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1 Introduction

A noble task in ancient, pre-AdS/CFT time was to find a non-perturbative
definition of Polyakov’s bosonic string theory. The formal partition function
was defined by the path integral:

Z =

∫

D[gαβ] e
−Λ

∫
d2ξ

√
g

∫

DgXµ e−
1

2α′

∫
d2ξ

√
ggαβ∂αXµ∂βXµ. (1)

Here [gαβ] represents a continuous 2d geometry of some fixed topology. As-
sume that the set of piece-wise linear geometries one can obtain by gluing
together equilateral triangles with link length a is uniformly dense in the
set of continuous 2d geometries when a → 0. Each such geometry can be
identified with an abstract triangulation. By placing the matter field Xµ(ξ)
in the center of each triangle and using the natural discretized version of
the matter Lagrangian in (1) we obtain a lattice regularization of the ac-
tion, for which the lattice spacing a acts as a UV cut-off. Summing over the
abstract triangulations provides a lattice regularization of the integral over
geometries in (1), coined Dynamical Triangulations (DT) [1, 2, 3]. If the
assumption about the denseness of these triangulations in the set of continu-
ous geometries holds, we expect to obtain the continuum path integral in the
limit a → 0. Of course, it is to be expected that one has to renormalize the
bare coupling constants entering in the lattice partition function to recover
the continuum results. If we work in units where the lattice spacing a is put
to one, we obtain the dimensionless DT partition function

Z(µ) =
∑

T

e−µNT

∫ ′ (
∏

△∈T

d
∏

ν=1

dxν(△)
)

e−
1
2

∑
△,△′ (xν(△)−xν(△′))2 (2)

for the bosonic string, where the overall sum is over triangulations T with
NT triangles and the sum in the exponent is over pairs △,△′ of neighboring
triangles.

1.1 The free particle

To understand how to obtain the continuum limit of (2), it is useful to study
the simpler system of a free particle. In this case the propagator G(Xν , X

′
ν)

has the path integral representation

G(Xν , X
′
ν) =

∫

D[g]e−Λ
∫
dξ

√
g

∫

DgXν e
− 1

2α′

∫ 1
0 dξ

√
gg−1(∂αXν)2 , (3)
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where Xν(0) = Xν and Xν(1) = X ′
ν , and [g] is the geometry of a world line,

i.e. dℓ2 = g(ξ)dξ2 and
∫

dξ
√
g = ℓ. The structure of eq. (3) is quite similar

to that of eq. (1). The path integral is discretized by dividing the worldline
in n equal steps (the equivalent of the equilateral triangles for DT) and using
dimensionless variables:

G(xν , x
′
ν , µ) =

∑

n

e−µn
∫

(

n
∏

i=1

d
∏

ν=1

dxν(i)
)

e−
1
2

∑n
i=1(xν(i)−xν(i−1))2 , (4)

with x(0) = x and x(n) = x′. One can perform the Gaussian integrations:

∫

(

n
∏

i=1

d
∏

ν=1

dxν(i)
)

e−
1
2

∑n
i=1(xν(i)−xν(i−1))2 =

(2π)nd/2

(2πn)d/2
e−

(xν−x′ν )2

2n . (5)

Introducing µc =
1
2
d log(2π), we get

G(xν , x
′
ν , µ) =

∑

n

1

(2πn)d/2
e−(µ−µc)n e−

(xν−x′ν)2

2n , (6)

leading to

G(xν , x
′
ν , µ) ≈ f(|xν − x′ν |) e−m(µ)|xν−x′ν |, m(µ) ∝

√
µ− µc. (7)

Performing a mass renormalization and a scaling,

m2(µ) = µ− µc = m2
pha

2, x a = X, x′ a = X ′, t = na2 (8)

we obtain the standard proper time representation of the free relativistic
propagator

G(Xν , X
′
ν ;mph) =lim

a→0
a2−dG(xν , x

′
ν , µ) =

∫ ∞

0

dt

(2πt)d/2
e−m

2
pht−

(Xν−X′
ν)2

2t . (9)

The explicit, well-defined path integral representation (4) of the free par-
ticle is useful for analyzing simple basic properties of the propagator. Let us
just mention one such property, the exponential decay of the propagator for
large distances. Why can the propagator not fall of faster than exponentially
at large distances? The answer is found by looking at Fig. 1. The set of
paths from x to y has as a subset the set of paths intersecting the straight
line connecting x and y at a point z. A path in this subset is a union of a
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x y
>

x
z y

Figure 1: Decomposition of random walk into two random walks

path from x to z and from z to y. Since the action for such a path is the
sum of the actions of the path from x to z and the path from z to y, it is not
difficult to show

G(x, y) ≥ G(x, z)G(z, y), (10)

i.e.
− logG(x, y) ≤ − logG(x, z)− logG(z, y). (11)

The subadditivity of − logG(x, y) implies that there exits a positive constant
m such that

− logG(x, y) ∼ m|x− y| for |x− y| → ∞, (12)

i.e.
G(x, y) ∼ e−m|x−y| for |x− y| → ∞. (13)

The constant m is the mass of the particle (which can be zero in special
cases).

1.2 The bosonic string

One can also perform the Gaussian integration in the string case:

∫ ′(
∏

△∈TN

d
∏

ν=1

dxν(△)
)

e−
1
2

∑
△,△′ (xν(△)−xν(△′))2 =

(

det(−∆
′

TN
)
)−d/2

, (14)

where ∆TN is the combinatorial Laplacian on the dual φ3-graph. The prime
indicates that the constant zero mode is projected out in the determinant.
We find

Z(N) =
∑

TN

(

det(−∆
′

TN
)
)−d/2

= eµcNNγ(d)−3
(

1 +O
( 1

N2

))

(15)
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Figure 2: Subadditivity of the string two-point function.

and

Z(µ) =
∑

N

e−µNZ(N) =
∑

N

e−(µ−µc)NNγ(d)−3
(

1 +O
( 1

N2

))

. (16)

In the scaling limit µ→ µc one may identify

µ− µc = Λa2, (µ− µc)NT = Λ

∫

d2ξ
√
g. (17)

Equation (16) is valid for geometries with fixed topology of the sphere,
but Z(µ) generalizes naturally to surfaces with n boundaries {γi} of fixed
length Li on which the coordinates xµ are fixed. In particular, in the limit
Li → 0 we obtain the n-point function G(x1, . . . , xn;µ) for spherical string
world sheets with n marked points at prescribed positions x1, . . . , xn.

A basic property of the two-point function G(x1, x2;µ) is subadditivity.
The argument is essentially the same as for the particle, except that ran-
dom surfaces are involved instead of random walks, as illustrated in Fig. 2.
Therefore we find

G(x1, x2;µ) ∼ e−m(µ)|x1−x2|, m(µ) ≥ 0. (18)

Similarly we may consider the planar “Wilson loop” G(γL1×L2 , µ), cor-
responding to the partition function with one boundary γL1×L2 of length
2L1 + 2L2 corresponding to a rectangular loop in R

d with sides of length L1

and L2. As illustrated in Fig. 3, G(γL1×L2 , µ) is subadditive both in L1 and
L2, and therefore we obtain2

G(γL1×L2 , µ) ∼ e−σ(µ)A(γL1×L2
), σ(µ) ≥ 0, (19)

where A(γL1×L2) = L1L2 is the area of the loop, and σ(µ) is known as the
string tension.

2For a more precise argument see [4], section 3.4.4.
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Figure 3: Subadditivity of the Wilson loop.

Figure 4: The scaling of the bare mass and the bare string tension as a
function of the bare coupling constant µ.

However, the dominant worldsheet surfaces look completely different from
the nice surfaces shown in Fig. 2 and Fig. 3. The reason for this is shown
in Fig. 4. It is seen from the figure that, while the mass of the two point
function scales to zero at a critical point, which is needed if one wants a
continuum limit, this is not the case for the string tension σ(µ) ([5] or [4],
theorem 3.6). The consequence is that the physical string tension scales to
infinity as µ→ µc:

m(µ) = (µ− µc)
ν = mph a

ν , σ(µ) = σph a
2ν , σph → ∞. (20)

An infinite string tension implies that any surface with finite area is for-
bidden unless it is dictated by some imposed boundary conditions. A typical
surface with no area contributing to the two-point function G(x1, x2, µ) is
shown in Fig. 5. Such surfaces are called branched polymer (BP) surfaces.
They have only one mass excitation corresponding to a free particle, since
one basically obtains a random walk representation corresponding to the free

6



Figure 5: Branched polymer surfaces dominate the bosonic string two-point
function.

Figure 6: The fluctuations around the minimal surface in the path integral
of the Wilson loop are of the form of branched polymers.

particle by scaling away the branches decorating the shortest path from x1
to x2 for a given surface connecting x1 and x2.

In the case of the Wilson loop we are summing over surfaces where the
boundary is fixed. Therefore we have a minimal-area surface stretching to the
boundary. The fluctuations around this surface, however, are again branched
polymers, as shown in Fig. 6, and are nothing like the surface in Fig. 3.

The conclusion is that the bosonic string theory defined through a reg-
ulated path integral where all surfaces have positive weight does not exist.
The reason that we do not obtain the standard bosonic string, despite such a
well-defined procedure, is that the two-point function of the standard bosonic
string has tachyonic mass excitations, which are excluded by our construction
and which make standard bosonic string theory sick.
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2 Non-critical string theory

However, interpreting the string world sheet as 2d space-time, we can view
Polyakov’s bosonic string theory in d dimensions as 2d gravity coupled to
d massless scalar fields, i.e. to a conformal field theory with central charge
c = d. Therefore, as another route towards the bosonic string, we can study
2d quantum gravity coupled to (conformal) field theories. Surprisingly this
theory, called non-critical string theory, has a rich structure as long as the
central charge c ≤ 1.

The regularized version of such a theory is typically obtained as follows:
assume we have a conformal field theory originating from a field theory on a
regular lattice. Usually the lattice theory has a critical point with a second-
order phase transition and the continuum conformal field theory is then de-
fined at the critical point. This lattice field theory can usually be transfered
from a regular lattice to a random one, hence, also to the random lattice
appearing in the DT formalism.

Including a summation over different lattices in ensemble averages is what
is called an annealed average in the context of condensed matter physics.
Here it will play the role of integrating over 2d geometries, as for the bosonic
string.

The partition function of 2d gravity coupled to matter can be written as

Z =
∑

N

e−µN
∑

TN

ZTN (matter), (21)

where ZTN (matter) is the matter partition function on a fixed triangulation
TN . A typical example is the Ising model coupled to DT [6],

ZTN (β) =
∑

σ△=±1

exp
[

β
∑

△,△′

σ△σ△′

]

. (22)

The partition function scales as

ZN(β) =
∑

TN

ZTN (β) = eµc(β)N Nγ(β)−3
(

1 +O(N−2)
)

, (23)

Z(β) =
∑

N

e−µNZN(β) =
∑

N

e−(µ−µc(β))NNγ(β)−3(1 + · · · ). (24)

Here µc(β) appears as the critical “cosmological” constant for the geometries,
such that one obtains universes with infinitely many triangles when µ → µc
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from above. This is similar to the situation for the free particle and the
bosonic string and we clearly want to take that limit in order to recover
continuum physics from the lattice theory. However, it also follows from (23)
that it has the interpretation as the the free energy density of spins in the
annealed ensemble.

The model has a phase transition at a critical βc, the transition being
third order rather than the standard second order phase transition [6]. At
the transition point γ(β) jumps from -1/2 to -1/3. The interpretation is as
follows: on a regular lattice the Ising spin system also has a phase transition
at a certain critical temperature βc. The transition is a second order tran-
sition and at the transition point the spin system describes the continuum
conformal field theory of central charge c = 1/2. The lattice theory, defined
on the annealed average of lattices, describes at its critical point the c = 1/2
conformal field theory coupled to 2d quantum gravity, the average over the
DT lattices being the path integral over geometries. It is not surprising that
the transition can change from a second order to a third order transition, the
randomness of the lattices and the averaging over different lattices making it
more difficult to build up large critical spin clusters at the phase transition
point. Maybe it is more surprising that there is a transition at all. But it
is known to be the case, since one can solve the model analytically. One
finds that the critical spin exponents have changed compared to Onsager
exponents on a regular lattice. Thus the continuum conformal field theory
has changed due to the interaction with 2d quantum gravity. Further, as
we mentioned, the exponent γ(β) jumps at βc. The exponent γ(β) as it
appears in (24) reflects average fractal geometric properties of the ensemble
of random geometries appearing in the path integral. Thus a change in the
exponent reflects that the conformal field theory back-reacts on the geometry
and changes its fractal properties, something we will discuss in detail below.
Away from βc the Ising model is not critical, and the lattice spins couple only
weakly to the lattice. For all β 6= βc one has γ(β) = −1/2 and this can then
be viewed as the exponent for “pure 2d Euclidean gravity” without matter
fields.

2.1 Continuum formulation

One can study 2d quantum gravity coupled to matter fields entirely in the
continuum. Just like for the partition function (1) for the bosonic string, we
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Figure 7: The 3-loop function

can write formally

Z =

∫

D[gαβ] e
−ΛA(g)

∫

Dgψ e−S(ψ,g), A(g) =

∫

d2ξ
√
g, (25)

where ψ represents some matter field. A partial gauge fixing, to the so-called
conformal gauge gαβ = eφĝ(τi) leads to

Z(ĝ) =

∫

Dĝφ e
−SL(φ,ĝ), (26)

where SL(φ, ĝ) is fixed by the requirement that Z(ĝ) is independent of ĝ,
namely [8]

SL(φ, ĝ) =
1

4π

∫

d2ξ
√

ĝ
(

(∂αφ)
2 +QR̂ φ+ µ e2βφ

)

, (27)

Q =
√

(25− c)/6, Q = 1/β + β. (28)

Even for c = 0 we have a non-trivial theory. The c = 0 partition function
can be obtained explicitly at the regularized level simply by counting the tri-
angulations, since there are no matter fields. A slightly non-trivial structure
can be imposed by n boundaries of lengths ℓn, as illustrated in Fig. 7 for the
case n = 3. Also in that case the counting can be done and the continuum
limit taken. The continuum definitions of the n-loop functions are

W (ℓ1, . . . , ℓn, V ) =

∫

ℓ1,...,ℓn

D[gαβ] δ(A(g)− V ), (29)

W (ℓ1, . . . , ℓn,Λ) =

∫

ℓ1,...,ℓn

D[gαβ] e
−ΛA(g), (30)

W (ΛB1 , . . . ,Λ
B
n ,Λ) =

∫

D[gαβ] e
−ΛA(g)−

∑
i Λ

B
i ℓi(g). (31)

10



Formally (29) counts each continuous geometry (defined by an equivalence
class of metrics [gαβ(ξ)]) with weight one. Eq. (30) defines the partition
function for universes with fixed boundary lengths ℓi and with a cosmolog-
ical constant Λ. Eq. (31) defines the partition function for universes with
boundary cosmological constants ΛBi and bulk cosmological constant Λ, i.e.
the partition function where both the lengths of the boundaries and the size
of the universe are allowed to fluctuate, controlled by the various cosmological
constants. From a “counting perspective” one can view W (ΛB1 , . . . ,Λ

B
n ,Λ)

as the generating function for W (ℓ1, . . . , ℓn, V ), the number of continuous
geometries with n boundaries of lengths ℓi.

Of course, to perform any real counting one has to introduce a regular-
ization such that one starts out with a finite number of geometries, and for
this purpose the DT-formalism is perfect. As an example we can write the
regularized DT version of W (ΛB,Λ), i.e. the 1-loop function, as

W (z1, g) =
1

z1

∑

k,l1

W (l1, k) g
kz−l11 , g = e−µ, z1 = eλ1 , (32)

such that W (z1, g) is the generation function for W (l1, k), the number of
triangulations with k triangles and a boundary with l1 links. As with most
counting problems, it is easier first to find the generating function W (z1, g)
and then by inverse (discrete) Laplace transformations to find the numbers
W (l1, k).

The result of this counting ([7], see [4], Chapter 4, for a review) is that
after the continuum limit is taken, using the techniques of renormalization of
the bare lattice cosmological constant µ and boundary cosmological constants
λi (appearing in (32)), one obtains the expression

W (ℓ1, . . . , ℓn, V ) = V n−7/2
√

ℓ1 · · · ℓn e−(ℓ1+···+ℓn)2/V . (33)

Starting out from the continuum Liouville theory the same result has been
reproduced. In this sense the agreement shows that the DT lattice regu-
larization works perfectly (and even allows one to perform certain analytic
calculation with less effort than using the continuum formulation, something
very rare for a lattice regularization). It also gives additional confidence
in the continuum Liouville calculations, which rely on certain bootstrap as-
sumptions about conformal invariance.

11



3 The fractal structure of 2d QG

While eq. (33) is an amazing formula, basically counting the number of con-
tinuous 2d geometries with the topology of a sphere with n boundaries, it
tells us little about the “typical” 2d continuous geometry one encounters in
the path integral. In order to probe such a geometry we need some specific
reference to distance. One could be worried that it makes no sense to talk
about distance in a theory of quantum gravity, i.e. a theory of fluctuating
geometry, since it is precisely the geometry that defines distance. However,
the key message of the following is that it does make sense to talk about
geodesic distance even in a such a theory.

Let us define the two-point function G(R;V ) of geodesic distance R for
surfaces of fixed volume V by

G(R;V ) = (34)
∫

D[g]

∫

Dgψ e−S[g,ψ] δ
(

A(g)−V
)

∫

dx
√

g(x)

∫

dy
√

g(y) δ(R−Dg(x, y)),

where A(g) ≡
∫

d2x
√

g(x) and Dg(x, y) denotes the geodesic distance be-
tween x and y in the geometry defined by the metric gαβ(x). The defining
formula (34) is valid for any matter field ψ coupled to 2d quantum gravity.
In principle it is also valid in a higher dimensional theory of quantum gravity
provided one includes in S[g, ψ] the Einstein action (or whatever one uses as
the action). In two dimensions the Einstein action is topological and we may
drop it.

It might be convenient not to keep V fixed, but rather to consider the
two-point function for the ensemble of universes with a fixed cosmological
constant Λ, i.e.

G(R; Λ) =

∫ ∞

0

dV e−ΛV G(R;V ). (35)

These two-point functions probe the geometries in the following way. Denote
the “area” of a spherical shell at geodesic distance R from point x by

SV (x;R) =

∫

dy
√

g(y) δ(Dg(x, y)− R), (36)

which, of course, depends both on the chosen geometry gαβ and the point x.
Let us denote the diffeomorphism invariant average of SV (x;R) by

SV (R) =
1

V

∫

dx
√

g(x) SV (x;R). (37)
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The quantum average of SV (R) over all geometries is then related to G(R;V )
by

〈SV (R)〉 =
1

V Z(V )
G(R;V ), (38)

where ZV is the corresponding partition function of 2d quantum gravity
coupled to matter, i.e. the rhs of (34) but with the integral (and integrand)
over x, y removed. For a smooth 2d geometry we have

SV (R) ∼ R, for R ≪ V 1/2, (39)

while in general we define the fractal dimension, or Hausdorff dimension, dh
for the quantum average by

〈SV (R)〉 ∼ Rdh−1 for R ≪ V 1/dh . (40)

The partition function scales as Z(V ) ∼ V γ(c)−3, where the string suscepti-
bility γ(c) is a function of the central charge c of the matter field coupled to
the geometry and is known to be given by [8, 9]

γ(c) =
c− 1−

√

(c− 1)(c− 25)

12
. (41)

In the absence of matter fields, i.e. c = 0, we have γ = −1/2, and the
scaling is seen to agree with (33) for n = 0. Therefore we can determine
dh from the functional form of G(R;V ) or G(R; Λ). Remarkably, there is a
simple and closed formula for G(R; Λ) for c = 0, obtained again by counting
triangulations, namely [11]

G(R; Λ) = Λ3/4 cosh( 4
√
Λ R)

sinh3( 4
√
Λ R)

. (42)

This can be turned into an expression for G(R;V ) by an inverse Laplace
transformation, which may plugged into (40), leading to

〈SV (R)〉 = R3F

(

R

V 1/4

)

, F (0) > 0, (43)

where F (x) is a hypergeometric function falling off for large x as e−x
4/3

. Note
that, while G(R;V ) falls of faster than exponentially as a function of R, this

13



Figure 8: The fractal structure of a “typical” 2d geometry.

is not possible for G(R; Λ) because of arguments of subadditivity of the kind
already used for the two-point function of the bosonic string.

Comparing (43) to (40), we conclude that 2d continuous geometry is
fractal with Hausdorff dimension dh = 4 [10, 12]. This is in some sense similar
to the situation for the free particle, where one is summing over continuous
path from x to y in R

d. There a typical path is not a one-dimensional object,
but is fractal with dh = 2. The difference is that for the geometries we have
no embedding space Rd with respect to which we can define a distance. This
makes it the more remarkable that one still has a concept of geodesic distance
that survives the averaging over all geometries.

How is it possible that dh = 4? The reason dh can be larger than 2 is
that SV (x;R) is almost surely not connected, as is illustrated in Fig. 8. In
fact, one can show [11] that the number of connected components of SV (x;R)
with length ℓ between ℓ and ℓ+ dℓ is given by

ρR(ℓ) ∝
1

R2

(

y−5/2 +
1

2
y−3/2 +

14

3
y−1/2

)

e−y, y =
ℓ

R2
, (44)

in the limit V → ∞. Thus the number of components with small ℓ diverges
for ℓ → 0. Of course, in the DT formalism there is a cut-off in the sense
that the smallest loop length consists of a single link (of length a, the UV

14



cut-off). In the presence of such a cut-off (44) leads to

〈SV→∞(R)〉 =
∫ ∞

a

dℓ ℓ ρR(ℓ) ∝
R3

√
a
, (45)

again leading to the conclusion that dh = 4.

3.1 The central charge different from zero

For c 6= 0 (and c ≤ 1) no detailed calculations exist like the ones reported
above. However, there exists a remarkable formula derived by Watabiki [13]
for dh for any c ≤ 1:

dh(c) = 2

√
49− c+

√
25− c√

25− c+
√
1− c

, dh(0) = 4, dh(−∞) = 2. (46)

The formula was derived by applying scaling arguments, which we will briefly
summarize, to diffusion on two-dimensional geometries in quantum Liouville
theory.

Let Φn[g] be a functional of the metric which is invariant under diffeo-
morphisms and assume that classically Φn[λg] = λ−nΦ[g] for constant λ.
According to the KPZ relations the quantum average then satisfies [14, 8, 13]

〈Φ[g]〉λV = λ−α−n/α1〈Φ[g]〉V , αn =
2n

1 +
√

25−c−24n
25−c

(47)

One now applies this to the operator

Φ1[g] =

∫

dx
√
g [∆g(x) δg(x, x0)]x=x0 , Φ1[λg] = λ−1Φ1[g], (48)

which appears when we study diffusion on a smooth manifold with metric
gµν . The diffusion kernel is

K(x, x0; t) = et∆g K(x, x0; t), K(x, x0; 0) = δg(x, x0). (49)

It has short distance behavior

K(x, x0; t) ∼
e−D

2(x,x0)/2t

td/2
(1 +O(t)), 〈D(x, x0; t)

2〉 ∼ t+O(t2). (50)
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The return probability is defined in terms of the diffusion kernel as

P (t) =
1

V

∫

dx
√
g K(x, x; t)

=
1

V

∫

dx
√
g [(1 + t∆g + · · · ) δg(x− x0)]x=x0

= c+ tΦ1[g] +O(t2) (51)

These equations are trivially correct for a smooth geometry gαβ(x), and they
link the dimension of Φ1[g] to the dimension of D(x, x0):

Dim[D(x, x0)] = −1

2
Dim[Φ[g]]. (52)

Of course, this link is trivial in the sense that Dim[D(x, x0)] = 1 and
Dim[Φ1[g]] = −2 by construction. Watabiki now conjectured that (52) sur-
vives the quantum averaging, where we know from (47) how the dimension
of Φ1[g] changes. Thus one obtains

Dim[〈D(x, x0)〉] = −1

2
Dim[〈Φ[g]〉] = −α−1

α1
, (53)

leading to (46) if we declare that Dim[V ] = 2, such that

〈V 〉R = Rdh , Dim[R] =
2

dh
. (54)

3.2 Is the Watabiki formula correct?

One may be worried about the previous derivation of dh(c), since the re-
sult implies that a typical spacetime is fractal, while the basic relation used,
namely (51), is valid only on smooth spacetimes. But not only that: numer-
ical simulations [15] seem to show that the diffusion distance R(t) scales like
〈R2(t)〉 ∼ t2/dh , rather than like in (50). Anomalous diffusion is normal on
fractal spacetimes, but it makes the Watabiki derivation problematic. Nev-
ertheless, the predicted dh(0) is clearly correct and it might be that dh(c) is
also correct for c 6= 0. This is what we have tried to test using numerical
methods to measure dh(c).

We have found it convenient to use 2d spacetimes with toroidal topology.
These have the virtue that their shortest non-contractible loop is automati-
cally a geodesic curve [18]. Thus in the discretized case we only have to look
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Figure 9: Example of a discrete analog of a harmonic map, used to map a
triangulation of the torus consisting of equilateral triangles into the complex
plane [16].

for such loops. Further, the harmonic forms which are important tools for
analytic manifolds have very nice discretized analogies, and we can use the
these to construct a conformal mapping from the abstract triangulation to
the complex plane [16, 17]. We have shown an example of such a map in Fig.
9.

Since the shortest non-contractible loop is a geodesic we expect

〈L〉N ∼ N1/dh(c) (55)

An amazing qualitative test of this is shown in Fig. 10, where we use the
harmonic map mentioned to map two abstract triangulations corresponding
to c = 0 and c = −2 and 150000 triangles into the complex plane. Already
just by looking at the figures one can basically verify qualitatively (55).

A quantitative check of 〈L〉N ∼ N1/dh for c = −2 is shown in Fig. 11,
where we have averaged over many configurations for a fixed size N of the tri-
angulation, and performed the measurements of the shortest non-contractible
loops for different sizes N . Formula (46) seems very well satisfied numerically
for c = −2.

Recall that the partition function for the (regularized) bosonic string
embedded in d dimensions is given by eq. (14): it can be viewed as a conformal
field theory with central charge c = d coupled to 2d quantum gravity. As we
have seen, the theory degenerates into BP for c > 1. However, from (14) it
is clear that we can formally perform an analytic continuation to c < 1. A
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Figure 10: The left figure corresponds to c = 0, i.e. dh = 4, and the right
figure to c = −2, i.e. dh = 3.56. The shortest path non-contractible loop is
shown in both cases [16].
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Figure 11: The numerical expectation value 〈L〉N of the length of the shortest
non-contractible loop for triangulations of N triangles (the error bars are too
small to display). The fit corresponds to 〈L〉N = 0.45 N1/3.56 [16].
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Figure 12: Qualitative agreement with (46) for large negative c [19].

special case is c = −2 because then the triangulations are weighted precisely
by the determinant of the graph Laplacian, which can be represented as a
sum over spanning trees of the given triangulations. This fact was used in
the numerical simulations reported above and allowed us to sample very large
triangulations and to obtain great numerical accuracy [16].

More generally one can sample from the partition function for any fixed
real value c by explicitly evaluating the determinant in a Monte Carlo sim-
ulation [19]. This can, of course, only be done efficiently for relatively small
triangulations. However, it turns out that to study DT for large negative
c ≪ −2 and to obtain a qualitative verification of formula (46), one only
requires such small triangulations. In particular, the formula tells us that
dh → 2 for large negative c, indicating that nice smooth geometries should
dominate in that limit. This is illustrated in Fig. 12.

The situation for c > 0 is more difficult and until recently numerical
simulations could not really determine dh(c) properly for c > 0. Matter cor-
relation functions gave agreement with Watabiki’s formula, but geometric
measurements agreed better with dh = 4 for 0 < c < 1. Recently simula-
tions have been performed of DT on the torus coupled to the Ising model
(c = 1/2) and the 3-states Potts model (c = 4/5) [20]. In addition to the
shortest non-contractible loop length ℓ0, also the length ℓ1 of the second
shortest independent loop was analyzed (see Fig. 13), yielding data with lit-
tle discretization “noise”. The probability distributions for the lengths ℓi are
expected, for large N , to be of the form

P
(i)
N (ℓi) = N1/dhFi(xi) xi =

ℓi
N1/dh

(56)

By measuring the distributions for various N ’s and attempting to “collapse”
the distributions to the common, universal functions Fi(xi) we can determine
dh. Typically, one chooses reference distributions, here chosen to be interpo-
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Figure 13: Example of two shortest, independent loops [20].
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Figure 14: The reference distributions PN(ℓ0) (left) and PN(ℓ1) (right) for
the Ising model (light curves) and the 3-states Potts models (dark curves)
extracted from the data at N = 8000 [20].

lations of the loop length distributions for N = 8000, to which the data for
the other system sizes is fitted. In Fig. 13 the reference distributions PN(ℓ0)
and PN(ℓ1) are plotted for both the Ising model and the 3-states Potts model.
It is seen that the second shortest loop distributions contain less very short
loops, which is probably why their lengths have less discretization effects and
show better scaling. The best fits of dh for the data are shown in Fig. 15 and
summarized in the following table.

c dh (by fit) dh (theoretical)
−2 3.575± 0.003 3.562
0 4.009± 0.005 4.000

1/2 4.217± 0.006 4.212
4/5 4.406± 0.007 4.421
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Figure 15: The results of high precision measurements of dh(c) [20]. The
shown curve is dh(c) as defined by eq. (46), and the measurements are for
c = −2, 0, 1/2, 4/5.

4 Matter correlation functions

We have seen that the two-point functions G(R; Λ) and G(R;V ) are good
probes of the quantum geometry of 2d spacetime and allowed us to define
the concept of an average geodesic distance. Also for matter correlators
〈φ(x)φ(y)〉 the first obvious question one can ask is whether it makes any
sense to talk about such correlators as functions of distance, and which dis-
tance should one use if we are integrating over all geometries? It is natural
to define the diffeomorphism invariant matter correlators as the following
generalization of eq. (34) for G(R;V ):

〈φφ(R)〉V =
1

ZV

∫

D[g]

∫

Dgφ e−S[g,φ] δ
(

A(g)−V
)

(57)

∫ ∫

dx dy

√

g(x)
√

g(y)

Sg(y, R) V
φ(x)φ(y) δ(R−Dg(x, y)).

It is a non-local definition of a matter correlator, but there exists no diffeo-
morphism invariant local definition.

Assume we consider a conformal field theory in flat spacetime and let
φ(x) be a primary operator with scaling dimension ∆0. We thus have the
following behavior of the φ−φ correlator

〈φ(x)φ(y)〉 ∼ |x− y|−2∆0. (58)

If we take the quantum average as in (57) the geodesic distance R scales
anomalously and we expect for dimensional reasons that |x−y|−2 is replaced
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by R−dh. However, we also know from KPZ scaling that the scaling dimension
∆0 of φ will be changed after coupling to 2d quantum gravity such that

∆(c) = 2

√
1− c+ 12∆0 −

√
1− c√

25− c−
√
1− c

, KPZ− DDK scaling, (59)

where one observes that c → −∞ implies ∆(c) → ∆0 in agreement with
the earlier observation that Watabiki’s formula shows that dh(c) → 2 for
c→ −∞. For a finite spacetime volume V we finally expect a behavior

〈φφ(R)〉V ∼ 1

Rdh∆
gφ

(

R

V 1/dh

)

, (60)

which alternatively can be written as

〈φφ(R)〉V ∼ V −∆ gφ(x)

xdh∆
, x =

R

V 1/dh
(61)

For a given conformal field theory gφ(x) is a universal finite size function
with gφ(0) = const. > 0 and gφ(x) falling of at least exponentially fast for
x > 1.

The formula (61) is convenient to use in the DT regularization where
V ∼ NT and the geodesic distance R ∼ ℓ, the link distance between two
vertices:

〈φφ(ℓ)〉N ∼ N−∆ gφ(x)

xdh∆
x =

ℓ

N1/dh
− (62)

We note that eq. (62) has for form of a standard finite size scaling relation.
One can thus apply the formula to the Ising model or 3-states Potts model
and measure the spin-spin correlation functions for various values of N . Col-
lapsing these correlation functions to universal functions gφ(x) for either the
Ising model (c = 1/2) or the 3-states Potts model (c = 4/5) allow us to
determine both dh(c) and ∆(c) for these values of c. One finds a dh(c) in
agreement with watabiki’s formula as mentioned earlier (but not with the
same precision as with the method described in the last section), and one
finds a ∆(c) in good agreement with the KPZ formula (59) [21]. The result
of collapsing the data to a (best possible) universal function gφ(x) is shown
in Fig. 10 for the Ising model. It works very well for an impressive range of
lattice sizes. Remarkably, finite size scaling works even better on the DT-
ensemble of lattices than on a fixed lattice. Somehow the random lattices
average out finite lattice artifacts.
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Figure 16: The Ising spin correlation functions collapsed to the universal
function gφ(x) for the range of lattice sizes listed (measurements done for the
Ising model at its annealed average critical point).

5 Conclusions

Two-dimensional quantum gravity is a nice playground for testing to what
extent it makes sense to talk about non-trivial diffeomorphism invariant the-
ories of fluctuating geometry. We have here focused on the very simplest
question: if one integrates over the fluctuating geometries as one should do
in a path integral representation of a quantum theory, how can one at all
talk about concepts like distances and correlation functions falling off with
this distance. In this context 2d quantum gravity is the perfect theory for
such tests. It has no propagating gravitational degrees of freedom, but it is
maximally quantum, the reason precisely being that the Einstein action in
two dimensions is trivial. Every geometry carries therefore the same weight
in the path integral, as exemplified by eq. (29), i.e. formally it corresponds
to a ~ → ∞ limit. If we want to study ordinary field theories (like conformal
field theories) and not just esoteric topological field theories, we cannot avoid
the clash between the integration over all geometries and the need to have
some concept of distance. However, as we have seen some aspects of geodesic
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distance remarkably survive this quantum average over geometries, despite
the fact that geodesic distance is a awfully non-local notion. Although the
geodesic distance picks up an anomalous dimension due to quantum fluctua-
tions, it maintains its role as the distance which can be used in the correlators
between fields.

In higher dimensions there might not exist a well-defined, stand-alone
theory of quantum gravity. The UV problems for such a theory might be
too severe. This question is still up in the air, and it might well be that the
metric degrees of freedom we have in classical GR are not the fundamental
degrees of freedom one should use in the UV regime. However, the studies
reported here show that conceptually there seems to be no problem with a
theory of “fluctuating” geometries per se and even in the most radical such
one, namely 2d quantum gravity, one can maintain many of the concepts we
know from flat spacetime.
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