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It is argued that the problem of time is not a crucial issue inherent in the quantum

evolution of the universe. On the minisuperspace model example with the massless scalar

field, it is shown that at least four ways of the quantum evolution description give similar

results explicitly. Which of these methods will be suitable for the case of a full quantum

theory of gravity is discussed.

I. INTRODUCTION

Usually, some crucial theoretical problems are self-created in some sense, and then

these issues were solved successfully during some period. An example could be the

spin crisis problem, which had been stating about 30 years [1]. The problem of time

[2–6] holds a relatively long time from [7] and it was related closely with the variety

of the points of view to a gravity quantization. The root of this issue is the gauge

invariance of the general relativity. Such invariance allows choosing the equivalent

time parametrizations, and one may suspect that the time is an “illusion.”

On the other hand, the astrophysical data demonstrate that the universe evolves

in time. The modern trends in the interpretation of quantum mechanics (e.g., see [8])
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suggest that all the phenomena, including the universe itself, are generally quantum.

Thus, the time evolution in the frameworks of quantum cosmology has to been

explained.

Although eternity and time are two sides of one coin, all the experimental obser-

vations are performed in the time. Thus, one needs to introduce time into a theory,

in any case, to confront theory with the observations. However, sometimes, it could

be useful to think in terms of eternity for the development of theoretical concepts

sub specie aeternitatis.

The complexity of the full system of the equations for gravity does not prevent to

consider this problem on example of the so-called minisuperspace models [9], which

are extremely simple but have the Hamiltonian constraint like that in the general

case.

Here we show that the problem of time does not prevent doing the concrete cal-

culations of the time-dependent mean values, which could be, in principle, compared

with the experimental observations.

II. CLASSICAL PICTURE

As it is well-known, there is no problem with defining time in the classical theory

because it implies that if an observer has some particular clock, she can choose a

gauge corresponding to this clock.

Let us consider action for gravity and a real massless scalar field φ:

S =
1

16πG

∫
R
√
−g d4x+

1

2

∫
∂µφ g

µν∂νφ
√
−g d4x, (1)

where R is a scalar curvature.

We restrict the consideration by the uniform, isotropic and flat universe

ds2 = gµνdx
µdxν = a2(N2dη2 − d2r), (2)

where a scale factor a and a lapse function N depend on a conformal time η only.
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Under these conditions, the action (1) becomes

S =
1

2

∫
1

N

(
−M2

pa
′2 + a2φ′2

)
dη, (3)

where the reduced Planck mass Mp =
√

3
4πG

is used2, which will be set to unity in

the further consideration for simplicity.

The action (3) in the generalized form looks as

S =

∫ (
−paa′ + πφφ

′ −N
(
−1

2
p2
a +

π2
φ

2a2

))
dη, (4)

which turns to (3) after variation on πφ and pa. The explicit expression for the

Hamiltonian follows from (4):

H = N

(
−1

2
p2
a +

π2
φ

2a2

)
, (5)

which is also the Hamiltonian constraint

Φ1 = −1

2
p2
a +

π2
φ

2a2
= 0, (6)

due to δS
δN

= 0.

Time evolution of an arbitrary quantity is expressed through the Poisson brackets

dA

dη
=
∂A

∂η
+ {H,A}, (7)

defined as

{A,B} =
∂A

∂πφ

∂B

∂φ
− ∂A

∂φ

∂B

∂πφ
− ∂A

∂pa

∂B

∂a
+
∂A

∂a

∂A

∂pa
. (8)

The full system of the equations of motion has the form:

π′φ = −∂H
∂φ

= 0, =⇒ πφ = k = const,

φ′ =
∂H

∂πφ
=

k

a2
, a′ = −∂H

∂pa
= pa, p′a =

∂H

∂a
= −k

2

a3
. (9)

2 The scale factor a in (3) becomes dimensional because it corresponds, in fact, to aV 3/2, where

V is the volume of spatial integration in (1).
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The solution of the equations of motion is

a =
√

2|πφ|η, φ =
πφ

2|πφ|
ln η + const. (10)

According to Eq. (10), a gauge fixing condition

Φ2 = a−
√

2|πφ|η = 0, (11)

which conserves in time, can be introduced in addition to the constraint Φ1.

One can see that there is an explicit time evolution under some particular gauge

fixing. Moreover, for this simple example, the system could be reduced to a single

degree of freedom [10, 11].

Let us take πφ and φ as the physical variables, then a and pa have to be excluded

by the constraints (6),(11). Substituting pa, a
′ and a into (3) results

S =

∫
(πφφ

′ −Hphys(φ, πφ, η)) dη, (12)

where

Hphys(φ, πφ, η) = paa
′ =
|πφ|
2 η

. (13)

III. QUANTUM PICTURES WITH TIME

A. Schrödinger equation with physical Hamiltonian

The most simple and straightforward way to the description of the quantum

evolution is based on the Schröodinger equation [10, 11]

i∂ηΨ = ĤphysΨ (14)

with the physical Hamiltonian (13). In the momentum representation, the operators

become

π̂φ = k, φ̂ = i
∂

∂k
. (15)

The solution of Eq. (14) is

Ψ(k, η) = C(k)|2kη|−i|k|/2ei|k|/2, (16)
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FIG. 1. The mean value of the square of the scalar field over the wave packet (18).

.

where C(k) is a momentum wave packet. An arbitrary operator Â build from φ̂ = i ∂
∂k

and a =
√

2|k|η is, in fact, the function of η, k, i ∂
∂k

. Using the wave function (16)

allows calculating the mean value

< C|Â|C >=

∫
Ψ∗(k, η)ÂΨ(k, η)dk. (17)

Since the base wave functions ψk = |2kη|−i|k|/2ei|k|/2 contain the module of k, a

singularity may arises at k = 0 if Â contains the degrees of the differential operator

∂
∂k

. This may violate hermicity. To avoid this, the wave packet C(k) has to turn to

zero at k = 0. For instance, it could be taken in the Gaussian form multiplied by k2

C(k) =
4σ5

3
√
π
k2 exp

(
− k2

2σ2

)
. (18)

Let us come to the calculation of the concrete mean values taking σ = 1 for
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simplicity. Mean values of the operators φ̂2 and a are

< C|a|C >=
4

3

√
2

π

√
η

∫ ∞
−∞

e−k
2

k9/2dk =
4

3

√
2

π
Γ(11/4)

√
η, (19)

< C|φ̂2|C >=
1

3
√
π

∫ ∞
−∞

e−k
2

(
−4k6 + k4

(
20 + ln2 2 + ln(η |k|) ln(4η |k|)

)
−

8k2 + 2i |k|3
(
−2k2 ln(2η |k|) + 4 ln(η |k|) + 4 ln 2 + 1

))
dk =

1

12
ln η(3 ln η − 3γ + 8) +

π2

32
+
γ2

16
− γ

3
+

4

3
, (20)

where Γ is the Gamma function, and γ is the Euler constant. One can note that the

imaginary part in (20) disappears after integration on k due to hermicity of φ̂. As

is shown in Fig. 1, the mean-square value of φ is infinite at η = 0, then it decreases

and begins to increase finally.

Another more complicated example is

< C|φ̂2 a+ a φ̂2|C >=
1

3072

(
16 ln η

(
ln η(4 ln η(3 ln η − 6γ + 16) + 9π2

+6γ(3γ − 16) + 384)− 9γπ2 + 24π2 − 6γ(64 + (γ − 8)γ) + 800
)

+224ζ(3)(−6 ln η + 3γ − 8) + 21π4 + 12γ(3γ − 16)π2 + 768π2

+4γ
(
γ(384 + γ(3γ − 32))− 1600

)
+ 16640

)
, (21)

where ζ(x) is the zeta-function.

B. Time evolution from WDW equation

The problem of time began from the discussion of the Wheeler-DeWitt (WDW)

equation [7, 10, 12–14], which is a workhorse of the quantum cosmology and a

“mathematical implementation of eternity.” It is often stated that the WDW equa-

tion does not contain time explicitly. Indeed, it is true. Then, it is usually stated

that the WDW equation forbids time evolution. Certainly, it is wrong if one consid-

ers a full quantum picture, including gauge fixing and evaluation of the mean values

of the operators. The point is that the WDW equation has to be supplemented by

the scalar product.
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Let us to introduce the variable α = ln a and perform the canonical quantization

[p̂α, α] = i, [π̂φ, φ] = −i (22)

of the constraint Φ1 = 0. This results in the WDW equation(
∂2

∂α2
− ∂2

∂φ2

)
Ψ(α, φ) = 0 (23)

of the Klein-Gordon type.

Scalar products for the Klein-Gordon equation are discussed in [15], where the

“current” and “density” products were proposed. Here we will use only scalar prod-

uct of the “current” type:

< Ψ|Ψ >= i

∫ (
Ψ∗(α, φ)

∂

∂α
Ψ(α, φ)−Ψ(α, φ)

∂

∂α
Ψ∗(α, φ)

)∣∣∣∣
α=α0

dφ, (24)

including the hyperplane α = α0. For a mean value of some operator, the following

formula has been introduced [15]

< Ψ|Â|Ψ >= i

∫ (
Ψ∗D̂1/4Â D̂−1/4∂Ψ

∂α
−
(
∂Ψ∗

∂α

)
D̂−1/4Â D̂1/4 Ψ

)∣∣∣∣
α=α0

dφ, (25)

where the operator D̂ =
√
− ∂2

∂φ2
. In the momentum representation π̂φ = k, φ̂ = i ∂

∂k
,

the WDW equation (23) looks as(
∂2

∂α2
+ k2

)
ψ(α, k) = 0, (26)

and, as a result of D̂ = |k|, the scalar product (25) takes the form:

< Ψ|Â|Ψ >= i

∫
C∗(k)ei|k|αÂe−i|k|αC(k)

∣∣∣∣
α=α0

dk, (27)

where

Ψ(α, φ) =

∫
eikφψ(α, k)dk =

∫
eikφ−i|k|α√

2|k|
C(k)dk (28)

is taken. To introduce the time evolution into this picture, one has to choose a time-

dependent integration plane in (27) instead of α = α0 by writing α = 1
2

ln (2|k|η)

according to (11), i.e., to Φ2 = 0.
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However, if the operator Â(α, k, i ∂
∂α
, i ∂
∂k

) contains differentiations ∂
∂k

or ∂
∂α

, her-

micity could be lost. To prevent this, let us rewrite (25), (27) in the form of

< ψ|Â|ψ >=

∫
ψ∗(α, k)

(
|k|1/4Â|k|−1/4δ(α− 1

2
ln(2|k|η))p̂α +

p̂αδ(α−
1

2
ln(2|k|η))|k|−1/4Â|k|1/4

)
ψ(α, k)dαdk, (29)

where pα = i ∂
∂α

and hermicity of Â relative α, k variables are implied. In this

case, no problem with hermicity arises if one takes the functions ψ(α, k) tending to

zero at α → ±∞ to provide the throwing over the differential operators ∂/∂α by

the integration by parts. The functions ψ(α, k) = e−i|k|α√
2|k|

C(k) do not poses such a

property, thus, we shall take the functions

ψ(α, k) =
e−i|k|α−α

2/∆√
2|k|

C(k) (30)

in the intermediate calculations and, then, after integration over α, tend ∆ to infin-

ity. Performing the concrete calculations with the above wave packet (18), we again

obtain the same values for (19) and (20). As for the mean value (21) of subsection

III A, we cannot compare it using this picture because the particular operator or-

dering aφ̂2 + φ̂2a has been used in (21), but here the operators a = expα and φ̂

commute formally implying an existence of some intrinsic automatic ordering.

C. An evolution from the WDW using the Grassman variables

Another version with the anticommutative variables could be proposed in the

form

< ψ|A|ψ >=

∫
ψ∗(α, k) exp

(
iλ
(
α− 1

2
ln(2|k|η)

)
+ θ̄θp̂α +

1

2
χ̄χ
(
|k|−i/2Â |k|i/2 + |k|i/2Â |k|−i/2

))
ψ(α, k)dλdαdkdθdθ̄dχdχ̄, (31)

where the anticommutating Grassman variables θi = (θ, χ), θ̄i = (θ̄, χ̄) have the

following properties: θiθj +θjθi = 0,
∫
dθi = 0,

∫
θidθi = 1, (θ̄i)

∗ = θi, (θ̄iθj)
∗ = θ̄jθi.
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Again, for a reasons of hermicity, we take the functions (30) and then tend ∆ to

infinity. For the practical calculations, it is convenient to separate the expression

in the exponent of Eq. (31) into two parts M = iλ
(
α− 1

2
ln (2|k|η)

)
, and N =

θ̄θp̂α + 1
2
χ̄χ
(
|k|−i/2Â|k|i/2 + |k|i/2Â|k|−i/2

)
for using the formula [16]

exp
(
M̂ + N̂

)
=

(
1 +

∞∑
m=1

X̂m

m!

)
exp M̂, (32)

where X̂m is set recurscively as X̂1 = N and X̂k = N̂X̂m−1 + [M̂, X̂m−1]. It is

sufficient to take only three terms in a sun of Eq. (32) because N̂ contains the

Grassman variables.

D. Quasi-Heisenberg picture

Another approach to consider the time evolution is to take classical equations of

motion and then quantize them, i.e., write “hat” under every quantity [17–20]. The

operator equations of motion take the form:

φ̂′′ + 2α̂′φ̂′ = 0, α̂′′ + α̂′2 + φ̂′2 = 0. (33)

One needs to find the commutation relations of the operators α̂(η), φ̂(η). The

problem was solved by Dirac, who has introduced the “Dirac brackets” for the

system with constraints postulating that commutator relations of the operators have

to be analogous to the Dirac brackets. However, it is not always possible to find

an operator realization of this commutator relations. The quasi-Heisenberg picture

suggests to find an operator realization only at the initial moment and then allow

operators to evolve according to the equations of motion. The initial conditions for

operators could be taken in the form

α̂(0) = α0, α̂′(0) = e−2α0|k|, φ̂(0) = i
∂

∂k
, φ̂′(0) = e−2α0k. (34)

The solution of the operator equations of motion (33) with the initial conditions

(34) is

α(η) = α0 +
1

2
ln
(
1 + 2|k|η e−2α0

)
, φ̂(η) = i

∂

∂k
+

k

2|k|
ln
(
1 + 2|k|η e−2α0

)
. (35)
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To built the Hilbert space, in which these quasi-Heisenberg operators act, one

may use the WDW equation (23) and the scalar product (27) but at the end of

evaluating the value of α0 should be set to minus infinity, i.e., α0 → −∞, which

corresponds to a → 0 at η = 0. Explicit calculation gives the same mean values as

(19), (20) and (21).

E. Evolution using the unconstraint Schrödinger equation in the extended

space

It is believed [21–23] that the Grassman variables allow writing the Lagrangian

without constraints at all. Here one has two possibilities: to set a gauge imposing

an additional condition as a function of pa, a, πφ, φ such as (11). It is a canonical

gauge setting. Another alternative is to impose that condition as a function of N

(non-canonical gauge).

1. Canonical gauge

The discussion could be started in terms of continual integral which gives a tran-

sition amplitude from in to out states [21, 24, 25]:

< out|in >= Z =

∫
ei
∫
(πφφ′−Hphys(φ,πφ))dηDπφDφ, (36)

where Hphys is given by (13). This functional can be rewritten in the form

Z =

∫
e
i
∫ (

πφφ
′−paa′−N

(
− 1

2
p2a+

π2φ

2a2

))
dη

ΠηpaΠηδ(a−
√

2η|πφ|)DpaDaDπφDφDN,

(37)

where [25] pa = {Φ1,Φ2} is the Faddeev-Popov determinant. Equivalence of (36) and

(37) could be checked by transition to a new integration variable ã = a−
√

2η|πφ|,

and integrating on ã, N , pa in (37) gradually.

Using the Grassman anticommutative variables in Eq. (37) leads to the form

10



containing the unconstraint Lagrangian in the exponent

Z =

∫
ei
∫ (

πφφ
′−paa′−N

(
− 1

2
p2a+

π2φ

2a2

)
−λ(a−

√
2η|πφ|)−θ̄θpa

)
dηDpaDaDπφDφDNDλDθDθ̄.

(38)

Eq. (38) allows writing the Hamiltonian

H = N

(
−1

2
p2
a +

π2
φ

2a2

)
+ λ

(
a−

√
2η|πφ|

)
+ θ̄θpa, (39)

which, after canonical quantization, could be used to describe evolution as in both

Schrödinger and Heisenberg pictures.

2. Non-canonical gauge

Let us remind, how the Faddeev-Popov determinant appears in non-canonical

gauge. The action (3) is invariant relatively the infinitesimal gauge transformations:

ã = a+ δa = a+ ε a′, (40)

φ̃ = φ+ δφ = φ+ ε φ′, (41)

Ñ = N + δN = N + (Nε)′, (42)

where ε is an infinitesimal function of time. When one sets a non-canonical gauge

condition in the form F (N) = 0, the functional integral including a gauge fixing

multiplier with the Dirac δ-function becomes [21]

Z =

∫
e
i
∫ (

πφφ
′−paa′−N

(
− 1

2
p2a+

π2φ

2a2

))
dη

Πη
δF

δε
Πηδ(F )DpaDaDπφDφDN, (43)

where again the Faddev-Popov determinant ∆FP = δF
δε

has been introduced [21].

In the particular case F = N − 1, it follows from (42) that the determinant is

∆FP = δN
δε

= N ′ + N ∂
∂η

. Using the Grassman variables raises the determinant into

exponent

Z = i

∫
e
i
∫ (

πφφ
′−paa′−N

(
− 1

2
p2a+

π2φ

2a2

)
−λ(N−1)−N ′θ̄θ−Nθ̄θ′

)
dη

DpaDaDπφDφDλDNDθDθ̄

=

∫
e
i
∫ (

πφφ
′−paa′−

(
− 1

2
p2a+

π2φ

2a2

)
−θ̄θ′

)
dη

DpaDaDπφDφDθDθ̄. (44)
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An expression in the exponent of Eq. (44) could be treated as Lagrangian, but it

cannot be put into the generalized Hamiltonian form, because velocity θ′ cannot

be expressed through a momentum. In this relation, an interesting trick has been

suggested [22]: to take the gauge condition N ′ = 0, instead of N = 1. For this new

gauge, it follows from (42) that

δF = δN ′ = (Nε)′′, (45)

and

Z =

∫
e
i
∫ (

πφφ
′−paa′−N

(
− 1

2
p2a+

π2φ

2a2

)
−λN ′−θ̄(Nθ)′′

)
dη

DpaDaDπφDφDNDλDθDθ̄. (46)

The unconstraint Lagrangian is written from Eq. (46) as

L = πφφ
′ − paa′ −N

(
−1

2
p2
a +

π2
φ

2a2

)
− λN ′ + θ̄′(Nθ)′, (47)

For the momentums of the Grassman variables and N , one has from (47)

πθ = −∂L
∂θ′

= Nθ̄′, πθ̄ =
∂L

∂θ̄′
= N ′θ +Nθ′, pN =

∂L

∂N ′
= −λ+ θ̄′θ, (48)

where, as usual, left derivative over Grassman ∂
∂θ

(
θf(θ̄)

)
= f(θ̄) is implied. The

Lagrangian (47), rewritten in terms of momentums acquires the form

L = πφφ
′ − paa′ + pN N

′ + θ̄′πθ̄ + πθθ
′ −N

(
−1

2
p2
a +

π2
φ

2a2

)
− 1

N
πθπθ̄. (49)

This means that the corresponding Hamiltonian is

H = N

(
−1

2
p2
a +

π2
φ

2a2

)
+

1

N
πθπθ̄. (50)

Thus, two Hamiltonians (39), (50), which drive unconstraint dynamics, have been

obtained. The first one is time-dependent and contains the Grassman variables as

parameters. The second one is time-independent and implies the time dynamics of

the Grassman variables [22]. Further, we will consider only the Hamiltonian (50),

because this timeless Hamiltonian seems more perspective in the general gravity

12



quantization. Opposite to commutation relation (22), the anticommutation relation

have to be introduced for the Grassman variables

{πθ, θ} = −i, {πθ̄, θ̄} = −i. (51)

In the particular representation α = ln a, p̂α = i ∂
∂α

, φ̂ = i ∂
∂k

, π̂φ = k, π̂θ = −i ∂
∂θ

,

π̂θ̄ = −i ∂
∂θ̄

, the Schrödinger equation looks as

i
∂

∂η
ψ =

(
N

2
e−2α

(
∂2

∂α2
+ k2

)
− 1

N

∂

∂θ

∂

∂θ̄

)
ψ, (52)

where the operator ordering in the form of the two-dimensional Laplacian has been

used.

It should be supplemented by the scalar product

< ψ|ψ >=

∫
ψ∗(η,N, k, α, θ̄, θ)ψ(η,N, k, α, θ̄, θ)e2αdαdkdNdθdθ̄, (53)

where the measure e2α arises due to hermicity requirement [25, 26]. This measure

is a consequence of a minisuperspace metric if the Hamiltonian is written in the

form H = N
2
gijpi pj + 1

N
πθπθ̄ with pi ≡ {α, φ}, gij = diag{−e−2α, e−2α}. Thus, the

measure takes the form
√
| det gij| = e2α [26].

One of the particular formal solutions of the equation (52) could be written as

ψ(η,N, k, α, θ̄, θ) = (θ̄ + θ)ψ1(η,N, k, α) + i(θ̄ − θ)ψ2(η,N, k, α), (54)

where the functions ψ1 and ψ2 satisfy the equation

i
∂

∂η
ψ1,2 = Ĥ0ψ1,2, (55)

where Ĥ0 = N
2
e−2α

(
∂2

∂α2 + k2
)

. Then, the scalar product reduces to

< ψ|ψ >= 2i

∫
(ψ∗2ψ1 − ψ∗1ψ2) e2αdαdkdN. (56)

To obtain the mean values close to that given by the previous methods, where

Klein-Gordon scalar product is used, let us take the functions ψ1, ψ2 in the form

ψ2 = e−iĤ0ηψ0(α, k), ψ1 = e−iĤ0η
∂

∂α
ψ0(α, k), (57)

13



TABLE I. Comparison of the mean values calculated by the different methods. Capital

letters denote the section of a method. A plus implies that the values obtained by the

different methods coincide. Crosses of two types in a circle mean that the values obtained

at least by two different methods coincide.

Method A B C D E

a + + + +

a2 + + + + +

φ̂2 + + + +

φ̂4 ⊕ ⊗ ⊗ ⊕

φ̂6 ⊕ ⊕

aφ̂2 + φ̂2a ⊕ ⊕

where ψ0(α, k) is given by (30). As one can see, at the limit ∆ → ∞, the state

(57) comes to the space of the WDW solution (see e.g. [27]), and the time evolution

disappears. However, if this limit is taken after the calculating of the mean values,

then the explicit time evolution could be caught. Let us consider the mean value of

a2 = e2α for the wave packet (18). For the variable N , we will consider a very narrow

packet around the value N = 1, i.e., simply set N = 1 and abandon integration over

N . Remaining integrations give for the normalizing multiplier

< ψ|ψ >= 2i

∫
(ψ∗2ψ1 − ψ∗1ψ2) e2αdαdk =

3πe∆/2
√

∆

2
√

2
. (58)

Then the mean value of a2 becomes

< a2 >=
< ψ|e2α|ψ >
< ψ|ψ >

= e3∆/2 +
8(2∆ + 1)η

3
√
π∆

+
3e−∆/2η2

∆
. (59)

As one can see, three terms appear in Eq. (59). The first term is divergent at

∆→∞, i.e., when one proceeds to the space of the WDW solutions, the evolution

disappears, in a sense that this constant term dominates in (59). However if one

omits this constant term (not dependent on time) and then proceeds to the limit

∆ → ∞, then the value < a2 >= 16η
3
√
π

is the same as in the previous methods
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FIG. 2. The mean value of φ̂4 over the wave packet (18) for the methods A,D- solid line

and methods B,C- dashed line.

.

A,B,C,D. In the general case, for instance, under evaluation a4, the other diverging

terms depending on the time appear. That prevents extracting the time evolu-

tion when one proceeds from the extended space to the space of WDW solutions.

However, one could believe that some good regularization method has to exist.

IV. DISCUSSION AND POSSIBLE APPLICATION OF THE ABOVE AP-

PROACHES TO THE GENERAL CASE OF GRAVITY QUANTIZATION

The results of the calculation of the mean values are presented in Table I. The

mean value of < C|a2|C > turns out to be the same for all the methods considered.

For the method III E, we are not able to calculate the mean values of the other

operators for two reasons: because we use the most primitive way of calculation

by expanding the exponent e−iĤ0η in Eq. (57) over the degrees of η, and use the

primitive regularization under transition from extended spase [22, 23] to the space

of WDW equation solutions.

15



FIG. 3. The illustration that different methods could have different Hilbert spaces for

producing the same set of the mean values for the arbitrarily given operators. Still, there

should be correspondence between the state C(k) of the Hilbert space 1 and the state

C̃(k) of the Hilbert space 2 producing the same mean values.

.

The methods A,B,C,D produce the same value of the operators a, φ2 as it is shown

in Table I. For the mean value of φ̂4 some difference emerges shown in Fig. 2. It is

not the uncertainty of numerical calculations because they are fully analytical and

have been performed using Mathematica. However, let us emphasize that it does

not mean that the different methods are nonequivalent. Generally, as is illustrated

in Fig. 3 different methods should not have the same Hilbert space when producing

the same values of the different operators. Only the correspondence between these

spaces should exist, i.e., these spaces have to be connected by some transformation.

In light of quantum gravity, one could guess that the method of subsection III A

is not likely to be applicable to the building of the general quantum gravity theory.

Simply, it is not possible to resolve the Hamiltonian and the momentum constraints

to exclude the extra degrees of freedom.

Most of the considered methods use the time-dependent gauge condition. It seems

the restrictive case for the general gravity if to demand conservation of the gauge

condition in time. In fact, it is equivalent to the preliminary solution of the equations

16



of motion for gravity. An exception is the quasi-Heisenberg picture III D, which

demands to set a gauge condition only at the initial moment of time. Thus, it seems

the most perspective picture. The unconstrained Schrödinger equation of subsection

III E also seems attractive [14], but needs the invention of some regularization scheme

when one proceeds from the extended space to the space of WDW equation solutions.

One could hope that quantum computing will be applied [28–30] for a description

of the quantum universe evolution in the future.

V. CONCLUSION

As one can see, the description of quantum evolution is very straightforward and

unambiguous but teems with different details such as choosing a scalar product and

operator ordering which are typical for quantization of the systems with constraints

[31]. It is shown that if one wants to discuss the quantum evolution of the universe,

there are no serious obstacles to this. Namely, the ”problem of time” does not exist

as a real problem.

Let us summarize the methods producing an explicit time evolution: time-

dependent physical Hamiltonian with the excluded extra degrees of freedom, WDW

equation with the time-dependent integration plane in the scalar product, quasi-

Heisenberg picture quantizing the equations of motion, and unconstraint Hamilto-

nian with the Grassman variables. Since the WDW equation tells nothing about

the time evolution without determining the scalar product, this equation alone is

only halfway to a full picture.
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