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The appearance of Hamiltonian constraint in the canonical formalism for general relativity reflects
the lack of a fixed external time. The dynamics of general relativistic systems can be expressed
with respect to an arbitrarily chosen internal degree of freedom, the so called internal clock. We
investigate the way in which the choice of internal clock determines the quantum dynamics and
how much different quantum dynamics induced by different clocks are. We develop our method of
comparison by extending the Hamilton-Jacobi theory of contact transformations to include a new
type of transformations which transform both the canonical variables and the internal clock. We
employ our method to study the quantum dynamics of the Friedmann-Lemaitre model and obtain
semiclassical corrections to the classical dynamics, which depend on the choice of internal clock. For
a unique quantisation map we find the abundance of inequivalent semiclassical corrections induced
by quantum dynamics taking place in different internal clocks. It follows that the concepts like
minimal volume, maximal curvature and the number of quantum bounces, often used to describe
quantum effects in cosmological models, depend on the choice of internal clock.

I. INTRODUCTION

The goal of the paper is to study the concept of quan-
tum dynamics in the context of Hamiltonian constraint
systems. The motivation for this work is the fact that the
canonical formalism for general relativity, the geometro-
dynamics [1], involves a Hamiltonian constraint. Hamil-
tonian constraints play two distinct roles in canonical
formalisms: (i) they generate canonical transformations
which represent dynamics and (ii) they confine physically
admissible states to a submanifold in the phase space.
The Hamiltonian constraint of canonical relativity fol-
lows from the diffeomorphism-invariance of that theory
[2] and any fundamental physical theory that includes
gravity should involve a Hamiltonian constraint.

There are three main approaches to quantisation of
dynamics of such systems (see [3] for a clear discussion).
In this paper we report some results derived within the
so called reduced phase space approach. Nevertheless,
we believe that our results do not reflect the peculiarity
of the specific approach that we employ but rather they
follow from the properties of Hamiltonian constraint sys-
tems and cannot be avoided in any approach. We focus
on a specific aspect of the quantum dynamics of gravita-
tional systems, which is called the multiple choice prob-
lem. This problem has been discussed within the Dirac
approach in [4] and its wider context can be found e.g.
in [5]. In essence, the multiple choice problem concerns
the ambiguity of quantum dynamics of any Hamiltonian
constraint system due to the ambiguity in the choice of
the internal clock. A key tool used in our investigations
is the theory of pseudocanonical transformations, which
was first formulated in [6] and which we develop herein.
Pseudocanonical transformations treat the internal clock
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as a coordinate which is subject to choice as much as the
canonical coordinates are subject to choice by means of
canonical transformations. In order to study the “clock
effect” on quantum dynamics we propose an extended
quantisation procedure which can be applied to all re-
duced phase spaces for all possible choices of internal
clocks. The defining property of the extended quanti-
sation procedure is the assumption of a unique quantum
representation of constants of motion, the so called Dirac
observables, irrespectively of the choice of internal clock.
Moreover, the respective quantum theories are defined in
a unique Hilbert space, where they can be compared. We
use the semiclassical portrait method for describing the
semiclassical-level dissimilarities between quantum dy-
namics obtained for different choices of internal clocks.
The goal of the present paper is not to provide a definite
answer to the question of the title but rather to provide
its careful and pointed formulation. We believe that our
formulation should contribute to discussions of the con-
cept of quantum dynamics for gravitational systems.

The outline of the paper is as follows. In Sec. II we
introduce the Hamiltonian constraint formalism and dis-
cuss some of its geometrical aspects which are relevant
for our purposes. In Sec. III we discuss in some de-
tail the reduced phase space approach to Hamiltonian
constraint systems and develop the theory of the pseudo-
canonical transformations which relate different reduced
phase spaces. In Sec. IV we apply the introduced theory
in considerations of the Friedmann-Lemaitre (F-L) model
of the universe. A quantisation of this model which re-
places the classical singularity with a bounce is intro-
duced in Sec. V. In Sec. VI we employ a useful method
of phase space portrait to describe the quantum dynam-
ics of the cosmological model at the semiclassical level.
Sec. VII describes the main result of the paper. We dis-
cuss in general terms the so called extend quantisation
procedure and how different quantum dynamics obtained
from different reduced phase spaces can be compared.
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Next, we demonstrate via several examples how the re-
definition of internal clock affects the quantum dynamics
of the Friedmann-Lemaitre model. We conclude in Sec.
VIII.

II. PRELIMINARIES

Throughout the paper we will work with finite-
dimensional phase spaces. Let us denote them by (qi, pi).
The dynamics of a Hamiltonian constraint system follows
from Hamilton’s equations and the constraint equation:

d

dτ
O(qi, pi) = {O,C}, C = 0, (1)

where C is the Hamiltonian constraint, τ is an evolution
parameter and O(qi, pi) is an observable. The motion
which occurs outside the hypersurface, C = 0, is unphys-
ical. The multiplication of the Hamiltonian constraint
C by any non-vanishing function N(qi, pi, τ) leads to an-
other set of equations, namely:

d

dτ ′
O(qi, pi) = {O,NC}, NC = 0, (2)

which is equivalent to the former one (1) upon rescaling
the evolution parameter:

dτ = Ndτ ′, (3)

where the derivative is understood along any physi-
cal curve in (qi, pi). This property is called the time-
reparametrisation invariance and it reflects the physical
assumption about the lack of a fixed external time and
the auxiliary nature of the evolution parameters τ and
τ ′.

The canonical formalism which consists of the phase
space (qi, pi) equipped with the symplectic form ω =∑
i dqidpi and a constraint function C(qi, pi) can be re-

duced as follows. Let us denote the constraint surface
by

S = {(qi, pi) : C(qi, pi) = 0}. (4)

S is equipped with the degenerate two-form,

ω|S =
∑
i

dqidpi|S , (5)

induced from the phase space (qi, pi). The physical mo-
tion can be now defined in terms of integral curves gen-
erated by any vector field vS that is null with respect to
the induced form, namely

dua

dτ
= vS(u), a = 1, . . . , 2n+ 1, ω|S(vS) = 0, (6)

where {ua} is a coordinate patch in S. The freedom
in parametrising the physical motions is encoded in the
ambiguity of vS as

ω|S(N · vS) = N · ω|S(vS) = 0, (7)

FIG. 1: The constraint surface S is given by the
condition C = 0. The Hamiltonian vector field

vC = {·, C} is tangential to that surface and generates
the physical trajectories. The form ω|S induced from
the symplectic form ω is degenerate and vC spans its

null subspace.

where N is any non-vanishing function on S. The Hamil-
tonian formulation of dynamics on S will be considered
in the next section.

Let us denote the space of all physical motions rep-
resented by the integral curves (6) by D and call it the
space of Dirac observables. The projection from S to D
is naturally generated by the vector field vS ,

πvS : S 7→ D, (8)

where any two points in S connected by a curve (6) are
mapped to a single point in D. Consider a section,

σ : D 7→ S, (9)

which is an injective map such that πvS◦σ = Id. It can be
shown that any section defines a unique, non-degenerate
form, ω|D in D,

ω|D := σ∗(ω|S), (10)

which is induced from ω|S by σ. In other words, the
space of Dirac observables is a phase space equipped with
an unambiguous symplectic structure descendent from ω.
Note that the constraint surface S, where the physical
motion occurs, is not equipped with any symplectic form.
The structure of the constraint surface is depicted in Fig.
(1).

Now the problem of quantisation of dynamics of a
Hamiltonian constraint system can be formulated as fol-
lows. On one hand, quantisation as commonly defined is
a linear map from classical observables to quantum oper-
ators, which respects the canonical structure in the space
of classical observables (see e.g. [7]). On the other hand,
the dynamics can be described only by means of dynami-
cal observables which are functions on the constraint sur-
face S, because this is where the physical motion, repre-
sented by the integral curves (6), happens. However, S
is not equipped with any canonical structure. The avail-
able canonical structure is present in the space of Dirac
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observables D, which do not describe the dynamics. In
other words, the Poisson bracket between dynamical ob-
servables is not available.

The reader could disagree by saying that one has the
symplectic form ω in the original phase space (qi, pi),
which gives the Poisson bracket {·, ·} = −ω−1 between
any observables, including those on the constraint surface
S. This, however, is false. Since only the constraint
surface S includes the physically admissible states, any
observable O(qi, pi) defined in the original phase spaces
(qi, pi) is in fact an element of the following equivalence
class:

[O] = {O′(qi, pi) : O′(qi, pi) ≈ O(qi, pi)}, (11)

where ‘≈’ means ‘equal on the constraint surface S’.
These equivalence classes represent physical observables
in (qi, pi). The Poisson bracket between the equivalence
classes is well-defined if and only if the evaluation of the
Poisson bracket between any elements of two fixed equiv-
alence classes gives an element of the same equivalence
class. In other words, one requires that

{O1 + C,O2} = {O1, O2}+ {C,O2} ≈ {O1, O2}, (12)

since O1 + C ≈ O1 and they are elements of the same
equivalence class, [O1]. Eq. (12) holds if and only if

{C,O2} ≈ 0, (13)

that is, O2 is a (weak) constant of motion. This con-
firms our previous assertion that the canonical structure
is unambiguously defined only for the Dirac observables,
which are constants of motion.

On one hand, quantisation of the Dirac observables
seems to be (at least formally) a straightforward task. On
the other hand, quantisation of dynamical observables
encounters a severe obstacle in the lack of appropriate
canonical structure. In the rest of the paper we wish
to shed some light on this problem. In particular we will
consider possible inequivalent extensions of the canonical
structure on D to S and associate them with the choice
of internal clock.

III. THEORY OF REDUCED FORMALISM

In this section we provide a definition of the internal
clock. We show how the internal clock naturally extends
the canonical structure on the space of Dirac observables
to the space of dynamical observables. Also, we show
how the internal clock enables to reformulate the mo-
tion given by Eq. (6) in terms of the Hamilton equations
of a reduced canonical formalism. Then we recall the
Hamilton-Jacobi theory of contact transformations. We
propose an extension to this theory, which includes clock
transformations (see also [6]). Within this extension in-
ternal clocks can be associated with some natural canon-
ical variables and this turns out to be a crucial tool to
investigate quantisation of dynamics in different clocks.

T=1
T=2

S = Phase Space × R

T: S ↦ R

FIG. 2: The constraint surface S is sliced by level sets
of the internal clock. As a result, the constraint surface

is factorised into the cartesian product of the time
manifold and the phase space. The trajectories are

monotonic with respect to the internal clock.

We assume a 2n+ 1-dimensional manifold S equipped
with a 2-form ω|S of rank 2n, whose null vector fields
generate a 2n-dimensional space of curves in S, which
represent the physical motion.

By internal clock, denoted by T : S 7→ R, we mean a
real function on S which is monotonic along each curve
representing the physical motion and whose level sets
cross each curve at most once, which is depicted in Fig.
(2). The choice of the internal clock is largely arbitrary.

The restriction of the 2-form ω|S to a level set T =
const gives an invertible, and thus symplectic, 2-form
ω|S,T=const. It can be inverted at each level set to obtain
a Poisson bracket,

{·, ·}T=const = −ω|−1
S,T=const. (14)

Smooth repetition of this procedure for all level sets of
T defines a smooth Poisson bracket in the entire S, de-
noted by {·, ·}T . It can be used to compute commutation
between any two observables which are functions on S.

Let us recall the Hamilton-Jacobi theory [8]. The basic
object in this theory is the contact manifold, MC . It is
defined as the Cartesian product of the phase space P
and a real time manifold, MC = P × R. It is equipped
with the contact form,

ωC = ω − dtdH, (15)

where ω = ωC |t=const = dqdp is a symplectic form
pushed-forward from the 2n-dimensional phase space P
to the contact manifold MC , t is a time parameter and
H, called the Hamiltonian, is some function onMC . ωC
is in fact a degenerate 2-form on a 2n + 1-dimensional
manifold. Its null vector fields generate curves which
represent the motion in a given model. The curves can
be parametrised by t and obtained through the respective
Hamilton equations:

dq

dt
= {q,H}, dp

dt
= {p,H}, (16)
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where the Poisson bracket at any fixed time reads

{·, ·} := −ωC |−1
t=const = −ω−1, (17)

which is the (minus) inverse of the symplectic form ω.
This framework is useful for introduction of the notion of
contact (i.e. time-dependent canonical) transformations.
The contact transformations are introduced as transfor-
mations of canonical coordinates which preserve the form
of the contact form, i.e.:

(q, p, t) 7→ (q̄, p̄, t) such that ωC = dq̄dp̄− dtdH̄, (18)

where H̄ is a new Hamiltonian. With it one forms new
Hamilton’s equations

dq̄

dt
= {q̄, H̄}, dp̄

dt
= {p̄, H̄}, (19)

which are physically equivalent to the previous ones.
Note that the time coordinate t is preserved by contact
transformations.

It is easy to see how an analogous canonical formalism
can be established for the motion in the constraint surface
S equipped with the internal clock T . Namely, one makes
the identification of the constraint surface, the induced
form and the internal clock with the contact manifold,
the contact form and the time parameter, respectively:

(S, ω|S , T )↔ (MC , ωC , t), (20)

which is depicted in Fig. (3). We can see from the figure
that the identification concerns both the curves repre-
senting the physical motion as well as time and the clock
which enumerate points along each curve. Thus, it in-
duces a one-to-one correspondence between points in S
and points in MC . As a result, the canonical coordi-
nates and the Hamiltonian on MC can be mapped into
the respective canonical coordinates and the respective
Hamiltonian on S. The induced form ω|S in the induced
canonical coordinates reads:

ω|S = dqdp− dTdH, (21)

where the internal clock T plays the role of the time
parameter t. The respective Hamilton equations,

dq

dT
= {q,H}, dp

dT
= {p,H}, (22)

generate curves that are null with respect to ω|S and
parametrised with T .

At this point it might look like as if we have succeeded
in reducing the Hamiltonian constraint formalism to the
usual unconstrained canonical formalism. This is, how-
ever, impossible. There are two important and unremov-
able differences:

1. The internal clock is not physically the same with
the time parameter. The values of the latter are
irrelevant for the state of the system, which is com-
pletely characterised by the canonical coordinates

ᵱC = dq⋏dp - dt⋏dH ᵱ|S= dq⋏dp - dT⋏dH

t = const. T = const.

m
otion

m
otion

MC S

FIG. 3: The figure presents the identification of the
constraint surface S (on the right) with the contact

manifold (on the left) by inducing the contact
coordinates (t, q, p) in the constraint surface. The latter

allows to rewrite the induced two-form ωS as the
contact form with clear separation of the symplectic

part, the time parameter and the Hamiltonian.

in the phase space. Whereas the values of the for-
mer are indispensable for reading the state of the
system. This is the reason for calling it the “in-
ternal clock” (recall that the internal clock like all
other observables is descended from the original
phase space (qi, pi)).

2. The time parameter is unique whereas there are
many equally good choices for internal clock. To
describe this property, the contact transformations
are insufficient simply because they preserve the
time coordinate as it is apparent from Eq. (18).
Therefore, we will introduce the “pseudocanoni-
cal transformations” to relate reduced formalisms
based on different internal clocks.

In order to include the possibility for changing the in-
ternal clock in the reduced canonical formalism we pro-
pose to extend the concept of contact transformations.
We introduce the so called pseudocanonical transforma-
tions which are transformations of contact coordinates
(q, p, T ) 7→ (q̄, p̄, T̄ ), which include the internal clock and
the pair of canonical coordinates and which preserve the
form of the contact form, i.e.:

(q, p, T ) 7→ (q̄, p̄, T̄ ) such that ω|S = dq̄dp̄− dT̄dH̄,
(23)

where H̄ is a new Hamiltonian. The respective Hamilton
equations,

dq̄

dT̄
= {q̄, H̄}, dp̄

dT̄
= {p̄, H̄}, (24)

are physically equivalent to Eqs (22). The non-canonicity
of the above transformation is the consequence of trans-
forming the internal clock. In general, the coordinates
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(q̄, p̄) are not canonical with respect to T and (q, p) are
not canonical with respect to T̄ . It is easy to verify that
the group of contact transformations is a normal sub-
group of the group of pseudocanonical transformations,
namely

∀g ∈ GP GCg = gGC , (25)

where GP and GC are the groups of pseudocanonical
and contact transformations, respectively. Therefore, the
group of pseudocanonical transformations is a fibre bun-
dle π : GP 7→ T over the space of all internal clocks T
with GC as a fibre. The group GP is regular (simple and
transitive) so it can be identified with the space of all
contact coordinates, (q, p, T ).

Let us see how a particularly interesting class of pseu-
docanonical transformations can be constructed. Sup-
pose there are some contact coordinates (q, p, T ) on S
such that

ω|S = dqdp− dTdH(q, p) (26)

We make a clock transformation T → T̄ = T̄ (q, p, T )
and ensure that the new and the old clock are monotonic
with respect to each other along the physical motion.
We demand that the new canonical coordinates (q̄, p̄) are
such that

ω|S = dq̄dp̄− dT̄dH(q̄, p̄), (27)

that is, the Hamiltonian H(q̄, p̄) is formally the same
function of canonical coordinates as H(q, p). One no-
tices that in this case the Hamilton equations of motion
are formally the same both in (q, p, T ) and in (q̄, p̄, T̄ ).
Thus, the constants of motion, denoted by Ij , can be
demanded to have the same form in both contact coor-
dinate systems, namely

Ij(q, p, T ) = Ij(q̄, p̄, T̄ ), j = 1, . . . , 2n (28)

The above set of equations supplemented with

T̄ = T̄ (q, p, T ) (29)

gives 2n + 1 algebraic relations between two coordinate
systems on S, (q, p, T ) and (q̄, p̄, T̄ ). Given initial contact
coordinates (q, p, T ) and a new internal clock T̄ , they can
be solved for (q̄, p̄) unambiguously. In geometrical terms,
the above relations define a section σ in the space of all
contact coordinates:

σ : T 3 T̄ 7→ (q̄, p̄, T̄ ) ∈ GP . (30)

This particular section will soon turn out very useful
for quantising a given system in many different internal
clocks.

IV. FRIEDMANN-LEMAITRE MODEL

Let us consider a simple gravitational model, namely
the flat Friedmann-Lemaitre model of the universe R ×

Σ = R× T3, filled with radiation and equipped with the
line element,

ds2 = −N2dt2 + a2δabdx
adxb. (31)

Let v0 =
∫

Σ
d3x be the coordinate volume. It can be

shown [9] that the Hamiltonian constraint for this model
reads:

C = pT + p2, (q, p) ∈ R∗+ × R, (T, pT ) ∈ R2, (32)

where q = av
1
3
0 and p =

3(av
1
3
0 )2

8πG
1
N
ȧ
a are respectively the

length and the expansion of the universe. Their physical
dimensions are [q] = length and [p] = mass, where we set
c = 1. T is a variable associated with the state of the fluid
and pT is the respective momentum. For fluids other
than radiation, the respective Hamiltonian constraint can
be formulated analogously, see [9].

Let us first compute the induced 2-form on the surface
S, where the constraint C = 0 vanishes:

ω|S = dqdp+ dTdpT
∣∣
C=0

= dqdp− dTdp2, (33)

where we have chosen to parametrise the surface S with
three independent coordinates: q, p and T . Naming
H = p2 the reduced Hamiltonian, we deduce from the
Hamilton-Jacobi theory that the motion of the system
with respect to T can be formulated by means of the
Hamilton equations:

dq

dT
=
∂H

∂p
,

dp

dT
= −∂H

∂q
, H = p2, (34)

where the fluid variable plays the role of the internal
clock and (q, p) play the role of canonical coordinates in
the reduced phase space. Note that pT is removed from
the formalism that now takes the form of the Hamiltonian
formulation of a free particle on a half-line. Several phase
space trajectories are plotted in Fig. (4). The phase
space boundary q = 0 represents the big-bang/big-crunch
singularity.

It is straightforward to find two independent constants
of motion,

I1 = q − 2pT, I2 = p. (35)

Now we construct pseudocanonical transformations by
following the prescription proposed in the previous sec-
tion, principally in Eq. (28). For simplicity, we restrict
our attention to the following clock transformations:

T → T̄ = T +D(q, p) (36)

where D(q, p) is the so-called delay function and where
T and T̄ are monotonic with respect to each other along
the motion. Demanding

q − 2pT = q̄ − 2p̄T̄ , p = p̄ (37)

we obtain:

T̄ = T +D(q, p), p̄ = p, q̄ = q + 2pD(q, p). (38)
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FIG. 4: The Hamiltonian dynamics of the flat
Friedmann-Lemaitre model resembles the dynamics of a
free particle on a half-line. The phase space trajectories

are shown in the figure. The trajectories arriving
at/starting from q = 0 represent the

big-crunch/big-bang singularity of the universe.

The induced form (33) reads in the new variables:

ω|S = dq̄dp̄− dT̄dp̄2, (39)

and its form is preserved as expected. It can be easily
verified that the new Hamilton equations,

dq̄

dT̄
=
∂H̄

∂p̄
,

dp̄

dT̄
= −∂H̄

∂q̄
, (40)

where H̄ = p̄2, define the same motion as Eq. (34).
Thus, we have succeeded in establishing the Hamiltonian
formalisms of the Friedmann-Lemaitre model for all in-
ternal clocks defined by Eq. (36). We emphasise that
the canonical structures induced by different clocks are
different. For instance, the computation of the Poisson
bracket between q̄ and p̄ given in Eq. (38) for the clock
T ,

{q̄, p̄}|T=const = {q + 2pD(q, p), p}|T=const = 1 + 2p∂qD,
(41)

gives in general a value different from 1.

V. QUANTISATION OF DYNAMICS

In what follows we quantise the dynamics of the
Friedmann-Lemaitre model expressed by means of the
canonical formalism,

H = p2, (q, p) ∈ R∗+ × R. (42)

Notice that q > 0. Quantisation of the above Hamil-
tonian based on the representation of the affine group
which is the symmetry of the half-plane was presented in
[9]. Nevertheless, for the sake of simplicity, let us employ

a simplified, though not consistent with the symmetry of
the half-plane, procedure:

H = p2 → ĤΨ(x) := −~24 Ψ(x), (43)

where

Ψ(x) ∈ C∞c (R+) ⊂ L2(R+,dx). (44)

(C∞c (R+) is the space of smooth functions with com-
pact support on R+). It is known that there are in-
finitely many self-adjoint extensions of the above oper-
ator (see e.g. [10]). We extend the domain to smooth
wave-functions Ψ ∈ C∞(R+) such that Ψ,x ∈ L2(R+,dx)
and satisfying the Dirichlet boundary condition,

Ψ(0) = 0. (45)

The operator is essentially self-adjoint on this domain
and its spectrum is non-negative, sp(−4) = R+ ∩ {0}.

The classical Hamiltonian H that generates an incom-
plete motion in the phase space is promoted to the self-
adjoint operator Ĥ that generates a complete unitary
evolution in the Hilbert space, because the quantum dy-
namics as measured by the internal clock T can be ex-
tended indefinitely by the virtue of the Stone-von Neu-
mann theorem. This is how the quantisation resolves the
classical singularity. We emphasise that the choice of the
Dirichlet boundary condition is merely an example and
there are infinitely many other conditions which ensure
the self-adjointness of Ĥ (see [10] for details) and lead to
the singularity resolution. Instead of solving the respec-
tive Schrödinger equation, we will employ a semiclassical
description in terms of phase space portraits.

VI. PHASE SPACE PORTRAIT

In what follows we introduce the phase space portrait
method to provide a simple representation of the uni-
tary dynamics generated by the self-adjoint Hamiltonian
Ĥ = −~24 described in the previous section. We make
use of coherent states based on a unitary representation
of the affine group. We recall the principal elements of
that framework in order to keep the presentation self-
contained. More details can be found in Appendix A
and in [9].

The affine group,

(q, p) ◦ (q′, p′) = (qq′, q−1p′ + p), (46)

is a minimal canonical group acting in the phase space
R+ × R. It has a unique, up to irrelevant sign, non-
trivial unitary irreducible and integrable representation,
U(q, p), which is defined in L2(R+,dx) as

U(q, p)[ψ(x)] =
e−ipx/~
√
q

ψ

(
x

q

)
(47)

Given a normalised vector |ψ0〉 in the Hilbert space, the
above representation can be used to define a family of
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the affine coherent states, R+ × R 3 (q, p) 7→ |q, p〉 ∈
L2(R+,dx):

|q, p〉 = U(q, p)|ψ0〉, 〈x|q, p〉 =
e−ipx/~
√
q

ψ0

(
x

q

)
. (48)

The fiducial state ψ0(x) = 〈x|ψ0〉 is admissible if∫
R+
|ψ0(x)|dxx <∞. We set

ψ0(x) =
aa/2√
Γ(a)

x
a−1
2 e−

a
2 x,

where a > 2. One can verify that 〈q, p|Q̂|q, p〉 = q

and 〈q, p|P̂ |q, p〉 = p, where Q̂ and P̂ are respectively the
position and momentum operators. The affine coherent
state |q, p〉 is said now to represent the classical state
(q, p). This identification of classical and quantum states
allows to make a comparison of classical and quantum
dynamics as explained below.

Let us formulate the quantum dynamics by means of
the least action principle. The quantum action is defined
as

AQ(ψ) =

∫
〈ψ|i~ ∂

∂T
− Ĥ|ψ〉 dt, (49)

where ψ(x) = 〈x|ψ〉 is a regular function of ‘x’. It
is minimised by solutions to the Schrödinger equation,

i~∂ψ(x)
∂T = Ĥψ(x). The quantum action AQ can be re-

stricted to the family of coherent states [11]:

AQ(q, p) =

∫
〈q, p|i~ ∂

∂T
− Ĥ|q, p〉 dt (50)

The phase space portrait is obtained via minimisation of
the action (50) with respect to q and p. We obtain the
semiclassical Hamilton equations:

dq

dT
=

∂Hsem

∂p
,

dp

dT
= − ∂Hsem

∂q
, (51)

where Hsem(q, p) = 〈q, p|Ĥ|q, p〉. In [9] it was found that

Hsem(q, p) = p2 +
~2K

q2
, (52)

where ~2K = 〈ψ0|Ĥ|ψ0〉 = ~2a2

4(a−2) > 0 is the expec-

tation value of energy in the fiducial state |ψ0〉. Eqs
(51) generate an approximate motion that has an im-
portant property, namely it occurs both in the Hilbert
space, T 7→ |q(T ), p(T )〉, and in the phase space, T 7→
(q(T ), p(T )). The motion in the phase space describes
quantitatively, in terms of the classical observables q and
p, basic features of the quantum dynamics such as the
fact that it is nonsingular. Notice that away from q = 0,

the term ~2K
q2 vanishes and the semiclassical dynamics

becomes classical. On the other hand, close to q = 0,

the term ~2K
q2 is a steep, repulsive potential that even-

tually stops and reverses any particle approaching the

FIG. 5: The mostly horizontal solid lines represent the
semiclassical dynamics of homogenous three-geometries
of the flat Friedmann-Lemaitre universe. The vertical

dotted lines depict equally-spaced values of the
repulsive potential. As the universe approaches the
singular state q = 0, it is repelled by the potential,

which results in a bounce. We set K = 2, q and p are
given in Planck lengths and Planck masses, respectively.

boundary q = 0. Hence, the singularity of the classical
Friedmann-Lemaitre universe is avoided.

In what follows we use Planck units because of the
value of ~2K = ~2 a2

4(a−2) = m2
P l

2
P

a2

4(a−2) , where mP and

lP are respectively Planck mass and Planck length. The
values of q and p are given in lP and mP , respectively.
Furthermore, we assume ~2K = 2m2

P l
2
P . Several semi-

classical trajectories are plotted in Fig. (5).

VII. SWITCHING BETWEEN CLOCKS

We already know from the section Theory of reduced
formalism and in particular from Eq. (28) how to switch
between reduced canonical formalisms based on differ-
ent internal clocks. For the case of a free particle on the
half-line we showed that the pseudocanonical transforma-
tions take the form (38) and, indeed, preserve the formal
dependence of constants of motion and of the induced
two-form on the basic variables and the internal clock.
In the section Quantisation of dynamics we proposed a
quantisation of the dynamics in a reduced canonical for-
malism associated with a fixed clock ‘T ’. So how can we
quantise the same dynamics in other clocks?

By “quantisation” we mean a linear map from phase
space functions to linear operators in the Hilbert space
that in general takes the following integral form [12, 13]:

f(q, p, T ) 7→ F̂T :=

∫
T=const

dqdpf(q, p, T )M(q, p),

(53)

where M(q, p) is a family of bounded operators in some
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Hilbert space H such that∫
T=const

dqdp M(q, p) = IH , (54)

and the integration is taken over the constant clock sub-
manifolds, i.e. the respective phase space. The integral
quantisation (53) includes all the well-known cases, e.g.
the “canonical prescription”, or the Weyl-Wigner quan-
tisation, is obtained for

M(q, p) = D(q, p)2PD†(q, p), (55)

where P is the parity operator, D(q, p) = ei(pQ̂−qP̂ ) is

the displacement operator and Q̂ and P̂ are the position
and momentum operators on the line [14].

For any other choice of clock, say T̄ , we choose exactly
the same family of bounded operators, M(·, ·), to define
quantisation of the respective phase space,

f(q̄, p̄, T̄ ) 7→ ˆ̄FT̄ :=

∫
T̄=const

dq̄dp̄f(q̄, p̄, T̄ )M(q̄, p̄).

(56)

In practice, we repeat the quantisation described in the
section Quantisation of dynamics for all other internal
clocks in the following way. We promote the basic ob-
servables q̄ and p̄, which are canonical in the clock T̄ , to
the same pair of quantum operators which are given to
the basic observables q and p, which are canonical in the
clock T , namely

q 7→ Q̂, p 7→ P̂ ⇒ q̄ 7→ Q̂, p̄ 7→ P̂ , (57)

where Q̂, P̂ are linear operators in H. Upon extending
this formal replacement rule to compound observables,
we obtain that any f(q, p) and f(q̄, p̄) are promoted to
the same quantum operators, i.e.

f(q, p) 7→ F̂ ⇒ f(q̄, p̄) 7→ F̂ , (58)

where F̂ is a linear operator on H. This includes the
respective Hamiltonians,

H(q, p) 7→ Ĥ ⇒ H(q̄, p̄) 7→ Ĥ. (59)

The introduced procedure, based on the formal replace-
ment of the basic observables and clocks in a quantisation
map, defines a quantisation of the dynamics in all inter-
nal clocks and places it in a unique Hilbert space H. Let
us call it “the extended quantisation procedure”. Below
we discuss some of its properties.

The observables f(q, p) and f(q̄, p̄) are promoted to the
same linear operator on H, nevertheless they correspond
in general to different physical quantities as

f(q, p) 6= f(q̄(q, p, T ), p̄(q, p, T )) (60)

according to the relation (38) between basic variables
and clocks. The only exceptions are constants of mo-
tion, which by the virtue of construction given in Eq.

(28), have the same dependence on the respective basic
variables and internal clock, i.e.

Ij(q, p, T ) = Ij(q̄(q, p, T ), p̄(q, p, T ), T̄ (q, p, T )). (61)

The extended quantisation procedure promotes Ij ’s to

the same quantum operators, Îj (or, the same clock-

enumerated families of operators Îj(τ), where τ ≡ T or
τ ≡ T̄ ) for all internal clocks. In other words, the quan-
tum representation of constants of motion is unique. We
conclude that any dissimilarities between quantum dy-
namical operators in different internal clocks are due to
different choices of clock rather than other quantisation
ambiguities like orderings, choices of basic variables, etc
(see also [6]). We provide more details on this idea in
Appendix B.

Below we describe two methods of comparison of quan-
tum theories based on different clocks and then we apply
one of them to the quantum F-L model.

A. Comparison method A

Let us focus on dynamical observables. Any dynamical
observable f(q, p) never corresponds to the same physical
quantity as f(q̄, p̄) if the relation between clocks T and
T̄ is non-trivial. Suppose that the observable f(q, p) cor-
responds to the same physical quantity as the observable

g(q̄, p̄) = f(q(q̄, p̄), p(q̄, p̄)), (62)

which can be determined from the relation between
barred and unbarred variables fixed by Eq. (28) or (38).
Hence, a unique physical quantity is promoted to two
distinct operators on H: in the first case it is F̂ and in
the other case it is Ĝ. Since

F̂ 6= Ĝ, (63)

they in general have different (generalised) eigenvectors
and even different spectra. We interpret such discrep-
ancies as clear indications of the influence of the choice
of clock on the dynamics of a quantum system. To better
understand this influence let us assume that F̂ and Ĝ are
self-adjoint and that the respective eigenvalue problems
read:

F̂ |f〉 = f |f〉, Ĝ|g〉 = g|g〉, (64)

where (|f〉, f) and (|g〉, g) are eigenstates and respective
eigenvalues. A state |ψ〉 ∈ H, according to the usual in-
terpretation of quantum mechanics, determines the prob-
ability of finding a quantum system at a given value of
the observable f(q, p),

Pψ,T (f) = |〈f |ψ〉|2, (65)

or, in another clock,

Pψ,T̄ (g) = |〈g|ψ〉|2. (66)
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Since the operators F̂ and Ĝ are not the same, the prob-
ability distribution of a given classical observable in a
fixed state |ψ〉 must depend on the choice of clock, i.e.

Pψ,T 6≡ Pψ,T̄ .

We conclude that the dynamics of a quantum system
must be influenced by the choice of clock because the
above discrepancy happens only when a quantum state
is classically interpreted with a dynamical observable.

However, making such an explicit comparison between
operators F̂ and Ĝ may be very difficult as it requires
determination of the spectrum and eigenvectors of each
operator. Fortunately, it is not the only method avail-
able.

B. Comparison method B

In a sense, a complementary method of comparison is
to fix a dynamical operator F̂ , or a set of dynamical op-
erators F̂α, on H and associate a state |ψ〉 ∈ H with a
unique wave function and a unique probability distribu-
tion:

ψ(f) = 〈f |ψ〉, Pψ(f) = |〈f |ψ〉|2, (67)

where F̂ |f〉 = f |f〉 as previously. However, the operator

F̂ corresponds to different classical observables in quan-
tum theories based on different clocks. Thus, the wave
function ψ(f) and the probability distribution Pψ(f) take
different physical interpretations for different clocks as
well. In particular, the formula

f = 〈ψ|F̂ |ψ〉, (68)

describes an expectation value, for a fixed state |ψ〉, of
different classical observables for different clocks. Given
a set of independent operators F̂α, where α = 1, . . . , 2n
and 2n is the dimension of classical phase space, the set
of expectation values

fα = 〈ψ|F̂α|ψ〉, α = 1, . . . , 2n, (69)

assign to a state |ψ〉 a complete classical state in the
phase space. However, for different choices of clock, the
classical interpretations of F̂α and thus, of fα are dif-
ferent. Therefore, a given state |ψ〉 is assigned different
classical states for different clocks. We interpret those
discrepancies as indications of the influence of the choice
of clock on the dynamics of a quantum system (although,

the state |ψ〉 is not evolving, the operators F̂α must be
dynamical in order to correspond to different classical
observables in different clocks).

An extension of the above comparison method is to
let a state |ψ〉 evolve according to the Schrödinger equa-
tion based on a unique quantum Hamiltonian (see Eq.
(59)). Then, instead of a fixed classical state, we obtain
a trajectory in the phase space,

T 7→ fα(T ) = 〈ψ(T )|F̂α|ψ(T )〉, α = 1, . . . , 2n, (70)

which can be interpreted as semiclassical dynamics, that
is, quantum dynamics described in terms of classical ob-
servables. Naturally, for different choices of clock we ex-
pect to get different semiclassical dynamics.

The above method can be combined with the affine
coherent states. The exact quantum dynamics may be
replaced with approximate dynamics within a family of
coherent states, T 7→ |q(T ), p(T )〉. We set the basic op-

erators, Q̂ and P̂ , to describe the quantum dynamics by
phase space trajectories:

q(T ) = 〈q, p|Q̂|q, p〉, p(T ) = 〈q, p|P̂ |q, p〉 (71)

The semiclassical trajectories of q and p in the quantum
F-L model were derived in the section Phase space por-
trait and, in particular, in Eq. (51). The comparison

involves the reinterpretation of Q̂ and P̂ accordingly to
the chosen internal clock. Then, the reinterpretation of
q and p follows. This simple procedure (i.e. based on
the expectation values) is justified by the fact that dis-
similarities between semiclassical dynamics in different
clocks reflect the most essential dissimilarities between
full quantum dynamics.

C. Comparison of quantum F-L dynamics

Let us apply the extended comparison method B to the
quantum Friedmann-Lemaitre model of the universe. We
said in the section Phase space portrait that the semiclas-
sical dynamics is generated by the semiclassical Hamil-
tonian which in the phase space (q, p) equipped with the
symplectic form ω = dqdp reads

Hsem(q, p) = p2 +
~2K

q2
. (72)

When we switch to another clock-based formalism, re-
peat the same quantisation and employ the same coher-
ent states, we obtain (formally) the same semiclassical
Hamiltonian

Hsem(q̄, p̄) = p̄2 +
~2K

q̄2
, (73)

which now acts in the phase space (q̄, p̄) equipped with
the symplectic form ω = dq̄dp̄. The physical meaning of
the canonical pairs (q, p) and (q̄, p̄) is different. In order
to compare the two semiclassical Hamiltonians we need
to apply the coordinate relation (38). We find that

Hsem(q̄(q, p), p̄(q, p)) = p2 +
~2K

(q + 2pD)2
, (74)

which shows that the semiclassical correction responsible
for the resolution of singularity depends explicitly on the
employed delay function:

VD =
~2K

(q + 2pD)2
. (75)
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We cannot compare the dynamics by solving the equa-
tions of motion generated by both the Hamiltonian (72)
and (74) in the phase space (q, p), because to each of
the Hamiltonians there is associated another symplec-
tic form. Nevertheless, the Hamiltonians are conserved
along the motion. Therefore, we can compare the contour
plots of (72) and (74) in (q, p).

To explain the apparent dependence of the semiclas-
sical correction (75) on the internal clock employed in
quantisation (and in derivation of the subsequent semi-
classical description) it is sufficient to recall that pseudo-
canonical transformations preserve the physical trajecto-
ries of the classical motion given by the classical Hamil-
ton equations (34) or (40). They cannot at the same time
preserve the trajectories of the semiclassical motion and
this is why the semiclassical correction is not preserved
under these transformations. It is clear that the obtained
discrepancies must appear universally in any quantisation
of any gravitational model as long as there are some cor-
rections to the classical motion.

We will consider a few examples of clock transforma-
tions and effects they have on semiclassical dynamics.
In Figs (6a)-(6d), the semiclassical dynamics are repre-
sented by the solid, mostly horizontal lines with a verti-
cal part corresponding to a bounce. The mostly vertical,
dotted lines depict the equipotential lines of VD. The
values of Hsem and VD used to plot those lines are iden-
tical in all the figures.
Simple bounce. We do not redefine the internal clock, we
simply put D = 0. We obtain the dynamics discussed
already in [9]. The semiclassical trajectories as well as
the equipotential lines are plotted in Fig. (5).
Late bounce. We put D(q, p) = 1

2qp
−1 [15]. See Fig.

(6a). The repulsive potential is suppressed and the
semiclassical trajectories reach smaller values of q be-
fore they bounce. In fact, the trajectories can be made
bounce at volumes as small as one wishes by putting
D(q, p) = γ

2 qp
−1 with a suitably large value of γ > 0. We

conclude that the moment when quantum effects come to
play a dynamical role depends on the choice of internal
clock and is not fixed by any scale like Planck scale.
Early bounce. We put D(q, p) = − 1

3qp
−1. See Fig. (6b).

The repulsive potential is amplified and the semiclassi-
cal trajectories bounce at larger values of q. In fact, the
trajectories can be made bounce at volumes as large as

one wishes by putting D(q, p) = − (1−e−γ)
2 qp−1 with a

suitably large value of γ > 0. This example leads us to
the same conclusion as in the previous example.

Multi-bounce. We put D(q, p) = q sin(5p)
10p . See Fig. (6c).

The semiclassical correction also depends on p and is os-
cillatory in this variable. Since the bouncing semiclassical
trajectories must cross many values of p, the oscillatory
repulsive term produces many bounces for each trajec-
tory. By adjusting the number of oscillations of the de-
lay function in variable p one may obtain any number
of bounces of semiclassical trajectories. This example
shows that the number of bounces, or more generally the
character of the quantum dynamics, is tied to the choice

of internal clock.
Asymmetric bounce. We put D(q, p) = q sin(3qp)

10p ep/3. See

Fig. (6d). The phase space trajectories are asymmetric
in the variable p. The universe in the expanding branch
undergoes a number of small bumps. Usual semiclassical
dynamics found in literature are symmetric about the
bounce and are derived with the use of internal clocks
that are symmetric about the singularity at the classical
level. Such clocks seem in no way better justified than
more general ones.

VIII. CONCLUSIONS

This work investigates effects of the choice of internal
clock on quantisation of dynamics in Hamiltonian con-
straint systems like general relativity. First, we present
some basic elements of the reduced phase space approach
to Hamiltonian constraint systems and we introduce the
theory of internal clock and the so called pseudocanoni-
cal transformations. We apply this approach to quan-
tisation of the Friedmann-Lemaitre model of the uni-
verse. We study the quantum dynamics by means of
phase space portraits. We show that the classical sin-
gularity is avoided in the quantum dynamics due to a
quantum repulsive potential. Clock transformations are
shown to change the form of the repulsive potential at
the quantum level and lead to large modifications in the
quantum dynamics of the cosmological model.

It has been commonly anticipated (see for instance
[16]) that the clock effect should be minor and pro-
duce a physically irrelevant ambiguity. This expectation
seems to crumble as we show that many physical fea-
tures of quantum dynamics can be almost freely altered
by switching between clocks. In particular, we show that
the concepts like maximal curvature scale, minimal vol-
ume or the number of bounces are tied to the choice of
internal clock. Concurrently, we note that the most es-
sential feature, i.e. the existence of a bounce which is a
smooth transition from contraction to expansion occurs
in all internal clocks.

It is very difficult, and perhaps too early, to determine
clearly the implications of the obtained result for quan-
tum gravity. Nevertheless, to our mind, the result is too
strong to be ignored. It logically follows from the current
approach to establishing quantum dynamics for gravita-
tional systems. For the first time we show in concrete
examples how the concept of dynamics in quantum grav-
ity based on internal clocks differs from the concept of
dynamics in ordinary quantum mechanics based on the
absolute time.

Let us point out some issues which could be investi-
gated next. Firstly, we notice that in the present case
of the Friedmann-Lemaitre model, a semiclassical trajec-
tory connects fixed contracting and expanding universes
irrespectively of the choice of internal clock. It would
be interesting to study phase space portraits of higher-
dimensional gravitational models to see whether they ex-
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(a) (b)

(c) (d)

FIG. 6: The reduced phase space (q, p) is used to compare many semiclassical dynamics. The vertical lines represent
repulsive terms VD which arise from a fixed quantisation with respect to different internal clocks. The plots

demonstrate possible types of dissimilarities between semiclassical dynamics in different clocks. The magnitude of
these dissimilarities can be made as large as one wishes by suitable choices of the delay function. We set K = 2, q

and p are given in Planck lengths and Planck masses, respectively.

hibit this property too. Some steps have been already
taken in [17].

Secondly, our result has been obtained within the re-
duced phase space approach based on the choice of clock
made before quantisation. On the other hand, the Dirac
approach entails the choice of the internal clock after
quantisation. It would be interesting to see whether these
two different approaches lead to different results on the
issue of internal clocks and to what extent.

Thirdly, in literature there exist the so called timeless
interpretations of quantum gravity (see e.g. [18]), which
assume that the physical predictions cannot depend on
the choice of clock. The precise nature of the apparent
tension between those interpretations and the reported
herein results could be an interesting research subject.
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APPENDIX A: AFFINE COHERENT STATES

Consider the following transformations of the real line:

R 3 t→ (q, p) · t := q−1t+ p ∈ R, (76)

where (q, p) ∈ R+ × R. The transformations (q, p) form
a group with the composition rule:

(q, p) ◦ (q′, p′) =

(
qq′,

p′

q
+ p

)
. (77)
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The neutral element is (1, 0) and the inverse of (q, p)
is (q, p)−1 = (q−1,−pq−1). This group is called the
affine group of the real line and is denoted by the symbol
Aff+(R). The parameters q and p are called dilation and
translation, respectively. The left-invariant measure on
the group reads dqdp. Therefore, Aff+(R) can be iden-
tified with the phase space of the F-L model studied in
this article and the left-action of Aff+(R) on itself with a
minimal group of canonical transformations of that phase
space.

The left-action of Aff+(R) is unitarily represented in
Hilbert spaces parametrised by α ∈ R:

Hα := L2(R∗+, dx/xα+1) , (78)

by operators Uα(q, p) defined as

Uα(q, p)[ψ(x)] = qα/2eipxψ(x/q) . (79)

It has been shown in [19] (see also [20]) that Uα(q, p) are
irreducible. Throughout the main body of the article we
assume α = −1.

We apply the action of Uα(q, p) to a fiducial vector |ψ0〉
to produce the affine coherent state, |q, p〉,

〈x|q, p〉 = Uα(q, p)[ψ0(x)] = qα/2eipxψ0(x/q) . (80)

The coherent state |q, p〉 transforms covariantly under the
action of unitary operator Uα(q′, p′),

Uα(q′, p′)|q, p〉 = |q′q, p
q′

+ p′〉. (81)

At this point, Schur’s lemma applies.

Schur’s lemma. Let G be a group and U its UIR on
a vector space V . If M is an operator on V such that
U(g)MU(g)† = M for all g ∈ G, then M is a multiple
of the identity on V : M = c · 1.

It is easy to check that the operator

M :=

∫
dqdp |q, p〉〈q, p|, (82)

satisfies the assumptions of the Schur lemma. Therefore,
it follows that ∫

dqdp |q, p〉〈q, p| = c · 1, (83)

where the constant c is finite because the UIR of Aff+(R)
is square integrable. The affine coherent states are said
to resolve the identity w.r.t. the measure dqdp/c.

The affine coherent states are naturally associated with
the cosmological phase space, (q, p) ∈ R+ × R, because
they both can be identified with Aff+(R). This estab-
lishes a connection between the classical and quantum
level. For example, for any state |ψ〉 ∈ Hα, there exists
the phase space representation,

Ψ(q, p) := 〈q, p|ψ〉, (84)

and the phase space probability distribution,

ρψ(q, p) := |Ψ(q, p)|2 = |〈q, p|ψ〉|2, (85)

where
∫
ρψ(q, p)dqdp/c = 1 for any normalised |ψ〉 by

the virtue of the identity resolution.
If the phase space coordinates are quantised, (q, p) 7→

(Q̂, P̂ ), where Q̂ and P̂ are operators on Hα, then the
classical-quantum connection can be tightened by de-
manding

〈q, p|Q̂|q, p〉 = q, 〈q, p|P̂ |q, p〉 = p, (86)

and each coherent state |q, p〉 is said to represent the
specific classical state (q, p). This opens the door to a
semiclassical analysis of quantum dynamics in the spirit
of J. Klauder [11]. We explain the Klauder approach in
Sec. VI.

APPENDIX B: UNIQUENESS OF QUANTUM
REPRESENTATION OF DIRAC OBSERVABLES

We notice that in the quantisation defined by Eq. (53)
the internal clock T is external in the sense that the in-
volved measure dqdp is defined on the phase space rather
than the phase space times the time manifold. Analo-
gously, we postulate that for another choice of clock T̄ ,
the quantisation in general reads:

f(q̄, p̄, T̄ ) 7→ ˆ̄FT̄ :=

∫
T̄=const

dq̄dp̄f(q̄, p̄, T̄ )M̄(q̄, p̄),

(87)

where M̄(q̄, p̄) is a family of bounded operators in some
Hilbert space H such that∫

T̄=const

dq̄dp̄ M̄(q̄, p̄) = IH . (88)

Notice that the integration takes place along the level
sets of the new clock T̄ . Thus, it is clear that quantisa-
tion maps defined in distinct clocks cannot be the same
as the integration surfaces T = const and T̄ = const
are different. Moreover, the application of the coordi-
nate transformation of Eq. (38) to the map (53) will
not transform the canonical measure dqdp in T into the
canonical measure dq̄dp̄ in T̄ as the two measures are
inequivalent and the transformation (38) is purely pas-
sive. As a result, fixing the quantisation map in one clock
and then applying it to all the reduced phase spaces by
means of the coordinate transformation (38) would make
the initial choice of clock preferred. Therefore, we ex-
clude this procedure and look for another way of relating
the maps (53) and (87).

Since a priori M(q, p) and M̄(q̄, p̄) are unrelated, some
dissimilarities between the respective quantum theories
can arise due to usual quantisation ambiguities (such as
induced orderings) and obscure the effects of the differ-
ent choice of internal clock. In order to remove the lat-
ter we postulate that constants of motions, denoted by
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In(q, p, T ) and determined for the F-L model in Eq. (35),
are given the same quantum representation irrespectively
of the choice of internal clock. It makes sense since non-
dynamical properties of any system should not depend on
the choice of internal clock as its only role is to describe
the evolution. According to Eq. (28) any constant of mo-
tion I(I1, . . . , I2n) is formally a unique function I(·, ·, ·)
of the contact coordinates, i.e.

I(I1, . . . , I2n) = I(q, p, T ) = I(q̄, p̄, T̄ ), (89)

irrespectively of the choice of the internal clock.
We demand that all classically conserved quantities
I(I1, . . . , I2n) are given the same quantum representa-

tion by means of the following equality:∫
T=const

dqdp I(I1, . . . , I2n) M(q, p) (90)

=

∫
T̄=const

dq̄dp̄ I(I1, . . . , I2n) M̄(q̄, p̄),

or more explicitly,∫
T=const

dqdp I(q, p, T ) M(q, p) (91)

=

∫
T̄=const

dq̄dp̄ I(q̄, p̄, T̄ ) M̄(q̄, p̄),

where we set the values of the respective internal clocks
to be equal T = T̄ . In the 2n-dimensional phase space
equipped with the volume element dqdp, there are 2n
independent constants of motion Ij and from the arbi-
trariness of I(I1, . . . , I2n) in Eq. (90) we conclude that

∀q = q̄, ∀p = p̄, M(q, p) = M̄(q̄, p̄), (92)

that is, the family of bounded operators involved in the
quantisation must be the same for all phase spaces and
all internal clocks in order to satisfy the postulate of a
unique quantum representation of constants of motion.
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