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Numerous approaches to quantum gravity report a reduction in the number of space-
time dimensions at the Planck scale. However, accepting the reality of dimensional re-
duction also means accepting its consequences, including a variable speed of light. We
provide numerical evidence for a variable speed of light in the causal dynamical tri-
angulation (CDT) approach to quantum gravity, showing that it closely matches the
superluminality implied by dimensional reduction. We argue that reconciling the ap-
pearance of dimensional reduction with a constant speed of light may require modifying
our understanding of time, an idea originally proposed in Ref.1.
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1. Introduction

Given the large number of approaches to quantum gravity perhaps it is prudent to

identify consistent features as a means of recognising a firm foundation on which to

build. One striking example is the appearance of dimensional reduction; the idea

that the number of spacetime dimensions reduces on small distances.

Dimensional reduction was first observed in the causal dynamical triangulation

(CDT) approach to quantum gravity2. Since then, exact renormalisation group

methods3, Hořava-Lifshitz gravity4, loop quantum gravity5 and string theory6 have

all reported a reduction in the number of spacetime dimensions on small distance

scales. The fact that dimensional reduction appears so consistently and across such

a diverse number of approaches to quantum gravity strongly suggests it should be

taken seriously as an indication of new Planck scale physics.

However, if we accept the reality of dimensional reduction then logically we must

also accept its consequences:

(1) The speed of light must vary with scale7,8.

(2) Relativistic symmetries are at the very least deformed9,10.

(3) Lorentz invariance is broken in nearly all cases11,12.

(4) Gravitational waves can no longer propagate6.

(5) Maxwell’s equations break down13.

Motivated to avoid such extreme implications, this work questions the reality of

dimensional reduction, and asks whether its appearance is instead a symptom of

less radical underlying Planck scale physics.

http://arxiv.org/abs/1509.07665v1
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2. Superluminality in CDT quantum gravity

Evidence for dimensional reduction has come mainly from calculations of the spec-

tral dimension, a measure of the effective dimension of a manifold over varying

length scales. The spectral dimension DS is related to the probability Pr that a

random walk will return to the origin after σ diffusion steps, and is defined by

DS = −2
dlogPr

dlogσ
. (1)

Independent of any particular approach to quantum gravity the spectral dimen-

sion in (3+1) topological dimensions is related to the group velocity vgr and phase

velocity vph of light via8

DS = 1 + d
vph
vgr

+ ... , (2)

where d = 3 is the number of spatial topological dimensions. For electromagnetic

waves in a vacuum one expects a dimensionless speed of light parameter cm =

vgr/vph = 1. However, for any degree of dimensional reduction whatsoever (DS < 4)

Eq. (2) says that the speed of light cm must exceed unity. Superluminality is an

unavoidable consequence of dimensional reduction.

The canonical point in the physical phase of CDT, which has an established

macroscopic 4-dimensional de Sitter geometry14, has been shown to have a scale

dependent spectral dimension given by the functional form

DS = a−
b

c+ σ
, (3)

where a, b and c are free fit parameters2, a result also found using purely analytical

methods15. By substituting Eq. (3) into Eq. (2) we obtain a modified speed of light

cm implied by dimensional reduction in CDT,

cm =
vgr
vph

=
d

a− b
c+σ − 1

. (4)

Figure (2) shows the modified speed of light cm as a function of σ, with a = 4.06,

b = 135 and c = 67 as determined by CDT calculations16. a

One can explicitly map the trajectory a fictitious diffusing particle follows in a

given ensemble of triangulations defined by CDT. In CDT one approximates a con-

tinuous spacetime manifold by connecting adjacent 4-dimensional simplices via their

mutual tetrahedra, forming a discretised simplicial geometry. The resulting ensem-

ble of triangulations can be used to analyze how a test particle diffuses throughout

aAn independent derivation based on dimensional reduction in CDT also gives a photon group velocity

that is almost identical to cm when plotted as a function of σ 17.
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the geometry. Starting from a randomly chosen simplex a test particle performs a

random walk within the geometry by stepping between adjacent simplices σ times.

Fig. 1. A schematic representation of a test particle diffusing between points A and B in
(1 + 1)-dimensional CDT.

Fig. 2. The modified speed of light cm predicted by dimensional reduction (the solid blue
curve) and the effective velocity vd averaged over 103 diffusion paths in a typical CDT
ensemble (filled black dots), with C = 0.18. The dashed black line indicates the speed of
light c = 1.

A key feature of CDT is that space-like and time-like links on the lattice are dis-

tinguishable, thus allowing the foliation of spacetime into space-like hypersurfaces.

In CDT, space-like hypersurfaces are separated by time intervals t = 0, t = 1, ...,

t = N , as shown schematically in Fig. 1, thereby introducing a time coordinate.

The elapsed time observed by a particle diffusing between points A and B is given

by the number of times td the test particle crosses a space-like hypersurface. This
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allows us to define an effective velocity vd for the diffusing test particle within the

triangulation via vd = Cσ
td

, as shown in Fig. 2, where C is a numerical constant

encoding the lattice spacing.b

The important feature of Fig. 2 is that the measured effective velocity of the

diffusing particle vd closely matches the scale dependent speed of light of Eq. (4),

providing numerical evidence of superluminality on small distance scales in CDT.

3. Removing superluminality

Given the radical implications of dimensional reduction in the form of superluminal

motion we explore the possibility that dimensional reduction is not a real physical

phenomenon, and that its appearance in quantum gravity is instead a symptom of

deeper, more conservative, Planck scale physics. Since diffusion processes that define

the spectral dimension in CDT are known to diffuse within a fractal geometry18

their path length should increase as a function of increasing resolution (a general

property of fractal curves that has also been established for quantum mechanical

paths19). We contend that such a scale dependent path length is responsible for the

appearence of dimensional reduction and hence superluminality in quantum gravity.

Integration of Eq. (3) gives the probability Pr that the diffusing particle will

return to the origin after σ diffusion steps,

Pr =
1

σa/2
(

1 + c
σ

)
b

2c

. (5)

CDT simulations2,16 find that a ≃ 4 and b/2c ≃ 1, and so

P (σ) ≃
1

σ2 + cσ
. (6)

The probability of return in the absence of dimensional reduction is given by

P (σ) = σ−2. Since the path length of a diffusing particle is proportional to the

number of diffusion steps σ, we ask what function Γ(σ) rescales the path length such

that we obtain the probability of return found in CDT, namely that of Eq. (6). To

answer this we write the equation

1

Γ (σ)2 σ2
=

1

σ2 + cσ
, (7)

which gives

Γ (σ) =

√

1 +
c

σ
. (8)

bSince one cannot define a speed of light in Euclidean signature (in which the spectral dimension is

almost universally studied) one must instead define an effective velocity vd.
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In other words, the appearance of dimensional reduction and superluminality in

CDT can be explained by a path length that scales according to Γ (σ) as a function

of σ.

Since σ is proportional to the square of the distance scale ∆x with which one

probes the manifold, and assuming the free fit parameter c can be expressed as

c = Al2p in Planck units as suggested in Ref.2, where lp is the Planck length and A

is a numerical constant, then Eq. (8) becomes

Γ(∆x) =

√

1 +
Al2p
∆x2

. (9)

Now, consider the massless diffusing particle to be a photon. In analogy with

special relativity, we set up a light-clock such that each time the photon traverses

the distance between two parallel mirrors defines the tick of a clock. As discussed,

the photons path length will increase in response to a decreasing ∆x in accordance

with Γ(∆x). Therefore, if we are to preserve a constant speed of light in spite of such

an increasing path length then the light-clock must tick slower by the same Γ(∆x)

factor; time must dilate as a function of relative scale to maintain an invariant speed

of light.

Defining ∆t as the time it takes a photon to traverse the distance between the

mirrors along the shortest possible path, and ∆t′ as the time it takes when probed

with resolution ∆x, we obtain a relation with the same form as time dilation in

special relativity, namely

∆t′ = Γ(∆x)∆t. (10)

For ∆x ≫ lP we have Γ(∆x) → 1, and so recover ∆t′ = ∆t. However, for

∆x ≈ lP the time dilation factor Γ(∆x) starts to significantly deviate from unity

and may therefore modify dynamics at the Planck scale.

4. Conclusions

We highlight the fact that dimensional reduction has a number of radical and possi-

bly unphysical implications, including a variable speed of light. We provide numer-

ical evidence of superluminality in CDT quantum gravity, showing that it closely

matches the variable speed of light implied by dimensional reduction. We argue

that if we are to reconcile dimensional reduction and a constant speed of light then

duration must be scale dependent, an idea originally proposed in Ref.1.
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