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Abstract

The Wheeler – DeWitt equation was proposed 50 years ago and until now it is the cornerstone of most
approaches to quantization of gravity. One can find in the literature the opinion that the Wheeler –
DeWitt equation is even more fundamental than the basic equation of quantum theory, the Schrödinger
equation. We still should remember that we are in the situation when no observational data can
confirm or reject the fundamental status of the Wheeler – DeWitt equation, so we can give just indirect
arguments in favor of or against it, grounded on mathematical consistency and physical relevance. I
shall present the analysis of the situation and comparison of the standard Wheeler – DeWitt approach
with the extended phase space approach to quantization of gravity. In my analysis I suppose, firstly,
that a future quantum theory of gravity must be applicable to all phenomena from the early Universe
to quantum effects in strong gravitational fields, in the latter case the state of the observer (the choice
of a reference frame) may appear to be significant. Secondly, I suppose that the equation for the wave
function of the Universe must not be postulated but derived by means of a mathematically consistent
procedure, which exists in path integral quantization. When applying this procedure to any gravitating
system, one should take into account features of gravity, namely, non-trivial spacetime topology and
possible absence of asymptotic states. The Schrödinger equation has been derived early for cosmological
models with a finite number of degrees of freedom, and just recently it has been found for the spherically
symmetric model which is a simplest model with an infinite number of degrees of freedom. The structure
of the Schrödinger equation and its general solution appears to be very similar in these cases. The
obtained results give grounds to say that the Schrödinger equation retains its fundamental meaning in
constructing quantum theory of gravity.

1. Introduction

50 years ago, in 1967, the seminal paper by Bryce DeWitt [1] was published where the Wheeler – DeWitt

equation was presented. This equation underlies most approaches to quantization of gravity, from Quantum

Geometrodynamics to Loop Quantum Gravity. At the same time, the equation suffers from shortcomings, the

most known of which are the problem of time and related problems. Many reviews were devoted to the problem

of time and attempts of its resolution (see, for example, [2, 3, 4, 5]). The criticism of the Wheeler – DeWitt

equation has led Isham [3] to the following strong statement: “...although it may be heretical to suggest it, the

Wheeler – DeWitt equation – elegant though it be – may be completely the wrong way of formulating a quantum

theory of gravity”.

At the same time, an opposite tendency has appeared in the literature, according to which the Wheeler –

DeWitt equation is more fundamental than the Schrödinger equation. The tendency is close related to the idea
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that time is something irrelevant in quantum gravity, and, perhaps, in physics in general. The irrelevance of time

can be explained by the following reasoning [6]: “In classical canonical gravity, a spacetime can be represented

as a ‘trajectory’ in configuration space – the space of all three-metrics... Since no trajectories exist anymore

in quantum theory, no spacetime exists at the most fundamental, and therefore also no time coordinates to

parameterize any trajectory”. The same idea one can find in [7]: “...in quantum gravity the notion of spacetime

disappears in the same manner in which the notion of trajectory disappears in the quantum theory of a particle”.

In [8] in the Chapter titled “Physics without time” a simple example of a particle in some potential U(q) is

given that illustrates both the irrelevance of time and fundamentality of constraints. Consider a change of time

variable t = t(τ) in the action,

S =

∫

dt

[

m

2

(

dq

dt

)2

− U(q)

]

=

∫

dτ ṫ

[

m

2

(

q̇

ṫ

)2

− U(q)

]

=

∫

dτ

[

m

2

q̇2

ṫ
− ṫU(q)

]

, (1)

where the dot denotes the derivative with respect to τ . Then, one introduces the momenta

pq =
∂L
∂q̇

= m
q̇

ṫ
; pt =

∂L
∂ṫ

= −m
2

(

q̇

ṫ

)2

− U(q). (2)

It leads to a theory with the constraint

pt +H(pq, q) = 0; H(pq, q) =
p2q

2m
+ U(q). (3)

In the operator form, after the replacement pt → −ih̄ ∂
∂t

it gives the Schrödinger equation. Rovelli [9] wrote

that this formalism is a generalization of standard quantum mechanics, the Wheeler – DeWitt equation is

just a generalization of the Schrödinger equation, to the case where a preferred time variable is not singled

out. Therefore, it must be considered as more fundamental. Indeed, most fields playing a key role in modern

theoretical physics are systems with constraints, most mechanical systems are not, but can be made such systems

by time reparametrization. So, the constraints have a fundamental significance, and the Schrödinger equation

can be written only in particular cases.

I agree that there does not exist a preferred time as well as a preferred reference frame. However, let me

emphasize that “a chosen time variable” is not the same as “a preferred time variable”. To get any solution

to the Einstein equations, one has to choose some reference frame. It does not break the equality of reference

frames in General Relativity. I believe that “a chosen reference frame” must be a bridge between quantum

theory of gravity and observations which are necessary to verify it and which imply measurements in space and

time. Though we are not able to do these observations now, they may be available in the future.

We should remember that we are in the situation when no observational data can confirm or reject the

fundamental status of the Wheeler – DeWitt equation, so we can give just indirect arguments in favor of or

against it, grounded on mathematical consistency and physical relevance. What can we expect from quantum

gravity?

It is naturally to suppose that a future quantum theory of gravity must be applicable to quantum gravita-

tional phenomena at all scales from the early Universe to effects in strong gravitational fields. In particular, one
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may hope that this theory could give us a key to understanding of formation and evolution of quantum black

holes as well as their final stage. It requires consideration of processes developing in time, where time is related

to the state of a certain observer.

I also accept the assumption that in the future theory an equation for the wave function of the Universe

must not be postulated but derived by means of a mathematically consistent procedure (at least while it is not

possible to verify the equation by direct observations). Such a procedure exists in path integral quantization.

When applying this procedure to any gravitating system, one should take into account features of gravity,

especially, non-trivial spacetime topology. In contrast to most situations in quantum field theory, a gravitating

system may not possess asymptotic states that does not enable one to be sure of gauge invariance of the path

integral. This procedure leads to the Schrödinger equation for the wave function of the Universe, meantime the

Wheeler – DeWitt equation follows from it under some particular conditions.

Since the end of 1990s I have been developing the extended phase space approach to quantization of gravity

[10, 11, 12, 13]. In the next sections I shall present the comparison of this approach with the standard Wheeler

– DeWitt quantum geometrodynamics. Section 2 is devoted to Hamiltonian dynamics in extended phase space

as an alternative to generalized Hamiltonian dynamics proposed by Dirac. In Section 3 the grounds for the

choice of quantization scheme are given and the main results obtained in the extended phase space approach

are presented, in particular, the general structure of solutions to the Schrödinger equation is discussed. Section

4 comprises the interpretation of these results and conclusions.

2. Hamiltonian dynamics in extended phase space

In 1950–1958 Dirac formulated his “generalized Hamiltonian dynamics” [14, 15]. His main aim was to elaborate

a Hamiltonian form of a theory with constraints as the first step towards its further quantization. He wrote in

[16]: “Any dynamical theory must first be put in the Hamiltonian form before one can quantize it”. Ironically, the

generalized Hamiltonian dynamics played no role in the creation of very successful and experimentally verified

gauge theories like quantum electrodynamics. I would point out three features of the Dirac approach: (i) All

variables are divided into physical and non-physical ones, only the former ones being included into (physical)

phase space; (ii) a linear combination of constraints must be added to the Hamiltonian constructed by usual

rules from physical variables; (iii) after quantization constraints become conditions on a state vector.

These three statements can be considered as postulates, since their necessity has never been proved. The

confidence in these statments is based rather on the authority of Dirac than on the efficiency of any theory

founded on these postulates. Strictly speaking, the only theory which rests upon them is the Wheeler – DeWitt

quantum geometrodynamics.

In 1970s a new approach to quantization of gauge theories based on path integration was proposed by

Batalin, Fradkin and Vilkovisky [17, 18, 19]. In fact, they rejected the statement (i) and included physical,

non-physical (gauge) and ghost variables into extended phase space. However, in their approach gauge variables
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were still considered as non-physical, secondary degrees of freedom playing just an auxiliary role in the theory.

The Hamiltonian form of action was constructed in such a way that the Hamiltonian coincides with the one built

by the prescription of Dirac. There were attempts to prove the equivalence between the Batalin – Fradkin –

Vilkovisky (BFV) and Dirac approaches. In particular, in [20] the proof was given for the case when constraints

commute. The assumption was made that any system of constraints can be reduced to an equivalent system

of commuting constraints, though it may not be practically easy to find the equivalent commuting constraints.

Also, the ordering problem was ignored. It is hardly possible to give a proof for an arbitrary system of constraints,

let alone taking into account the ordering problem.

On the other hand, there exist another way to construct Hamiltonian dynamics of a constrained system

exploiting the idea of extended phase space. The main source of difficulties with the Hamiltonian formulation

was the impossibility to construct the Hamiltonian according to the usual rule H = pq̇ − L, since for gauge

variables their generalized velocities are missing in the Lagrangian and could not be expressed in coordinates

and momenta. But the notion of extended phase space came from the path integral approach, where the gauge

invariant action of the original theory is replaced by an effective action that includes gauge fixing and ghost

terms. For a system with a finite number of degrees of freedom a general enough form of the action can look

like

S =

∫

dt

[

1

2
gab(N, q)q̇

aq̇b − U(N, q) + π

(

Ṅ − ∂f

∂qa
q̇a
)

+N ˙̄θθ̇

]

. (4)

Here q = {qa} stands for physical variables and N denotes a gauge variable (it may be, for example, the lapse

function), θ, θ̄ are the Faddeev – Popov ghosts. The gauge condition for N ,

N = f(q) + k; k = const, (5)

can be presented in a differential form,

Ṅ =
∂f

∂qa
q̇a. (6)

The gauge condition (6) introduces into the effective Lagrangian the missing velocity Ṅ , so that the Lagrange

multiplier π of the gauge condition plays the role of the momentum conjugate to N . Now the Hamiltonian can

be constructed by the rule

H = paq̇
a + πṄ + P̄ θ̇ + ˙̄θP − L. (7)

P̄ , P are ghost momenta. The terms with N are reduced in (7), so we shall come to the expression

H =
1

2
gabpapb + πpaf

,a +
1

2
π2f,af

,a − U(N, q) +
1

N
P̄P

=
1

2
GαβPαPβ + U(N, q) +

1

N
P̄P , (8)

where

f,a =
∂f

∂qa
; Gαβ =

(

f,af
,a f ,a

f ,a gab

)

; Qα = (N, qa); Pα = (π, pa). (9)

Hamiltonian dynamics in this form resembles that of an unconstrained system to the large extent. Hamil-

tonian equations are fully equivalent to the Lagrangian set of equations obtained from the effective action (4)
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by variational procedure. The extended Lagrangian set of equations contains motion equations, the constraint,

the gauge condition and ghost equations. All of them (including the constraint and the gauge condition) have

a status of Hamiltonian equations in extended phase space. One can object that the Lagrangian equations, as

well as the Hamiltonian equations in extended phase space, differ from equations of the original gauge invariant

theory by terms resulting from variation of gauge fixing and ghost parts of the action. But, if one speaks about

General Relativity, one must remember that any solution to the gauge-invariant Einstein equations is deter-

mined up to arbitrary functions which have to be fixed by a choice of a reference frame. It is usually done at

the final stage of solving the Einstein equations. In the present approach we introduce the gauge fixing function

f(q) from the very beginning, though one can keep this function non-fixed up to the final stage of solving the

equations. The formalism works for any gauge condition; no gauge condition is privileged. It is important that

one cannot avoid fixing a reference frame to obtain a final form of the solution. Under the conditions π = 0,

θ = 0, θ̄ = 0 all gauge-dependent terms are excluded from the equations and they are reduced to gauge-invariant

ones; therefore, any solution of the Einstein equations can be found among solutions of the extended set.

The equivalence of the extended Lagrangian set of equations and the Hamiltonian equations in extended

phase space was demonstrated for the closed isotropic cosmological model in [21], for models with finite number

of degrees of freedom – in [13], for the spherically symmetric gravitational model – in [22]. Let me emphasize

that the equivalence can be demonstrated for arbitrary parametrization of gravitational variables.

The equivalence of the Lagrangian and Hamiltonian formulations is not a trivial problem. Among many

approaches to quantization of gauge theories the more powerful are the BFV approach based on the Hamiltonian

formulation and the Batalin – Vilkovisky (BV) approach [23] based on the Lagrangian formulation, the latter

is known also as the antibracket – antifields formalism. The both are applicable to any gauge theory, including

theories with open algebras. For gravity, the effective action in the BV formalism is reduced to the Faddeev

– Popov action, and for a system with a finite number of degrees of freedom it has the form like (4). The

equivalence of the BFV and BV approaches was studied, for example, in [24]. However, the starting point in

this paper was the Hamiltonian formalism. The authors have not considered the Lagrangian form of the action

similar to (4), so their proof of the equivalence does not seem to be general enough. Among other works let

us mention the proof of the perturbative equivalence between the BFV and BV quantization schemes given in

[25]. In the proposed approach the demonstration of the equivalence between the Lagrangian and Hamiltonian

formulations is straightforward and can be checked by direct calculations.

In the Dirac approach constraints play the role of generators of transformations in phase space. They

produce correct transformation only for physical variables. By correct transformations I mean the ones which

coincide with gauge transformations in the Lagrangian formalism. One cannot require that the constraints

must produce correct transformations for gauge variables since they are considered to be redundant in the

Dirac scheme. However, in the extended phase space formulation we would like to have a generator that

would produce correct transformations for all degrees of freedom. In the BFV approach the generator is the

BRST charge which can be constructed as a series in Grassmannian (ghost) variables with coefficients given by
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generalized structure functions of constraints algebra [20]:

ΩBFV = cαU (0)
α + cβcγU

(1)α
γβ ρ̄α + . . . , (10)

cα, ρ̄α are the BFV ghosts and their conjugate momenta, U (n) are nth order structure functions, while zero

order structure functions U
(0)
α = Gα being Dirac constraints. The BFV effective action is

SBFV =

∫

dt
[

paq̇
a + πṄ + ċαρ̄α + {ψ̄,ΩBFV }

]

. (11)

The bracket {ψ̄,ΩBFV } with the BRST charge (10) and under special choice of ψ̄ leads to the Hamiltonian

which, as has been already mentioned, coincides with the one constructed by the prescription of Dirac. The

BRST charge, as well as the constraints, do not produce correct transformations for gauge variables which are

on an equitable basis with physical variables now. As the authors of the BFV approach emphasized themselves

[17], in the gravitational theory the gauge transformations cannot be presented as canonical transformations,

and thus they differ from transformations generated by constraints. Actually, the BV and BFV formulations

are two non-equivalent theories with different groups of transformations.

Again, there exist an alternative way to construct the BRST charge making use of global BRST invariance

and the first Noether theorem. It is presented in [13] for models with a finite number of degrees of freedom,

and in [22] for the spherically symmetric model. For the model with the action (4) it looks like

Ω = −Hθ − πP , (12)

H is the Hamiltonian in extended phase space (8). It is very important that to get correct transformations

one should use the Hamiltonian equations in extended phase space and their equivalence with the Lagrangian

set of equations. In particular, to get the transformation for the gauge variable N one should use the equation

Ṅ =
∂H

∂π
which is, in fact, equivalent to the gauge condition (6).

Historically, different authors used various parametrizations of gravitational variables. Dirac [16] dealt

with original variables, which are components of the metric tensor, whereas the most famous parametrization is

probably that of Arnowitt – Deser – Misner (ADM) [26] in terms of the lapse and shift functions. From the point

of view of the Lagrangian formalism, all the parametrizations are rightful, and the correspondent formulations

are equivalent. However, if a parametrization touches upon gauge degrees of freedom, the relation between old

and new gravitational variables may not be a canonical transformation. It cannot be a canonical transformation

in the Dirac approach where gauge degrees of freedom are not canonical variables. But, even if one formally

extends phase space by including gauge variables into it, it may be not enough. The example is given in [27],

where the transformation from components of the metric tensor to the ADM variables is considered,

g00 = γijN
iN j −N2, g0i = γijN

j , gij = γij . (13)

Then the Poisson bracket {N, Πij} between the lapse function N and the momenta Πij conjugate to γij is

calculated and it appears to be non-zero. It implies that the Dirac Hamiltonian formulation for gravitation and
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the ADM one are not equivalent from the point of view of the canonical formalism though the both are believed

to be equivalent to the original (Lagrangian) formulation of General Relativity.

In [21] it has been shown that this contradiction can be resolved if one introduces into the Lagrangian

missing velocities corresponding to gauge variables by means of differential gauge conditions, that not just

formally but actually extends phase space. It was demonstrated for the full gravitational theory for the class of

transformations

g0µ = vµ (Nν , γij) , gij = γij (14)

from components of the metric tensor to new variables Nµ, γij (the transformation (13) is a particular case of

(14)). A general form of gauge conditions, fµ(gνλ) = 0, was used, the differential form of which is

d

dt
fµ(gνλ) = 0,

∂fµ

∂g00
ġ00 + 2

∂fµ

∂g0i
ġ0i +

∂fµ

∂gij
ġij = 0. (15)

The canonicity of the transformation (14) has been proved, thus one can expect that Hamiltonian formula-

tions in extended phase space must be equivalent for various parametrizations from this class.

So, the proposed formulation of Hamiltonian dynamics is self-consistent, it removes some shortcomings of

the Dirac generalized dynamics: it is fully equivalent to the Lagrangian formulation; the generator of transfor-

mations in extended phase space constructed in accordance with the Noether theorem produces correct gauge

transformations for all gravitational degrees of freedom; introducing new gravitational variables from the class

of parametrizations (14) is proved to be a canonical transformation.

3. Quantization scheme: why it leads to the Schrödinger equation?

The simplest way to get the Wheeler – DeWitt equation is to replace components of the metric tensor and their

conjugate momenta by operators in the so-called Hamiltonian gravitational constraint in the manner described

in [9]. So, one comes to the famous equation

[

1

2
√
γ
(γikγjl + γilγjk − γijγkl)

δ

δγij

δ

δγkl
+
√
γR(3)

]

Ψ = 0, (16)

γij are space components of the metric tensor, γ is the determinant of γij , R
(3) is 3-curvature. Eq.(16) is a

realization of the Dirac postulate according to which after quantization constraints become conditions on a state

vector. So, the Wheeler – DeWitt equation can also be considered as a postulate. DeWitt followed the way how

Schrödinger had got his wave equation, and one may object that the Schrödinger equation was written by its

author without rigorous grounds as well. However, the predictions made by means of this equation immediately

confirmed its fundamental status.

Three other gravitational constraints after replacement momenta by operators take the form

Dj

(

δΨ

δγij

)

= 0, (17)

Di denotes covariant derivative in three dimensions.
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It is generally accepted that the constraints as conditions on a state vector ensure gauge invariance of the

latter. It has been shown (see, for example, [28]) that the wave functional is invariant under three-dimensional

infinitesimal diffeomorphisms assuming that infinitesimal parameters vanish at infinity. The situation with four-

dimensional diffeomorphisms is more complicated. The quantum constraints (16), (17) are written in the form

not depending on gauge variables thanks to the choice of the ADM parametrization. However, Hawking and

Page [29] pointed out that the DeWitt supermetric on space of all three-dimensional metrics γij does depend on

the lapse function N . In principle, it gives rise to a family of the Wheeler – DeWitt equations corresponding to

different relations between N and γij . Hawking and Page proposed to regard N as a field independent on γij .

It is in correspondence with the choice made by DeWitt [1]: N = 1, Ni = 0. But these additional conditions

on the lapse and shift functions implicitly fix a reference frame. The same idea can be expressed in the other

words: the ADM parametrization introduces in 4-dimensional spacetime (3 + 1)-splitting that is equivalent to

a choice of a reference frame [30]. It raises doubts if the theory based upon the Wheeler – DeWitt equation is

indeed gauge invariant.

We saw in the previous section that there is another possibility to formulate Hamiltonian dynamics of a

constrained system but the method proposed by Dirac. Hamiltonian equations in extended phase space include

a constraint, however, this constraint is modified in comparison with the Hamiltonian constraint in the Dirac

formalism. If one accepts the Dirac postulate about constraints after quantization as conditions on a state

vector, what form of the constraint should be chosen? Should we consider the ADM parametrization as a

privileged one and bear in mind the DeWitt choice N = 1, Ni = 0 although it implicitly fix a reference frame,

instead of using the formalism in which all parametrizations are rightful?

Another way to come to the Wheeler – DeWitt equation is to require BRST invariance of physical states.

In the case of commuting constraints one gets from (10)

Ω̂BFV Ψ = 0 =⇒ ĜαΨ = 0. (18)

So, for gravity the quantum constraints (16), (17) result from the requirement of BRST invariance. However, as

we saw in the previous section, the BRST charge which generates correct gauge transformations for all degrees

of freedom can be constructed according to the Noether theorem, and its structure does not coincide with that

of the BFV generator (10). In particular, the charge (12) does not lead to the Wheeler – DeWitt equation. And

again, one can pose the question, if it is correct to construct Hamiltonian dynamics in extended phase space so

that it mimics the Dirac generalized dynamics?

There were some works devoted to derivation of the Wheeler – DeWitt equation from a path integral.

Barvinsky and Ponomariov [31] used as a starting point a path integral over the so-called reduced phase space.

Halliwell [32] relied upon the BFV quantization scheme. All the mentioned authors made use of asymptotic

boundary conditions for ghosts and Lagrange multipliers of gauge fixing terms. Asymptotic boundary conditions

came from ordinary quantum field theory where one usually considers systems with asymptotic states in which

physical and non-physical degrees of freedom could be separated from each other. The boundary conditions
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ensure gauge invariance of the path integral, as well as of a theory as a whole. So, the work by Halliwell [32] is

based upon the Fradkin – Vilkovisky theorem which states that the path integral is independent of the choice

of gauge fixing function under asymptotic boundary conditions. It let him choose the simplest gauge condition

Ṅ = 0 (which is in accordance with the DeWitt condition N = 1), and that is why one cannot find any vestiges

of gauge fixing function in the equation he obtained.

But the situation in the theory of gravity differs from that in quantum field theory. The only case of a

gravitating system with asymptotic states is the case of asymptotically flat spacetime. A universe with non-

trivial topology, in particular, a closed universe, does not possess asymptotic states. Asymptotic boundary

conditions are not justified for quantum gravity. This fact should be taken into account when deriving the

Wheeler – DeWitt equation from a path integral. However, in the absence of the boundary conditions gauge

invariance breaks down. The quantum version of the Hamiltonian constraint loses its sense.

In this situation I give preference to the Schrödinger equation as a fundamental equation which maintains

its validity in quantum field theory. In accordance with the assumption made in Section 1, the equation

for the wave function of the Universe must not be postulated but derived from a path integral by means of a

mathematically consistent procedure. The path integral formalism does not require to construct the Hamiltonian

form of the theory at all since the equation for the wave function can be derived directly from a path integral

in the Lagrangian form. The Lagrangian formalism corresponds to the original (Einstein) formulation of the

gravitational theory. In the extended phase space approach we deal with the path integral with the Batalin –

Vilkovisky effective action which, as was mentioned above, is reduced to the Faddeev – Popov effective action

for gravity. We consider the path integral without asymptotic boundary conditions. The generalization of the

standard method originated from Feynman [33, 34] results in the following Schrödinger equation:

i
∂Ψ(N, q, θ, θ̄; t)

∂t
= HΨ(N, q, θ, θ̄; t), (19)

where

H = − 1

N

∂

∂θ

∂

∂θ̄
− 1

2M

∂

∂Qα
MGαβ ∂

∂Qβ
+ U(N, q)− V [f ]; (20)

the operator H corresponds to the Hamiltonian in extended phase space (8). This is another argument in favor

of our choice of quantization scheme. M is the measure in the path integral, V [f ] is a quantum correction to

the potential U , the analogue of the term with the scalar curvature of configurational space in [34]. The explicit

form of (20) for an arbitrary parametrization of the gauge variable is given in [35].

The wave function is defined on extended configurational space with the coordinates N, q, θ, θ̄. The general

solution to the Schrödinger equation has the following structure:

Ψ(N, q, θ, θ̄; t) =

∫

Ψk(q, t) δ(N − f(q)− k) (θ̄ + iθ) dk. (21)

It is a superposition of eigenstates of a gauge operator,

(N − f(q)) |k〉 = k |k〉; |k〉 = δ (N − f(q)− k) . (22)
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The function Ψk(q, t) describes a state of the physical subsystem for a reference frame fixed by the condition

(5). It is a solution to the equation

i
∂Ψk(q; t)

∂t
= H(phys)[f ]Ψk(q; t). (23)

This equation can be called the Schrödinger equation for the physical part of the wave function, while H(phys)[f ]

can be called the physical Hamiltonian operator. It can be obtained from (20) by separating ghosts and

substituting the gauge condition (5) into (20):

H(phys)[f ] =

(

− 1

2M

∂

∂qa
Mgab

∂

∂qb
+ U(N, q)− V [f ]

)
∣

∣

∣

∣

N=f(q)+k

. (24)

Recently the Schrödinger equation has been derived for the spherically symmetric model which is a simplest

model with an infinite number of degrees of freedom. The interval for the model is

ds2 = −N2(t, r)dt2 + V 2(t, r)dr2 +W 2(t, r)(dθ2 + sin2 θdϕ2). (25)

The details of derivation of the Schrödinger equation will be published elsewhere. I would like only mention

that the structure of its general solution repeats (21):

Ψ[N, V, W, θ, θ̄; t] =

∫

Φk[V, W, t] δ(N − F (V, W )− k) (θ̄ + iθ) dk. (26)

Φk[V, W, t] is the physical part of the wave functional Ψ[N, V, W, θ, θ̄; t]. Just as Ψk(q, t), it is a solution to

the equation similar to (23), whose form depends on the gauge condition N = F (V,W ) + k.

Can we come to the Wheeler – DeWitt equation starting from the Schrödinger equation? Yes, we can do it

if we (i) put E = 0 in stationary solutions to the Schrödinger equation for the physical part of the wave function

that is equivalent to rejecting time evolution of the wave function, (ii) choose the ADM parametrization and

(iii) choose the gauge conditions N = 1 Ni = 0. In this case Eq.(23) would reduce to the Wheeler – DeWitt

equation

HWDWΨ(q) = 0. (27)

with the Hamiltonian operator

HWDW = − 1

2M

∂

∂qa
Mgab

∂

∂qb
+ U(q). (28)

So, from the point of view of the extended space approach, the Wheeler – DeWitt equation and its solutions

answer just the particular case, namely, the particular choice of parametrization and gauge conditions and the

zero eigenvalue of the Hamiltonian. If one declare that the Wheeler – DeWitt equation is more fundamental, it

means rejecting all other cases and all other solutions to the Schrödinger equation (19). At the present level of

development of the theory it seems to be bad-grounded to give preference to the Wheeler – DeWitt equation

excluding all other possibilities.
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4. Interpretation and conclusions

As we can see, the physical picture one can get in the proposed approach strongly depends on a chosen reference

frame. Is it a bad news for this approach? The answer ought to be “Yes”, if one postulates that quantum theory

of gravity must be gauge invariant. However, we do not know what this theory will be.

Let us return to the general solution (21). It can be interpreted in the spirit of Everett’s “relative state”

formulation. To see this, let us appeal to the seminal paper by Everett [36]. His first goal was to make quantum

theory applicable to isolated systems containing observers in interaction with other subsystems that leads to the

concept of “relativity of states”. This concept was illustrated with a toy model originated from von Neumann

[37]. The feature of this consideration is the existence of a relation between parameters of a quantum object

(such as the position of a particle, x) and those of a measuring device (such as the position of a pointer, r). For

example, in the situation when the pointer coordinate r is definite, the wave function of the total system can

be written as

ψS+A
T =

∫

1

Nr′
ξr

′

(x) δ(r − r′) dr′, (29)

where ξr
′

(x) are the relative states for the measuring device states δ(r − r′) of definite value r = r′, Nr′ is a

normalization constant (see the last equation on p. 456 in [36]).

Let us compare the expressions (29) and (21). Each element of the superposition (29) describes a state

in which the only degree of freedom of the measuring device, namely, the pointer position r, is definite. In

General Relativity the observer is represented by the reference frame only, by means of which he is able to

judge about spacetime geometry. In other words, the reference frame plays the role of a measuring device in

General Relativity. Each element of the superposition (21) describe a state in which the only gauge degree

of freedom N is definite, so that time scale is determined by processes in the physical subsystem through the

gauge fixing function f(q). The superposition (21) is a packet over k, and, though a form of the packet is not

determined by Eq.(23), it has to be sufficiently narrow for Ψk(q, t) to be a normalizable function [13]. The

spread of k reflects the fact that in quantum gravity the reference frame cannot be fixed absolutely precisely,

in particular, time intervals between two hypersurfaces cannot be measured with arbitrary accuracy. One can

say that the function Ψk(q, t) describes a relative state of the physical subsystem for the reference frame fixed

by the condition (5). So, the extended phase space approach to quantization of gravity can be considered as a

mathematical realization of the Everett concept of relative states.

This approach may have some advantages for description of quantum effects in strong gravitational fields.

It is well known that even in classical General Relativity different observers (the observer who crosses a black

hole horizon and the one at some distance from the black hole) watch different physical phenomena. The

same is true if one considers quantum field theory in curved background. One can say that quantum states

observed by various observers live in different Hilbert spaces. Susskind and his collaborators [38, 39] formulated
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this idea as the complementarity principle for black holes: the observer falling into a black hole and the distant

observer will see physical phenomena which are complementary to each other. This principle combines two kinds

of complementarity: the complementarity of physical pictures observed in different reference frames inherited

from General Relativity and the quantum complementarity in the sense of Bohr. One can expect that this

principle will be reflected in the full quantum gravity.

The Wheeler – DeWitt approach does not admit the description of phenomena related to different reference

systems. The description of them, as well as the appearance of time, is possible only in quasiclassical approx-

imation (see, for example, [40]). Just the opposite, in the extended phase space approach, which leads to the

time-dependent Schrödinger equation and where any quantum state is related to a chosen reference frame, there

exist a theoretical possibility to give a complete consideration of these phenomena.

In conclusion I would like to repeat that at present we do not know what approach is correct and we would

not know it until observation data do not give us a hint. However, it is too early to deprive the Schrödinger

equation of its fundamental status.
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