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Abstract

Mini superspace cosmology treats the scale factor a(t), the lapse function n(t), and an optional

dilation field φ(t) as canonical variables. While pre-fixing n(t) means losing the Hamiltonian

constraint, pre-fixing a(t) is serendipitously harmless at this level. This suggests an alternative to

the Hartle-Hawking approach, where the pre-fixed a(t) and its derivatives are treated as explicit

functions of time, leaving n(t) and a now mandatory φ(t) to serve as canonical variables. The

naive gauge pre-fix a(t) = const is clearly forbidden, causing evolution to freeze altogether, so

pre-fixing the scale factor, say a(t) = t, necessarily introduces explicit time dependence into the

Lagrangian. Invoking Dirac’s prescription for dealing with constraints, we construct the corre-

sponding mini superspace time dependent total Hamiltonian, and calculate the Dirac brackets,

characterized by {n, φ}D 6= 0, which are promoted to commutation relations in the quantum theory.
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Let our starting point be the simple general relativistic (GR) action

S = − 1

16πG

∫

(R+ 2Λ)
√
−g d4x , (1)

involving a positive cosmological constant Λ or, alternatively, its minimal dilaton gravity

(DG) variant

S = − 1

16π

∫

(φR+ V (φ))
√−g d4x . (2)

Adding a Brans-Dicke kinetic term to the latter is optional, but even in its absence, for the

sake of simplicity, the dilation field φ(x) is fully dynamical, subject to the Klein-Gordon

equation

gµνφ;µν =
1

3
(φV ′(φ)− 2V (φ)) ≡ V ′

eff(φ) . (3)

Our interest lies with cosmology, so let the corresponding line element take the form

ds2 = −n2(t)dt2 + a2(t)

(

dr2

1− kr2
+ r2dΩ2

)

, (4)

with a(t), n(t) denoting the scale factor and the lapse function, respectively, and let

k = −1, 0, 1 classify the maximally symmetric 3-subspaces. Notably, the time re-definition

symmetry t → f(t) is still there, with the standard gauge choice n(t) = 1, for example,

defining the FLRW cosmic time. Recalling the fact that n(t) plays a major role in canonical

quantum gravity [1], one has to be careful regarding the stage at which this gauge freedom

can be harmlessly exercised.

Given the cosmological line element eq.(4), one can integrate the spatial dimensions out

of the above action to arrive at the reduced mini superspace [2] action S̃ =

∫

L dt. After

subtracting a total derivative, to get rid of the accompanying ä-term, the mini superspace

Lagrangian L takes the explicit form

L = −
(

1

6
a3V (φ)− kaφ

)

n−
(

ȧφ+ aφ̇
) aȧ

n
. (5)

Note that one can always return to the simpler GR case by setting φ = G−1, and choosing

the constant potential V (φ) = 2ΛG−1. At this stage our discussion trifurcates:

• Had we pre-fixed the lapse function, substituting (say) n(t) = 1 into eq.(5) before

conducting the variation, we could not have recovered, starting from L(a, ȧ, φ, φ̇), the correct
classical solution. Instead, already for the GR action, one would encounter a superfluous

matter density contribution, as is evident from the (integrated) Friedmann equation

ȧ2 + k

a2
− Λ

3
=
E

a3
. (6)
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This is a reflection the fact that the Hamiltonian constraint has been simply thrown away.

• Appreciating the cruicial role played by the lapse function at the mini superspace

model, Hartle and Hawking [2] have suggested, in the spirit of canonical quantum gravity,

to add n(t) to the list of canonical variables, so that L(n, ṅ, a, ȧ, φ, φ̇). The fact that the

momentum pn =
∂L
∂ṅ

happens to vanish constitutes a primary constraint. For the latter to

stay a constant of motion, consistency requires its Poisson’s brackets with the Hamiltonian

to weekly vanish, that is
dpn

dt
= {pn,H}P +

∂pn

∂t
≈ 0. (7)

To be more specific, demonstrating again for the simpler GR action eq.(1), the Hamiltonian

H = pnṅ + paȧ − L turns out to be proportional to n, thereby leading to the famous

Hamiltonian constraint

{pn,H}P = −H
n

=
1

a

(

p2a
4

+ ka2 − Λa4

3

)

= 0 . (8)

At the classical level, this ensures a vanishing ’mechanical energy’ E = 0. At the semi

quantum mechanical level [2–4], applying the standard operator assignment Pa → −i ∂
∂a

,

and up to the usual order ambiguity, one encounters the Wheeler-DeWitt equation [5]

H(pa, a)ψ(a) = 0 . (9)

Frustratingly, the cosmological wave function ψ(a), which is supposed to govern the quantum

mechanical evolution of the universe, happens to be time independent.

• Once n(t) is elevated to the level of a legitimate canonical variable, the question is whether

the canonical role of a(t) can be relaxed? In other words, can one harmlessly pre-fix a(t)

before conducting the variation? Serendipitously, the answer is in the affirmative. It is

crucial to notice, however, that the naive choice a(t) = const is forbidden (a tenable choice,

for example, is a(t) = t), as evolution gets frozen altogether, so that pre fixing the scale factor

necessarily introduces explicit time dependence into the Lagrangian, i.e. L(n, ṅ, φ, φ̇, t). In

turn, being ready to deviate from the Hartle-Hawking approach, this opens the door for

restoring time dependence into the cosmological wave function.

For the GR action eq.(1), with a(t) pre-fixed, the Euler Lagrange equation, which is

reduced now to
∂L
∂n

= −1

3
Λa3 + ka+

aȧ2

n2
= 0 , (10)
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does give rise to the correct algebraic equation for n(t) (rather than to a differential equation

for a(t)). The Hamiltonian constraint, while consistently reproducing eq.(10), is momentum

free, and therefore falls short of supporting a differential wave equation. This unfortunate

situation is going to be changed once the dilation field enters the game. In this respect,

the optional φ(t) becomes mandatory, and hence it is the DG-action eq.(2) which gets our

attention.

Given the Lagrangian eq.(5), with pre-fixed a(t) and its derivatives treated as explicit

functions of time, the corresponding momenta pn =
∂L
∂ṅ

and pφ =
∂L
∂φ̇

fail to determine the

velocities ṅ and φ̇. This, in turn, gives rise to the two primary constraints

Ø1 = pn ≈ 0, Ø2 = pφ +
a2ȧ

n
≈ 0 . (11)

It is crucial to notice that the Poisson brackets of these two constraints does not vanish. To

be specific, we have

{Ø1,Ø2}P =
a2ȧ

n2
6= 0 . (12)

The time dependent and strikingly momentum free naive Hamiltonian H = pnṅ+pφφ̇−L
is given by

H(n, φ, t) =

(

1

6
a3V (φ)− kaφ

)

n +
aȧ2φ

n
. (13)

However, as argued by Dirac [6], the Hamiltonian defined in this way is not uniquely de-

termined, and one may add to it any linear combination of the Ø’s, which are zero, and go

over to

H⋆ = H +
∑

i

uiØi . (14)

Consistency then requires the constraints be constants of motion, and as such, they must

weakly obey
dØi

dt
= {Øi,H}P +

∑

j

uj{Øi,Øj}P +
∂Øi

∂t
≈ 0 , (15)

which generalizes the previously discussed Hamiltonian constraint. Applying the latter to

our two primary constraints Ø1,2, one of which depends explicitly on time, we use the non-

vanishing Poisson brackets eq.(12) to calculate the coefficients ui. We find

u1(n, φ, t) =
k − 1

6
a2V ′(φ)

aȧ
n3 +

(

ȧ

a
+
ä

ȧ

)

n , (16)

u2(n, φ, t) =

(

1

6
V (φ)− kφ

a2

)

an2

ȧ
− ȧφ

a
. (17)
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Using Dirac’s terminology [6], substituting the u1,2(n, φ, t) coefficients into eq.(14) then

constitutes the so-called total Hamiltonian HT (pn, n, pφ, φ, t). As a re-check, one can easily

verify that
∂HT

∂pn
= u1 =

dn

dt
,
∂HT

∂pφ
= u2 =

dφ

dt
(18)

match the correct Lagrangian equations of motion stemming from L(n, ṅ, φ, φ̇, t), and fur-

thermore note that with u1,2 substituted, eqs.(15) are automatically satisfied. In other words,

HT (pn, n, pφ, φ, t) is all we need, without any additional constraints attached.

Given the non-vanishing Poisson brackets eq.(12), telling us that our two primary con-

straints are in fact second-class, the corresponding Dirac brackets take the form

{A,B}D = {A,B}P +
n2

a2ȧ
ǫij{A,Øi}P{Øj, B}P . (19)

It has been argued [7] that the Dirac brackets formula is supposed to get modified in the

presence of time depended constraints. To stay on the safe side, owing to the fact that only

one constraint is now time dependent, see eq.(11), we have verified that eq.(19) acquires

no such further modification (if at all) in the present case. If we wish to quantize the

HT (pn, n, pφ, φ, t) theory we should compute the Dirac brackets between all of our momenta

and coordinates so that these may be promoted to commutation relations. Doing so, we find

{n, pn}D = 0 , {n, φ}D = − n2

a2ȧ
, {n, pφ}D = 0 ,

{pn, φ}D = 0 , {pn, pφ}D = 0 , {φ, pφ}D = 1 .
(20)

Of particular interest are the somewhat surprising facts that:

• The two canonical coordinates n and φ no longer commute, suggesting perhaps an

underlying non-commutative geometry.

• n and pn do commute, as if they are classical objects, but such an unusual feature could

have actually been expected recalling the special role played by the pn=0 constraint.

• And in particular, φ and pφ continue to stay a canonical pair even under the Dirac

bracket formalism.

Elevating the above Poisson bracket to the level of commutation relations, and up to various

order ambiguities, one is led to a time dependent cosmological Schrodinger equation of the

generic type

HTψ(n, φ, t) = −i ∂
∂t
ψ(n, φ, t) . (21)
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A reduced variant of the latter can be constructed by substituting the constraints, in the

form of n = −a
2ȧ

pφ
accompanied by pn = 0 into the total Hamiltonian HT (pn, n, pφ, φ, t),

giving rise to the so-called reduced Hamiltonian HR(pφ, φ, t). This leads, without any lose

of generality, to a much simpler Schrodinger equation, namely

HRψ(φ, t) = −i ∂
∂t
ψ(φ, t) , (22)

which takies full advantage of the fact that φ, pφ = i
∂

∂φ
form a canonical pair. The metric

can then always be reconstructed via n = −a
2ȧ

pφ
.

Finally, arriving at the quantum stage, note the special pre-fix a(t) = aC(t), with aC(t)

being the classical scale factor solution. This way, the FLRW cosmic time returns to play a

role in quantum cosmology. A neat pedagogical example for aC(t) in DG gravity is provided

by the quadratic potential

V (φ) = λ

(

φ− 1

G

)2

+ 2GΛφ2 =⇒ Veff (φ) =
λ

3G

(

φ− 1

G

)2

. (23)

A few remarks regarding this potential are in order: (i) The VEV 〈φ〉 = 1

G
, which is stable

for λ > 0, is accompanied by a constant Ricci curvature solution R = −4Λ, corresponding to

a cosmological constant Λ. (ii) Counter intuitively, Veff(φ) is Λ-independent. The evolution

of the dilaton is controlled by Λ only indirectly, via the space-time metric, and (iii) In

the cosmological case, especially during creation, stability is clearly not an issue. On the

contrary, a linear potential for which λ = −2GΛ, implying λ < 0 for Λ > 0, namely

V (φ) = 4Λ

(

φ− 1

2G

)

, (24)

will certainly do, and can be used as the simplest example. In fact, associated with the

linear potential, is the classical solution

n2(t) =
ȧ2

Λ

3
a2 − k +

s

a2

, (25)

with the s-term (s being a constant of integration) interpreted as radiation density. aC(t) is

then the solution of the differential equation associated with n(t) = 1. All curvature scalars,

including the Kretschmann scalar, are smooth and non-singular at the instance of creation

for which the denominator vanishes.
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