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Spacetime is spinorial; new dimensions are
timelike

George A.J. Sparling

Laboratory of Axiomatics
University of Pittsburgh

Pittsburgh, Pennsylvania, 15260, USA

Since Pythagoras of Samos and Euclid of Alexandria1, we have
known how to express the squared distance between entities as
the sum of squares of displacements in perpendicular directions.
Since Hermann Minkowski2 and Albert Einstein3, the squared in-
terval between events has acquired a new term which represents
the square of the time displacement and which comes in with a
negative sign. Most higher dimensional theories, whose aimis
to unify the physical interactions of nature, use space-like extra
dimensions (more squares with positive signs) rather than time-
like (more squares with negative signs)[4−8]. But there need be
no contradiction if timelike extra dimensions are used: forexam-
ple, in the seminal work of Lisa Randall and Raman Sundrum8,
consistency can be achieved by replacing their parametersr2

c and
Λ by −r2

c and −Λ, respectively. Here a new spinorial theory of
physics is developed, built on Einstein’s general relativity3 and
using the unifying triality concept of Elie Cartan9,10: the trial-
ity links space-time with two twistor spaces[9−14]. Unification en-
tails that space-time acquires two extra dimensions, each of which
must be time-like. The experimental device known as the Large
Hadron Collider, which is just now coming online, is expected to
put the higher-dimensional theories and this prediction inpartic-
ular to the test15,16.



The present theory has three key features:

• A powerful new spinor transform is constructed in general relativity, theΞ-
transform, solving a forty-year old problem posed by Roger Penrose[11−14]:
to find a non-local, essentially spinorial approach to fundamental physics.

• It gives a co-ordinate free definition of chaos for space-times. Typical defi-
nitions of chaos use a preferred time co-ordinate, for example to define the
Lyapunov exponents17, violating the basic principles of general relativity.

• It rounds out the ”primordial theory” of the author and Philip Tillman9,18,29,
which supposes that there is a triality symmetry of the type developed by
Elie Cartan10, associated with the real Lie groupO(4, 4). In particular trial-
ity requires that space-time extends minimally to six-dimensions, of signa-
ture(3, 3), so it predictstwo extra timelike dimensions.

The triality links real vector spacesA, B andC, each of dimension eight and each
with a dot product of signature(4, 4), by a real-valued trilinear form,(xyz), for x

in A, y in B andz in C9,10,18. Dualizing gives mapsA×B → C, B×C → A and
C × A → B, denoted by parentheses9,18. Then, for example,((xy)x) = x.x y,
and(xy).z = (zx).y = (yz).x = (xyz), for anyx, y andz in A, B andC9,18.

Fix a null vectory 6= 0 in B. The setNy, of all x in A, such that(xy) = 0 is
a totally null, self-dual, four-dimensional subspace ofA. The restriction toNy of
the three-formωx = x∧dx∧dx∧dx, factors:ωx = τ(y⊗y)αx, whereτ is a canon-
ical isomorphism of the space of trace-free symmetric elements ofB⊗B with the
space of self-dual elements of the fourth exterior product of A with itself (each
space has dimension35) andαx is an ordinary three-form, homogeneous of de-
grees minus four and minus two in the variablesx andy, respectively. For integral
k, denote byH(A, k) the space of smooth functionsf(x), defined for non-zero
null vectorsx in A, that are homogeneous of degreek: f(tx) = tkf(x), for any
non-zero realt. DefineH(B, k) andH(C, k) analogously. Forf(x) ∈ H(A,−4),
the following integral is well-defined:

ΞB

A
(f)(y) =

∫
Ny−{0}

f(x)αx.

The integral is taken over a oriented three-sphere in the space Ny − {0}, sur-
rounding the origin. The output functionΞB

A
(f) belongs toH(B,−2), soΞB

A
gives

a natural integral transformation: ΞB

A : H(A,−4) → H(B,−2), theΞ-transform.
There aresixsuch transforms, one for each ordered pair from the set{A, B, C}.
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Now the work of Robin Graham, Ralph Jenne, Lionel Mason and the author19

yields a canonical conformally invariant second order differential operator,�A,
mappingH(A,−2) to H(A,−4), with analogous operators�B and�C for the
spacesB andC, respectively. The first major result is:

�B ◦ ΞB

A
= ΞB

A
◦ �A = 0.

Thephysical interpretationis that the space of null rays inA is a six-dimensional
generalization of Minkowski spacetime (equipped with a conformal structure of
signature(3, 3)), into which the ordinary Minkowksi spacetime naturally embeds
(see below), whereas the null rays inB andC are six-dimensional spaces of null
twistors, whose real scaling is factored out[11−14]. Then theΞ-transform gives
a six-fold binding togetherof these spaces, transferring information between the
spaces, withlossesquantified by the wave operator.

Shockingly, this transform generalizes to anarbitrary four-dimensional space-
timeM, with metricg. Let ǫ denote the complex spinor symplectic form ofM, so
thatg = ǫ⊗ǫ (the bar denotes complex conjugation)13. Denote byS∗ the co-spinor
bundle of all pairs(x, π) with x in M andπ a non-zero co-spinor atx. Each such
co-spinorπ naturally represents a future pointing non-zero null co-vector denoted
pπ, such thatptπ = |t|2pπ, for any complex numbert 6= 013. The null geodesic
sprayN is the vector field onS∗, whose integral curves represent a null geodesic
with a parallely propagated spinorπ 6= 0, such thatg−1(pπ) is tangent to the null
geodesic. For integralk, denote byT (k) the space of alltwistor functionsf(x, π)
of degreek: soN (f) = 0 andf(x, tπ) = tkf(x, π), for anyreal numbert 6= 013.
Note that the elements ofT (k) depend on six free real variables.

Forf(x, π) in T (−4), the generalΞ-transform is given by the integral formula:

Ξ(f)(γ(η)) = i

∫
Γγ(η)

f(x, π)ǫ−1(π, dπ) ∧ ǫ−1(π, dπ) ∧ θ.pπ.

Hereθ is the vector-valued canonical one-form ofM, pulled back to the co-spin-
bundle and the dot represents the canonical pairing of a co-vector and a vector.
Also dπ is the tautological co-spinor-valued one-form on the co-spin-bundle rep-
resenting the Levi-Civita spin connection. Nextγ(η) is a future-pointing null
geodesic inM with parallely propagated non-zero spinorη, such thatg−1(pη) is
tangent to the null geodesic. FinallyΓγ(η) is a ”fattened” null geodesic: the three-
manifold consisting of all triples(x, π, η) with π andη co-spinors atx, such that
x lies inγ(η) and{π, η} is anormalizedspin-frame:π ⊗ η − η ⊗ π = ǫ.
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It is easily checked thatΞ(f) ∈ T (−2), so we have anatural non-local spinor
transform, called theΞ-transform fromT (−4) to T (−2). This transform then is
the long-sought answer to Penrose’s challenge. It has the following properties:

• It is conformally invariant.

• It uses thephaseof the spinors in an essential way: the space of null
geodesics in space-time is five-real dimensional; the sixthvariable in our
theory is the spinor phase.

• Mutatis mutandis, for the case of conformally flat space-time, it is equiva-
lent to theΞC

B
transform described above.

• In conformally flat space-time, there is a natural conformally invariant op-
erator, denoted�, mappingT (−2) to T (−4), such that�◦Ξ = Ξ◦� = 0.

• It completes the ”primordial theory” providing the analytical component to
accompany the previous geometric and algebraic constructions and showing
how to extend that theory to curved space-time18,29,30.

We would like to understand the meaning of theΞ-transform. Of principal interest
is the nature of its image. On the basis of examination of the transform in various
prototypical space-times, particularly those of DevendraKapadia and the author20,
we are led to the following definition:

• The space-time iscoherentif and only if the image of theΞ-transform obeys
apseudo-differential equation; if not the space-time is said to bechaotic.

We view the coherence condition as a resonance or tuning of the space-time; in
particular it isnon-perturbativein character. We conjecture that all space-times
that have previously been treated by twistor methods are coherent: for example,
the stationary axi-symmetric space-times, as analyzed by Richard Ward21. These
include the fundamental space-times of physical interest:the solutions of Karl
Schwarzschild22 and Roy Kerr23. Similarly we conjecture that the space-times
of Vladimir Belinski, Isaak Khalatnikov and Evgeny Lifshitz24 are chaotic in our
sense.
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The triality spaces have conformal symmetry group the groupO(4, 4). We need to
reduce this toO(2, 4) to give the conformal symmetries of Minkowksi space-time.
Also, for the two twistor spaces, we need to reduce toU(2, 2), to recover the stan-
dard successful quantum twistor description of massless particles in terms of sheaf
cohomology, due to Lane Hughston, Penrose and the author11,13. Surprisingly, we
can achieve these reductions with a common mechanism: a conformal symme-
try of rotational type, whose orbits are circles about a four-dimensional invariant
”axis”: the conformally compactified Minkowki space-time.We may write the
equation of the null cone ofA asqq = rr, whereq andr are non-zero quater-
nions, and the bar denotes the conjugation of quaternions. Then the rotations are
(q, r) → (q, eitre−it), for t real, wherei 6= 0 is a unit imaginary quaternion. The
axis comprises all pairs(q, r) with r = u+iv, for u andv real. Thenqq = u2+v2,
giving the correctO(2, 4) structure. Simultaneously, the operatori automatically
gives the other triality spaces their needed complex structures, allowing the cor-
rect definitions of sheaf cohomology and massless particles.

Remarkably this same idea extends to an arbitrary space-time. The conventional
space-time structure whose information we wish to preserveis the Fefferman
tensorF = iθa ⊗ (πAdπA′ − πA′dπA), using the abstract index formalism of
Penrose14, which is defined on the spin-bundle and which plays three roles: its
skew part is the form used by Edward Witten25 to control the space-time energy;
the exterior derivative of the skew part gives rise to a form which controls the Ein-
stein field equations26; its symmetric part gives thecentral fact of twistor theory
and, in particular controls the hypersurface twistor theory26,27.

This structure extends naturally and beautifully to six-dimensional space-time,
necessarily of signature(3, 3), where the tensor is now given simply by the for-
mula:F = θαβ⊗παdπβ; here the co-spinors,πα, of real dimension four, transform
according to a fundamental representation of the groupSL(4, R); also the canon-
ical one-formθαβ is skew, so has the requisite six degrees of freedom. There are
two main points. First on restriction to the original space-time submanifold, the
spinors lose no information, the correspondence beingπα → (πA′ , πA). Second,
in general, the six-dimensional spin connectiond would have extra terms of spin
two over and above those of general relativity, on restriction to the space-time.
However these terms can be eliminated by precisely the same mechanism that for
conformally flat space allows the correct definition of massless particles: we re-
quire that there be a conformal Killing symmetry of rotational type, whose axis is
the space-time.
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So we predict that spacetime extends to six dimensions, of signature(3, 3), with
a rotational symmetry: this means that the effective structure is the anti-de-Sitter
group, allowing contact with the important work of Juan Maldacena28; also from
the viewpoint of the work of Randall and Sundrum7,8, space-time appears as a kind
of brane or orbifold, the main difference with the philosophy of their work being
the difference over signature. Further we can now systematically go through the
canon of string theory, appropriately adapting its concepts to the present situation,
thereby achieving at least the outline of a synthesis for basic physics. In particu-
lar the fundamental string amplitude, the so-called ”trouser-pants” diagram4, will
become an amplitude relating three strings, one in each of threedifferentspaces,
one being the extended space-time and the others being the two twistor spaces. Fi-
nally the three spaces will be linked by the fundamental quantum fermionic fluid
of Shou-Cheng Zhang and Jiangping Hu29,18, the spaces arising at the boundaries
of the fluid, the excitations at the boundary giving rise to the structure of the
spaces.
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