7.4 km s−1; we adopt this
value as representative. What values of α and β are appropriate? For typical values
nH(z = 0) ≈ 1 cm−3 and B ≈ 4µG, we find α = 0.56.
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The pressure due to cosmic rays is dominated by ∼ 0.1 − 1GeV particles. The
cosmic ray flux at these energies is uncertain (see §13.5), but chemical diagnostics
in diffuse molecular clouds (including the abundance of H+

3 ) favor a high cosmic
ray ionization rate, consistent with the cosmic ray proton spectrum X3 in Fig. 13.5,
for which pCR(E > 1MeV) = 1.22 × 10−12 erg cm−3. Thus we estimate β =
1.06. The scale height h and 〈|z|〉 = h/

√
π are then estimated to be

h ≈ 225 pc , 〈|z|〉 = h√
π

≈ 130 pc . (41.29)

Observations of the inner Galaxy show 〈|z|〉 ≈ 150 pc (Crovisier 1978; Malhotra
1995), while just beyond the solar circle (galactocentric radius ∼ 8.5 kpc) the H I
has 〈|z|〉 ≈ 180 pc (Dickey et al. 2009). We note that our assumption of ρtot(z) =
const will overestimate ∇Φ and therefore will underestimate h and 〈|z|〉. We
conclude that the observed vertical distribution of H I (averaged over large regions)
is in agreement with this equilibrium model.

The equilibrium model has a significant fraction of the pressure contributed by
cosmic rays. These cosmic rays are “tied” to magnetic field lines, but can stream
parallel to field lines. In the equilibrium solution there is no streaming, because the
magnetic field lines are perpendicular to the cosmic ray pressure gradient. How-
ever, Parker (1966) pointed out that this equilibrium was unstable: if the magnetic
field lines were perturbed in the vertical direction, gas could flow down the field
lines into “valleys,” adding weight to the valley regions, while cosmic rays could
flow out of the valleys, removing pressure support from the valleys. This is now
known as the Parker instability. Parker (1966) considered initially plane-parallel
structures with small perturbations of the form f(z)eikxx, with f(0) = 0, and
showed that an isothermal gas with B �= 0 is always unstable to growth of perturba-
tions of sufficiently long wavelength. The perturbations saturate at finite amplitude,
with the gas concentrated in denser regions, and the magnetic field lines bulging up-
ward between the density peaks. Giz & Shu (1993) estimated the growth times for
a realistic gravitational potential, finding that the most rapidly growing mode has

λx ≈ 500 pc . (41.30)

The growth time for the most rapidly growing mode is approximately equal to the
time for a compressive wave in the gas to travel a distance λx/2, or

τ ≈ λx/2

cs
≈ 3× 107 yr . (41.31)

This time is short enough for the instability to grow as the ISM passes through a
spiral density wave.

Mouschovias (1974) showed that the Parker instability evolves to a new equilib-
rium structure with concentrations of gas separated horizontally by a distance λx/2;
the magnetic field lines are compressed in the gas concentrations, but bulge out be-
tween them. Giant H II regions in other galaxies are frequently seen to be located
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like “beads on a string” along spiral arms, with ∼ kpc separations. Mouschovias
et al. (1974) proposed that the Parker instability is involved in the formation of the
giant molecular cloud complexes that host giant H II regions.

41.3 Insights from the Virial Theorem

For a region in equilibrium, with uniform pressure p0 and magnetic field B0 at the
surface, the virial theorem (see §35.5) states that

0 = 2EKE + 3 (Π−Π0) + (Emag − Emag,0) + Egrav , (41.32)

EKE ≡
∫

ρ
v2

2
dV , (41.33)

Π ≡
∫

p dV , Π0 = p0V , (41.34)

Emag ≡
∫

B2

8π
dV , Emag,0 ≡

∮
dS ·

[
r
B2

8π
− B(r ·B)

4π

]
, (41.35)

Egrav = −1

2

∫
dV1

∫
dV2

ρ(r1)ρ(r2)

|r1 − r2| . (41.36)

We can use the virial theorem to determine conditions for instability. Let us con-
sider two special cases.

41.3.1 Nonrotating Nonmagnetized Isothermal Core

Consider a spherical “core” with mass M and radius R, with external pressure p0
at the surface. The gravitational energy can be written

Egrav = −3

5
a
GM2

R
, (41.37)

where the dimensionless factor a = 1 for uniform mass density, and a > 1 if the
density is centrally peaked. Mouschovias & Spitzer (1976) find a ≈ 1.67 from
numerical models of clouds on the verge of collapse. If the gas has 1-dimensional
velocity dispersion cs = const, then

Π = Mc2s . (41.38)

If the gas is in equilibrium with v = 0, then the virial theorem requires that

0 = 3Mc2s − 4πp0R
3 − 3

5
a
GM2

R
. (41.39)
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The external pressure p0 must be given by

p0 =
1

4πR3

[
3Mc2s −

3

5
a
GM2

R

]
. (41.40)

If p0 is small, then the equilibrium has

R ≈ aGM

5c2s
for p0 � 375c8s

4πa3G3M2
. (41.41)

For fixed M , the external pressure has a maximum allowed value pmax(M), ob-
tained by finding the value of R for which the right-hand side of Eq. (41.40) is
maximized. If a = const, the maximum possible pressure is

p0,max(M) =
3453

45π

c8s
a3G3M2

=
3.15

a3
c8s

G3M2
≈ 0.68

c8s
G3M2

. (41.42)

We can now turn the argument around: for a given pressure p0, the maximum core
mass that can be in equilibrium is

MBE(p0)=
225

32
√
5π

c4s
(aG)3/2

1√
p0

(41.43)

=0.26

(
T

10K

)2(
106 cm−3 K

p0/k

)1/2

M� . (41.44)

MBE in Eq. (41.43) is known as the Bonnor-Ebert mass (Bonnor 1956; Ebert
1957). The pressure-bounded isothermal sphere with M = MBE has central den-
sity ρ ≈ 14ρ0, where ρ0 = p0/c

2
s is the density at the surface.

The Bonnor-Ebert mass MBE differs from the Jeans mass MJ only by a numer-
ical constant of order unity: MBE ≈ 1.18MJ. Only cores with M > MBE are
unstable to collapse. This would seem to explain the fact that the “typical” stellar
mass is ∼ 1M�: only cores with M > MBE will become stars.

We now consider the effects of magnetic fields.

41.3.2 Nonrotating Magnetized Isothermal Core

The virial theorem states that

0 = 3 (Π−Π0) + (Emag − Emag,0) + Egrav . (41.45)

Let Brms be the rms magnetic field within the clump. Then,

Emag =
B2

rms −B2
0

8π
V . (41.46)



458 CHAPTER 41

Assume that the magnetic field in the clump is poloidal (i.e., in polar coordinates,
there is no azimuthal field: Bφ = 0), and let

Φ =

∫
S

B · dS , (41.47)

where the integral is over a surface S bounded by the magnetic equator. If we
approximate

Brms ≈ Φ

πR2
, (41.48)

then

Emag ≈ 4π

3
R3 (Φ/πR

2)2

8π
=

1

6π2

Φ2

R
, (41.49)

where R is the radius of a sphere with volume V . Because the field within the core
will be nonuniform, the actual magnetic energy will be somewhat larger than given
by Eq. (41.49). The magnetic field will extend into the surrounding medium. We
expect Emag,0 [the surface integral in Eq. (41.35)] to be proportional to Emag. Let

Emag − Emag,0 =
b

6π2

Φ2

R
. (41.50)

Numerical models point to an effective value b ≈ 1.25 for magnetized clumps on
the verge of collapse (Mouschovias & Spitzer 1976). Because (Emag −Emag,0) ∝
R−1 and Egrav ∝ R−1, the ratio (Emag − Emag,0)/Egrav remains constant as the
cloud expands or contracts. If

Φ

M
>

(
Φ

M

)
crit

= 3π

√
2aG

5b
= 1.54× 10−3

√
a

b
gauss cm2 g−1 , (41.51)

then magnetic pressure will prevent the clump from collapsing.
To be able to undergo gravitational collapse, the clump must have a flux-to-mass

ratio Φ/M that is less than the critical flux-to-mass ratio:

Φ

M
<

(
Φ

M

)
crit

= 1.8× 10−3 gauss cm2 g−1 , (41.52)

where we set the dimensionless factors a ≈ 1.67 and b ≈ 1.25. A core with
Φ/M < (Φ/M)crit is termed magnetically supercritical: the mass-to-flux ratio
exceeds the critical value (M/Φ)crit, and the magnetic field alone cannot prevent
collapse.

In §32.10, we saw that observations suggest ordered magnetic fields in molecular
clouds with the median magnetic field strength at a given density given by Eq.
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(32.17): B ≈ 49n0.65
4 µG for 0.03 <∼ n4

<∼ 103, where n4 ≡ nH/10
4 cm−3. For

this estimate of the median magnetic field strength, a spherical region of mass M
and uniform density would have

Φ

M
= 5.8× 10−3n−0.02

4

(
M

M�

)−1/3

gauss cm2 g−1 . (41.53)

For M = 1M� and nH = 104 cm−3, this is a factor of ∼ 3 larger than (Φ/M)crit
– thus, for the median magnetic field strength found by Crutcher et al. (2010), the
magnetic pressure will prevent clump collapse. Note that the empirical relation
B ∝ n0.65 found by Crutcher et al. is close to the n2/3 behavior that would result
from flux-freezing and homologous compression, corresponding to Φ/M being
nearly independent of density in eq. (41.53).

For our idealized relations between density and clump size [Eq. (32.12)] and be-
tween density and magnetic field strength [Eq. (32.17)], we conclude that cores will
be magnetically sub-critical, with the magnetic field able to resist gravity. Another
way to see this is by comparing the estimated Alfvén speed with the 3-D velocity
dispersion, Eq. (32.19), where the observations of Crutcher et al. (2010) appear to
imply (vA)0.5/σv ≈ 0.75n0.46

4 , implying that the magnetic field dominates turbu-
lence (vA > σv) for n4

>∼ 1.6.
Individual density peaks exhibit considerable scatter around the idealized rela-

tions, and therefore the above conclusions regarding the importance of magnetic
fields will certainly not apply in all cases. Whether cores are generally magneti-
cally subcritical or supercritical remains in dispute. Crutcher (2010) argued that the
cores of dark clouds are generally supercritical. However, the frequent observation
of strong |B‖| for nH

>∼ 104 cm−3 (Crutcher et al. 2010) – see above Figure 32.6
– appears to establish the dynamical importance of magnetic fields in at least some
cases.

We know that gravitational collapse does occur, and that the resulting stars (see
below) have Φ/M far smaller than given by Eq. (41.53) for nH

<∼ 107 cm−3. The
question now arises: How are cores managing to lower their values of Φ/M as they
contract, so that they can ultimately collapse to form stars?

41.4 Magnetic Flux Problem: Ambipolar Diffusion

We have seen above (§35.4) that the magnetic field in the ISM often acts as though
the field lines are “frozen” into the fluid. If flux-freezing continues to hold in a
collapsing clump, Φ will be conserved.

We have already seen that for M ≈ 1M� clumps to be able to collapse, some-
thing must act to reduce the flux by a factor ∼ 3 – unless the magnetic field strengths
in molecular clouds have been overestimated by an order of magnitude, the “flux-
freezing” approximation must break down.

T Tauri stars have surface magnetic fields 2 ± 1 kG (Johns-Krull 2007), corre-
sponding to a flux per mass Φ/M ≈ 3 × 10−8 gauss cm2 g−1. This is 6 orders
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Figure 41.1 Geometry for ambipolar diffusion. B is the magnetic field strength at the
cloud center; field lines are moving out of the cloud with velocity vin relative to the
neutral gas.

of magnitude below the Φ/M estimated for a ∼ 1M� clump in a cloud of den-
sity nH ≈ 104 cm−3. Therefore, nearly all of the magnetic flux that was initially
present in this gas must escape before we are able to observe the T Tauri star.

The mechanism for this escape is presumably the process known as ambipolar
diffusion. The magnetic field is coupled only to charged particles – electrons, ions,
and charged dust grains. It remains a good approximation to assume the magnetic
field is “frozen” into the plasma (i.e., the charged particles), but the plasma can
drift relative to the neutral gas.

In a dense molecular cloud, the fractional ionization is extremely low (see Fig.
16.3), and the mass density in the plasma is almost negligible. If we ignore the
inertia of the plasma, then the instantaneous velocity of the plasma is such that the
J ×B/c force per volume is exactly balanced by the force/volume resulting from
collisions of charged particles with neutrals:

1

c
J×B = −ninn

mimn

mi +mn
〈σv〉mt (vi − vn) , (41.54)

where 〈σv〉mt is the momentum transfer rate coefficient for ion-neutral scattering
[see Eq. (2.39)]. If we assume that gradients are perpendicular to the magnetic field
lines (B · ∇ → 0), then

(vi − vn) = − (mi +mm)

mimn

1

ninn〈σv〉∇
B2

8π
. (41.55)

Suppose that a clump has characteristic magnetic field strength B and characteristic
dimension L (see Figure 41.1). The time scale for the magnetic field to slip out of
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the clump is

τslip =
L/2

|vi − vn| =
8π(L/2)2

B2
ninn〈σv〉 mimn

(mn +mi)
. (41.56)

where we have approximated ∇B2 ≈ B2/(L/2). To evaluate this, suppose that
(1) L ≈ 1.23n−0.81

4 pc (Eq. 32.12), (2) the magnetic field strength is given by the
observed relation B ≈ 49n0.65

4 µG for the median field strength [Eq. (32.17)], and
(3) the fractional ionization ni/nH ≈ 1× 10−7n

−1/2
4 (see Fig. 16.3). Then,

τslip ≈ 7× 107n−1.42
4 yr . (41.57)

At densities nH
>∼ 105 cm−3, this time scale is short enough (<∼ 3 × 106 yr) that

ambipolar diffusion may be able to reduce the magnetic flux in a contracting clump.
For nH

>∼ 2 × 106 cm−3, the ambipolar diffusion time from Eq. (41.57) is shorter
than the gravitational free-fall time (3π/32Gρ)1/2 = 4.5× 105n−0.5

4 yr.
At very high densities, much of the free charge is located on dust grains. The

ambipolar diffusion time is affected by the effect of grains on the ionization balance
(see §14.8), and by the coupling of charged grains to both the magnetic field and
the neutral gas. The dynamical evolution of dense cores is therefore sensitive to the
distribution of grain sizes present; at these densities, the grain size distribution is
expected to have been modified by coagulation and fragmentation, but the details
are not yet clear.

41.5 Angular Momentum Problem

The discussion thus far has neglected rotation, but self-gravitating cores will gener-
ally have nonzero angular momentum. Consider a region of mass M , initial radius
R0, and angular momentum J , and neglect coefficients of order unity that depend
on the density distribution in the cloud. If the core is uniformly rotating, the rota-
tional kinetic energy

Erot ≈ J2

(4/5)MR2
∝ 1

R2
, (41.58)

while the gravitational self-energy

|Egrav| ≈ 6GM2

5R
∝ 1

R
. (41.59)

It is, therefore, clear that if the cloud contracts with J = const, the rotational
kinetic energy will stop contraction at a radius

Rmin ≈ (J/M)2

GM
= 8× 1015

(
J/M

1021 cm2 s−1

)2
M�
M

cm . (41.60)
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The specific angular momentum J/M will vary from core to core. At the solar
circle, we are orbiting around the inner Galaxy with an angular frequency Ω ≈
225 km s−1/8.5 kpc = 9×10−16 rad s−1; a ∼ 1 pc radius region rotating with this
frequency would have specific angular momentum J/M ≈ 3 × 1021 cm2 s−1. A
∼ 0.1 pc radius cloud in solid body rotation with rotational velocity v = 0.1 km s−1

at the “equator” would have specific angular momentum J/M ≈ 1×1021 cm2 s−1.
It is clear that interstellar gas cannot contract to anything approaching the size of
a star (∼ 1011 cm) if its angular momentum is conserved. When the gravitational
contraction is stopped by angular momentum, the rotationally supported core will
take on a flattened disk geometry. Such protostellar disks are observed.

In order to overcome the “angular momentum barrier” and contract to protostel-
lar dimensions, the core must transfer nearly all of its angular momentum to nearby
material, either before or after it has become disk-like. There are two mechanisms
that can do this – gravitational torques and magnetic torques. The collapsing gas
may develop nonaxisymmetric density patterns so that the gravitational field can
exert a torque on nearby matter – spiral density waves in a disk would be one ex-
ample of this. If the density field in the collapsing region and in the gas around
it is highly nonaxisymmetric, the gravitational torques could remove angular mo-
mentum from the clump on a time scale of order the dynamical time 1/(4πGρ)1/2.
However, the degree of nonaxisymmetry that will arise in the collapsing clump and
its environs is uncertain.

The magnetic fields in molecular clouds are strong enough that magnetic torques
due to bent magnetic field lines can be important. Consider a spherical surface of
radius R bounding a rotating core. Let the angular momentum J be along the ẑ axis.
The torque per area exerted at a point on the surface a distance r from the rotation
axis is ∼ rB‖B⊥/8π, where B‖ and B⊥ are the components of the magnetic field
parallel and perpendicular to the surface [see Eq. (35.16)], and we have neglected
trigonometric factors. Thus the magnetic braking time will be of order

t(magnetic braking) ≈ J

R3B2
, (41.61)

if B has substantial components both normal to the surface and parallel (or an-
tiparallel) to the local surface velocity. If the magnetic field is contributing to the
support of the system against its self-gravity – which appears to be the case in typi-
cal molecular clouds and cloud cores (see §32.10) – the magnetic braking time can
be of order the dynamical time. Detailed MHD simulations of realistic collapsing
clumps are in their infancy, and it is not yet clear how the magnetic field strength
varies as a clump collapses. However, if the magnetic field energy remains compa-
rable in magnitude to the gravitational energy (B2R3 ∼ GM2/R) and if the clump
is rotationally supported [J2/MR2 ∼ GM2/R → J ∼ (GM3R)1/2] then

t(magnetic braking) ∼ J

R3B2
∼ JR

GM2
∼ 1√

GM/R3
, (41.62)
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i.e., the magnetic braking time can be of order the dynamical time ∼ 1/(Gρ)1/2 if
the magnetic energy is comparable to the gravitational energy.

41.6 Accretion Disks

Eventually the collapsing clump becomes a rotationally supported disk with a den-
sity peak at its center. Dynamical processes in the disk then remove angular mo-
mentum from the inner parts of the disk and transfer this angular momentum to
the outer parts of the disk or perhaps the ambient cloud; the allows the inner-disk
material to fall inward and add to the growing star. The processes responsible for
this momentum transfer are not yet well-understood. Ordinary molecular viscosity
is ineffective, but momentum transport may occur as the result of “turbulent vis-
cosity,” or by magnetic torques. If the disk has not retained a significant ordered
magenetic field, it can generate magnetic fields via the magnetorotational instability
(MRI). The MRI requires a minimum electrical conductivity; whether the conduc-
tivity of the disk will be high enough for the MRI to operate is not yet known.

41.7 Radiation Pressure

A star-forming region emits radiation. Initially, the energy comes from accretion
onto the protostar, with a luminosity

Lgrav ≈ GM

R
Ṁ = 120

M

M�
R�
R

Ṁ

10−6 M� yr−1
L� . (41.63)

Once the central density and temperature become high enough for nuclear fusion
to begin, the luminosity comes from release of nuclear energy in conversion of D
and H into He. As radiation streams away from the star, a force will be exerted on
atoms, molecules, or dust particles that absorb or scatter the radiation. As seen in
Fig. 23.12, the radiation pressure cross section for dust can be large. The ratio of
radiation pressure force to gravitational attraction is

Frad.pr.

Fgrav
=

L〈σrad.pr.〉
4πR2c

R2

1.4GMmH
(41.64)

=
L�〈σrad.pr.〉

5.6πGM�mHc

L/M

L�/M�
(41.65)

=0.0327

( 〈σrad.pr.〉
10−21 cm2H−1

)
L/M

L�/M�
. (41.66)

If the radiation has a color temperature 104 <∼ T <∼ 105 K, and the dust is similar



464 CHAPTER 41

to the dust in the local diffuse ISM, then 〈σrad.pr.〉 ≈ 10−21 cm2H−1 (see Fig.
23.12), and radiation pressure on the dust will exceed the gravitational attraction
on the (dust+gas) if L/M >∼ 30L�/M�. For spherically symmetric flow, this
would appear to prevent the formation of massive stars (M >∼ 10M�), which will
have L/M >∼ 103 L�/M� once nuclear burning commences. However, accretion
is not a spherically symmetric process – accretion onto the star takes place via an
optically thick disk. The radiation leaving the star is effectively collimated into a
limited range of angles (presumably with a bipolar geometry); within these lobes,
optically thin dusty gas is driven away, but near the equatorial plane the accreting
matter is shielded from the short-wavelength radiation from the accreting stellar
object.

Radiation pressure considerations also apply to galactic disks. If the luminosity
surface density ΣL is too large, dusty gas may be repelled from the disk. The ratio
of radiation pressure force to gravitational force is just

Frad.pr.

Fgrav
= 0.0327

〈σrad.pr.〉
10−21 cm2H−1

ΣL/ΣM

L�/M�
, (41.67)

where ΣL is the disk luminosity per area, and ΣM is the disk mass surface density.
Therefore, for dust and a radiation spectrum such that 〈σrad.pr.〉 ≈ 10−21 cm2H−1,
a disk with energetic star formation such that ΣL/ΣM

>∼ 30L�/M� can have
a disk that is supported largely by radiation pressure (Thompson et al. 2005), and
higher values of ΣL/ΣM could drive an outflow of gas and dust from the disk using
radiation pressure alone (Murray et al. 2010). Such high values of ΣL/ΣM may
result from a strong burst of star formation. Radiation pressure on dust may help
account for the presence of fragile PAHs ∼ 4 kpc above the disk of the starburst
galaxy M82 (see Plate 7).



Chapter Forty-two

Star Formation: Observations

Some theoretical considerations related to star formation were developed in Chap-
ter 41. Here we present a few of the basic observational data pertaining to star
formation. A thorough treatment of the field can be found in the excellent text by
Stahler & Palla (2005).

Molecular clouds are found in a variety of sizes and densities. As discussed in
Chapter 32 (see Table 32.2), the terminology that is used to refer to the substructure
within them is rather arbitrary, and sometimes confusing, so we repeat it here.

Self-gravitating density peaks within an isolated “dark cloud” are usually re-
ferred to as cores. The cores have masses of order 0.3 to 10 M�. Each core is
likely to form a single star or a binary star.

In the case of giant molecular clouds (GMCs), the term clump is used to refer
to self-gravitating regions with masses as large as ∼ 103 M�. Clumps may or may
not be forming stars; those that are, are termed star-forming clumps. Such clumps
will generally contain a number of cores.

42.1 Collapse of Cores to form Stars

When a core becomes gravitationally unstable, it will begin to collapse. Exactly
how this collapse proceeds is uncertain in detail, but we think we understand the
overall outlines.

During the initial stages, radiative cooling in molecular lines is able to keep the
gas cool. As a result, the gas pressure remains unimportant during this phase, and
the matter moves inward nearly in free-fall. The velocities at this stage are not
large,

v <∼
√

GMc

Rc
=

(
4π

3

)1/3

G1/2M1/3ρ1/6c (42.1)

≈ 0.4

(
Mc

M�

)1/3

n
1/6
6 km s−1, (42.2)

where Mc and ρc = 1.4nHmH are the mass and density of the core, and nH =
106n6 cm

−3.
Because the density is higher in the interior, the free-fall time (3π/32Gρ)1/2

is shortest there, and the collapse proceeds in an “inside-out” mannner, with the
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center collapsing first, and the outer material later falling onto the central matter.
If cores had no angular momentum, and if magnetic fields were negligible, the

collapse process would be relatively simple to understand and model. However, as
we have seen earlier (§32.10), molecular clouds appear to have magnetic energies
Emag comparable to the kinetic energy EKE (contributed mainly by the “turbulent”
motions), and sufficient angular momentum to become dynamically important long
before stellar densities are reached.

If the core is to collapse, the magnetic flux/mass ratio Φ/M must be less than
the critical value (Φ/M)crit. While low density cores appear to have too much
magnetic flux to collapse [see Eq. (41.53)], the fact that stars do form implies that
ambipolar diffusion – or perhaps some other process – is able to reduce Φ/M to
below (Φ/M)crit = 1.8× 10−3 gauss cm2 g−1, so that the magnetic field will not
prevent gravitational collapse.

The infalling gas will generally have nonzero angular momentum, and (if it re-
mains cold) the material will collapse to form a rotationally supported disk, with
the material with the lowest specific angular momentum collected in a “protostar”
at the center of the disk. Energy is dissipated as the infalling gas hits the disk.
Angular momentum transport – due to the magneto-rotational instability (MRI) if
the gas is sufficiently ionized, or due to gravitational torques or turbulent viscosity
if the ionization is too low to support the MRI – will cause some material in the
disk to move inward, with additional release of gravitational energy. The energy so
released will heat the disk, and will be radiated away.

The dominant sources of energy are (1) the gravitational energy released as mate-
rial is added to the protostar and as the prostar contracts, and (2) the energy released
when the protostar is able to ignite fusion reactions to first “burn” deuterium, and
then hydrogen. The protostar will have a significant luminosity, allowing it and the
surrounding core to be observed as a luminous infrared source.

42.2 Class 0, I, II, and III Protostars

The spectrum of the radiated energy will depend on the amount of obscuration
around the protostar. Let Rdisk be some characteristic radius of the disk. The
characteristic surface density of the disk is then

Σdisk =
Mdisk

πR2
disk

= 28

(
Mdisk

0.1M�

)(
100AU

Rdisk

)2

g cm−2 . (42.3)

If the disk is not yet fully grown, there may be a significant amount of mass that
is still infalling, and the column density along a sightline from the surface of the
protostar to infinity,

Σinfall =

∫ ∞

R�

ρdr , (42.4)

may be large, even for sightlines that do not intercept the disk itself. The spectrum
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of the energy radiated to infinity by the protostar will depend on Σinfall. Protostars
and young stellar objects (YSOs) are conventionally divided into four different
classes based on the overall shape of the infrared spectrum, characterized by a
spectral index

α ≡ d log(λFλ)

d log λ
, (42.5)

or νFν ∝ ν−α. Ground-based observations often employ atmospheric windows at
2.2µm (K band) and 10µm (N band), and low-mass (M <∼ 3M�) protostars may
be classified by using the ratio of the observed flux densities in the K and N bands:

αK,N =
log[(λFλ)10µm]− log[(λFλ)2.2µm]

log(10/2.2)
. (42.6)

• Class 0 protostars are objects that are so heavily obscured that their spectra
peak at λ > 100µm. For these sources, αK,N is not a useful characteristic,
because the source may be invisible at 2.2µm, and at 10µm there may be
deep absorption by cold foreground silicate dust. Inward motions of the gas
are sometimes revealed by asymmetric profiles of molecular emission lines.
The lifetime of a Class 0 object is short, ∼ (1 − 3) × 104 yr (Andre et al.
2000).

• Class I protostars have αK,N > 0: there is more power being radiated near
10µm than near 2µm. Blackbodies with T < 870K have αK,M > 0. Class
I protostars are thought to have typical ages ∼ (1− 2)× 105 yr.

• Class II YSOs have −1.5 < αK,M < 0. Blackbodies with 870 < T <
1540K have −1.5 < αK,M < 0. Class II YSOs correspond to classical
T Tauri stars, which are pre-main-sequence stars, still undergoing gravi-
tational contraction, with substantial accretion disks and accretion rates ∼
10−6 M� yr−1.

• Class III protostars have αK,M < −1.5. Blackbodies with T > 1540K
have αK,M < −1.5. Class III YSOs correspond to “weak-lined” T Tauri
stars, which are pre-main-sequence stars still undergoing gravitational con-
traction, but where the accretion disk is either weak or perhaps entirely ab-
sent.

The observed flux ratios are determined by the temperature of the emitting regions
(star and inner disk) and by wavelength-dependent extinction. Classification of a
given object as either Class I or Class II may depend on the source orientation. If
we are viewing the object face-on it, may be classified as Class II, but an identical
disk viewed edge-on could heavily redden the light reaching the observer, so that
the object could be classified as Class I or even Class 0.
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Figure 42.1 Stellar initial mass function (IMF) as estimated by Kroupa (2001) and
Chabrier (2003). Shown is dN/d lnM , the number of stars formed per logarithmic
interval in stellar mass M , normalized to the value at M = 1M�. Both Kroupa
(2001) and Chabrier (2003) have dN/d lnM ∝ M−1.3 for M > 1M�.

In principle, αK,N can also be increased by differential extinction due to cold
foreground dust in the cloud, but this is not expected to be a big effect: with AK ≈
0.12AV and AN ≈ 0.06AV , foreground reddening in a cloud with AV ≈ 10 mag
will only increase αK,N by ∼ 0.043AV ≈ 0.4.

42.3 Initial Mass Function

If we sum over the stars formed in a large star-forming region (e.g., the Orion
Nebula Cluster), we can discuss the distribution of initial stellar masses – the initial
mass function, or IMF. Beginning with the pioneering work of Salpeter (1955),
there have been many studies of the IMF in different regions of the Milky Way,
and in other galaxies. There is no reason to think that the IMF should be universal,
yet it shows remarkable uniformity from region to region. There may be systematic
variations in the IMF depending on environmental conditions, but the variations are
surprisingly small. It is difficult to determine the IMF at the high-mass end because
massive stars are rare, and at the low-mass end because low-mass stars are faint.
Nevertheless, for 0.01 to 50 M�, there is reasonable agreement between different
studies.

Figure 42.1 shows two recent estimates (Kroupa 2001; Chabrier 2003) for the
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Figure 42.2 MdN/d lnM , the mass formed per logarithmic interval in stellar mass
M , for IMFs of Kroupa (2001) and Chabrier (2003), normalized to the value at M =
1M�.

IMF in the disk of the Milky Way. For M >∼ 1M�, the observations are consistent
with a power law dN/dM ∝ M−2.3, very close to the slope dN/dM ∝ M−2.35

originally found in the pioneering study by Salpeter (1955). The Kroupa and
Chabrier estimates for the IMF differ only in detail. While appreciable numbers
of low-mass stars are formed, the mass per logarithmic mass interval peaks near
∼ 0.5–1M�. Table 42.1 provides some useful integral properties of the IMF. For
example, for a total star formation rate Ṁ , the rate of formation of M > 8M� stars
is Ṁ × 0.2118/19.14M�. If M > 8M� stars become Type II supernovae, then
the Milky Way star formation rate ∼ 1.3M� yr−1 (see §42.4 below) corresponds
to a Type II SN rate 0.014 yr−1 = 1/70 yr.

Table 42.1 Some Properties of the Chabrier (2003) IMFa

Mass range (M�) mass/total mass 〈M〉/M�
0.01–0.08 0.0482 0.0379

0.08–1 0.3950 0.2830
1–8 0.3452 2.156
8–16 0.0749 10.96

16–100 0.1369 32.31
8–100 0.2118 19.14

0.01–100 1.0000 0.3521
a For lower and upper cutoffs of 0.01 and 100M�.
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42.4 Star Formation Rates

What is the rate of star formation in the Milky Way galaxy?
Because massive stars are highly luminous and create H II regions that can be

detected at large distances, we can use the observed number of high-mass stars
(or the H II gas photoionized by them), together with theoretical estimates of stellar
lifetimes, to estimate the rate at which massive stars are being formed in the Galaxy.
The IMF can then be used to estimate the total rate at which stars are being formed.
The difficulty is in counting the stars. Optical surveys (including observations of
the bright Hα line from H II regions) are incomplete because of obscuration by
interstellar dust. We must instead use long-wavelength tracers of massive stars.

[N II]205µm emission is excited by collisions of N II with electrons in H II re-
gions. Because N and H are ionized together, the ratio N II/H II depends only on
the N abundance, which we think we know.1 At low densities, the [N II]205µm
emissivity is proportional to the electron-proton recombination rate, and therefore
(on average) proportional to the rate of hydrogen ionization. Bennett et al. (1994)
used all-sky COBE observations of the [N II]205µm line to estimate the total rate
of photoionization of H in the Milky Way to be Q0,MW ≈ 3.5 × 1053 s−1. Mc-
Kee & Williams (1997), taking into account the radial gradient in the N abundance,
and correcting for suppression of [N II]205µm emission at high densities, used the
same COBE data to estimate Q0,MW ≈ 1.9× 1053 s−1. The systematic uncertain-
ties (including the assumed electron temperature and N abundance) are estimated
to be ∼ 50%.

Free–free radio emission is negligibly affected by interstellar dust, and the free–
free emissivity in H II regions is proportional to the proton-electron recombination
rate. Murray & Rahman (2010) used observations by the Wilkinson Microwave
Anisotropy Probe (WMAP) to determine the total rate of emission of ionizing pho-
tons in the Milky Way to be (Q0,MW = 3.2± 0.5)× 1053 s−1, after correcting for
the effects of absorption by dust. This appears to be the most reliable determination
of the rate of emission of ionizing photons.

With estimates of the number of ionizing photons emitted over the lifetime of
massive stars, and an assumed form for the IMF, Murray & Rahman (2010) use
their measurement of Q0,MW to estimate the the total rate of star formation in the
Milky Way (averaged over the past ∼ 3Myr – the lifetime of early O-type stars) to
be (

dM


dt

)
MW

= (1.3± 0.2)M� yr−1 ; (42.7)

allowing for uncertainties in the IMF, the star formation rate should be in the range
0.9M� yr−1 < (dM
/dt)MW < 2.2M� yr−1.

Radio recombination lines (see §10.7) are another extinction-free tracer of ion-
ized gas, with the additional benefit of kinematic information from the Doppler
shifts, providing additional information to aid in distance estimation. Recombina-

1In H II regions ionized by very early-type stars, some of the N can be N III – see Table 15.2.
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tion line surveys have detected a large population of previously unknown Galactic
H II regions (Bania et al. 2010); future work will be able to provide an indepen-
dent estimate for the total photoionization rate QMW, and the implied Galactic star
formation rate (dM
/dt)MW.

42.5 Schmidt-Kennicutt Law

The total mass of molecular gas in the Milky Way is ∼ 109 M� (see Table 1.2). If
the typical density of this gas is nH ≈ 50 cm−3, with a free-fall time (3π/32Gρ)1/2 ≈
6× 106 yr, the maximum rate at which stars could be made would be

Ṁff =
Mtot

τff
≈ 200M� yr−1 . (42.8)

The actual star formation rate (see Eq. 42.7) is ∼ 2 orders of magnitude below this
value, for two reasons: (1) most of the mass in GMCs is not undergoing free-fall
collapse, and (2) even in regions that do collapse, only a fraction of the gas ends up
in stars. One of the major challenges to ISM theory is to understand why the star
formation rate has the observed value. This is a formidable problem that involves
understanding the excitation and damping of the MHD turbulence in molecular
clouds, transport of angular momentum out of contracting regions, ambipolar dif-
fusion to remove magnetic flux from contracting regions, and the important effects
of “feedback” – the effects of outflows and radiation from protostars and stars on
the surrounding gas, either stimulating or suppressing further star formation.

Because star formation is the result of gravitational collapse, one expects the
specific star formation rate (star formation rate per unit gas mass) to be larger in
higher density regions. Schmidt (1959) proposed that the star formation rate per
volume varied as a power of the local density ρ. The physics of star formation is
complex, and the star formation rate will depend on physical properties other than
gas density. Nevertheless, it has proven useful to examine the empirical relationship
between observed star formation rate and gas density. Because the volume density
ρ is difficult to determine from afar, Kennicutt (1998) examined the relationship
between the global star formation in a galaxy and Σgas,disk, the gas surface density
averaged over the “optical disk” of the galaxy, finding that the star formation rate
per unit area ΣSFR,disk varied approximately as

ΣSFR,disk = (2.5±0.7)×10−4

(
Σgas,dsik

M� pc−2

)1.4±0.15

M� kpc−2 yr−1 . (42.9)

This is often referred to as the Schmidt-Kennicutt Law. It is remarkable that this
relation extends from the low gas surface densities of gas-poor spiral disks to the
very high surface densities in the cores of luminous starburst galaxies. Because it
relates gas surface densities and star formation rates averaged over the entire optical
disk, it describes the global star formation rate.
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For well-resolved nearby galaxies, it is possible to use local values of ΣSFR and
Σgas. On 500 pc scales in the star-forming spiral galaxy M51a, the gas and star
formation rate surface densities vary as (Kennicutt et al. 2007)

ΣSFR,500 = (5.9±1.4)×10−5

(
Σgas,500

M� pc−2

)1.56±0.04

M� kpc−2 yr−1. (42.10)

Because of the nonlinear dependence of ΣSFR on Σgas, it is not surprising that
the coefficient in the local relation Eq. (42.10) is smaller than in Eq. (42.9) using
disk-averaged surface densities. Recall that Σgas in Eq. (42.9) is averaged over the
optical disk of the galaxy, while Σgas in Eq. (42.10) is averaged over only 500 pc
length scales. Because the gas surface density is very clumpy, and ΣSFR increases
more rapidly than linearly, we expect the prefactor in the “local” relation to be
smaller than in the “global” relation.

If one considers molecular gas only, then one finds a tighter relationship. In M51,
Kennicutt et al. (2007) found, on 500 pc scales,

ΣSFR,500 = (1.7±0.4)×10−4

(
ΣH2,500

M� pc−2

)1.37±0.03

M� kpc−2 yr−1 . (42.11)

This relation extends from ΣH2,500 ≈ 10M� pc−2 to ∼ 400M� pc−2 – a fac-
tor of ∼ 160 in ΣSFR. For the local Milky Way value of AV /NH, ΣH2 = 10 −
400M� pc−2 corresponds to AV from 0.48 to 20 mag.

We can try to obtain a qualitative understanding of the local relationship given
by Eq. (42.11). Let us assume the H2 to be in a uniform slab on the ∼ 500 pc
scales over which both ΣH2 and ΣSFR have been averaged in the observations
leading to Eq. (42.11). Suppose that the vertical thickness of the molecular gas
varies as h ∝ Σβ

gas, Then ρ ∝ Σ1−β
gas , the free-fall time τff ∝ Σ

(β−1)/2
gas , and

Σgas/τff ∝ Σ
3/2−β/2
gas . If the star formation rate/area is proportional to Σgas/τff ,

then the empirical relationship (42.11) is recovered if β = 0.26 ± 0.06, so that
ρ ∝ Σ0.74±0.06 – the internal density increases as ΣH2

rises. These arguments are
of course simplistic – in the Milky Way and in M51, GMCs are not uniform plane-
parallel slabs. Recall that GMCs in the Milky Way tend to have AV ≈ 10 mag.
Hence ΣH2

running from 10 to 100M� pc−2 would correspond to the GMC cov-
ering factor increasing from 0.05 to 0.5. If individual clouds had a fixed rate of star
formation per unit mass, we would have expected ΣSFR ∝ ΣH2

over this range,
yet the observations indicate that ΣSFR varies as Σ1.37

H2
. One interpretation would

be that an increase in ΣSFR leads to an increased pressure in the ISM, producing
higher densities within GMCs, and higher SFR per unit mass. This trend appears to
continue to the extraordinarily high surface density ΣH2

≈ 400M� pc−2, which
corresponds to AV ≈ 20 mag.

We are obviously far from understanding the process of star formation either on
a star-by-star basis, or averaged over large regions within galaxies.

Much remains to be learned.
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List of Symbols

Symbol Definition
α ≡ e2/h̄c = 1/137.04, fine-structure constant
αA thermal rate coefficient for case A recombination; see §14.2
αB thermal rate coefficient for case B recombination; see §14.2
αN polarizability of atom or molecule N ; see Eq. (2.29)
βν escape probability for photon of frequency ν; see §19.1
〈β̄〉 angle- and frequency-averaged escape probability; see §19.1
ε(ω) complex dielectric function; see Eq. (22.7)
ε1 ≡ Re(ε)
ε2 ≡ Im(ε)

ζCR,p primary ionization rate for an H atom due to cosmic ray protons
ζCR primary ionization rate due to cosmic rays
κν attenuation coefficient; see Eq. (7.9)
κν opacity = absorption cross section per unit mass; see §32.4

κ(T ) thermal conductivity; see §34.3
λ�u wavelength of photon emitted in transition u → �
µ electric dipole moment of molecule or grain
µB Bohr magneton ≡ eh̄/2mec = 9.274× 10−21 erg gauss−1

ν frequency (oscillations per unit time)
φs number of secondary ionizations per primary ionization; see §13.3
ρ mass density
σ Stefan-Boltzmann constant, 5.670× 10−5 erg s−1 cm−2 K−4

σ reaction or excitation/deexcitation cross section; see §2.1
σ electrical conductivity; see Eqs. (22.8 and 35.35)

σabs(λ) dust absorption cross section per H nucleon
σsca(λ) dust scattering cross section per H nucleon
σext(λ) ≡ σabs + σsca = dust extinction cross section per H nucleon
σdust(λ) attenuation cross section per H nucleon; see Eq. (15.20)
σrad.pr. radiation pressure cross section per H nucleon; see §23.10.1
Σgr dust projected area per H nucleon; see Eq. (31.6)
Σ−21 ≡ Σgr/10

−21 cm2H−1

τν optical depth at frequency ν; see Eq. (7.14)
χ UV intensity at 1000Å relative to Habing (1968); see Eq. (12.5)
ω angular frequency 2πν (radians per unit time)
ωp plasma frequency; see Eq. (11.2)
a0 Bohr radius ≡ h̄2/mec

2 = 5.292× 10−9 cm
aeff radius of equal-volume sphere; see Eq. (22.6)
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Symbol Definition
Å Angstrom ≡ 10−8 cm
Aλ extinction (in mag.) at wavelength λ
AB extinction (in mag.) at B = 4400 Å
AV extinction (in mag.) at V = 5500 Å
b impact parameter; see §2.2.1
bn departure coefficient; see §3.8

B, B magnetic field strength, magnetic field vector
c speed of light, 2.998× 1010 cm s−1

Cabs(λ) absorption cross section at wavelength λ
Csca(λ) absorption cross section at wavelength λ
Cext(λ) ≡ Cabs + Csca = absorption cross section at wavelength λ
DL luminosity distance; see §8.2
DM dispersion measure; see Eq. (11.12)
e |electron charge|, 4.803× 10−10 esu
Ej energy of a level j

E(B − V ) ≡ AB −AV

EM emission measure; see §10.5
f�u oscillator strength; see §6.3

f(X;T ) partition function per unit volume for species X; see Eq. (3.5)
F total (electronic + nuclear) angular momentum quantum number; see §5.1
F flux = power per area; see §9.1
Fν flux density = power per area per unit frequency; see §8.2
F
 empirical depletion parameter; see Eq. (9.36)
gff Gaunt factor for free-free transitions; see §10.2
gi degeneracy of a level i; see §3.1
G gravitational constant, 6.673× 10−8 erg cmg−2

G0 UV intensity (6–13.6 eV) relative to Habing (1968); see Eq. (12.6)
h Planck’s constant = 6.626× 10−27 erg s
h̄ h/2π = 1.055× 10−27 erg s

H I atomic hydrogen
H II H+, ionized hydrogen
I nuclear angular momentum quantum number; see §4.6
Iν specific intensity = power per area per unit frequency per unit solid angle;
jν emissivity; see Eq. (7.9)
J electronic angular momentum of an atom or ion
k Boltzmann’s constant, 1.381× 10−16 ergK−1

k ≡ 2π/λ = wavenumber
K degree Kelvin
λ wavelength
L total electronic angular momentum quantum number; see §4.5
L� solar luminosity, 3.826× 1033 erg s−1
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Symbol Definition
mH hydrogen mass, 1.674× 10−24 g
m(ω) complex refractive index; see Eq. (11.4)
MH I total mass of H I
M� solar mass, 1.989× 1033 g
nγ photon occupation number; see Eq. (7.3)
ne electron density
nH H nucleon density = n(H) + n(H+) + 2n(H2)
n2 nH/10

2 cm−3

n3 nH/10
3 cm−3

n4 nH/10
4 cm−3

n6 nH/10
6 cm−3

p momentum of a particle
p pressure of a fluid
pc parsec = 3.086× 1018 cm
Q0 rate of emission of hν > 13.60 eV (H-ionizing) photons

Q0,49 Q0/10
49 s−1

Q1 rate of emission of hν > 24.59 eV (He-ionizing) photons
Q0,MW rate of emission of hν > 13.60 eV photons by stars in the Galaxy
Qabs ≡ Cabs/πa

2
eff (absorption efficiency factor); see Eq. (22.6)

Qsca ≡ Csca/πa
2
eff (scattering efficiency factor); see Eq. (22.6)

Qext ≡ Cext/πa
2
eff (extinction efficiency factor); see Eq. (22.6)

Rgr rate coefficient for H2 formation on dust; see Eq. (31.8)
RS0 Strömgren radius in absence of dust; see Eq. (15.2)
R� solar radius, 6.960× 1010 cm
RV ≡ AV /E(B − V ); see Eq. (21.3)
RM rotation measure; see Eq. (refeq:RM)
S total electronic spin quantum number; see §4.5
Sν source function in radiative transfer; see Eq. (7.16)
T temperature
T2 T/102 K
T4 T/104 K
T6 T/106 K
TA antenna temperature; see Eq. (7.6)
TB brightness temperature; see Eq. (7.5)
Texc excitation temperature; see Eq. (7.8)
Tspin spin temperature; see Eq. (8.1)
uν specific energy density; see Eq. (7.7)
W equivalent width, dimensionless; see Eq. (9.3)
Wλ equivalent width, wavelength; see Eq. (9.4)
Wv equivalent width, velocity; see §9.1
xe ≡ ne/nH, referred to as the fractional ionization;
zint internal partition function; see §3.1
Z partition function; see §3.1
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Physical Constants

me 9.10938× 10−28 g electron mass
mec

2 510.999 keV
mp 1.67262× 10−24 g proton mass
mpc

2 938.272MeV
mH 1.67353× 10−24 g H mass

mp/me 1836.15 proton/electron mass ratio
amu 1.66054× 10−24 g atomic mass unit
e 4.80320× 10−10esu charge quantum

1.60218× 10−19C
h 6.62607× 10−27 erg s Planck’s constant
h̄ 1.05457× 10−27 erg s h/2π
c 2.99792458× 1010 cm s−1 speed of light

α = e2/h̄c 1/137.036 fine structure constant
a0 = h̄2/mee

2 5.29177× 10−9 cm Bohr radius
R∞ = mec

2α2/2hc 109737 cm−1 Rydberg constant
hcR∞ = mec

2α2/2 13.6057 eV Rydberg
µB = eh̄/2mec 9.27401× 10−21 ergG−1 Bohr magneton
µN = eh̄/2mpc 5.05078× 10−24 ergG−1 nuclear magneton

re = e2/mec
2 = α2a0 2.81794× 10−13 cm classical electron radius

σT = 8πr2e/3 6.65246× 10−25 cm2 Thomson cross section
eV 1.60218× 10−12 erg electron-volt
hc 1.98645× 10−16 erg cm

1.23984× 10−4 eV cm
1.23984 eVµm

hc/k 1.43878K cm
G 6.6742± 10× 10−8 erg cmg−2 Gravitational constant
k 1.38065× 10−16 ergK−1 Boltzmann constant

σ = π2k4/60h̄3c2 5.67040×10−5 erg s−1cm−3 K−4 Stefan-Boltzmann const.
a = π2k4/15(h̄c)3 7.56577× 10−15 erg cm−3 K−4 radiation constant

Energy Conversion Factors
E E/k E/hc E E

( eV ) (K ) ( cm−1 ) ( erg ) ( J/mole )

1 1.1605× 104 8.0656× 103 1.6022× 10−12 9.6485× 104

8.6173× 10−5 1 0.69603 1.3807× 10−16 8.3144
1.2398× 10−4 1.4388 1 1.9865× 10−16 11.963
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Summary of Radiative Processes

Definitions:

g�, gu ≡ degeneracy of level �, u

f�u ≡ f�→u ≡ oscillator strength for transition � → u

σ�u(ν) ≡ σ�→u(ν)≡ cross section for transition � → u

nγ ≡ (Iν)pol
hν3/c2

≡ photon occupation number (single polarization state)

〈nγ〉 ≡ 〈Iν〉
2hν3/c2

≡ uν

8πhν3/c3
= angle and, polarization averaged nγ

n�, nu ≡ number density of atoms in level �, u

Identities:

g�f�u ≡−gufu�

g�B�u ≡ guBu�

Au� =
8π2e2ν2

mec3
|fu�|= 8π2e2ν2

mec3
g�
gu

f�u =
8π2e2

mecλ2

g�
gu

f�u

Bu� =
c3

8πhν3
Au� =

πe2

mehν

g�
gu

f�u∫ ∞

0

σ�u(ν)dν=
gu
g�

c2

8πν2
Au� =

πe2

mec
f�u

σ�u(ν)=
πe2

mec
f�uφν =

λ2

8π

gu
g�

Au�φν

Blackbody Radiation:

Bν(T ) =
2hν3

c2
1

ehν/kT − 1
→ 2kTν2

c2
for

hν

kT
� 1

nγ =
1

ehν/kT − 1
→ kT

hν
for

hν

kT
� 1

uν =
4π

c
Bν ; u =

∫ ∞

0

uνdν= aT 4 ; a =
π2

15

k4

h̄3c3
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Frequency distribution function: (
∫
φνdν = 1)

Gaussian : φν =
1

(2π)1/2

(
c

ν0σv

)
exp

[
−1

2

(
(ν − ν0)

ν0

c

σv

)2
]

σv = one dimensional velocity dispersion =

(
kT

M

)1/2

=
b√
2

(FWHM)ν
ν0

=
(FWHM)λ

λ0
=

(FWHM)v
c

=
(σv

c

)√
8 ln 2

Lorentzian : φν =
4γ�u

16π2(ν − ν0)2 + γ2
�u

,
(FWHM)ν

ν0
=

γ�u
2πν0

γ�u = damping constant =
∑
k<�

A�k +
∑
k<u

Auk

Interaction of atoms with radiation:

Absorption � → u : n�B�uuν = 〈nγ〉n�
gu
g�

Au�

Spontaneous emission u → � : nuAu�

Stimulated emission u → � : nuBu�uν = 〈nγ〉nuAu�

Radiative transfer:

dIν = −Iν κν ds+ jν ds =

[
−Iν +

jν
κν

]
dτν (neglecting scattering)

κν = n� σ�u(ν)− nu |σu�(ν)| = n�

(
1− nu/gu

n�/g�

)
σ�u(ν)

jν = nu Au� hν
1

4π
φν

jν
κν

= Bν(Texc) , where
nu

n�
=

gu
g�

e−hν/kTexc
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Curve of Growth for a Maxwellian Velocity Distribution
(see Chapter 9)

τ0 =
√
π

e2

mec

Nlfluλ

b
= 1.497× 10−2 cm

2

s

N�f�uλ

b
(C.1)

=0.7580

(
N�

1013cm−2

)(
f�u

0.4164

)(
λ

1215.7Å

)(
10kms−1

b

)
(C.2)

1. Optically thin (τ0 ≤ 1 , 0 < error < +2.4%):

W ≡ Wλ

λ
=

√
π

b

c

∞∑
n=1

(−1)n−1τn0
n!
√
n

≈ √
π

b

c

τ0[
1 + τ0/(2

√
2)
] (C.3)

=
πe2

mec2
N�f�uλ[

1 + τ0/(2
√
2)
] = 8.85× 10−13 cm

N�f�uλ[
1 + τ0/(2

√
2)
] (C.4)

2. Flat portion of curve of growth (1 ≤ τ0 <∼ 103 ; − 8%< error<+2.4% for
1<τ0 < 600):

W ≡ Wλ

λ
≈ 2b

c
[ln(τ0/ ln 2)]

1/2

3. Damping (“square root”) portion of curve of growth (τ0 >∼ 104):

W ≡ Wλ

λ
≈ 1

c

(
e2

mec
N�f�uλ

2γu�

)1/2

where γu� ≡
∑
k

Auk +
∑
k

A�k

= 6.02×10−3

(
Au�

6.27× 108 s−1

)(
λu�

1215 Å

)2(
gu/g�
3

γu�
Au�

)1/2(
N�

1020 cm−2

)1/2

= 6.56
b

c

( τ0
104

)1/2( λ

1215 Å

10 km s−1−1

b

γu�
6.27× 108 s−1

)1/2

Transition from flat to square root portion of curve of growth occurs at τ0 = τdamp,
where

τdamp

ln(τdamp/ ln 2)
≈ 4

√
π b

λu�γu�
≈ 931

(
b

10 km s−1

)(
1215Å

λ

)(
6.27× 108 s−1

γul

)
or τdamp ≈ 8400 for Lyα with b = 10 km s−1.

4. Flat and damping portions together can be approximated by:

W ≡ Wλ

λ
≈
[
4b2

c2
ln(τ0/ ln 2) +

b

c

γu�λu�

c

(τ0 − 1.25393)√
π

]1/2
For Lyα with b = 10 km s−1, error < +4.9% for τ0 > 1.25393.
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1. Free-free (≡ bremsstrahlung) emission coefficient jν (see §§10.1, 10.2):

jν =
8

3

(
2π

3

)1/2
e6

c3m
3/2
e (kT )1/2

neniZ
2
i gff,ie

−hν/kT (C.5)

≈ 5.444× 10−41neniZ
2
i

T 0.5
4

gff,ie
−hν/kT erg cm3 sr−1 s−1 Hz−1 (C.6)

≈ 2.55× 10−40neniZ
2
i

T 0.5
4

[
1−0.118 ln

(
0.1Ziν9

T
3/2
4

)]
erg cm3

sr sHz

for hν � kT (C.7)
≈ 3.35×10−40neniZ

1.88
i T−0.32

4 ν−0.12
9 erg cm3 sr−1 s−1 Hz−1

for hν � kT , (C.8)

where ν9 ≡ ν/GHz, T4 ≡ T/104 K, and the Gaunt factor in (C.7, C.8) has
been taken from the approximations (C.13, C.14).

2. Free-free absorption coefficient κν = jν/Bν(T ) (see §10.4):

κν =
4

3

(
2π

3

)1/2
e6

m
3/2
e c(kT )1/2hν3

[
1− e−hν/kT

]
neniZ

2
i gff,i (C.9)

≈ 1.771× 10−26gff,i
neniZ

2
i

T
3/2
4 ν29

cm5 for hν � kT (C.10)

≈ 8.31× 10−26

[
1− 0.118 ln

(
Ziν9/10

T
3/2
4

)]
neniZ

2
i

T
3/2
4 ν29

cm5

for hν � kT (C.11)
≈ 1.091× 10−25neniZ

1.88
i T−1.32

4 ν−2.10
9 cm5 for hν � kT ,(C.12)

where ν9 ≡ ν/GHz, T4 ≡ T/104 K, and the Gaunt factor in (C.11, C.12) has
been taken from the approximations (C.13, C.14).

3. Gaunt factor for free-free transitions gff (see §10.2) for νp � ν � kT/h:

gff ≈
√
3

π

[
ln

(2kT )3/2

πZie2m
1/2
e ν

− 5γ

2

]
, γ = 0.577216... = Euler’s constant

=4.691

[
1− 0.118 ln

(
Ziν9/10

T
3/2
4

)]
(C.13)

≈ 6.155 ν−0.12
9 T 0.18

4 (±10% for 0.14 < ν9/T
3/2
4 < 250) (C.14)

4. Dispersion relation for a cold plasma (see Chapter 11):

k2c2 =ω2 − ω2
p , where ω2

p ≡ 4πnee
2

me
(C.15)

vphase =
ω

k
= c

[
1− ω2

p

ω2

]−1/2

vgroup =
dω

dk
= c

[
1− ω2

p

ω2

]1/2
. (C.16)
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Ionization Potentials (eV)
Element I→II II→III III→IV IV→V V→VI VI→VII VII→VIII

1 H 13.5984
2 He 24.5874 54.416
3 Li 5.3917 75.640 122.454
4 Be 9.3227 18.211 153.894 217.719
5 B 8.2980 25.155 37.931 259.375 340.226
6 C 11.2603 24.383 47.888 64.494 392.089 489.993
7 N 14.5341 29.601 47.449 77.474 97.890 552.072 667.046
8 O 13.6181 35.121 54.936 77.414 113.899 138.120 739.293
9 F 17.4228 34.971 62.708 87.140 114.243 147.163 185.189

10 Ne 21.5645 40.963 63.423 97.117 126.247 154.214 207.271
11 Na 5.1391 47.286 71.620 98.91 138.40 172.183 208.50
12 Mg 7.6462 15.035 80.144 109.265 141.270 186.76 225.02
13 Al 5.9858 18.829 28.448 119.992 153.825 190.477 241.76
14 Si 8.1517 16.346 33.493 45.142 166.767 205.267 246.481
15 P 10.4867 19.769 30.203 51.444 65.025 220.422 263.57
16 S 10.3600 23.338 34.790 47.222 72.594 88.053 280.948
17 Cl 12.9676 23.814 39.911 53.465 67.819 97.030 114.201
18 Ar 15.7596 27.630 40.735 59.686 75.134 91.00 124.328
19 K 4.3407 31.628 45.806 60.913 82.66 99.4 117.6
20 Ca 6.1132 11.872 50.913 67.27 84.51 108.8 127.2
21 Sc 6.5615 12.800 24.757 73.489 91.69 110.7 138.0
22 Ti 6.8281 13.576 24.492 43.267 123.7 119.533 140.846
23 V 6.7462 14.655 29.311 46.709 65.282 128.125 150.641
24 Cr 6.7665 16.486 30.959 49.160 69.456 90.635 160.175
25 Mn 7.4340 15.640 33.668 51.2 72.4 95.60 119.203
26 Fe 7.9024 16.188 30.651 54.801 75.010 99.063 124.976
27 Co 7.8810 17.084 33.50 51.27 79.5 102. 129.
28 Ni 7.6398 18.169 35.187 54.925 76.06 107.87 133.
29 Cu 7.7264 20.292 36.841 57.380 79.846 103.031 138.862
30 Zn 9.3492 17.964 39.723 59.573 82.574 133.903 133.903

Notes:
• Ionization potentials from Ralchenko et al. (2010)
• The light line separates ions with I < IHe from ions with I > IHe = 24.6 eV.
• Ions to right of the heavy line (with I > IHe II = 54.4 eV) are not abundant in

gas photoionized by O or B stars and are therefore indicative of photo-
ionization by WR stars, PN nuclei, or collisional ionization in shocked gas.

• For elemental abundances, see Table 1.4.
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Energy-Level Diagrams

This appendix provides energy-level diagrams for the more abundant elements (H,
C, N, O, Ne, Mg, Al, Si, S, Ar) in ionization states with 3 to 9, or 11 to 15 electrons.
The diagrams show the ground state and excited states with E < 13.6 eV.

• Hyperfine splitting (interaction with the nuclear magnetic moment) is not
shown.

• Atoms or ions with 2 electrons (e.g., He I) or 10 electrons (e.g., Ne I) are not
shown because they have no excited states below 13.6 eV (but see Fig. 14.3
for the radiative decay pathways from higher levels of He I that are populated
by radiative recombination.)

• Fine-structure splitting is indicated (although not to scale). The one-electron
system – H I – is a special case: different orbitals n� with the same principal
quantum number n (e.g., 2s and 2p) have nearly identical energies, and spin-
orbit splitting is negligible (e.g., the 2P o

1/2 and 2P o
3/2 levels formed from the

2p orbital have nearly the same energy). Therefore, for H we show a single
energy level for each principal quantum number n.

• Heavy lines show resonance lines – permitted absorption transitions to/from
the ground state multiplet. Resonance lines are shown in absorption (i.e., as
upward arrows), but of course are also observable as emission lines (e.g., H
Lyman α, or C IV 1548,1551).

• Dashed lines show intercombination (“semiforbidden”) lines out of the ground
state multiplet. These have small f values but may be observable in absorp-
tion if the column density is sufficient.

• Downward solid lines show additional transitions that may be observable
in emission. Because the lowest few energy levels of multielectron atoms
typically have the same parity, most of the emission lines shown in these
figures are forbidden transitions.

• Wavelengths are in Å, unless otherwise noted.

• All wavelengths are in vacuo.
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1 electron
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3 electrons
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4 electrons
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Appendix F

Collisional Rate Coefficients

Notation:

T2 ≡ T

102 K
; T4 ≡ T

104 K
.

Table F.1 Electron Collision Strengths for np1 and np5 Ions

Ion �− u λu�(µm) Ωu� Note
2s22p C II 2P o

1/2−2P o
3/2 157.7 (1.55 + 1.25T4)/(1 + 0.35T 1.25

4 ) a
N III 57.34 1.21 T 0.151+.056 lnT4

4 b
O IV 25.91 2.144 T 0.164−0.068 lnT4

4 c

2s22p5 Ne II 2P o
3/2−2P o

1/2 12.815 0.314 T 0.076+0.002 lnT4
4 d

Mg IV 4.488 0.342 + 0.00434T4 e

3s23p Si II 2P o
1/2−2P o

3/2 34.81 4.45 T−0.021+0.016 lnT4
4 f

S IV 10.51 8.54 T−0.012−0.076 lnT4
4 g

Ar VI 4.531 5.90 T 0.203−0.146 lnT4
4 h

3s23p5 Ar II 2P o
3/2−2P o

1/2 6.985 2.93 T 0.084−0.014 lnT4
4 i

Ca IV 3.207 1.00 T 0.248+0.086 lnT4
4 i

a fit to Tayal (2008) f fit to Bautista et al. (2009)
b fit to Stafford et al. (1994) g fit to Tayal (2000)
c fit to Tayal (2006a) h fit to Saraph & Storey (1996)
d fit to Griffin et al. (2001) i fit to Pelan & Berrington (1995)
e Johnson & Kingston (1987)
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Table F.2 Electron Collision Strengths for np2 Ions

Ion �− u Ωu� Note
C I 3P0−3P1 fitting formulae given in reference a a

3P0−3P2 fitting formulae given in reference a a
3P1−3P2 fitting formulae given in reference a a

N II 3P0−3P1 0.431 T 0.099+0.014 lnT4
4 b

” 3P0−3P2 0.273 T 0.166+0.030 lnT4
4 b

” 3P1−3P2 1.15 T 0.137+0.024 lnT4
4 b

” 3P0−1D2 0.303 T 0.053+0.009 lnT4
4 b

” 3P1−1D2 0.909 T 0.053+0.010 lnT4
4 b

” 3P2−1D2 1.51 T 0.054+0.011 lnT4
4 b

” 3P0−1S0 0.0352 T 0.066+0.018 lnT4
4 b

” 3P1−1S0 0.105 T 0.070+0.021 lnT4
4 b

” 3P2−1S0 0.176 T 0.065+0.017 lnT4
4 b

” 1D2−1S0 0.806 T−0.175−0.014 lnT4
4 b

O III 3P0−3P1 0.522 T 0.033−0.009 lnT4
4 c

” 3P0−3P2 0.257 T 0.081+0.017 lnT4
4 c

” 3P1−3P2 1.23 T 0.053+0.007 lnT4
4 c

” 3PJ−1D2 0.243(2J + 1) T 0.120+0.031 lnT4
4 c

” 3PJ−1S0 0.0321(2J + 1) T 0.118+0.057 lnT4
4 c

” 1D2−1S0 0.523 T 0.210−0.099 lnT4
4 c

Ne V 3P0−3P1 1.408 T−0.264−0.057 lnT4
4 d

” 3P0−3P2 1.810 T−0.444−0.060 lnT4
4 d

” 3P1−3P2 5.832 T−0.390−0.056 lnT4
4 d

” 3PJ−1D2 0.232(2J + 1) T 0.016+0.019 lnT4
4 d

” 3PJ−1S0 0.0273(2J + 1) T 0.027+0.042 lnT4
4 d

” 1D2−1S0 5.832 T−0.390−0.056 lnT4
4 d

S III 3P0−1P0 3.98 T−.227−0.100 lnT4
4 e

” 3P0−3P2 1.31 T−0.070+0.052 lnT4
4 e

” 3P1−3P2 7.87 T−0.171−0.033 lnT4
4 e

” 3P0−1D2 0.773 T−0.015+0.056 lnT4
4 e

” 3P1−1D2 2.32 T−0.015+0.057 lnT4
4 e

” 3P2−1D2 3.86 T−0.015+0.058 lnT4
4 e

” 3P0−1S0 0.131 T 0.043+0.031 lnT4
4 e

” 3P1−1S0 0.398 T 0.040+0.031 lnT4
4 e

” 3P2−1S0 0.655 T 0.040+0.029 lnT4
4 e

” 1D2−1S0 1.38T 0.140+0.093 lnT4
4 e

Ar V 3P0−3P1 0.257 f
” 3P0−3P2 0.320 f
” 3P1−3P2 1.04 f
” 3PJ−1D2 0.131(2J + 1) T−0.092−0.150 lnT4

4 f
” 3PJ−1S0 0.413(2J + 1) T−0.177+0.080 lnT4

4 f
” 1S0−1D2 1.25 T−0.017−0.009 lnT4

4 f
a Johnson et al. (1987) d fit to Lennon & Burke (1994)
b fit to Hudson & Bell (2005) e fit to Tayal & Gupta (1999)
c fit to Aggarwal & Keenan (1999) f fit to Mendoza (1983)
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Table F.3 Electron Collision Strengths for np4 Ions

Ion �− u Ωu� Note
O I 3P2−3P1 0.041 T 0.69

4 + .064T 1.72
4 a

” 3P2−3P0 0.0136 T 0.61
4 + 0.0186T 1.49

4 a
” 3P1−3P0 0.00166 T 0.71

4 + .0288T 1.97
4 a

” 3PJ−1D2 0.0476(2J + 1) T 1.43
4 /(1 + 0.605T 1.105

4 ) a
” 3PJ−1S0 0.00653(2J + 1) T 1.50

4 /(1 + 0.80 T 1.125
4 ) a

” 1D2−1S0 0.116 T 0.54
4 /(1 + 0.111 T 0.160

4 ) a

Ne III 3P2−3P1 0.774 T 0.068−0.0556 lnT4
4 b

” 3P2−3P0 0.208 T 0.056−0.053 lnT4
4 b

” 3P1−3P0 0.244 T 0.086−0.058 lnT4
4 b

” 3P2−1D2 0.754 T−0.011+0.004 lnT4
4 b

” 3P1−1D2 0.452T−0.010+0.004 lnT4
4 b

” 3P0−1D2 0.151 T−0.010+0.003 lnT4
4 b

” 3P2−1S0 0.0840 T 0.029+0.015 lnT4
4 b

” 3P1−1S0 0.050 T 0.028+0.020 lnT4
4 b

” 3P0−1S0 0.0170 T 0.021+0.015 lnT4
4 b

” 1D2−1S0 0.269 T 0.055+0.034 lnT4
4 b

Mg V 3P2−3P1 0.929 T 0.130−0.041 lnT4
4 c

” 3P2−3P0 0.265 T 0.148−0.053 lnT4
4 c

” 3P1−3P0 0.317 T 0.102−0.040 lnT4
4 c

” 3P2−1D2 0.705 T 0.008−0.008 lnT4
4 c

” 3P1−1D2 0.448 T 0.005−0.012 lnT4
4 c

” 3P0−1D2 0.153 T−0.002−0.011 lnT4
4 c

” 3P2−1S0 0.101 T 0.029−0.045 lnT4
4 c

” 3P1−1S0 0.0664 T 0.032−0.033 lnT4
4 c

” 3P0−1S0 0.0252 T 0.022−0.024 lnT4
4 c

” 1D2−1S0 0.175 T 0.105−0.033 lnT4
4 c

Ar III 3P2−3P1 4.04 T 0.031+0.002 lnT4
4 d

” 3P2−3P0 1.00 T 0.111−0.009 lnT4
4 d

” 3P1−3P0 1.42 T−0.024−0.016 lnT4
4 d

” 3P2−1D2 2.94 T 0.011+0.014 lnT4
4 d

” 3P1−1D2 1.80 T 0.006+0.013 lnT4
4 d

” 3P0−1D2 0.602 T 0.004+0.014 lnT4
4 d

” 3P2−1S0 0.359 T 0.144+0.031 lnT4
4 d

” 3P1−1S0 0.220 T 0.004+0.014 lnT4
4 d

” 3P0−1S0 0.073 T 0.144+0.065 lnT4
4 d

” 1D2−1S0 1.18 T 0.128−0.028 lnT4
4 d

a Pequignot (1996) c fit to Hudson et al. (2009)
b fit to Butler & Zeippen (1994) d fit to Muñoz Burgos et al. (2009)
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Table F.4 Electron Collision Strengths for 2s22p3 Ions

Ion �− u Ωu� Note

N I 4S o
3/2−2D o

5/2 0.337 T 0.723−0.129 lnT4
4 a

” 4S o
3/2−2D o

3/2 0.224 T 0.726−0.125 lnT4
4 a

” 2D o
5/2−2D o

3/2 0.257 T 0.960−0.009 lnT4
4 a

” 4S o
3/2−2P o

1/2 0.055 T 0.759−0.140 lnT4
4 a

” 4S o
3/2−2P o

3/2 0.109 T 0.759−0.134 lnT4
4 a

” 2D o
5/2−2P o

1/2 0.139 T 0.559−0.009 lnT4
4 a

” 2D o
5/2−2P o

3/2 0.366 T 0.499+0.015 lnT4
4 a

” 2D o
3/2−2P o

1/2 0.141 T 0.476+0.030 lnT4
4 a

” 2D o
3/2−2P o

3/2 0.195 T 0.547+0.001 lnT4
4 a

” 2P o
1/2−2P o

3/2 0.123 T 0.738−0.059 lnT4
4 a

O II 4S o
3/2−2D o

5/2 0.803 T 0.023−0.008 lnT4
4 b

” 4S o
3/2−2D o

3/2 0.550 T 0.054−0.004 lnT4
4 b

” 2D o
5/2−2D o

3/2 1.434 T−0.176+0.004 lnT4
4 b

” 4S o
3/2−2P o

3/2 0.140 T 0.025−0.006 lnT4
4 b

” 4S o
3/2−2P o

1/2 0.283 T 0.023−0.004 lnT4
4 b

” 2D o
5/2−2P o

3/2 0.349 T 0.060+0.052 lnT4
4 b

” 2D o
5/2−2P o

1/2 0.832 T 0.076+0.055 lnT4
4 b

” 2D o
3/2−2P o

3/2 0.326 T 0.063+0.052 lnT4
4 b

” 2D o
3/2−2P o

1/2 0.485 T 0.059+0.052 lnT4
4 b

” 2P o
3/2−2P o

1/2 0.322 T 0.019+0.037 lnT4
4 b

Ne IV 4S o
3/2−2D o

5/2 0.88 T−0.080+0.007 lnT4
4 c

” 4S o
3/2−2D o

3/2 0.59 T−0.091+0.012 lnT4
4 c

” 4S o
3/2−2P o

1/2 0.15 T−0.006−0.005 lnT4
4 c

” 4S o
3/2−2P o

3/2 0.30 T−0.003−0.005 lnT4
4 c

” 2D o
5/2−2D o

3/2 1.27 T−0.013+0.017 lnT4
4 c

” 2D o
5/2−2P o

1/2 0.365 T 0.009+0.023 lnT4
4 c

” 2D o
3/2−2P o

3/2 0.90 T 0.007+0.035 lnT4
4 c

” 2D o
3/2−2P o

1/2 0.34 T 0.008+0.037 lnT4
4 c

” 2D o
5/2−2P o

3/2 0.51 T−0.013+0.033 lnT4
4 c

” 2P o
1/2−2P o

3/2 0.35 T 0.099−0.014 lnT4
4 c

a fit to Tayal (2006b) c fit to Ramsbottom et al. (1998)
b fit to Tayal (2007)
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Table F.5 Electron Collision Strengths for 3s23p3 Ions

Ion �− u Ωu� Note

S II 4S o
3/2−2D o

3/2 2.56T−0.071−0.023 lnT4
4 a

” 4S o
3/2−2D o

5/2 3.83T−0.070−0.022 lnT4
4 a

” 4S o
3/2−2P o

1/2 0.704T 0.042+0.006 lnT4
4 a

” 4S o
3/2−2P o

5/2 1.42T 0.041−0.001 lnT4
4 a

” 2D o
3/2−2D o

5/2 6.89T−0.103−0.022 lnT4
4 a

” 2D o
3/2−2P o

1/2 1.47T 0.014 lnT4
4 a

” 2D o
3/2−2P o

3/2 2.39T−0.006
4 a

” 2D o
5/2−2P o

1/2 1.78T−0.012−0.006 lnT4
4 a

” 2D o
5/2−2P o

3/2 4.06T 0.005 lnT4
4 a

” 2P o
1/2−2P o

3/2 1.80T 0.032−0.001 lnT4
4 a

Ar IV 4S o
3/2−2D o

3/2 0.762T 0.012+0.023 lnT4
4 b

” 4S o
3/2−2D o

5/2 1.144T 0.012+0.022 lnT4
4 b

” 4S o
3/2−2P o

1/2 0.393T 0.014+0.182 lnT4
4 b

” 4S o
1/2−2P o

3/2 0.785T 0.013+0.183 lnT4
4 b

” 2D o
3/2−2D o

5/2 7.055T−0.051−0.058 lnT4
4 b

” 2D o
3/2−2P o

1/2 1.507T−0.005+0.043 lnT4
4 b

” 2D o
3/2−2P o

3/2 2.139T 0.021+0.010 lnT4
4 b

” 2D o
5/2−2P o

1/2 1.533T 0.025+0.005 lnT4
4 b

” 2D o
5/2−2P o

3/2 3.939T 0.004+0.032 lnT4
4 b

” 2P o
1/2−2P o

3/2 2.065T 0.425−0.052 lnT4
4 b

a fit to Tayal & Zatsarinny (2010)
b fit to Ramsbottom et al. (1997)
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Table F.6 Rate Coefficients for Fine-Structure Excitation by X = H+, H, H2, He

X Ion �− u ku�( cm
3 s−1) Note

H+ C I 3P0 − 3P1 7.60×10−10T 0.464−0.042 lnT2
2 a

H+ C I 3P0 − 3P2 3.02×10−10T 1.217−0.126 lnT2
2 a

H+ C I 3P1 − 3P2 2.30×10−9T 0.919−0.111 lnT2
2 a

H C I 3P0 − 3P1 1.26×10−11T 0.115+0.057 lnT2
2 b

H C I 3P0 − 3P2 2.64×10−11T 0.231+0.046 lnT2
2 b

H C I 3P1 − 3P2 8.90×10−11T 0.228+0.046 lnT2
2 b

H2(para) C I 3P0 − 3P1 0.67×10−10T−0.085+0.102 lnT2
2 c

H2(ortho) C I 3P0 − 3P1 0.71×10−10T−0.004+0.049 lnT2
2 c

H2(para) C I 3P0 − 3P2 0.86×10−10T−0.010+0.048 lnT2
2 c

H2(ortho) C I 3P0 − 3P2 0.69×10−10T 0.169+0.038 lnT2
2 c

H2(para) C I 3P1 − 3P2 1.75×10−10T 0.072+0.064 lnT2
2 c

H2(ortho) C I 3P1 − 3P2 1.48×10−10T 0.263+0.031 lnT2
2 c

He C I 3P0 − 3P1 1.76×10−11T 0.106−0.036 lnT2
2 d

He C I 3P0 − 3P2 4.44×10−11T 0.029
2 d

He C I 3P1 − 3P2 8.33×10−11T 0.113+0.029 lnT2
2 d

H C II 2P o
3/2 − 2P o

1/2 7.58×10−10 T 0.128+0.009 lnT2
2 e

H2(para) C II 2P o
3/2 − 2P o

1/2 4.25×10−10 T 0.124−0.018 lnT2
2 f

H2(ortho) C II 2P o
3/2 − 2P o

1/2 5.14×10−10 T 0.095+0.023 lnT2
2 f

He C II 2P o
3/2 − 2P o

1/2 0.38× H rate g

H OI 3P2 − 3P1 3.57×10−10 T 0.419−0.003 lnT2
2 b

H OI 3P2 − 3P0 3.19×10−10 T 0.369−0.006 lnT2
2 b

H OI 3P1 − 3P0 4.34×10−10 T 0.755−0.160 lnT2
2 b

H2(para) O I 3P2 − 3P1 1.49×10−10T 0.264+0.025 lnT2
2 h

H2(ortho) O I 3P2 − 3P1 1.37×10−10T 0.296+0.043 lnT2
2 h

H2(para) O I 3P2 − 3P0 1.90×10−10T 0.203+0.041 lnT2
2 h

H2(ortho) O I 3P2 − 3P0 2.23×10−10T 0.237+0.058 lnT2
2 h

H2(para) O I 3P1 − 3P0 2.10×10−12 T 0.889+0.043 lnT2
2 h

H2(ortho) O I 3P1 − 3P0 3.00×10−12 T 1.198+0.525 lnT2
2 h

H OI 1D2 − 3PJ 1.21×10−13(2J + 1)T−0.045−0.078 lnT4
4 i

H Si II 2P o
3/2 − 2P o

1/2 5.40×10−10T 0.152+0.034 lnT2
2 e

H2 Si II 2P o
3/2 − 2P o

1/2 0.40×H rate g
He Si II 2P o

3/2 − 2P o
1/2 0.29×H rate g

a fit to Roueff & Le Bourlot (1990) f fit to Flower & Launay (1977)
b fit to Abrahamsson et al. (2007) g assume ku� ∝

√
αN/µ

c fit to Schroder et al. (1991) h fit to Jaquet et al. (1992)
d fit to Staemmler & Flower (1991) i fit to Krems et al. (2006)
e fit to Barinovs et al. (2005)
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Table F.7 References for Rate Coefficients for Collisional Excitation of H2

Collision Reference
H2 +H experiment Heidner & Kasper (1972)

theory Wrathmall & Flower (2006)
theory Wrathmall et al. (2007)

H2 +H2 experiment Audibert et al. (1974)
theory Quéméner & Balakrishnan (2009)

H2 + e review Tawara et al. (1990)



Appendix G

Semiclassical Atom

The absorption and emission properties of atoms are, of course, obtained from
quantum-mechanical calculations. Nevertheless, it is instructive to note the close
correspondence between quantum-mechanical results and a simple classical model.

Consider a charge q with mass m, moving in a “harmonic” potential:

U(r) =
1

2
mω2

0

(
x2 + y2 + z2

)
. (G.1)

We want to include a “drag” force that represents the energy lost in electromagnetic
radiation by the oscillating charge. Consider a drag force proportional to velocity:

�Fdrag = −γm�v , (G.2)

where γ is a constant. The time-averaged energy loss to the drag force −γm�v is

〈P 〉 = γm〈v2〉 = 1

2
γmω2|x0|2 . (G.3)

Classically, a charge undergoing simple harmonic motion x = Re[x0e
−iωt], radi-

ates a time-averaged power Prad = ω4q2|x0|2/(3c3). Therefore, if we set

γ =
2

3

ω2
0q

2

mc3
, (G.4)

the damping term will mimic the energy loss due to radiation.
Now, consider the response of the oscillator to an incident electromagnetic wave

producing an electric field at the location of the atom:

�E = x̂ Re
[
E0e

−iωt
]

. (G.5)

The charged particle obeys the equation of motion

mẍ = −mω2
0x+ qE0e

−iωt − γmẋ . (G.6)

We seek a periodic solution x0 = e−iωt; substituting this into (G.6) gives us

x0 =
qE0

m(ω2
0 − ω2)− imωγ

. (G.7)
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Undergoing this periodic motion, the applied electric field E does work on the
particle at the same rate (averaged over a cycle) that the particle loses energy to
the damping force, given by Eq. (G.3). The incident electromagnetic wave has
time-averaged energy density

〈u〉 = 〈E2〉
8π

+
〈B2〉
8π

=
E2

0

8π
. (G.8)

The time-averaged rate of absorption of energy from the electromagnetic field can
be written as the product of the energy flux 〈u〉c and the absorption cross section
Cabs. The cross section for absorption of energy from the electromagnetic wave is

Cabs =
〈P 〉
〈u〉c =

4πq2

mc

γω2

(ω − ω0)2(ω + ω0)2 + γ2ω2
(G.9)

=
4πq2

mc

γ

ω2
0

(
ω
ω0

− ω0

ω

)2
+ γ2

. (G.10)

This is called a Drude absorption profile. If |ω − ω0| � ω0, then the profile can
be approximated by a Lorentz line profile:

Cabs ≈ 4πq2

mc

γ

4(ω − ω0)2 + γ2
. (G.11)

For comparison, quantum mechanics gives a Lorentz line profile

Cabs ≈ 4πe2

mec
f�u

γ

4(ω − ω�u)2 + γ2
�u

, (G.12)

which is identical to the classical result (G.11) except for the factor f�u. Our clas-
sical harmonic oscillator has only one transition frequency. For the quantum atom,
the electron moves in an anharmonic potential, and there are many transition fre-
quencies, with the sum rule

∑
u f�u = 1. What about the line width? The quantum

damping parameter is

γ�u = Au� =
2e2ω2

�u

mec3
g�
gu

f�u . (G.13)

Thus, we see that the quantum and classical results agree if

f�u ↔ 1 and
1

3
↔ g�

gu
. (G.14)

We note that the 1s− 2p Lymanα transition of hydrogenic ions has g�/gu = 1/3.
Therefore, the quantum mechanical result for the absorption cross section of atoms
has a close correspondence to a simple classical damped harmonic oscillator.
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Debye Length for a Plasma

It is often convenient to assume that the ions and electrons in a plasma are randomly
located, but on large scales this cannot be correct, because a plasma must maintain
overall electric neutrality – the positions of ions and electrons must be correlated.

Consider a proton–electron plasma, with average densities ne0 = np0 of elec-
trons and protons. Choose a coordinate system centered on the position of a partic-
ular proton. The Coulomb potential contributed by the proton will result in an in-
creased density of electrons (and a decreased density of other protons) in the neigh-
borhood of our chosen proton, resulting in an excess of negative charge around the
proton. Let Q(r) be the expected charge within a region of radius r around the
proton. Considering only the potential from the first proton, we can estimate the
net charge density around it by assuming thermodynamic equilibrium:

ne(r) = ne0e
e2/rkT , np(r) = np0e

−e2/rkT . (H.1)

Because np0 = ne0, the net charge density is

ρ(r) = −ene0

[
ee

2/rkT − e−e2/rkT
]

. (H.2)

The net shielding charge within a radius R is given by

Q(R) = −ene0

∫ R

0

4πr2dr
[
ee

2/rkT − e−e2/rkT
]

. (H.3)

Now suppose that r � e2/kT . Then we expand the exponentials to obtain

Q(R)=−ene0

∫ R

0

4πr2dr

[
1 +

e2

rkT
−
(
1− e2

rkT

)]
(H.4)

=−4πene0

∫ R

0

2e2

rkT
r2dr = −4πene0

e2

kT
R2 . (H.5)

Shielding of the original proton charge by the induced negative charge density will
be effective beyond a length scale LD defined by Q(LD) = −e. This gives the
Debye length:

LD =

(
kT

4πnee2

)1/2

= 690 T
1/2
4 (ne/ cm

−3)−1/2 cm . (H.6)



Appendix I

Heuristic Model for Ion–Electron Inelastic

Scattering

Consider an ion I+Z , with net charge Ze, in an excited state u – the bound electrons
are in an eigenstate of the potential U(r) due to the nucleus and the other electrons.
Let Eu and E� be the energy of the excited state and a lower level, and Eu� ≡
Eu − E�.

If the potential U(r) is now perturbed by δU >∼ Eu�, and the perturbation δU is
maintained for a time ∼ Eu�/h and then removed, the electron wave function will
have a substantial probability of ending up in a lower level �.

The perturbation δU can be provided by a passing electron, with initial energy
∼ kT , drawn into the Coulomb potential of the ion. If the electron passes within
a distance ∼ a0 of the nucleus (where a0 ≡ h̄2/mee

2 = 5.292 × 10−9 cm is the
Bohr radius), then the perturbation due to the passing electron δU >∼ Eul, and the
duration of the perturbation will be of order the orbital period of the bound electron
(if the initial energy ∼ kT <∼ Ze2/a0).

Let us then consider a very simple model: Suppose that an incident electron
moves classically in a Coulomb potential −Ze2/r due to the ions, and will produce
deexcitation of level u if and only if the distance of closest approach rmin ≤ Wa0,
where we expect that the dimensionless number W will be of order unity. For this
assumption, let us calculate the thermal rate coefficient.

Let v be the velocity of the incident electron at infinity. We want to relate rmin to
v and the impact parameter b. Let vmax be the velocity at r = rmin. Conservation
of energy:

1

2
mev

2
max =

1

2
mev

2 +
Ze2

rmin
, (I.1)

and conservation of angular momentum:

vmaxrmin = v b , (I.2)

can be combined to obtain an equation for b in terms of rmin and v:

b = rmin

[
1 +

Ze2/rmin

mev2/2

]1/2
. (I.3)
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According to our model, deexcitation will occur if rmin < Wa0, or b < bcrit(v),
where

bcrit(v) = Wa0

[
1 +

Ze2/Wa0
mev2/2

]
. (I.4)

With these assumptions, the cross section for collisional deexcitation is simply

σu�(v) = πb2crit = W 2πa20

[
1 +

Ze2/Wa0
mev2/2

]
. (I.5)

The factor [1+(Ze2/Wa0)/(mev
2/2)] in Eq. (I.5) represents the effects of “Coulomb

focusing,” making the cross section larger than the value (πW 2a20) that it would
have if the incident electron moved in a straight line.

Integrate (I.5) over a thermal velocity distribution:

〈σv〉u→� =πW 2a20

( me

2πkT

)3/2 ∫ ∞

0

4πv2dv e−mev
2/2kT v

[
1 +

2Ze2/Wa0
mev2

]

=πW 2a20

(
8kT

πme

)1/2 [
1 +

Ze2

Wa0kT

]
. (I.6)

Note that

Ze2

a0kT
=

15.78Z

T4
. (I.7)

For T4
<∼ Z, we can neglect the first term in the square bracket, and obtain the

deexcitation rate coefficient:

〈σv〉u→� ≈ h2

(2πme)3/2
1

(kT )1/2
2WZ . (I.8)

Note the similarity of the above Eq. (I.8) to Eq. (2.26) defining the collision strength
Ωu�:

〈σv〉u→� =
h2

(2πme)3/2
1

(kT )1/2
Ωu�

gu
. (I.9)

This makes it clear why

• Electron-ion deexcitation rates vary approximately as 1/
√
T (i.e., collision

strengths Ωu� depend only weakly on T ).

• “Collision strengths” Ωu� are of order unity for electron–ion collisions.



Appendix J

Virial Theorem

The proof of the virial theorem is somewhat lengthy, and is provided here because
it is not widely available to the student. We switch between vector (r) and tensor
(xi) notation as convenient to clarify the presentation. Define

I ≡
∫

ρ r2 dV . (J.1)

Then,

dI

dt
=

∫
dV r2

∂ρ

∂t
+

∮
dS · (v ρr2

)
=−

∫
dV r2∇ · (ρv) +

∫
dV∇ · (vρr2)

=

∫
dV ρv · ∇r2

=

∫
dV ρvi

∂

∂xi
xjxj

=2

∫
dV ρvixj

∂

∂xi
xj = 2

∫
dV ρvixjδij

=2

∫
dV ρvixi . (J.2)

1

2

d2I

dt2
=

∫
dV xi

∂

∂t
(ρvi) +

∫
dS · vρvixi

=

∫
dV xi

∂

∂t
(ρvi) +

∫
dV

∂

∂xj
(vjρvixi)

=−
∫

dV xivi
∂

∂xj
ρvj +

∫
dV xiρ

∂

∂t
vi +

∫
dV

∂

∂j
(vjρvixi)

=

∫
dV ρvj

∂

∂xj
xivi +

∫
dV xiρ

∂

∂t
vi

=

∫
dV

[
ρvjviδij + ρvjxi

∂

∂xj
vi + ρxi

∂

∂t
vi

]

=

∫
dV ρv2 +

∫
dV ρr ·

[
(v · ∇)v +

∂

∂t
v

]
. (J.3)

The first term on the right-hand side is just 2EKE. The equation of momentum
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conservation (35.21) is now used to relate the second integral to the forces acting
on the fluid (neglecting viscous stresses):

∫
dV ρr ·

[
(v · ∇)v +

∂

∂t
v

]
= Y1 + Y2 + Y3 , (J.4)

Y1 ≡ −
∫

dV r · ∇
(
p+

B2

8π

)

= −
∫

dV

{
∇
[
r

(
p+

B2

8π

)]
−
(
p+

B2

8π

)
∇ · r

}

= −
∮

dS · r
(
p+

B2

8π

)
+ 3

∫
dV

(
p+

B2

8π

)
, (J.5)

Y2 ≡ 1

4π

∫
dV r · (B · ∇)B

=
1

4π

∫
dV xiBj

∂

∂xj
Bi

=
1

4π

∫
dV

∂

∂xj
(xiBiBj)− 1

4π

∫
dV Bi

∂

∂xj
(xiBj)

=
1

4π

∮
dS · (r ·B)B− 1

4π

∫
dV BiBj

∂

∂xj
xi

=
1

4π

∮
dS ·B (r ·B)− 2

∫
dV

B2

8π
, (J.6)

Y3 ≡−
∫

dV r · ρ∇Φgrav (J.7)

where we have used ∇ · r = (∂/∂xi)xi = 3 and (∂/∂xj)Bj = 0 to obtain (J.5)
and (J.6). It can be shown that if the only source of Φgrav is mass within V , then

Y3 = Egrav =
1

2

∫
dV1

∫
dV2 G

ρ(r1)ρ(r2)

|r1 − r2| . (J.8)

This completes the proof of the virial theorem:

1

2
Ï = 2EKE + 3 (Π−Π0) + (Emag − Emag,0) + Egrav , (J.9)
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where

EKE ≡
∫

ρv2

2
dV , (J.10)

Π≡
∫

p dV , (J.11)

Emag ≡
∫

B2

8π
dV , (J.12)

Π0 =

∮
dS · rp → p0V if p = p0 on S , (J.13)

Emag,0 ≡
∮

dS ·
[
r
B2

8π
− B (r ·B)

4π

]
→ B2

0

8π
V if B = B0 on S. (J.14)
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Nançay 21-cm Absorption Survey.” Astr. Astro-
phys., 70, 43

Crutcher, R.M., 1999, “Magnetic Fields in Molec-
ular Clouds: Observations Confront Theory.”
Ap. J., 520, 706

Crutcher, R.M., 2004, “Observations of Mag-
netic Fields in Molecular Clouds.” In “The
Magnetized Interstellar Medium,” (edited by
B. Uyaniker, W. Reich, & R. Wielebin-
ski), 123–132 (Katlenburg-Lindau: Copernicus
GmbH)

Crutcher, R.M., 2010, “Role of Magnetic Fields in
Star Formation.” Highlights of Astronomy, 15,
438

Crutcher, R.M., Wandelt, B., Heiles, C., Falgar-
one, E., & Troland, T.H., 2010, “Magnetic
Fields in Interstellar Clouds from Zeeman Ob-
servations: Inference of Total Field Strengths
by Bayesian Analysis.” Ap. J., accepted, 000,
000



514 BIBLIOGRAPHY

Dalgarno, A., 1976, “The interstellar molecules
CH and CH+.” In “Atomic processes and ap-
plications,” (edited by P.G. Burke), 109–132
(Amsterdam: North-Holland)

Dalgarno, A. & McCray, R.A., 1972, “Heating and
Ionization of HI Regions.” Ann. Rev. Astr. As-
trophys., 10, 375

Dame, T.M., Hartmann, D., & Thaddeus, P., 2001,
“The Milky Way in Molecular Clouds: A New
Complete CO Survey.” Ap. J., 547, 792

Dame, T.M., Ungerechts, H., Cohen, R.S., et al.,
1987, “A composite CO survey of the entire
Milky Way.” Ap. J., 322, 706
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ban, M., 2002, “Benchmark calculations of
some molecular properties of O2, CN and
other selected small radicals using the ROHF-
CCSD(T) method.” Molec. Phys., 100, 541

Neufeld, D.A., 1990, “The Transfer of Resonance-
Line Radiation in Static Astrophysical Media.”
Ap. J., 350, 216

Nieten, C., Neininger, N., Guélin, M., et al., 2006,
“Molecular gas in the Andromeda galaxy.”
Astr. Astrophys., 453, 459

Nota, T. & Katgert, P., 2010, “The large-scale



BIBLIOGRAPHY 523

magnetic field in the fourth Galactic Quadrant.”
Astr. Astrophys., 513, A65

Novak, G., Dotson, J.L., & Li, H., 2009, “Dis-
persion of Observed Position Angles of Sub-
millimeter Polarization in Molecular Clouds.”
Ap. J., 695, 1362

Nussbaumer, H. & Storey, P.J., 1983, “Dielec-
tronic recombination at low temperatures.”
Astr. Astrophys., 126, 75

Nussbaumer, H. & Storey, P.J., 1984, “Dielec-
tronic recombination at low temperatures. II
Recombination coefficients for lines of C, N,
O.” Astr. Astrophys. Suppl., 56, 293

Nussbaumer, H. & Storey, P.J., 1986, “Dielec-
tronic recombination at low temperatures. III
- Recombination coefficients for Mg, Al, SI.”
Astr. Astrophys. Suppl., 64, 545

O’Dell, C.R., 2001, “Structure of the Orion Neb-
ula.” Publ. Astr. Soc. Pacific, 113, 29

O’Dell, C.R., Henney, W.J., Abel, N.P., Fer-
land, G.J., & Arthur, S.J., 2009, “The Three-
Dimensional Dynamic Structure of the Inner
Orion Nebula.” A. J., 137, 367

O’Dell, C.R., Wen, Z., & Hu, X., 1993, “Discov-
ery of New Objects in the Orion Nebula on
HST Images - Shocks, Compact Sources, and
Protoplanetary Disks.” Ap. J., 410, 696

Okumura, A., Kamae, T., & for the Fermi LAT
Collaboration, 2009, “Diffuse Gamma-ray Ob-
servations of the Orion Molecular Clouds.”
arXiv, 0912.3860

Olofsson, J., Augereau, J., van Dishoeck, E.F.,
et al., 2009, “C2D Spitzer-IRS spectra of disks
around T Tauri stars. IV. Crystalline silicates.”
Astr. Astrophys., 507, 327

Onaka, T., Yamamura, I., Tanabe, T., Roel-
lig, T.L., & Yuen, L., 1996, “Detection
of the Mid-Infrared Unidentified Bands in
the Diffuse Galactic Emission by IRTS.”
Publ. Astr. Soc. Japan, 48, L59

Osterbrock, D.E., 1961, “On Ambipolar Diffusion
in H I Regions.” Ap. J., 134, 270

Osterbrock, D.E., 1974, Astrophysics of Gaseous
Nebulae (San Francisco: W. H. Freeman and
Co.)

Osterbrock, D.E., 1989, Astrophysics of Gaseous
Nebulae and Active Galactic Nuclei (Mill Val-
ley, CA: University Science Books)

Osterbrock, D.E. & Ferland, G.J., 2006, Astro-
physics of Gaseous Nebulae and Active Galac-
tic Nuclei, 2nd edition (Sausalito, CA: Univer-
sity Science Books), ISBN 1-891-38934-3

Palmeri, P., Mendoza, C., Kallman, T.R., Bautista,
M.A., & Meléndez, M., 2003, “Modeling of
iron K lines: Radiative and Auger decay data
for Fe II-Fe IX.” Astr. Astrophys., 410, 359

Parker, E.N., 1966, “The Dynamical State of the

Interstellar Gas and Field.” Ap. J., 145, 811
Pelan, J. & Berrington, K.A., 1995, “Atomic data

from the IRON Project. IX. Electron excita-
tion of the 2P3/2-2P1/2 fine-structure transi-
tion in chlorine-like ions, from Ar II to Ni XII.”
Astr. Astrophys. Suppl., 110, 209

Pendleton, Y.J. & Allamandola, L.J., 2002, “The
Organic Refractory Material in the Diffuse In-
terstellar Medium: Mid-Infrared Spectroscopic
Constraints.” Ap. J. Suppl., 138, 75

Pequignot, D., 1996, “(Erratum) Populations of
the O I metastable levels.” Astr. Astrophys.,
313, 1026

Petrosian, V., Silk, J., & Field, G.B., 1972,
“A Simple Analytic Approximation for Dusty
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Quéméner, G. & Balakrishnan, N., 2009, “Quan-
tum calculations of H2-H2 collisions: From ul-
tracold to thermal energies.” J. Chem. Phys.,
130, 114303

Rachford, B.L., Snow, T.P., Destree, J.D.,
et al., 2009, “Molecular Hydrogen in the Far
Ultraviolet Spectroscopic Explorer Translucent
Lines of Sight: The Full Sample.” Ap. J. Suppl.,
180, 125

Rachford, B.L., Snow, T.P., Tumlinson, J., et al.,
2002, “A Far Ultraviolet Spectroscopic Ex-
plorer Survey of Interstellar Molecular Hydro-
gen in Translucent Clouds.” Ap. J., 577, 221

Radhakrishnan, V., Murray, J.D., Lockhart, P., &



524 BIBLIOGRAPHY

Whittle, R.P.J., 1972, “The Parkes Survey of
21-cm Absorption in Discrete-Source Spectra.
II. Galactic 21-cm 0bservations in the Direction
of 35 Extragalactic Sources.” Ap. J. Suppl., 24,
15

Ralchenko, Y., Kramida, A.E., Reader,
J., & NIST ASD Team, 2010, NIST
Atomic Spectra Database (version
4.0.0) (Gaithersburg, MD: National In-
stitute of Standards and Technology),
http://www.nist.gov/physlab/data/asd.cfm

Ramsbottom, C.A., Bell, K.L., & Keenan,
F.P., 1997, “Effective collision strengths for
fine-structure forbidden transitions among the
3s23p3 levels of Ar IV.” M.N.R.A.S., 284, 754

Ramsbottom, C.A., Bell, K.L., & Keenan,
F.P., 1998, “Effective collision strengths for
fine-structure forbidden transitions among the
2s22p3 levels of Ne IV.” M.N.R.A.S., 293, 233

Rathborne, J.M., Jackson, J.M., Chambers, E.T.,
et al., 2010, “The Early Stages of Star Forma-
tion in Infrared Dark Clouds: Characterizing
the Core Dust Properties.” Ap. J., 715, 310

Rest, A., Foley, R.J., Gezari, S., et al.,
2009, “Pushing the Boundaries of Conven-
tional Core-Collapse Supernovae: The Ex-
tremely Energetic Supernova SN 2003ma.”
arXiv, 0911.2002

Reynolds, S.P., Borkowski, K.J., Green, D.A.,
et al., 2008, “The Youngest Galactic Supernova
Remnant: G1.9+0.3.” Ap. J. Lett., 680, L41

Rho, J., Kozasa, T., Reach, W.T., et al., 2008,
“Freshly Formed Dust in the Cassiopeia A Su-
pernova Remnant as Revealed by the Spitzer
Space Telescope.” Ap. J., 673, 271

Roberge, W.G. & Draine, B.T., 1990, “A New
Class of Solutions for Interstellar Magnetohy-
drodynamic Shock Waves.” Ap. J., 350, 700

Roberge, W.G., Jones, D., Lepp, S., & Dalgarno,
A., 1991, “Interstellar Photodissociation and
Photoionization Rates.” Ap. J. Suppl., 77, 287

Robertson, J., 2003, “Electronic and atomic struc-
ture of diamond-like carbon.” Semiconductor
Science Technology, 18, S12

Roche, P.F. & Aitken, D.K., 1984, “An investiga-
tion of the interstellar extinction. I - Towards
dusty WC Wolf-Rayet stars.” M.N.R.A.S., 208,
481

Roche, P.F. & Aitken, D.K., 1985, “An investiga-
tion of the interstellar extinction. II - Towards
the mid-infrared sources in the Galactic cen-
tre.” M.N.R.A.S., 215, 425

Rodgers, W. & Williams, A., 1974, “Integrated ab-
sorption of a spectral line with the Voigt pro-
file.” J. Quant. Spectr. Rad. Trans., 14, 319

Roueff, E. & Le Bourlot, J., 1990, “Excitation of
forbidden C I fine structure transitions by pro-

tons.” Astr. Astrophys., 236, 515
Sahai, R. & Chronopoulos, C.K., 2010, “The As-

trosphere of the Asymptotic Giant Branch Star
IRC+10216.” Ap. J. Lett., 711, L53

Salem, M. & Brocklehurst, M., 1979, “A Table of
Departure Coefficients from Thermodynamic
Equilibrium (bn Factors) for Hydrogenic Ions.”
Ap. J. Suppl., 39, 633

Salpeter, E.E., 1955, “The Luminosity Function
and Stellar Evolution.” Ap. J., 121, 161

Saraph, H.E. & Storey, P.J., 1996, “Atomic data
from the IRON Project. XI. The 2P1/2 – 2P3/2

fine-structure lines of Ar VI, K VII and Ca
VIII.” Astr. Astrophys. Suppl., 115, 151

Sarre, P.J., Miles, J.R., Kerr, T.H., et al.,
1995, “Resolution of intrinsic fine structure in
spectra of narrow diffuse interstellar bands.”
M.N.R.A.S., 277, L41

Savage, B.D., Cardelli, J.A., & Sofia, U.J., 1992,
“Ultraviolet Observations of the Gas Phase
Abundances in the Diffuse Clouds toward Zeta
Ophiuchi at 3.5 kilometers per second Resolu-
tion.” Ap. J., 401, 706

Scaife, A.M.M., Hurley-Walker, N., Green, D.A.,
et al., 2009, “AMI observations of Lynds dark
nebulae: further evidence for anomalous cm-
wave emission.” M.N.R.A.S., 400, 1394

Schlegel, D.J., Finkbeiner, D.P., & Davis, M.,
1998, “Maps of Dust Infrared Emission for Use
in Estimation of Reddening and Cosmic Mi-
crowave Background Radiation Foregrounds.”
Ap. J., 500, 525

Schmidt, M., 1959, “The Rate of Star Formation.”
Ap. J., 129, 243

Schmutzler, T. & Tscharnuter, W.M., 1993, “Ef-
fective radiative cooling in optically thin plas-
mas.” Astr. Astrophys., 273, 318

Schneider, I.F., Dulieu, O., Giusti-Suzor, A., &
Roueff, E., 1994, “Dissociative Recombination
of H+

2 Molecular Ions in Hydrogen Plasmas
between 20 K and 4000 K.” Ap. J., 424, 983

Schroder, K., Staemmler, V., Smith, M.D., Flower,
D.R., & Jaquet, R., 1991, “Excitation of the
fine-structure transitions of C in collisions with
ortho- and para-H2.” J. Phys. B, 24, 2487

Schure, K.M., Kosenko, D., Kaastra, J.S., Kep-
pens, R., & Vink, J., 2009, “A new radiative
cooling curve based on an up-to-date plasma
emission code.” Astr. Astrophys., 508, 751

Scott, A. & Duley, W.W., 1996a, “The Decompo-
sition of Hydrogenated Amorphous Carbon: A
Connection with Polycyclic Aromatic Hydro-
carbon Molecules.” Ap. J. Lett., 472, L123

Scott, A. & Duley, W.W., 1996b, “Ultraviolet and
Infrared Refractive Indices of Amorphous Sili-
cates.” Ap. J. Suppl., 105, 401

Sedov, L.I., 1959, Similarity and Dimensional



BIBLIOGRAPHY 525

Methods in Mechanics (New York: Academic
Press, 1959)

Sellgren, K., Werner, M.W., Ingalls, J.G., et al.,
2010, “C60 in Reflection Nebulae.” ArXiv,
1009.0539

Seon, K., Edelstein, J., Korpela, E., et al., 2010,
“Observation of the Far-ultraviolet Contin-
uum Background with SPEAR/FIMS.” arXiv,
1006.4419

Serkowski, K., 1973, “Interstellar Polarization (re-
view).” In “IAU Symp. 52: Interstellar Dust
and Related Topics,” (edited by J.M. Greenberg
& H.C. van de Hulst), 145–152

Seyfert, C.K., 1943, “Nuclear Emission in Spiral
Nebulae.” Ap. J., 97, 28

Shen, Y., Draine, B.T., & Johnson, E.T., 2008,
“Modeling Porous Dust Grains with Ballis-
tic Aggregates I. Methods and Basic Results.”
Ap. J., 689, 260

Shenoy, S.S., Whittet, D.C.B., Chiar, J.E., et al.,
2003, “A Test Case for the Organic Refractory
Model of Interstellar Dust.” Ap. J., 591, 962

Shull, J.M., 1978, “H2 Resonance Fluorescence
with Lyman-α.” Ap. J., 224, 841

Slavin, J.D., Jones, A.P., & Tielens, A.G.G.M.,
2004, “Shock Processing of Large Grains in the
Interstellar Medium.” Ap. J., 614, 796

Smith, B., Sigurdsson, S., & Abel, T., 2008,
“Metal cooling in simulations of cosmic struc-
ture formation.” M.N.R.A.S., 385, 1443

Smith, J.D.T., Draine, B.T., Dale, D.A., et al.,
2007, “The Mid-Infrared Spectrum of Star-
Forming Galaxies: Global Properties of PAH
Emission.” Ap. J., 656, 770

Smith, L.J., Norris, R.P.F., & Crowther, P.A.,
2002, “Realistic ionizing fluxes for young
stellar populations from 0.05 to 2 Z�.”
M.N.R.A.S., 337, 1309

Snell, R.L., Howe, J.E., Ashby, M.L.N., et al.,
2000, “Water Abundance in Molecular Cloud
Cores.” Ap. J. Lett., 539, L101

Snowden, S.L., Freyberg, M.J., Plucinsky, P.P.,
et al., 1995, “First Maps of the Soft X-Ray Dif-
fuse Background from the ROSAT XRT/PSPC
All-Sky Survey.” Ap. J., 454, 643

Snowden, S.L., McCammon, D., Burrows, D.N.,
& Mendenhall, J.A., 1994, “Analysis Pro-
cedures for ROSAT XRT/PSPC Observations
of Extended Objects and the Diffuse Back-
ground.” Ap. J., 424, 714

Sobolev, V.V., 1957, “The Diffusion of Lα Radia-
tion in Nebulae and Stellar Envelopes.” Soviet
Astronomy, 1, 678

Sofia, U.J., Lauroesch, J.T., Meyer, D.M., & Car-
tledge, S.I.B., 2004, “Interstellar Carbon in
Translucent Sight Lines.” Ap. J., 605, 272

Sofia, U.J. & Parvathi, V.S., 2010, “Carbon Abun-

dances in Interstellar Gas and Dust.” In “Cos-
mic Dust – Near and Far,” (edited by T. Hen-
ning, E. Grün, & J. Steinacker), 236–242

Solomon, P.M., Rivolo, A.R., Barrett, J., & Yahil,
A., 1987, “Mass, luminosity, and line width re-
lations of Galactic molecular clouds.” Ap. J.,
319, 730

Spitzer, L., 1962, Physics of Fully Ionized Gases,
2nd edition (New York: Interscience)

Spitzer, L., 1976, “High-velocity interstellar
clouds.” Comments Astrophys., 6, 177

Spitzer, L., 1978, Physical Processes in the Inter-
stellar Medium (New York: Wiley)

Staemmler, V. & Flower, D.R., 1991, “Excitation
of the C(2p2 3PJ ) fine structure states in colli-
sions with He(1s2 1S0).” J. Phys. B, 24, 2343

Stafford, R.P., Bell, K.L., & Hibbert, A., 1994,
“Electron impact excitation of N III - Fine-
structure collision strengths and Maxwellian-
averaged rate coefficients.” M.N.R.A.S., 266,
715

Stahl, O., Wade, G., Petit, V., Stober, B., &
Schanne, L., 2008, “Long-term monitoring of
θ1 Ori C: the spectroscopic orbit and an im-
proved rotational period.” Astr. Astrophys., 487,
323

Stahler, S.W. & Palla, F., 2005, The Formation of
Stars (Weinheim: Wiley-VCH), ISBN 3-527-
40559-3

Stancil, P.C., Schultz, D.R., Kimura, M., et al.,
1999, “Charge transfer in collisions of O+ with
H and H+ with O.” Astr. Astrophys. Suppl.,
140, 225
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Au� = Einstein A coefficient, 54
B�u, Einstein B coefficient, 53
Bu� = Einstein B coefficient, 54
F = total angular momentum, 37
F� depletion parameter, 90
G0, UV intensity parameter, 123
I = nuclear angular momentum, 37
MH I, total mass of H I, 73
Q0, 162
Q1, 165
Qabs, Qsca, Qext, 249
RV , 238–240, 261–262
W , see equivalent width
χ, UV intensity parameter, 123
ρOph molecular cloud, 360
σ = electrical conductivity, 250
ζ Oph sightline, 91, 264
ζ Per sightline, 187
26Al, 449
aeff , 249
mz quantum number, see orbitals, single-electron
nα transitions, 31
s, p, d, f , ..., see orbitals, single-electron
zetaOph sightline, 264, 265
Ångstrom (Å), 3
18µm feature, see silicates
2175 Å feature, 267–268
3.4µm feature, 269
9.7µm feature, see silicates

absorption, 53–62
absorption lines from metals, 86–91
abundance determination in H II regions, 214

collisionally excited lines, 214–215
optical recombination lines (ORLs), 215

abundances, elemental, 8
abundances, solar, 8
accretion disks, 463
Al I
λ�u and f�u, 86
energy levels and transitions, 493
photoionization rate, 131

Al II
λ�u and f�u, 89
energy levels and transitions, 492
radiative recombination, 150

Al III

λ�u and f�u, 88
energy levels and transitions, 491

Al V
energy levels and transitions, 490

albedo, 248
ambipolar diffusion, 459–461
amorphous carbon. See carbon., 278
amorphous silicate. See silicate., 271
angular momentum quantum number �, see or-

bitals, single-electron
anomalous diffraction theory (ADT), 256–258
antenna temperature TA, 64
Ar I
λ�u and f�u, 89

Ar II
λ�u and f�u, 89
collision strength, 496

Ar III
collision strengths, 498

Ar IV
collision strengths, 500
energy levels and transitions, 495

Ar V
collision strengths, 497
energy levels and transitions, 494

Ar VI
collision strength, 496

astronomical unit (AU), 3
astrosphere, 427
attenuation coefficient κν , 65–69
Auger effect, 131–132

yields, 132

Baldwin-Phillips-Terlevich (BPT) diagram, 215–
217

Balmer decrement, 213
Barnard, E. E., 236
Barnett effect, see magnetic dipole moment of

grain
beauty (see also Plates 1-13), 1
Becklin-Neugebauer (BN) object, 272
black holes, 2
blackbody radiation, 54
Bohr magneton µB, 37, 51, 250
Bohr radius, 506
Bonnor-Ebert mass, 456–457
Born-Oppenheimer approximation, 38
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bound-bound transitions, 92
Bowen fluorescence, 232–234

H2 lines, 234
N III line emission, 232
O I line emission, 234
O III line emission, 232

bremsstrahlung, see free-free emission (bremsstrahlung)
brightness temperature TB , 64
buckminsterfullerene C60, see C60 and C70

C2

photodissociation, 375
photoionization, 375

C60 and C70, 278–279
C-type, C*-type, and J-type MHD shock waves,

407–411
C I
λ�u and f�u, 88
ncrit for fine structure levels, 192
collision strengths, 497
energy levels and transitions, 487
excitation by H, 501
excitation by H2, 501
excitation by He, 501
excitation by protons, 501
photoionization cross section, 129
photoionization rate, 131

C II
λ�u and f�u, 88
ncrit for fine structure levels, 192
158µm line emission, 195–197
collision strength, 496
energy levels and transitions, 486
excitation by H, 501
excitation by H2, 501
excitation by He, 501
radiative recombination, 150, 152
recombination on grains, 158

C III
λ�u and f�u, 88
dielectronic recombination, 152
energy levels and transitions, 485
radiative recombination, 152

C IV
λ�u and f�u, 88
dielectronic recombination, 152
energy levels and transitions, 484
radiative recombination, 152

Ca I, 87
λ�u and f�u, 86
photoionization rate, 131

Ca II
λ�u and f�u, 86
doublet, 86
photoionization rate, 131
radiative recombination, 150
recombination on grains, 158

Ca II H and K lines, see Ca II doublet
Ca III

radiative recombination, 150
Ca IV

collision strength, 496
CAIs (Ca-Al-rich inclusions), 449
carbon

amorphous carbon, 278
diamond, 278
graphite, 277
hydrogenated amorphous carbon (HAC), 278
turbostratic, 277
vitreous carbon, 278

Cas A SNR, 430
Case A recombination, 140–141
Case B recombination, 141–142
CH

molecular data, 40
photodissociation, 375
photoionization, 375
Zeeman splitting, 52

CH+

abundance problem, 379–380, 411
dissociative recombination, 154
molecular data, 40
photodissociation, 375

charge exchange, 137, 154–157
O and H, 155–157

chemistry
ion-neutral reactions, 374, 376–380
neutral-neutral reactions, 374
photodissociation, 373
photoionization, 373
radiative association, 374

circular polarization of radio waves, 107
Cl I
λ�u and f�u, 89
photoionization rate, 131

Cl II
λ�u and f�u, 89
radiative recombination, 150

Cl III
λ�u and f�u, 89

Cl IV
λ�u and f�u, 89

cloud evaporation, 386–387
CN

molecular data, 40
photodissociation, 375
photoionization, 375

CNM, cold neutral medium, 7
CO, 44

critical density, ncrit, 224
formation, 376–377
molecular data, 40
partition function, 223
photodissociation, 375
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photoionization, 375
X-factor, 227–228

CO+

dissociative recombination, 154
Co I
λ�u and f�u, 87
photoionization rate, 131

Co II
radiative recombination, 150

collision strength, 17
heuristic model, 506–507

collisional excitation, 190–202
three-level atom, 197–202
two-level atom, 190–191

collisional ionization, see ionization, collisional
collisional ionization equilibrium (CIE), 159–

160, 381
collisional recombination, see recombination,

three-body
column density, 72
condensation temperature, 266
conductivity, electrical, 395
configurations of electron orbitals, 32
contact discontinuity, 427
cooling function, see radiative cooling
cooling time, 384–385
coronal gas, 5
corundum Al2O3, 266–267
cosmic microwave background (CMB), 120
cosmic rays, 1

diffusive acceleration in shocks, 442–447
electrons, 446–447
elemental abundances, 444–446
energy spectrum, 440–441
gamma ray emission from clouds, 448–449
gyroradius, 447
ionization rate, 134–136
ionization rate determination, 186–187
low energy spectrum, 134–136
plasma heating, 318
propagation, 447–448
synchrotron radiation, 448

Cr I
λ�u and f�u, 87
photoionization rate, 131

Cr II
radiative recombination, 150

critical density ncrit,u for excited state u, 191–
192

CS
molecular data, 40

Cu I
photoionization rate, 131

curve of growth, 75–91

D-type ionization front, see ionization fronts
dark cloud, terminology, 357, 358

dark clouds, 7
dark matter particles, 2
Davis Greenstein alignment, see dust dynam-

ics
debye (D), 3
Debye length, 15, 505
deflection time scale, see time scale, deflection
degeneracy, 23, 35
density diagnostics

fine-structure lines, 210–211
density diagnostics for H II regions

Balmer decrement, 213
fine-structure lines

[Ar III]21.83µm/[Ar III]8.99µm, 211
[Ar V]13.07µm/[Ar V]7.914µm, 211
[N II]205.3µm/[N II]121.8µm, 211
[Ne III]36.02µm/[Ne III]15.55µm, 211
[Ne V]24.32µm/[Ne V]14.32µm, 211
[O III]88.36µm/[O III]51.81µm, 211
[S III]33.48µm/[S III]18.71µm, 211, 212

optical-UV lines, 209–210
[Ar IV]4713/[Ar IV]4742, 209
[O II]3730/[O II]3727, 209
[S II]6718/[S II]6733, 209

departure coefficients bn, 30–31
depletions of elements from gas, 90, 263
detailed balance, 26–30
deuterium, 83

327 MHz spin flip transition, 83
diamond, 266–267, see carbon
diatomic molecules

energy levels, 38
heteronuclear, 39
homonuclear, 39

DIBs, see diffuse interstellar bands
dielectric function ε = ε1 + iε2

astrosilicate, 257
conductor at long λ, 253
insulator at long λ, 252

dielectric function ε ≡ ε1 + iε2, 249–250
differential scattering cross section, 248
diffuse galactic light, 243
diffuse interstellar bands (DIBs), 269–271
diffuse molecular cloud, terminology, 357
discrete dipole approximation (DDA), 256
disk, gas and dust, 4
disk, Milky Way, 4, 5
dispersion, 101–116

dispersion measure DM , 102–116
dispersion relation, plasma, 101–103
doublet, 34
doublet ratio, absorption, 81–82
drag

force on grain, 304–305
time, 305

Drude line profile, 504
dust
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charging, 296–302
collisional, 296–297
electron field emission, 301
ion field emission, 302
photoelectric emission, 297–299
secondary electron emission, 299–301

composition, 263–284
abundance constraints, 263–266

destruction
Coulomb explosions, 302
ion field emission, 302
sputtering, 302–303

dynamics, 304–314
alignment with magnetic field, 310–314
Davis Greenstein alignment, 312–314
gas drag, 304–305
Lorentz force, 305
microwave emission, 309–310
Poynting-Robertson effect, 306
radiation pressure, 306–307
radiation-pressure-driven drift, 306–307
recoil forces, 306–307
rotational dynamics, 307–314
suprathermal rotation, 308
thermal flipping, 314

extinction vs. λ, 236–240
2175Å feature, 267–268
3.4µm feature, 269
9.7µm and 18µm features, 268
diffuse interstellar bands (DIBs), 269–

271
ice features, 271

infrared emission, 2
model, 293–295
observed, 121–122, 246–247

luminescence, 247
scattering, 242–243
scattering and absorption, theory, 248–262

Qext(λ) for astrosilicate grains, 259–261
Qext(λ) for carbonaceous grains, 261
anomalous diffraction theory (ADT), 256–

258
discrete dipole approximation (DDA), 256
electric dipole limit, 251–252
size comparable to λ, 253–256
spheroids, 251–252
x-rays, 256–258

size distribution, 243, 279, 281
starlight polarization, 240–242
temperature, 285–295

collisional heating, 288
distribution functions, 293
radiative cooling, 288–290
radiative heating, 285–287
steady-state, 290
ultrasmall grains, 290–293

dust models,silicate-graphite-PAH

Draine & Fraisse (2009), 279–283
Weingartner & Draine (2001a), 279–283
Zubko et al. (2004), 279–283

dust, interstellar, 1

Einstein
A coefficient, 54
B coefficient, 53

electric dipole transitions, 60
selection rules, 60

electron density
ne in Galaxy, 104
power spectrum, 113–116

electron spin, see orbitals, single-electron
electron–neutral collisions, 20
electron-ion temperature equilibration, 406
emission measure EM , 96–97
emissivity jν , 65–69
energy densities in ISM, 9
energy levels

atoms and ions, 32–37
molecules, 38–52

asymmetric rotors, 50–51
nonlinear molecules, 47–51
symmetric rotors, 47–49

energy loss time scale, see time scale, energy
loss

enstatite MgSiO3, 266–267
equivalent width

W (dimensionless), 76
Wλ, 76
Wv (velocity), 76
damped portion of the curve of growth, 79–

81
flat portion of curve of growth, 77–79
optically thin, 77

escape probability β, 219–228
homogeneous static spherical cloud, 221–

222
LVG approximation (Hubble flow), 225

eV (electron-volt), 3
excitation temperature Texc, 65
extreme scattering events (ESEs), 116–118

Faraday rotation, 105–109
Fe I
λ�u and f�u, 87
photoionization rate, 131

Fe II
dielectronic recombination, 152
radiative recombination, 150, 152

Fe III
dielectronic recombination, 152
radiative recombination, 152

Fe IV
radiative recombination, 152

Fe V
radiative recombination, 152
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Fermi acceleration of cosmic rays in shocks,
442–447

Fiedler event, see extreme scattering events (ESEs)
fine structure

atoms and ions, 34
fine-structure

molecules, 38
fluid dynamics, 389–396

ambipolar diffusion, 459–461
conservation of mass, 389–390
conservation of momentum, 390–392
cooling time, 393
heating and cooling, 392–393
magnetic flux-freezing, 393–395
virial theorem, 395–396

flux F , 72
flux density Fν , 72, 75
flux-freezing, see fluid dynamics, magnetic flux-

freezing
forbidden transition, 60
forbidden transitions, 62
forsterite Mg2SiO4, 266–267
free-bound transitions

interstellar background, 121
free-bound transitions (recombination contin-

uum), 97
free-bound transitions (recombination radiation),

92
free-fall time, 453
free-free absorption, 95–97
free-free emission (bremsstrahlung), 2, 92–97

cooling power, 95
emissivity, 94
interstellar background, 121

fullerenes, see C60 and C70

Galactic Center, 4, 104, 272
gamma rays, 2

26Al in the ISM, 449
emission from clouds, 448–449

gas, interstellar, 1
Gaunt factor gff , 93–96

frequency-averaged, 95
GMC (giant molecular cloud), terminology, 358
GMC complex, terminology, 358
GMC mass distribution, 360–362
grain neutralization, 137
graphene, 277
graphite, see carbon

in meteorites, 266–267
gravitational field, 2
group velocity, 102
Gum Nebula, 104

H−
destruction, 344–345
formation, 344

H2, 41–44

abundance, steady-state, 348–354
effective potential, 42
excitation by H, 502
excitation by H2, 502
excitation by He, 502
formation, 344–346

gas-phase, 344–345
on dust grains, 345–346

Lyman band transitions, 85–86
molecular data, 40
ortho-H2, 43
para-H2, 43
photodissociation, 346–349, 375

self-shielding, 348–349
photoionization cross section, 129
rotational excitation, 350–355
rovibrational modes, 41
UV pumping, 230–231, 349–350
vibration-rotation levels, 43
vibrational continuum, 346–347
Werner band transitions, 85–86

H2 gas
dark clouds

fractional ionization, 188–189
dense, 7
diffuse, 7
diffuse clouds

fractional ionization, 186–187
total mass, 362–363

H2CO
photodissociation, 375
photoionization, 375

H2O
formation, 378
ortho and para, 50
photodissociation, 375
photoionization, 375
rotational backbone, 51
Zeeman splitting, 52

H2O+, 49
production, 187

H+
2
dissociative recombination, 154

H+
3
chemical exchange reaction, 187
dissociative recombination, 154, 186
formation, 186

H I
21-cm absorption coefficient κν , 71
21-cm emission and absorption, 70–74
21-cm emissivity jν , 71
energy level diagram and transitions, 483
Lyman limit, 84
Lyman series, 83–84
Lymanα emission, 144–145
photoionization cross section, 129
radiative recombination to, 138
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recombination spectrum (Case B), 141–142
spin temperature Tspin, 71, 73–74, 192–195
two-photon continuum from 2s, 144–145

H I gas
21-cm observations, 331–335
absorption line studies, 335
cool, 7
distribution in the Galaxy, 332–334
infrared emission, 335–336
magnetic field measurements, 333–335
spin temperature Tspin measurents, 331–332
total mass, 332–333
warm, 7

H I regions
cooling, 339–341
fractional ionization, 182–186
gas-phase abundances, 90–91
heating, 337–339

cosmic rays, 337–338
photoelectrons from dust, 338–339
x rays, 338

two-phase model, 341–343
emission spectrum, 343

H II
radiative recombination, 150, 152
recombination on grains, 158

H II gas, 5
total mass, 105

H II regions, 5, 7, 162–180
central cavity, 170–171
compact, ultracompact, and hypercompact,

365–366
cooling, 319–325

collisionally excited line emission, 321–
322
free-free emission, 320
recombination radiation, 319–320

effect of dust, 167–171
effect of radiation pressure, 167–171
emission spectrum, 324–325
expansion, 416–419
H neutral fraction, 166–167
He ionization, 163–165, 172–174
heating, 315–325

cosmic rays, 318
MHD waves, 318–319
photoelectrons from dust, 317–318
photoionization, 315–317

observed temperatures, 325
thermal equilibrium, 322–324
time scales, 165–166

recombination time, 165
sound-crossing time, 166

hard sphere interaction, 21
HCN

photodissociation, 375
photoionization, 375

HCO
photodissociation, 375
photoionization, 375

He I
photoionization cross section, 129
recombination spectrum, 146–149

He II
dielectronic recombination, 152
radiative recombination, 150, 152
recombination on grains, 158

He III
radiative recombination, 152

heliosphere, 427
Herbig-Haro objects, 330
hibonite CaAl12O19, 266–267
HIM, hot ionized medium, 5
Hubble flow, 224
hydrogenated amorphous carbon (HAC), see

carbon
hyperfine splitting, 36

ices in dark clouds, 271
impact approximation, 13
impact parameter b, 13
inelastic scattering

electron–ion, 17
infall, 2
infrared dark cloud (IRDC), terminology, 357
initial mass function (IMF), 468–469
intercombination, see intersystem transition
intergalactic medium, 2
interstellar radiation field (ISRF), 119–126

cosmic microwave background (CMB), 120
free-free emission and recombination con-

tinuum, 121
infrared from dust, 121–122
starlight in a PDR, 125–126
starlight in an H I region, 123–124
synchrotron radiation, 119–120
UV background, 124
x-rays, 125

intersystem transition, 60, 62
inversion lines, 49
ion–neutral collisions, 17–20
ionization

by power-law spectra, 180–181
collisional, 13, 134
photoionization, 128–130
primary ionization rate due to cosmic ray

protons ζCR,p, 134–136
secondary electrons, 132–135

ionization fronts, 412–421
D-critical, 414
D-type, 414–416
expansion of an H II region, 416–419
ionization-dissociation fronts, 419–421
R-critical, 414
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R-type, 414
ionization potentials, 481
ionization processes, 127–136
ionization, collisional, 128
ionization, cosmic rays, 128
isobaric cooling, 393
isochoric cooling, 393

jansky (Jy), 3
Jeans instability, 451–453

Kα and Kβ fluorescence, see x-ray fluores-
cence

K I
λ�u and f�u, 86
doublet, 86
photoionization rate, 131

K II
radiative recombination, 150

Kirchhoff’s law, 67, 95, 97
Kolmogorov turbulence, 115, 367
Kramers-Kronig relations

lower limit on dust volume, 243–246

L-S coupling, 33
law of mass action, 23–24
line profile, 55–60

Doppler-broadened, 58
Drude, 504
Lorentz, 57, 504
semiclassical atom, 503
Voigt, 58

line width
intrinsic, 58

LINER spectra, 216–217
Local Hot Bubble, 104
Loop I, 104
Lorentz line profile, 57, 504
LSR = Local Standard of Rest, 331
luminosity distance, 73
Lupus molecular cloud, 360
LVG approximation

Hubble flow, 224
Lyman band, 85
Lyman band transitions, see H2, Lyman band

transitions
Lymanα

emission, 144–145
escape from H I region, 179–180
escape from H II region, 176–179

M51 GMCs (see also Plate 8), 362
magnetic dipole moment of grain

Barnett effect, 311–312
spinning charge, 311

magnetic field, 2
magnetic field of Galaxy

from Farady rotation, 108

starlight polarization, 241
magnetic fields

H I gas, 333–335
molecular clouds, 369–371

magnetic flux-to-mass ratio Φ/M , 457–459,
466

magnetic precursor, 407–409
magnetic susceptibility, χ, 311
magnetically supercritical, 458
magnetosonic speed, 402, 407
maser amplification, see stimulated emission
masers

OH, 427
mass

Milky Way H2, 5, 362–363
Milky Way H I, 5, 332–333, 363
Milky Way H II, 5, 104–105, 363

mean free path (mfp), 16
meteorites, 266–267
Mg I
λ�u and f�u, 89
energy levels and transitions, 492
photoionization cross section, 130
photoionization rate, 131

Mg II
λ�u and f�u, 88
dielectronic recombination, 152
energy levels and transitions, 491
radiative recombination, 150, 152
recombination on grains, 158

Mg III
radiative recombination, 152

Mg IV
collision strength, 496
energy levels and transitions, 490
radiative recombination, 152

Mg V
collision strengths, 498
energy levels and transitions, 489

Mie theory, 253–256
Milne relation, 28, 137
MMP83 estimate for starlight background, 123–

124
Mn I
λ�u and f�u, 87
photoionization rate, 131

Mn II
radiative recombination, 150

molecular cloud core, terminology, 358
molecular cloud star-forming clump, terminol-

ogy, 358
molecular clouds, 357–380
γ ray emission, 364–365
chemistry and ionization, 373–380

ion-neutral reactions, 374
neutral-neutral reactions, 374
photodissociation, 373
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photoionization, 373
radiative association, 374

compact, ultracompact, and hypercompact
H II regions, 365–366

energy dissipation, 371–372
FIR and submm emission from dust, 363–

364
IR point sources, 366
line emission

CO, 362–363
masers, 366

magnetic fields, 369–371
size-linewidth relation, 366–369
structure from star counts, 362
taxonomy, 357–360

molecules
hyperfine structure, 46
vibrational modes, 41

momentum transfer rate coefficient, see rate
coefficient, momentum transfer

MRN size distribution, 279
Muller matrix Sij , 248–249
multiplets, 34
multiplicity, 35

nα transitions, 98
N I
λ�u and f�u, 88
collision strengths, 499
energy levels and transitions, 488

N II
λ�u and f�u, 88
collision strengths, 497
energy levels, 36, 61
energy levels and transitions, 487
radiative recombination, 152
transitions, 60–62

N III
λ�u and f�u, 88
collision strength, 496
dielectronic recombination, 152
energy levels and transitions, 486
radiative recombination, 152

N IV
dielectronic recombination, 152
energy levels and transitions, 485
radiative recombination, 152

N V
λ�u and f�u, 88
dielectronic recombination, 152
energy levels and transitions, 484
radiative recombination, 152

Na I
λ�u and f�u, 86
D1 doublet, 86
energy levels and transitions, 491
photoionization rate, 131

Na II
radiative recombination, 150

Na III
energy levels and transitions, 490

Na IV
energy levels and transitions, 489

Navier-Stokes equation with MHD, 390–392
NE2001 model, see electron density ne in Galaxy
Ne I

photoionization cross section, 130
Ne II

collision strength, 496
energy levels and transitions, 490
radiative recombination, 152

Ne III
collision strengths, 498
energy levels and transitions, 489
radiative recombination, 152

Ne IV
collision strengths, 499
energy levels and transitions, 488
radiative recombination, 152

Ne V
collision strengths, 497
energy levels and transitions, 487
radiative recombination, 152

neutral–neutral scattering, 21
neutron stars, 2
NH3, 47–49

inversion lines, 49
rotational transitions, 48

Ni I
λ�u and f�u, 87
photoionization rate, 131

Ni II
radiative recombination, 150

novae, 2
nuclear magneton, 47
nuclear spin system, 312

O branch transitions, 40
electric quadrupole, 40

O2

photodissociation, 375
photoionization, 375

O I
λ�u and f�u, 88
ncrit for fine structure levels, 192
charge exchange with H II, 155–157
collision strengths, 498
energy levels and transitions, 489
excitation by H, 501
excitation by H2, 501
photoionization cross section, 129, 130

O II
charge exchange with H I, 155–157
collision strengths, 499
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energy levels and transitions, 488
radiative recombination, 152

O III
collision strengths, 497
dielectronic recombination, 152
energy levels, 36
energy levels and transitions, 487
radiative recombination, 152

O IV
collision strength, 496
dielectronic recombination, 152
energy levels and transitions, 486
radiative recombination, 152

O V
dielectronic recombination, 152
energy levels and transitions, 485
radiative recombination, 152

O VI, 5
λ�u and f�u, 88
energy levels and transitions, 484

OB stars, radiative properties, 164
OH, 45–46
Λ-doubling, 45–46
formation, 378
molecular data, 40
optical pumping

infrared, 231–232
photodissociation, 375
photoionization, 375
Zeeman splitting, 52

OH+

destruction, 187
dissociative recombination, 154
production, 187

OH-IR stars, 427
olivine, 266
on-the-spot approximation, 142
optical depth

absorption line, 76
optical depth τν , 66
optical pumping, 229–234

H2, 230
infrared, 231–232
UV continuum, 229–231

optical pumping by UV line coincidence, 232–
234

orbitals, single-electron, 32
orbiting collisions, see ion–neutral collisions
Orion Molecular Cloud

H2 line emission, 411
Orion Molecular Cloud complex, 358–360

Northern Filament GMC, 358–360
Orion A GMC, 358–360
Orion B GMC, 358–360

Orion Nebula, 326–330, 358
density and temperature, 327
gas kinematics, 328–330

H II gas distribution, 327–328
Orion Bar, 328, 356
Orion Nebula cluster (ONC), 326–327
Trapezium stars, 326–327

oscillator strength, 56
semiclassical atom, 503

P branch transitions, 40
electric dipole, 40

P I
λ�u and f�u, 89
photoionization rate, 131

P II
λ�u and f�u, 89
radiative recombination, 150

P III
λ�u and f�u, 89

P IV
λ�u and f�u, 89

PAHs, see polycyclic aromatic hydrocarbons
paramagnetic

susceptibility χ(ω), 311–313
paramagnetism, 311
parity, 35
Parker instability, 453–456
parsec (pc), 3
Partially Ionized Globules (PIGS), 330
partition function, 22–23

CO, 223
per unit volume, 23

Pauli exclusion principle, 33
phase screen, 111
phase velocity, 101
phases of ISM, 4
photodissociation, 375–376
photodissociation fronts, 419–421
photodissociation region (PDR), 352–353

dense, 356
photoelectric absorption, 128–130
photoelectric emission from dust, see dust charg-

ing, photoelectric emission
photoelectric yield, 297
photoionization, see ionization, photoioniza-

tion
of molecules, 375–376

photon occupation number nγ , 55, 63
planetary nebulae, 2, 7, 175–176
plasma frequency ωp, 101
polarizability, atomic and molecular, 17–19
polycyclic aromatic hydrocarbons (PAHs), 274–

277
role in grain-assisted recombination, 158

population inversion, 69, 99
positronium, see positrons
positrons

positronium in the ISM, 450
Poynting-Robertson effect, 306
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presolar grains, 266–267
pressure in ISM

measured using C I absorption lines, 198–
202

principal axes
grain, 312
molecule, 47

principal quantum number n, see orbitals, single-
electron

Protoplanetary disks (proplyds), 330
protostars, class 0, I, II, and III, 466–468
pulse arrival time, 103
Purcell, E. M., 243
pyroxene, 266

Q branch transitions, 40
electric dipole or electric quadrupole, 40

quartet, 34

R branch transitions, 40
electric dipole, 40

R Cor A molecular cloud, 360
R-type ionization front, see ionization fronts
radiation pressure, 463–464
radiation pressure cross section Cpr(λ), 249
radiation pressure cross section/H σrad.pr., 283–

284
radiative cooling

H II regions, 319–325
of hot gas, 381–385

radiative recombination, 97
H II to H I

case A, 139
case B, 139

radiative transfer, 63–69
radiative transfer, equation of, 65, 96
radiative trapping, 219–228
radio recombination lines, 31, see recombina-

tion lines, radio
rate coefficient

3-body, 12
electron–ion inelastic scattering, see colli-

sion strength
momentum transfer, 20
two-body, 11–21

rate coefficients
electron–neutral, 20
neutral–neutral, 21

ratios of rate coefficients, see detailed balance
rayleigh (R), 3
Rayleigh scattering, 243
recombination

dielectronic, 151–153
dissociative, 153
on dust grains, 157–158
radiative, 137–151

H II to H I, 138–145
He II to He I, 146–149

heavy elements, 150–151
thermal rate coefficient, 137

three-body, 28–30
recombination continuum, see free-bound tran-

sitions
recombination lines

optical, H I, 138–145
optical, He I, 146–149
radio, 97–99

recombination, dielectronic, 137
recombination, dissociative, 137
recombination, radiative, 137
recombination: three-body, 98, 137
reddening, see dust, extinction vs. λ
redshift z, 73
reduced mass, 12
reflection nebula, 242
refraction, interstellar, 101–118
refractive index m(ω)

grain material, 249–250
plasma, 102

resonance lines, 86
rotation constants, A, B, C, 47
Rutherford scattering, 12
Rydberg states, 25, 98

S branch transitions, 40
electric quadrupole, 40

S I
λ�u and f�u, 89
photoionization rate, 131

S II
λ�u and f�u, 89
collision strengths, 500
dielectronic recombination, 152
energy levels and transitions, 495
radiative recombination, 150, 152
recombination on grains, 158

S III
λ�u and f�u, 89
collision strengths, 497
energy levels and transitions, 494
radiative recombination, 152

S IV
collision strength, 496
energy levels and transitions, 493
radiative recombination, 152

Saha equation, 25
scattering

electron-neutral, 20
Schmidt-Kennicutt law, 471–472
scintillation, interstellar, 101, 111–116
secondary electrons, 132–133
Sedov-Taylor blastwave, 430–433
Sedov-Taylor solution, 431
selection rules, 60–62

electric dipole, 60
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semiclassical atom, 503
Serkowski law, 240
Seyfert spectra, 215–216
shock waves

“isothermal” shocks, 402–404
collisionless shocks, 404–406
cooling time and cooling length, 404
in ISM, 397
jump conditions, 398–402

strong shock, 402
MHD two-fluid (J-, C-, C*-type), 406–411

magnetic precursor, 407–409
viscous subshock, 409

postshock cooling, 402–404
Si I
λ�u and f�u, 89
ncrit for fine structure levels, 192
energy levels and transitions, 494
photoionization cross section, 130
photoionization rate, 131

Si II
λ�u and f�u, 89
ncrit for fine structure levels, 192
collision strength, 496
dielectronic recombination, 152
energy levels and transitions, 493
excitation by H, 501
excitation by H2, 501
excitation by He, 501
radiative recombination, 150, 152

Si III
λ�u and f�u, 89
dielectronic recombination, 152
energy levels and transitions, 492
radiative recombination, 152

Si IV
dielectronic recombination, 152
energy levels and transitions, 491
radiative recombination, 152

Si VI
energy levels and transitions, 490

SiC
in meteorites, 266–267

silicates, 271–274
amorphous, 268, 273–274
crystalline, 273–274

olivine, 266
pyroxene, 266

similarity solution, 431
SiO

molecular data, 40
size-linewidth relation, 366–369
Sobolev approximation, see LVG approxima-

tion
solar luminosity (L�), 3
solar mass (M�), 3
source function Sν , 67

specific energy density uν , 64
specific intensity Iν , 63
spectroscopic notation, 33–35

terms for atoms and ions, 33–35
terms for diatomic molecules, 39–40

spin temperature, 71
spin temperature determination, 73–74
spin-forbidden, see intersystem transition
spin-orbit interaction, see fine structure
spinel MgAl2O4, 266–267
spinning dust, source of microwave emission,

309–310
spontaneous emission, 53–62
sputtering, 302–303
stagnation point, 428
star formation, 2
star formation rate in Galaxy, 470–471
star formation theory, 451–464

accretion disks, 463
ambipolar diffusion, 459–461
angular momentum problem, 461–463
Bonnor-Ebert mass, 456–457
Jeans instability, 451–453
Parker instability, 453–456
radiation pressure, 463–464
virial theorem, 456–459

star formation, observations, 465–472
collapse of cores, 465–466
initial mass function (IMF), 468–469
protostars, class 0, I, II, and III, 466–468
Schmidt-Kennicutt law, 471–472
star formation rate in Galaxy, 470–471

starlight, 2, see interstellar radiation field (ISRF)
stellar outflows, 7
stellar winds, 2, 422–428

bow shocks, 427–428
bubbles, 422–427
from cool stars, 426–427

OH masers, 426–427
from OB stars, 422–425
termination shock, 427

stimulated emission, 31, 53–62
stimulated recombination, 28
Stokes vector, 249
Strömgren radius, 163
Strömgren sphere, 162–166
sum rule for oscillator strengths, 56
supercritical, magnetically, 458
supernova rate in the Galaxy, 435
supernova remnants (SNRs), 429–439

fadeaway, 434–435
free-expansion phase, 429–430
in inhomogeneous ISM, 436–437
overlapping, 435–436
Sedov-Taylor phase, 430–433
snowplow phase, 433–434
synchrotron radiation, 448
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three-phase model of the ISM, 437–439
supernovae, 2, 435
synchrotron radiation, 2, 119–120, 448

Taurus Molecular Cloud complex, 360
temperature diagnostics

optical-UV lines, 204–209
temperature diagnostics for H II regions

[N II]5756/[N II]6585, 207
[Ne III]3343/[Ne III]3870, 207
[O III]4364/[O III]5008, 207
[O II]7322,7332/[O II]3727,3730, 207
[S III]6314/[S III]9534, 207
[S II]4070,4078/[S II]6718,6733, 207
Balmer jump, 212–213
dielectronic recombination, 213

temperature equilibration, electron-ion, 406
termination shock, 427
thermal conduction fronts, 387–388
thermal conductivity κ(T ), 385–386
thermal flipping, see dust dynamics
three-body recombination, see recombination,

three-body
three-phase model of the ISM, 437–439
Ti I, 88
λ�u and f�u, 86
photoionization rate, 131

Ti II, 88
λ�u and f�u, 87
photoionization rate, 131
radiative recombination, 150

Ti III
radiative recombination, 150

time scale
deflection, 16
electron-proton energy exchange, 16
energy loss, 15

translucent molecular cloud, terminology, 357
Trapezium stars, see Orion Nebula
triplet, 34
Trumpler, R. J., 236
turbulence, 115, 367
two-phase model for H I gas, 341–343

V I
photoionization rate, 131

Vela SNR, 104
virial theorem, 395–396, 456–459

proof, 508–510
viscoelastic damping, 312
viscosity, 391
viscous stress tensor, 391
vitreous carbon, see carbon
Voigt line profile, 58

weak scattering, 111
Werner band, 85

Werner band transitions, see H2, Werner band
transitions

white dwarfs, 2
WIM, warm ionized medium, 5
WNM, warm neutral medium, 7

x-ray emission by hot plasma, 125
x-ray fluorescence, 131–132

yields, 133

Zeeman effect, 37, 333–335
Zeeman splitting, 51–52

CH, 52
CN, 52
hydrogen, 52
OH, 52
ortho-H2O, 52

Zn I
photoionization rate, 131

Zn II
radiative recombination, 150
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