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1 Mathematical Structure and Reality

Mathematics, broadly speaking, is the science of patterns. Physics, broadly speaking,
is the search for patterns in the natural world. Eugene Wigner’s [12] famous problem
concerning the “unreasonable effectiveness of mathematics in the natural sciences”
constitutes an expression of puzzlement over the empirical success of physics, based
as it is on mathematics.1 Put this way, of course, the problem has a rather simple
answer: mathematics (the science of patterns) is so effective because the natural
world (the subject matter of physics) is itself patterned. The regularities of physics
are instances of mathematical structures. For example, we can apply geometry to
physical space because physical space has a structure that is (more or less) isomorphic
to some mathematical structure. We might, in slightly different terms (and ignoring
complications to do with representation), view our world as a model of the axioms of
some systems of geometry (and of the axioms of quantum field theory, say—though
this is debatable).

However, the problem is really an old one, and there are old solutions too.
Pythagoras claimed that there was no distinction between the world of physics
and the world of mathematics. Plato argued there was a very great difference:
it amounted to concrete versus abstract, a distinction denied by Pythagoras. For
Plato the concrete world instantiated (or ‘partook of’) the abstract forms (albeit
imperfectly). This Platonic account is somewhat similar to the model-based view
presented above. More recently structural realists have answered the question by
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1As he puts it: “the mathematical formulation of the physicist’s often crude experience leads in

an uncanny number of cases to an amazingly accurate description of a large class of phenomena”
([12], p. 230).
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arguing that science is about the discovery of structural aspects of the world, and
these structural aspects are essentially mathematical.2 Radical ‘ontic’ structural re-
alists turn this in to an ontological claim: science is about structure and structure is
all there is.

Max Tegmark [10] has recently extended this basic idea by combining it with
something like David Lewis’ extreme brand of modal realism [4]. Not only is there the
structure we observe (which is mathematical), there exist mathematical structures of
all possible types. We have here, then, an extreme case of the principle of plenitude.
Why go to this extreme? To explain the nature and existence of the structure we
observe. The laws (structure) of our universe are by no means necessary and so
demand some explanation for why they are thus rather than so. Tegmark answers
this question with absolute proliferation: our world is a mathematical structure in a
multiverse of all possible structures. Interestingly, in this sense, though the structure
we inhabit (and are, ourselves, part of) is itself contingent3, the existence of the
structure we inhabit is necessary since (being an instance of an eternal mathematical
structure) it will be a possible world relative to all other possible worlds.

The maximal multiplicity of possible worlds, then, is utilized to ground a theory of
everything that does not face problems of creation ex nihilo: mathematical structures
are timeless, they are not the kinds of thing that can be created and destroyed.
One can then, if one is so inclined, invoke an anthropic explanation of why we find
ourselves in this particular mathematical structure. This is, admittedly, a hard view
to swallow. However, if one wishes to explain why there is something rather than
nothing (surely the ultimate explanandum), then I see no other alternative than to
invoke eternally existing structures. If we are willing to accept this, then we are led
to a belief in many types of (consistent) structure. If we are then further willing to
view our world as one of these structures (i.e. literally a mathematical structure),
then combined with the necessary anthropics, we have an explanation of what is
often considered to be an insurmountable problem.

The major problematic step (by no means the only one), I take it, is that requiring
belief that our world, including ourselves, is a mathematical structure. All aspects
of reality in our world would have to be reconceptualized as such a structure. The
common reaction to such a view bears similarities to Dr Johnson’s attempted refuta-

2Not all structural realists would go this far. Some, for example, would prefer to say that
structure is physical, and that there might be biological and social structures that are not necessarily
mathematical.

3For example, one can conceive of the laws being different, and indeed, as in David Lewis’
theory, the existence of a multiverse of the sort described can provide the machinery to ground such
possibilities.
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tion of Berkeley’s idealism by the kicking of a rock. In this case, the objection is that
the world does not seem to be anything like a mathematical structure: mathematical
structures are abstract and physical reality is concrete (whereupon you are invited to
notice that there are spatiotemporally located, impermanent solid objects). But we
have no way of knowing what it is like to be a mathematical structure: it could, after
all, be just like this ! Moreover, given our present knowledge of spacetime (on which
more later), the idea that spatiotemporal location is such that it can serve to play so
crucial a role as demarcating abstract from concrete seems absurd: spacetime loca-
tions are dynamically determined. However, there are real problems in attempting
to account for certain observed aspects of the world, time and change being cases in
point. The world certainly appears to undergo change, and this, we usually (i.e. with
our philosophy hats off) assume, must happen in time. How can time and change
be part of a mathematical structure given that such structures are immutable and
eternal?

In the remainder of this paper I argue that recent work on problems of time
and change in classical and quantum gravity can be brought to bear on the matter
resulting in a satisfactory resolution. To deploy a Wheelerism, they show how one
can have time without time. We can give an account (or, at least the outline of an
account) of our world, qua mathematical structure, that at a fundamental level does
not contain time. This account makes use of structuralism in a direct way. Thus,
the account I present can be usefully incorporated into Tegmark’s theory—or what
I shall call “ultrastructuralism”—in order to defuse a major potential problem.

2 Time and Symmetry

The universe, as a single object, is usually modeled as a four dimensional structure
(a 4-geometry). This structure is naturally changeless: change happens within the
universe, from one hypersurface (3-geometry) to another (with the time variable
chosen arbitrarily)—at least, within ours it seems to. Of course, general relativity
leads us to view spacetime geometry as part of a dynamical system, as something
that satisfies equations of motion and evolves. But clearly the evolution here cannot
be understood in a temporal sense, unless we have at our disposal some external
time parameter in which to understand it. An alternative is to attempt to concoct
some ‘internal’ parameter from the dynamical degrees of freedom that can then
parametrize the evolution.

This, in a nutshell, is the problem of time in general relativity: spacetime ge-
ometry is a dynamical variable, but clearly the dynamics cannot be understood in
the usual sense (that is, as involving an external time parameter). The problem is
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worse than this, however, and can trickle down from global (involving the universe
as a whole and a timelessness that is fairly innocuous) to local (involving timeless-
ness and changelessness of the states and observables within the universe). At the
root of this problem is the symmetry group of general relativity, the group of four-
dimensional diffemorphisms of the spacetime manifold. Diffeomorphism invariance
makes local observables (i.e. observables sitting at spacetime points or within regions
of spactime) an impossibility, for the equations of motion (of generally relativistic
theories) are invariant with respect to diffeomorphisms that shift the points and re-
gions about. Since there clearly are (in some sense) local degrees of freedom, and
these are what we observe (and what seem to evolve), we need some notion of ob-
servable that does not make reference to the spacetime manifold but that fits our
experience. That is, we need a background independent notion of observable that
does not utilize external spatial and temporal parameters for changes with respect
to these will be symmetries of the theory.

A popular response—and one that has been mentioned in several of these FQXI
essays—is to use physical degrees of freedom to define observables and evolution.
This can be understood as one kind of implementation of the ‘internalist’ strategy
mentioned above. The observables so ‘localized’ are relational in the sense that they
are not defined on a background space but only relative to other dynamical entities
(matter fields, spatial volume, etc.). Observables are not of the form A(x, t) (where
x and t label an independent manifold) but A(B) (where B is another observable
and neither B nor A is privileged in any sense). One can then consider the relative
evolution of such observables, looking at the way in which changes in the value of
one are correlated with changes in the value of the other. This approach can give
us notions of time and change that emerge as a consequence of functional relations
between elements of a mathematical structure. However, this is to oversimplify
matters: in order to properly appreciate the nature of this problem, and the suggested
resolution4 I need to quickly cover the entangled concepts of gauge and constraints.
I can then introduce Rovelli’s partial observables framework, for constrained (gauge)
systems, and show how it provides a structuralist response to the problem of time that
can be utilized by the ultrastructuralist to explain time in an atemporal mathematical
structure.5

4This view has been defended by a variety of authors; most notably Bryce DeWitt and Carlo
Rovelli. Here I adopt Rovelli’s ‘partial observables’ formalism [9]. See [8] for a general review of
the problem of time and proposed solutions.

5I restrict the discussion to classical systems in order to make the presentation easier to follow.
For the technically savvy, one can transform to the quantum case, roughly, by thinking of the
functional relation or correlation A(B) as representing the expectation values of A relative to the
eigenvalues of B.
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3 Constraints and Gauge

The problems of time and change sketched above are aspects of the fact that general
relativity is a gauge theory—it’s Hamiltonian formulation is characterized by the
presence of constraints. We give a very rough and ready presentation of these ideas
here—for more details (in the context of the problem of time), see [8].

The diffeomorphism symmetry mentioned above affects the dynamics so that a
standard Hamiltonian or Lagrangian formulation of the theory is not possible. Re-
spectively, the canonical variables, q and p, are not all independent (being required
to satisfy identities known as constraints: φ(q, p) = 0) and the Euler-Lagrange equa-
tions are not all independent. These identities serve to ‘constrain’ the set of phase
space points that represent genuine physical possibilities: only those points satisfying
the constraints do so, and these form a subset in the full phase space known as the
‘constraint surface’. This has a direct impact on the form of the observables. Since
a pair of dynamical variables (not observables) that differ by a gauge transformation
are indistinguishable, corresponding to one and the same physical state of affairs (the
defining characteristic of a gauge transformation), the observables ought to register
this fact too: that is, the observables of a gauge theory should be insensitive to
differences amounting to a gauge transformation—as should the states in any quan-
tization of such a theory: i.e. if x ∼ y then Ψ(x) = Ψ(y).6 Where ‘A’ is a dynamical
variable, ‘O’ is the set of (genuine) observables, x, y are states (represented by points
on the constraint surface), and ‘∼’ denotes gauge equivalence, we can express this
as:

A ∈ O ⇐⇒ (x ∼ y) ⊃ (A(x) = A(y)) (1)

Or, equivalently, we can say that the genuine observables are those dynamical vari-
ables that are constant on gauge orbits ‘[x]’ (where [x] = {x : x ∼ y}):

∀[x] , A ∈ O ⇐⇒ A[x] = const. (2)

Most of the work done on finding the observables of general relativity is done using
the 3 + 1 projection of the spacetime Einstein equations. That is, the constraints are
understood as conditions laid down on the initial data 〈Σ, h,K〉 when we project the
spacetime solution onto a spacelike hypersurface Σ—here, h is a Riemannian metric
on Σ and K is the extrinsic curvature on Σ; note that this formulation has since been

6It seems that Einstein was aware of this implication soon after completing his theory of gen-
eral relativity, for he writes that “the connection between quantities in equations and measurable
quantities is far more indirect than in the customary theories of old” ([3], p. 71).
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superseded by a representation in terms of Wilson loops and their conjugate momenta
(namely, fluxes). I won’t go into the nitty gritty details here, but it turns out that
the Hamiltonian of general relativity is a sum of constraints on this initial data (of
the kind that generate gauge motions, namely 1st class)—hence, the dynamics is
entirely generated by constraints and is therefore pure gauge. There is no evolution
in time. This is the technical expression of the problems posed above.

This formulation allows us to connect the characterization of the observables up
to the dynamics (generated by constraints, abbreviated to Hi) more explicitly:

A ∈ O ⇐⇒ {O,Hi} ≈ 0 ∀i (3)

In other words, the observables of the theory are those functions that have weakly
vanishing (i.e. on the constraint surface) Poisson brackets with all of the (first-class)
constraints. These are the gauge-invariant quantities: evolving with the constraints
(the dynamics) does not generate a physically distinct state. A pressing problem
in general relativity—especially pressing for quantum gravity—is to find suitable
entities that satisfy this definition. There are at least two types that fit the bill:
highly non-local quantities defined over the whole spacetime7 and (differently) non-
local, ‘relational’ quantities built out of correlations between field values. There
seems to be some consensus forming, at least amongst ‘canonical relativists’, that
the latter type are the most natural, and these will serve as the appropriate vehicle
for defining time in an unchanging mathematical structure.

4 Partial Observables and Structural Correlations

John Earman calls quantities of the form A(B) “coincidence occurrences”. As he
explains, “a coincidence occurrence consists in the corealization of values of pairs
of (non-gauge invariant) dynamical quantities” ([2], p. 16). Earman thinks that
this new conception of physical quantities signals the necessity of a shift from the
traditional ‘subject-predicate’-based ontologies, such as substantivalism and relation-
alism. I think this is the right thing to say, and have argued this point elsewhere
(see [6, 7, 8]). However, I spell it out rather differently, in terms of structuralism.
Rovelli’s framework of partial and complete observables—developed in [9] and beau-
tifully explained in his submission to this competition—provides, I think, the perfect
formal framework in which to make sense of the view.

7There is a proof (for the case of closed vacuum solutions of general relativity) that there can
be no local observables at all [11], where ‘local’ here means that the observable is constructed as a
spatial integral of local functions of the initial data and their derivatives.
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A partial observable is a physical quantity to which we can associate a mea-
surement leading to a number and a complete observable is defined as a quantity
whose value (or probability distribution) can be predicted by the relevant theory.
Partial observables are taken to coordinatize an extended configuration space Q and
complete observables coordinatize an associated reduced phase space Γred. The “pre-
dictive content” of some dynamical theory is then given by the kernel of the map
f : Q× Γred → Rn. This space gives the kinematics of a theory and the dynamics is
given by the constraints, φ(qa, pa) = 0, on the associated extended phase space T ∗Q.
The content appears to be this: there are quantities that can be measured whose
values are not predicted by the theory. Yet the theory is deterministic (modulo
quantum theoretic probabilities) because it does predict correlations between partial
observables. The dynamics is then spelt out in terms of relations between partial
observables. Hence, the theory formulated in this way describes relative evolution of
(non-gauge invariant) variables as functions of each other. No variable is privileged
as the independent one (cf. [5], p. 5). The dynamics concerns the relations between
elements of the space of partial observables, and though the individual elements do
not have a well defined evolution, relations between them (i.e. correlations) do, and
in such a way as to remain independent of coordinate space and time.

The interpretation here is as follows: φ = T is a partial observable parametrizing
the ticks of a clock (laid out across a gauge orbit), and f = a is another partial
observable (also stretching out over a gauge orbit). Both are non-gauge invariant
quantities. A gauge invariant quantity, a complete observable, can (here borrowing
from [1]) be constructed from these partial observables as:

A[f ;T ](τ, x) = f(x′) (4)

These quantities encode correlations. They tell us what the value of a non-gauge
invariant function f is when, under the gauge flow generated by the constraint,
the non-gauge invariant function T takes on the value τ . This correlation is gauge
invariant. These are the kinds of quantity that a background independent gauge
theory like general relativity is all about. We don’t talk about the value of the
gravitational field at a point of the manifold, but where some other physical quantity
(say, a value of the electromagnetic field) takes on a certain value. Once again, we
find that Einstein was surprisingly modern-sounding on this point, writing that “the
gravitational field at a certain location represents nothing ‘physically real,’ but the
gravitational field together with other data does” ([3], p. 71). Likewise, the “other
data” will represent nothing without yet more data (such as the gravitational field).
The correlations are the fundamental things.

Let us return to the issue of structuralism. Epistemic structural realism argues
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that the best we can hope for is to get to know structural aspects of the world,
since we only ever get to observe relational properties rather than intrinsic ones (in
our experiments and so on). However, in a background independent gauge theory
like general relativity we have seen that the physical observables just are relational
quantities: this is all there is! In other words, there’s nothing ‘underneath’ the
relational properties (as encoded in the dynamical fields), so that these exhaust what
there is, leading to an ontological structuralism.8 This is why we face the problems
regarding the ‘subject-predicate’-style ontologies that Earman mentions: there are
no independent subjects that are the ‘bearers’ of properties and the ‘enterers’ of
relations. Hence, unless one can have objects without intrinsic properties (and I
don’t think this is a metaphysically healthy route to follow), structuralism is the
alternative.

The position involves the idea that physical systems (which I take to be charac-
terized by the values for their observables) are exhausted by extrinsic or relational
properties: they have no intrinsic properties at all! This is a consequence of back-
ground independence coupled with gauge invariance. This leads to a rather odd
picture in which objects and structure are deeply entangled in the sense that, inas-
much as there are objects, any properties they possess are structurally conferred:
they have no reality outside the correlation. What this means is that the objects
don’t ground the structure; they are nothing independently of the structure, which
takes the form of a (gauge-invariant) correlation between (non-gauge invariant) field
values. With this view one can both evade the standard ‘no relations without relata’
objection and the problem of accounting for the appearance of time (in a timeless
structure) in the same way.

5 Conclusion

The ‘frozen’ character of general relativity (and background independent theories) is
usually considered to constitute a problem. However, the most obvious resolution of
this problem, involving correlations, can (when appropriately interpreted) be shown
to provide a natural explanation of the appearance of time in timeless mathematical

8Hence, we have here an empirical argument for ontic structural realism that evades the standard
‘no relations without relata’ objection. The relations are the correlations here (the gauge invariant,
complete observables), and the ‘relata’ would be the non-gauge invariant, partial observables. But
the partial observables being non-gauge invariant do not correspond to physical reality (at least not
in any fundamental sense): only the complete observables do. We cannot decompose the correlations
in an ontological sense, though we clearly can in a epistemic sense—indeed, the correlates constitute
our ‘access points’ to the more fundamental correlations.
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structures. With this problem resolved, ultrastructuralism (the view that all there are
are timeless mathematical structures) is a position that ought to be taken seriously.
There are serious problems remaining with this view, of course. Not least of these is
the fact that for any given structure, there are lots of ways the structure is realizable.
Now, Tegmark doesn’t need a realization relation, and so can evade the problem.
However, one needs to accept, on this ultrastructuralist view, that if our universe
is a mathematical structure, then we have to accept the possibility that there is an
identical structure with a radically different appearance. That, as it stands, is very
hard to make sense of.
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