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Abstract

We show that the noncritical string field theory developed from two-dimensional
quantum gravity in the framework of causal dynamical triangulations can be viewed
as arising through a stochastic quantization. This requires that the proper time
appearing in the string field theory be identified with the stochastic time of the
stochastic formulation. The framework of stochastic quantization gives rise to a
natural nonperturbative quantum Hamiltonian, which incorporates a sum over all
spacetime topologies. We point out that the external character of stochastic time is
a feature that pertains more generally to the proper time or distance appearing in
nonperturbative correlation functions in quantum gravity.
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1 Introduction

Time is a much-discussed and somewhat enigmatic quantity in classical and even
more so in quantum general relativity, where the reparametrization invariance adds
to the problem of quantizing the theory. Any attempt to shed additional light on
the role of time in a quantized theory of gravity is therefore of interest. Because
some of the structural issues concerning time persist also in two spacetime dimen-
sions, one may profitably study toy models of two-dimensional quantum gravity to
learn about their resolution. The group of spacetime diffeomorphisms still acts in
an analogous fashion to that in four-dimensional general relativity, while the quan-
tization can be carried out without having to deal with the problem of perturbative
nonrenormalizability present in the higher-dimensional, physical theory.

The present piece of work is concerned with the two-dimensional quantum gravity
known as Lorentzian quantum gravity or quantum gravity based on causal dynamical
triangulations (CDT). The name refers to the regularization in terms of dynamical,
triangulated lattices of the curved spacetimes appearing in the quantum field the-
ory, when formulated as a nonperturbative path integral in Lorentzian signature
[1, 2]. It turns out that in two dimensions a continuum limit can be taken analyt-
ically. In this paper we will assume this has been done, and work exclusively with
the resulting continuum theory. We will show that the string field theory we have
developed earlier [3] for the purpose of describing the splitting and joining in time
of spatial universes has a natural description as a stochastic quantization of space.
Recall that the original (and strictly causal) CDT quantization employs a global
proper-time foliation, with respect to which spatial topology changes are forbidden.
Generalizing this set-up by allowing isolated causality-violating points, space can
now split into disconnected components, which may or may not join again at a later
time, depending on what processes the model should incorporate. In a (quantum-)
gravitational theory, where geometry is defined intrinsically, this raises interesting
questions about the global nature of this proper-time variable. We showed in pre-
vious work that consistency relations hold among the simply connected quantum
amplitudes of the two-dimensional theory, which indicates that a global time in-
terpretation may persist in more complicated situations involving topology change
[4, 3].

Here we will demonstrate that the stochastic quantization coincides with the
string field theory, and therefore that the global proper time has a natural re-
interpretation as the stochastic time arising in a stochastic quantization of (one-
dimensional) space.1 This phenomenon is not unique to the CDT string field theory,
but was first observed in [6] in the context of a string field theory developed for non-
critical strings [5], after which the CDT construction is modelled. The relation with
stochastic quantization was also found independently in a reformulation of matrix

1Note that this differs from a “standard” stochastic quantization of gravity, where stochastic
time would appear in addition to the time already present as part of the spacetime geometry.
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models as collective field theories [7], indicating that we are dealing with a more
general phenomenon. Contrary to the rather intricate way in which it enters in two-
dimensional Euclidean quantum gravity (equivalently, noncritical string theory), the
relation is much more straightforward in the case of the Lorentzian CDT string field
theory. As we will see in the following, it can be put to use in a constructive manner
to find a number of quantum observables nonperturbatively, in the sense of being
able to evaluate them on a sum over all genera of two-dimensional spacetime.

Of course, the CDT formulation is primarily geared towards solving four-dimen-
sional quantum gravity. In this case the model cannot be solved analytically, but is
being investigated by computer simulations, which have already led to a number of
new and interesting results [8]. Among them are strong indications that the infrared
limit of the theory is just that of classical general relativity. Details of the ultraviolet
limit are still under investigation. Candidates for possible UV completions still
within a field-theoretical framework are (i) the asymptotic safety scenario with a
nontrivial UV fixed point [9, 10], (ii) the scale-invariant gravity model advocated
by Shaposhnikov et al. [11, 12], and (iii) the model of Lifshitz gravity suggested by
Hořava [13]. To the extent they can be compared, the structural set-up of the latter
is reminiscent of that of the CDT approach: one also works with an explicit, global
time foliation, and the infrared limit is that of general relativity, while the UV limit
– assuming it exists – is highly nonclassical and apparently undergoes a “dynamical
dimensional reduction” (also observed in [14]). Interestingly, the construction of the
anisotropic Lifshitz gravity models also bears a structural resemblance with that of
stochastic quantization, a fact already noted by Hořava [15].

The rest of the paper is organized as follows: in Section 2 we review briefly the
formalism of stochastic quantization, closely following reference [16]. In Section 3 we
introduce the CDT string field theory and show that it can be viewed as stochastic
quantization of space, if CDT proper time is identified with stochastic time. In
Section 4 we derive the corresponding nonperturbative Hamiltonian and discuss its
properties and interpretation. Section 5 summarizes our results and their possible
implications for the nature of time in quantum gravity..

2 Stochastic quantization

This section summarizes the key steps of the stochastic quantization formalism;
for more extended textbook treatments see, for example, [16, 17]. The Langevin
stochastic differential equation for a single variable x reads

ẋ(ν)(t) = −f
(

x(ν)(t)
)

+
√

Ω ν(t), (1)

where the dot denotes differentiation with respect to stochastic time t, ν(t) is a
Gaussian white-noise term of unit width and f(x) a drift force. We will only con-
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sider the case of dissipative diffusion where the drift force is conservative, that is,

f(x) =
∂S(x)

∂x
(2)

for some function S(x), a property which ensures the stochastic process satisfies the
principle of detailed balance (see e.g. [16]). Without the noise term, (1) reduces
to a relaxation equation. In that case – depending on the initial value x0 = x(0) –
x(t) will move towards the “nearest” local minimum of S(x) or run away if there
is no minimum which can be reached from x0 by decreasing S(x). When the noise
term is added, x(t) will be kicked around close to a minimum. If there are several
local minima, the noise term can kick it from one to another and also to a region
of no minimum if it exists. In this manner the noise term creates a probability
distribution of x(t), reflecting the assumed stochastic nature of the noise term, with
an associated probability distribution

P (x, x0; t) =
〈

δ(x− x(ν)(t; x0))
〉

ν
, (3)

where the expectation value refers to an average over the Gaussian noise. It can be
shown that P (x, x0; t) satisfies the so-called Fokker-Planck equation

∂P (x, x0; t)

∂t
=

∂

∂x

(

1

2
Ω
∂P (x, x0; t)

∂x
+ f(x)P (x, x0; t)

)

. (4)

This is an imaginary-time Schrödinger equation, with
√

Ω playing a role similar to
~. It enables us to write P as a propagator for a Hamiltonian operator Ĥ,

P (x, x0; t) = 〈x|e−tĤ |x0〉, Ĥ =
1

2
Ωp̂2 + ip̂ f(x̂), (5)

with initial condition x(t = 0) = x0, and p̂ = −i∂x. It follows that by defining

G̃(x0, x; t) ≡
∂

∂x0
P (x, x0; t) (6)

the function G̃(x0, x; t) satisfies the differential equation

∂G̃(x0, x; t)

∂t
=

∂

∂x0

(

1

2
Ω
∂G̃(x0, x; t)

∂x0
− f(x0) G̃(x0, x; t)

)

. (7)

An explicit example, relevant to the further development of the paper, is given by

S(x) =
x3

3
− lx. (8)

This polynomial function has a local minimum at x =
√
l, a local maximum at

x = −
√
l and is unbounded from below when x → −∞. It follows that in absence
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of the noise term – corresponding to the classical, unquantized system – the point√
l is an attractive fixed point for the classical equation (1) since for all x0 > −

√
l,

x(t) will approach
√
l as t → ∞. For x0 < −

√
l we have a run-away solution and

x(t) → −∞ in a finite time. Omitting the noise term corresponds to taking the limit
Ω → 0. One can then drop the functional average over the noise in (3) to obtain

Pcl(x, x0; t) = δ(x− x(t, x0)), G̃cl(x0, x; t) =
∂

∂x0
δ(x− x(t, x0)). (9)

It is readily verified that these functions satisfy eqs. (4) and (7) with Ω = 0, for
instance,

∂G̃cl(x0, x; t)

∂t
=

∂

∂x0

(

(l − x2
0) G̃cl(x0, x; t)

)

. (10)

3 Quantum dynamics of 2d causal triangulations

Quantum gravity defined through causal dynamical triangulations aims to construct
and evaluate the nonperturbative, Lorentzian path integral over spacetime geome-
tries [gµν ], with or without matter coupling. In dimension two, and assuming we
already have performed a rotation to Euclidean signature (this is well defined in
CDT), this approach gives a definite meaning to the formal (Euclideanized) sum
over histories

Z(GN, l) =

∫

D[gµν ] e−S[gµν ], (11)

where the (Euclidean) Einstein-Hilbert action is given by

S[gµν ] = − 1

2πGN

∫

d2ξ
√

det gµν R + l

∫

d2ξ
√

det gµν , (12)

with Newton’s constant GN and the cosmological constant λ.
One thus proceeds in several steps: first the CDT lattice regularization is used

to define the path integral, still with Lorentzian signature. Next, a rotation to
Euclidean signature is performed at the level of the individual triangulations. We
refer the reader to the original articles [18, 1] or the recent review [19] for details.
The resulting real, Euclidean path integral of the form (11) will however differ
from a standard one since we insist as part of the kinematical set-up that each
path (spacetime history) possess a global time-foliation.2 One then performs a
continuum limit by shrinking the individual triangular building blocks to zero size
(“removing the regulator”), while tuning the coupling constant(s) appropriately.
This can be done analytically in the original, strictly causal CDT quantum gravity
model. Key quantities one can compute in the limit and which contain information

2This is a “remnant” of the corresponding structure in the original Lorentzian spacetimes, which
ensures they are well-behaved causally.
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about the underlying quantum geometry of this continuum theory are so-called “loop
amplitudes”. An important example is the amplitude denoted by G0(l0, l; t)/l0 that
(one-dimensional, compactified) space has length l0 at proper time t = 0 and length
l at a later proper time t. The quantity G0(l0, l; t) without the normalization factor
1/l0 has the same interpretation as a transition amplitude, but with a distinguished
marked point on the initial spatial loop l0 (the marking removes the symmetry factor
1/l0). It is convenient to introduce the Laplace transform G̃0 of G0 by

G̃0(x0, x; t) =

∫ ∞

0

dl0

∫ ∞

0

dl e−x0l0−xlG0(l0, l; t), (13)

where the variables x0 and x can be interpreted as boundary cosmological constants.
In the original paper on two-dimensional CDT quantum gravity [18] it was shown
that G̃0(x0, x; t) satisfies the differential equation

∂G̃0(x0, x; t)

∂t
=

∂

∂x0

(

(l − x2
0) G̃0(x0, x; t)

)

. (14)

Note that (up to a minus sign) G̃0(x0, x; t) is obtained from the Laplace transform
of G0(l0, l; t)/l0 by differentiating with respect to x0, in the same way as G̃(x0, x; t)
in eq. (6) was obtained from P (x, x0; t).

Comparing now eqs. (14) and (10), we see that we can formally re-interpret
G̃0(x0, x; t) – an amplitude obtained by nonperturbatively quantizing Lorentzian
pure gravity in two dimensions – as the “classical probability” G̃cl(x0, x; t) corre-
sponding to the action S(x) = −lx + x3/3 of a zero-dimensional system in the
context of stochastic quantization. Stochastic quantization of the system amounts
to replacing

G̃0(x0, x; t) → G̃(x0, x; t), (15)

where G̃(x0, x; t) satisfies the differential equation corresponding to eq. (7), namely,

∂G̃(x0, x; t)

∂t
=

∂

∂x0

(

g
∂

∂x0
+ l − x2

0

)

G̃(x0, x; t). (16)

For reasons which will become apparent below, we have introduced the parameter
g := Ω/2. Before turning to the physical interpretation of eq. (16), let us calculate
the so-called Hartle-Hawking wave function, which in the CDT string field theory3

is defined as

W̃ (x0) =

∫ ∞

0

dt G̃(x0, l = 0; t). (17)

The integrand G̃(x0, l; t) is obtained from G(l0, l; t) by making a Laplace transfor-
mation (as in (13)) only of l0 and not of l. By construction, W̃ (x0) accounts for all

3i.e. isolated branchings and mergings are now allowed
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spacetime histories starting with a single spatial loop of any length and ending in
“nothing” (the loop of length zero) at an arbitrary later time. For physical reasons
we demand that the solution to (16) should obey

G(l0, l; t = 0) = δ(l − l0), G(l0, l; t = ∞) = 0, (18)

conditions which also hold for the pure-gravity amplitude G0(l0, l; t) without topo-
logy change. Integrating relation (16) from time t = 0 to infinity we obtain

− 1 =
∂

∂x0

(

g
∂

∂x0

+ l − x2
0

)

W̃ (x0). (19)

This is precisely the differential equation for W̃ (x0) obtained recently [20] from a
matrix model representation of CDT string field theory if g was identified with
the string coupling constant, associated with the merging or splitting of spatial
universes as a function of time t. Just as in the original pure-gravity CDT model,
the parameter t in the string field theory was identified with proper time. We now
see that within the extended CDT framework, where topology change is allowed,
this time acquires a new interpretation as stochastic time and the CDT string field
theory that of a stochastic quantization.

Note that eqs. (16) and (19) are highly nonperturbative in the sense of describ-
ing a third-quantized system of geometry, incorporating topology changes of space.
Eq. (19) for W̃ (x0) was originally derived in a matrix model representation of the
CDT string field theory.4 What we have done here is to derive these expressions
by applying “blindly” the rules of stochastic quantization, treating “x” as an ordi-
nary variable, like the position of a particle, whereas in reality x is the boundary
cosmological constant introduced by the Laplace transformation (13). A variable
with a more direct physical interpretation is the conjugate length variable l of the
boundary, measuring the size of the spatial universe. The Hamiltonian as a function
of this physical length can be obtained by an inverse Laplace transform from the
“classical” Hamiltonian Ĥ0 = −d/dx(l − x2) from (5) with Ω = 0, leading to

Ĥ0(l) = −l d2

dl2
+ l l. (20)

This is a standard Hermitian operator on wave functions ψ(l) on the positive real
axis, which are square-integrable with respect to the scalar product

〈ψ1|ψ2〉 =

∫ ∞

0

dl

l
ψ∗

1(l)ψ2(l). (21)

The scalar product is fixed uniquely by requiring appropriate composition properties
of the propagator G0(l0, l; t) [1]. The eigenfunctions ψn(l) of Ĥ0(l) are the states

4for a rescaled version in terms of dimensionless parameters; c.f. eq. (30) of ref. [20]
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of the spatial universe which are propagated unchanged by Ĝ0 = e−tĤ0 with kernel
Ĝ0(l1, l2; t). When we Laplace-transform this to x-space the scalar product to be
used is the one inherited from l-space. For instance, the Laplace transform of δ(l1 −
l2) is 1/(x + y), which acts like the appropriate δ-function in x-space. In other
words, the physically motivated boundary conditions are different from the ones
one would choose if x were a standard configuration space variable. Likewise, an
acceptable eigenfunction of Ĥ0(x) is not a standard square-integrable function on
the real x-axis. Consequently, instead of (9) we should use

G̃0(x0, x; t) =
d

dx0

(

1

x(t, x0) + x

)

= −x
2(t, x0) − l

x2
0 − l

1

(x(t, x0) + x)2
. (22)

Despite these differences compared to the situation in “ordinary” x-space the
formal derivation of stochastic quantization is unchanged. A neat geometric inter-
pretation of how stochastic quantization can capture topologically nontrivial ampli-
tudes has been given in [6]. Applied to the present case, we can view the propagation
in stochastic time t for a given noise term ν(t) as classical in the sense that solving
the Langevin equation (1) for x(ν)(t) iteratively gives precisely the tree diagrams
with one external leg corresponding to the action S(x) (and including the derivative
term ẋ(ν)(t)), with the noise term acting as a source term. Performing the functional
integration over the Gaussian noise term corresponds to integrating out the sources
and creating loops, or, if we have several independent trees, to merging these trees
and creating diagrams with several external legs. If the dynamics of the quantum
states of the spatial universe takes place via the strictly causal CDT-propagator
Ĝ0 = e−tĤ0 , a single spatial universe of length l cannot split into two spatial uni-
verses. Similarly, no two spatial universes are allowed to merge as a function of
stochastic time. However, introducing the noise term and subsequently performing
a functional integration over it makes these processes possible. This explains how
the stochastic quantization can automatically generate the amplitudes which are
introduced by hand in a string field theory, be it of Euclidean character as described
in [6], or within the framework of CDT.

What is new in the CDT string field theory considered here is that we can use
the corresponding stochastic field theory to solve the model, since we arrive at closed
equations valid to all orders in the genus expansion. Equations (16) and (19) are
such examples. Translating them to l-space and using the boundary conditions
W (l = 0) = 1 and G(l0 = 0, x; t) = 0 (because the loop of length l0 is marked), we
obtain from (19)

Ĥ(l)W (l) = 0, (23)

which is a Wheeler-deWitt type equation for the spatial universe. In addition, we
have

∂G(l0, l; t)

∂t
= −Ĥ(l0)G(l0, l; t), (24)
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where the extended Hamiltonian

Ĥ(l) = −l ∂
2

∂l2
+ ll − gl2 (25)

now has an extra potential term coming from the inclusion of branching points.5

Eq. (23) is readily solved in terms of the Airy function Bi, namely,

W (l) =
Bi
(

l
g2/3

− g1/3l
)

Bi
(

l
g2/3

) , (26)

while
G(l0, l; t) = 〈l|e−tĤ(l)|l0〉 (27)

describes the nonperturbative propagation of a spatial loop of length l0 to a spatial
loop of length l in proper (or stochastic) time t, now including the summation over
all genera. The Hamiltonian Ĥ(l) is a well-defined Hermitian operator with respect
to the measure (21).

4 The extended Hamiltonian

Let us recap the results of the original CDT model, where space was not allowed
to split into disconnected parts [18, 1, 19]. We have a Hamiltonian Ĥ0(l) and a
corresponding eigenvalue equation

Ĥ0(l)ψn(l) = Enψ
(0)
n (l), Ĥ0(l) = −l ∂

2

∂l2
+ ll. (28)

The eigenfunctions and eigenvalues are given by

ψ(0)
n (l) = pn(l) e−

√
ll, En = 2n

√
l, n = 1, 2, . . . , (29)

where the pn(l) are polynomials in
√
ll and pn(0) = 0. Furthermore, we have

Ĥ0(l)W0(l) = 0, W0(l) = e−
√

ll, (30)

where W0(l) is the Hartle-Hawking wave function of the original CDT model and
relations (30) are the counterparts of (23) and (26) when g = 0. Formally, the
amplitude W0(l) is a solution to eq. (28) with eigenvalue E = 0. However, E = 0

5Since in the derivation of Ĥ(l) we considered only loop-loop amplitudes (as opposed to arbitrary
multi-loop amplitudes), this Hamiltonian seems to capture only a sector of the full dynamics of
the string field theory. To what extent Ĥ(l) already incorporates the complete dynamics in some
“effective” way – as suggested by the fact that it does contain an infinite genus summation – is an
issue that remains to be understood better.
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does not belong to the spectrum of Ĥ0 since W0(l) is not integrable at zero with
respect to the measure (21). Exactly the same is true for the extended Hamiltonian
Ĥ(l) and the corresponding Hartle-Hawking amplitude W (l). – In order to analyze
the spectrum of Ĥ(l), it is convenient to put the differential operator into standard
form. After a change of variables

l =
1

2
z2, ψ(l) =

√
zφ(z), (31)

the eigenvalue equation becomes

Ĥ(z)φ(z) = Eφ(z), Ĥ(z) = −1

2

d2

dz2
+

1

2
lz2 +

3

8z2
− g

4
z4. (32)

This shows that the potential is unbounded from below, but such that the eigenvalue
spectrum is still discrete6. For small g, there is a large barrier of height l2/(2g)
separating the unbounded region for l > l/g from the region 0 ≤ l ≤ l/(2g) where
the potential grows. This situation is perfectly suited to applying a standard WKB
analysis. For energies less than l2/(2g), the eigenfunctions of Ĥ0(l) will be good
approximations to those of Ĥ(l). However, when l > l/g the exponential fall-off of

ψ
(0)
n (l) will be replaced by an oscillatory behaviour, with the wave function falling off

only like 1/l1/4. The corresponding ψn(l) is still square-integrable since we have to
use the measure (21). For energies larger than l2/(2g), the solutions will be entirely
oscillatory, but still square-integrable.

What follows from our analysis is that a dramatic change has occurred in the
quantum behaviour of the one-dimensional universe as a consequence of allowing
topology changes. In the original, strictly causal quantum gravity model an eigen-
state ψ

(0)
n (l) of the spatial universe had an average size of order 1/

√
l, increasing

as a function of energy. Allowing for topology changes (and assuming g suitably

small and n not too large), only the large-l tail of ψ
(0)
n (l) will change. As a result,

the probability |ψn(l)|2/l for finding a universe with size in the interval [l, l + dl] is
almost unchanged as long as l < l/g. However, the average size of the universe is
now infinite! We see now that the oscillatory behaviour of the amplitude W (l) for
l > l/g already observed in [20] can be understood as a consequence of l lying in
the region where the potential in Ĥ(l) is unbounded below.

We still need to choose a selfadjoint extension of Ĥ(l) such that the spectrum of
Ĥ(l) can be determined unambiguously. One way of doing this is to appeal again to
stochastic quantization, following the strategy used by Greensite and Halpern [22],

6Whenever the potential is unbounded below with fall-off faster than −z
2, the spectrum is

discrete, reflecting the fact that the classical escape time to infinity is finite. In this way, the
unbounded potential behaves effectively like a finite box. In addition, like in the case of a box,
there exists a one-parameter family of selfadjoint Hamiltonians, depending on the specific choice
of boundary condition one imposes at infinity. See reference [21] for a more detailed discussion
relevant to the present situation.
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which was applied to the double-scaling limit of matrix models in [23, 24, 21]. The
Hamiltonian (5) corresponding to the Fokker-Planck equation (16), namely,

Ĥ(x)ψ(x) = −gd2ψ(x)

dx2
+

d

dx

(

dS(x)

dx
ψ(x)

)

, S(x) =

(

x3

3
− l x

)

, (33)

is not Hermitian if we view x as an ordinary real variable and wave functions ψ(x) as
endowed with the standard scalar product on the real line. However, by a similarity
transformation one can transform Ĥ(x) to a new operator

H̃(x) = e−S(x)/2gĤ(x) eS(x)/2g; ψ̃(x) = e−S(x)/2gψ(x), (34)

which is Hermitian on L2(R, dx). We have

H̃(x) = −g d2

dx2
+

(

1

4g

(

dS(x)

dx

)2

+
1

2

d2S(x)

dx2

)

, (35)

which after substitution of the explicit form of the action becomes

H̃(x) = −g d2

dx2
+ V (x), V (x) =

1

4g
(l − x2)2 + x. (36)

The fact that one can write

H̃(x) = R̂†R̂, R̂ = −√
g

d

dx
+

1

2
√
g

dS(x)

dx
(37)

implies that the spectrum of H̃(x) is positive, discrete and unambiguous. We con-
clude that the formalism of stochastic quantization has provided us with a nonper-
turbative definition of the CDT string field theory.

5 Summary and discussion

In this paper we have shown that there is an alternative derivation, using stochas-
tic quantization, of the CDT string field theory introduced earlier in [3, 20]. The
stochastic quantization is not performed for the initial path integral over all space-
time geometries, but at the level of the effective continuum dynamics of the spatial
geometry of the universe, which for the case of gravity in 1+1 dimensions is de-
scribed by a single variable, the universe’s size or length. Interestingly, in order
for the equivalence to hold, we had to identify the stochastic time of the construc-
tion with the proper time of the original CDT model. As a bonus, the stochastic
quantization naturally led us to a nonperturbative definition of the CDT string field
theory. This is nontrivial, because the theory contains a sum over all spacetime
topologies. Our construction mirrored that of Kawai et al. [6], who were the first to

11



observe (in a Euclidean context) that the noncritical string field theory developed
by them could be viewed as a stochastic quantization of space, with stochastic time
playing the role of proper time in the corresponding two-dimensional quantum grav-
ity theory. Physically, the two string field theories are of course different. In the
CDT case we were able to push the formalism further to obtain an explicit quantum
Hamiltonian and analyze its spectral properties.

At first sight, it may seem curious that stochastic time – usually thought of as a
fictitious, external parameter – makes an appearance as the “time” of a quantum-
gravitational theory. However, it may be argued that the external character of this
particular distance parameter is something found more generally in the construc-
tion of diffeomorphism-invariant correlation functions in nonperturbative quantum
gravity. As a simple example, consider the case of a scalar field φ coupled to (Eu-
clidean) quantum gravity in two dimensions. A diffeomorphism-invariant definition
of a two-point correlator can be obtained by integrating over all pairs of insertion
points of the matter fields which are a geodesic distance R apart, that is,

〈φ(R)φ(0)〉 =

∫

D[gµν(ξ)]

∫

Dφ(ξ) e−S(gµν ,φ) (38)

×
∫

d2ξ1
√

det g(ξ1)

∫

d2ξ2
√

det g(ξ2) φ(ξ1)φ(ξ2) δ(Dg(ξ1, ξ2) −R). (39)

The function Dg(ξ1, ξ2) appearing in the argument of the δ-function denotes the
geodesic distance between the points labelled ξ1 and ξ2. As indicated by the notation,
this distance depends on the other dynamical field variable, the metric gµν(ξ).

In this construction, the geodesic distance R is fixed outside the functional inte-
gral, and therefore may be regarded as external. It does not refer to any particular
metric, but is the geodesic distance in all geometries entering in the functional in-
tegral simultaneously. From this point of view it is of course intimately related to
the dynamical quantum properties of the ensemble. In particular, R can have gen-
uine quantum properties, for example, it can scale noncanonically. The proper time
appearing in the description of the “world sheets” of the string field theories has a
similar status. It is a notion of time which is defined invariantly (in this case as
the “geodesic distance to a one-dimensional boundary”), and superimposed on an
ensemble of geometries.

It is precisely this notion of proper time which in both Euclidean and Lorentzian
two-dimensional quantum gravity with topology change (a.k.a. string field theory in
zero-dimensional target space) apparently is equivalent to stochastic time. Although
in our present derivation the third-quantized nature of the construction appeared in
an essential way, the argument about the “external” nature of this time in correlation
functions we made above appealed neither to the inclusion of nontrivial topology
nor the dimensionality of spacetime. This suggests that stochastic time may play a
role in these more general situations too, a line of enquiry that is currently under
investigation.
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