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Abstract

We perform an extension of the relation between the Nambu-Goto action
and qubit theory. Of course, the Cayley hyperdeterminant is the key mathe-
matical tool in such generalization. Using the Wick rotation we find that in
four dimensions such a relation can be established no only in (2+2)-dimensions
but also in any signature. We generalize our result to a curved space-time of
(22n+22n)-dimensions and (22n+1+22n+1)-dimensions.
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Some years ago, Duff [1] discovers hidden new symmetries in the Nambu-
Goto action [2]-[3]. It turns out that the key mathematical tool in such a
discovery is the Cayley hyperdeterminant [4]. In this pioneer work, however,
the target space-time turns out to have an associated (2 + 2)-signature, cor-
responding to two time and two space dimensions. It was proved in Ref.
[5]-[6] that the Duff’s formalism can also be generalized to (4 + 4)-dimensions
and (8 + 8)-dimensions. Here, we shall prove that if one introduces a Wick
rotations for various coordinates then one can actually extend the Duff’s pro-
cedure to any signature in 4-dimensions. Moreover, we also prove that our
method can be extended to curved space-time in (22n + 22n)-dimensions and
(22n+1 + 22n+1)-dimensions.

There are a number of physical reasons to be interested on these develop-
ments, but perhaps the most important is that eventually our work may be
useful on a possible generalization of the remarkable correspondence between
black-holes and quantum information theory (see Refs. [7]-[10] and references
therein).

Let us start recalling the Duff’s approach on the relation between the
Nambu-Goto action and the (2 + 2)-signature. Consider the Nambu-Goto
action [2]-[3],

S =
∫

dξ2
√

ǫ det(∂axµ∂bxνηµν). (1)

Here, the space-time coordinates xµ are real function of two parameters (τ , σ) =
ξa and ηµν is a flat metric, determining the signature of the target space-time.
Moreover, the parameter ǫ takes the values +1 or −1, depending whether the
signature of ηµν is Euclidean or Lorenziana, respectively.

It turns out that by introducing the world-sheet metric gab one can prove
that (1) is equivalent to the action [11] (see also Ref. [12] and references
therein)

S =
∫

dξ2
√

−ǫ det ggab∂ax
µ∂bx

νηµν , (2)

which is, of course, the Polyakov action (see Ref. [12] and references therein).
In fact, from the expression

∂ax
µ∂bx

νηµν −
1

2
gabg

cd∂cx
µ∂dx

νηµν = 0, (3)

obtained by varying the action (2) with respect to gab, it is straightforward to
show that from (2) one obtains (1) and vise versa. Hence, the actions (1) and
(2) are equivalents.

It is convenient to define the induced world-sheet metric
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hab ≡ ∂ax
µ∂bx

νηµν . (4)

Using this definition, the Nambu-Goto action (1) becomes

S =
∫

dξ2
√

ǫ det(hab). (5)

It is not difficult to see that in (2 + 2)-dimensions the expression (4) can
be written as

hab = ∂ax
ij∂bx

klεikεjl, (6)

where xij denotes a the 2× 2- matrix

xij =

(

x1 + x3 x2 + x4

−x2 + x4 x1 − x3

)

. (7)

It is important to observe that (7) corresponds to the set M(2, R) of any
2× 2-matrix. In fact, by introducing the fundamental base matrices

δij ≡

(

1 0
0 1

)

, εij ≡

(

0 1
−1 0

)

,

ηij ≡

(

1 0
0 −1

)

, λij ≡

(

0 1
1 0

)

.

(8)

one observes that (7) can be rewritten as the linear combination

xij = x1δij + x2εij + x3ηij + x4λij. (9)

Let us now introduce the expression

h =
1

2!
εabεcdhachbd. (10)

If one uses (4) one gets
h = det(hab). (11)

However, if one considers (6) one obtains

h = Det(hab), (12)

where Det(hab) denotes the Cayley hyperdeterminant of hab, namely

Det(hab) =
1

2!
εabεcdεikεjlεmrεns∂ax

ij∂cx
kl∂bx

mn∂dx
rs. (13)
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Of course, (11) and (12) imply that

det(hab) = Det(hab). (14)

In turn, (14) means that in (2+2)-dimensions the Nambu-Goto action (5) can
also be written as

S =
∫

dξ2
√

Det(hab). (15)

Note that, since in this case one is considering the (2 + 2)-signature one must
set ǫ = +1 in (5).

In (4 + 4)-dimensions the key formula (6) can be generalized as

hab = ∂ax
ijm∂bx

klsεikεjlηms. (16)

While in (8 + 8)-dimensions one has

hab = ∂ax
ijmn∂bx

klsrεikεjlεmsεnr. (17)

(see Refs. [5] and [6] for details). So by considering the real variables xi1...in

and properly considering the matrices εij and ηij the previous formalism can
be generalized to higher dimensions. Of course, in such cases the Cayley
hyperdeterminant Det(hab) must be modified accordingly.

Observing (7) one wonders whether one can consider in (6) other signatures
in 4-dimensions besides the (2+2)-signature. It is not difficult to see that using
the Wick rotation in any of the coordinates x1, x2, x3 or x4 one can modify
the signature. For instance, one can achieve the (1 + 3)-signature if one uses
the prescription x2 → ix2 in (6). This method lead us inevitable to generalize
our method to a complex structure. One simple introduce the complex matrix

zij = z1δij + z2εij + z3ηij + z4λij, (18)

where the variables z1, z2, z3 and z4 are complex numbers. The expression (6)
is generalized accordingly as [13]

hab = ∂az
ij∂bz

klεikεjl. (19)

Thus, in this case, the Cayley hyperdeterminant becomes

Det(hab) =
1

2!
εabεcdεikεjlεmrεns∂az

ij∂bz
kl∂az

mn∂bz
rs (20)

and consequently the Nambu-Goto action must be written using (20). Of
course, the Nambu-Goto action, or the Polyakov action, must be real and
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therefore one must choose any of the coordinates z1, z2, z3 and z4 in (20) either
as pure real or pure imaginary.

Similarly, the generalization to a complex structure can be made by intro-
ducing the complex variables zi1...in and writing

Det(hab) =
1

2!
εabεcdεi1j1...εin−1jn−1

ηinjnεk1l1...εkn−1ln−1
nknln·

·∂az
i1...in∂cz

j1...jn∂bz
k1...kn∂dz

l1...ln

(21)

or
Det(hab) =

1

2!
εabεcdεi1j1...εinjnεk1l1...εknln ·

·∂az
i1...in∂cz

j1...jn∂bz
k1...kn∂dz

l1...ln,

(22)

depending whether the signature is (22n+22n) or (22n+1+22n+1), respectively.
One can further generalize our procedure by considering a target curved

space-time. For this purpose let us introduce the curved space-time metric

gµν = eAµ e
B
ν ηAB. (23)

Here, eAµ denotes a vielbein field and ηAB is a flat metric. The Polyakov action
in a curved target space-time becomes

S =
∫

dξ2
√

−ǫ det ggab∂ax
µ∂bx

νgµν . (24)

Using (23), one sees that this action can be written as

S =
∫

dξ2
√

−ǫ det ggab(∂ax
µeAµ )(∂bx

νeBν )ηAB. (25)

So, by defining the quantity

EA
a ≡ ∂ax

µeAµ , (26)

the action in (25) reads as

S =
∫

dξ2
√

−ǫ det ggabEA
a E

B
b ηAB. (27)

Hence, in a target space-time of (2 + 2)-dimensions one can write (27) in the
form

S =
∫

dξ2
√

−ǫ det ggabEij
a E

kl
b εikεjl, (28)

where

Eij
a ≡ ∂ax

µeijµ . (29)
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Here, we considered the fact that one can always write

eijµ = e1µδ
ij + e2µε

ij + e3µη
ij + e4µλ

ij. (30)

Observe that in this development one can consider a generalization of (4)
namely

hab = EA
a E

B
b ηAB (31)

and therefore in (2 + 2)-dimensions this expression becomes

hab = Eij
a E

kl
b εikεjl, (32)

while in (4 + 4)-dimensions and (8 + 8)-dimensions one obtains

hab = Eijm
a Eklr

b εikεjlηmr (33)

and

hab = Eijmn
a Eklrs

b εikεjlεmrεns, (34)

respectively.
At this stage, it is evident that if one wants to generalize the procedure to

any signature in a curved space-time one simply substitute in the action (27)
either

hab = E i1...in
a E j1...jn

b εik...εin−1jn−1
ηinjn (35)

or

hab = E i1...in
a E j1...jn

b εik...εin−1jn−1
εinjn , (36)

depending whether the signature is (22n+22n) or (22n+1+22n+1), respectively.
Here, we used the prescription Ei1...in

a → E i1...in
a , with E i1...in

a a complex function.
In order to include p-branes in our formalism, one notes that the expression

(35) and (36) can still be used. In such a case, one allows the indice a in (35)
and (36) to run from 0 to p. Braking such kind of indices as a = (â1, â2) for
a 3-brane, as a = (â1, â2, â3), for a 5-brane and so on one observes that (35)
and (36) can be written as

hâ1...â2b̂1...b̂2 = E
i1...ip
â1...â2

E
j1...jp

b̂1...b̂2
εik...εip−1jp−1

ηipjp (37)

or

hâ1...â2b̂1...b̂2 = E
i1...ip
â1...â2

E
j1...jp

b̂1...b̂2
εik...εip−1jp−1

εipjp, (38)
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respectively. The analogue of Cayley hyperdeterminant in this case will be

D̂et(hâ1...â2b̂1...b̂2) =

= εâ1 b̂1...εâp b̂pE
i1...ip
â1...â2

E
j1...jp

b̂1...b̂2
εik...εip−1jp−1

εipjp

(39)

and therefore the corresponding Nambu-Goto action becomes

S =
∫

dξp+1

√

ǫD̂et(hâ1...â2b̂1...b̂2). (40)

Summarizing, we have generalized the Duff’s procedure concerning the
combination of the Nambu-Goto action and the Cayley hyperdeterminant in
target space-time of (2+2)-dimensions. Such a generalization first corresponds
to a curved worlds with (22n+22n)-signature or (22n+1+22n+1)-signature. Using
complex structure we may be able to extend the procedure to any signature.
Further, we generalize the method to p-branes.

It turns out that these generalization may be useful in a number of physical
scenario beyond string theory and p-branes. In fact, since the quantity zj1...jn

can be identified with a n-qubit one may be interested in the route leading
to oriented matroid theory [14] (see also Ref. [15]-[16]). In this direction,
using the phirotope concept (see Ref. [17] and references therein), which is a
complex generalization of the concept of chirotope in oriented matroid theory,
a link between super p-branes and qubit theory has already been established
[17]. Thus, it may be interesting for further developments to explore the con-
nection between the results of the present work and supersymmetry via the
Grassmann-Plücker relations (see Refs. [8]-[9] and references therein). It is
worth mentioning that such relations are natural mathematical notions in in-
formation theory linked to n-qubit entanglement. Indeed, in such a case, the
Hilbert space can be broken in the form C2n = CL ⊗ C l with L = 2n− 1 and
l = 2. This allows a geometric interpretation in terms of the complex Grass-
mannian variety Gr(L, l) of 2-planes in C2n via the Plücker embedding. In this
context, the Plücker coordinates of Grassmannians Gr(L, l) are natural invari-
ants of the theory (see Ref. [9] for details). However, it has been mentioned
in Ref. [18], and proved in Refs. [19] and [20], that for normalized qubits the
complex 1-qubit, 2-qubit and the 3-qubit are deeply related to division alge-

bras via the Hopf maps, S3 S1

−→ S2, S7 S3

−→ S4 and S15 S7

−→ S8, respectively.
In order to clarify the possible application of these observations in the context
of our formalism let us consider the general complex state | ψ >∈ C2n,

| ψ >=
1
∑

i1i2...in=0

zi1i2...in|i1i2...in >, (41)
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where |i1i2...in >= |i1 > ⊗|i2 > ⊗... ⊗ |in > correspond to a standard basis
of the n-qubit. It is interesting to make the following observations. First, let
us denote a n-rebit system (real n-qubit ) by xi1i2...in. So, one finds that a
3-rebit and 4-rebit have 8 and 16 real degrees of freedom, respectively. Thus,
one learns that the 4-rebit can be associated with the 16 degrees of freedom of
a 3-qubit. It turns out that this is the kind of embedding discussed in Ref. [9].
In this context, one sees that in the Nambu-Goto context one may consider
the 16-dimensions target space-time as the maximum dimension required by

division algebras via the Hopf map S15 S7

−→ S8.
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