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Spin-spin interaction in general relativity

and induced geometries with nontrivial topology
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We consider the dynamics of a self-gravitating spinor field and a self-gravitating rotating perfect fluid. It
is shown that both these matter distributions can induce a vortex field described by the curl 4-vector of

a tetrad: ωi = 1
2ε

iklme(a)ke
(a)

l;m , where e
(a)
k

are components of the tetrad. The energy-momentum tensor

Tik(ω) of this field has been found and shown to violate the strong and weak energy conditions which
leads to possible formation of geometries with nontrivial topology like wormholes. The corresponding exact
solutions to the equations of general relativity have been found. It is also shown that other vortex fields,
e.g., the magnetic field, can also possess such properties.

As we have shown earlier [1, 2], a self-gravitating
Dirac spinor field with the Lagrangian

L(ψ) =
~c

2

[

∇iψ̄γ
iψ − ψ̄γi∇iψ − F (ψ̄ψ)

]

(1)

can interact with the vortex component of the grav-
itational field, which results in the appearance of a
more general Lagrangian:

L(ψ) =
~c

2

[

∂iψ̄γ
iψ − ψ̄γi∇iψ

+ ωi · (ψ̄γiγ5ψ) − F (ψ̄ψ)
]

. (2)

Here, ωi is the curl 4-vector of a tetrad: ωi =
1
2ε

iklme
(a)
k e(a)l;m , i.e., the 4-vector of the gravita-

tional field vortex; ∇αψ is the covariant derivative
of the spinor function ψ(xk): ∇kψ = ∂kψ − Γkψ ,
where Γk are the matrix spinor connection coef-
ficients; γk are the curved-space Dirac matrices
defined by the fundamental relation between the
space-time metric and spin,

γiγk + γkγi = 2gik · I,
and the axial vector ψ̄γiγ5ψ is proportional to the
proper angular momentum (spin) of the spinor field
Sk(ψ) = ~c

2 ψ̄γkγ5ψ ; the function F (ψ̄ψ) is the
spinor field potential depending on the invariant
ψ̄ψ . In particular, for a massive spinor field we
have F (ψ̄ψ) = 2mψ̄ψ .

Variation of the total Lagrangian of the grav-
itational and spinor fields L = −R/(2κ) + L(ψ)
with respect to ωi leads to a relation between the
gravitational field vortex and the spin density of
the spinor field:

ωi = κ
~c

4
ψ̄γiγ5ψ. (3)
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Taking into account this relation, the spinor field
Lagrangian (2) takes the form

L(ψ) =
~c

2

[

∂kψ̄γ
kψ − ψ̄γk∂kψ

+
κhc

2
(ψ̄γkγ5ψ)(ψ̄γkγ5ψ) − F (ψ̄ψ)

]

, (4)

i.e., we have obtained the Lagrangian of a nonlinear
spinor field with a quadratic pseudovector nonlin-
earity.

Interaction of such a nonlinear spinor field with
gravity, even if the latter has no vortex component,
e.g., in the case of spherical symmetry, leads to
an interesting result. Spherically symmetric spinor
field configurations have a radially polarized spin
density vector

Si(ψ) =
~c

2
ψ̄γiγ5ψ = δ1i ψ̄γ1γ5ψ

~c

2
,

distributed like the lines of force of a point elec-
tric charge. Let us choose the metric of a static,
spherically symmetric space-time in the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θ dϕ2).

(5)

The components of the energy-momentum tensor
of the nonlinear spinor field (4) in the absence of
the potential F (ψ̄ψ) take the form

Tik(ψ)

=
hc

4

[

∇iψ̄γkψ + ∇kψ̄γiψ − ψ̄γi∇kψ − ψ̄γk∇iψ
]

− hc

2

κhc

2
(ψ̄γsγsψ)(ψ̄γsγ5ψ)gik. (6)
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Solving the set of Einstein-spinor equations due to
the Lagrangian (4) with (6),

Rik − 1

2
Rgik = κTik(ψ),

γk∇kψ − κhc

2
(ψ̄γkγ5ψ)γkγ5ψ = 0 (7)

in a space-time with the metric (5), we find the
function ψ(r) and the metric coefficients eλ(r) and
eν(r) [3, 4]. In particular, for the coefficients eλ(r)

and eν(r) we obtain the expressions eν = 1 and
eλ = r2/(r2 − a2) (a = const), and to keep the
signature unchanged we must put r2 − a2 > 0.
Then, after the transformation r2−a2 = x2 (−∞ <
x < +∞), the metric (5) is obtained in the form

ds2 = dt2 − dx2 − (x2 + a2)(dθ2 + sin2 θ dϕ2).(8)

It is the metric of a wormhole space-time (the
so-called Ellis wormhole), connecting two asymp-
totically flat spaces. The constant a determines
the wormhole throat radius. In this case, a =
l0s0

√

κ/ε0 , where l0 =
√

κhc is the Planck length
while s0 and ε0 are the values of the spin flux
density and energy density of the spinor field at
x = 0. It can be seen that the throat radius of
a wormhole formed by a polarized self-gravitating
nonlinear spinor field is of the order of Planck’s
length. This is connected with the fact that the
coefficient of nonlinearity κhc/2 = l20 is of the or-
der of Planck’s length squared. If, however, this
coefficient of nonlinearity can be much greater, the
wormhole throat will also be much wider.

The metric (8) was discussed in detail by Ellis
[5] and is a special case of metrics discussed in [6]
in the context of scalar-tensor theories of gravity.

A simple example of a space-time with a sta-
tionary vortex gravitational field is the space-time
with the cylindrically symmetric metric

ds2 = D(x) dt2 −A(x) dx2 −B(x) dα2

−A(x) dz2 − 2E(x) dα dt. (9)

The geometric properties of its spatial section are
determined by the 3-dimensional spatial line ele-
ment

dl2 = Adx2 +
BD + E2

D
dα2 +Adz2, (10)

while the intensity of the stationary gravitational
vortex ω = (ωkω

k)1/2 is determined by the expres-
sion

ω =
E′D −D′E

2DA1/2(E2 +BD)1/2
, (11)

where the prime denotes d/dx . In the spatial met-
ric (10), the coefficient R(x) ≡ (BD+E2)/D of the
angular coordinate squared determines the length
of the coordinate circle x = x0 , z = z0 . From the
vacuum Einstein equations Rik = 0 for the metric
(9) one can obtain an equation for the coefficient
R(x):

A−1

[

R′′

R
+
R′

2R

(

D′

D
− R′

R

)]

=
4ω2

c2
. (12)

The right-hand side in Eq. (12), proportional to ω2 ,
is positive-definite. Therefore, at the point where
R′ = 0, one obtains R′′ > 0 (a minimum), and
this is a necessary condition for the existence of
a wormhole. Thus a vortex gravitational field is
able to induce wormhole formation. The definitions
and general conditions for the existence of static
cylindrical wormholes have been considered in [7].

A solution to the vacuum Einstein equations
Rik = 0 for the metric under consideration de-
scribes a wormhole space-time:

A(x) =
c

bω0(x2/b2 + 1)2
;

D(x) =
exp

[

arcsin(x2/b2 + 1)−1
]

x2/b2 + 1
;

R(x) =
BD + E2

D
= (x2 + b2) exp

[

arcsin(x2/b2 + 1)−1
]

;

ω =
ω0

AD1/2
; (ω0 = const, b = const), (13)

where −∞ < x < ∞ . It is seen here that the
“circular” metric coefficient R(x), determining the
coordinate circumference, nowhere turns to zero,
and at the point x = 0 (throat) has a minimum:
R(x)min = b2 · exp(π/2) 6= 0, so that the throat ra-
dius of the obtained wormhole is a = b · exp(π/4).
Here b is an integration constant. Thus a free vor-
tex gravitational field can form cylindrical worm-
holes, space-time tunnels connecting different re-
gions of space-time.

Wormholes can be also induced by vortex fields
other than spinor and gravitational ones, for exam-
ple, an azimuthal magnetic field Hα . (A solution to
the Einstein-Maxwell equations for different direc-
tions of electric and magnetic fields was obtained
earlier in [8].)

In a static, cylindrically symmetric space-time
with an azimuthal magnetic field nHα = F13 , de-
scribed by the metric

ds2 = D(x) dt2 −A(x) dx2
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−R2(x) dα2 −A(x) dz2, (14)

from the set of Einstein-Maxwell equations we ob-
tain the following equation for the circular metric
coefficient R(x):

A−1

[

R′′

R
+
R′

2R

(

D′

D
− R′

R

)]

= 2κH2
α. (15)

Here, just as in the case of a vortex gravitational
field, the right-hand side is positive-definite, and
hence R′′ is positive where R′ = 0, which, as
pointed out above, is a necessary condition for
wormhole existence. The solution to the Einstein-
Maxwell equations indeed describes a wormhole
geometry:

A(x) =
κI2

z

8πk2
cosh2(kx) · e5kx,

D(x) =
κI2

z

8πk2
cosh2(kx) · e4kx, (16)

while the function R(x), determining the length of
a coordinate circle x = x0 , z = z0 , is obtained in
the form

R(x) =
Iz
k

√

κ

8π
cosh(kx) · ekx/2 (17)

(where −∞ < x < ∞). Here k is an integra-
tion constant, Iz is the linear axial electric current
density which is a source of the azimuthal mag-
netic field. From (17) it is seen that R(x) nowhere
turns to zero, and R(x) → ∞ as x → +∞ and
as x → −∞ , i.e., there is a wormhole connecting
two remote regions of space. The wormhole throat
radius is proportional to the axial electric current
density Iz .

The above results show that self-gravitating
vortex fields (the spinor, gravitational and electro-
magnetic ones) can form wormholes, so that, for
such a purpose, it is unnecessary to invoke phan-
tom matter or scalar fields with negative kinetic
energy, the more so as nobody knows how to get
them. Meanwhile, as is known, a vortex azimuthal
magnetic field is induced by a linear electric cur-
rent, and a vortex gravitational field, as we have
shown, is induced by a polarized spin of a spinor
field.

In what follows, we will show that, in addition,
a rotating continuous medium, e.g., a perfect fluid
can also be a source of a vortex gravitational field.
To this end, we will consider the gravitational in-
teraction of a perfect fluid rotating with an angu-
lar velocity ω(xk) in a space-time with the metric

(9), where, as we have shown above, there exists a
stationary vortex gravitational field. We will show
that a rotating self-gravitating perfect fluid can be
a source of the metric (9). Consider the Einstein
equations with the energy-momentum tensor of a
perfect fluid

Rik − 1

2
Rgik = κ [UiUk(p+ ε) − pgik] (18)

in a space-time with the metric (9). Let us use
the comoving reference frame, in which the 4-
velocity of the rotating fluid has the form U i =
(1/

√
D, 0, 0, 0). In this case, the 4-vector U i is a

timelike monad vector, determining a rotating ref-
erence frame, and the angular velocity of the fluid
is simultaneously the rotation angular velocity of
the world-line congruence of the monad. In this
problem setting, using the monad formalism [9],
from the Einstein equations (18) in the metric (9)
one obtains the following equation for the metric
coefficient R(x) = E2+BD

D :

A−1

[

R′′

R
+
R′

2R

(

D′

D
− R′

R

)]

= κ(p− ε) +
4ω2

c2
.

(19)

It follows from this equation that if

4ω2

c2
> κ(p− ε), (20)

then R′′ > 0 at a point where R′ = 0, which is a
necessary condition for wormhole existence. There-
fore the inequality (20) is a necessary condition for
wormhole formation by a rotating perfect fluid.

In the case of the maximally stiff equation of
state p = ε , the condition (20) manifestly holds.
The corresponding exact solution to the Einstein
equations (18) for a self-gravitating rotating perfect
fluid, with the equation of state p = ε , has the
following form:

A = D = 1; ω = ω0 = const;

p = ε =
ω2

0

κc2
= const; R(x) = b2 cosh

ω0x

c
;

−∞ < x <∞, b = const. (21)

The solution (21) shows that a self-gravitating fluid
with the maximally stiff equation of state rotates
like a rigid body and forms a wormhole since the
metric coefficient R(x) = (BD+E2)/D of the an-
gular part in the effective spatial metric is every-
where positive, and R(x) → ∞ as x→ ±∞ .
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That a vortex gravitational field can induce
wormhole formation can be explained by the fact
hat it has a certain energy-momentum tensor Tik(ω)
whose all components are proportional to ω2 , and
the components corresponding to pressure, pi(ω),
are negative [1], and it violates both the strong en-
ergy condition (ε(ω)+p1 +p2 +p3(ω) > 0) and the
weak one (ε + (p1 + p2 + p3)/3 > 0), i.e., this ten-
sor has “phantom” properties. It has the structure
characteristic of a perfect fluid with an anisotropic
negative pressure:

Tik(ω) = [p(ω) + ε(ω)]UiUk

− (p1 − p)χiχk − pgik, (22)

where χi is the anisotropy vector directed along the
rotation axis and satisfying the conditions χiU

i =
0, χiχ

i = −1.
The tensor Tik(ω) obeys the local conservation

law: T i
k(ω);i = 0. The solution for the vortex in-

tensity ω = ω0/(AD
1/2) in Eqs. (13) is just an in-

tegral of this equation. In the case of a stationary
vortex gravitational field in a space-time described
by the metric (9), the energy-momentum tensor of
this field Tik(ω) has the following components:

T i
k(ω) =

ω2

κc2
· diag (1, 1, 1, 3). (23)

It is seen that the negative pressure pz = −3ω2/(κc2)
along the rotation axis is three times as large as
the radial and transversal pressures, pr = pα =
−ω2/(κc2), and the sum ε(ω) + 1

3(pr + pα + pz) =
−3ω2/(2κc2) < 0, i.e., the weak energy condition
is violated, thus leading to possible wormhole ex-
istence. Besides, since the axial negative pressure
is three times as large as the other components, at
gravitational collapse of very massive rotating as-
trophysical objects (the most massive stars, galac-
tic nuclei), in which process the matter density ex-
tremely grows along with rotation velocity, forming
a vortex gravitational field like (23), such an ob-
ject will stretch along its rotation axis. As a result,
a stable, rapidly rotating astrophysical object can
form, having a maximally stiff equation of state
and stretched along its rotation axis, which can be
a wormhole described by the above solution (21)
for a stationary rotating perfect fluid configuration.

We can conclude that there can be a fourth final
state of evolution of astrophysical objects (stars of
various masses and galactic nuclei), in addition to
three known states — a white dwarf, a neutron star
(pulsar), and a black hole. Namely, a very massive

rotating object can possibly form a wormhole with
intense rotation and an equation of state close to
the limiting one.

Thus we have shown that vortex fields (spinor,
gravitational and magnetic) can form wormholes.
A source of a vortex gravitational field can be a
spinor field with polarized spin or a rapidly rotating
continuous medium. This leads to one more possi-
ble final state of astrophysical object evolution, a
wormhole.

The authors thank K.A. Bronnikov for atten-
tion to the work and helpful comments.
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