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What is the difference between time and space?  This question, once a central one in 
metaphysics, has not been treated kindly by recent history.  By joining together space and 
time into spacetime Minkowski sapped some of the spirit out of this project.  That is 
unfortunate, however, for even in relativistic theories there remain sharp and important 
metrical and topological distinctions between the timelike and spacelike directions of 
spacetime.  Questions about what these differences are, why they exist and how they are 
related are fascinating.  Why, for instance, is time one-dimensional in virtually all 
physical theories?  What does the “minus sign” in the relativistic metric have to do with 
time?  Is there a connection between the two?  At a time when researchers in quantum 
gravity regularly propose speculative theories with no time at all, a better understanding 
of time in physics is all the more important—even if only to see what is lost by its 
absence.  
 
This paper proposes a novel answer to the question of what distinguishes time from 
space: the temporal direction is that direction on the manifold of events in which our best 
theories can tell the strongest, most informative “stories.”  Put another way, time is that 
direction in which our theories can obtain as much determinism as possible.  Time is not 
only the "great simplifier" [1], but it is also the great informer.  I make two arguments.  
The first is a general one based on an empiricist conception of law of nature defending 
the idea that informativeness helps determines what is temporal.  The second is a more 
specific illustration of the first: understanding informative ‘strength’ as having a well-
posed Cauchy problem, I show that for a wide class of equations, the desire for strength 
does indeed distinguish the temporal direction.  Not only that, but the direction of 
strength shows how the topological and metrical features special to time are related to 
one another.   

1. TIME IN PHYSICS 

Before getting to our project, we first need to recall the ways in which time is 
distinguished from space in contemporary physics.  Since very little is invariant under a 
change of the spatial and temporal directions, one could answer this question by simply 
listing the equations non-invariant under a transformation of timelike and spacelike 
directions.  But this wouldn't be very illuminating. Instead, let's begin by examining those 
properties commonly attributed to time but not space, and also, those features that do not 
vary with initial conditions.  Thus we'll ignore features like being Hausdorf, connected, 
and so on, since they are also features associated with being spatial.  And we'll also 
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bracket the so-called direction of time, for that is typically considered a feature of the 
(thermodynamic, etc.) processes in time rather than of time itself.  Reflection on physics 
reveals three features of time possibly surviving the above winnowing process: the one-
dimensionality of time, the metrical difference between time and space, and the lack of 
what we might call 'free mobility'.  
 
First, the dimensionality.  Every successful physical theory purporting to be fundamental 
has judged time to be one-dimensional. In classical physics, assuming that the instants of 
time form a continuum under the ‘earlier than or simultaneous with’ relation and that this 
order relation determines the open sets that form a basis for this topological structure, the 
set of instants is topologically one-dimensional.  The set of instants is described by R1 
and the whole set of events is given by R3xR1.  In relativistic physics, however, there 
isn’t the set of instants. One can’t just grab a set of events corresponding to the 
‘temporal’ ones and check its dimensionality.  Still, time is one-dimensional in relativistic 
physics.  Consider a point p on a timelike curve and a four-velocity field va.  Consider a 
vector wa at p.  Then wa can be decomposed into components parallel to and orthogonal 
to va.  The set of orthogonal vectors form a three-dimensional subspace in the tangent 
space Mp at p.  The set of parallel vectors form a one-dimensional subspace in Mp.  
Interpreting the first set as spatial and the second as temporal, we then have the sense in 
which the set of timelike directions is one-dimensional. In effect, we have sliced up 
spacetime into space and time on an infinitesimal simultaneity slice. 
 
Second, metrical difference.  Because it determines the causal structure, the metric is 
arguably the most central feature of spacetime.  It is therefore highly significant that the 
metric, whether relativistic or classical, distinguishes time from space.  In classical 
physics the distinction comes in the form of separate metrics.  There is a (degenerate) 
metric for space h and a (degenerate) metric for time t.  In relativistic physics, there is 
instead one metric g, but it distinguishes the spatial and temporal components by a 
famous minus sign. The Minkowski interval, for instance, is 
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where in this convention x4 is considered time.  Or put in a coordinate-invariant way 
(assuming the manifold is connected), the difference between spacelike and timelike 
directions appears through the signature of the metric.1 
 
Third, free mobility.  One of the most obvious differences between time and space is that 
we have relatively free mobility in the spatial directions but not the temporal ones.  Our 
worldlines can bend back and forth in the spatial directions but not the temporal ones.  
Although time travel may be physically possible in some sense, so far it has been 
noticeably off-limits, and prima facie, this represents an interesting difference between 
the worldliness in the spacelike and timelike directions. 

                                                
1 Given a spacetime metric g, we can find an orthonormal basis v1…vn of the tangent space at each point p of M.  This is a 
basis such that g(vµ,vν)=0 if µ≠ν and g(vµ,vν)=±1 if µ=ν.  Let the number of basis vectors with g(vµ,vµ)=+1 be p and the 
number of basis vectors with g(vµ,vµ)=−1 be q.  Then the metric has signature (p,q).  In relativity we assume the metric is 
nondegenerate, so p+q=d, where d is the dimensionality of the spacetime.  If the signature of g is (d-1,1), then the metric is 
called Lorentzian.  Since the “time” component is given by the vector v such that g(vµ,vµ)=−1, time is distinguished from 
space in virtue of the metric being Lorentzian. 
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2. LAWS AND TIME 

The topic of laws of nature is one fraught with controversy.  Despite this, it is interesting 
that the best empiricist account of laws available suggests two very deep features of time.  
The first feature is that time is the so-called "great simplifier".  The second and more 
novel feature is that time is also the great informer. 
 
Theories of laws of nature come in many forms, but I've always favored versions with an 
empiricist slant.  Empiricist theories seek to explain the laws given the distribution of 
actual or observed facts, rather than going the other way round and explaining why the 
facts are what they are in virtue of the laws.  The most attractive such theory is arguably 
the “Best System” theory of laws (see, e.g., [2] and references therein).  
 
A rough sketch of the theory is as follows. Consider various deductive systems, each of 
which makes only true claims about what exists.  Some of these theories will be very 
simple, others will be very informative.  Now run a competition among these systems 
looking for the one that best balances simplicity and strength.  Simplicity is measured 
with respect to a language that contains a primitive predicate for each fundamental 
property, e.g., basic field values.  Strength is informativeness about matters of particular 
fact.  The laws of nature are the axioms that all the “best systems” have in common.  The 
motivation for the theory is the idea that physical laws seek to describe accurately as 
much of the world as possible in a compact way. 
 
Now turn to time.  Time, it is often said, is the “great simplifier”.  What this means is that 
the temporal metric is chosen to make motion look simple. According to Poincaré [3] and 
others, we pick a measure of duration that yields the most powerful and simple physics.  
This basic idea about time is implied by the Best System theory of lawhood.   
 
This fact hardly distinguishes time.  Space is also the great simplifier. What goes for 
clocks and temporal duration goes for meter sticks and spatial duration.  And in 
relativistic theories spacetime intervals are also so defined.  For this reason simplicity 
alone will not distinguish time from space. 
 
However, informativeness may well distinguish time from space.  In balancing simplicity 
with strength, a best system will not include a random catalogue of everything that 
happens.  It will instead contain a way to generate some pieces of the domain of events 
given other pieces.  In other words, it will favor algorithms, and short ones at that.  The 
more of what happens that is generated by small input the better.  Further, it might be that 
the distribution of basic properties on the manifold picks out one set of directions as 
special in this regard. 
 
To help fix ideas, consider the actual distribution of matter in the universe at a very large 
and coarse-grained scale, like that of interest to modern cosmology.  Looking at this 
distribution, it’s a remarkable fact that the universe is approximately isotropic and 
homogeneous in three of its four directions (relative to co-moving coordinates).  The 
universe looks the same no matter where you are and what direction you look.  However, 
it isn't isotropic and homogeneous in all four directions.  If it were, then at these scales 
the best system probably could not single out one direction over any other. In a world like 
ours, however, one can write simple but strong laws, e.g., for the line element for a FRW 
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universe, for the evolution of the matter density in such a universe, with reference to that 
special direction.  I don’t wish to make too much of this example, but it does provide a 
quick illustration of how considerations of strength and simplicity might “find” time. 

3. TIME IS THE GREAT INFORMER 

The above considerations motivate the following proposal.  Time is that direction in 
spacetime in which we can tell the strongest or most informative stories.  To phrase it 
slightly more carefully, suppose we have a manifold Md endowed with a metric g.  The 
points of M are interpreted as elementary point events and g gives the distances between 
any pair of these events.  In none of this do we presuppose a prior picking out of the 
temporal directions.  Then the very general Proposal 1 is: 
 

A temporal direction at a point p on <M,g> is that direction in which our best 
theory tells the strongest, i.e., most informative, “story.” 

 
The set of all such directions is then the temporal direction.  So that we don’t fall 
irretrievably into terminological muddles, please remember that the metric g, if indefinite, 
may well designate some directions “timelike” and some “spacelike”, but there is no 
reason—so far as Proposal 1 is concerned—that the most informative "temporal" 
direction must be the “timelike” (i.e., g(v,v)<0) direction.  A priori, we do not expect the 
direction of strength to always line up with the direction called “timelike” by indefinite 
metrics.  A connection between the two will only appear later. 
 
Let's now think about strength.  If an algorithm, given some input, could get back 
everything that happens, that would be best.  A deterministic theory is maximally strong 
in that respect.  Another way of thinking about Proposal 1, therefore, is that time is that 
direction of spacetime in which the best system can get the most determinism. Call a 
history H a map from R to tuples of the fundamental properties, where for any t in R, H(t) 
gives the state of the fundamental properties at t.  Then a theory is deterministic iff for 
any pair of histories, H1, H2, that satisfy the laws of physics, if H1(t) =H2(t) at one time t, 
then H1(t)=H2(t) for all t [2].  Note that this definition presupposes a time versus space 
split; in fact, it presupposes that we have a global time function.2  However, if our 
spacetime meets the conditions necessary to define a global time function, then we can 
easily turn this around and define time in terms of determinism: a smooth map t: M → R 
is a global time function if it’s true that for histories that satisfy the laws of physics, if 
any pair agree at one value of t then they agree for all values of t.3  
 
In other cases we may want strength to distinguish a timelike direction even where no 
global time function is definable.  For example, there exist spacetimes with closed 
timelike curves (and hence no global time function) that nonetheless are perfectly 
deterministic [4].  And there exist other spacetimes that cannot be foliated via everywhere 
spacelike hypersurfaces, e.g., Gödel spacetime, yet where one may locally want to 
distinguish time.  In these cases one may still distinguish space from time at a point.  

                                                
2 A global time function is a smooth map t: M → R such that for any p,q ∈ M, t(p) < t(q) iff there is a future directed 
timelike curve from p to q. 
3 Because "bad" choices of foliation can ruin determinism, some care is needed; see [2] for the necessary modifications. 



 5 

 
Let me emphasize that my proposal in no way commits me to asserting determinism true 
in our world.  Indeterministic theories are strong too.  Most stochastic processes in 
physics are Markovian.  A process q(t) is Markovian if (say) q(t1) alone predicts q(t1+dt), 
where no previous values q(tn), tn < t1, are needed.  Knowing something about the future 
and being able to screen off the past is certainly a kind of informative strength. Hence, a 
natural probabilistic analog of my claim is that time is that dimension in which the laws 
are Markovian.4 
 
Even at this abstract level I believe this proposal is quite attractive.  First, it has a number 
of virtues compared to its rivals.  Since it is an empiricist theory, we have an 
understanding of why the laws pick out time.  The difference between time and space is 
not found simply in a metaphysical primitive one has and the other doesn't.  The 
difference ultimately lay in the distribution of fundamental physical properties. 
 
Second, the proposal explains various features of time that are otherwise mysterious.  For 
instance, why is time typically one-dimensional in physical theories?  The Best System 
helps explain this tendency, for one can identify theoretical pressure from systemization 
for time to be one-dimensional.  Suppose for simplicity that our fundamental theory is 
deterministic.  Then what incentive is there for the best system to get determinism again 
in another direction?  The theory is already maximally strong.  It's hard to imagine that 
one could even find two such directions, especially in a complex world like ours. And it 
is even harder to imagine this happening without a compensating loss of simplicity.  
Informativeness in one set of directions is enough. 
 
Third, the theory fits well with the history of science.  Reflecting on our physical 
theories, we have never come close to having a fundamental theory that is deterministic 
in what we call a spatial direction.  From Newtonian mechanics to the standard model, 
the direction we would pick out as the direction of strength meshes with what is the 
temporal direction under the theory’s intended interpretation.   

4. TIME, INFORMATION AND PDE'S 

When Proposal 1 climbs down from the lofty heights of philosophy it looks even more 
attractive.  Let's explore the links between aspects of time that can be forged when we 
make, for the sake of illustration, some detailed commitments about informativeness and 
the types of physics in the world. 
 
Focusing on theories that are maximally strong for us, we can desire something better 
than determinism, namely, a well-posed Cauchy problem.  A partial differential equation 
defined over a certain domain, possibly supplemented by boundary conditions, is well-
posed if (1) there is a solution u for any choice of the data D, where D belongs to an 
admissible set X, (2) the solution u is uniquely determined within some set Y by the data 
D, and (3) the solution u depends “continuously” on the data D, according to some 
                                                
4 Let me also stress that being deterministic or Markovian are merely marks of strength.  Confining attention to the marks 
of strength and not strength itself would be a mistake.  The degree to which a theory is informative is determined by how 
much of the actual world it manages to imply, not (in the general theory, at least) by formal characteristics. 
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suitable topology. To make sense, condition 3 needs a precise characterization of 
topology involved.  If induced by a norm || . ||, 3 implies that there is a nondecreasing 
nonnegative function F(x) such that ||u(x)|| ≤ F(x)||u(0)||, x>0, for any solution u(x).  
Notice that although we usually think of marching Cauchy data forward in time, the 
concept of well-posed Cauchy problem is entirely free of temporal presuppositions. 
 
The reasons why we want existence and uniqueness of solution are clear: our theory is 
most informative if it tells us exactly what will happen.  If we understand strength in 
terms of strength for us, it is equally clear why we would want the solution to 
continuously depend on the data.  In that case, the solution u(t) is equal to some 
continuous function G of the initial data, i.e., u(t)=G(u(0),ut(0)).  Suppose one needs to 
find the position of some asteroid at a particular time t within accuracy ε>0.  In real life 
we measure the initial data with a certain error, which we can often make arbitrarily small 
by investing enough energy and time.  However, energy and time are in demand, so we 
narrow down the initial data only so far.  Thanks to the continuity of G, we’re at least 
guaranteed that there are positive numbers d1 and d2 such that if |u(0)-u’(0)| < d1 and 
|ut(0)-ut’(0)| < d2, then |u(t)-u’(t)| <  ε.  If, by contrast, the solution depends on the data in 
a discontinuous way, then that will mean that small errors in data can create large 
deviations in solution.  
 
We have a mathematically precise notion of “strength.”  Let's now turn to the possible 
worlds, i.e., arrangements of facts, that we wish to consider. So as to make the problem 
mathematically tractable, we need to characterize these worlds with equations.  The more 
general we are here the better. Because so many physical worlds are described by 
equations in physics are of this form, let us concentrate on second-order linear partial 
differential equations in Rd: 
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Here aij is a matrix, bi a vector, and c a scalar; all three are differentiable functions of the 
coordinates.  aij is sometimes called a “coefficient matrix” and it can be assumed to be 
symmetric without loss of generality. Scores of the most important equations in physics 
fit the form of (1), e.g., the wave equation, the heat equation, the Schrödinger equation, 
the Klein-Gordon equation, the Euler equation, the Poisson equation, parts of the Dirac 
equation.  Many equations not in form (1) can be approximated by something in that 
form. 
 
We can now state Proposal 2: 
 

For worlds described by (1), a temporal direction at point p of (Md,g) is that 
direction normal to the (d-1)-dimensional hypersurface intersecting p upon which 
Cauchy data can be prescribed to obtain a well-posed Cauchy problem.   
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For this claim to be plausible the temporal directions picked out by Proposal 2 had better 
mesh well with the directions physics normally picks out as temporal, and ideally, we 
could connect these directions to other features we normally attribute to time.   
 
The idea behind the claim is that there is a sense in which well-posed Cauchy problems 
pick out temporal directions. Put very generally, a partial differential equation determines 
various invariant structures, e.g., a field of Monge cones, and these structures determine 
which hypersurfaces one can put data on to obtain well-posed Cauchy problems. What I 
suggest is turning this fact around and letting it implicitly define the timelike direction. 
 
That is, imagine we have a manifold scattered with events.  The events are compactly 
describable according to an equation of form (1).  But we're blind as to which end of the 
manifold is "up", i.e., we're not told how to carve this into spacelike hypersurfaces 
evolving in the timelike directions.  Instead we're told to seek informativeness, and in 
particular, a well-posed Cauchy problem.  That, Proposal 2 asserts, will tell us what is 
timelike and spacelike.  Will we find anything?  And if we do, will that splitting 
correspond to what we normally consider to be time and space? 
 
It is a remarkable feature of partial differential equations that we will find well-posed 
Cauchy problems and that the splitting required does correspond to what we ordinarily 
regard as the temporal and spatial directions.  Indeed, that the Cauchy surface 
corresponds to what we ordinarily deem spatial is necessary for a well-posed Cauchy 
problem.  The proof of this fact can't be described in detail here (see [5],[6],[7]); 
however, the argument, based on [6; 754-760], is described and put to similar but slightly 
different effect in [8]. 
 
Which equations of form (1) admit well-posed Cauchy problems?  The answer is that 
only hyperbolic partial differential equations do (so long as we place our Cauchy data on 
non-closed hypersurfaces, which seems reasonable).  It is a theorem that all linear 
hyperbolic second order systems have well-posed Cauchy problems, given certain mild 
assumptions.  But it is also a mathematical fact that elliptic, parabolic and ultrahyperbolic 
equations of form (1) defined over a non-closed domain are not well-posed for Cauchy 
data.  There is no single reason for this fact.  Elliptic equations suffer a variety of fates: 
non-unique solutions, lack of existence, and lack of continuity.  Parabolic equations have 
too many solutions given Cauchy data.  And ultrahyperbolic equations are ruled out as an 
indirect consequence of Asgeirsson's 'mean-value' theorem [9].   
 
For a concrete example, consider the hyperbolic Klein-Gordon equation 
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This equation, as is well-known, has a well-posed formulation.  However, if we change 
the sign in the Klein-Gordon equation and let it go “LaPlacian”, the equation goes from 
being well-posed to ill-posed.  Same goes if we allow the Klein-Gordon equation to turn 
into a diffusion equation.  
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Restricting attention to the hyperbolic case, it turns out that hyperbolic examples of (1) 
are extremely finicky when it comes to choice of “initial” Cauchy surface.  Not just any 
choice of surface will do.  The surfaces have to be, roughly, spatial.   
 
Without getting mired in the details, let's see how this works in a toy example [10].  
Consider the Cauchy problem for the one-dimensional nonhomogeneous wave equation, 
 

! 

utt " uxx = f (x, t). 
 
Normally we might specify the Cauchy data on a t=0 slice of the x-axis.  However, we 
are interested in how the Cauchy problem distinguishes one direction as temporal; so 
rather than assuming the “initial” data fall on the x-axis, let us prescribe data on a 
arbitrary curve C.  Take a point P and a curve C not containing P.  If we have a solution 
of our equation at P, u(P), then there will be characteristic curves intersecting P and C, at 
different points on C, Q and R.  The solution u(P), if it exists, will be determined by the 
values of u and ux (where x is the locally normal direction) on the arc QR of C and the 
values within the “triangle” created by QP, PR, RQ.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us now define what it is to be “spacelike”.  A curve C is spacelike if as P tends to a 
point on C, the points Q and R also tend to that same point on C.  Notice that this 
definition doesn't presume a prior time/space split.  Yet it turns out that u(P) is consistent 
with the Cauchy data on C only if C is spacelike in this sense.  In this way we see how 
strength can "find" the spatial and temporal directions.  It would then remain to be shown 
that this distinguished timelike direction coalesces with what we know about time—
which would be silly in this toy two-dimensional example.  
 
Generalizations of the above ideas hold for all second-order hyperbolic equations.   For 
hyperbolic equations, the characteristics are those level surfaces φ(x0, x1…xn)=constant 
whose normals to some hyperplane C, φx0, φx1…φxn, satisfy the first-order equation 
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for some x0.  If for variable x0 and hyperplane C the normals to C satisfy the inequality 
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then C is spacelike.  In this way one sees the characteristic as a kind of limiting case of 
spacelike surfaces, where the inequality of (3) goes to the equality of (2).  
 
Does this implicit definition of the spacelike/timelike correspond with that used in 
physics?  It's no surprise that the answer is 'yes'.  The main properties of hyperbolic 
equations are found in the wave equation, yet the Lorentz transformations that define 
relativistic physics are the group of linear transformations that do not alter the form of the 
wave equation.  The sense of timelike defined in partial differential equation textbooks is 
a generalization and extension of the sense of timelike given in relativity. 
 
Not only does the direction of strength pick out the temporal directions, but it also welds 
together many otherwise disparate features of time.  In particular, note that it joins the 
three features of time mentioned in section 1: 
 

A. For any partial differential equation, the submanifold upon which ones places 
initial data must be d-1 dimensional (where M is d-dimensional) if one wants a 
well-posed Cauchy problem.  

 
B. The signature of (M,g) is connected to the type of fundamental equations.  
The fundamental differential equations (in the coordinate representation) of a 
theory indicate the signature of spacetime.  Indeed, for covariant field equations 
the matrix aij in (1) will have the same eigenvalues as the metric tensor. Not all 
equations used in physics will reflect the signature, of course, but the 
fundamental particle or field equations will.  
 
C. In spacetimes with closed timelike curves, strictly speaking, there is no well-
posed Cauchy problem because there are no Cauchy surfaces.  A subset is a 
Cauchy surface if every inextendible worldine of the spacetime intersects the 
surface exactly once.  

 
Fact A tells us that if we define time via Cauchy problems, it is bound to be one-
dimensional.  Fact B informs us that the signature will be Lorentzian.  And Fact C warns 
us not to expect closed timelike curves in spacetimes with well-posed Cauchy problems.5   
 
In sum, in the arena of worlds described by (1) and limited to desire for information via 
well-posed Cauchy problems, one can rigorously demonstrate that strength nicely divides 
time from space; in addition, one can connect the three features we initially associated 
with time: the ways in which it is special topologically, metrically and with respect to 
free mobility.   

                                                
5 Less strictly, one can define "generalized Cauchy surfaces" a la [4] and this association fails; one still expects something 
in the spirit of Section 3 to hold, however, for CTC's will typically impose restrictions on initial data.  
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5. CAVEATS AND CONJECTURES  

The real world is far messier than the model of Section 4.  Having a well-posed Cauchy 
problem is neither necessary nor sufficient for a theory being informative.  Theories can 
be more or less informative in a variety of ways. Moreover, there are many theories 
whose central equations are not of form (1).  For these reasons and others I understand 
the result of Section 4 as merely a kind of ideal Platonic illustration of the more general 
claim of Section 3.   
 
That said, I expect many of the associations proven in Section 4 to hold in varying 
degrees even when we go outside the scope of that problem.  First, many equations not of 
form (1) can be approximated by those of form (1).  By choosing small neighborhoods 
we can approximate nonlinear equations, by introducing new auxiliary fields we can get 
higher-order equations, and so on.  Second, for quasi-linear symmetric first-order 
equations, which are capable of representing virtually every system of physical interest, 
one can make plausible an existence and uniqueness claim.  More importantly for us, one 
of the conditions for this is what Geroch [11] calls a 'hyperbolization', and this demands a 
spacelike versus timelike distinction once again.  So results not as strong as that above 
but still in the neighborhood may be possible. 
 
In the end, it's a remarkable fact that the fundamental laws of nature – be they 
Newtonian, quantum or relativistic – possess an overwhelming asymmetry in 
informativeness.  Newtonian mechanics and quantum mechanics are not even remotely 
"deterministic" in the directions we call spatial.  In the smattering of results we have in 
general relativity, there are no known "sideways" Cauchy problems [12]; and if we can 
get them – and here is a conjecture – they will be far less simple than the timelike Cauchy 
problems.  I submit that this previously unmentioned asymmetry between time and space 
is in fact responsible for why we think the temporal directions are special. 
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