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Abstract

In five dimensional cosmological models, the convention is to include the fifth dimension in
a way similar to the other space dimensions. In this work we attempt to introduce the fifth
dimension in a way that a time dimension would be introduced. With such an internal space, we
are able to obtain accelerated expansion without introducing dark energy. Moreover our work
shows that all relevant cosmologies in four dimensions can be embedded in a flat cosmology in
five dimensions.

1 Introduction
We considered ourselves to be living in a three dimensional space until Einstein changed our
notion of time from a parameter to a dimension to explain electrodynamics of moving bodies
and led us to think in terms of a four dimensional spacetime. The number of dimensions has
been increasing ever since. With Kaluza[1] and Klein[2] the four dimensions were augmented to
five in an attempt to unite electromagnetism and gravity. While we are plainly aware of our four
dimensional surroundings, nobody has been able to observe a fifth dimension yet. Obviously
extra dimensions are going to be helpful, but one needs to explain their observational absence.
The natural attempt is to compactify them as very small, periodic internal dimensions.

The usefulness of a fifth dimension grew when Randall and Sundrum[3,4] used it to explain the
hierarchy problem, which brought forth the concept of brane worlds. Although important steps
were made with all these works and many others, it seems that there is still much to be done in
order to completely understand internal extra dimensions. Today the number of dimensions have
gone up to eleven or one can also say that they came down from twenty six via superstrings with
string or M-theory’s quest to understand quantum effects of gravity and unite all fundamental
forces[5].

Something as mysterious as extra dimensions is dark energy. It was Hubble, who first observed
galaxies to be receding from each other. Today we are certain that our universe is accelerating
while expanding[6,7]. We have come up with the term dark energy as the source of this accelerated
expansion, yet we are not certain what it really is, hence the name "dark". Perhaps the two
mysterious concepts, dark energy and extra dimensions, are connected with each other[8]. A
recent attitude towards dark energy is to explain it by a modification to the geometric side of
Einstein’s equations. One successful attempt which includes extra dimensions, is brane-world
gravity, where at high energies massive modes of graviton dominate, gravity leaks off the brane
where its weakening initiates acceleration[9].
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In this work we want to approach this jungle of dimensions with purely cosmological con-
cerns. We want to see what happens when we introduce an extra spacelike dimension into the
cosmological metric, in the same way that a timelike dimension would be introduced. This way
we will be putting forth symmetries between time and the internal space, which brings up the
question whether internal space can be as fundamental as time. Our second motivation is to
see if we can obtain the effects of dark energy from this five dimensional metric without having
to introduce the cosmological constant. In the end we will achieve all relevant four dimensional
cosmologies as a four dimensional slice of a flat five dimensional cosmology. Thus we will have
pointed out that our internal space is just as fundamental as time and we will have obtained the
expansion usually credited to dark energy, from an extra dimension.

2 The Metric and The Einstein Tensor
The Friedmann-Robertson-Walker metric has the following form

ds2 = −dt2 + a2(t)dΣ2 (1)

where dΣ2 is the metric of three spacelike dimensions all of which have uniform curvature.
We use natural units with c = h̄ = 1. The spacelike sections, being scaled by a(t), expand
or contract in time. Therefore the scale factor a(t) is what gives us the dynamics of this four
dimensional spacetime. Because all three spatial dimensions have the same scale factor they all
change by the same amount, hence this universe expands or contracts isotropically only with
time. Here the time is proper time, which is what an observer who sees the universe expand
around him measures as time. Since it doesn’t have a factor dependent on any of the spacelike
dimensions in front of it, it has the same value at every point. In other words the cosmological
time is the proper time at every point in this spacetime. The role of time is fundamental here.

We will consider a metric of the form

ds2 = f2(t)g2(w)[−dt2 + dw2] + a2(t)b2(w)
dx2 + dy2 + dz2

(1 + κ(x2+y2+z2)
4 )2

(2)

where κ is the curvature of spacelike sections with the values −1 for negatively curved, 0 for flat,
+1 for positively curved, we can always make a coordinate transformation so that

dT = f(t)dt (3a)
dW = g(w)dw (3b)

ds2 = −G2(W )dT 2 + F 2(T )dW 2 +A2(T )B2(W )
dx2 + dy2 + dz2

(1 + κ(x2+y2+z2)
4 )2

. (4)

Here T may be called the cosmological time because it is the only coordinate that an observer
will measure as time. But the value measured will change for different observers at different
points in W , because we cannot get rid of the factor of W in front of time. We cannot get rid
of the factor of time in front of W the internal space either. As such, the role of internal space
in this five dimensional universe is as fundamental as the role time plays here. We will carry on
our calculations in the coordinates where the metric is as it is in (2).

The observable three spacelike dimensions share the same scale factor and are again isotropic.
Here they do not evolve only in time but in w as well. Although our internal space, w, is a
spacelike dimension, it works as a timelike extra dimension would.
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Our basis one forms are

e4 = if(t)g(w)dt, i =
√
−1 (5a)

e5 = f(t)g(w)dw (5b)

ei = a(t)b(w)
dxi

1 + κr2

4

(5c)

and we use the metric gµν = diag(1, 1, 1, 1, 1) with i = 1, 2, 3. Using Cartan’s formalism we
get the curvature two forms to be

Ωij = [
ȧ2(t)

a2(t)f2(t)g2(w)
− b′2(w)

b2(w)f2(t)g2(w)
+

κ

a2(t)b2(w)
]ei ∧ ej (6)

Ωi4 = [
ȧ(t)ḟ(t)

a(t)f3(t)g2(w)
− ä(t)

a(t)f2(t)g2(w)
+

b′(w)g′(w)

b(w)f2(t)g3(w)
]e4 ∧ ei

+ [
ȧ(t)b′(w)

ia(t)b(w)f2(t)g2(w)
− ȧ(t)g′(w)

ia(t)f2(t)g3(w)
− b′(w)ḟ(t)

ib(w)f3(t)g2(w)
]e5 ∧ ei (7)

Ωi5 = [
b′(w)ȧ(t)

ia(t)b(w)f2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f2(t)g3(w)
]e4 ∧ ei

+ [
b′′(w)

b(w)f2(t)g2(w)
− b′(w)g′(w)

b(w)f2(t)g3(w)
− ȧ(t)ḟ(t)

a(t)f3(t)g2(w)
]e5 ∧ ei (8)

Ω4
5 = [− ḟ(t)2

f4(t)g2(w)
+

f̈(t)

f3(t)g2(w)
+

g′(w)2

g4(w)f2(t)
− g′′(w)

g3(w)f2(t)
]e4 ∧ e5 (9)

where differentiation with respect to w and t are denoted as

ḣ =
∂h

∂t

h′ =
∂h

∂w

We get the Riemann tensor Rµνλx from curvature two forms by

Ωµν =
1

2
Rµνλxe

λ ∧ ex

and the components of our Einstein tensor by

Gµν = Rµν −
1

2
gµνR

where R is the Ricci Scalar R = gµνRµν . All this gives us the following

Gii = −2
b′′(w)

b(w)f2(t)g2(w)
+ 2

ä(t)

a(t)f2(t)g2(w)
+

ȧ2(t)

a2(t)f2(t)g2(w)
− b′2(w)

b2(w)f2(t)g2(w)

+
κ

a2(t)b2(w)
− ḟ2(t)

f4(t)g2(w)
+

f̈(t)

f3(t)g2(w)
+

g′2(w)

f2(t)g4(w)
− g′′(w)

f2(t)g3(w)
(10)
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G44 = 3
ȧ(t)ḟ(t)

a(t)f3(t)g2(w)
+ 3

b′(w)g′(w)

b(w)f2(t)g3(w)
− 3

b′′(w)

b(w)f2(t)g2(w)

3
ȧ2(t)

a2(t)f2(t)g2(w)
− 3

b′2(w)

b2(w)f2(t)g2(w)
+ 3

κ

a2(t)b2(w)
(11)

G55 = 3
ä(t)

a(t)f2(t)g2(w)
+ 3

ȧ2(t)

a2(t)f2(t)g2(w)
+ 3

κ

a2(t)b2(w)

− 3
ȧ(t)ḟ(t)

a(t)f3(t)g2(w)
− 3

b′2(w)

b2(w)f2(t)g2(w)
− 3

b′(w)g′(w)

b(w)f2(t)g3(w)
(12)

G54 = 3[
b′(w)ȧ(t)

ia(t)b(w)f2(t)g2(w)
− b′(w)ḟ(t)

ib(w)f3(t)g2(w)
− ȧ(t)g′(w)

ia(t)f2(t)g3(w)
] (13)

3 Vacuum Solutions in 5 Dimensions
Now let us consider the vacuum solutions for flat spacelike sections, that is solutions to Gµν = 0
with κ = o.

From Gii = 0 we get

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ2(t)

f2(t)
+
f̈(t)

f(t)
= 2

b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
(14)

The right hand side of this equation is purely w−dependent, and the left hand side purely
t−dependent. The only way these two sides are equal to one another is if they are equal to the
same constant k. Thus out of Gii we get the following two equations

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ2(t)

f2(t)
+
f̈(t)

f(t)
= k (15)

and

2
b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
= k (16)

With the same reasoning we get from G44 = 0

ȧ(t)ḟ(t)

a(t)f(t)
+
ȧ2(t)

a2(t)
= l (17)

b′′(w)

b(w)
+
b′2(w)

b2(w)
− b′(w)g′(w)

b(w)g(w)
= l (18)

and from G55 = 0

ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ȧ(t)ḟ(t)

a(t)f(t)
= m (19)

b′2(w)

b2(w)
+
b′(w)g′(w)

b(w)g(w)
= m (20)
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Thus we have two sets of equations, one set related to t and the other related to w. We will
solve these two sets first and check whether the solutions satisfy G54 = 0, which gives

1− a(t)ḟ(t)

ȧ(t)f(t)
=
g′(w)b(w)

g(w)b′(w)
= constant. (21)

Let’s first look at the set related to t, whose solution will give us a(t) and f(t)

2
ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ḟ2(t)

f2(t)
+
f̈(t)

f(t)
= k (22)

ȧ(t)ḟ(t)

a(t)f(t)
+
ȧ2(t)

a2(t)
= l (23)

ä(t)

a(t)
+
ȧ2(t)

a2(t)
− ȧ(t)ḟ(t)

a(t)f(t)
= m (24)

We can get an equation for a(t) by adding the last two equations,

ä

a
+ 2

ȧ2

a2
= m+ l. (25)

If we consider a solution of the form a(t) = a0e
νt and plug this in (25) we get

a(t) = a0 exp[

√
(m+ l)

3
t]. (26)

By imposing this solution on equation (25) we obtain

f(t) = f0 exp[
2l −m√
3(m+ l)

t] (27)

When the solutions (27) and (26) are inserted into equations (22), (23), (24) we find that (23)
and (24) are satisfied identically where as (22) imposes the condition

m+ l = k. (28)

A similar approach to the w related set of equations,

2
b′′(w)

b(w)
+
b′2(w)

b2(w)
− g′2(w)

g2(w)
+
g′′(w)

g(w)
= k (29)

b′′(w)

b(w)
+
b′2(w)

b2(w)
− b′(w)g′(w)

b(w)g(w)
= l (30)

b′2(w)

b2(w)
+
b′(w)g′(w)

b(w)g(w)
= m, (31)

gives

b(w) = b0 exp [

√
(m+ l)

3
w] (32)

and

g(w) = g0 exp [

√
3(2m− l)√
m+ l

w] (33)
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where equation(29) imposes the same condition m+ l = k. Moreover our solutions imply that

k = m+ l ≥ 0 (34)

since they each contain a
√

(m+ l) term. With these solutions G54 = 0 is satisfied as well.
Thus the vacuum solutions of our five dimensional metric with flat spacelike sections is

ds2 = f2
0 g

2
0exp[

4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w](−dt2+dw2)+a2
0b

2
0exp[2

√
m+ l

3
(t+w)][dx2+dy2+dz2]

(35)

4 The Effective 4 Dimensional Solution
We will now consider the above solution of the vacuum five dimensional spacetime at some
w = w0 where w0 is a constant. At w = w0 spacetime metric becomes

ds2 = f2
0 g

2
0exp[

4m− 2l√
3(m+ l)

w0]exp[
4l − 2m√
3(m+ l)

t](−dt2)+a2
0b

2
0exp[2

√
m+ l

3
w0]exp[2

√
m+ l

3
t][dx2+dy2+dz2]

(36)
f0g0exp[

2m−l√
3(m+l)

w0] is just a constant so we can set it equal to another constant F0. With

F0 = f0g0exp[
2m− l√
3(m+ l)

w0],

A0 = a0b0exp[

√
m+ l

3
w0]

we can write our solution as

ds2 = −F 2
0 exp[

4l − 2m√
3(m+ l)

t]dt2 +A2
0exp[2

√
m+ l

3
t][dx2 + dy2 + dz2]. (37)

To write this in terms of the cosmological proper time consider the following coordinate
transformation

dt̃ = F0exp[
2l −m√
3(m+ l)

t]dt. (38)

To simplify the notation we will define

β =

√
m+ l

3
,

and
α =

3β

2l −m
.

With all this our coordinate transformation gives,

t̃ = F0αe
[ tα ] (39)

and

e2βt = (
t̃

F0α
)2βα. (40)
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This coordinate transformation has turned our solution into

ds2 = −dt̃2 +A2
0t̃

2αβ [dx2 + dy2 + dz2]. (41)

We can always absorb A0 into ~r by a coordinate transformation. So if we drop the tilde, define
αβ = n our metric in its simplest form becomes

ds2 = −dt2 + t2n[dx2 + dy2 + dz2]. (42)

Metric (42) contains all the relevant four dimensional cosmologies. For n = 2
3 we have matter

dominated universe, for n = 1
2 we have radiation dominated universe.

Furthermore by setting m = 2l in (36) we get

ds2 = f2
0 g

2
0e

2
√
lw0 [−dt2] + a2

0b0e
2
√
lw0e2

√
lt[dx2 + dy2 + dz2]. (43)

Before explaining what we have obtained let us simplify this metric further first. The factor
e2
√
lw0 is just a constant which can be set to c20. We can also absorb all the constants into dt2

by the coordinate transformation,
dτ = f0g0c0dt

τ − τ0
f0g0c0

= t (44)

and define a0b0c0exp[− τ0
f0g0c0

] = A2
0 so that we have

ds2 = −dτ2 +A2
0e

[ 2
√
l

f0g0c0
τ ]d~r2. (45)

Let us denote τ by t and set α =
√
l

f0g0c0
, the constant A0 can also be absorbed into d~r

ds2 = −dτ2 + e2αtd~r2. (46)

Thus we have obtained an exponential scale factor, a behavior attributed to dark energy with
α = H0 where H0 is approximately today’s value of Hubble’s parameter.

5 The Curvature and The Weyl Tensors
Components of the Weyl tensor in our convention of Ricci tensor Rνλ = Rµνλµ, metric sign
(−,+,+,+), are calculated as

Cρσµν = Rρσµν +
1

d− 2
(gρµRνσ − gρνRµσ − gσµRνρ + gσνRµρ)

− 1

(d− 1)(d− 2)
(gρµgνσ + gρνgµσ)R (47)

where d is the number of dimensions.
For our five dimensional solution, in equation (35),

Rijij = [f2
0 g

2
0exp(

4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w)]−1(
m+ l

3
− m+ l

3
) = 0

Ri44i = [f2
0 g

2
0exp(

4l − 2m√
3(m+ l)

t+
4m− 2l√
3(m+ l)

w)]−1(

√
m+ l

3

l +m√
3(m+ l)

− m+ l

3
) = 0
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Ri45i = Ri54i =
1

if2(t)g2(w)
[
m+ l

3
−

√
m+ l

3

m+ l√
3(m+ l)

] = 0

Ri55i =
1

f2(t)g2(w)
[
m+ l

3
−

√
m+ l

3

m+ l√
3(m+ l)

] = 0

R4545 =
1

f2(t)g2(w)
[− ḟ

2

f2
+
f̈

f
+
g′2

g2
− g′′

g
] = 0

all the components of Riemann curvature tensor are zero. Therefore the Ricci Scalar, all com-
ponents of Rµν , and the Weyl tensor for the Ricci flat five dimensional metric are all zero. Our
five dimensional universe is Ricci flat, meaning it contains no energy nor momentum density,
and conformally flat, it contains no gravitational fields, in short it is flat and empty. It is not
surprising that our universe turned out to be conformally flat, since we were handling the Ricci
flat solution. What is good is that this flat five dimensional universe is able to contain all relevant
four dimensional cosmologies.

It is a well established fact that the Friedmann-Robertson-Walker (FRW) metric can be
put in a conformally flat form[10,11]. It has been further pointed out that[12] calculations on
the age of the universe and its matter density carried out in conformally flat spacetime (CFS)
coordinates agree better with the observations then those carried out in FRW coordinates. With
such emphasis on the conformal flatness of our universe, it is an achievement to be able to embed
standard four dimensional cosmology in a conformally flat five dimensional cosmology in this
work on higher dimensional cosmologies.

6 Conclusion
We have obtained all relevant cosmologies, including dark energy dominated cosmology, as four
dimensional slices of a flat five dimensional metric. We have been able to bring together all these
different cases of four dimensional cosmologies in a five dimensional version because we allowed
the internal dimension to be fundamental, like time. We know that at early times universe goes
through different phases, radiation dominated, dust dominated and so forth by a power law,
a(t) = tn, where the value of n changes from one era to another. In our model this power
depends on m and l, which are free parameters obtained from the separability of variables in
G44 = 0 and G55 = 0.

We can say that one can assume the five dimensional universe to be flat and still obtain
all relevant four dimensional cosmologies. The key point is to introduce the extra dimension,
although spacelike, in a way a timelike dimension would be introduced. As such the internal
dimension plays a fundamental role and the four dimensional cases can be put inside a five
dimensional flat universe. The extra dimension can be compactified in the usual manner by
introducing an orbifold.

The common intuition would be to imagine a four dimensional space expanding along time.
Instead what we have introduced here is the three dimensional space expanding along both time
and internal space. So in a sense we should visualize this as a four dimensional spacetime evolving
along the extra dimension. Thus we conclude by saying, it is possible that we live in a vacuum,
five dimensional universe where what we consider to be the effects of energy and momentum in
four dimensions, are actually the effects of a five dimensional flat geometry.

We would like to thank Dr. Nihan Katırcı for help with checking the calculations on Maple.
This work was supported in part by the Turkish Academy of Sciences.
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