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Abstract

Superstring theory is known to be free from ultraviolet divergences but suffers from the

usual infrared divergences that occur in quantum field theories. After briefly reviewing the

origin of ultraviolet finiteness of superstring theory we describe recent progress towards the

understanding of infrared divergences in superstring theory.
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Quantum field theory is the standard theoretical tool for studying the physics of elementary

particles. The most commonly used approach for studying quantum field theories is perturba-

tion theory, where we take all the interaction effects to be small and carry out a Taylor series

expansion in the coupling constants – the parameters that label the interaction strengths – of

various physical quantities like the scattering amplitudes. The coefficients of the Taylor series

expansion are given by sum of Feynman diagrams, each of which represents an integral over

certain number of loop momenta. For a quantum field theory in d space-time dimensions a

typical integral takes the form

∫

ddℓ1 · · · d
dlg

r
∏

j=1

(k2

j +m2

j )
−1N (1)

where each ℓi is a d-dimensional vector labelling loop momenta, each kj is a d-dimensional

vector given by appropriate linear combination of the ℓi’s and the momenta p1, · · · pn carried

by the incoming and outgoing particles whose scattering amplitude we are trying to calculate,

mj denotes the mass of one of the particles in the theory and the numerator factor N is a

polynomial in the loop momenta {ℓi} and the external momenta {pk}. The components of

the vector kj (and similarly for ℓj) are labelled as (k0
j , · · · k

d−1

j ), and k2
j ≡ −(k0

j )
2 + (k1

j )
2 +

· · · + (kd−1

j )2. The number of ℓi’s and kj’s, the expressions for the kj’s in terms of the ℓi’s

and the pk’s, which mass mj to use in a given factor in (1) and the precise expression for

the numerator factor N are all fixed by the Feynman rules for a given Feynman diagram.

Therefore all one needs to do to compute the scattering amplitude is to carry out the integrals

of the form given in (1) and add the contributions from different diagrams. An expression

containing integration over g loop momenta, like the one appearing in (1), is usually referred

to as a g-loop contribution to the amplitude.

This has been an enormously successful program and lies at the heart of most of what we

know about elementary particles. However, quantum field theories have inherent divergences

– infinities encountered in the evaluation of (1) – which need to be dealt with before we

can make concrete predictions. These divergences can be broadly classified into two kinds

– ultraviolet and infrared. The ultraviolet divergences come from the region of integration

where one or more of the ℓi’s in (1) become large. The infrared divergences arise from the

vanishing of one or more factors of (k2
j + m2

j ). It turns out that the ultraviolet divergences

are unphysical, and can be removed in a class of quantum field theories called renormalizable

quantum field theories. For describing the theory of elementary particles we use this kind of

quantum field theories. On the other hand the infrared divergences have physical origin, in

that their appearance signals that we are not asking the right question. Once the right question

is asked, these divergences automatically disappear. Typical examples of infrared divergences
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are tadpole divergences which arise when we incorrectly identify the ground state of the system

about which we carry out the perturbation expansion, and mass renormalization divergences

which arise when we use the wrong mass of the external states for computing the scattering

amplitudes. These divergences typically arise when the ground state and/or the masses of the

particles change after taking into account the effect of interactions, and we are not careful in

taking into account the effect of these changes in our calculation.

In order to characterize these divergences it is useful to use the so called Schwinger param-

eter representation for the propagator factors (k2
j +m2

j )
−1. For each propagator we introduce

a real parameter sj and write

(k2

j +m2

j )
−1 =

∫

∞

0

dsj exp[−sj(k
2

j +m2

j)] . (2)

With the help of this identity, (1) can be written as

∫

∞

0

ds1 · · ·

∫

∞

0

dsr

∫

ddℓ1 · · ·d
dlg exp

[

−
∑

j

sj(k
2

j +m2

j )

]

N . (3)

Since each kj is a linear combination of the ℓi’s, the exponent is quadratic function of the ℓi’s

for fixed sj . Since the numerator factor N is polynomial in ℓj , we can now explicitly perform

the integration over the ℓj’s using the standard rules of Gaussian integration over multiple

variables. Special care is needed to treat the integration over the ℓ0j ’s; due to the fact that

(k0
j )

2 appears with a negative coefficient in the expression for k2
j , the coefficients of (ℓ0i )

2 in

the argument of the exponential in (3) is positive and the ℓ0i integrals are a priori divergent.

This is circumvented by the standard procedure of analytically continuing these integrals so

that the ℓ0i integrals run along the imaginary axis. Once this is done, one can carry out the

integration over the ℓi’s without encountering any divergence, and express (3) as
∫

∞

0

ds1 · · ·

∫

∞

0

dsr F ({si}) , (4)

for some function F of the sj ’s. It is easy to verify that the ultraviolet divergences of the

original integral, coming from the region of large ℓj , now will appear as a divergence in the

integral (4) from the region where a subset of the sj ’s go to zero. On the other hand infrared

divergences of the original integral will appear in (4) from the region where one or more sj’s

become large.

In superstring theory (which for our discussion will stand for four different varieties of string

theory named as SO(32) heterotic, E8 × E8 heterotic, type IIA and type IIB string theories)

we replace the notion that the elementary building blocks of matter are point particles by the

notion that they are strings – one dimensional extended objects. The main motivation for
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superstring theory stems from the fact that this theory automatically incorporates gravity in

its framework. This is to be contrasted with quantum field theory, which has great difficulty

in incorporating gravity in its fold. The naive quantum field theory that one gets by applying

the usual rules of quantum field theory to general theory of relativity – the theory developed

by Einstein a hundred years ago – leads to a non-renormalizable theory and has uncontrolled

ultraviolet divergences.

Superstring theory comes with its own prescription for computing scattering amplitudes

which seems to differ from the sum over Feynman diagram expansion that emerges from a

quantum field theory. The intrinsic difference arises from the fact that whereas particle tra-

jectories are described by curves in space-time, the trajectory of a string is described by a

surface in space-time – often referred to as the world-sheet. This intuitive picture allows us

to represent the string scattering amplitudes as integrals over the moduli space of two dimen-

sional Riemann surfaces – the moduli space being a space whose different points label different

Riemann surfaces. In particular the g-loop, n-point scattering amplitude in superstring theory

is given by an expression of the form:

∫

Mg,n

6g−6+2n
∏

i=1

dmi f({mj}) . (5)

Here Mg,n denotes a 6g− 6+2n dimensional moduli space of genus g Riemann surface with n

marked points – the genus of a Riemann surface being the number of handles that the Riemann

surface has. The integrand f({mj}) is given by the correlation function of certain operators

in a two dimensional conformal field theory inserted at the marked points on the Riemann

surface. Which conformal field theory to use is determined by the specific background around

which we study the superstring theory, whereas which operators in the conformal field theory

we should use for our calculation is determined by the states whose scattering amplitude we

want to compute.

This way of computing scattering amplitude a priori looks very different from the Feynman

diagram expressions that we obtain from quantum field theories. However a closer examination

reveals that in appropriate limit, the integral over moduli space that comes from superstring

theory begins to resemble the integrals over the Schwinger parameters sj in (4) that appear in

quantum field theories. Since the divergences in quantum field theory arise from the integration

over the parameters sj , we see that to examine the fate of those divergences in superstring

theory we have to examine possible divergences arising from the integral over the moduli spaces

of Riemann surfaces.

Now the divergences from the integral over the moduli spaces of Riemann surfaces typi-

cally arise from the regions where the Riemann surface becomes singular. Study of singular
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(a) (b)

Figure 1: Degeneration of Riemann surfaces.

Riemann surfaces is a well-developed subject, and all such singularities are known to occur

from degenerations of Riemann surfaces, where the Riemann surface either becomes a pair of

Riemann surfaces connected by an infinitely narrow tube (Fig. 1(a)), or develops an infinitely

narrow handle connecting two points on a single Riemann surface (Fig. 1(b)). By using the

relation between the parameters mj labelling the moduli space of Riemann surfaces and the

parameters sj appearing in the expression for an amplitude (4) in quantum field theory, one

can show that all such singularities in the moduli space of Riemann surfaces can be interpreted

as the region where one or more of the sj’s become infinite. Therefore we conclude that all

divergences in superstring theory can be interpreted as infrared divergences.

There is however a caveat. Even though the divergences coming from singularities of

the moduli space of Riemann surfaces can be interpreted as infrared divergences, one may

wonder whether there can be divergences from the regular regions in the interior of the moduli

space. This would happen if the correlation function f({mj}) in the conformal field theory

that we have to compute blows up at some regular point in the interior of the moduli space.

One does not expect this to happen for a unitary conformal field theory, but it turns out

that such a singularity could arise from the correlation function in the non-unitary conformal

field theory of superconformal ghost fields – the fields which arise in the process of gauge

fixing the supersymmetry transformation in the superstring world-sheet theory [1]. Physically

these spurious singularities reflect the breakdown of the gauge fixing procedure. Recently

a completely systematic procedure for avoiding these singularities has been developed [2, 3].

Furthermore one finds that while the procedure itself is not unique, different ways of avoiding

the singularities lead to the same result for the scattering amplitudes. This establishes that

there are no divergences coming from the interior of the moduli space, and the only possible

divergences that arise in superstring theory are infrared divergences. An alternative approach

to this problem, based on integration over the moduli space of super Riemann surfaces, has

also been developed [4].

Therefore the relevant question is: how can we deal with the infrared divergences of su-

perstring theory? As we have already mentioned earlier, in a quantum field theory, infrared
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divergences have physical origin; they reflect that we are asking the wrong questions. Expe-

rience with quantum field theory also teaches us how to ask the right question and remove

the infrared divergences. For example, quantum field theories have a systematic procedure for

taking into account possible changes in the ground state and/or masses of elementary particles

due to interaction, – this is lacking in the conventional approach to superstring perturbation

theory. Therefore, if we had a quantum field theory whose Feynman diagrams reproduced the

scattering amplitudes of superstring theory, then we would automatically know how to ask the

right questions and avoid the infrared divergences in superstring theory.

This is another area where there has been progress in recent years. It turns out that it

is indeed possible to write down a quantum field theory whose Feynman rules reproduce the

amplitudes of the form (5) that come from superstring theory [5]. This quantum field theory

– known as superstring field theory – is somewhat unusual, involving infinite number of fields

and non-local interaction terms. Nevertheless it has the structure inherent to a quantum

field theory that allows us to remove the infrared divergences exactly as we would do in a

conventional quantum field theory.

To summarize, we now have a formulation of superstring theory which gives results free

from all divergences, infrared and ultraviolet, when we ask the right questions. The scattering

amplitudes computed from this formulation satisfy many of the desired properties e.g. Ward

identities associated with general coordinate transformations and other gauge symmetries [6].

Work is in progress towards proving other desired properties of the scattering amplitude – e.g.

unitarity (conservation of probability) – using this approach. We hope to make progress on

this front in the near future.
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