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Abstract

In this work a tachyonization of the ΛCDM model for a spatially flat Friedmann-Robertson-

Walker space-time is proposed. A tachyon field and a cosmological constant are considered as

the sources of the gravitational field. Starting from a stability analysis and from the exact

solutions for a standard tachyon field driven by a given potential, the search for a large set of

cosmological models which contain the ΛCDM model is investigated. By the use of internal

transformations two new kinds of tachyon fields are derived from the standard tachyon field,

namely, a complementary and a phantom tachyon fields. Numerical solutions for the three

kinds of tachyon fields are determined and it is shown that the standard and complementary

tachyon fields reproduces the ΛCDM model as a limiting case. The standard tachyon field can

also describe a transition from an accelerated to a decelerated regime, behaving as an inflaton

field at early times and as a matter field at late times. The complementary tachyon field always

behaves as a matter field. The phantom tachyon field is characterized by a rapid expansion

where its energy density increases with time.

1 Introduction

Nowadays there exists consensus that at early times an inflaton field has driven the Universe to a
rapid accelerated expansion. This period was followed by a decelerated era dominated by a matter
field and then, by another accelerated period dominated by dark energy. Several cosmological
models were proposed to do the job, based on rolling tachyon field from string theory. Also, much
effort has been devoted to the study of tachyon potential and classical solutions on an unstable
D-brane system. Actually, the energy-momentum tensor of the tachyon field can be seen as a sum
of two tensors, associated with dark matter and vacuum energy density respectively [1], whereas
the tachyon potential has an unstable maximum at the origin decaying to almost zero as the field
goes to infinity. Depending on this asymptotic behavior several works have been carried out on
tachyonic dark energy, [2]-[5], on tachyonic dark matter, [6]-[8] and inflation models [9],[10]. Also,
in Refs. [11]-[13] it was assumed an interaction for good fit to the Supernovae and CMB data.

Although in k-essence cosmologies, the stability of the k-essence with respect to small wavelength
perturbations requires a positive sound speed c2

s = ṗ/ρ̇, in Ref. [14] it was shown that a positive
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sound speed is not a sufficient condition for the theory to be stable. Hence, non standard tachyon
fields have been generated assuming a sound speed proportional to that of the standard tachyon
field in [15] for FRW and in [16] for Bianchi type I cosmologies.

In this work it is analyzed the evolution of a Universe whose gravitational sources are a cosmo-
logical constant and a tachyon field, and its aim is to determine a large set of cosmological models
which contain the ΛCDM model as a special case. Usually in the ΛCDM cosmological model it is
assumed that the pressureless component includes all types of matter known from laboratory ex-
periments (protons, neutrons, photons, neutrinos, etc.) as well as non-relativistic non-baryonic cold
dark matter (whose energy-momentum tensor is dust-like in the first approximation 0 < p << ρ).
This is an approximation only justified by the simplicity of the model. However, we think that it
would be better to consider the possibility of including a large set of nearly pressureless compo-
nents. Consequently, we have introduced the tachyon field as representative of the above variety
of components because it may behave as dust like in first approximation. In fact, the potential we
have chosen for the tachyon field leads to an effective equation of state which interpolates between
a nearly dust era at early times and a de Sitter stage at late times. In this way we are considering a
set of enlarged ΛCDM cosmological model with the possibility of finding more realistic framework
for the present universe. The search for this large set of cosmological models makes use of the
stability analysis of the standard tachyon field and internal transformations. In the Ref. [15] one
of the authors introduced the extended tachyon fields. These enlarged set of fields can be split into
three classes, so apart from the class containing the standard tachyon field two new classes arise,
namely, a complementary and a phantom tachyon fields. The three classes of tachyon fields will be
analyzed and shown that the limiting cases of the standard and complementary tachyon fields tend
to the ΛCDM model whereas the standard tachyon field is able to describe the inflationary period.
We think that any model obtained from a symmetry transformation of the dynamical equations
should be taking into account as a realizable model. From this point of view it is interesting also
to investigate the phantom tachyon field.

The work is organized as follows: in Section II a stability analysis of the standard tachyon
field is performed in order to determine the asymptotically stable solutions. The tachyonization
process is the subject of Section III where the complementary and the phantom tachyon fields are
introduced. In Section IV a numerical analysis of the three kinds of tachyon fields is considered
and a discussion on the regimes is carried out. Finally in Section V it is given a summary of the
main conclusions.

2 Stability Analysis

Let us present the Lagrangian density for the tachyon field ϕ

Lϕ = −V (ϕ)
√

1 − ∂µϕ∂µϕ, (1)

here V (ϕ) denotes the potential of the tachyon field. One can associate an energy-momentum
tensor for the tachyon field so that its energy density ρϕ and pressure pϕ – in a homogeneous and
isotropic space-time represented by the spatially flat Friedmann-Robertson-Walker Universe – are
given by

ρϕ =
V

√

1 − ϕ̇2
, pϕ = −V

√

1 − ϕ̇2. (2)

Let us consider the gravitational field generated by a cosmological constant Λ and a tachyon
field ϕ(t) with energy density ρϕ. In this case the Friedmann and conservation equations become

3H2 = Λ + ρϕ, (3)

ρ̇ϕ + 3H(ρϕ + pϕ) = 0. (4)
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where H = ȧ(t)/a(t) is the Hubble parameter and a(t) is the cosmic scale factor. The evolution
equation for the tachyon field that follows from Eqs. (2) and (4) is

ϕ̈ + (1 − ϕ̇2)

[

3Hϕ̇ +
1

V

dV

dϕ

]

= 0. (5)

Note that the dynamic of the tachyon field driven by the potentials V and V → V0 V is the same
for any multiplicative constant V0.

In order to analyze the stability of solutions let us relate the pressure and the energy density of
the tachyon field by a barotropic index γ, so that pϕ = (γ − 1)ρϕ. In this case it is easy to obtain
from Eqs.(2) that ϕ̇2 = γ, whereas from eqs. (3) and (4) it follows that

3H2 = Λ +
V√
1 − γ

, (6)

ρ̇ϕ +
3γHV√

1 − γ
= 0 (7)

Now the differentiation of Eq. (6) with respect to time and the use of Eq. (7) leads to the differential
equation for the barotropix index

γ̇ = 2(γ − 1)

(

3Hγ +
V̇

V

)

. (8)

To obtain solutions that are asymptotically stable, the barotropic index should tend to a constant
value, namely, γ = γ0. In this case one can get from (8) the asymptotically differential equation

V̇

V
≃ −3γ0

ȧ

a
, so that V ≃ V0

a3γ0

. (9)

From the knowledge of the asymptotic value for the potential density it follows the corresponding
asymptotic value for the energy density, namely,

ρϕ =
V0√

1 − γ0
a−3γ0 . (10)

Equation (8) can be rewritten thanks to (9) as

γ̇ = 6H(γ − 1)(γ − γ0). (11)

The solution of the differential equation (11) for the case where γ0 6= 1 is

γ =
γ0 + c1a

6(γ0−1)

1 + c1a6(γ0−1)
(12)

where c1 is an integration constant. One can infer from the above equation that γ tends asymptot-
ically to γ0 once γ0 < 1. On the other hand, when γ0 = 1 the solution of (11) reads

γ = 1 − 1

c2 + 6 lna
, (13)

with c2 denoting an integration constant. According to the last equation the barotropic index tends
to γ0 = 1.
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3 The tachyonization process

Motivated by the stability analysis of the previous section – where the relationship (10) between
the energy density of the tachyon field and the cosmic scale factor is similar to that of a perfect
fluid with constant barotropic index – one is tempted to find and investigate exact solutions for
tachyon fields driven by the following potential

V (ϕ) =
Λ
√

1 − γ0

sinh2
√

3γ0Λ
2 ϕ

, (14)

where γ0 is a parameter of the model. Although the potential diverges at early times, where ϕ → 0,
it reasonably mimics the behavior of a typical potential in the condensate of bosonic string theory.
One expects the potential to have a unique local maximum at the origin and a unique global
minimum away from the origin at which V vanishes [18]. In the most interesting case the global
minimum is taken to lie at infinity [19]. Obviously more complicated potentials having the same
limit could be analyzed but we restrict to that of Eq. (14). For this potential the tachyon field
equation (5) becomes

ϕ̈ + (1 − ϕ̇2)

[

3Hϕ̇ −
√

3γ0Λ coth

√
3γ0Λ

2
ϕ

]

= 0. (15)

Exact solutions for the tachyon field were found using a linear field in several references [20, 21].
Also, this assumption has proved to be useful in the context of k-essence theories [23],[15]. With
this idea in the mind, our purpose is to find an exact solution of the field equation (15) by assuming
a linear dependence of the tachyon field with the cosmological time,

ϕ =
√

b t, ϕ̇2 = b, (16)

where 0 < b < 1 is a constant to be determined later on. The latter will be solution of Eq. (15) if

H =

√

γ0Λ

3b
coth

√
3γ0bΛ

2
t, (17)

which, after integration we obtain the following cosmic scale factor

a = a0

[

sinh

√
3γ0bΛ

2
t

]2/3b

. (18)

By imposing the consistency of this cosmic scale factor – expressed in terms of the linear tachyon
field (16) – with respect to the solutions of the Friedmann equation (6) for the potential (14),
namely,

3H2 = Λ

[

1 +

√
1 − γ0

√

1 − ϕ̇2 sinh2
√

3γ0bΛ
2 t

]

, (19)

we get b = γ0. Therefore, for the linear exact solutions, the energy density of the tachyon field is
given by that of a perfect fluid, i.e., ρϕ = C/a3γ0 , where C = Λa3γ0

0 is a constant. In this case the
Friedmann’s equation (19) reads

3H2 = Λ +
C

a3γ0

, (20)

whose integration leads to the knowledge of the cosmic scale factor as function of time:

a =

[

√

C

Λ
sinh

(

√

3γ2
0Λ

2
t

)]
2

3γ0

. (21)
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Furthermore, the final energy density and pressure of the tachyon field are given by

ρϕ =
Λ
√

1 − γ0
√

1 − ϕ̇2 sinh2
√

3γ0Λ
2 ϕ

, (22)

pϕ = −Λ
√

(1 − γ0)(1 − ϕ̇2)

sinh2
√

3γ0Λ
2 ϕ

, (23)

respectively. Clearly, in the limit γ0 → 1, this cosmological model – whose sources include the
cosmological constant and a tachyon field driven by the potential (14) – reduces to the standard
ΛCDM model. However, in the general case by considering other solutions different from the linear
tachyon field, the model will have slightly dissimilar characteristics with respect to the ΛCDM
model. In the next section we shall investigate these kind of models by performing a numerical
analysis of their solutions.

To sum up, the tachyonization of the ΛCDM model we have presented may considered as a
process of constructing a large set of cosmological models, generated by a tachyon field, which
contain the ΛCDM model. It means that the particular set of solution, corresponding the linear
tachyon field solution along with the limit γ0 → 1, is the general exact cosmic scale factor solution
of the ΛCDM model. In addition, for the case where the tachyon energy density has the perfect
fluid form ρϕ = C/a3γ0, with γ0 6= 1, the time evolution of the cosmic scale factor is given by the
solution (21) of the Friedmann equation (20) and the tachyon field solution has the linear form (16)
with b = γ0. This represent the tachyonization of the flat FRW universe with cosmological constant
filled with a perfect fluid.

Finally we comment that in the case without the cosmological constant, i.e., the case of the
FRW universe filled with a perfect fluid, the potential and the cosmic scale factor reduce to

V =
4
√

1 − γ0

3γ0φ2
, (24)

a =

[

√

3γ2
0C

2
t

]
2

3γ0

, (25)

after taking the limit Λ → 0 into the expressions (14) and (21) along with φ =
√

γ0 t. These results
are exactly and the same found in Ref. [20, 21]. However, here we have shown that the potential
(24) gives the tachyonization of the FRW cosmological model with a perfect fluid. Hence, the
remaining solutions of the tachyon field, corresponding to the solutions which differ from φ =

√
γ0 t

are associated with a more general model containing it.

3.1 Extended tachyon fields

In a recent paper [15] one of the authors introduced two new kinds of extended tachyon fields, apart
from the well known tachyon field which was analyzed above. The usual tachyon field, with γ < 1,
can be associated with 0 < γ0 < 1. Below, we use the extended tachyon fields to cover all remaining
values of γ0. The tachyonization of the model for 1 < γ0 will be achieved by the complementary
tachyon field ϕc, whereas for γ0 < 0 by the phantom tachyon field ϕph. In Ref. [22] the phantom
tachyon field was obtained by applying the dual symmetry transformation on the standard tachyon,
generating an extended super accelerated tachyon field.

These two kinds of tachyon fields can be introduced from the tachyon field analyzed above by
applying internal transformations as follows.

The complementary tachyon field ϕc is characterized by 1 < γ0 or 1 < ϕ̇2
c and it can be generated

from the standard tachyon field by making an internal transformation. In fact, a real tachyon
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field ϕc is obtained from the energy density (22) and pressure (23) by replacing simultaneously
1 − γ0 → −(1 − γ0) and 1 − ϕ̇2 → −(1 − ϕ̇2

c), resulting

ρc =
Λ
√

γ0 − 1
√

ϕ̇2
c − 1 sinh2

√

3γ0Λ
2 ϕc

, (26)

pc =
Λ
√

(γ0 − 1)(ϕ̇2
c − 1)

sinh2
√

3γ0Λ
2 ϕc

, (27)

Vc =
Λ
√

γ0 − 1

sinh2
√

3γ0Λ
2 ϕc

, (28)

ϕ̈c + (1 − ϕ̇2
c)

[

3Hϕ̇c −
√

3γ0Λ coth

√
3γ0Λ

2
ϕc

]

= 0. (29)

The phantom tachyon field ϕph is characterized by γ0 < 0, ϕ̇2
ph = −γ0. It is generated also from

of the standard tachyon field by making an internal transformation. In this case the replacement√
γ0 → −ı

√−γ0 and ϕ → ıϕph in the equations (22)-(23) gives

ρph =
Λ
√

1 − γ0
√

1 + ϕ̇2
ph sinh2

√

−3γ0Λ
2 ϕph

, (30)

pph = −
Λ
√

(1 − γ0)(1 + ϕ̇2
ph)

sinh2
√

−3γ0Λ
2 ϕph

, (31)

Vph =
Λ
√

1 − γ0

sinh2
√

−3γ0Λ
2 ϕph

, (32)

ϕ̈ph + (1 + ϕ̇2
ph)

[

3Hϕ̇ph −
√

−3γ0Λcoth

√
−3γ0Λ

2
ϕph

]

= 0. (33)

We note that the cosmological expressions for the two new kinds of tachyon fields were found by
using simple internal symmetries. In conclusion, we need all of them to describe the time evolution
of the cosmic scale factor (21) for all γ0 values. This close the tachyonization of the flat FRW
universe with cosmological constant filled with a perfect fluid.

4 Analysis for given potential density

Motivated by the above results one is also tempted to find more general cosmological solutions
by specifying the tachyon potential and allowing for more general solutions of the tachyon field
equation (15) other than the linear one given by Eq. (16). In those cases, the tachyon energy
density has a more complicated dependence with the cosmic scale factor than the perfect fluid one
ρϕ = C/a3γ0 . To find the solutions one has to solve the following coupled system of differential
equations:

1) Standard tachyon field ϕ

3H2 = Λ +
V (ϕ)

√

1 − ϕ̇2
, (34)

ϕ̈ + (1 − ϕ̇2)

(

3Hϕ̇ +
1

V

dV

dϕ

)

= 0, (35)
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Figure 1: Cosmic scale factors as functions of time for standard (γ0 = 0.99 and γ0 = 0.75) and
complementary (γ0 = 1.01 and γ0 = 2) tachyon fields.

2) Complementary tachyon field ϕc

3H2 = Λ +
Vc(ϕc)
√

ϕ̇2
c − 1

, (36)

ϕ̈c − (ϕ̇2
c − 1)

(

3Hϕ̇ +
1

Vc

dVc

dϕ

)

= 0, (37)

3) Phantom tachyon field ϕph

3H2 = Λ +
Vph(ϕph)
√

1 + ϕ̇2
ph

, (38)

ϕ̈ph + (1 + ϕ̇2
ph)

(

3Hϕ̇ph − 1

Vph

dVph

dϕph

)

= 0. (39)

In the above equations the potential densities V (ϕ), Vc(ϕc) and Vph(ϕph) are given by eqs. (14),
(28) and (32), respectively.

To find exact solutions of the three systems of differential equations is a very hard task and in
the following numerical solutions of the three systems are analyzed.

In figures 1 to 5 it is plotted the numerical solutions of the above systems of differential equations
for the following initial conditions a(1) = 1, ϕ(1) = ϕc(1) = ϕph(1) = 1 and ρ(1) = ρc(1) = ρph(1) =
1. Moreover, in all three cases the cosmological constant was taken equal to Λ = 0.001. Figures 1
to 4 refers to the standard and complementary tachyon fields whereas figure 5 correspond to the
phantom one.

Let us analyze the standard and complementary tachyon fields for values of γ0 ≈ 1 which are
very closed to the ΛCDM model. For the standard tachyon field it was chosen γ0 = 0.99 whereas
for the complementary γ0 = 1.01. For these two values one infers from figures 1 to 4 that there
is no sensible difference of the solutions concerning the time evolution of the cosmic scale factors
(fig. 1), energy densities (fig. 2), potential densities (fig. 3) and accelerations (fig.4) with the
ΛCDM model. From these figures one concludes that the cosmic scale factors increase with time,
the energy densities and the potential densities of the tachyon fields decrease with time, whereas
the accelerations show a transition from a decelerated to an accelerated regime. The two tachyon
fields here behave as matter fields which are responsible for the decelerated regime.
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Figure 2: Energy densities as functions of time for standard (γ0 = 0.99 and γ0 = 0.75) and
complementary (γ0 = 1.01 and γ0 = 2) tachyon fields.
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Figure 3: Potential densities as functions of time for standard (γ0 = 0.99 and γ0 = 0.75) and
complementary (γ0 = 1.01 and γ0 = 2) tachyon fields.
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Figure 5: Cosmic scale factor, acceleration, energy density and potential density as functions of
time for phantom tachyon field, for γ0 = −0.05.

The standard tachyon field with γ0 = 0.75 plays the role of an inflaton field which decays into a
matter field. This can be observed from the behavior of its acceleration field in fig. 4, since at early
times it begins with an accelerated regime which goes into a decelerated era returning afterwards to
another accelerated regime where the cosmological constant predominates. This kind of behavior of
the acceleration field was also obtained in the work [17] where the potential density of the tachyon
field was considered as an exponential type. The analysis of figures 1 to 3 for γ0 = 0.75 shows
that the evolution with time of the cosmic scale factor is much more accentuated than that for
the ΛCDM model, the energy density decreases more slowly whereas the potential density is larger
than the one for the ΛCDM model.

The complementary tachyon field with γ0 = 2 represents stiff matter with a deceleration larger
than the one corresponding to the ΛCDM model (see fig. 4). The cosmological constant is the
responsible for the transition from a decelerated to accelerated regime. From figures 1 and 2 one
can infer that for γ0 = 2 the increase with time of the cosmic scale factor is less accentuated than
the one for the ΛCDM model, whereas the energy density decreases more rapidly. Furthermore,
according to fig.3 the potential density stands between the potential densities of the standard
tachyon field with γ0 = 0.75 and the ΛCDM model.

The phantom tachyon field has the typical characteristics of a phantom field, since its cosmic
scale factor and acceleration field increase very rapidly with time (see fig. 5). Moreover, its energy
density grows with time and the potential energy dominates for large times so that the energy
density becomes equal to the potential density.

5 Conclusions

The tachyonization process we have introduced allows to think the ΛCDM model as included in a
more general set of cosmological models with cosmological constant and containing a tachyon field
driven by the potential (14). This is a very interesting procedure to investigate models bearing
certain resemblance to the ΛCDM model. The same process was applied to the FRW universe
without cosmological constant and filled with a perfect fluid, taking the limit Λ → 0 of the above
ΛCDM model. There we have obtained the standard inverse square potential, which has been
extensively used for tachyon and k-essence cosmologies, and the corresponding power law solutions.
The tachyonization of the ΛCDM model was determined from the stability analysis and from exact
solutions of the standard tachyon field driven by the given potential (14). From the use of simply
internal transformations two new kinds of extended tachyon fields were derived from the standard
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tachyon field: the complementary and the phantom tachyon fields.
From the analysis of the numerical solutions for the three tachyon fields shown in figures 1 to

5 one concludes that: (i) the standard and complementary tachyon fields with γ0 ≈ 1 reproduce
the ΛCDM model as a limiting case, since the time evolution of the cosmic scale factors (Fig. 1),
energy densities (Fig.2) and accelerations (Fig. 4) are very close to each other; (ii) for values of
γ0 < 1 the standard tachyon field behaves as an inflaton field at early times and as a matter field
at late times describing a transition from an accelerated to a decelerated regime (Fig. 4). In this
case the time evolution of the cosmic scale factor (Fig. 1) increases more accentuated than the
ΛCDM model whereas its energy density (Fig. 2) decreases more slowly; (iii) for values of γ0 > 1
the complementary tachyon field behaves as a decelerated matter field. Its energy density (Fig. 2)
decays more rapidly with time in comparison to the ΛCDM model, its cosmic scale factor (Fig. 1)
increases more slowly and its deceleration is more accentuated (Fig. 4); (iii) the phantom tachyon
field (Fig. 5) is characterized by a rapid accelerated expansion where its energy density increases
with time.
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