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Abstract

The only widely accepted explanation for the various arrows of time that every-
where and at all epochs point in the same direction is the ‘past hypothesis’: the
Universe had a very special low-entropy initial state. We present the first evidence
for an alternative conjecture: the arrows exist in all solutions of the gravitational
law that governs the Universe and arise because the space of its true degrees of free-
dom (shape space) is asymmetric. We prove our conjecture for arrows of complexity
and information in the Newtonian N -body problem. Except for a set of measure
zero, all of its solutions for non-negative energy divide at a uniquely defined point
into two halves. In each a well-defined measure of complexity fluctuates but grows
irreversibly between rising bounds from that point. Structures that store dynamical
information are created as the complexity grows. Recognition of the division is a
key novelty of our approach. Each solution can be viewed as having a single past
and two distinct futures emerging from it. Any internal observer must be in one half
of the solution and will only be aware of one past and one future. The ‘paradox’
of a time-symmetric law that leads to observationally irreversible behaviour is fully
resolved. General Relativity shares enough architectonic structure with the N -body
problem for us to prove the existence of analogous complexity arrows in the vacuum
Bianchi IX model. In the absence of non-trivial solutions with matter we cannot
prove that arrows of dynamical information will arise in GR, though they have in
our Universe. Finally, we indicate how the other arrows of time could arise.
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1 Introduction

“It seems to me that the idea of trying to obtain a universe in the form we know it by
applying time-symmetric physics to a generic unconstrained initial state is basically
misconceived.” R. Penrose [1].

1.1 Doubts about existing approaches

Most discussions of the various arrows of time concentrate on the growth of entropy. This
is natural; the entropy arrow was the first that attracted widespread interest. It is also the
one most readily observed, as when we drop a glass and know it cannot be reassembled.
However, we question whether the entropy concept and statistical mechanics, which are
undoubtedly excellent for characterizing and understanding subsystems of the Universe,
are appropriate for the Universe as a whole. These are some of our reasons:

1. Boltzmann and Gibbs developed the entropy concept to describe non-gravitating
particles in a confined space, e.g., a box, and based it on phase-space volume. Are
the italicized aspects appropriate for the Universe? Gravity dominates it, no walls
confine it, and volume presupposes an external scale.

2. By assuring probability conservation, Liouville’s theorem for ensembles in phase space
provides the foundation of statistical mechanics for dynamical systems evolving wrt
an external time. But the Universe is a unique system with a unique history and all
physical clocks are subsystems of it.

3. Self-gravitating systems are ‘anti-thermodynamic’. They have negative heat capac-
ity and cannot equilibrate. Instead of making non-uniform systems more uniform,
gravity fosters clustering, i.e., complexity. This has long been recognized, but to the
best of our knowledge no one has hitherto quantified the effect. We shall.

4. Although black holes and other solutions of Einstein’s equations with horizons have
remarkable thermodynamic properties and suggest an intimate connection between
gravity, entropy and quantum dynamics, the general covariance of GR has defeated
attempts to define gravitational entropy in generic situations.

5. The entropy concept is often illustrated in configuration space Q alone, e.g., atoms
initially confined to a small region then spread out over a complete box. In the great
majority of the naturally occurring far-from-equilibrium objects in the Universe, the
momenta are effectively random and the disequilibrium is manifested almost entirely
in Q, which may therefore be more relevant than phase space.

These are the main reasons why we seek a new way to understand the arrows of time.
Specifically, we suggest that three-dimensional (3D) scale-invariant configurational com-
plexity is the fundamental concept that should be studied in the first place. We define
such a concept for Newtonian gravity and show that it exhibits striking irreversible be-
haviour. We also propose a candidate analogue for GR and indicate how our framework
could explain not only the Universe’s manifest complexity arrow but also the other arrows.
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Our approach has similarities to the Weyl curvature hypothesis of Penrose [2, 1], differing
mainly in seeking a notion of 3D complexity rather than 4D entropy. We do also think his
belief quoted above may be too pessimistic.

1.2 Our conceptual framework and main results

Our fundamental assumptions are:

1. The Universe is a closed dynamical system. In Newtonian gravity (NG), this means
an ‘island universe’ of N point particles. In general relativity (GR), the Universe
must be spatially closed. This is not in conflict with current observations.

2. A notion of universal simultaneity exists. This is built into NG. In GR, we rely on
the theory of Shape Dynamics (SD), discussed below, to supply this notion.

3. Since all measurements are relational, only shapes are physical. We will define the
complexity, denoted CS, of any complete shape of the Universe. It is a pure number.

Our basic arena is shape space, denoted S. In NG, it is obtained by quotienting the
standard Newtonian configuration space Q by Euclidean translations, rotations and dilata-
tions, i.e., wrt the similarity group. Then for the N -body problem its 3N -dimensional Q
is replaced by the 3N − 7-dimensional S. Shape space for GR will be introduced later.

The guiding principle of SD is to abstract from dynamics all external structures. In
NG, these are position, orientation and size in an inertial frame and also an external time.
A dynamical history is then simply an unparametrized curve c in S. The equations of both
NG and GR are time-reversal symmetric, so they define no orientation on c. This is why
the entropy and other arrows are a problem. However, for NG we show that its generic1

solutions for non-negative energy, E ≥ 0, exhibit ‘two-sided’ time asymmetry, namely, they
divide into two halves in each of which CS fluctuates but overall grows irreversibly from
a common minimum. Moreover, structures that store dynamical information are created
as CS grows. In our Universe, we identify the direction to the future with the arrows
of increasing complexity and information. On this basis, since the minimum divides the
solution effectively into distinct halves, two ‘directions of time’, pointing away from the
minimum, exist in all generic NG solutions. We are not aware that this ‘one-past–two-
futures’ structure has hitherto been noted or related to the arrows of time.

We first demonstrate the structure in conventional Newtonian terms and then derive
the equations that determine the evolution curve in S. We believe this provides strong
evidence that shape space is the arena in which to study all the arrows of time. Our
long-term aim is to show that the past hypothesis (that the arrows of time can only be
explained by an exceptionally low-entropy birth of the Universe) is unnecessary. Instead,
we shall suggest that the arrows all have their origin in an asymmetry of shape space S.

1Throughout the paper, we use generic to denote the sets of solutions that are not of measure zero.
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We see support for our conjecture in the form of the evolution in S in each of the above
halves, which is asymmetric in time and dissipative2 in the naturally defined direction
of increasing complexity. This is so despite the absence of ‘hidden’ microscopic degrees
of freedom of the kind that normally give rise to irreversible behaviour. We think the
time-asymmetric evolution could be related to the deterministic laws of black hole ther-
modynamics found in classical GR in the late 1960s. It might also be a manifestation
of hidden degrees of freedom and an entropic origin of gravity. Whatever the truth, the
dissipation is a mathematical fact and a direct consequence of our fundamental ontology,
in accordance with which only shape evolution is physical.

We should like to emphasize here that in both NG and GR the physical degrees of
freedom (dofs) with which we are concerned are heterogeneous in nature. There are purely
dimensionless shape dofs and one dimensionful scale dof.3 Moreover, under a physically
reasonable restriction, its conjugate momentum, unlike all the momenta of the shape dofs,
is monotonic along the solution curve. Its existence as a unique Lyapunov function in the
N -body problem has long been known. It has an equally striking counterpart in GR, called
the York time. The direction of increase of these two Lyapunov functions is conventional,
so their existence does not conflict with the time-reversal symmetry of the laws that define
them.

However, since the scale dof is unique and, being dimensionful, can only be given a
value if an external scale is present, it literally ‘cries out’ for a role distinct from the shape
dofs. Through the operation of deparametrization, which we explained in detail in [15], we
transform the scale variable into the Hamiltonian and its monotonic conjugate momentum
into the evolution parameter. We are left with the minimal set of variables needed to
describe the Universe objectively. Any attempt to remove more would bring down the
whole structure.

The transition to this optimal (fully reduced) description automatically removes from
the system the scale kinetic energy present in the conventional description and explains
why the dynamics in S is dissipative. The potential significance of our result stands or falls
with our ontology. We ask readers who suspect we have created an artefact by tampering
with hallowed principles to bear in mind that Einstein was led to create GR precisely in
order to eliminate external background structures from physics. We are suggesting that
one last step needs to be taken: the elimination of external scale.

In Sec. 3, we consider GR. For reasons that we shall spell out, we cannot as yet ob-
tain results as definitive as for the N -body problem. However, we find enough similarities
to encourage us to believe that in this much more realistic context the route to an un-
derstanding of the arrows of time is through study of the problem in a suitably defined
shape space. The main argument and the novel aspects of our approach can be understood
without reading Sec. 3 which discusses the application to dynamical geometry. However,
for readers unfamiliar with GR in its Hamiltonian formulation, we briefly introduce some
background in Sec. 3.1.

2Irreversibility of the dynamics of the true conformal degrees of freedom of GR, manifested as monotonic
decrease of the reduced Hamiltonian, has been noticed before, and was exploited by Fischer and Moncrief
in a study of attractors of the motion [3]. In vacuum GR we actually find anti-dissipation (Sec. 3).

3Machian arguments allow us to eliminate translational and rotational degrees of freedom.
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2 Time Asymmetry in Particle Dynamics

2.1 Generic solutions

We here review facts about the N -body problem4 as formulated in the ‘scaffolding’ of
an inertial reference frame, external clock and reference scale. We call this the coordina-
tized description and contrast it with the objective description. This latter is obtained by
abstracting away everything that is not unambiguously intrinsic to the system. All that re-
mains are the dimensionless mass ratios of the particles and the successive shapes through
which the system passes in shape space.5 The elimination of the strictly redundant part
of the coordinatized description reveals effective asymmetry in S.

We begin with the qualitative behaviour of the 3-body problem in the coordinatized
description. Since we use this as a toy model for the Universe, we limit ourselves on
Machian grounds to the zero-angular momentum, Jtot = 0, and zero-energy, E = 0, case.
By Galilean invariance, we can always assume that the momentum Ptot vanishes.6

All generic three-body solutions with E = Jtot = 0 have a period of nontrivial three-
body interaction that develops asymptotically in both time directions into hyperbolic–
elliptic escape in which a pair of particles (not necessarily the same in the two time direc-
tions) separates from the third. As the pair becomes more and more isolated, its motion is
ever better approximated by elliptical Keplerian motion. In the meantime, the third par-
ticle, the ‘escapee’, tends to increasingly undisturbed inertial motion directed away from
the pair. This behaviour is illustrated in Fig. 1.

Being time-reversal symmetric, Newton’s equations do not define any temporal ordering
on the complete orbit. However, we shall show that there exists a unique point on it at
which the dilatational momentum7

D =
3∑

a=1

rcm

a · pacm , (1)

where rcm
a and pacm are the centre-of-mass coordinate and momentum vectors of the particles,

vanishes. This point divides the orbit into two halves and, as we shall show, serves as a
‘past’ for each half, both of which have an infinitely distant ‘future’ as the Kepler pair and
escapee drift forever apart.8 Thus every generic E = Jtot = 0 solution has ‘one past and
two futures’. This is also true of all generic N -body solutions with E = Jtot = 0. We defer
discussion of the residual measure-zero solutions, which exhibit quite different behaviour.

4See Chenciner’s [4] for a rigorous review. Marchal [5] treats the 3-body problem in detail. Sundman
[6] first established the 3-body behaviour described below.

5This is the conceptual framework of Shape Dynamics. For details, including its origin in Machian
considerations, see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

6Best matching (see [16, 17] for details) shows that the conditions Ptot = Jtot = 0 ensure overall
translation and rotation of the Universe make no contribution to its action, as Mach’s principle requires.

7Coined in [18] by analogy with angular momentum, which has the same dimensions. It has not been
named in the N -body literature, but is generally denoted by J , probably for Jacobi.

8Since only ratios have meaning in shape space, the objective fact is that the ratio between the semi-
major axis of the pair and the distance of the third particle from the pair tends to infinity.
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Figure 1: Orbits of the three particles in a pair exchange process in the centre-of-mass inertial
frame. Because we assume Jtot = 0 and consider the 3-body problem, the motion is planar. The
orientation of the axes and the units are arbitrary. Time-reversal symmetry makes it possible to
read two ‘pair-swapping’ stories in one picture. With the option shown by the arrows, a boy (red,
coming from bottom left) meets a Kepler pair dancing in from the top right, grabs the girl (green)
and goes off with her bottom right, ensuring momentum conservation if not happiness for the
jilted boy (blue). But reverse the arrows, and the blue boy gets the girl. The cameo story shows
how illusory it is to say some initial condition ‘causes’ what happens later. For a time-symmetric
system, the solutions do not have an initial condition. They each have their own overall structure
encoded equally well in any phase-space point along the solution.

2.2 Definition and growth of the complexity

We wish to define the complexity CS as a scale-invariant, and hence dimensionsless, function
on S. A simple way is to make CS the ratio of two ‘democratically’ mass-weighted lengths.
If ma is the mass of particle a, and ra is its position vector, an obvious candidate for one
is the root-mean-square length `rms:

`rms :=
1

mtot

√∑
a<b

mamb r2
ab, mtot =

N∑
a=1

ma, rab = ‖rb − ra‖. (2)

Another is the mean harmonic length `mhl:

1

`mhl

:=
1

m2
tot

∑
r<a

mamb

rab
. (3)

Then the complexity, a pure number that depends only on N and the mass ratios, is

CS :=
`rms

`mhl

. (4)
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Icm

CS

tD0

Figure 2: The moment of inertia Icm (red), dilatational momentum D (blue), and complexity
CS (black) as functions of the Newtonian time for the solution of the 3-body problem shown in
Fig. 1. The different heights of the fluctuations on the two sides of the figure reflect the different
orbital elements of the corresponding Kepler pairs and escapees. Note that in the asymptotic
regions, where the orbital parameters stabilize, numerical calculation of the evolution in either
time direction is relatively easy but becomes much harder when the three-body interactions become
non-trivial. Given asymptotic data on one side, it is not easy to predict with any accuracy the
behaviour on the other. The two sides are effectively different worlds.

We are not aware of an earlier proposal for this purpose, but it is easy to see that CS is
a good measure of non-uniformity and hence complexity. Even for relatively small N , `rms

(2) changes little if two particles approach each other or even coincide. In contrast, `mhl

is sensitive to any clustering and tends to zero if that happens. Moreover, while CS grows
with clustering, Battye et al’s [19] numerical calculations show that the minima of CS up
to N ≈ 104 correspond to extraordinarily uniform (super-Poissonian) shapes.9

Apart from the division by 1/m2
tot and the absence of the constant G, `mhl is, of course,

the Newton potential. Less obvious is that `rms is, the normalization apart, the square root
of the centre-of-mass moment of inertia Icm. This follows from the identity

1

mtot

∑
r<a

mambr
2
ab ≡

N∑
a=1

ma‖ra − rcm‖2 := Icm, rcm =
N∑
a=1

ma

mtot
ra. (5)

Thus, the complexity is formed from the two most fundamental quantities in Newtonian
gravitational dynamics. Note also that D (1) is half the time derivative of Icm.

9Conceptually at least, our definition bears no obvious resemblance to Kolmogorov complexity defined
by the number of binary digits needed in an algorithm to generate a given distribution. It is obvious that
one could define more sophisticated measures of complexity than (4), e.g., ones that take into account
alignments, but (4) appears to be the most appropriate as a measure for a self-gravitating universe.
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CS

t
Figure 3: The complexity CS vs. Newtonian time for a typical solution with N ∼ 1000. The
initial state was a Gaussian distribution of all coordinates and velocities around the origin. It
clearly exhibits a linear growth, and, as was to be expected from the increase in N , the fluctua-
tions due to the eccentricity of the Keplerian orbits average each other, giving a smoother curve.
Time reversal (implemented by reversing the initial velocities but not shown) leads to qualitatively
similar behaviour on either side of the minimum of CS (as in Fig. 2).

Figure 2 gives a first hint why we study CS. It fluctuates but has a clear tendency to
increase between growing bounds either side of the central region of minimal Icm. It is easy
to see why: first, the escapee’s increasing separation leads to asymptotic linear growth
of Icm; second, the Kepler pair forms with eccentricity, and the varying separation of its
constituents causes VNew to fluctuate. Behind the behaviour of CS =

√
IcmVNew we directly

see the cause. It is not some initial condition but the effect of law.

The fluctuations in CS for the N -body problem with large N are much weaker (Fig. 3).
An initial cluster of particles ‘evaporates’ (in both time directions), forming quasi-bound
few-particle systems and some stable Kepler pairs. As the system disperses, `rms grows
steadily, while the Kepler pairs and quasi-bound systems, whose phases are uncorrelated,
ensure that |VNew| = `−1

mhl declines to a more or less stable asymptotic value.10

Marchal and Saari [20] obtained rigorous results which show that this must happen.
Subject to certain caveats (see Appendix A.1), the basic reason is that the N -body system
breaks up into subsystems whose centres of mass separate linearly with the Newtonian
time t in the asymptotic limit. Each subsystem consists of individual particles and clusters
whose constituents remain close to each other. The separations within a subsystem are

10The deterministic manifestation of ‘two-sided’ arrows of time described here should be compared with
Boltzmann’s suggestion, made in a non-gravitational context, of rare deep fluctuations out of statistical
equilibrium, in which intelligent beings can only exist near the bottom of an entropy fluctuation. If
present on both sides, each would regard the entropy minimum as lying to their past. Note that the
Boltzmann fluctuations reoccur infinitely often, whereas there is just one pair of arrows of time in each
of the deterministic solutions we consider. Moreover, the entropy arrow points to a ‘heat-death’ future,
whereas the complexity arrow points in the direction of greater structure.
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bounded by O(t2/3). Thus, if particle a belongs to cluster J , we have 11

ra = cJ t + O(t2/3), if a ∈ J , (6)

where cJ ∈ R3 is a constant vector. It follows immediately that
√
Icm must grow linearly

with t, while VNew declines not faster than t−2/3, so that their product CS grows on average
at least as t1/3. In fact, the formation of at least one asymptotically stable Kepler pair will
ensure that VNew asymptotes to a constant average, so that CS grows linearly.

Although we have as yet only shown how CS grows asymptotically in Newtonian gravity,
it seems to be an excellent candidate measure of complexity in our actual Universe, in
which non-gravitational forces also play an important role. The protons and other nuclei
together with possible dark matter particles can be taken to represent the bulk of the
inhomogeneously distributed matter in the Universe. Suppose that at each instant of cosmic
time since last scattering of the CMB the shortest spatial geodesic distances between all of
them were determined in spacelike hypersurfaces12 in which the CMB is at rest on average.
Let the obtained values be inserted as the inter-particle distances rab in the expression (4)
for the complexity CS. Even allowing for uncertainty about the fate of matter in black
holes, it will surely be the case that this CS for the Universe will have increased on average
monotonically to an extremely good accuracy from last scattering to the present epoch.

2.3 Definition and growth of information

We now want to suggest that an arrow of information growth also emerges generically. Of
course, we must first define information. We adhere to the ideas sketched by one of us in
the essay [22] and assume that all kinds of information (factual, semantic and Shannon)
have a physical basis and that their existence is tied to the availability of an adequately
rich physical substrate. Here we are concerned with deterministic processes, so we leave
the discussion of Shannon information, which is about probabilities, for later studies.

For the purposes of this paper, the results that we have so far obtained lead us naturally
to an information-theoretical identification of complexity as ‘the necessary condition for a
system to store recognizable local information’. This enables us to synthesize the concepts
of complexity and information, in the sense that ‘complexity is potential information’. The
N -body problem provides a chance to test this conjecture using our intuitive (and quanti-
tative!) notion of configurational complexity as defined by CS. Indeed, we now conjecture
that there is an equally intuitive notion of dynamical information. This is suggested by the
dynamics of the system, which, evolving in the direction of our arrow of time, can spon-
taneously create subsystems that, as Marchal and Saari [20] show, become increasingly
isolated from the rest of the Universe. As this happens, the subsystems develop (approx-
imate) Galilean symmetries with which there are associated seven conserved quantities:
the linear and angular momenta PJ , JJ , and the energy EJ of the clusters (the index J
identifies the cluster). On Machian grounds, the whole Universe is constrained to have a

11 If N > 3, there can also be super-hyperbolic solutions, a well known example of which is Xia’s 5-body
solution [21], in which four particles reach infinity in finite time. However, as Edward Anderson pointed
out to us, these are not compatible with special relativity, so we do not consider them.

12Assumed to foliate the complete Universe, taken to be spatially closed.
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vanishing value for these quantities in an inertial frame, but subsystems are not, so that
any non-zero value of PJ , JJ and EJ has to be compensated by an equal and opposite
value of the same quantities for the rest of the Universe.

The key observation is that when a subsystem becomes isolated, it develops the seven
symmetries and corresponding conserved quantities EJ , PJ and JJ that, as shown in [20],
are more and more accurately conserved. With time both the number n of clusters J =
1, ..., n and the number of ‘frozen’ digits of (E1,P1,J1, ..., En,Pn,Jn) increases, implying
that the number of digits reliably stored in subsystems increases. We propose that the
total amount of data ‘saved’ in the ‘frozen’ digits measures the information content of the
system. By the results of [20], this increases in time together with the measure CS of
configurational complexity.

Moreover, one can also say that physical rods and clocks emerge spontaneously in the
form of Kepler pairs. If they are to have utility, rods must remain mutually congruent
and clocks must remain in phase – they must march in step [23]. This is what happens
when Kepler pairs form. Their semi-major axes become mutually fixed with ever greater
precision and therefore serve as rods, while the areas swept out by the major axes measure
time concordantly in accordance with Kepler’s second law. Both information and the
means to measure it emerge dynamically and generically.

Of course, Kepler pairs do not meet all the criteria of metrology since two such pairs
would disrupt each other when in close proximity and the very essence of measurement
is the bringing of a rod and the measured interval into overlap. Metrology now relies on
quantum mechanics and the great weakness of gravity compared with the other forces. We
return to this question in Sec. 3.4.

2.4 Dynamical similarity

We now want to understand, at the most basic level, the behaviour described in the previous
subsections and shown in Figs. 2 and 3. The characteristic features are the U-shaped graph
of Icm and the fluctuating growth of CS either side of D = 0.

The behaviour of Icm is easily explained and has long been known. As the first qualitative
result in dynamics, Lagrange discovered it over 200 years ago. It relies on two architectonic
properties of the Newton potential.

The first is homogeneity : if for any dynamical system and any real constant k the
potential satisfies V (α ra) = αk V (ra), then it is homogeneous of degree k and dynamical
similarity holds: the equations of motion permit a series of geometrically similar paths
([24], p. 22), in which the times between corresponding points satisfy t′/t = (l′/l)1−k/2 if
the distances are scaled as l′/l. The best known example of this is Kepler’s third law,13

for which 1− k/2 = 3/2 and the periods of planets of the same eccentricity (and therefore
shape) but different semi-major axes a scale as a3/2. The dynamical similarity in the N -
body problem will be crucial below: it shows that, if (as for a dynamically closed universe)
external standards of duration and scale are unavailable, then a one-parameter family of
solutions in the coordinatized description collapses to a single curve in S.

13Dynamical similarity is also the basis of the virial theorem [24].

11



The homogeneity of degree k of any potential also leads to the relation

Ïcm = 4E − 2(k + 2)V , (7)

which is often called the Lagrange–Jacobi relation. Its derivation uses Newton’s second
law and Euler’s homogeneous function theorem.

We now come to the second important property of VNew. Besides having k = −1, it is
also negative definite. These two properties enable us to particularize (7) as follows:

Ïcm = 4E − 2(k + 2)V =⇒ 4E − 2VNew > 0 if E ≥ 0. (8)

Thus, if E ≥ 0 it follows that Ïcm = 2Ḋ is positive [D is defined in (1)]. Then Icm is
concave upward, Ḋ is positive and D, whose sign is conventional, is monotonic.14 Since
Figs. 2 and 3 are based on calculations with E = 0, this immediately explains the U-shaped
behaviour of Icm, which is also bound to occur if E > 0.

Deferring for a moment the exceptional case in which Icm reaches zero, it follows from
its upward concavity that Icm must tend to infinity in both time directions. This requires
either one particle to recede infinitely far from the other two, which leads to the hyperbolic–
elliptic escape described above, or all inter-particle separations to tend to infinity at the
same time. This is also an exceptional case and will be considered below. As for the
behaviour of CS in Fig. 2, we have seen that this is directly due to the formation of Kepler
pairs and escape of the third particle: the generic behaviour of the 3-body problem with
E ≥ 0 is inevitable. Appendix A.1 shows this is also true for the N -body problem.

Let us here say something about our Machian assumption that the Universe has E =
Ptot = Jtot = 0 (in its centre-of-mass inertial frame). We noted in footnote 6 that the
conditions Ptot = Jtot = 0 ensure that translation and rotation of the Universe as a whole
make no contribution to its action. Moreover, solutions with E = Jtot = 0 are important
in N -body theory because they are scale invariant : if E or Jtot is non-vanishing, its value
changes under a change of units, but zero is obviously invariant. Of greater relevance to
us is a corresponding reduction in the number of degrees of freedom. The exact number
is important, so we do a count. We start with 3N . By Galilean relativity, the centre-of-
mass coordinates have no effect on the inter-particle separations, so that brings us down
to 3N − 3. Next Jtot = 0 eliminates two,15 so we reach 3N − 5. Dynamical similarity and
the condition E = 0 enable us to make the final reduction below to 3N − 7 shape dofs and
a time variable based on the dilatational momentum.

One more comment. Newton’s equations have the same form in Q independently of
the values of E and Jtot, but the objective equations in S are very different. The reader
may think E = Jtot = 0 is merely a special initial condition ‘put in by hand’. However,
we treat the N -body problem as a model ‘island Universe’. It is important that the
Universe, as opposed to subsystems of it, is unique. The equations that describe such a
universe objectively in S have different, significantly more complicated forms if E,Jtot 6= 0
as compared with the case Jtot = E = 0. Above all, if E and Jtot are non-vanishing

14If k = −2, then Ïcm = 0. This case, studied in [18, 25], also plays a role below.
15Not three because the rotation group is non-Abelian: there are only two commuting quantum angular-

momentum observables.
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the Universe in its evolution responds not only to the structure of S but also to external
structures. Moreover, this case matches the basic structure of closed-space vacuum GR
(which we show in Sec. 3) and provides a reasonably realistic toy model for at least the
matter-dominated evolution of our Universe (see, e.g., [26]).

2.5 Homothetic solutions and the topography of shape space

Here we first wish to describe the structure of S. To this end we note that a mere sign
change turns the complexity CS into the shape potential VS introduced in [25, 15]:

VS :=
√
IcmVNew, VNew = −

∑
a<b

mamb

rab
. (9)

The absence of the Newton constant from VNew will be discussed below. We call VS the
shape potential16 because its factor

√
Icm removes the scale dependence from VNew, so forces

derived from VS can only change the shape of the system, not its size. We find it remarkable
that the simplest obvious measure of clustering, or complexity, of a system of mass-weighted
points is simultaneously the function that determines the objective behaviour of a universe
subject to Newtonian gravity. Again, we are not aware that this has been noted, or at least
emphasized. In the 3-body problem, for which shape space has two dimensions, VS can be
illustrated topographically as an elevation plot over a sphere (see Fig. 4).

Figure 4 exhibits the dominant features of all N -body shape spaces: the stationary
points and infinitely deep wells of VS. The first are central configurations and play an
important role in N -body theory.17 Since VS is negative definite and regular except in the
singular wells, it must have at least one absolute maximum V max

S as one of its stationary
points. In the 3-body problem, V max

S is at the equilateral triangle for all mass values – a
result due to Lagrange.18 All non-maximal sationary points are saddles. In the 3-body
problem, they are collinear, but for more than a few particles there are many non-collinear
saddles. Our collaborator Jerome Barkley found the maxima and many saddles numerically
for N up to 20 in the equal-mass case; they can be seen at [29]. The number of central
configurations increases rapidly with N . For N = 16, Barkley readily found more than
70 000 in the equal-mass case; there must be vastly more when the masses are unequal.
Saari’s discussion of central configurations [28] is very interesting.

Thus, the topographic features of S are V max
S , the saddles, and infinitely deep wells,

whose number, as for the saddles, increases rapidly with N . Shape space is riddled with
them. Interestingly, the values of VS that Barkley found numerically for the saddles are
not much lower than V max

S . Thus, already for N more than, say, 10, much of S resembles
a fairly gently undulating plateau with maxima not much higher than the plateau. The

16So far as we know, this name has not been used in N -body literature, probably because N -body
equations are virtually always studied in Newtonian form even though in reality intrinsic change of shape
is all that remains when the extrinsic scale and frame of reference are removed. Our VS does figure
prominently as the configurational measure in Saari’s book [27] and especially in his [28].

17The usual definition of central configurations, which explains their name, is that the resultant force
exerted on each point by all the others is exactly in the direction of their common centre of mass. This is
equivalent [28, 26] to such configurations being stationary points of VS.

18In the 4-body problem, the maximum is at the regular tetrahedron, also for all mass values.
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Figure 4: The shape sphere of the three-body problem, with an elevation plot of VS (9) on its
surface. The equator corresponds to collinear configurations; at three points on it there are two-
body coincidences, where VS is singular with infinitely deep wells. Between them, at the azimuthal
angles φab, there are the Euler configurations, saddle points of VS. The triangles corresponding to
points with the same longitude and opposite latitude are mirror images. For all values of the mass
ratios, the absolute maximum of VS is at the equilateral triangle. The figure shows the equal-mass
case, for which φab =

(
π, π3 ,−

π
3

)
.

wells occupy a relatively small ‘area’ of the plateau. Moreover, the shapes on the plateau
have rather uniform, low complexity particle distributions. We have already mentioned
the result of Battye et al [19] that for N ≈ 104 the particle distribution at the minimum
of CS – and thus maximum of VS – is extraordinarily smooth19 for equal-mass particles.

We say shape space is asymmetric because, through the level surfaces of VS, it acquires
the structure with plateau and infinitely deep wells just described. It is certain that shape
space with any potential will lack symmetry.

The central configurations are important because they are associated with central col-
lisions, when all the particles collide at once at their centre of mass and Icm hits zero. This
brings us to the zero-measure solutions of the N -body problem deferred earlier.

First, there are homothetic (unchanging shape) solutions: if the system is ‘held’ at rest
at a central configuration and released, it will fall homothetically until all the particles
collide in a central collison at the centre of mass, beyond which the solution cannot be

19Super-Poissonian. We believe study of the equal-mass case is justified because it best approximates
field theory, modelling high field values by high particle densities.
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continued (a noteworthy result). The centre-of-mass position vector of each particle is

rcm

a = caf(t− t0), t > t0, (10)

where ca is a constant vector. Thus, all interparticle separations and their distances from
the centre of mass are proportional to a common function of the time f(t − t0) until the
central collision. In Newtonian terms, the complete set of Jtot = 0 homothetic solutions
corresponds to the system either hitting or exploding out of the centre of mass and behaving
in one of three ways. If E < 0, the system can only reach a finite size before collapsing
back to a central collision; the solution exists only for a finite time interval. If E = 0, the
system can ‘just’ escape to infinity, its scale increasing throughout as (t− t0)2/3. Finally, if
E > 0 the system ‘reaches infinity’ with the scale increasing asymptotically as t − t0; the
system has escaped the effect of gravity and is ‘coasting’ inertially.

All the homothetic solutions (10) exist as mere points in S. Much more interesting are
the solutions that become homothetic only asymptotically, terminating at a central colli-
sion or escaping to infinity. In fact, central collisions can only occur if the solution does
terminate at a central configuration [4]. In S, these asymptotically homothetic solutions
terminate at one end at a central configuration or, very exceptionally, at both ends. How-
ever, in all solutions that are asymptotically homothetic at one end the other end will be
drawn forever down a well of VS. Since, as we noted, the complexity at saddles is typically
low but tends to infinity in the wells, such solutions will exhibit clear complexity growth
from one ‘past’ to one ‘future’. As with the ‘two-sided’ solutions, complexity arrows are
due to the law alone. Moreover, all E ≥ 0 solutions of the N -body problem except the
fully homothetic ones, which are mere points in S, have the arrows. They are generic.

It might be argued that we have only been able to make this claim by an artificial
‘marriage’ of two physically distinct things to make CS: the (square root of the) moment
of inertia and the Newton potential. But a closed dynamical system must be characterized
in dimensionless terms: CS is the real thing and splitting it into

√
Icm and VNew is artificial.

The objectively true arena in which a dynamically closed universe exists is like Fig. 4.

This is the point for a preliminary summary, which we begin with a reiteration of the
two main novelties of our approach. The first is consistent passage from the dimensionful
coordinatized description in Q to the dimensionless S. Second, as we stressed in the caption
to Fig. 1, one should not be thinking about initial states but rather the structure of
complete solutions, both the zero-measure and generic ones. Only the behaviour of a
quantity like the complexity allows pragmatic identification of points on the solutions that
can be termed ‘initial’ or to lie in a ‘past’. In the generic E ≥ 0 solutions to the N -body
problem, this criterion places the ‘initial’ point in the middle of the solution.

This leads us to suggest that the puzzle of time asymmetry may have arisen because
dynamics has been considered in the wrong arena. At least in the case of the N -body
problem, there is a time-symmetric dynamical law in the coordinatized representation, but
in the objective description in S a seemingly time-symmetric generic solution becomes, for
all practical purposes, two time-asymmetric solutions that are independent. The fact is that
any attempt to evolve, however accurately, asymptotic N -body data back in the direction of
decreasing complexity will always lead to a more uniform state. Moreover, magnification
of computational errors will mean that the overwhelming majority of retrodictions will

15



make it seem that such a universe emerged from a very special, highly uniform state.
Returning to Penrose’s comment at the start of the paper, we see this as first tentative
evidence that an explanation for the existence of “a universe in the form we know it” could
be obtained provided we pass from the time-symmetric coordinatized representation in Q
to the dimensionless, scale-invariant and time-asymmetric representation in S. Then no
special initial condition – no past hypothesis – would be needed.

We end this part of the paper with a question: since we can only observe and measure
ratios, e.g., red shifts, why do we say the Universe is expanding? This is often illustrated by
blowing up a balloon onto which coins, taken to represent galaxies, are glued: the distances
between the coins grow relative to their diameters. We find this a misleading analogy, which
limps on two crutches (‘rigid’ coins and ‘expansion’ between them). We think the N -body
problem provides a much more illuminating dynamical picture of crutch-free ‘expansion
without expansion’: once Kepler pairs form, the distances between them (and to other
particles) increase relative to the semi-major axes, whose ratios remain unchanged. The
behaviour of the true actors – the ratios – underlies the complexity growth and ‘expansion’.
We will now show that deeper understanding of N -body dynamics is gained if we respond
to the ‘cry’ of change of scale to play a role distinct from that of shape.

2.6 The 3-body problem in shape space

We have here one aim: to express everything intrinsically on S. This is appropriate if
we treat the 3-body problem, the simplest nontrivial system, as a toy universe, for which
external non-dynamical influences are manifestly questionable. Following our aim consis-
tently, we are led ineluctably to a dissipative structure on S that exists identically in the
N -body problem and in anti-dissipative form in vacuum GR.

We first mention a scale-invariant model [18] in which VNew is replaced by a potential
homogeneous of degree −2, V = I−1/2

cm VNew. This simplest choice for dynamics on S is
geodesic and for large N reproduces Newtonian gravity to good accuracy in small subsys-
tems, but there is no secular growth of complexity, so the long-term Newtonian behaviour
is not reproduced.20 The model serves as a useful reference to characterize the Newtonian
dissipative behaviour by the deviation from a geodesic on S.

We now make the reduction to the 3-body shape space. For three particles, S is the
two-dimensional space of triangle shapes. To arrive at it, we start with the 9D space
R

9 of particle positions ra = (xa, ya, za), a = 1, 2, 3, and quotient wrt the 3D similarity
group Sim of rigid rotations, translations and rescalings. Montgomery [30] gives the details,
Appendix A.2 the phase-space reduction in our notation. The resulting space, to which
the 3-body collision (not a shape) does not belong,21 is topologically a sphere with three
piercings as shown in Fig. 4 with centre at the origin of a Cartesian space with coordinates
w = (w1, w2, w3).22 The square of the sphere’s radius is

||w||2 = w2
1 + w2

2 + w2
3 =

I2
cm

4
. (11)

20Dirac quantization of the model leads to an anomaly [25] that suggests holographic emergence of time.
21Denial of ontology to scale has consequences for the ‘Big Bang’, modelled in the 3-body problem by

triple coincidence of the particles. The only candidate to replace it in S is the equilateral triangle, the
most uniform shape.

22The w coordinates are nontrivially related to the Cartesian coordinates ra, see Appendix A.2.
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The three coordinates w permit full description of a Newtonian history, including the
changing size of the three-body triangle as measured by Icm. Quotienting wrt rescalings
w→ ϕw, ϕ > 0, is the final step to S.

To get there and exhibit the effect of the assumption E = 0, we use Jacobi’s principle,
according to which (as Lanczos [31] shows) the Newtonian orbits for each fixed value of E
and any potential V are found as geodesics in Q. The Jacobi action is

SJacobi = 2

∫
ds

√
(E − V )

∑
a

ma

2

dra
ds
· dra

ds
. (12)

This is a good first step: Newton’s extraneous time is eliminated. But there is a
problem since (12) is invariant under the reparametrization s→ s′(s). In a generic geodesic
principle, there is no obvious choice of a unique evolution parameter. Taking of one of the
coordinates involves an arbitrary choice and in general will only work over a limited interval:
generic dofs are not monotonic – such a ‘clock’ can stop and run backward.

This is where the split into scale and shape dofs is decisive [15]. There can be arbitrarily
many shape dofs, but there is always only a single scale dof. Moreover, its derivative D is
monotonic in the N -body problem if E ≥ 0. If we take it to be the independent variable,
we ‘kill two birds with one stone’. We get a monotonic ‘time’ and remove scale from among
the dofs. Shape-dynamic purity is achieved.

At this point it is best to make the Legendre transformation from Lagrangian to Hamil-
tonian dofs and introduce canonical momenta. Because SJacobi is reparametrization invari-
ant, these are homogeneous of degree zero in the velocities and satisfy the constraint
[16, 17, 8, 25, 15] 23

H =
∑
a

pa · pa

2µa
+ VNew =

1

2
I−1

cm ‖z‖2 + VNew = 0 , µa = ma

mtot
, (13)

where the momenta z = (z1, z2, z3) are conjugate to w, {wi, zj} = δij, pa = (pax, p
a
y, p

a
z) are

the Cartesian momenta and VNew(w) is the Newton potential

VNew = −
∑
a<b

(µa µb)
3
2 (µa + µb)

− 1
2√

‖w‖ − w1 cos φab − w2 sin φab
. (14)

The azimuthal angles φab on the w3 = 0 plane identify the direction of the two-body
coincidences between particles a and b. Their explicit expressions are

φ12 = π , φ23 = arctan

(
2

√
m1m2m3(m1+m2+m3)

m2(m1+m2+m3)−m1 m3

)
, (15)

φ13 = − arctan

(
2

√
m1m2m3(m1+m2+m3)

m1(m1+m2+m3)−m2 m3

)
,

which reduce to φ12 = π, φ23 = π
3
, φ13 = −π

3
in the equal-mass case.

23At this point we set E = 0. We will later show the effect on the equations in S if it is retained. The
N -body problem with E = 0 is a good toy model of vacuum GR.
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As we argued on Machian grounds, [16, 17] the Universe must have zero total linear
Ptot =

∑
a pa and angular Jtot =

∑
a ra×pa momentum. Quotienting the phase space wrt

translations and rotations we obtain Ptot = Jtot = 0 as constraints on the coordinatized
(extended) phase-space description. If now we define the ‘mean square length’ R2 = ‖w‖ =
1
2
Icm and use polar coordinates on the 2-sphere S,

w1 = R2 sin θ cosφ , w2 = R2 sin θ sinφ , w3 = R2 cos θ , (16)

the Hamiltonian constraint (13) becomes

H =
1

2

p2
θ + sin−2 θ p2

φ + 1
4
D2

R2
+

1

R
VS(θ, φ) , (17)

with VS the shape potential (9), and the dilatational momentum (1) takes the form

D = w · z + rcm ·Ptot , (18)

where the Ptot = 0 constraint kills the second term. As we noted, D is half İcm; it generates
dilatations in phase space. This is in the coordinatized representation; in S, a quantity
related to D will play the role of time.

2.7 Dissipation in particle dynamics

We now proceed to the description on S without any external element. This will give the
most illuminating explanation of the dynamics described in Sec. 2.1 (Fig. 1). As we recall,
the generic 3-body solutions have a central region of strong three-body interaction. It
corresponds to quasi-geodesic motion on S well approximated by the shape kinetic metric
(introduced later) of the scale-invariant model [18, 25] mentioned at the start of Sec. 2.6. In
the asymptotic regions, the representative point on S spirals ever deeper into the potential
wells of VS (Fig. 5). We will now show why this is inevitable. To that end, we must
eliminate the residual dimensionful variables in the Hamiltonian constraint (13).

For this, we refer to Fig. 2, which exhibits the monotonicity of D. In [15] we exploited
this to introduce a dimensionless time variable ζ. We choose some point D = D0, not at
D = 0, and define ζ = D/D0. As with D, the sign of ζ is conventional. Later, we will
introduce the time λ = log ζ. Up to the choice of its origin λ = 0 at D0, λ is uniquely
defined 24 and tends asymptotically to −∞ as D = 0 is approached. It grows without
bound to +∞ in the asymptotic region on the side of D = 0 at which D0 is chosen, which
necessarily breaks the qualitative U-shaped symmetry of Icm.

We now take the final step to explicitly time-asymmetric and dimensionless equations.
We first find the dimensions of the relevant Newtonian variables, starting with the Cartesian
coordinates (ra,p

a), whose dimensions follow directly from the constraint (13):

[ra] = ` , [pa] = `−
1
2 . (19)

24The arbitrariness in the choice of D0 maps to symmetry under shift of the origin of λ: D0 → αD0

corresponds to λ→ λ− logα.
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Figure 5: The pair-exchange process of Fig. 1 as seen from shape space S. The red and the
yellow part of the orbit are distinguished by belonging, respectively, to the (nominal) past and the
future of the point at which the dilatational momentum D is zero and the centre-of-mass moment
of inertia Icm is at its minimum. This point is shown as an ‘x’ at the back of S, where the orbit
is dashed.

In their turn, the Poisson brackets have dimension [action]−1, in our terms [{· , ·}] = `−
1
2 .25

The partially reduced coordinates w (16) are manifestly translation- and rotation-invariant
and, being quadratic in ra, they and their conjugate momenta z have dimensions

[w] = `2 , [z] = `−
3
2 . (20)

Finally, after the last phase-space splitting between dimensionless shape variables (θ, φ)
and the ‘rms length’ [R] = `, the momenta have the dimensions

[pθ] = [pφ] = [D] = `
1
2 . (21)

This last trace of ‘coordinatization’, the dimensionality of the shape momenta (pθ, pφ), will
disappear below. Mass dimensions do not occur because (on rescaling of the action by mtot

[17]) we have only the dimensionless ‘geometrical’ masses µa = ma

mtot
.

After these preliminaries, we first, as in [15], express the dynamics purely on S by using

25In (13) the Newton constant G has been absorbed into the definition of the momenta. Both in NG
and in vacuum GR, G is unphysical and absent if one attributes no dimensions to time. See [17] for a
derivation of these results from an action principle.
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ζ = D/D0 as a time label.26 We also rescale the momenta πi = pi/D0 to make them
dimensionless. The shape Hamiltonian, generating evolution wrt ζ, is

H = log

(
1

2

π2
θ + sin−2 θ π2

φ

CS(θ, φ)
+

1

8

ζ2

CS(θ, φ)

)
, (22)

where we have introduced the complexity CS = −VS ≥ 0. The equations of motion are

dθ

dζ
=

2 πθ
π2
θ + sin−2 θ π2

φ + 1
4
ζ2
,

dφ

dζ
=

2 sin−2 θ πφ
π2
θ + sin−2 θ π2

φ + 1
4
ζ2
, (23)

dπθ
dζ

=
2 sin−3 θ cos θ π2

φ

π2
θ + sin−2 θ π2

φ + 1
4
ζ2

+
∂ logCS

∂θ
,

dπφ
dζ

=
∂ logCS

∂φ
.

As we noted, CS is a simple measure of shape complexity and, remarkably, as we see
explicitly in these equations, − logCS is the potential that governs Newtonian gravity repre-
sented objectively on S. At this point we want to compare the time-dependent Hamiltonian
(22) of NG on S with the geodesic model of [18]. To this end, consider the ‘complexity’
metric, conformally related to the round metric, that assigns to a surface element d cos θ dφ
on S the measure [25] CS(θ, φ) d cos θ dφ. This metric is

gij =

(
CS 0
0 sin2 θ CS

)
. (24)

The non-reparametrization invariant action

S =
1

2

∫
ds gij

dqi
ds

dqj
ds

, (25)

whose canonical Hamiltonian (with gij the inverse metric) is

Hgeo = pi q̇i − L =
1

2
gij p

i pj =
1

2

p2
θ + sin−2 θ p2

φ

CS(θ, φ)
, (26)

generates affinely parametrized geodesics wrt the metric (24). Comparison with (22) shows
that its ζ2 term leads to deviation from geodesics on S – and, as we shall now show, to
dissipative behaviour in accordance with our formalism.

To achieve a fully dimensionless description, initially for the 3-body problem, we intro-
duce the logarithmic time λ = log ζ and make a non-canonical transformation:

λ = log ζ , ωθ =
πθ
ζ
, ωφ =

πφ
ζ
. (27)

26This ‘deparametrization’ procedure, described in detail in [15], consists of identifying the conjugate
variable to D, which is logR where R =

√
Icm, and solving the Hamiltonian constraint (13) for it. The

resulting expression for logR in terms of the other dofs (which are all shape dofs) is the Hamiltonian H
which generates D-translations.
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The equations of motion for these variables are autonomous,27

dθ

dλ
=

2ωθ
ω2
θ + sin−2 θ ω2

φ + 1
4

,
dφ

dλ
=

2 sin−2 θ ωφ
ω2
θ + sin−2 θ ω2

φ + 1
4

, (28)

dωθ
dλ

= −ωθ +
2 sin−3 θ cos θ ω2

φ

ω2
θ + sin−2 θ ω2

φ + 1
4

+
∂ logCS

∂θ
,

dωφ
dλ

= −ωφ +
∂ logCS

∂φ
.

This system is dissipative: the equations for the momenta contain the terms −ωθ and −ωφ
and therefore do not conserve phase-space volume (conserving phase-space volume is the
necessary condition for non-dissipative dynamics). The equations of motion can be thought
as being generated by the time-independent Hamiltonian

H0 = log

(
ω2
θ + sin−2 θ ω2

φ + 1
4

CS(θ, φ)

)
(29)

and the dimensionless canonical structure

{{θ, ωθ}} = 1 , {{θ, ωφ}} = 0 , {{φ, ωφ}} = 1 , {{φ, ωθ}} = 0 , (30)

but with deformed, non-Hamiltonian equations of motion:

dθ

dλ
= {{θ,H0}} ,

dφ

dλ
= {{φ,H0}} , (31)

dωθ
dλ

= {{ωθ, H0}} − ωθ ,
dωφ
dλ

= {{ωφ, H0}} − ωφ .

The dimensionless Poisson brackets, [{{ ·, · }}] = 1, are related to the dimensionful {·, ·} by

{{ ·, · }} =
1

ζ D0

{ ·, · } ≡ D−1{ ·, ·} . (32)

We now extend our treatment to the N -body problem. The 3-body model is particu-
larly suited to build intuition because one can explicitly perform the configuration space
reduction to S. This is not possible for N > 3 because quotienting by rotations, unlike
translations and scale, cannot be done explicitly. Luckily, the main interest arises from
scale quotienting, and we can work with a partially reduced configuration space, ‘pre-shape
space’ PS = R

3N/Dil×Transl. We will skip the intermediate step of obtaining the shape
momenta πa, which we derived in [15]. Instead we introduce directly the dimensionless
and dissipative description with ωa, the dimensionless shape momenta:

σa =
√
µa

rcm
a

R
, ωa =

1
√
µ
a

R

D
pacm − σa , (33)

R = I1/2
cm , D =

∑
a

rcm

a · pacm ,

rcm

a = ra −
N∑
b=1

µb rb , pacm = pa − 1

N

N∑
b=1

pb .

27For the purposes of this paper, an autonomous dynamical system is one in which the equations of
motion take the form ẋα = fα(x), where xα are the phase-space variables, and fα does not depend
explicitly on the independent variable.
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These coordinates on PS satisfy the constraints∑
a

σa · σa = 1 ,
∑
a

σa · ωa = 0 , (34)∑
a

√
µa σa = 0 ,

∑
a

√
µaωa = 0 .

The dimensionless Hamiltonian generating the dynamics on PS is

H0 = log

(
N∑
a=1

ωa · ωa + 1

)
− logCS , (35)

and the equations of motion are

σ̇a = {{σa, H0}} ,

ω̇a = {{ωa, H0}} − ωa ,
(36)

where the dimensionless Poisson brackets have the symplectic structure

{{σia, ω
j
b}} = δba δ

i
j − σia σ

j
b ,

{{ωai , ωbj}} = σia ω
b
j − σ

j
b ω

a
i ,

{{σai , σ
j
b}} = 0 .

(37)

An analogous dissipative representation exists for any shape-dynamic (particle or field-
theoretic) model of the Universe provided the conditions assumed above hold: 1) the
generator of scale transformations, here D and in GR an analogous variable (the York
time), is monotonic, allowing deparametrization wrt it; 2) the generator of dynamics,
which takes the form of a Hamiltonian constraint, can be solved for log(R), which converts
its conjugate momentum D into a time variable and yields the physical Hamiltonian.

In the introduction we noted that there is no obvious explanation (like microscopic de-
grees of freedom) for the dissipation we find in SD. We conjectured a possible connection
with the deterministic laws of black-hole thermodynamics found in the late 1960s. What-
ever the truth, we mention here that there exists a ‘metriplectic’ formalism which makes
it possible to introduce a formal entropy in cases when one has dissipative equations. We
describe this formalism and apply it to shape-dynamic gravity in Appendix A.4.

2.8 Shape-dynamic explanation of 3- and N-body behaviour

Much of the long-known generic 3-body hyperbolic–elliptic behaviour when E = 0 (Sec. 2.1
and Fig. 1) can be directly ‘read off’ the plot of VS in Fig. 4 knowing that the system is
dissipative. Equations (28) describe a particle moving in S under the influence of the
potential VS but subject to friction; the solutions have a transparent intuitive explanation.
Locally the orbits are well approximated by geodesic motion wrt the metric (24), but in
the long run the momenta get depleted by friction, and the orbits are drawn inescapably
ever deeper into the potential wells.
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The dissipative picture on S provides an even more powerful intuition for the remaining
measure-zero solutions (Sec. 2.5). These end either with a central collision or escape of
all three particles (no Kepler pair formed) and always tend asymptotically to homothetic
motion (the shape freezes); the final shape can only be a central configuration. From the
Newtonian coordinatized point of view, this behaviour is not obvious, but on S it is. The
central configurations are the stationary points of VS, so the system can only end up not
changing its shape if the derivatives of VS vanish: at points where ∇VS = 0. Because of
the dissipation, there will be orbits that reach these stationary points with exactly zero
velocity (wrt the logarithmic time λ). But all the stationary points of VS are unstable
equilibria: the Euler configurations are saddles, the equilateral triangle a maximum. That
these are measure-zero solutions is therefore also readily explained: the initial conditions
must be doubly fine-tuned, to reach a stationary point and to arrive with zero velocity.

The difference between the solutions with E = 0 and E 6= 0 is particularly interesting.
As we show in Appendix A.3, the effect of E > 0 on shape space S is to add a time-
dependent effective potential to VS. This flattens the total potential and allows the solution
curve in S to asymptote as λ → ∞ to points away from central configurations. Any
scalene end shape of the triangle is possible. This shows that, in contrast to the case
E 6= 0, the topography defined on S by VS completely determines the E = 0 solutions:
they can asymptote only to its singularities (potential wells) or stationary points. There
is a complete explanation for what happens in any E = 0 solution, but not in the E 6= 0
case, which violates the principle of sufficient reason.28

This is also true for the E = 0 solutions of the N -body problem for all N ≥ 3 and
has a bearing on the ‘is-the-Universe-expanding’ question raised at the end of Sec. 2.5. As
judged by the simplicity criterion of the amount of initial data needed to determine the
evolution (a point and, respectively, direction or velocity), the two simplest theories on S
are the geodesic theory with Hamiltonian (26) and Newtonian theory with E = Jtot = 0.
The latter is not quite ‘pure shape’ in having an independent variable, but it is in giving all
shapes independently specifiable velocities. In fact, as we have seen, the resulting dynamics
‘clings’ to S more perfectly than the geodesic dynamics, which allows the representative
point in S to ‘roam’ more or less freely. We obtain a closed description of the Universe on
S without any external notion of scale or expansion. We next make some comments on
their intrinsic emergence.

2.9 On structure emergence

We have illustrated above a description of the dynamics in intrinsic terms, as a law generat-
ing curves on S, without any external ‘props’ (scale, location, orientation). This description
contains all the physical information that is contained in the Newtonian ‘coordinatized’ de-
scription. The extra props needed for the standard Newtonian description can actually be
constructed from pure shape data as shown in [16, 17]. A notion of scale can be generated
starting from the dynamical curve on S by inverting the process that brought us from the
ra, pa variables to the dimensionless ones, σa, ω

a, which essentially consists in solving the

28Einstein [32] made powerful use of this principle to argue against a dynamical role of absolute space
in his famous example of two fluid bodies in relative rotation. No genuine cause could be given why one
should be spherical, the other an ellipsoid of revolution.
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Hamiltonian constraint for Icm. Newtonian time can be abstracted from a measure of the
change that the physical dofs undergo along the dynamical curve, called ephemeris time.
Similarly one can abstract a notion of equilocality29 and inertial frames of reference from
the physical data. This is obtained through the mechanism of best-matching, in which a
preferred orientation and location of the center of mass of the Universe is identified at each
instant through a minimization process.

The result of this process is the definition of an invisible, purely mathematical frame-
work, consisting of an inertial frame, in which the whole Universe has vanishing total
momentum and angular momentum, evolving in a time parametrization which conserves
the total energy, and Newton’s laws hold. This will be true at any epoch in a given solution.
The Machian conditions lead to what may be called metrogenesis (an emergent notion of
scale) and chronogenesis (an emergent notion of duration).

However, away from the two asymptotic regions there will not be any clearly defined
systems in which this structure created by the Machian law of the Universe is manifest.
We have to ‘await’ the asymptotic emergence of Kepler pairs and other bound systmes for
that to be clearly revealed. Following Aristotle, let us call this process hylogenesis (ὕλη
(hyle) means ‘stuff’, and to the extent that bound systems are stable they warrant such a
designation).

2.10 Remarks on time

Ellis and Gibbons [26] criticize our identification of dissipation in gravity as “an artefact of
an unphysical choice of the time parameter”, noting that one could obtain anti-dissipation
by a mere change of sign of our parameter λ and that “standard physics ... results only
if one restricts oneself to affine transformations of the standard time function t”. But
this confuses physics in the laboratory with the physics of the whole Universe, for which
different criteria apply. Correctly interpreted in Machian terms, it is the Universe that, as
we have just shown, creates local inertial frames, rods and clocks and with them ‘standard
physics’.

When we work in shape space, as opposed to the emergent inertial frames just described,
we are led to replace t by ζ by first principles: all external structures and dimensionful
quantities are to be eliminated. To arrive at λ, we then require the Hamiltonian to be
autonomous and time to increase with complexity. These are ‘gauge choices’ but autonomy
is the closest one can get to ‘standard physics’ and distinguishes the choice λ = log ζ. And
a ‘mere’ reversal of its direction would make the Universe become less complex with time.
Moreover, as we noted at the end of Sec. 1.2, the real reason why dissipation appears is
that in S only shape kinetic energy is physical. We have used the Newtonian dilatational
momentum to define our evolution parameter λ. This removes the corresponding kinetic
energy from the Hamiltonian and explains why our equations are dissipative.

The evolution parameter must be dimensionless in order to define the velocity of the
representative point in the dimensionless S. Any such variable, based ultimately on the
monotonicity of D, cannot ‘march in step’ with Newtonian time, though it can on average
in the asymptotic regimes and with better accuracy as N increases. We find it particularly

29‘Equilocality’ means the ability to say a given point is at the same place at different times.
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interesting that when a Kepler pair forms asymptotically it becomes a naturally created
system that serves simultaneously as a rod (through its semi-major axis) and clock rela-
tive to which the escaping particle is found to be moving inertially with ever increasing
accuracy.30 Thus, there are two times in the theory: one dimensionless and fundamental,
the other emergent. They only march in step in the asymptotic limit.

That the dimensionless time is fundamental is underlined by an analogy with standard
Newtonian dynamics. In its variational formulation, one determines a solution by specifying
two configurations and the difference t2−t1 between the times at them. In shape space, one
specifies, as the absolutely minimal data, two shapes 1 and 2 and the ratio D2/D1 of the
dilatational momenta at them.31 Being dimensionful, Newtonian time cannot be specified
in S. Since D2/D1 determines the objective behaviour, it is fundamental. Newtonian time
is emergent in the behaviour of subsystems.

3 Time Asymmetry in Dynamical Geometry

In this section we will show that closed-space Einstein vacuum gravity exhibits several key
similarities to the features of Newtonian gravity discussed in Sec. 2. First and foremost, it
has both dynamical similarity and a monotonic time variable. In vacuum gravity, there is
also, although not so unambiguously identifiable as in Newtonian gravity, a candidate for
a measure of complexity; we believe it can be generalized to include matter.

There is however a feature of Einstein gravity that cannot be ignored: in its coordina-
tized (spacetime) description the expansion-of-space kinetic energy has the opposite sign
to the change-of-shape kinetic energy. This is a unique feature of GR and arises directly
from the form of the Einstein–Hilbert action. Although we regard the size (volume) of the
Universe as a gauge variable, this structural feature of the spacetime description appears
prominently in the shape-space description: whereas Newtonian gravity is dissipative in
the direction of increasing complexity in shape space, vacuum Einstein gravity is anti-
dissipative. This does not take into account matter. The inclusion of matter is subtle:
gravitational waves experience anti-dissipation, while matter degrees of freedom experi-
ence dissipation, as we already saw in the Newtonian limit. We thus still expect the arrow
of time to agree with the direction of complexity growth in the matter sector.

3.1 Shape space for dynamical geometry

For readers unfamiliar with the Hamiltonian formulation of vacuum GR due to Dirac
and Arnowitt, Deser and Misner (ADM) [34, 35], we begin with a brief review of this
important work. Einstein introduced spacetime as a block with four-dimensional metric
gµν satisfying the field equations Gµν = (4)Rµν − 1

2
(4)Rgµν = 0.32 These apparently frozen

30In this connection, Einstein admitted to a ‘sin’ in his Autobiographical Notes [33]: rods and clocks
appear as independent external elements in GR and not as structures created through the equations of the
theory. The spontaneous formation of Kepler pairs, seen clearly in the time-asymmetric behaviour in S,
appears to be a first step to a satisfactory completion of Einstein’s theory. We return to this in Sec. 3.4.

31Note that D2

D1
= eλ2−λ1 , which underlines the analogy and exhibits translational invariance wrt λ.

32Here, Gµν is the Einstein tensor, (4)Rµν is the 4D Ricci tensor, and (4)R is the 4D Ricci scalar (while
here and henceforth R denotes the 3D Ricci scalar curvature).

25



equations are hyperbolic, and for dynamical purposes GR is better treated as the evolution
of three-dimensional Riemannian metrics gab (3-metrics). In the ADM formalism, these
are regarded as canonical coordinates and have canonical momenta pab. In terms of them,
Einstein’s G00 = 0 and G0a = 0 equations become the ADM constraints

1√
g
(pab p

ab − 1
2
p2)−√g R = 0 , (38)

∇bp
ab = 0 , (39)

where p = gabp
ab, g = det gab and ∇ denotes covariant differentiation using the Levi-Civita

connection of gab. The quadratic, or Hamiltonian, constraint (38) is analogous to the one
that arises from Jacobi’s principle when E = 0, but crucially there is one such constraint
at each space point (with consequences we come to in a moment). This is also true of
the linear momentum constraint (39), which, like the conditions Ptot = Jtot = 0 in particle
dynamics, can be derived as (Machian) constraints [8].

The ADM system is fully constrained with total Hamiltonian

H =

∫
Σ

d3x
{
N
(

1√
g
(pab p

ab − 1
2
p2)−√g R

)
− 2Na∇bp

ab
}

(40)

with multipliers N (the lapse) and Na (shift) that are arbitrary functions of the label time
and position. Variation wrt them enforces the constraints (38)–(39), but N and Na are
themselves freely specifiable in advance. If one has initial data that satisfy (38)–(39), the
evolution in accordance with (40) preserves them. The hard task, to which we shall come,
is finding data that do satisfy (38)–(39).

A spacetimeM is built up as follows. The 3-manifold on which gab and pab are defined
becomes a spacelike hypersurface embedded in M. The momentum pab is related to the
extrinsic curvature Kab of the hypersurface by pab =

√
g (K gab−Kab). The 4-dimensional

line element is related to gab, the lapse N and the shift Na by

ds2 = gµν dxµ dxν = (−N2 + gabN
aN b) (dx0)2 + 2Na dxa dx0 + gab dxa dxb . (41)

Specification of the shift Na as a function of the label time and position determines how
the coordinates will be laid out on the successive spacelike hypersurfaces ofM as they are
created by the dynamics. The critical issue is the role of the lapse N , which determines a
foliation ofM. Choosing lapses with different dependences on the label time and position,
one creates the same M but with different foliations on it.

Before we proceed, we introduce the three geometrodynamic spaces that correspond to
the Cartesian Q, the relational configuration space QR (the quotient of Q wrt translations
and rotations), and shape space S.

Let Σ be a 3D manifold (with manifold at this stage we mean a topological manifold,
without any metric structures on it) that is compact (closed) without boundary. For
simplicity,33 we take this to be S3. The space of all Riemannian 3-metrics defined on Σ is
Riem(Σ). This matches Q. The quotient of Riem(Σ) wrt 3D diffeomorphisms is superspace

33One may also argue against topologically more complicated compact manifolds, constructed by iden-
tifications, on the grounds that they “do not appear to be natural”, as Wald comments [41], p. 95.
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Sup(Σ),34 each point of which is a 3-geometry. This matches QR. The final step is to
quotient wrt 3D conformal transformations defined as follows:35

gij → φ4gij, φ > 0, (42)

where φ is a smooth function of position. The resulting space, the quotient of Riem wrt
3D diffeomorphisms and (42), is conformal superspace CS(Σ). It is analogous to S. Each
point of CS(Σ) is a conformal three-geometry, represented as a joint diffeomorphism and
conformal equivalence class of 3-metrics.

The passage to conformal 3-geometries changes the ontology of gravity. The determi-
nant g = det gab of a 3-metric is generally regarded as a physical dof: the local scale of the
3-geometry. The two remaining dofs define the conformal geometry and determine angles
between intersecting curves in the manifold. In SD, the dimensionful g is a gauge dof; only
the two angle-determining dofs are physical.36

We note here an important difference between dilatations and 3D conformal transforma-
tions. The former merely change a single global scale, while the latter do two things. The
1D subgroup φ = const contains transformations that are like the dilatations and change
the local scales (det g) by a common factor and thus change the volume V =

∫
Σ

d3x
√
g

without altering the relative distribution of scale. The infinitely many remaining transfor-
mations have no particle counterpart and redistribute the local scales freely while leaving
V unchanged. These are volume-preserving conformal transformations (VPCTs) [11].

It is now time to describe Shape Dynamics proper. SD provides a dual representation of
GR by replacing37 almost all of the ADM-Hamiltonian constraints (38) with the following
linear constraint:

p
√
g

= 〈p〉 = V −1

∫
Σ

d3x p = 3
2
τ = const. (43)

This constraint generates VPCTs [12]. In fact p = gab p
ab generates full conformal trans-

formations, but removing its average p − 〈p〉√g deprives the constraint of its ability to
change the global volume. Besides this simple geometrical interpretation, (43) has also an
interpretation in spacetime terms: it foliates M with spacelike hypersurfaces of spatially
constant mean extrinsic curvature K = const (called CMC surfaces). The CMC constraint
(43) replaces almost all of (38) precisely because of its volume-preserving property: one
single global linear combination of the Hamiltonian constraints (38), which we will call
Hglobal = 0, is kept among the constraints. Now, the meaning of Hglobal = 0 is perfectly

34No relation to supersymmetry: the term ‘superspace’ has been coined by Wheeler [36].
35 The fourth power of φ in (42) is chosen for mathematical convenience to make the transformation of

the 3D scalar curvature R = gabR
ab take the simplest form, which is R→ φ−4R− 8φ−5∇2φ.

36By virtue of the ADM constraints (38)–(39), there was never any doubt that gravity has only two
physical degrees of freedom, but the relativity of simultaneity (refoliation invariance) made it impossible
to identify them among the three dofs in a 3-geometry. In SD the physical degrees of freedom are identified
and have a simple geometric characterization as the angle-determining part of the metric.

37For readers familiar with gauge theory, by ‘replacing’ we mean the following: first a gauge-fixing which
leads to ADM gravity in CMC gauge. This is followed by the observation that the gauge-fixed system can
be obtained as a gauge-fixing of a different theory which has Weyl (conformal) gauge symmetries. The
precise meaning of ‘replacing’ is to be found in the more advanced concept of ‘symmetry trading’ [12] or,
in a BRST setting, ‘symmetry doubling’ [37].
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analogous to that of the Hamiltonian constraint (13) of the N -body problem: it generates
reparametrizations of the time label.

Through its preferred foliation, SD restores simultaneity and with it history to the
Universe: the solutions of SD are arbitrarily parametrized curves in the reduced configu-
ration space CS(Σ) ×R+. Adoption of the VPCT gauge group makes all the local scales
into gauge dofs, while the volume V , the R+ part of the configuration sapce, can initially
be retained as a physical dof just like the moment of inertia in the particle model. The
momentum conjugate to V is the so-called York time τ = 2

3
〈p〉.

The pair of variables V , τ is closely analogous to the Icm, D pair in the particle model.
In particular the York time is monotonic whenever the spacetime is CMC foliable, as we
prove in Appendix A.4. Moreover, due to dynamical similarity [15], V and τ form only
a single Hamiltonian dof, i.e., half a Lagrangian dof, just like Icm and D in the N -body
problem . Thus, as there we can deparametrize wrt the York time τ [15], transforming the
volume V into a physical Hamiltonian and τ into a monotonic time variable. The reduced
configuration space is then CS(Σ). In this respect, the parallel with the particle model is
essentially perfect. What makes conformal geometrodynamics so much more interesting is
the added richness that the local scales introduce. We now turn to the details.

3.2 Shape Dynamics in conformal superspace

In exact analogy with the particle model, we seek to formulate a theory in CS(Σ) in which
an initial shape, i.e., a conformal 3-geometry, and a shape velocity uniquely determine the
evolution. For the moment, we restrict ourselves to the matter free case. The theory is
encoded in the two constraints

∇bp
ab = 0 , p = 0 (44)

together with the analogue of (22), the Shape Dynamics Hamiltonian, which generates
evolution with respect to τ . It is defined in [14], used in [15] and is

HSD[gab, π
cd, τ ] =

∫
Σ

d3x
√
g φ6[gab, π

cd, τ ;x) , (45)

where φ6[hab, π
cd, τ ;x) is the (unique) positive solution to the Lichnerowicz–York (LY)

equation:

φ−12

g
gac gbd (pab − 1

3
p gab)(pcd − 1

3
p gcd)− φ−4(R− 8φ−1∇2φ)− 3

8
τ 2 = 0 . (46)

The Hamiltonian (45) is invariant under infinitesimal diffeomorphisms, which act on the
metric and the momenta as δgab = ∇aξb +∇bξa, δp

cd = ∇c(ξ
cpab)−∇cξ

apcb −∇cξ
bpac

φ[gab + δgab, p
cd + δpcd, τ ;x) = φ[gab, p

cd, τ ;x) + ξc∇cφ[gab, p
cd, τ ;x)

⇓
HSD[gab + δgab, p

cd + δpcd, τ ] = HSD[gab, p
cd, τ ] ,

(47)
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and therefore commutes with the constraint ∇bp
ab. Moreover, it is invariant under confor-

mal transformations gab → ω4gab, p
cd → ω−4pab:

φ[ω4gab, ω
−4pab, τ ;x) = ω−1 φ[gab, p

cd, τ ;x)

⇓
HSD[ω4gab, ω

−4pab, τ ] = HSD[gab, p
cd, τ ] ,

(48)

and therefore commutes with the conformal constraint gabp
ab. We have a conformally- and

diffeo-invariant Hamiltonian generating evolution with respect to the York time τ . If we
choose initial data satisfying the constraints (44), then HSD will evolve them in a way that
preserves the constraints. HSD generates a curve in conformal superspace CS(Σ).

A note on dimensional analysis: we follow Dicke’s convention [38], in which the 3-
metric has dimensions of an area [gab] = `2, while the coordinates (and, accordingly, space
derivatives) are dimensionless labels for points. The momenta are dimensionless, [pab] =
1, and the York time is [τ ] = `−1. So the phase-space variables are dimensionful, and
the Hamiltonian (45) is time-dependent. As in the particle model, we can rectify these
two defects simultaneously by changing variables to the dimensionless unimodular metric
[hab] = 1, with inverse hab, and traceless momenta [ωab] = 1 rescaled by the York time,

hab = g−1/3 gab , hab = g1/3 gab , ωab = τ 2 g1/3(pab − 1
3
p gab) . (49)

In terms of those variables, the Lichnerowicz–York equation reads

Θ−12 hac hbd ω
ab ωcd −Θ−4(R− 8 Θ−1∇2

hΘ)− 3
8

= 0 , (50)

where now Θ = τ 1/2 φ g1/12 is a density of weight 1/6 (so Θ6 is a scalar density which can
be used as integration measure), ∇a

h is the covariant derivative associated to hab and Θ is
related to the SD Hamiltonian by

HSD[hab, ω
cd, τ ] = τ−3H0[hab, ω

cd] = τ−3

∫
Σ

d3xΘ6[hab, ω
cd;x) , (51)

We have thus introduced the dimensionless SD Hamiltonian H0 = H0[hab, ω
cd], which does

not depend on the York time. Everything can now be described intrinsically in CS(Σ).
The introduction of the dimensionless Poisson brackets

{{ ·, · }} =
1

τ 2
{ ·, · } (52)

makes the equations of motion autonomous and dissipative if expressed in terms of the
logarithm of the York time λ = log τ/τ0,

dhab
dλ

= {{H0, hab}} ,
dωab

dλ
= 2ωab + {{H0, ω

ab}} . (53)

W have obtained a theory that, given a point in CS(Σ) and a tangent vector to it, generates
a curve in CS(Σ). But now, from this curve, we can reconstruct a spacetime.
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3.3 Spacetime construction

We have shown above how to generate a curve on CS(Σ), parametrized by the dimensionless
label λ, starting from purely dimensionless shape degrees of freedom, namely a unimodular
metric hab and a dimensionless TT-tensor density ωab. These data are sufficient to construct
a whole spacetime. In fact the solution Θ of the dimensionless version (50) of the LY
equation produces a local notion of size from the dimensionless conformally-invariant data
hab, ω

ab. To give everything its dimensions, we introduce a λ-dependent spatial constant
τ = τ0 e

λ with dimensions of length−1 and define the dimensionful 3-metric38

Gab = τ−2 Θ4hab , Gab = τ 2 Θ−4hab ,
√
G = τ−3 Θ6 , (54)

the (still dimensionless) constant-trace momentum

Πab = Θ−4ωab + 1
2

Θ2 hab , Π = Gab Πab = 3
2
τ
√
G , (55)

and the constant-trace extrinsic curvature Kab = 1√
G

(1
2

ΠGab − Πab),

Kab = 1
4
τ 3 Θ−4 hab −Θ−10 τ 3 ωab , K = GabK

ab = 1
2
τ . (56)

These derived quantities automatically solve the first Gauss–Codazzi equation,

GacGbdK
abKcd − 1

2
K2 −R[G;x) = 0 . (57)

The transversality of ωab wrt hab translates into transversality of Kab −KGab wrt Gab,

∇G
b (Kab −KGab) = 0 , (58)

which is the second Gauss–Codazzi equation. These two equations guarantee that the
3-metric gab and the extrinsic curvature can be embedded as initial data on a spacelike
hypersurface of constant mean extrinsic curvature (CMC) in a 4-dimensional Lorentzian
metric whose 4D Einstein tensor is zero (or determined by the matter terms if present).

We obtain the 4D metric by solving two other equations, the lapse-fixing equation:

∇2
GN −

(
R[G;x) + 9

16
τ 2
)
N −

∫
Σ d3x

√
G
(
∇2

GN−
(
R[G;x)+

9
16

τ2
)
N
)

∫
Σ d3x

√
G

= 0 , (59)

and the equation for the shift Na, found by York to solve the diffeo constraint [39, 17]:

∇G
b

(
∇a
GN

b +∇b
GN

a − 2
3
gab∇G

c N
c
)

= ∇G
b

(
Kab − 1

3
K gab

)
. (60)

These two equations can be used only after the LY equation has been solved for Θ to obtain
Gab from hab. Like the LY equation, the two equations above have a unique solution N
and Na (the latter modulo conformal Killing vectors of Gab, but this is unimportant here).

Thus, starting only from hab and ωab, and having deduced Θ[hab, σ
ab;x), N [hab, σ

ab,Θ;x)
and Na[hab, σ

ab;x), we can build the 4-dimensional (dimensionful) spacetime metric

gµν =

(
−N2 +GabN

aN b Na

Nb Gab

)
=

(
−N2 + τ−2 Θ4habN

aN b Na

Nb τ−2 Θ4hab

)
, (61)

38Here Gab is not to be confused with the Einstein tensor.
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which is defined in a open neighbourhood of the initial Cauchy hypersurface. In fact, using
the full set of Einstein equations, one can always generate a ‘slab’ of spacetime in CMC
foliation once the conformal data hab and ωab have been produced. We are not in a position
to say how far such data can be evolved since that depends on difficult issues of long-term
evolution, but for the purposes of this paper we shall make the ‘physicist’s assumption’
that such evolution is possible.

We conclude this part of the discussion by noting that the above ‘construction of space-
time’ is by no means an essential part of SD, which at the fundamental ontological level
is solely concerned with the evolution curve in CS(Σ). Spacetime is emergent, as are rods
and clocks, which we now consider. We will return to the status of spacetime in Sec. 4.2

3.4 The emergence of rods and clocks

In Sec. (2), we saw Machian constraints and dynamics create a (Newtonian) spacetime,
in which lengths and times are always defined, but how only in the asymptotic regime is
there emergence of well-defined Kepler pairs that physically realize the lengths and times.
In the light of the above equations, we now consider the situation in dynamical geometry.
This will highlight the way in which local lengths and times emerge.

We start with conformal 3-geometries and 3D matter fields defined in them. In this
ontology, there is no notion of distance, time or equilocality. Among the normally accepted
attributes of spacetime geometry, only spatial angles are present. What we find remarkable
and just showed is this: given a shape and shape velocity (or momentum), the hidden
conformal law in Einstein’s equations creates all the additional spacetime attributes: local
proper time, local proper distance and equilocality39 all have their origin in law. There is
no need to presuppose spacetime ontology. We can rely on conformal dynamics to create a
structure in which length and duration (proper time) are ‘there’ to be measured. But we
do not yet have rods and clocks to measure the distances and times.

In footnote (30), we commented on Einstein’s ‘sin’ in not creating a proper theory of
rods and clocks. It is worth citing the passage [33]:

It is striking that the theory (except for four-dimensional space) introduces two
kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things,
e.g., the electromagnetic field, material point, etc. This, in a certain sense,
is inconsistent; strictly speaking measuring rods and clocks would have to be
represented as solutions of the basic equations... not, as it were, as theoretically
self-sufficient entities.

Probably because he was convinced quantum mechanics should play a central role,
Einstein never attempted to rectify the ‘sin’ and develop a proper theory of rods and
clocks. However, at the non-quantum level our N -body model does precisely this: the

39In the context of conformal dynamics, this means a given point in one conformal 3-geometry can be
said to be at the same position as a uniquely defined point in another conformal 3-geometry. For once
the 4D spacetime has been constructed, equilocal points are determined by the spacetime normals to the
CMC spacelike hypersurfaces.
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generic orbit, far from the D = 0 point, spontaneously forms measuring rods and clocks
in the way we described earlier. We now want to consider what we can say about the
situation in GR.

First, all metrology relies on the degrees of freedom provided by matter. Gravitational
dofs are not suited to ‘make’ rods and clocks, as we shall see below. Therefore, the theory
that Einstein did not supply will certainly need to include matter fields and seek solutions in
which the requisite objects emerge as they do in the N -body problem. This is the crucial
process, about which we can unfortunately say little at present because of the intricate
manner in which matter fields interact with geometry. However, the Universe does seem
to be very well described by GR and we do know that natural rods and clocks, for example
the Earth, which has a diameter and a rotation period, have been created. Thus, it seems
that a solution at the classical level is in principle possible.

To some extent it does already exist, namely one knows how stable objects, once formed,
will interact with 4D gravity. Assume we have a solution of the equations of motion hab(λ)
in CS, with the inclusion of matter. This describes the real physics, from which, in the
manner described above, we can construct a complete spacetime. If a ‘test rod–clock’
system like a Kepler pair does form and is sufficiently light that its backreaction on the
geometry can be ignored, one can show that it moves along the geodesics of the 4D metric
gµν shown in (61), and the proper time

ds2 = (−N2 + τ−2 Θ4 habN
aN b) (dx0)2 + 2Na dxa dx0 + τ−2 Θ4 hab dxa dxb , (62)

turns out to be the time it ticks along its worldline. A collection of such test systems will
also keep mutual congruence in the way the Kepler pairs do in the N -body problem. In fact,
because gravity is so vastly weaker than the other forces, relatively massive subsystems
of the Universe (planets, stars, galaxies, and even cluster of galaxies) will exert only a
small backreaction on the underlying conformal geometry and conspire to form a mutually
consistent picture of a background spacetime in which these systems exist.

This picture of the reaction of test objects to a pre-existing spacetime is non-trivial and
was, of course, known to relativists, including Einstein, from the 1920s. The new element
in the above account, implicit but not explicit in York’s work, is the demonstration of the
emergence of spacetime itself from conformal data alone. Two things remain to be done
to complete the theory of rods and clocks: 1) At the classical level, show how test rods
and clocks emerge as solutions of the full conformal equations with matter terms included.
This will parallel the classical emergence of Kepler pairs in the N -body problem. 2) Create
a truly modern theory of metrology based on quantum mechanics. The gap that needs to
be filled is the lack of rods and clocks with identical lengths and periods, respectively. In
the N -body problem, we obtain rods and clocks that remain mutually concordant but do
not have a common length or period. Only quantum mechanics applied to systems with
quantized charges can do that. Modern metrology relies on the caesium clock and the
selection of a transition with fixed frequency that can be reproduced everywhere and at
all epochs. Thus, the final step to a satisfactory theory of rods and clocks, together with
the creation of information that can be read by them, awaits the unification of quantum
mechanics with the conformal dynamics of geometry and matter fields. We make a tentative
– and very speculative – first step in that direction in Sec. 4.1.
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3.5 The Mixmaster model

We here explore the similarities and differences of the particle model and the shape-
dynamics description of gravity in the simplest non-trivial model that can be worked out
in detail: the vacuum Bianchi IX model, also known as the mixmaster Universe [40]. Being
spatially homogeneous, it allows us to perform all steps of our construction analytically,
and to build the shape-dynamic description in analogy with the N -body problem for E = 0.

The model describes the evolution of diagonal homogeneous metrics on S3. Using
coordinates (0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ χ ≤ 4π), we can parametrize the homogeneous
metrics on S3 as

ds2 =
(
α cos2 χ+ β sin2 χ

)
dθ2 + γ cos θ dφ dχ

+
[
(α sin2 χ+ β cos2 χ) sin2 θ + γ cos2 θ

]
dφ2

+γ dχ2 + 2(α− β) cosχ sinχ sin θ dθ dφ .

(63)

where α, β and γ parametrize the three components of the metric. The total volume of the
Cauchy surface S3 is V = 16π2 v = 16 π2

√
αβγ, so it is useful to split the metric degrees

of freedom into v and the shape degrees of freedom40

x =
1

2
logαβ , y =

√
12 log

α

β
, (64)

and denote the momenta conjugate to x, y by πx, πy
41 and the momentum conjugate to v

by τ . This allows us to write the Hamilton constraint as

H =
1

2

(
π2
x + π2

y −
9

4
τ 2 v2

)
+ 12 v4/3 VS ≈ 0, (65)

(notice the minus sign in front of the dilatational kinetic energy 9
4
τ 2 v2), where the shape

potential VS depends only on x and y,

VS =
1

2

[
e−4x − 4 e−x cosh(

√
3 y) + 2 e2x

(
cosh(

√
12 y)− 1

)]
. (66)

The shape potential is a multiple of the three-dimensional Yamabe invariant,42

Y = inf
φ

{∫
d3x
√
g (φ2R− 8φ∇2φ)∫
d3x
√
g φ6

}
, (67)

which, at least in this model, provides a natural candidate for a measure of shape com-
plexity in geometrodynamics. The potential (66) is plotted in Fig. 6.

We prove now that York time τ is monotonic. Its derivative wrt parameter time43

τ̇ = {τ,H} =
9

4
τ 2v − 16 v

1
3 VS , (68)

40They determine the extent to which space has a ‘cigar’ or ‘pancake’ shape.
41Notice that these momenta are not pab, the ones conjugate to the metric, which are dimensionless. πi

correspond to the quantities g1/3(pab − 1
3p g

ab) which are conjugate to the unimodular part of the metric

hab = g−1/3gab.
42We shall discuss its interesting properties below.
43With ‘parameter time’ we mean the foliation label obtained by choosing a constant unit lapse.
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Figure 6: Bianchi IX shape potential in the x, y-plane. The thick white line delimits the region
where the potential becomes negative. The circle at the centre surrounds the point x = y = 0.

can be shown to be positive by using the Hamiltonian constraint (65):

τ̇ =
3

4
τ 2v +

2

3
v−1

(
π2
x + π2

y

)
≥ 0 . (69)

Now comes the important difference between Bianchi IX and the 3-body problem, which
carries forward to full GR and the N -body problem: the derivative of v is

v̇ = {v,H} = −9

4
τ v2 =⇒ ˙(v−1) = − v̇

v2
=

9

4
τ , (70)

so it is v−1 that is concave upwards, and not v, as the parallel with the N -body problem
would suggest. This obviously means that v is concave downwards. The reason for this
difference, which we discuss in more detail below, is ultimately traced back to the negative
sign of the dilatational kinetic energy in the Hamiltonian constraint (65) (which in turn
derives from the form of the Einstein–Hilbert action). The corresponding term in the
N -body Hamiltonian constraint has the opposite (positive) sign.

Now recall the dimensional analysis shown in Sec. 3.2: the 3D metric has dimensions
of an area [gab] = `2. Then the volume obviously has dimensions [v] = `3, and the shape
momenta and York time, as can be read off Eq. (65), have

[πx] = [πy] = `2 , [τ ] = `−1 . (71)

The shape potential is of course dimensionless.
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As in the particle model, we can now pass to an autonomous Hamiltonian with, however,
anti-dissipation. The SD Hamiltonian HSD is the conformal York Hamiltonian, which is
the positive root of (65) if considered as an equation for v. It generates evolution in York
time τ , which we treat as our time variable from now on. Using the dimensionless quantity
z := τ 2 v2/3, we obtain HSD = τ−3 z

3/2
+ , where z+ is the positive root of

z3 − u z2 − k = 0 , u = 32
3
VS , k = 8

9
τ 4(π2

x + π2
x) . (72)

The discriminant of Eq. (72) is

∆ = −k
(
27 k + 4u3

)
= −k δ , (73)

and u is bounded from below by u ≥ −16. Therefore, whenever u ≥ 0 or u is negative but
27 k > −4u3 we have a unique real and positive root,

HSD =
1

3τ 3

[
u+

(
1− 1

2
δ u3 + 3

√
3

2

√
δ
) 1

3
+
(

1− 1
2
δ u3 + 3

√
3

2

√
δ
)− 1

3

]
. (74)

If u is negative and 27 k ≤ −4u3 we have three real roots, but two of them are negative,
and the positive one has still the form (74).

Dimensional analysis shows that equation (72) still holds after the simultaneous rescal-
ings z → λ2 x, u→ λ2 u, k → λ6 k. This implies that the non-canonical transformation

ωx := τ 2 πx , ωy := τ 2 πy , (75)

allows us to express the Hamiltonian in time-independent form as

HSD(x, y, πx, πy; τ) = τ−3HSD(x, y, τ 2 πx, τ
2 πy; 1)

=: τ−3H0(x, y, ωx, ωy) .
(76)

Using H0, the dimensionless Poisson-bracket {{f, g}} := τ−2{f, g} and the logarithmic time
λ := ln(τ/τ0), we find the non-canonical equations of motion

d
dλ
f(x, y) = {{f(x, y), H0}} ,

dωi

dλ
= {{ωi, H0}}+ 2ωi .

(77)

Study of the solutions of these equations shows that the behaviour of Bianchi IX (and
full GR) differs in important ways from Newtonian gravity. First, the potential (Fig. 6) is
very different from VS (Fig. 4). It has a single minimum at the most homogeneous shape
x = y = 0 (the round metric on the 3-sphere) and diverges at infinity in all directions,
apart from the three symmetry axes with polar angles 0, 2π/3 and 4π/3 (in the x, y-
plane). It has triangular symmetry and is negative inside the thick white line. The ‘walls’
around the centre are extremely steep, as can be seen in the section at y = 0, where
VS(x, 0) = 1

2
(e−4x − 4 e−x). It grows as e4 |x| for negative x and shrinks as −e−|x| for

positive x. The walls around the central region all grow exponentially, apart from three
‘gorges’ along the three symmetry axes, which tend to zero exponentially. As a dynamical
system on shape space, this is like a particle in a triangular funnel with three thin inlets
whose bottoms remain at zero elevation.
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(a)

τ

CS

v

(b)

Figure 7:
(a) Plot of the trajectory in shape space (the x,y-plane) of a typical Bianchi IX orbit. Near
the τ = 0 point the motion remains close to the minimum of the potential and within the three
‘gorges’. Far from τ = 0, when the momenta grow at an exponential rate, the motion is mostly on
straight lines (because the momenta are so large that they are not affected by the potential walls),
with sudden ‘bounces’ when the representative point climbs far enough up the potential walls.
(b) Plot of the dilatational momentum τ (in blue), which grows monotonically, together with the
spatial volume v (in red), which is ‘pyramid-shaped’, and the ‘complexity function’ CS (in black),
which grows (on average) away from the point τ = 0.

The behaviour in parameter time is anti-dissipative: the term +2ωi in Eq. (77) has the
opposite sign wrt the analogous term −ωi in (31). Therefore, the momenta tend to grow
when the system leaves the turning point τ = 0. The typical orbit has a central region near
τ = 0, where the system spends most of the time near the bottom of the potential (close to
the most homogeneous shape), and two branches ‘before’ and ‘after’ the central region (in
parameter time), where the kinetic energy grows exponentially. The representative point
of the system behaves like a particle that initially has little kinetic energy and remains
near the bottom of the funnel. It is then accelerated exponentially and bounces repeatedly
off the funnel walls, reaching ever greater elevations and speeds. It can happen (as in the
orbit depicted in Fig. 7a) that the particle, when in the central region of the orbit, gets
trapped in an inlet and bounces back and forth between its walls, but it will eventually
escape into another arm due to its ever-increasing kinetic energy.

As we have noted, Bianchi IX (and with it, empty-space GR) differs substantially from
the Newtonian 3-body (and N -body) problem in crucial signs. It will be helpful to review
them together with other differences.

The dilatational kinetic energy is non-positive in Bianchi IX, non-negative in the 3-
body problem. The shape potential is bounded from below in Bianchi IX, from above in
the 3-body problem. Finally, the shape momenta have the dimensions of the inverse of
the dilatational momentum squared in Bianchi IX but of the dilatational momentum in
the 3-body problem. Taken together, these differences make the behaviour anti-dissipative
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in the direction of growing τ in Bianchi IX, dissipative in the N -body problem. Table 1
summarizes the differences.

Bianchi IX 3-body problem

Kinetic term 1
2

(
π2
x + π2

y − 9
4
τ 2 v2

)
1
2
R−2

(
p2
θ + sin2 θ p2

φ + 1
4
D2
)

Potential VS ∈ [−3
2
,∞) VS ∈ (−∞, 0)

Dissipation dωi

dλ
= {{ωi, H0}}+ 2ωi dωi

dλ
= {{ωi, H0}} − ωi

Table 1: Sign differences between Bianchi IX and the 3-body problem.

The upshot is that in both models complexity grows with τ , but in coordinatized Bianchi
IX this is accompanied by a shrinking volume; in the 3-body problem the size (Icm) grows
with τ . A further difference is that the complexity fluctuations in the 3-body problem are
bounded below by a monotonically growing function, but in Bianchi IX only by zero.

As a final difference, we note that, besides the anti-dissipation, Bianchi IX fails to
parallel the 3-body problem in that there is no emergence and ‘storing’ of dynamical
information like that associated with the formation and stabilization of Kepler pairs. A
problem here is that, unlike the passage from the 3-body problem to the N -body problem,
there is no easy generalization from Bianchi IX to full vacuum SD. Even if there were, we
do not think stable storage of dynamical information should emerge. For this we believe
that matter must be present, but here too we are thwarted by the sheer difficulty of finding
non-trivial solutions in GR. However, we think we can make a plausible suggestion for the
definition of complexity. To this we now turn.

3.6 Complexity in geometrodynamics

A major achievement of 20th-century mathematics was the proof of the Yamabe conjecture:
any Riemannian metric gij on a compact manifold Σ can be conformally transformed to a
metric of constant scalar curvature R. This enables one to define the Yamabe invariant of
any conformal 3-geometry on Σ. To do this, one considers all 3-metrics in the equivalence
class it defines and finds the infimum of R wrt all volume-preserving (ensured by the 1/3rd
power of the volume in the denominator of (78)) conformal transformations:

Y = inf
φ

∫
d3x
√
g φ(Rφ− 8∇2φ)(∫
d3x
√
g φ6

) 1
3

. (78)

From our perspective, it is encouraging that there is at least a partial analogy between
CS in particle dynamics and Y in vacuum GR:

1. Y is a function of the conformal geometry only.
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2. Y appears in the shape-dynamic description of GR in a way that partially resembles
the way VS does in the N -body problem: the Hamiltonian constraints (13) and (38)
reveal a clear analogy between VNew and R and hence between VS and Y . We will
expand on ‘partially’ below.

3. Y takes all values from −∞ to its absolute maximum at the round metric (the most
uniform shape) on S3 and is therefore a measure of the ‘distance’ from the round
metric. This analogy with CS suggests that Y could serve as a measure of ‘how
structured a conformal geometry’ is.

The caveat ‘partially’ in point 2. is necessary because the Hamiltonian constraint (38)
is local, in contrast to the global Hamiltonian (35) of the particle model. Thus, whereas VS

is truly the potential that governs the particle dynamics, the local nature of the constraints
in conformal geometry makes it impossible, except in homogeneous models like Bianchi IX,
to separate potential and kinetic energy for the system as a whole. We can at best say
that Y is an ‘average’ gravitational shape potential energy.

Despite the caveat, we think the analogies between CS and Y are sufficiently close to
warrant further investigation. The most important thing will be to generalize Y to include
matter degrees of freedom. The way to attempt this is clear, since the local Hamiltonian
constraints are then augmented by potential-type matter terms, for example, the square
of the curl of the three-dimensional vector potential in the case of coupling to the Maxwell
field. The generalization of (78) to include matter terms is therefore straightfoward, though
the existence of an infimum must of course be studied.

In fact, since up to the present epoch gravitational waves appear to have been very
weak, at least far from the most violent gravitational events, it seems possible that an
expression of the kind suggested at the end of Sec. 2.2 will be a relatively good measure of
the complexity of the Universe and reflect the formation and increasing relative separation
of gravitationally bound systems.

In this connection, our inclination is to keep identifying the arrow of time with the
direction of growing complexity in the matter sector, because any measuring device, in-
cluding one to observe geometry, is built from matter. We deduce our notion of time from
material records of the past, not from gravitational waves.

One thing at least is secured by observation: the Universe has been getting ever more
structured at least since the surface of last scattering. Now in Newtonian theory, which
is a good model of GR for virtually everything that has happened gravitationally since
the CMB epoch, we can understand very well how this happens. All generic solutions will
seem to have evolved from near the most uniform shapes the Universe can have (at which
CS has its minimum), into the kind of universe we currently observe. This suggests to us
that for much of the history of the Universe dissipative gravitational behaviour of matter
outweighs the anti-dissipative behaviour of vacuum gravity.

We conclude this section with a comparison of our approach to the various attempts
that have been made to define gravitational entropy since Penrose’s initial suggestion [2, 1]
that near the big bang the Universe had near zero Weyl curvature. In one way or another,
they all invoke gravitationally induced ‘clumpiness’, defined through a 4D scalar,44 which

44An obvious candidate is the ratio of the Weyl and Ricci curvatures considered in [42].
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may be integrated over a 4D volume or a 3D hypersurface. This is very natural in the light
of Penrose’s suggestion. All such proposals to use a 4D scalar clearly respect the spirit of
4D general covariance. There is a useful discussion of the proposals (none of which are
found to be fully satisfactory) of [42, 43, 44, 45] in [46]. Although the ‘clumpiness’ idea is
obviously shared, our proposal differs in several respects.

First, for the reasons given in Sec. 1.1, we question whether it is appropriate to try
to define entropy for the Universe, as opposed to subsystems of it. However, we do not
rule out some connection with an entropy-like quantity. For this, we would regard the
complexity (CS or the Yamabe invariant) as a macroscopic variable analogous to pressure
or temperature for which, given a suitably defined metric and coarse graining on shape
space, one could define an ‘entropy’ through the logarithm of the corresponding number of
shapes that have the given complexity. However, as of now, we regard complexity as the
primary quantity of interest.

Second, where we differ most strongly, our proposal is three dimensional. We do not
need to repeat the arguments that led us to this position, but we would like to point out
that it yields a well-defined integral quantity at each instant of cosmic history, whereas
integrals of 4D scalars inevitably depend on arbitrary choices of a 4D volume or a 3D
spacelike hypersurface.

There is one respect in which our ideas, extended to GR with matter, will be rather
close to Penrose’s original suggestion, which was that near the big bang the geometry
had exceptionally low entropy but the matter was in thermal equilibrium. Now the topo-
graphical ideas we took over above from the N -body problem to vacuum GR clearly need
extension to include matter. Then uniform geometry on S3 will appear in shape space
alongside structure that represents matter. If our ideas are a move in the right direction,
this further structure must give rise to matter thermal equilibrium while the 3D conformal
geometry still remains ‘on the plateau’ of very uniform geometry.

Finally, we are not aware of any attempt to use the N -body problem as heuristic guide
to the arrows of time in GR, though it is in [26] as a cosmology model. We think the close
parallels in their key architectonic features, in accordance with which two shapes and just
one dimensionless number fix a solution, give strong support to our approach. It suggests
that the entire incredibly rich structure of the Universe arises from the presence of that
one extra number. We now want to consider the role it might play in quantum gravity.

4 Possible Quantum Implications

4.1 A time-dependent Planck constant

Shape space quantities are dimensionless. As shown above, gravitational dynamics can be
equivalently formulated in S as a theory of evolving dimensionless conformally-invariant
degrees of freedom. The dynamics on S is naturally described in terms of dimensionless
Poisson brackets {{· , ·}}, and the coordinatized, dimensionful description is recovered, both
in the Newtonian and the GR case, in the form

{f, g} = Da {{f, g}} , a = −1 (Newton) , a = 2 (GR) , (79)
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where D is a fixed function of the dissipative time λ, D = D0 exp λ, and D0 is a conven-
tional dimensionful constant with dimensions (action)

1
a . It can be seen immediately that

Da plays a role analogous to that of ~, in that it transforms dimensionless brackets (like
the commutators of quantum mechanics) into the familiar, dimensionful Poisson brackets.

Many observations indicate that the Planck constant is (over a large time interval,
at least) an epoch-independent constant of nature. This means that in the coordinatized
description the quantization rule for a set of elementary phase space functions is

{f, g} → 1

i ~
[f̂ , ĝ] . (80)

This gives quantum mechanics an intrinsic scale. But scale has only a relative meaning,
and the dynamics of the Universe unfolds on shape space. Therefore there should be a
law acting on a deeper level than (80) that determines the magnitude of quantum effects
in shape space and such that they appear to be controlled by an unchanging scale in the
coordinatized description.

To construct a quantum theory on S, it is natural to start with the dimensionless
Poisson brackets {{· , ·}} and the quantization rule

{{f, g}} → 1

i ~S

[f̂ , ĝ] , (81)

where ~S is a dimensionless c-number.45 Using now Eq. (79)

{f, g} → Da

i ~S

[f̂ , ĝ] , (82)

and comparing with Eq. (80) we get

~ =
~S

Da
. (83)

Thus, since Da is epoch dependent, the dimensionless constant in the quantization rule
in S must be time dependent if the Planck constant in the coordinatized description is
to be (at least to the observed accuracy) unchanging. If the shape-dynamic conceptual
framework is accepted, this is a direct consequence of dimensional analysis and suggests a
simple unified picture of evolution of the Universe, which we shall now briefly outline.

We note first that a commonly employed measure of the ‘size of the Universe’ is the
ratio of the Hubble radius, assumed to be epoch dependent, divided by the Planck length,
assumed to be constant. This ratio is currently ≈ 1061 and is said to be ‘increasing because
the Universe is expanding’. But only the dimensionless ratio ≈ 1061 corresponds to an
objective fact, so the interpretation in terms of expansion is questionable. Shape Dynamics
suggests an alternative, namely, that all change in the Universe, including its ‘expansion’,
arises for just one reason: a dimensionless epoch-dependent quantity ~S determines the
strength of quantum effects on S.

45M. Lostaglio and two of us already noted [25] that SD applied consistently requires the magnitude of
the quantum effects on S to be controlled by a dimensionless ‘Planck constant’ ~S.
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We can give heuristic arguments for this based on our toy model: the N -body problem.
We have seen that, classically, clustering occurs spontaneously and causes CS to grow,
typically linearly with time. This corresponds rather accurately to ‘expansion’ of the
Newtonian Universe as it inescapably sinks ever lower into its shape potential VS. The
point is that bound systems like Kepler pairs keep the same size relative to each other
while the distance between them, measured by these ‘rods’, grows linearly. This very
closely matches what we observe in our Universe.

Now let us consider quantum mechanics. The quantization procedure is by no means
unique: there is a large class of quantum theories that admit the same classical limit.
Reducing this ambiguity to the bare minimum, one is left with a one-parameter family
of quantum theories that generate the same semiclassical trajectory: they are the ones in
which the momenta are represented as pi = −i ~S

∂
∂si

with different values of ~S. These theo-
ries generate different quantum wavefunctions that spread out from the classical trajectory
to different degrees. This fact is inevitable, and is present even if one ignores all other
quantization ambiguities (like ordering issues). It is related to the fact that to generalize
a curve to a wavefunction we need at least one ‘scale’.46 Our ~2

S determines the analogue
of a ‘Bohr radius’ on S; it is still a dimensionless and relational concept, but it expresses
‘over what portion of shape space the wavefunction is spread out’.

In [25], it was pointed out that there seems to be no reason why the dimensionless
number ~S should have one value rather than another. We have also noted that there is an
ambiguity inherent in quantum theories on S. We now suggest tentatively that attempting
to fix this ambiguity might be a mistake, that all values are realized successively, and that
such change in the value of ~S is the sole cause of all change in the Universe.

Let us first consider, for example, the model of [25], which is the simplest theory one
can build on S: the Hamiltonian is

HS = p2
θ + sin−2 θ p2

φ − CS(θ, φ) . (84)

The natural quantization of this Hamiltonian is

ĤS = −~2
S∇2 − CS(θ, φ) , (85)

where ∇2 is the Laplacian on the 2-sphere. We see that ~S determines the relative weight
of the kinetic vs. the potential term. If ~S is allowed to change, it goes from ~S →∞ where
the kinetic term dominates, and the operator is basically identical to the Laplacian, with
its positive-definite spectrum ~2

S l (l+1), l ∈ N, to ~S → 0, where the Hamiltonian becomes
the multiplicative operator −CS(θ, φ), which has a negative-definite continuum spectrum
that is bounded from above but not below.

In the above we started from the simplest (geodesic) quantum theory on S with a
dimensionless Planck constant ~S. Let us now, more realistically, consider the Newtonian
(non-geodesic) 3-body problem on S. Its quantization could start from the time-dependent
Hamiltonian (22), which we reproduce here with D explicitly shown:

H = log

(
1

2

p2
θ + sin−2 θ p2

φ + 1
4
D2

D0CS(θ, φ)

)
. (86)

46From a wavefunction one can calculate variances around the mean values, like 〈(si − 〈si〉)2〉, which
have a magnitude related to ~2S. With ‘scale’ in this particular model we mean a dimensionless portion of
shape space, as measured by the natural metric on S.
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H generates D-translations and pis generate si-translations. Recall that pis are still dimen-
sionful at this stage, and the dynamics is generated by dimensionful Poisson brackets. We
might naively quantize this system with the rules

Ĥ = −i ~ ∂

∂D
p̂is = −i ~ ∂

∂si
, (87)

where ~ is the dimensionful Planck constant, which, by what we said above, should be
expected to be constant in time. Then the D-evolution of the wavefunction on S would be
generated by the Schrödinger equation (notice that we chose a definite particularly simple
ordering choice)

− i ~ ∂ψ
∂D

= log

(− ~2∇2 + 1
4
D2

2D0

)
ψ − log (CS(θ, φ))ψ . (88)

Here, D0 is conventional and has the same dimensions as ~. Thus, it is mere convention
to choose D0 = ~. Now, calling ζ = D/D0 = D/~, we obtain

− i ∂ψ
∂ζ

= log

(
−1

2
∇2 +

1

8
ζ2

)
ψ − log(CS)ψ . (89)

We obtain a kind of ‘time-dependent Schrödinger equation’ that contains no arbitrary
constant, and, through the presence of the ζ2/8 term, has an unconventional form.

Despite this, we should like to explain why we find the idea of a single dimensionless
independent variable which generates all change and, in a certain sense, simultaneously
plays the role of both time and the strength of quantum effects appealing. It is well
known that quantum probability tends to collect in dimensionful potential wells until the
Heisenberg uncertainty principle halts too deep a descent (which is the reason why the
hydrogen atom is stable). If we examine (85), the simpler of the two ‘quantum’ equations
considered above, we see that 1/~2

S measures the strength of the potential CS relative to
the kinetic Laplacian. For greater strengths of the potential, we would expect the quantum
probablity density of the wave function of the Universe to sink deeper into the wells of the
dimensionless shape potential VS. This matches what happens in the classical theory, in
which the evolution trajectories pass ever further down the potential wells. Increasing the
value of 1/~S is like increasing the resolution of a dimensionless analogue of a ‘microscope’
used to examine shape space S on ever finer scales.

This would then be the reason why the ratio of the distance between hydrogen atoms in
the Galaxy and a very distant galaxy divided by the Bohr radius is increasing. Moreover,
1/~S is then not a function of time but time itself. All change in the Universe, manifested
as increasing complexity and growth in the ratio of certain length scales,47 arises from its
monotonic increase. The so-called expansion of the Universe would not be a classical effect
but the dominant macroscopic manifestation of the fundamental quantum nature of the
Universe.

47In the N -body problem, the ratio of the distance between Kepler pairs in subsystems (models of
clusters of galaxies as Saari suggests [28]) to the distance between subsystems.
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4.2 Metrogenesis and hylogenesis

In Sec. 2.9 we intoduced the notions of metrogenesis and hylogenesis. In geometrodynamics,
the same notions are appropriate and arise in a much more sophisticated way than in
particle dynamics. We saw that for metrogenesis in Sec. 3.3. A point we should like to
make here is that we live in a universe in which hylogenesis has taken place with massive
consequences. Near and far, all the structures that we see around us in the Universe owe
their origin to it. This leads us to ask how safe it is to apply techniques and results obtained
in our epoch to epochs significantly before the surface of last scattering, which reveals to
us the CMB. We suspect the methods in which we have gained trust will fail somewhere
towards the ‘past’ of our curve on shape space. In the N -body problem this happens when
the universe is very homogeneous and no rods and clocks can be formed. We see no reason
to suppose it will be any different in GR. The need to develop new concepts and techniques
might arise much closer to us than the Planck era. Indeed, we think the very definition
of the Planck era may need re-examination. For example, how is one to think about the
Planck units in shape space?

The shape-dynamic approach may also be important for our ideas about singularities, at
least some of which can be seen to be mere artifacts of taking spacetime as the fundamental
ontology.

5 Conclusions and Outlook

Numerous arrows of time can be identified. Perhaps the four most fundamental are en-
tropy growth, retarded potentials in electrodynamics, wave-function collapse in quantum
mechanics, and complexity growth. We do not wish to make any exaggerated claims for
this paper. What we have done is show that two-sided growth of complexity and informa-
tion is generic in NG and used that result to identify a candidate measure of complexity
in GR with and without matter. We think we have also made a plausible case that ir-
reversibility in the Universe should be studied in the first place through the evolution of
its three-dimensional shapes. The shape-dynamic identification of a distinguished notion
of simultaneity in Einstein gravity makes this a defensible position. But there is clearly a
long way to go. In this final section, we give some indication of how we look to explain the
most fundamental arrows in an approach based on shape-space ontology.

1. Because all the arrows are observed to point in the same direction everywhere and at
all epochs, many earlier discussions have conjectured that they have a common cause in the
expansion of the Universe. We seek a deeper explanation. On S the most predictive law,
with minimal initial data, is geodesic: a shape and direction in S determine the evolution.
But such a theory is dull; it leads to no secular growth of complexity. Next in predictive
power are the theories we have considered; for them the initial data are a shape and a shape
velocity. At least in NG, either two- or one-sided complexity growth is inevitable. One of
its manifestations is emergent ‘expansion’ of the Universe as measured by equally emergent
rods and clocks. Thus, expansion, assumed as a primary cause in many earlier discussions,
is one and the same thing as growing complexity, and both emerge solely through the law.

2. Our approach may cast light on cosmology. Ellis and Gibbons [26] note that N -
body homothetic solutions are models of FLRW solutions. Both belong to measure-zero
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sets and pose “an intriguing fine-tuning problem” ([26], Sec. 3.4) because “we currently see
a FLRW type homothetic expansion. But in order to get such a flow, the initial positions
of the particles must be constrained to satisfy [the central configuration condition].” The
explanation “for such a fine tuning [is] presumably to be sought in an initial relativistic
state that results at late times in such a Newtonian configuration.” This is the standard
past-hypothesis approach: a special initial condition creates a FLRW solution that is then
perturbed into the kind of universe we observe today. If our conjecture is correct, the
past hypothesis is redundant: the generic solutions of the law will all resemble perturbed
FLRW.48 We see this as an indication of how a shape-dynamic perspective could inform a
new approach to cosmology, shifting attention from the search for special initial conditions
to the structure of shape space and its effect on the solution asymptotics. We have seen
how this structure is the true cause of striking time-asymmetric effects.

3. The SD perspective also suggests a new approach to the retarded-potential enigma.
The most popular attempts, originated by Wheeler and Feynman [47, 48], rely on expansion
of the Universe and conditions which ensure absorbtion of all advanced radiation, but these
ideas have not gained wide acceptance. All we will note is that this approach relies on
special structure within an arena provided by an individual spacetime. The problem might
take a very different form in shape space, as we have already seen for complexity growth.

4. As regards entropy growth, we will have to show that it emerges generically in
subsystems of the universe. We cannot begin to attack this problem before our shape-
dynamic formalism has been fully developed to include realistic matter fields, whose forces
are so vastly greater than gravity. Since the era of primordial nucleosynthesis, there has
been significant degradation of energy through fission in stars. We have to explain the
creation of the low-entropy hydrogen and helium. Equally pressing: how did the Universe
get into a state as close to radiative thermal equilibrium as we observe in the CMB at the
surface of last scattering? Our best hope at the moment is the importance of shape-space
topography in SD, as noted in the penultimate paragraph of Sec. 4.2. In the discussion of
our putative quantum equation (89), we likened increasing the value of 1/~S, and with it
moving time forward, to sharpening the resolution of a ‘microscope’ that examines S to
ever greater depths of the potential. We also noted that the N -body S has the topography
of an undulating plateau dotted with deep wells. The points on the plateau have low
complexity and high uniformity. At least in the N -body problem, the first ‘features’ that
the ‘microscope’ will discern and assign Born amplititude, i.e., probablility, will be those
on the plateau, so the quantum state will correspond to a superposition of many nearly
uniform matter distributions. Thus, the isotropy and homogeneity of the CMB, which
inflation cannot explain, could arise of necessity from a quantum law of the form (89) and
the topography of S. Of course, a caveat must here be made: it remains to be shown what
topography, if it can be meaningfully defined, exists on the appropriate shape space with
matter fields included.

5. We noted that a classical Machian universe has gauge symmetries, but that in
the asymptotic regime subsystems arise for which there are global symmetries (rotations,

48We also wonder about the proposal in [26] to consider, in a follow-up paper, perturbation of homothetic
solutions. The problem we see is that in S both the homothetic N -body solutions and the FLRW solutions
are mere points. There cannot be a small perturbation from a point to a complete solution curve. Moreover,
all curves that emanate from a central configuration, which is an unstable equilibrium point, rapidly become
effectively indistinguishable from generic solutions and inevitably tend to FLRW behaviour.

44



spatial and time translations. In accordance with Noether’s first theorem, the latter lead
to conserved quantities, whereas all these must be exactly zero for the Universe. Given the
central role conserved quantities play in quantum mechanics (QM), this suggests that, just
as with classical physics, the quantum Universe can be expected to behave in a qualitatively
very different way compared with its subsystems. We have already made suggestions along
these lines in Sec. 4.1. To conclude the paper, we will consider implications for the quantum
measurement problem and its time asymmetry.

With Bohm and Bell and in full accord with our shape-space ontology, we assume that
configurations are fundamental. We now recall the concept of a time capsule, introduced
in [49, 50]. This is a static configuration whose structure suggests it has arisen through
some historical process governed by definite laws. A single ‘snapshot’ of the Universe at
the present epoch reveals just such a remarkable structure with many similar substructures
embedded within it, for example hundreds of planetary systems around stars in our region of
the Galaxy. Already the asymptotic N -body problem gives rise to instantaneous structures
that ‘call for dynamical explanation’, namely statistically unlikely close pairs.

Quantum mechanics as we know it in the laboratory is capable of creating the most
remarkable time capsules. Indeed, Mott’s explanation of why α-particles make straight
tracks in cloud chambers is a famous early example [51]: Gamow had recently explained
radioactivity through QM tunneling, but this led to a wave function spreading out isotropi-
cally in 3D space. This seemed to be in the most flagrant contradiction with cloud chamber
experiments, which always led to α detection at individual points. Only statistically did
an isotropic distribution build up. Mott resolved the problem with the remark “The dif-
ficulty that we have in picturing how it is that a spherical wave can produce a straight
track arises from our tendency to picture the wave as existing in ordinary three dimen-
sional space, whereas we are really dealing with wave functions in the multispace formed
by the coordinates both of the α-particle and of every atom in the Wilson chamber.” Mott
then showed that the complete wave function would be concentrated on time capsules as
defined above. Bell’s discussion [52] of Mott’s paper in his gloss of Everett’s many-worlds
interpretation of QM is illuminating.

A remarkable aspect of the Mott example is its ‘snapshot-within-snapshot’ aspect.
When the cloud chamber is examined and its wave function ‘collapsed’ (according to the
Copenhagen interpretion), it reveals a complete track with multiple ionizations at which
the α-particle undergoes small-angle deflections in accordance with the appropriate QM
probabilities for single-particle scattering. Each ionization can be interpreted as a mea-
surement process that is simultaneously a state-preparation process for the next ionization.
The complete track is a snapshot that contains within it multiple records of state measure-
ments preceded by records of the state preparation. Moreover, any complete track exhibits
a pronounced arrow of time, since the α-particle loses energy on each ionization, and its
deflection angles become greater.

Although the Mott example and others like it are striking, they are still not fully
satisfactory from our point of view since they rely on a perturbative expansion in which an
arrow of time is effectively put into the zeroth approximation by hand: the radioactive atom
is excited, all atoms of the cloud chamber are in their ground state, and the cloud chamber
itself is in a metastable state.49 We suspect many mysteries observed in the laboratory

49To amplify a tiny quantum disturbance into a macroscopic effect, all detectors must be in such a state.
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arise from special conditions created there by both the Universe, which is responsible for
local inertial frames and finite-parameter symmetry groups, and experimentalists. We have
already seen how an arrow of time and time capsules in the form of statistically unlikely
shapes arise generically in the classical N -body problem. We think our toy ‘wave equation
of the universe’ could do the same in the quantum domain. If it does, the ultimate reason
will surely be same as in the N -body problem: the asymmetric structure of shape space
and the fact that a law is defined on it in a way that fully respects its intrinsic structure.

A Appendices

A.1 Growth of complexity in the N-body problem

Let us summarize the main results of [20] concerning the final state of the Newtonian
N -body problem. For non-negative energy there are a number of interesting non-generic
cases, i.e., cases that require initial conditions within lower-dimensional strata in phase
space. Non-generic behaviour includes superhyperbolic escape and point particle collisions.
We will focus our attention on the generic case. A rough description of it is as follows:
The N -body system breaks up into subsystems, which are defined as groups of particles
whose separations are bounded by O(t2/3) in Newtonian time. Let us introduce the index
J ⊂ N identifying the subsystem. A particle with label a ∈ N will belong to J if a ∈ J .
These subsystems are composed of clusters, whose constituents remain close to each other.
Subsystems have a number of interesting properties, including the following:

1. The centres of mass of the subsystems separate asymptotically linearly with New-
tonian time, giving the subsystem J an asymptotically conserved linear momentum
PJ . This implies that particle a ∈ J satisfies asymptotically

ra = cJ t + O(t2/3), if a ∈ J , (90)

where cJ ∈ R3 is a constant vector.

2. Each subsystem J has asymptotically conserved quantities: energy EJ and angular
momentum JJ , which satisfy bounds

EJ = E0
J +O(t−5/3) , JJ = J0

J +O(t−2/3) . (91)

3. A subsystem with E0
J = 0 tends to a central configuration; the deviation from a

central configuration is bounded by

ma

t2
(ra −RJ ) +

∂VJ
∂ra

= o(t−4/3) , (92)

where RJ denotes the centre of mass of subsystem J and VJ its Newtonian potential.

The generic final state of the E = 0 Newtonian N -body problem (i.e. except for lower–
dimensional strata in phase space), develops at least two distinct subsystems (which may
contain only one particle or may be clusters). This means in particular that there are at
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least two distinct cJ . One can thus show that the generic E = 0 evolution of CS exhibits
secular growth if at least one negative energy subsystem forms, i.e. if at least one E0

J < 0
for a subsystem with at least two particles.

To show this we write CS as the product of the weighted mean square distance m2 =√∑
a<bwabr

2
ab of the particles and the inverse of their weighted mean harmonic distance

1/m−1 =
∑

a<b
wab

rab
. According to (90), we find after some time t0J that there is a constant

rJ such that all constituent particles of subsystem J are within a ball of center cJ t and
radius rJ t

2/3. Hence after time tI,J = max{8((rI + rJ )/‖cI − cJ ‖)3, t0I , t
0
J } the smallest

separation of a particle of subsystem I from a particle of subsystem J , which we denote
by rI,J , will be t

2
‖cI − cJ ‖. Since we exclude point-particle collisions, we can estimate

m2 < const. t ‖cI − cJ ‖ . (93)

To estimate 1/m−1, we use the assumption that at least one E0
I < 0. Since we exclude

superhyperbolic escape, we find the estimate

1/m−1 <
wI,I

const.
, (94)

where wI,I = min{wab : a, b ∈ I}, after some time t0. Combination of these two estimates
results in a bound

CS > tA after time T, (95)

where A is a constant. However, CS is finite since we exclude superhyperbolic escape and
point-particle collisions for all finite t. The bound thus implies secular growth of CS, i.e.,
for every t > T there exists in particular ∆ = ∆(t) such that CS(t+ ∆(t)) > CS(t).

A.2 Phase-space reduction for the 3-body problem

In this appendix we will show how the coordinates w = (w1, w2, w3) used in section 2.6
and their conjugate momenta z = (z1, z2, z3) are defined.

We will follow Montgomery [30] in the phase space reduction. The first simplification
comes from the fact that, because the total angular momentum J is zero, the problem is
planar,50 so we can gauge fix two out of three angular momentum constraints plus one
translational constraint by fixing the plane in which the motion unfolds. We are left with
three two-component vectors r1, r2 and r3 that define the position of the three bodies
on this plane. Then we gauge fix the two remaining translation constraints by going to
mass-weighted Jacobi coordinates [25, 53]:

ρ1 =

√
m1m2

m1 +m2

(r2 − r1) , (96)

ρ2 =

√
m3 (m1 +m2)

m1 +m2 +m3

(
r3 −

m1 r1 +m2 r2

m1 +m2

)
, (97)

ρ3 =
m1 r1 +m2 r2 +m3 r3√

m1 +m2 +m3

. (98)

50If the total angular momentum is nonzero and it is not orthogonal to the plane identified by the three
particles, then the motion is not planar.
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The transformation is linear and invertible,

ρa = Ma
b rb , detM =

√
m1m2m3 , (99)

and therefore it is easy to find a canonical extension for it, which transforms the momenta
with the inverse matrix,

κa = (M−1)ab pb . (100)

Note that the inverse matrix has the form

(M−1)ab =
1

3


−m2√

m1m2(m1+m2)
− m3√

(m1+m2+m3)(m1+m2)m3

1√
m1+m2+m3

m1√
m1m2(m1+m2)

− m3√
(m1+m2+m3)(m1+m2)m3

1√
m1+m2+m3

0 m1+m2√
(m1+m2+m3)(m1+m2)m3

1√
m1+m2+m3

 , (101)

and has a constant column, namely, the column of κ3,

κ3 =
1√

m1 +m2 +m3

3∑
a=1

pa ∝ Ptot ≈ 0 , (102)

which is therefore proportional to the momentum constraint and vanishes. The coordinates
ρ3 can consequently be discarded (they are the coordinates of the centre of mass). The
other two momenta are

κ1 =
m1 p2 −m2 p1√
m1m2(m1 +m2)

,

κ2 =
(m1 +m2)p3 −m3 p1 −m3 p2√

(m1 +m2 +m3)(m1 +m2)m3

. (103)

The above is a canonical transformation, leaving the Poisson brackets unchanged:

{ρia, κbj} = δij δb
a , (104)

and it diagonalizes the kinetic term in terms of the new momenta κa,

T =
3∑

a=1

pa · pa

2ma

=
3∑

a=1

3∑
b,c=1

Ma
bMa

c

2ma

κb · κc . (105)

Remembering that κ3 ≈ 0, it is easy to verify that

3∑
a=1

3∑
b,c=1

Ma
bMa

c

2ma

κb · κc ≈
3∑

a=1

2∑
b,c=1

Ma
bMa

c

2ma

κb · κc

=
1

2

(
‖κ1‖2 + ‖κ2‖2

)
. (106)

The centre-of-mass moment of inertia is also diagonal in these coordinates, as can be
explicitly verified:

Icm =
3∑

a=1

ma ‖ra − rcm‖2 = ‖ρ1‖2 + ‖ρ2‖2 . (107)
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We are left with four coordinates ρ1, ρ2 and momenta κ1, κ2, and a single angular
momentum constraint,

Jtot =
3∑

a=1

ra × pa ≈
2∑

a=1

ρa × κa ≈ 0 , (108)

to reduce. The coordinates

w1 =
1

2

(
||ρ1||2 − ||ρ2||2

)
, (109)

w2 = ρ1 · ρ2 , w3 = ρ1 × ρ2 ,

are invariant under the remaining rotational symmetry and therefore give a complete co-
ordinate system on the reduced configuration space [30]. The norm of the vector w is
proportional to the square of the moment of inertia

||w||2 =
1

4

(
||ρ1||2 + ||ρ2||2

)2
=
I2

cm

4
, (110)

so the angular coordinates in the three-space (w1, w2, w3) coordinatize shape space, which
has the topology of a sphere [30].

The momenta conjugate to w are

z1 =
ρ1 · κ1 − ρ2 · κ2

‖ρ1‖2 + ‖ρ2‖2
, z2 =

ρ2 · κ1 + ρ1 · κ2

‖ρ1‖2 + ‖ρ2‖2
, z3 =

ρ1 × κ2 − ρ2 × κ1

‖ρ1‖2 + ‖ρ2‖2
; (111)

they are rotationally invariant as well. Notice that the kinetic energy decomposes as

T =
1

2

(
‖κ1‖2 + ‖κ2‖2

)
=

1

2

(
Icm ‖z‖2 +

‖Jtot‖2

Icm

)
, (112)

so we finally reduced the phase space to the cotangent bundle of Q3
R, the relative configu-

ration space.

To obtain the Newton potential, we now write the Hamiltonian in the coordinates
(w, z). To do this we need the distance formula51

‖ra − rb‖2 =
ma +mb

mamb

(‖w‖ −w · bab) , (113)

where bab is the unit vector corresponding to the ray in Q3
R associated to the binary collision

between particle a and b. Notice that all of these unit vectors lie in the plane w3 = 0, which
is the plane of collinear configurations (called “syzygy plane” in [30]). Then the equation
above can be rewritten

‖ra − rb‖2 =
ma +mb

mamb

(‖w‖ − w1 cos φab − w2 sin φab) ,

51Eq. (4.3.14) of [30]; its proof is not trivial. A sketch of it goes like this: a dynamical trajectory starting
from any configuration in Q3

R and moving the particles a and b along the straight line connecting them
until they collide is a geodesic in Q3

R and is everywhere perpendicular to the orbits of the Euclidean group.
Then, by another theorem, the corresponding curve in shape space S3 is a geodesic as well, and the length
of a geodesic connecting a point in S3 with a binary collision is that given in the equation above.
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and the Newton potential takes the form

VNew = −
∑
a<b

(mamb)
3
2 (ma +mb)

− 1
2√

‖w‖ − w1 cos φab − w2 sin φab
. (114)

Here, φab are the angles identifying the two-body collisions (between body a and body b)
on the equator. They can be explicitly calculated in the generic-mass case by imposing
ra = rb and transforming to the w coordinates:

• collision 1− 2:

ρ1 = 0 , ρ2 =

√
m3 (m1 +m2)

m1 +m2 +m3

(r3 − r1) ∈ R2 , (115)

w1 = −1

2
||ρ2||2 , w2 = w3 = 0 , ⇒ θ =

π

2
, φ12 = π , (116)

• collision 1− 3: √
m2m3 ρ1 +

√
m1(m1 +m2 +m3) ρ2 = 0 (117)

w1 =
1

2
||ρ1||2

(
1− m2m3

m1(m1 +m2 +m3)

)
, w2 = −||ρ1||2

√
m2m3

m1(m1 +m2 +m3)
,

w3 = 0 ,

⇒ θ =
π

2
, φ13 = − arctan

(
2

√
m1m2m3(m1 +m2 +m3)

m1(m1 +m2 +m3)−m2m3

)
, (118)

• collision 2− 3: √
m1m3 ρ1 −

√
m2(m1 +m2 +m3) ρ2 = 0 (119)

w1 =
1

2
||ρ1||2

(
1− m1m3

m2(m1 +m2 +m3)

)
, w2 = ||ρ1||2

√
m1m3

m2(m1 +m2 +m3)
,

w3 = 0 ,

⇒ θ =
π

2
, φ23 = arctan

(
2

√
m1m2m3(m1 +m2 +m3)

m2(m1 +m2 +m3)−m1m3

)
. (120)

A.3 Positive energy N-body system

The shape-dynamical description of the N -body system with E > 0 is similar to the
description of the N–body problem with E = 0, but with one important difference: the
dynamics on S can be described by an effective shape potential C̃S that is time-dependent,
and is identical to CS only at the initial instant. The energy being positive, CS becomes
weaker with time. The energy E defines a time scale E−

1
2 that controls the weakening of
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C̃S. This leads to a qualitatively new final state: asymptotic freeze-out on shape space,
which can be explained as follows: If the dynamics avoids the valleys of CS long enough
then the secular flattening of the plateaus of C̃S ‘outruns’ dissipation. In this case, the
dynamics asymptotes to a generic point in S, not only to a critical point of CS. This is
because the entire potential C̃S becomes critical in the limit of infinite Newtonian time.
The interpretation of this phenomenon in the coordinatized Newtonian representation is
that the system undergoes homothetic expansion at late Newtonian times.

Let us look at the derivation of the Shape Dynamics Hamiltonian to see how the secular
decay of the shape potential comes about. The time-dependent Hamiltonian is

H = log

[
1

2

CS

E

(
1−

√
1 +

2D2 + 4KS

CS

E

)]
, (121)

where KS is the shape kinetic energy. We see that the shape potential appears only in the
combination VS

E
. We now use dynamical similarity, i.e. the simultaneous rescaling KS →

K̃S = KS D
−2, E → Ẽ = D2E, to make the kinetic term autonomous, i.e. independent of

dilatational time D, and make the description of the system dimensionless.

H = log

[
1

2

CS

Ẽ

(
1−

√
1 +

2 + 4 K̃S

CS

Ẽ

)]
, (122)

The shape potential thus enters the description only through CS

D2 E
, which shows how the

secular flattening of the shape potential comes about.

A.4 The monotonicity of York time

We will prove here that the CMC evolution of York time is monotonic. For this purpose
it is useful to introduce the quantities

V =

∫
Σ

d3x
√
g , τ = 2

3
〈p〉 = 2

3
V −1

∫
Σ

d3x p , (123)

ḡab = V −2/3gab , p̄ab = V 2/3
(
pab − 1

3
〈p〉√g gab

)
. (124)

The York time τ Poisson-commutes with ḡab and π̄ab and is the momentum canonically
conjugate to V . The CMC-condition becomes

ḡab p̄
ab = 0 , (125)

which can be used to simplify the ADM-Hamiltonian constraints to

1

V
√
ḡ
ḡac ḡcd (p̄ab − 1

3
p̄ ḡab)(p̄cd − 1

3
p̄ ḡcd)− 3

8
τ 2 V

√
ḡ − V 1/3 , R̄

√
ḡ = 0, (126)

where R̄ denotes the Ricci scalar derived from ḡab. Let the solution to the CMC lapse
equation (59) be NCMC. Then the Hamiltonian constraints imply the identity

V 1/3

∫
Σ

d3xNCMCR̄
√
ḡ =V −1

∫
Σ

d3x
NCMC√

ḡ
(p̄ab − 1

3
p̄ ḡab)(p̄ab − 1

3
p̄ ḡab)

− 3
8
τ 2V

∫
Σ

d3xNCMC

√
ḡ .

(127)
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Using the CMC-Hamiltonian

HCMC =

∫
Σ

d3xNCMC

(
1√
ḡ

(p̄ab − 1
3
p̄ ḡab)(p̄ab − 1

3
p̄ ḡab)− 3

8
τ 2V 2√ḡ − V 4/3R̄

√
ḡ

)
, (128)

we find the equations of motion for τ as

τ̇ ={τ,HCMC}

=3
4
V τ 2

∫
Σ

d3xNCMC

√
ḡ + 4

3
V 1/3

∫
Σ

d3xNCMCR̄
√
ḡ

+

∫
Σ

d3x{τ,NCMC}
(

1√
ḡ

(p̄ab − 1
3
p̄ ḡab)(p̄ab − 1

3
p̄ ḡab)− 3

8
τ 2V 2√ḡ − V 4/3R̄

√
ḡ

)
=1

4
V τ 2

∫
Σ

d3xNCMC

√
ḡ + V −1

∫
Σ

d3x
NCMC√

ḡ
(p̄ab − 1

3
p̄ ḡab)(p̄ab − 1

3
p̄ ḡab) ≥ 0 ,

(129)

where in the last line the constraint (126) implies the vanishing of the term multiplied by
{τ,NCMC}, and we used the identity (127) and the fact that NCMC > 0 as well as V > 0,
τ 2 ≥ 0, (p̄ab − 1

3
p̄ ḡab)(p̄ab − 1

3
p̄ ḡab) ≥ 0 for any physical configuration.

Thus, Eq. (129) shows that τ̇ is positive: York time is monotonic.

A.5 Metriplectic Formalism: A Definition of Bulk Entropy

The metriplectic formalism introduced by Kaufman and Morrison [54, 55] allows one to
describe dissipative systems in a language very close to the canonical formalism. To do
this, one extends phase space with a new canonical variable S, which is a Poisson Casimir,
meaning that it Poisson commutes with everything,

{{S, f}} = 0 , (130)

and is usually interpreted as a (formal) entropy. To be able to describe conversion of energy

into heat, one introduces an internal energy U(S) and denotes T := ∂U(S)
∂S

, which defines a
formal temperature through Clausius’ relation. The total Hamiltonian is Htot = H0+U(S).
The metriplectic time-evolution equations are

df

dλ
= 〈〈f, F 〉〉 = {{f, F}} − ((f, F )) , (131)

where F := Htot − S denotes the free energy and 〈〈., .〉〉 := {{., .}} − ((., .)) is the metriplectic
bracket; 〈〈., .〉〉 is the sum of the dimensionless Poisson bracket and a metric bracket ((., .)),
defined as

((f, g)) := GAB ∂f

∂zA
∂g

∂zB
, (132)

where zA runs over the extended set of canonical variables (including S) and GAB de-
notes a metric on extended phase space that encodes the dissipative nature of the system.
Moreover, the formalism requires the metric bracket to be energy-conserving, that is

((Htot, f)) = 0 , (133)
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which implies, for f = S (using the fact that U is assumed to be a function of S only),

((Htot, S)) = ((H0, S)) + ((U, S)) = ((H0, S)) + T ((S, S)) = 0 . (134)

Then the total energy is conserved and, if the metric GAB is positive semidefinite the
entropy grows monotonically:

dHtot

dλ
= 〈〈Htot, F 〉〉 = {{Htot, Htot}} = 0 ,

dS

dλ
= 〈〈S, F 〉〉 = ((S, S)) ≥ 0 . (135)

We can of course also describe any conservative canonical system in the metriplectic
formalism by choosing GAB = 0, which removes all dissipation and ensures that S is non–
dynamical, i.e., dS/dλ = 0. The metriplectic equations of motion reduce for this choice to
the canonical equations of motion, df/dλ = 〈〈f, F 〉〉 = {{f,H}}.

To apply this formalism to our prototype system, we need the symmetric bracket (( ·, · ))
to reproduce the non-canonical term −aωi in the equations of motion for πi. This is
achieved by setting

((ωi, S)) = −aωi , (136)

which determines some of the elementary round brackets. In addition, there is no non-
canonical term for the shape coordinates, so

((si, S)) = 0 . (137)

The other defining condition (133) can be solved for a subset of the round brackets between
the original phase space variables, and the bracket ((S, S)) is determined as − 1

T
((H0, S)) by

Eq. (134). Note that this procedure leaves the metric GAB underdetermined. This is a
mild non-uniqueness, since the equations of motion are unaffected by a different choice of
the dissipation GAB. We have focused on a non-canonical transformation that makes the
description of the system dimensionless, scale-invariant and autonomous. This procedure
fixes the Hamiltonian. We would have encountered a qualitatively different source of non-
uniqueness had we just looked for a pair H, GAB that produces the equations of motion.

Metriplectic formalism for the 3- and N-body problem

We now apply what we wrote in the last subsection to the 3-body problem. We intro-
duce a formal entropy S as a Poisson-commuting extension of phase space and postulate the
production of internal energy U(S) to compensate the nonconservation of the Hamiltonian:

dU

dλ
= −dH0

dλ
=
∂H0

∂ωθ
ωθ +

∂H0

∂ωφ
ωφ = 2

ω2
θ + sin−2 θ ω2

φ

ω2
θ + sin−2 θ ω2

φ + 1
4

. (138)

Define Ξ = ω2
θ + sin−2 θ ω2

φ + 1
4
. The formal temperature is T = ∂U

∂S
, which yields

dS

dλ
=

2

T

Ξ− 1
4

Ξ
. (139)

We now have to find round brackets that satisfy the requirements of the formalism,

((ωi, S)) = −ω
i

T
, ((si, S)) = 0 , ((S, S)) = − 1

T
((H0, S)) , (140)

((H0, f)) = −T ((S, f)) , f = f(θ, φ, ωθ, ωφ) ,
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and produce the non–canonical equations of motion. A solution is

GAB =


0 0 0 0 0
0 0 0 0 0
0 0 −T Ξ

2
0 −ωθ

0 0 0 −T Ξ
2

sin2 θ −ωφ
0 0 −ωθ −ωφ 1−4 Ξ

2T Ξ

 , (141)

where the order of the entries is θ, φ, ωθ, ωφ, S.

This description of the 3-body problem on shape space can straightforwardly be gener-
alized to the N -body problem on pre-shape space (i.e., the Newtonian configuration space
quotiented wrt translations and scale transformations). The description of this system as
a dissipative dynamics on pre-shape space is completely analogous to the 3-body problem.

Metriplectic formalism for dynamical geometry

Bianchi IX. Following the mechanism shown above, we absorb the extra 2ωi of Eq. (77)
in the round bracket

((ωi, S)) = 2ωi, i = x, y . (142)

The Hamiltonian H0 is not preserved by the equations of motion, instead

∂H0

∂λ
= 2

∑
i=x,y

ωi
∂H0

∂ωi
6= 0, (143)

which is compensated by the change of internal energy U(S) if we choose the remaining
parts of the round bracket such that 〈〈Htot, F 〉〉 = 0. The change of H0 then differs from

the change of entropy only by a factor of formal temperature T = ∂U(S)
∂S

.

Full GR. The analogue of Eq. (142) in full GR is

((ωab(x), S)) = 2ωab(x) . (144)

In complete analogy to Bianchi IX, the Hamiltonian H0 is not conserved, but

∂H0

∂λ
= 2

∫
Σ

d3x
δH0

δωab(x)
ωab(x) 6= 0, (145)

which is again compensated by the change in internal energy U(S).

Some considerations

Let us conclude this section with the remark that we do not have a physical inter-
pretation of the formal bulk entropy S. We do know that it is forced upon us by the
requirement that we want to describe gravity as an autonomous dimensionless evolution of
spatial conformal geometry, as is dictated by the shape-dynamics ontology. Moreover, we
do not know whether this entropy can be related to the familiar black hole entropy of Beck-
enstein and Hawking. At least formally S, which is associated with change in the spatial
conformal metric, seems more closely related to Penrose’s proposal that the bulk entropy
of GR should be related to the conformal geometry, but we want to caution that S could
be a completely unrelated entity that simply expresses the irreversibility of dynamics on
shape space. It should also be noted that Penrose’s proposal relates to the four-dimensional
conformal geometry, while ours is tied to three-dimensional conformal geometry in a CMC
foliation.
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