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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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conceptual difficulties in our understanding of quantum theory
from the technical difficulties of infinite dimensional systems.

In this scenario, Hardy’s 2001 work [16] re-opened the
debate about the axiomatizations of quantum theory with fresh
ideas. Hardy’s proposal was based on five main assumptions
about the relation between dimension of the state space
and the number of perfectly distinguishable states of a
given system, about the structure of composite systems, and
about the possibility of connecting any two pure states of
a physical system through a continuous path of reversible
transformations. However, some of these assumptions directly
refer to the mathematical properties of the state space (in
particular, the “simplicity axiom” 2, which is an abstract
statement about the functional dependence of the state space
dimension on the number of perfectly distinguishable states).
Very recently, building on Hardy’s work there have been two
new attempts of axiomatization by Dakic and Bruckner [17]
and Masanes and Müller [18]. Although these works suc-
ceeded in removing the “simplicity axiom,” they still con-
tain mathematical assumptions that cannot be understood
in elementary physical terms (see, e.g., requirement 5 of
Ref. [18], which assumes that “all mathematically well-defined
measurements are allowed by the theory”).

Another approach to the axiomatization of quantum theory
was pursued by one of the authors in a series of works [19]
culminated in Ref. [20]. These works tackled the problem
using operational principles related to tomography and calibra-
tion of physical devices, experimental complexity, and to the
composition of elementary transformations. In particular this
research introduced the concept of dynamically faithful states,
namely states that can be used for the complete tomography
of physical processes. Although this approach went very close
to deriving quantum theory, in this case one mathematical
assumption without operational interpretation was needed (see
the CJ postulate of Ref. [20]).

In this paper we provide a complete derivation of finite
dimensional quantum theory based on purely operational
principles. Our principles do not refer to abstract properties
of the mathematical structures that we use to represent states,
transformations, or measurements, but only to the way in which
states, transformations, and measurements combine with each
other. More specifically, our principles are of informational
nature: they assert basic properties of information processing,
such as the possibility or impossibility to carry out certain
tasks by manipulating physical systems. In this approach the
rules by which information can be processed determine the
physical theory, in accordance with Wheeler’s program “it
from bit,” for which he argued that “all things physical are
information-theoretic in origin” [21]. Note that, however, our
axiomatization of quantum theory is relevant, as a rigorous
result, also for those who do not share Wheeler’s ideas on the
informational origin of physics. In particular, in the process
of deriving quantum theory we provide alternative proofs for
many key features of the Hilbert space formalism, such as
the spectral decomposition of self-adjoint operators or the
existence of projections. The interesting feature of these proofs
is that they are obtained by manipulation of the principles,
without assuming Hilbert spaces from the start.

The main message of our work is simple: within a standard
class of theories of information processing, quantum theory

is uniquely identified by a single postulate: purification.
The purification postulate, introduced in Ref. [22], expresses
a distinctive feature of quantum theory, namely that the
ignorance about a part is always compatible with the maximal
knowledge of the whole. The key role of this feature was
noticed already in 1935 by Schrödinger in his discussion about
entanglement [23], of which he famously wrote “I would not
call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from
classical lines of thought.” In a sense, our work can be viewed
as the concrete realization of Schrödinger’s claim: the fact that
every physical state can be viewed as the marginal of some
pure state of a compound system is indeed the key to single
out quantum theory within a standard set of possible theories.
It is worth stressing, however, that the purification principle
assumed in this paper includes a requirement that was not
explicitly mentioned in Schrödinger’s discussion: if two pure
states of a composite system AB have the same marginal
on system A, then they are connected by some reversible
transformation on system B. In other words, we assume that
all purifications of a given mixed state are equivalent under
local reversible operations [24].

The purification principle expresses a law of conservation of
information, stating that at least in principle, irreversibility can
always be reduced to the lack of control over an environment.
More precisely, the purification principle is equivalent to the
statement that every irreversible process can be simulated
in an essentially unique way by a reversible interaction
of the system with an environment, which is initially in
a pure state [22]. This statement can also be extended to
include the case of measurement processes, and in that
case it implies the possibility of arbitrarily shifting the cut
between the observer and the observed system [22]. The
possibility of such a shift was considered by von Neumann as
a “fundamental requirement of the scientific viewpoint” (see
p. 418 of [2]) and his discussion of the measurement process
was exactly aimed to show that quantum theory fulfils this
requirement.

Besides Schrödinger’s discussion on entanglement and von
Neumann’s discussion of the measurement process, the purifi-
cation principle is deeply rooted in the structure of quantum
theory. At the purely mathematical level it plays a crucial
role in the theory of C* algebras of operators on separable
Hilbert spaces, where the purification principle is equivalent
to the Gelfand-Naimark-Segal (GNS) construction [25] and
implies the celebrated Stinespring’s theorem [26]. On the other
hand, purification is a cornerstone of quantum information,
lying at the origin of most quantum protocols. As it was
shown in Ref. [22], the purification principle directly implies
crucial features like no-cloning, teleportation, no-information
without disturbance, error correction, the impossibility of
bit commitment, and the “no-programming” theorem of
Ref. [27].

In addition to the purification postulate, our derivation of
quantum theory is based on five informational axioms. The
reason why we call them “axioms,” as opposed to the the
purification “postulate,” is that they are not at all specific of
quantum theory. These axioms represent standard features
of information processing that everyone would, more or
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less implicitly, assume. They define a class of theories of
information processing that includes, for example, classical
information theory, quantum information theory, and quantum
theory with superselection rules. The question whether there
are other theories satisfying our five axioms and, in case of
a positive answer, the full classification of these theories is
currently an open problem.

Here we informally illustrate the five axioms, leaving the
detailed description to the remaining part of the paper:

(1) Causality: the probability of a measurement outcome at
a certain time does not depend on the choice of measurements
that will be performed later.

(2) Perfect distinguishability: if a state is not completely
mixed (i.e., if it cannot be obtained as a mixture from any
other state), then there exists at least one state that can be
perfectly distinguished from it.

(3) Ideal compression: every source of information can
be encoded in a suitable physical system in a lossless and
maximally efficient fashion. Here lossless means that the
information can be decoded without errors and maximally
efficient means that every state of the encoding system
represents a state in the information source.

(4) Local distinguishability: if two states of a composite
system are different, then we can distinguish between them
from the statistics of local measurements on the component
systems.

(5) Pure conditioning: if a pure state of system AB
undergoes an atomic measurement on system A, then each
outcome of the measurement induces a pure state on system B.
(Here atomic measurement means a measurement that cannot
be obtained as a coarse graining of another measurement.)
All these axioms are satisfied by classical information theory.
Axiom 5 is even trivial for classical theory, because the only
pure states of a composite system AB are the product of pure
states of the component systems A and B, and hence the state
of system B will be pure irrespectively of what we do on
system A.

A stronger version of axiom 5, introduced in Ref. [20], is
the following:

(5′) Atomicity of composition: the sequential composition of
two atomic operations is atomic. (Here atomic transformation
means a transformation that cannot be obtained from coarse
graining.)
However, it turns out that axiom 5 is enough for our derivation:
thanks to the purification postulate we will be able to show the
nontrivial implication: axiom 5 ⇒ axiom 5′ (see lemma 16).

The paper is organized as follows. In Sec. II we review the
framework of operational-probabilistic theories introduced
in Ref. [22]. This framework will provide the basic notions
needed for the formulation of our principles. In Sec. III we
introduce the principles from which we will derive quantum
theory. In Sec. IV we prove some direct consequences of
the principles that will be used later in the paper. In Sec. V
we discuss the properties of perfectly distinguishable states,
while in Sec. VI we prove the existence of a duality between
pure states and atomic effects.

The results about distinguishability and duality of pure
states and atomic effects allow us to show in Sec. VII that
every system has a well defined informational dimension—
the operational counterpart of the Hilbert space dimension.

Section VIII contains the proof that every state can be decom-
posed as a convex combination of perfectly distinguishable
pure states. Similarly, any element of the vector space spanned
by the states can be written as a linear combination of
perfectly distinguishable states. This result corresponds to
the spectral theorem for self-adjoint operators on complex
Hilbert spaces. In Sec. IX we prove some results about the
maximum teleportation probability, which allow us to derive
a functional relation between the dimension of the state
space and the number of perfectly distinguishable states of the
system. The mathematical representation of systems with two
perfectly distinguishable states is derived in Sec. X, where we
prove that such systems are indeed two-dimensional quantum
systems—also known as qubits. In Sec. XI we construct
projections on the faces of the state space of any system and
prove their main properties. These results lead to the derivation
of the operational analog of the superposition principle in
Sec. XII which allows us to prove that systems with the same
number of perfectly distinguishable states are operationally
equivalent (Sec. XII B). The properties of the projections and
the superposition principle are then exploited in Sec. XIII,
where we extend the density matrix representation from qubits
to higher dimensional systems, thus proving that a system
with d perfectly distinguishable states is indeed a quantum
system with d-dimensional Hilbert space. We conclude the
paper with Sec. XIV, where we review our results, discussing
future directions for this research.

II. THE FRAMEWORK

This section provides a brief summary of the framework of
operational-probabilistic theories, which was formulated in
Ref. [22]. We refer to Ref. [22] for an exhaustive presentation
of the details of the framework and of the ideas behind it. The
operational-probabilistic framework combines the operational
language of circuits with the toolbox of probability theory: on
the one hand experiments are described by circuits resulting
from the connection of physical devices, on the other hand each
device in the circuit can have classical outcomes and the theory
provides the probability distribution of outcomes when the
devices are connected to form closed circuits (that is, circuits
that start with a preparation and end with a measurement).

The notions discussed in this section will allow us to draw
a precise distinction between principles with an operational
content and exclusively mathematical principles: with the
expression “operational principle” we will mean a principle
that can be expressed using only the basic notions of the the
operational-probabilistic framework.

A. Circuits with outcomes

A test represents one use of a physical device, like a
Stern-Gerlach magnet, a beamsplitter, or a photon counter.
The device will have an input system and an output system,
labeled by capital letters. The corresponding test can have
different classical outcomes, represented by different values
of an index i ∈ X:
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Each outcome i ∈ X corresponds to a possible event, repre-
sented as

We denote by Transf(A,B) the set of all events from A to B.
The reason for this notation is that in the next subsection the
elements of Transf(A,B) will be interpreted as transformations
with input system A and output system B. If A = B we simply
write Transf(A) in place of Transf(A,A).

A test with a single outcome will be called deterministic.
This name is justified by the fact that, if there is a single pos-
sible outcome, then this outcome will occur with certainty (cf.
the probabilistic structure introduced in the next subsection).

Two devices can be composed in a sequence, as long as the
input system of the second device is equal to the output system
of the first. The events in the composite test are represented as

and are written in formulas as DjCi .
For every system A one can perform the identity test (or

simply, the identity), that is, a test {IA} with a single outcome,
with the property

∀ Ci ∈ Transf(A,B),

∀ Dj ∈ Transf(B,A).

The subindex A will be dropped from IA where there is no
ambiguity.

The letter I will be reserved for the trivial system, which
simply means “nothing” [28]. A device with input (or
output) system I is a device with no input (or no output).
The corresponding tests will be called preparation tests (or
observation tests). In this case we replace the input (or output)
wire with a round portion:

(1)

In formulas we will write |ρi)B (or (aj |A). The sets Transf(I,A)
and Transf(A,I) will be denoted as St(A) and Eff(A), respec-
tively. The reason for this special notation is that in the next
subsection the elements of St(A) [or Eff(A)] will be interpreted
as the states (or effects) of system A.

From every pair of systems A and B one can form a
composite system, denoted by AB. Clearly, composing system
A with nothing still gives system A, in formula AI = IA = A.
Two devices can be composed in parallel, thus obtaining a new
device with composite input and composite output systems.
The events in composite test are represented as

and are written in formulas as Ci ⊗ Dj . In the special case of
states we will often write |ρi)|σj ) in place of ρi ⊗ σj . Similarly,
for effects we will write (ai |(bj | in place of ai ⊗ bj .

Sequential and parallel composition commute: one has (Ai

⊗ Bj )(Ck ⊗ Dl) = AiCk ⊗ BjDl for every Ai ,Bj ,Ck,Dl

such that the output of Ai (or Bj ) coincides with the input
of Ck (or Dl).

When one of the two tests is the identity, we will omit the
box and draw only a straight line, as in

The rules summarized in this section define the operational
language of circuits, which has been discussed in detail in a
series of inspiring works by Coecke (see in particular Refs. [29,
30]). The language of circuits allows one to represent the
schematic of an experiment like, for example,

,

and also to represent a particular outcome of the experiment

In formula, the above circuit is given by

(Bk|BC (Cj ⊗ IC) |ρi)AC .

B. Probabilistic structure: States, effects, and transformations

On top of the language of circuits, we put a proba-
bilistic structure [22]: we declare that the composition of a
preparation-test {ρi}i∈X with an observation-test {aj }j∈Y gives
rise to a joint probability distribution

= p(i,j ), (2)

with p(i,j ) � 0 and
∑

i∈X

∑
j∈Y p(i,j ) = 1. In formula we

write p(i,j ) = (aj |ρi). Moreover, if two experiments are run
in parallel, we assume that the joint probability distribution is
given by the product

= p(i,k)q(j,l), (3)

where p(i,k) := (ak|ρi),q(j,l) := (bl|σj ).
The probabilistic structure defined by Eq. (2) turns every

event ρi ∈ St(A) into a function ρ̂i : Eff(A) → R, given by
ρ̂i(aj ) := (aj |ρi). If two events ρi,ρ

′
i ∈ St(A) induce the same

function, then it is impossible to distinguish between them
from the statistics of the experiments allowed by our theory.
This means that for our purposes the two events are the same:
accordingly, we will take equivalence classes with respect
to the relation ρi 
 ρ ′

i if ρ̂i = ρ̂ ′
i . To avoid introducing new

notation, from now on we will assume that the equivalence
classes have been taken since the start. We will identify the
event ρi ∈ St(A) with the corresponding function ρ̂i and will
call it state. Accordingly, we will refer to preparation tests
as collections of states {ρi}i∈X. Note that, since one can take
linear combinations of functions, the states in St(A) generate
a real vector space, denoted by StR(A).
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The same construction holds for observation tests: every
event aj ∈ Eff(A) induces a function âj : St(A) → R, given
by âj (ρi) := (aj |ρi). If two events aj ,a

′
j ∈ Eff(A) induce to

the same function, then it is impossible to distinguish between
them from the statistics of the experiments allowed in our
theory. This means that for our purposes the two events are
the same: accordingly, we will take equivalence classes with
respect to the relation aj 
 a′

j if âj = â′
j . To avoid introducing

new notation, from now on we will identify the event
aj ∈ Eff(A) with the corresponding function âj and we will
call it effect. Accordingly, we will refer to observation tests as
collection of effects {aj }i∈Y. The effects in Eff(A) generate a
real vector space, denoted by EffR(A).

A vector in StR(A) [or EffR(A)] can be extended to a
linear function on EffR(A) [or StR(A)]. In this way, states
and effects can be thought as elements of two real vector
spaces, one dual to the other. In this paper we will restrict our
attention to finite dimensional vector spaces: operationally this
means that the state of a given physical system is completely
determined by the statistics of a finite number of finite-outcome
measurements. The dimension of the vector space StR(A),
which by construction is equal to the dimension of its dual
EffR(A), will be denoted by DA. We will refer to DA as the
size of system A.

Finally, the vector spaces StR(A) and EffR(A) can be
equipped with suitable norms, which have an operational
meaning related to optimal discrimination schemes [22]. The
norm of an element δ ∈ StR(A) is given by [22]

‖δ‖ = sup
a0∈Eff(A)

(a0|δ) − inf
a1∈Eff(A)

(a1|δ) ,

while the norm of an element ξ ∈ EffR(A) is given by

‖ξ‖ = sup
ρ∈St(A)

| (ξ |ρ) |.

We will always take the set of states St(A) to be closed in
the operational norm. The convenience of this choice is the
convenience of using real numbers instead of rational ones:
dealing with a single real number is much easier than dealing
with a Cauchy sequence of rational numbers. Operationally
taking St(A) to be closed is very natural: the fact that there
is a sequence of states {ρn}∞n=1 that converges to ρ ∈ StR(A)
means that there is a procedure to prepare ρ with arbitrary
precision and hence that ρ deserves the name of “state”.

We conclude this subsection by noting that every event Ck

from A to B induces a linear map Ĉk from StR(A) to StR(B),
uniquely defined by

Ĉk : |ρ) ∈ St(A) �→ Ck |ρ) ∈ St(B).

Likewise, for every system C the event Ck ⊗ IC induces a
linear map ̂Ck ⊗ IC from StR(AC) to StR(BC). If two events
Ck and C ′

k induce the same maps for every possible system
C, then there is no experiment in the theory that is able to
distinguish between them. This means that for our purposes the
two events are the same: accordingly, we will take equivalence
classes with respect to the relation Ck 
 C ′

k if ̂Ck ⊗ IC =
̂C ′
k ⊗ IC for every system C. In this case, we will say that

two events represent the same transformation. Accordingly,
we will refer to tests {Ci}i∈X as collections of transformations.

The deterministic transformations (corresponding to single-
outcome tests) will be called channels.

C. Basic definitions in the operational-probabilistic framework

Here we summarize few elementary definitions that will be
used later in the paper. The meaning of the definitions in the
case of quantum theory is also discussed.

1. Coarse graining, refinement, atomic transformations, pure,
mixed and completely mixed states

First, we start from the notions of coarse graining and
refinement. Coarse graining arises when we join together some
outcomes of a test: we say that the test {Dj }j∈Y is a coarse
graining of the test {Ci}i∈X if there is a disjoint partition
{Xj }j∈Y of X such that

Dj =
∑
i∈Xj

Ci .

Conversely, if {Dj }j∈Y is a coarse graining of {Ci}i∈X, we say
that {Ci}i∈X is a refinement of {Dj }j∈Y. Intuitively, a test that
refines another is a test that extracts information in a more
precise way: it is a test with better “resolving power.”

The notion of refinement also applies to a single transfor-
mation: a refinement of the transformation C is given by a test
{Ci}i∈X and a subset X0 such that

C =
∑
i∈X0

Ci .

Accordingly, we say that each transformation Ci ,i ∈ X0 is
a refinement of C . A transformation C is atomic if it has
only trivial refinements: if Ci refines C , then Ci = pC
for some probability p � 0. A test that consists of atomic
transformations is a test whose “resolving power” cannot be
further improved.

When discussing states (i.e., transformations with trivial
input) we will use the word pure as a synonym of atomic. A
pure state describes a situation of maximal knowledge about
the system’s preparation, a knowledge that cannot be further
refined.

As usual, a state that is not pure will be called mixed. An
important notion is that of completely mixed state.

Definition 1 (Completely mixed state). A state is completely
mixed if any other state can refine it: precisely, ω ∈ St(A) is
completely mixed if for every ρ ∈ St(A) there is a nonzero
probability p > 0 such that pρ is a refinement of ω.

Intuitively, a completely mixed state describes a situation
of complete ignorance about the system’s preparation: if a
system is described by a completely mixed state, then it means
that we know so little about its preparation that, in fact, every
preparation is possible.

We conclude this paragraph with a couple of definitions
that will be used throughout the paper.

Definition 2 (Reversible transformation). A transformation
U ∈ Transf(A,B) is reversible if there exists another trans-
formation U −1 ∈ Transf(B,A) such that U −1U = IA and
U U −1 = IB. When A = B the reversible transformations
form a group, indicated as GA.
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Definition 3 (Operationally equivalent systems). Two sys-
tems A and B are operationally equivalent if there exists a
reversible transformation U from A to B.

When two systems are operationally equivalent one can
convert one into the other in a reversible fashion.

2. Examples in quantum theory

Consider a quantum system with Hilbert space H =
Cd, d < ∞. In this case a preparation test is a collection of
unnormalized density matrices {ρi}i∈X (i.e., of nonnegative
d × d complex matrices with trace bounded by 1) such that∑

i∈X

Tr[ρi] = 1.

Preparation tests are often called quantum information sources
in quantum information theory. A generic state ρ is an unnor-
malized density matrix. A deterministic state, corresponding
to a single-outcome preparation test, is a normalized density
matrix ρ, with Tr[ρ] = 1.

Diagonalizing ρ = ∑
i αi |ψi〉〈ψi | we then obtain that each

matrix αi |ψi〉〈ψi | is a refinement of ρ. More generally, every
matrix σ such that σ � ρ is a refinement of ρ. Up to a positive
rescaling, all matrices with support contained in the support
of ρ are refinements of ρ. A quantum state ρ is atomic (pure)
if and only if it is proportional to a rank-one projection. A
quantum state is completely mixed if and only if its density
matrix has full rank. Note that the quantum state χ = Id

d
, where

Id is the identity d × d matrix, is a particular example of
completely mixed state, but not the only example. Precisely,
χ = Id

d
is the unique unitarily invariant state in dimension d.

Let us now consider the case of observation tests: in
quantum theory an observation test is given by a POVM
(positive operator-valued measure), namely by a collection
{Pj }j∈Y of nonnegative d × d matrices such that∑

j∈Y

Pj = Id .

An effect is then a nonnegative matrix P � 0 upper bounded
by the identity. In quantum theory there is only one determinis-
tic effect, corresponding to a single-outcome observation test:
the unique deterministic effect given by the identity matrix.
As we will see in the following section, the fact that the
deterministic effect is unique is equivalent to the fact that
quantum theory is a causal theory.

An effect P is atomic if and only if P is proportional to
a rank-one projector. An observation test is atomic if it is a
POVM with rank-one elements.

Finally, a general test from an input system with Hilbert
space H1 = Cd1 to an output system with Hilbert space
H2 = Cd2 is given by a quantum instrument, namely by a
collection {Ck}k∈Z of completely positive trace nonincreasing
maps sending linear operators on H1 to linear operators on
H2, with the property that

CZ :=
∑
k∈Z

Ck

is trace preserving. A general transformation is then given
by a trace nonincreasing map, called quantum operation,
whereas a deterministic transformation, corresponding to a

single-outcome test, is given by a trace-preserving map, called
quantum channel.

Any quantum operation C can be written in the Kraus
form C (ρ) = ∑

i CiρC
†
i , where Ci : H1 → H2 are the Kraus

operators. Up to a positive scaling, every quantum operation
D such that the Kraus operators of D belong to the linear
span of the Kraus operators of C is a refinement of C . A map
C is atomic if and only if there is only one Kraus operator
in its Kraus form. A reversible transformation in quantum
theory is a unitary map U (ρ) = UρU †, where U : H1 → H2

is a unitary operator, that is U †U = I1 and UU † = I2 where I1

(I2) is the identity operator on H1 (H2). Two quantum systems
are operationally equivalent if and only if the corresponding
Hilbert spaces have the same dimension.

D. Operational principles

We are now in position to make precise the usage of the
expression “operational principle” in the context of this paper.
By operational principle we mean here a principle that can be
stated using only the operational-probablistic language, i.e.,
using only

(1) the notions of system, test, outcome, probability, state,
effect, transformation;

(2) their specifications: atomic, pure, mixed, completely
mixed; and

(3) more complex notions constructed from the above terms
(e.g., the notion of “reversible transformation”).

The distinction between operational principles and princi-
ples referring to abstract mathematical properties, mentioned
in the Introduction, should now be clear: for example, a
statement like “the pure states of a system cannot be cloned”
is a valid operational principle, because it can be analyzed
in basic operational-probabilistic terms as “for every system
A there exists no transformation C with input system A and
output system AA such that C |ϕ) = |ϕ)|ϕ) for every pure
state ϕ of A.” On the contrary, a statement like “the state
space of a system with two perfectly distinguishable states is a
three-dimensional sphere” is not a valid operational principle,
because there is no way to express what it means for a state
space to be a three-dimensional sphere in terms of basic
operational notions. The fact that a state spate is a sphere may
be eventually derived from operational principles, but cannot
be assumed as a starting point.

III. THE PRINCIPLES

We now state the principles used in our derivation. The first
five principles express generic features that are shared by both
classical and quantum theory. They could be even included in
the definition of the background framework: they define the
simple model of information processing in which we try to
single out quantum theory. For this reason we will call them
axioms. The sixth principle in our derivation has a different
status: it expresses the genuinely quantum features. A major
message of our work is that, within a broad class of theories
of information processing, quantum theory is completely
described by the purification principle. To emphasize the
special role of the sixth principle we will call it postulate,
in analogy with the parallel postulate of Euclidean geometry.
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A. Axioms

1. Causality

The first axiom of our list, causality [22], is so basic that
could be considered as part of the background framework. We
decided to explicitly present it as an axiom for two reasons: The
first reason is that the framework of operational-probabilistic
theories can be developed even without this requirement (see
Ref. [22] for the general framework and Refs. [31,32] for two
explicit examples of noncausal theories). The second reason is
that we want to stress that causality is an essential ingredient
in our derivation. This observation is important in view of
possible extensions of quantum theory to quantum gravity
scenarios where the causal structure is not defined from the
start (see, e.g., Hardy in Ref. [33]).

Axiom 1 (Causality). The probability of preparations is
independent of the choice of observations.

In technical terms: if {ρi}i∈X ⊂ St(A) is a preparation test,
then the conditional probability of the preparation ρi given the
choice of the observation-test {aj }j∈Y is the marginal

p(i|{aj }) :=
∑
j∈Y

(aj |ρi).

The axiom states that the marginal probability p(i|{aj }) is
independent of the choice of the observation-test {aj }: if
{aj }j∈Y and {bk}k∈Z are two different observation tests, then
one has p(i|{aj }) = p(i|{bk}). Loosely speaking, one may
refer to causality as a requirement of no signaling from the
future: indeed, causality is equivalent to the fact that the
probability of an outcome at a certain time does not depend on
the choice of operations that will be done at later times [20].

An operational-probabilistic theory that satisfies the causal-
ity axiom 1 will be called causal. As we already mentioned,
causality is a very basic requirement and could be considered
as part of the framework: it provides the notions used to
state the other axioms and it implies several facts that will
be used frequently in the paper. In fact, in our derivation we
do not use the causality axiom directly, but only through its
consequences. In the following we briefly summarize the facts
and the notations that characterize the framework of causal
operational-probabilistic theories, introduced and discussed
in detail in Ref. [22]. Similar structures have been subsequently
considered in Refs. [34,35] within a formal description of
circuits in foliable space-time regions.

First, causality is equivalent to the existence of an effect
eA such that eA = ∑

j∈X aj for every observation-test {aj }j∈Y.
We call the effect eA the deterministic effect for system A. By
definition, the effect eA is unique. The subindex A in eA will
be dropped when no confusion can arise.

In a causal theory every test {Ci}i∈X ⊂ Transf(A,B) satis-
fies the condition ∑

i∈X

(eB| Ci = (eA| .

As a consequence, a transformation C ∈ Transf(A,B) satisfies
the condition

(eB|C � (eA|, (4)

with the equality if and only if C is a channel (i.e., a determinis-
tic transformation, corresponding to a single-outcome test). In

Eq. (4) we used the notation (a| � (a′| to mean (a|ρ) � (a′|ρ)
for every ρ ∈ St(A).

In a causal theory the norm of a state ρi ∈ St(A) is given
by ‖ρi‖ = (e|ρi). Accordingly, one can define the normalized
state

ρ̄i := ρi

(e|ρi)
.

In a causal theory one can always allow for rescaled prepara-
tions: conditionally to the outcome i ∈ X in the preparation-
test {ρi}i∈X we can say that we prepared the normalized state
ρ̄i . For this reason, every state in a causal theory is proportional
to a normalized state.

The set of normalized states will be denoted by St1(A).
Since the set of all states St(A) is closed in the operational
norm, also the set of normalized states St1(A) is closed.
Moreover, the set St1(A) is convex [22]: this means that
for every pair of normalized states ρ1,ρ2 ∈ St1(A) and for
every probability p ∈ [0,1] the convex combination ρp =
pρ1 + (1 − p)ρ2 is a normalized state. Operationally, the state
ρp is obtained by

(1) performing a binary test with outcomes {1,2} and
outcome probabilities p1 = p and p2 = 1 − p;

(2) for outcome i preparing ρi , thus realizing the
preparation-test {piρi}i=1,2;

(3) coarse graining over the outcomes, thus obtaining ρp =
pρ1 + (1 − p)ρ2.
The step 2 (preparation of a state conditionally on the outcome
of a previous test) is possible because the theory is causal [22].

The pure normalized states are the extreme points of the
convex set St1(A). For a normalized state ρ ∈ St1(A) we define
the face identified by ρ as follows.

Definition 4 (Face identified by a state). The face identified
by ρ ∈ St1(A) is the set Fρ of all normalized states σ ∈ St1(A)
such that ρ = pσ + (1 − p)τ , for some nonzero probability
p > 0 and some normalized state τ ∈ St1(A).

In other words, Fρ is the set of all normalized states that
show up in the convex decompositions of ρ. Clearly, if ϕ is a
pure state, then one has Fϕ = {ϕ}. The opposite situation is that
of completely mixed states: by definition 1, a state ω ∈ St1(A)
is completely mixed if every state σ ∈ St1(A) can stay in its
convex decomposition, that is, if Fω = St1(A). An equivalent
condition for a state to be completely mixed is the following.

Lemma 1. A state ω ∈ St1(A) is completely mixed if and
only if Span(Fω) = StR(A).

Proof. The condition is clearly necessary. It is also sufficient
because for a state σ ∈ St1(A) the relation σ ∈ Span(Fω)
implies σ ∈ Fω (see lemma 16 of Ref. [22]). �

A completely mixed state can never be distinguished from
another state with zero error probability.

Proposition 1. Let ρ ∈ St1(A) be a completely mixed state
and σ ∈ St1(A) be an arbitrary state. Then, the probability of
error in distinguishing ρ from σ is strictly greater than zero.

Proof. By contradiction, suppose that one can distinguish
between ρ and σ with zero error probability. This means that
there exists a binary test {aρ,aσ } such that (aρ |σ ) = (aσ |ρ) =
0. Since ρ is completely mixed there exists a probability p > 0
and a state τ ∈ St1(A) such that ρ = pσ + (1 − p)τ . Hence,
the condition (aσ |ρ) = 0 implies (aσ |σ ) = 0. Therefore, we
have (aρ |σ ) + (aσ |σ ) = 0. This is in contradiction with the
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normalization of the probabilities in the test {aρ,aσ }, which
would require (aρ |σ ) + (aσ |σ ) = 1. �

2. Perfect distinguishability

Our second axiom regards the task of state discrimination.
As we saw in proposition 1, if a state is completely mixed,
then it is impossible to distinguish it perfectly from any other
state. Axiom 2 states the converse.

Axiom 2 (Perfect distinguishability). Every state that is not
completely mixed can be perfectly distinguished from some
other state.

Note that the statement of axiom 2 holds for quantum
and for classical information theory. In quantum theory a
completely mixed state is a density matrix with full rank. If a
density matrix ρ has not full rank, then it must have a kernel:
hence, every density matrix σ with support in the kernel of
ρ will be perfectly distinguishable from ρ, as stated in axiom
2. Applying the same reasoning for density matrices that are
diagonal in a given basis, one can easily see that axiom 2 is
satisfied also by classical information theory.

To the best of our knowledge, the perfect distinguishability
property has never been considered in the literature as an
axiom, probably because in most works it came for free as
a consequence of stronger mathematical assumptions. For
example, one can obtain the perfect distinguishability property
from the no-restriction hypothesis of Ref. [22], stating that for
every system A any binary probability rule [i.e., any pair of
positive functionals a0,a1 ∈ EffR(A) such that a0 + a1 = eA]
actually describes a measurement allowed by the theory.
This assumption was made, for example, in Ref. [18] in the
case of systems with at most two distinguishable states (see
requirement 5 of Ref. [18]). Note that the difference between
the perfect distinguishability axiom and the no-restriction
hypothesis is that the former can be expressed in purely
operational terms, whereas the latter requires the notion of
“positive functional” which is not part of the basic operational
language.

3. Ideal compression

The third axiom is about information compression. An
information source for system A is a preparation-test
{ρi}i∈X, where each ρi ∈ St(A) is an unnormalized state
and

∑
i∈X(e|ρi) = 1. A compression scheme is given by an

encoding operation E from A to a smaller system C, that is,
to a system C such that DC � DA. The compression scheme
is lossless for the source {ρi}i∈X if there exists a decoding
operation D from C to A such that DE |ρi) = |ρi) for every
value of the index i ∈ X. This means that the decoding allows
one to perfectly retrieve the states {ρi}i∈X. We say that a
compression scheme is lossless for the state ρ, if it is lossless
for every source {ρi}i∈X such that ρ = ∑

i∈X ρi . Equivalently,
this means that the restriction of DE to the face identified by ρ

is equal to the identity channel: DE |σ ) = σ for every σ ∈ Fρ .
A lossless compression scheme is maximally efficient if the

encoding system C has the smallest possible size, that is, if
the system C has no more states than exactly those needed
to compress ρ. This happens when every normalized state
τ ∈ St1(C) comes from the encoding of some normalized state
σ ∈ Fρ , namely |τ ) = E |σ ).

We say that a compression scheme that is lossless and
maximally efficient is ideal. Our second axiom states that ideal
compression is always possible.

Axiom 3 (Ideal compression). For every state there exists
an ideal compression scheme.

It is easy to see that this statement holds in quantum
theory and in classical probability theory. For example, if
ρ is a density matrix on a d-dimensional Hilbert space and
rank(ρ) = r , then the ideal compression is obtained by just
encoding ρ in an r-dimensional Hilbert space. As long as
we do not tolerate losses, this is the most efficient one-
shot compression we can devise in quantum theory. Similar
observations hold for classical information theory.

It is important to emphasize the difference between our
“ideal compression” axiom and the “subspace” axiom of
Refs. [16–18]: differently from the subspace axiom, the
compression axiom is not an axiom about the structure of
perfectly distinguishable states available for a given system.
For example, here we do not assume that all systems with the
same number of perfectly distinguishable states are equivalent.
This fact will be proved from the principles in Sec. XII B.

4. Local distinguishability

The fourth axiom consists in the assumption of local dis-
tinguishability, here presented in the formulation of Ref. [22].

Axiom 4 (Local distinguishability). If two bipartite states
are different, then they give different probabilities for at least
one product experiment.

In more technical terms: if ρ,σ ∈ St1(AB) are states and
ρ �= σ , then there are two effects a ∈ Eff(A) and b ∈ Eff(B)
such that

Local distinguishability is equivalent to the fact that two
distant parties, holding systems A and B, respectively, can
distinguish between the two states ρ,σ ∈ St1(AB) using only
local operations and classical communication and achieving an
error probability strictly larger than pran = 1/2, the probability
of error in random guess [22]. Again, this statement holds in
ordinary quantum theory (on complex Hilbert spaces) and in
classical information theory.

Another equivalent condition to local distinguishability is
the local tomography axiom, introduced in Refs. [19,36]. The
local tomography axiom imposes that every bipartite state can
be reconstructed from the statistics of local measurements on
the component systems. Technically, local tomography is in
turn equivalent to the relation DAB = DADB [16] and to the
fact that every state ρ ∈ St(AB) can be written as

ρ =
DA∑
i=1

DB∑
j=1

ρijαi ⊗ βj ,

where {αi}DA
i=1 ({βj }DB

j=1) is a basis for the vector space StR(A)
[StR(B)]. The analog condition also holds for effects: every
bipartite effect E ∈ Eff(AB) ben be written as

E =
DA∑
i=1

DB∑
j=1

Eijai ⊗ bj ,
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where {ai}DA
i=1 ({bj }DB

j=1) is a basis for the vector space EffR(A)
[EffR(B)].

An important consequence of local distinguishability, ob-
served in Ref. [22], is that a transformation C ∈ Transf(AB)
is completely specified by its action on St(A): thanks to local
distinguishability we have the implication

C |ρ) = C ′ |ρ) ∀ ρ ∈ St(A) =⇒ C = C ′. (5)

(see lemma 14 of Ref. [22] for the proof). Note that Eq. (5)
does not hold for quantum theory on real Hilbert spaces [22].

5. Pure conditioning

The fourth axiom states how the outcomes of a mea-
surement on one side of a pure bipartite state can induce
pure states on the other side. In this case we consider
atomic measurements, that is, measurements described by
observation-tests {ai}i∈X where each effect ai is atomic.
Intuitively, atomic measurement are those with maximum
“resolving power.”

Axiom 5 (Pure conditioning). If a bipartite system is in a
pure state, then each outcome of an atomic measurement on
one side induces a pure state on the other.

The pure conditioning property holds in quantum theory
and in classical information theory as well. In fact, the
statement is trivial in classical information theory, because
the only pure bipartite states are the product of pure states:
no matter which measurement is performed on one side, the
remaining state on the other side will necessarily be pure.

The pure conditioning property, as formulated above, has
been recently introduced in Ref. [37]. A stronger version
of axiom 5 is the atomicity of composition introduced in
Ref. [20]:

5′ Atomicity of composition: the sequential composition of
two atomic operations is atomic.

Since pure states and atomic effects are a particular case
of atomic transformations, axiom 5′ implies axiom 5. In
our derivation, however, also the converse implication holds:
indeed, thanks to the purification postulate we will be able to
show that axiom 5 implies axiom 5′ (see lemma 16).

B. The purification postulate

The last postulate in our list is the purification postulate,
which was introduced and explored in detail in Ref. [22].
While the previous axioms were also satisfied by classical
probability theory, the purification axiom introduces in our
derivation the genuinely quantum features. A purification of
the state ρ ∈ St1(A) is a pure state ρ of some composite
system AB, with the property that ρ is the marginal of ρ ,
that is,

Here we refer to the system B as the purifying system.
The purification axiom states that every state can be obtained
as the marginal of a pure bipartite state in an essentially
unique way.

Postulate 1 (Purification). Every state has a purification.
For fixed purifying system, every two purifications of the

same state are connected by a reversible transformation on
the purifying system.

Informally speaking, our postulate states that the ignorance
about a part is always compatible with a maximal knowledge
of the whole. The existence of pure bipartite states with
mixed marginal was already recognized by Schrödinger as
the characteristic trait of quantum theory [23]. Here, however,
we also emphasize the importance of the uniqueness of
purification up to reversible transformations: this property
sets up a relation between pure states and reversible trans-
formations that generates most of the structure of quantum
theory. As shown in Ref. [22], an impressive number of
quantum features are actually direct consequences of pu-
rification. In particular, purification implies the possibility
of simulating any irreversible process through a reversible
interaction of the system with an environment that is finally
discarded.

IV. FIRST CONSEQUENCES OF THE PRINCIPLES

A. Results about ideal compression

Let ρ ∈ St1(A) be a state and let E ∈ Transf(A,C) [or
D ∈ Transf(C,A)] be its encoding (or decoding) in the ideal
compression scheme of axiom 3.

Essentially the encoding operation E ∈ Transf(A,C) identi-
fies the face Fρ with the state space St1(C). In the following we
provide a list of elementary lemmas showing that all statements
about Fρ can be translated into statements about St1(C) and
vice versa.

Lemma 2. The composition of decoding and encoding is
the identity on C, namely E D = IC.

Proof. Since the compression is maximally efficient, for
every state τ ∈ St1(C) there is a state σ ∈ Fρ such that
E σ = τ . Using the fact that DE σ = σ (the compression is
lossless) we then obtain E Dτ = E DE σ = E σ = τ . By local
distinguishability [see Eq. (5)], this implies E D = IC. �

Lemma 3. The image of St1(C) under the decoding operation
D is Fρ .

Proof. Since the compression is maximally efficient, for
all τ ∈ St1(C) there exists σ ∈ Fρ such that τ = E σ . Then,
Dτ = DE σ = σ . This implies that D[St1(C)] ⊆ Fρ . On the
other hand, since the compression is lossless, for every state
σ ∈ Fρ one has DE σ = σ . This implies the inclusion Fρ ⊆
D[St1(C)]. �

Lemma 4. If the state ϕ ∈ Fρ is pure, then the state E ϕ ∈
St1(C) is pure. If the state ψ ∈ St1(C) is pure, then the state
Dψ ∈ Fρ is pure.

Proof. Suppose that ϕ ∈ Fρ is pure and that E ϕ can
be written as E ϕ = pσ + (1 − p)τ for some p > 0 and
some σ,τ ∈ St1(C). Applying D on both sides we obtain
ϕ = pDσ + (1 − p)Dτ . Since ϕ is pure we must have
Dσ = Dτ = ϕ. Now, applying E on all terms of the equality
and using lemma 2 we obtain σ = τ = E ϕ. This proves
that E ϕ is pure. Conversely, suppose that ψ ∈ St1(C) is
pure and Dψ = pσ + (1 − p)τ for some p > 0 and some
σ,τ ∈ St1(A). Since Dψ is in the face Fρ (lemma 3), also σ

and τ are in the same face. Applying E on both sides of the
equality Dψ = pσ + (1 − p)τ and using lemma 2 we obtain
ψ = E Dψ = pE σ + (1 − p)E τ . Since ψ is pure we must
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have E σ = E τ = ψ . Applying D on all terms of the equality
we then have σ = τ = Dψ , thus proving that Dψ is pure. �

We say that a state σ ∈ Fρ is completely mixed relative
to the face Fρ if every state τ ∈ Fρ can stay in the convex
decomposition of σ . In other words, σ is completely mixed
relative to Fρ if one has Fσ = Fρ . Note that in general σ ∈ Fρ

implies Fσ ⊆ Fρ .
We then have the following.
Lemma 5. If the state ω ∈ Fρ is completely mixed relative

to Fρ , then the state E ω ∈ St1(C) is completely mixed. If the
state υ ∈ St1(C) is completely mixed, then the state Dυ ∈ Fρ

is completely mixed relative to Fρ .
Proof. Suppose that ω is completely mixed relative to Fρ .

Then every state σ ∈ Fρ can stay in its convex decomposition,
say ω = pσ + (1 − p)σ ′ with p > 0 and σ ′ ∈ Fρ . Applying
E we have

E ω = pE σ + (1 − p)E σ ′. (6)

Since the compression is maximally efficient, for every state
τ ∈ St1(C) there exists a state σ ∈ Fρ such that τ = E σ .
Choosing the suitable σ ∈ Fρ and substituting τ to E σ in
Eq. (6) we then obtain that for every state τ ∈ St1(C) there
exists probability p > 0 and a state σ ′ ∈ Fρ such that

E ω = pτ + (1 − p)E σ ′ .

This implies that E ω is completely mixed. Suppose now that
υ ∈ St1(C) is completely mixed. Then every state τ ∈ St1(C)
can stay in its convex decomposition, say υ = pτ + (1 − p)τ ′.
with p > 0 and τ ′ ∈ St1(C). Applying D on both sides we have

Dυ = pDτ + (1 − p)Dτ ′. (7)

Now, using lemma 3 we have that every state σ ∈ Fρ can be
written as σ = Dτ for some τ ∈ St1(C). Choosing the suitable
τ ∈ St1(C) and substituting σ to Dτ in Eq. (7) we then obtain
that for evert state σ ∈ Fρ there exists a probability p > 0
and a state τ ′ ∈ St1(C) such that Dυ = pσ + (1 − p)Dτ ′.
Therefore, Dυ is completely mixed relative to Fρ . �

We now show that the system C used for ideal compression
of the state ρ is unique up to operational equivalence.

Lemma 6. If two systems C and C′ allow for ideal com-
pression of a state ρ ∈ St1(A), then C and C′ are operationally
equivalent.

Proof. Let E ,D and E ′,D ′ denote the encoding and decod-
ing schemes for systems C and C′, respectively. Define the
transformations U := E ′D ∈ Transf(C,C′) and V = E D ′ ∈
Transf(C′,C). It is easy to see that U is reversible and
U −1 = V . Indeed, since the restriction of D ′E ′ and DE to the
face Fρ is the identity, using lemma 3 one has D ′E ′D = D and
similarly DE D ′ = D ′. Hence we have U V = E ′DE D ′ =
E ′D ′ = IC′ and V U = E D ′E ′D = E D = IC. �

It is useful to introduce the notion of equality upon input
of ρ. We say that two transformations A ,A ′ ∈ Transf(A,B)
are equal upon input of ρ ∈ St(A) if their restrictions to the
face identified by ρ are equal, that is, if A σ = A ′σ for every
σ ∈ Fρ . If A and A ′ are equal upon input of ρ we write
A =ρ A ′.

Using the notion of equality upon input of ρ we can rephrase
the fact that the compression is lossless for ρ as DE =ρ IA.
Similarly, we can state the following.

Lemma 7. The encoding E is deterministic upon input of ρ,
that is (eC|E =ρ (eA|.

Proof. For every σ ∈ Fρ we have (eC|E |σ ) �
(eA|DE |σ ) = (eA|σ ) = 1, having used Eq. (4) and the fact that
the compression is lossless. Since probabilities are bounded
by 1, this implies (eC|E |σ ) = (eA|σ ) for every σ ∈ Fρ , that is,
(eC|E =ρ (eA|. �

A similar result holds for the decoding.
Lemma 8. The decoding D is deterministic, that is

(eA|D = (eC|.
Proof. For every τ ∈ St1(A) we have (eA|D |τ ) �

(eC|E D |τ ) = (eC|τ ), having used Eq. (4) and lemma 2. Hence
(eA|D = (eC|. �

B. Results about purification

The purification postulate 1 implies a large number of
quantum features, as it was shown in Ref. [22]. Here we review
only the facts that are useful for our derivation, referring to
Ref. [22] for the proofs.

An elementary consequence of the uniqueness of purifica-
tion is that the group GA of reversible transformations on A
acts transitively on the set of pure states.

Lemma 9 (Transitivity on pure states). For every couple of
pure states ϕ,ϕ′ ∈ St1(A) there is a reversible transformation
U ∈ GA such that ϕ′ = U ϕ.

Proof. See lemma 20 of Ref. [22]. �
Transitivity implies that for every system A there is a

unique state χA ∈ St1(A) that is invariant under reversible
transformations, that is, a unique state such that U χA = χA

for every U ∈ GA.
Lemma 10 (Uniqueness of the invariant state). For every

system A, there is a unique state χA invariant under all
reversible transformations in GA. The invariant state has the
following properties:

(1) χA is completely mixed
(2) χAB = χA ⊗ χB.
Proof. See corollary 34 and theorem 4 of Ref. [22]. The

proof of item 2 uses the local distinguishability axiom. �
When there is no ambiguity we will drop the subindex A

and simply write χ .
The uniqueness of purification in postulate 1 requires

that if ρ,
′
ρ ∈ St1(AB) are two purifications of ρ ∈ St1(A),

then there exists a reversible transformation U ∈ GB such
that  ′

ρ = (IA ⊗ U )ρ . The following lemma extends the
uniqueness property to purifications with different purifying
systems.

Lemma 11 (Uniqueness of the purification up to channels
on the purifying systems). Let  ∈ St1(AB) and  ′ ∈ St1(AC)
be two purifications of ρ ∈ St1(A). Then there exists a channel
C ∈ Transf(B,C) such that

Proof. See lemma 21 of Ref. [22]. �
Another consequence of the uniqueness of purification is

the fact that any ensemble decomposition of a given mixed
state can be obtained by performing a measurement on the
purifying system.
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Lemma 12 (Purification of preparation-tests). Let ρ ∈
St1(A) be a state and ρ ∈ St1(AB) be a purification of ρ. If
{ρi}i∈X be a preparation test such that

∑
i∈X ρi = ρ, then there

exists an observation-test {ai}i∈X on the purifying system such
that

Proof. See lemma 8 of Ref. [22]. �
An easy consequence is the following.
Corollary 1. If ρ ∈ St1(AB) is a purification of ρ ∈ St1(A)

and σ belongs to the face Fρ , then there exists an effect b and
a nonzero probability p > 0 such that

An important consequence of purification and local distin-
guishability is the relation between equality upon input of ρ

and equality on the purifications of ρ.
Theorem 1 (Equality upon input of ρ vs equality on

purifications of ρ). Let  ∈ St1(AC) be a purification of ρ ∈
St1(A), and let A ,A ′ ∈ Transf(A,B) be two transformations.
Then one has

(A ⊗ IC)ρ = (A ′ ⊗ IC)ρ ⇐⇒ A =ρ A ′.

Proof. See theorem 1 of Ref. [22]. The proof of the direction
⇐= uses the local distinguishability axiom. �

As a consequence, the purification of a completely mixed
state allows for the tomography of transformations:

Corollary 2. Let ω ∈ St1(A) be completely mixed and ω ∈
St1(AC) is a purification of ω. Then, for all transformations
A ,A ′ ∈ Transf(A,B) one has

(A ⊗ IC)ω = (A ′ ⊗ IC)ω ⇐⇒ A = A ′.

Proof. By theorem 1 the first condition is equivalent to
A =ω A ′. Since ω is completely mixed, this means A σ =
A ′σ for every σ ∈ St1(A). By local distinguishability [see
Eq. (5)] this implies A = A ′. �

Corollary shows that the state (A ⊗ IC)ω characterizes
the transformation A completely. We will express this fact
by saying that the state ω is dynamically faithful [20], or
just faithful, for short. Using this notion we can rephrase
corollary 2.

Corollary 3. If  ∈ St1(AC) is pure and its marginal on
system A is completely mixed, then  is dynamically faithful
for system A.

Let us choose a fixed faithful state for system A, say  ∈
St1(AC). Then for every transformation C ∈ Transf(A,B) we
can define the Choi state RC ∈ St(BC) as

We then have the following.
Theorem 2 (Choi isomorphism). For a given faithful

state  ∈ St1(AC) the map C �→ RC := (C ⊗ IC) has the
following properties:

(1) It defines a bijective correspondence between tests
{Ci}i∈X from A to B and collections of states {Ri}i∈X for BC
satisfying ∑

i∈X

(e|B |Ri)BC = (e|A |)AC .

(2) The transformation C is atomic if and only if the
corresponding state RC is pure.

Proof. See theorem 17 of Ref. [22]. �
A simple consequence of the Choi isomorphism is the

following.
Corollary 4. Let {Ci}i∈X ⊂ Transf(A,B) be a collection of

transformations. Then, {Ci}i∈X is a test if and only if∑
i∈X

(e|B Ci = (e|A .

In particular, let {ai}i∈X ⊂ Eff(A) be a collection of effects.
Then, {ai}i∈X is an observation test if and only if∑

i∈X

(ai | = (e| . (8)

Proof. Apply item 1 of theorem 2 to the collection of states
{Ri}i∈X defined by Ri := (Ci ⊗ IC). �

A much deeper consequence of the Choi isomorphism is
the following theorem.

Theorem 3 (States specify the theory)
Let �,�′ be two theories satisfying the purification

postulate. If � and �′ have the same sets of normalized states,
then �′ = �.

Proof. See theorem 19 of Ref. [22]. �
Thanks to theorem 3 to derive quantum theory we will

only need to prove that our principles imply that for every
system A the normalized states St1(A) can be described as
positive Hermitian matrices with unit trace. Once this is
proved, theorem 3 automatically ensures that all the dynamics
and all the measurements allowed by the theory are exactly the
dynamics and the measurements allowed in quantum theory.

Note that in the definition of the Choi state we left the
freedom to choose the faithful state  ∈ St1(AC). Among
many possibilities, one convenient choice is to take a faithful
state � ∈ St1(AC) obtained as a purification of the invariant
state χ ∈ St1(A). Moreover, as we will see in the next
paragraph, we can always choose the purifying system C in
such a way that the marginal on C is completely mixed.

C. Results about the combination of compression
and purification

An important consequence of the combination of the
purification postulate with the compression axiom is the fact
that one can always choose a purification of ρ such that the
marginal state on the purifying system is completely mixed.
To prove this result we need the following lemma.

Lemma 1. Let ρ ∈ St1(A) be a state and let ρ ∈ St1(AB)
be a purification of ρ. If E ∈ Transf(A,C) is the encoding
operation in the compression scheme of axiom 3, then the
state  ′

ρ := (E ⊗ IB)ρ is pure.
Proof. Let D ∈ Transf(C,A) be the decoding operation.

Since the compression is lossless for ρ we know that DE =ρ

IA. By theorem 1 this is equivalent to the condition (DE ⊗

012311-11



CHIRIBELLA, D’ARIANO, AND PERINOTTI PHYSICAL REVIEW A 84, 012311 (2011)

IB)ρ = ρ . Now, suppose that (E ⊗ IB)ρ = ∑
i∈X �i .

Applying D on both sides we then obtain ρ = ∑
i∈X(D ⊗

IB)�i , and, since ρ is pure, for every i ∈ X we must
have (D ⊗ IB)�i = piρ , where pi � 0 is some probability.
Finally, since E D = IC (lemma 2), one has �i = pi(E ⊗
IB)ρ . Hence, (E ⊗ IB)ρ admits only decompositions with
�i = pi(E ⊗ IB)ρ , that is, (E ⊗ IB)ρ is pure. �

We are now in position to prove the desired result.
Theorem 4. For every state ρ ∈ St1(A) there exists a system

C and a purification ρ ∈ St1(AC) of ρ such that the marginal
state on system C is completely mixed. Moreover, the system
C is unique up to operational equivalence.

Proof. Take an arbitrary purification of ρ, say �ρ ∈ St1(AB)
for some purifying system B. Define the marginal state
on system B as |θ )B := (e|A|�ρ)AB and define the state
ρ := (IA ⊗ E )�ρ , where E ∈ Transf(B,C) the encoding
operation for state θ . By lemma 13 we know that ρ ∈
St(AC) is pure. Using lemma 7 and theorem 1 we obtain
(eC||ρ) = [(eC|E ]|�ρ) = (eB||�ρ) = |ρ), that is, ρ is a
purification of ρ. Finally, the marginal on system C is given
by ρ̃ = E θ , which by lemma 5 is completely mixed. This
proves the first part of the thesis. It remains to show that the
system C is uniquely defined up to operational equivalence.
Suppose that  ′

ρ ∈ St(AC′) is another purification of ρ with
the property that the marginal on system C′ is completely
mixed. Since ρ and  ′

ρ are two purifications of the same
state, there must be two channels C ∈ Transf(C,C′) and
R ∈ Transf(C′,C) such that  ′

ρ = (IA ⊗ C )ρ and ρ =
(IA ⊗ R) ′

ρ (lemma 11). Combining the two equalities one
obtains ρ = (IA ⊗ RC )ρ . Now, the marginal of ρ on
system C is completely mixed, and this implies that ρ is
faithful for system C (corollary 3). Hence we have RC = IC.
Repeating the same argument for  ′

ρ we obtain C R = IC′ .
Therefore, C is reversible and R = C −1. This proves that C
and C′ are operationally equivalent. �

The following facts will also be useful.
Corollary 5. Let ρ ∈ St1(AB) be a purification of ρ ∈

St1(A) and let E ∈ Transf(A,C) be the encoding for ρ.
Then, the state (E ⊗ IB)ρ ∈ St1(CB) is dynamically faithful
for C.

Proof. The marginal of (E ⊗ IB)ρ on system C is E ρ,
which is completely mixed by lemma 5. Hence, (E ⊗ IB)ρ

is dynamically faithful by corollary 3. �
Lemma 14. The decoding transformation D ∈ Transf(C,A)

in the ideal compression for ρ ∈ St1(A) is atomic.
Proof. Let ρ ∈ St1(AB) be a purification of ρ, for some

purifying system B. Since DE =ρ IA (the compression is
lossless), we have (DE ⊗ IB)|ρ) = |ρ) (theorem 1). Now,
by corollary 5 (E ⊗ IB)|ρ) is faithful for C and by lemma 13
(E ⊗ IB)|ρ) is pure. Using the Choi isomorphism with the
faithful state  := (E ⊗ IB)ρ we then obtain that D is
atomic. �

D. Teleportation and the link product

For every system A one can choose a completely mixed state
ωA and a purification (A) ∈ St(AÃ) such that the marginal
on system Ã is completely mixed (cf. theorem 4). Any such
purification allows for a probabilistic teleportation scheme:

Lemma 15 (Probabilistic teleportation). There exists an
atomic effect E(A) ∈ Eff(ÃA) and a nonzero probability pA

such that

and

Proof. See corollary 19 of Ref. [22]. �
Let us choose (A) to be the faithful state in the definition

of the Choi isomorphism. Then the sequential composition
of transformation induces a composition of Choi states in
following way.

Corollary 6 (Link product). For two transformations C ∈
Transf(A,B) and D ∈ Transf(B,C) the Choi state of DC ∈
Transf(A,C) is given by the link product

(9)

Proof. See corollary 22 of Ref. [22]. �
We conclude this paragraph with an important result that

follows from the combination of the link product structure
with the pure conditioning axiom.

Lemma 16 (Atomicity of composition). The composition of
two atomic transformations is atomic.

Proof. Let C ∈ Transf(A,B) and D ∈ Transf(B,C) be two
atomic transformations. By the Choi isomorphism, the (unnor-
malized) states RC and RD are pure. Since the teleportation
effect E(B) in Eq. (9) is atomic (lemma 15), the pure
conditioning axiom 5 implies the state RDC is pure. By the
Choi isomorphism this means that DC is atomic. �

E. No information without disturbance

We say that a test {Ci}i∈X ⊂ Transf(A) is nondisturbing
upon input of ρ if

∑
i∈X Ci =ρ IA. If ρ is completely mixed,

we simply say that the test is nondisturbing.
A consequence of the purification postulate is the following

“no-information without disturbance” result.
Lemma 17 (No information without disturbance). A test

{Ci}i∈X ⊂ Transf(A) is nondisturbing upon input of ρ if and
only if there is a set of probabilities {pi}i∈X such that Ci =ρ

piIA for every i ∈ X.
Proof. See theorem 10 of Ref. [22]. �
The no-information without disturbance result implies the

following geometrical limitation.
Corollary 7. For every system A the convex set of states

St1(A) is not a segment.
Proof. The proof is by contradiction. Suppose that for

some system A the set St1(A) is a segment. The segment
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has only two pure states, say ϕ1 and ϕ2, and every other state
ρ ∈ St1(A) is completely mixed. Then the distinguishability
axiom 2 imposes that ϕ1 and ϕ2 are perfectly distinguishable.
Take the binary test {a1,a2} such that (ai |ϕj ) = δij and define
the “measure-and-prepare” test {C1,C2} as Ci = |ϕi)(ai |, i =
1,2 (the possibility of preparing a state depending on the
outcome of a previous measurement is guaranteed by causality
[22]). Since every state ρ in the segment can be written as
convex combination of the two extreme points, we have that
the test {C1,C2} is nondisturbing: (C1 + C2)ρ = ρ for every
ρ. This is in contradiction with lemma 17 because C1 and C2

are not proportional to the identity. �
We know that no information can be extracted without

disturbance. In the following we will prove a result in the
converse direction: if a measurement extracts no information,
than it can be realized in a nondisturbing fashion. To show this
result we first need the following.

Lemma 18. For every observation test {ai}i∈X ⊂ Eff(A)
with finite outcome set X there is a system C and a test
{Ai}i∈X ⊂ Transf(A,C) consisting of atomic transformations
such that (ai | = (eC|Ai .

Proof. Let |)AB be a pure faithful state for system A and
let |Ri)B = (ai |A|)AB the Choi state of ai . Take a purification
of Ri , say |i)BC for some purifying system C [38]. Then, by
the Choi isomorphism there is a test {Ai}i∈X, with input A and
output C, such that

(see item 1 of theorem 2). Moreover, each transformation
Ai : A → C is atomic (item 2 of theorem 2). Applying the
deterministic effect (eC| on both sides we then obtain |Ri)B =
(eC||i)CA = (eC|Ai |)AB. By definition of Ri , this implies
(ai |A|)AB = (eC|Ai |)AB, and, since  is dynamically
faithful, (ai |A = (eC|Ai . �

Theorem 5. Let ρ ∈ St1(A) be a state, a ∈ Eff(A) be an
effect, and A ∈ Transf(A,B) be an atomic transformation such
that (a|A = (e|BA . If (a| =ρ p(e| for some p � 0, then there
exists a channel C ∈ Transf(B,A) such that C A =ρ pIA.

Proof. Consider a purification of ρ, say ρ ∈ St(AC), and
define the state � ∈ St1(BC) by |�) := 1

p
(A ⊗ IC)|ρ). By

the atomicity of composition 16 the state � is pure. Moreover,
we have

(eB| |�)BC = 1
p

(a|A|ρ)AB

= (eA||ρ)AC,

having used theorem 1 in the last equality. This implies
that ρ and � are different purifications of the same mixed
state on system C. Then, by lemma 11 there exists a
channel C ∈ Transf(B,A) such that |ρ) = (C ⊗ IC)|�) =
1
p

(C A ⊗ IC)|ρ). By theorem 1, the last equality implies
C A =ρ pIA. �

We now make a simple observation that combined with
theorem 5 will lead to some interesting consequences.

Lemma 19. If (a|ρ) = ‖a‖, then a =ρ ‖a‖e. Similarly, if
(a|ρ) = 0, then a =ρ 0.

Proof. By definition, σ ∈ Fρ iff there exists p > 0 and
τ ∈ St1(A) such that ρ = pσ + (1 − p)τ . If (a|ρ) = ‖a‖,
then we have ‖a‖ = p(a|σ ) + (1 − p)(a|τ ). Since (a|σ ) and
(a|τ ) cannot be larger than ‖a‖, the only way to have the
equality is to have (a|σ ) = (a|τ ) = ‖a‖. By definition, this
amounts to say a =ρ ‖a‖e. Similarly, if (a|ρ) = 0, one has
0 = p(a|σ ) + (1 − p)(a|τ ), which is satisfied only if (a|σ ) =
(a|τ ) = 0, that is, if a =ρ 0. �

As consequence, we have the following.
Corollary 8. Let ρ ∈ St1(A) be a state, a ∈ Eff(A) be an

effect, and A ∈ Transf(A,B) be an atomic transformation such
that (a|A = (e|BA . If (a|ρ) = 1, then A is correctable upon
input of ρ, that is, there exists a correction operation C ∈
Transf(B,A) such that C A =ρ IA.

Proof. If (a|ρ) = 1, then clearly ‖a‖ = 1. Lemma 19 then
implies (a| =ρ (e|. Applying theorem 5 we finally obtain the
thesis. �

Corollary 9. Let ρ ∈ St1(A) be a state, a ∈ Eff(A) be an
effect such that (a|ρ) = 1. Then there exists a transformation
C ∈ Transf(A) such that (a| = (e|C and C =ρ I .

Proof. Straightforward consequence of lemma 18 and of
corollary 8. �

Finally, we say that an observation-test {ai}i∈X is nonin-
formative upon input of ρ if we have (ai | =ρ pi(e| for every
i ∈ X. This means that the test {ai}i∈X is unable to distinguish
the states in the face Fρ . As a consequence of theorem 5
we have the following “no disturbance without information”
result.

Corollary 10 (No disturbance without information). If the
test {ai}i∈X is noninformative upon input of ρ then there is a
test {Di}i∈X ⊂ Transf(A) that is nondisturbing upon input of
ρ and satisfies (e|Di = (ai | for every i ∈ X.

Proof. By lemma 18 there exists a test {Ai} ⊂ Transf(A,B)
such that each transformation Ai is atomic and (e|Ai = (ai |.
By theorem 5, for each Ai there is a correction channel Ci such
that CiAi =ρ piIA. Defining Di := CiAi we then obtain the
thesis. �

V. PERFECTLY DISTINGUISHABLE STATES

In this section we prove some basic facts about perfectly
distinguishable states. Let us start from the definition.

Definition 5 (Perfectly distinguishable states). The normal-
ized states {ρi}Ni=1 ⊆ St1(A) are perfectly distinguishable if
there exists an observation-test {ai}Ni=1 such that (aj |ρi) = δij .
The observation-test {ai}Ni=1 is called perfectly distinguishing.

From the distinguishability axiom 2 it is clear that every
nontrivial system has at least two perfectly distinguishable
states.

Lemma 20. For every nontrivial system A there are at least
two perfectly distinguishable states.

Proof. Let ϕ be a pure state of A. Obviously, ϕ is not
completely mixed (unless the system A has only one state,
that is, unless A is trivial). Hence, by axiom 2 there exists at
least a state σ that is perfectly distinguishable from ϕ. �

An equivalent condition for perfect distinguishability is the
following.

Lemma 21. The states {ρi}Ni=1 ⊂ St1(A) are perfectly distin-
guishable if and only if there exists an observation-test {ai}Ni=1
such that (ai |ρi) = 1 for every i.
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Proof. The condition (ai |ρi) = 1, ∀ i = 1, . . . ,N is
clearly necessary. On the other hand, the condition (ai |ρi) =
1,∀ i = 1, . . . ,N implies

(ai |ρi) = 1 =
N∑

j=1

(aj |ρi) = (ai |ρi) +
∑
i �=j

(aj |ρi).

Since all probabilities are nonnegative, we must have (aj |ρi) =
0 for i �= j , and therefore, (aj |ρi) = δij . �

A very general fact about state discrimination is expressed
by the following.

Lemma 22. If ρ is perfectly distinguishable from σ and ρ ′
(or σ ′) belongs to the face identified by ρ (or σ ), then ρ ′ is
perfectly distinguishable from σ ′.

Proof. Let {a,e − a} be the binary observation test that
distinguishes perfectly between ρ and σ . By definition, a ∈
Eff(A) is such that (a|ρ) = 1 and (a|σ ) = 0. Now, by lemma
19, (a|ρ ′) = 1 and (a|σ ′) = 0 for all ρ ′ ∈ Fρ and σ ′ ∈ Fσ . �

Thanks to purification and to the local distinguishability
axiom 4, we are also in position to show a much stronger
result.

Lemma 23. Let {ρi}Ni=1 ⊂ Fρ and {ρj }N+M
j=N+1 ⊂ Fσ be two

sets of perfectly distinguishable states.
If ρ is perfectly distinguishable from σ , then the states

{ρi}N+M
i=1 are perfectly distinguishable.

Proof. Let {a,eA − a} be the observation test such that
(a|ρ) = 1 and (a|σ ) = 0. Now, by corollary 9 there is a trans-
formation C ∈ Transf(A) such that (eA|C = (a| and C =ρ

IA. Similarly, there exists a transformation C ′ ∈ Transf(A)
such that (eA|C ′ = (eA| − (a| and C ′ =σ IA. We can then
define the following observation test:

(ci | =
{

(ai | C i � N

(bi | C ′ N + 1 � i � N + M
,

where {ai}Ni=1 (or {bj }N+M
j=N+1) is the observation test that per-

fectly distinguishes among the states {ρi}Ni=1 (or {ρj }N+M
j=N+1).

By corollary 4 [see in particular Eq. (8)], {ci}N+M
i=1 is indeed

an observation test: each ci is an effect and one has the
normalization

N+M∑
i=1

(ci | =
N∑

i=1

(ai | C +
N+M∑
i=N+1

(bi | C ′

= (eA| C + (eA| C ′

= (a| + (eA| − (a| = (eA| .
Moreover, since C =ρ IA and C ′ =σ IA, one has (ci |ρi) = 1
for every i = 1, . . . ,M + N . By lemma 21, this implies that
the states {ρi}N+M

i=1 are perfectly distinguishable. �
Definition 6. A set of perfectly distinguishable states {ρi}Ni=1

is maximal if there is no state ρN+1 ∈ St1(A) such that the states
{ρi}N+1

i=1 are perfectly distinguishable.
Theorem 6. A set of perfectly distinguishable states {ρi}Ni=1

is maximal if and only if the state ω = ∑N
i=1 ρi/N is

completely mixed.
Proof. We first prove that if ω is completely mixed,

then the set {ρi}Ni=1 must be maximal. Indeed, if there
existed a state ρN+1 such that {ρi}N+1

i=1 are perfectly distin-
guishable, then clearly ρN+1 would be distinguishable from

ω. This is absurd because by proposition 1 no state can
be perfectly distinguished from a completely mixed state.
Conversely, if {ρi}Ni=1 is maximal, then ω is completely
mixed. If it were not, by the distinguishability axiom 2, ω

would be perfectly distinguishable from some state ρN+1. By
lemma 23, this would imply that the states {ρi}N+1

i=1 are perfectly
distinguishable, in contradiction with the hypothesis that the
set {ρi}Ni=1 is maximal. �

Lemma 24. Every set of perfectly distinguishable pure states
can be extended to a maximal set of perfectly distinguishable
pure states.

Proof. Let {ϕi}Ni=1 be a nonmaximal set of perfectly
distinguishable pure states. By definition, there exists a state σ

such that {ϕi}Ni=1 ∪ {σ } is perfectly distinguishable. Let ϕN+1

be a pure state in Fσ . By lemma 19 the states {ϕi}N+1
i=1 will

be perfectly distinguishable. Since the dimension of StR(A)
is finite and distinguishable states are linearly independent,
iterating this procedure one finally obtains a maximal set of
pure states in a finite number of steps. �

Corollary 11. Any pure state belongs to a maximal set of
perfectly distinguishable pure states.

We conclude this section with a few elementary facts
about how the ideal compression of axiom 3 preserves the
distinguishability properties. In the following we will choose
a state ρ ∈ St1(A) and E ∈ Transf(A,C) [or D ∈ Transf(C,A)]
will be the encoding (or decoding) in the ideal compression
scheme for ρ.

Lemma 25. If the states {ρi}ki=1 ⊂ Fρ are perfectly dis-
tinguishable, then the states {E ρi}ki=1 ⊂ St1(C) are perfectly
distinguishable. Conversely, if the states {σi}ki=1 ⊂ St1(C) are
perfectly distinguishable, then the states {Dσi}ki=1 ⊂ Fρ are
perfectly distinguishable.

Proof. Let {ai}ki=1 be the observation test such that (ai |ρi) =
1 for every i = 1, . . . ,k. Since the compression is lossless,
we have DE |ρi) = |ρi) and (ai |DE |ρi) = 1. Now, consider
the test {ci}ki=1 defined by (ci | = (ai |D . Clearly we have
(ci |E |ρi) = 1 for every i = 1, . . . ,k. By lemma 21 this means
that the states {E ρi}ki=1 are perfectly distinguishable. Similarly,
let {bi}ki=1 the observation test that distinguishes the set
{σi}ki=1. Since E D = IC (lemma 2), we can conclude by
the same argument that the states {Dσi}ki=1 are perfectly
distinguishable. �

We say that a set of perfectly distinguishable states
{ρi}ki=1 ⊂ Fρ is maximal in the face Fρ if there is no
state ρk+1 ∈ Fρ such that the states {ρi}k+1

i=1 are perfectly
distinguishable. We then have the following.

Corollary 12. If {ρi}ki=1 ⊂ Fρ is a maximal set of perfectly
distinguishable states in the face Fρ , then {E ρi}ki=1 ∈ St1(C) is
a maximal set of perfectly distinguishable states. Conversely,
if {σi}ki=1St1(C) is a maximal set of perfectly distinguishable
states, then {Dσi}ki=1 is a maximal set of perfectly distinguish-
able states in the face Fρ .

Proof. Distinguishability of the states {E ρi}ki=1 and
{Dσi}ki=1 is proved by lemma 25. Let us now prove maximality.
By contradiction, suppose that the set {ρi}ki=1 is maximal
in the face Fρ while the set {σi}ki=1, σi := E ρi is not
maximal. This means that there exists a state σk+1 ∈ St1(C)
such that the states {σi}k+1

i=1 are perfectly distinguishable. By
lemma 25 the states {Dσi}k+1

i=1 are perfectly distinguishable.
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Since DE ρi = ρi for every i = 1, . . . ,k, this means that
the states {ρi}ki=1 ∪ {Dσk+1} are perfectly distinguishable, in
contradiction with the fact that {ρi}ki=1 is maximal. This proves
that the set {E ρi}ki=1 must be maximal. Conversely, if the set
{σi} ⊂ St1(C) is maximal, using the same argument we can
prove that the set {Dσi}ki=1 must be maximal in Fρ . �

VI. DUALITY BETWEEN PURE STATES AND
ATOMIC EFFECTS

We now show the existence of a one-to-one correspondence
between states and effects of any system A in the theory. Let
us start from a simple observation.

Lemma 26. If a is atomic and (a|ρ) = ‖a‖ for ρ ∈ St1(A),
then ρ must be pure.

Proof. By lemma 19 the condition (a|ρ) = ‖a‖ implies
a =ρ ‖a‖e. By theorem 1 the condition a =ρ ‖a‖e implies

where ρ ∈ St1(AB) is any purification of ρ. Since a is atomic,
the pure conditioning axiom 5 implies that the marginal state
|ρ̃)B = (e|A|ρ)AB is pure. Since the marginal of ρ on system
B is pure, ρ must be factorized, that is, ρ = ρ ⊗ ρ̃ (see
lemma 19 of Ref. [1]). Hence, ρ must be pure, otherwise we
would have a nontrivial convex decomposition of the pure state
ρ . �

We are now in position to show that every atomic effect is
associated to a unique pure state.

Theorem 7. For every atomic effect a ∈ Eff(A), there exists
a unique pure state ϕ ∈ St1(A) such that (a|ϕ) = ‖a‖.

Proof. Let ρ be a state such that (a|ρ) = ‖a‖. By lemma
26ρ must be pure. Moreover, this pure state must be unique:
suppose that ϕ and ϕ′ are pure states such that (a|ϕ) = (a|ϕ′) =
‖a‖. Then for ω = 1/2(ϕ + ϕ′) one has (a|ω) = ‖a‖. Since ω

must be pure, one has ϕ = ϕ′. �
We now show the converse result: for every pure state ϕ ∈

St1(A) there exists a unique atomic effect a such that (a|ϕ) = 1.
Let us start from the existence.

Lemma 27. Let {ϕi}Ni=1 ⊂ St1(A) be a maximal set of
perfectly distinguishable pure states and let {ai}Ni=1 be the
observation test such that (ai |ϕj ) = δij . Then each effect ai

is atomic with ‖ai‖ = 1.
Proof. It is obvious that ‖ai‖ = 1 because of the condition

(ai |ϕi) = 1. It remains to prove atomicity. Consider the state
ω = ∑N

i=1 ϕi/N , which is completely mixed by theorem 6. Let
ω ∈ St1(AB) be a purification of ω, chosen in such a way that
the marginal on system B is completely mixed (theorem 4).
As a consequence of purification (lemma 12), there exists an
observation-test {bi}Ni=1 on system B such that (bi |B|ω)AB =
1/N |ϕi)A. Since ω is dynamically faithful on system B, each
effect bi must be atomic. Now, define the normalized states
{ρi}Ni=1 ⊂ St1(B) and the probabilities {pi}Ni=1 by

(10)

Applying the deterministic effect eB on both sides one has
pi = (ai |ω) = 1/N . On the other hand, applying the effect
bj one has instead 1/N(bj |ρi)B = 1/N (ai |ϕj ) = δij /N . This

implies (bi |ρi) = 1 for every i. Since bi is atomic, lemma 26
forces each ρi to be pure. Finally, each ai must be atomic since
its Choi state pi |ρi)B = (ai |A|ω)AB is pure (theorem 2). �

As a consequence, we can prove the following existence
result.

Lemma 28. For every pure state ϕ ∈ St1(A) there exists an
atomic effect such that (a|ϕ) = 1.

Proof. By corollary 11, every pure state belongs to a
maximal set of perfectly distinguishable pure states {ϕi}Ni=1,
say ϕ = ϕ1. The thesis then follows from lemma 27. �

We now prove that the atomic effect a such that (a|ϕ) = 1
is unique. For this purpose we need two auxiliary lemmas.

Lemma 29. Let ϕ ∈ St1(A) be an arbitrary pure state and let
pϕ be the probability defined by

pϕ = max {p : ∃ σ,χ = pϕ + (1 − p)σ } , (11)

where χ is the invariant state of system A. Then the value of
the probability pϕ is independent of ϕ.

Proof. Since for every couple of pure states ϕ and ψ one
has ψ = U ϕ for some reversible channel U (lemma 9), and
since χ is invariant, one has χ = pϕ + (1 − p)σ if and only
if χ = pψ + (1 − p)U σ . The maximum probabilities for ϕ

and ψ are then equal. �
Since pϕ = pψ for every couple of pure states, from now

on we will write pmax in place of pϕ .
Lemma 30. Let ϕ ∈ St1(A) be a pure state and a ∈ Eff(A)

be an atomic effect such that (a|ϕ) = 1. Let |�)AB be a
purification of the invariant state |χ )A, chosen in such a way
that the marginal on system B is completely mixed, and let b

be the unique atomic effect on B such that

(12)

[note that b exists by lemma 12 is uniquely defined by Eq. (12)
because � is faithful for system B]. Then one has

(13)

where ψ is the unique pure state such that (b|ψ) = 1.
Proof. Define the normalized pure state ψ and the proba-

bility q by

(14)

In order to prove the thesis we have to show that q = pmax

and (b|ψ) = 1. Applying b on both sides of Eq. (14) and using
Eq. (12) we obtain q(b|ψ) = pmax(a|ϕ) = pmax. This implies

q � pmax, (15)

with the equality if and only if (b|ψ) = 1. Let b′ be an atomic
effect such that (b′|ψ) = 1 (such an effect exists because
of lemma 28). Define the normalized pure state ϕ′ and the
probability p′ by

Applying a on both sides and using Eq. (14) we obtain
p′(a|ϕ′) = q(b′|ψ) = q, which implies p′ � q, with the
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equality if and only if (a|ϕ′) = 1. Combining this with the
inequality (15) we have p′ � q � pmax. On the other hand,
by lemma 29 one has p′ � pmax, and consequently p′ = q =
pmax. This also implies that (b|ψ) = 1 and (a|ϕ′) = 1. �

Theorem 8. For every pure state ϕ ∈ St1(A) there is a unique
atomic effect a ∈ Eff(A) such that (a|ϕ) = 1.

Proof. Existence has been already proved in lemma 28.
Let us prove uniqueness: suppose that a and a′ are two atomic
effects such that (a|ϕ) = (a′|ϕ) = 1. Then, applying lemma 30
to a and a′ we obtain

Since � is dynamically faithful, this implies a = a′. �
Finally, an important consequence of theorem 8.
Corollary 13. If a,a′ ∈ Eff(A) are two atomic effects with

‖a‖ = ‖a′‖ = 1, then there is a reversible channel U ∈ GA

such that (a′|A = (a|AU .
Proof. Let ϕ and ϕ′ be the (unique) normalized states

such that (a|ϕ) = 1 and (a′|ϕ′) = 1, respectively. Now, there
is a reversible channel U ∈ GA such that |ϕ)A = U |ϕ′)A.
Hence (a′|ϕ′) = (a|ϕ)A = (a|U |ϕ′). By theorem 8 one has
(a′|A = (a|AU . �

We conclude this section with an elementary result that will
be used later in the paper.

Lemma 31. Let E ∈ Transf(A,C) and D ∈ Transf(C,A) be
the encoding and the decoding in the ideal compression scheme
for ρ ∈ St1(A). If |ϕ) ∈ Fρ is a pure state and (a| ∈ Eff(A)
is the atomic effect such that (a|ϕ) = 1, then |γ ) := E |ϕ) ∈
St1(C) is a pure state and (c| := (a|D ∈ Eff(C) is the atomic
effect such that (c|γ ) = 1.

Proof. The state |γ ) := E |ϕ) is pure by lemma 4. The effect
(c| := (a|D is atomic by lemmas 14 and 16. Since DE =ρ IA,
one has (c|γ ) = (a|DE |ϕ) = (a|ϕ) = 1. �

VII. DIMENSION

In this section we show that each system in our theory
has given informational dimension, defined as the maximum
number of perfectly distinguishable pure states available in
the system. In the Hilbert space framework, the informational
dimension will be the dimension of the Hilbert space.

Lemma 32. All maximal sets of perfectly distinguishable
pure states have the same number of elements.

Proof. Let {ϕi}Ni=1 be a maximal set of perfectly distinguish-
able pure states for system A, and let {ai}Ni=1 the observation
test such that (ai |ϕj ) = δij . By lemma 27 each ai is atomic
and ‖ai‖ = 1. Then, by corollary 13 one has (ai |A = (a0|Ui ,
where each Ui is a reversible channel and a0 is a fixed
atomic effect with ‖a0‖ = 1. By the invariance of χ we then
obtain (ai |χA) = (a0|Ui |χA) = (a0|χA). On the other hand,
one has

∑N
i=1(ai |χA) = 1, which implies N = 1/(a0|χA).

Since a0 is arbitrary, N is independent of the choice of the
set {ϕi}Ni=1. �

As a consequence, the number of perfectly distinguishable
pure states in a maximal set is a property of the system A.
We will call this number the informational dimension (or
simply the dimension) of system A, and denote it with dA.
The informational dimension dA has not to be confused with

the size DA, defined as the dimension of the real vector space
StR(A).

An immediate consequence of the proof of lemma 32.
Corollary 14. For every atomic effect a with ‖a‖ = 1 one

has (a|χA) = 1/dA.
This simple fact has two very important consequences. The

first is that the dimension of a composite system is the product
of the dimensions of the components.

Corollary 15. The dimension of the composite system AB is
the product of the dimensions of A and B, namely dAB = dAdB.

Proof. From lemma 10 we know that χA ⊗ χB is the unique
invariant state of system AB. Now, if a ∈ Eff(A) and b ∈
Eff(B) are such that ‖a‖ = ‖b‖ = 1, then a ⊗ b is such that
‖a ⊗ b‖ = 1. Hence we have 1/dAB = (a ⊗ b|χA ⊗ χB) =
(a|χA)(b|χB) = 1/(dAdB). �

The second consequence is the relation between the
dimension and the maximum probability of a pure state in
the convex decomposition of the invariant state |χ )A.

Lemma 33. For every system A the maximum probability
of a pure state in the convex decomposition of the invariant
state is pmax = 1/dA.

Proof. Let � ∈ St1(AB) be a purification of the invariant
state |χA), chosen in such a way that the marginal on system B
is completely mixed. Let a ∈ Eff(A) be an atomic effect with
‖a‖ = 1. Then, Eq. (13) becomes

where ψ is some normalized pure state of system B. Applying
the deterministic effect e on system B on both sides we obtain
(a|χA) = pmax. Finally, corollary 14 states (a|χA) = 1/dA. By
comparison, we obtain pmax = 1/dA. �

Thanks to the compression axiom 3, the notion of dimension
can be applied not only to the whole state space St1(A) but also
to its faces. With face F of the convex set St1(A) we always
mean the face Fρ identified by some state ρ ∈ St1(A).

Lemma 34. Let F be a face of the convex set St1(A). Every
maximal set {ϕi}ki=1 of perfectly distinguishable pure states
in F has the same cardinality k. Precisely, if F is the face
identified by ρ ∈ St1(A) and E ∈ Transf(A,C) is the encoding
in the ideal compression for ρ, then we have k = dC.

Proof. The set {E ϕi}ki=1 ⊂ St1(C) is perfectly distinguish-
able by lemma 25, and it is maximal by corollary 12. Moreover,
the states {E ϕi}ki=1 are pure by lemma 4. Hence the cardinality
k of the set {ϕi}ki=1 must be k = dC. �

From now on the maximum number of perfectly distin-
guishable states in the face F will be called the dimension of
the face F and will be denoted by |F |.

VIII. DECOMPOSITION INTO PERFECTLY
DISTINGUISHABLE PURE STATES

In this section we show that in a theory satisfying our
principles any state can be written as a convex combina-
tion of perfectly distinguishable pure states. In quantum
theory, this corresponds to the diagonalization of the density
matrix.

To prove this result we need first a sufficient condition for
the distinguishability of states, given in the following
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Lemma 35. Let {ρi}Ni=1 ⊂ St1(A) be a set of states. If there
exists a set of effects {bi}Ni=1 ⊂ Eff(A) (not necessarily an
observation test) such that (bi |ρj ) = δij , then the states {ρi}Ni=1
are perfectly distinguishable.

Proof. For each i = 1, . . . ,N consider the binary test
{bi,e − bi}. Since by hypothesis (bi |ρj ) = δij , the test {bi,e −
bi} can perfectly distinguish ρi from any mixture of the
states {ρj }j �=i . In particular, this means that, for every M <

N , ρM+1 can be perfectly distinguished from the mixture
ωM = ∑M

j=1 ρj/M . Note that, by definition, the states {ρi}Mi=1
belong to the face FωM

. We now prove by induction on M

that the states {ρi}Mi=1 are perfectly distinguishable. This is
true for M = 1. Now, suppose that the states {ρi}Mi=1 are
perfectly distinguishable. Since the state ρM+1 is perfectly
distinguishable from ωM , by lemma 23 we have that the states
{ρi}M+1

i=1 are perfectly distinguishable. Taking M = N − 1 the
thesis follows. �

We now show that the invariant state χ is a mixture of
perfectly distinguishable pure states.

Theorem 9. For every maximal set of perfectly distinguish-
able pure states {ϕi}dA

i=1 ⊂ St1(A) one has

χ = 1

dA

dA∑
i=1

ϕi.

Proof. Let {ai}dA
i=1 be the observation test such that (ai |ϕj ) =

δij , and � ∈ St1(AB) be a purification of χ , chosen in such
a way that the marginal on system B is completely mixed
(theorem 4). Let {ψi}dA

i=1 ⊂ St1(B) be the pure states defined
by

and, for each i, let bi be the atomic effect such that

(16)

(here we used lemma 30 and the fact that pmax = 1/dA). Then
we have

(17)

By lemma 35 this implies that the states {ψi}dA
i=1 are perfectly

distinguishable. Now, since the marginal of |�)AB on system
B is completely mixed, theorem 6 states that the set {ψi}dA

i=1 is
maximal. Let {b′

i}dA
i=1 the observation test such that (b′

i |ψj ) =
δij . By lemma 27 each b′

i must be atomic. On the other
hand, there is a unique atomic effect bi such that (bi |ψi) = 1
(theorem 8). Therefore, b′

i = bi . This means that the effects
{bi}dA

i=1 form an observation test. Once this fact has been
proved, using Eq. (16) we obtain

|χ )A = (eB||�)AB

=
∑

i

(bi ||�)AB

= 1/dA

∑
i

|ϕi). �

As a consequence, we have the following.
Corollary 16 (Existence of conjugate systems). For every

system A there exists a system Ã, called the conjugate system,
and a purification � ∈ St1(AÃ) of the invariant state χA such
that dÃ = dA and the marginal on Ã is the invariant state
χÃ. The conjugate system Ã is unique up to operational
equivalence.

Proof. We first prove that Ã is unique up to operational
equivalence. The defining property of the conjugate system Ã
is that the marginal of � on Ã is the invariant state χÃ, which is
completely mixed. Theorem 4 then implies that Ã is unique up
to operational equivalence. Let us now show the existence of
Ã. Take a purification of χA, with purifying system Ã chosen
so that the marginal of � on Ã is completely mixed (this
is possible thanks to theorem 4). Now, the states {ψi}dA

i=1 ⊆
St(B), defined by 1

dA
|ψi) := [(ai | ⊗ IÃ]|�), are perfectly

distinguishable [see Eq. (17) in the proof of theorem 9].
Hence, by theorem 6 they are a maximal set of perfectly
distinguishable pure states. This implies dÃ = dA. Finally, by
theorem 9 one has 1/dÃ

∑dÃ
i=1 ψi = χÃ. �

Corollary 17. The distance between the invariant state χA

and an arbitrary pure state ϕ ∈ St1(A) is

‖χ − ϕ‖ = 2(dA − 1)

dA
.

Proof. Take a maximal set of perfectly distinguishable
pure states {ϕi}dA

i=1 such that ϕ1 = ϕ (corollary 11). Since
χ = ∑dA

i=1 ϕi/dA one has χ − ϕ = (dA−1)
dA

(σ − ϕ1), where σ =∑dA
i=2 ϕi/(dA − 1). Hence, one has ‖χ − ϕ‖ = (dA−1)

dA
‖σ −

ϕ1‖ = 2(dA−1)
dA

, having used that σ and ϕ1 are perfectly
distinguishable and therefore ‖σ − ϕ1‖ = 2 (see subsection
II-I in Ref. [22]). �

We can now prove the following strong result.
Theorem 10 (Spectral decomposition). For every system A,

every mixed state can be written as a convex combination of
perfectly distinguishable pure states.

Proof. The proof is by induction on the dimension of the
system. If dA = 1, the thesis trivially holds. Now suppose that
the thesis holds for any system B with dimension dB � N ,
and take a mixed state ρ ∈ St1(A) where dA = N + 1. There
are two possibilities: either (1) ρ is not completely mixed
or (2) ρ is completely mixed. Suppose that (1) ρ is not
completely mixed. Then by the compression axiom 3 one
can encode it in a system C, using an encoding operation
E ∈ Transf(A,C). Now, the maximum number of perfectly
distinguishable states in C is equal to the maximum number
of perfectly distinguishable states in the face Fρ (corollary
12). Since ρ is not completely mixed, we must have dC � N .
Using the induction hypothesis we then obtain that the state
E ρ ∈ St1(C) is a mixture of perfectly distinguishable pure
states, say E ρ = ∑

i piψi . Applying the decoding operation
D ∈ Transf(C,A) we get ρ = DE ρ = ∑

i piDψi . Since by
lemmas 4 and 25 we know that the states {Dψi}dC

i=1 are pure
and perfectly distinguishable, this is the desired decomposition
for ρ. Now suppose that ρ is completely mixed (2). Consider
the half-line in StR(A) defined by σt = (1 + t)ρ − tχ , t � 0.
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Since the set of normalized states St1(A) is compact, the line
will cross its border at some point t0. Therefore, one will have

ρ = 1

1 + t0
σt0 + t0

1 + t0
χ

for some state σt0 on the border of St1(A), that is, for some
state that is not completely mixed. But we know from the
discussion of point (1) that the state σt0 is a mixture of
perfectly distinguishable pure states, say σt0 = ∑k

i=1 piϕi .
By lemma 24 this set can be extended to a maximal set
of perfectly distinguishable pure states {ϕi}dA

i=1. On the other
hand, theorem 9 states that χ = ∑dA

i=1 ϕi/dA. This implies the
desired decomposition

ρ =
dA∑
i=1

[
qi

1 + t0
+ t0

dA(1 + t0)

]
ϕi,

where qi = pi for 1 � i � k, and qi = 0 otherwise. �
It is easy to show that the marginals of a pure bipartite state

have the same spectral decomposition.
Corollary 18. Let  ∈ St1(AB) be a pure state, and let ρ and

ρ̃ be the marginals of  on systems A and B, respectively. If
ρ has spectral decomposition ρ = ∑dA

i=1 piϕi , with pi > 0 for
every i = 1, . . . ,r , r � dA, then ρ̃ has spectral decomposition
ρ̃ = ∑r

i=1 piψi .
Proof. Let {ai}dA

i=1 be the observation test such that (ai |ϕj ) =
δij , {bi}ri=1 be the observation test such that (bi |B|)AB =
pi |ϕi)A for every i � r . For i � r define the pure state ψi ∈
St1(B) and the probability qi via the relation

qi |ψi)B := (ai |A |)AB .

[Note that ψi is pure due to the pure conditioning axiom.] By
definition we have

qi(bj |ψi) = (ai ⊗ bj |)

= (ai |ϕj )

= piδij ∀ i � r, ∀ j � r.

The above relation implies qi = ∑dA
j=1 qi(bj |ψi) =∑

j piδij = pi and (bj |ψi) = δij . Hence the states {ψi}ri=1
are perfectly distinguishable. On the other hand, we
have (ai ⊗ eB|) = (ai |ρ) = 0 ∀ i > r, which implies
(ai |A|)AB = 0, ∀ i > r . Therefore, we obtained

|ρ̃)B = (e|A |)AB

=
dA∑
i=1

(ai |A |)AB

=
r∑

i=1

(ai |A |)AB

=
r∑

i=1

pi |ψi)A ,

which is the desired spectral decomposition. �
The spectral decomposition of states has many conse-

quences. Here we just discuss the simplest ones, which are
needed for the purpose of the derivation of quantum theory.

A first consequence is the following lemma.

Lemma 36. Let ϕ ∈ St1(A) be a pure state and let a ∈ Eff(A)
be the unique atomic effect such that (a|ϕ) = 1. If ϕ is perfectly
distinguishable from ρ, then (a|ρ) = 0.

Proof. Let us write ρ = ∑k
i=1 piϕi , with {ϕi}ki=1 perfectly

distinguishable pure states and pi > 0 for each i. Now, by
lemma 23 the states {ϕ1, . . . ,ϕk,ϕ} are perfectly distinguish-
able, and by lemma 24 this set can be extended to a maximal set
of perfectly distinguishable pure states {γm}dA

m=1, with γi = ϕi

for i � k and γk+1 = ϕ. Denote by {cm}dA
m=1 the observation

test that perfectly distinguishes between the states {γm}. Note
that, by definition, (ck+1|ϕ) = 1 and (ck+1|ϕj ) = 0 for every
j �= k + 1. Also, recall that ck+1 is atomic (lemma 27). By
the duality of theorem 8 we have a = ck+1 and, therefore,
(a|ρ) = ∑k

i=1 pi(ck+1|ψi) = 0. �
Another consequence of theorem 10 is the following

characterization of the completely mixed states as full rank
states.

Corollary 19 (Characterization of completely mixed states).
A state ρ ∈ St1(A), written as a mixture ρ = ∑dA

i=1 piϕi of a
maximal set of perfectly distinguishable pure states {ϕi}dA

i=1, is
completely mixed if and only if pi > 0 for every i = 1, . . . ,dA.

Proof. Necessity: If pi = 0 for some i, then ρ is perfectly
distinguishable from ϕi . Hence, it cannot be completely mixed.
Sufficiency: let pmin = min{pi,i = 1, . . . ,dA}. Then we have
ρ = pminχ + (1 − pmin)σ , where σ is the state defined by σ =
1/(1 − pmin)

∑dA
i=1(pi − pmin/dA)ϕi . Since ρ contains χ in its

convex decomposition, and since χ is completely mixed, we
conclude that ρ is completely mixed. �

In particular, for two-dimensional systems we have the
result.

Corollary 20. For dA = 2 any state on the border of St1(A)
is pure.

Another consequence of theorem 10 is that every element in
the vector space StR(A) can be written as a linear combination
of perfectly distinguishable states.

Corollary 21. For every ξ ∈ StR(A) there exists a maximal
set of perfectly distinguishable pure states {ϕi}dA

i=1 and a set of
real numbers {ci}dA

i=1 such that |ξ ) = ∑
i ci |ϕi).

Proof. Write ξ as ξ = c+ρ − c−σ , where c+,c− � 0 and
ρ and σ are normalized states. If c− = 0 there is noth-
ing to prove, because ξ is proportional to a state. Then,
suppose that c− > 0. Write σ as σ = ∑

i piψi where {ψi}
are perfectly distinguishable and define k = max{pi}. Then
one has χ + 1/(c−kdA)ξ = (χ − 1/(kdA)σ ) + c+/(c−kdA)ρ.
Now, by definition χ − 1/(kdA)σ is proportional to a state:
indeed we have [χ − 1/(kdA)σ ] = 1/dA

∑
i(1 − pi/k)ψi ,

and, by definition 1 − pi/k � 0. Therefore χ + 1/(c−kdA)ξ
is proportional to a state, say χ + 1/(c−kdA)ξ = tτ , with
t > 0. Writing τ as τ = ∑

i qiϕi , where {ϕi}dA
i=1 is a maximal

set of perfectly distinguishable pure states, we then obtain
ξ = (c−kdA)(tτ − χ ) = (c−kdA)

∑
i(tqi − 1/dA)ϕi , which is

the desired decomposition. �
In quantum theory corollary 21 is equivalent to the fact that

every Hermitian matrix is diagonal in a suitable orthonormal
basis. A simple consequence of corollary 21 is the following.

Corollary 22. For every system A with dA = 2 there is a
continuous set of pure states.

Proof. Let ξ ∈ StR(A) be an arbitrary vector such that
(e|ξ ) = 0. Note that since the convex set St1(A) cannot be a
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segment (corollary 7), we must have DA = dim[StR(A)] > 2
and, therefore, the space of vectors ξ such that (e|ξ ) = 0
is at least two dimensional. By corollary 21 we have
ξ = c(ϕ1 − ϕ2) = 2c(ϕ1 − χ ), where c � 0, {ϕ1,ϕ2} are two
perfectly distinguishable pure states and we used the fact that
χ = 1

2 (ϕ1 + ϕ2). Let us define ϕξ := ϕ1. With this definition,
if ϕξ1 = ϕξ2 then one has ξ2 = tξ1 for some t � 0. Now, since
there is a continuous infinity of vectors ξ (up to scaling), there
must be a continuous set of pure states. �

We conclude this section with the dual result to the “spectral
decomposition” of corollary 21.

Corollary 23. For every x ∈ EffR(A) there exists a perfectly
distinguishing observation-test {ai}dA

i=1 and a set of real
numbers {di}dA

i=1 such that (x| = ∑
i di(ai |.

Proof. Let � ∈ St1(AÃ) be a purification of the invariant
state χA, where Ã is the conjugate system defined in corollary
16. Take the Choi vector |Rx)Ã := (x|A|�)AÃ. By corollary
21 there exists a maximal set of perfectly distinguishable
pure states {ψi}dA

i=1 and a set of real numbers {ci}dA
i=1 such

that |Rx) = ∑
i ci |ψi). Let {ai}dA

i=1 ⊂ Eff(A) be the observation
test such that 1/dA|ψi)Ã = (ai |A|�)AÃ for every i = 1, . . . ,dA

(recall that by corollary 16 the marginal of � on system
Ã is the invariant state χÃ and dÃ = dA). The test {ai}dA

i=1

is perfectly distinguishing: if {bi}dA
i=1 is the observation test

such that (bi |ψj ) = δij and ϕi ∈ St1(A) is the state defined by
|ϕi)A := dA(bi |Ã|�)AÃ, then we have

(ai |ϕj ) = dA
(
ai ⊗ bj

∣∣�)

= (bj |ψi)

= δij .

Moreover, we have

(x|A |�)AÃ = |Rx)Ã

=
∑

i

ci |ψi)Ã

=
∑

i

cidA (ai |A |�)AÃ .

Since � is dynamically faithful, this implies (x| = ∑
i di(ai |,

where di := cidA. �

IX. TELEPORTATION REVISITED

In this section we revisit probabilistic teleportation using
the results about informational dimension. The key point is
the section will be the proof the equality DA = d2

A, which
relates the dimension of the vector space StR(A) with the
informational dimension dA.

A. Probability of teleportation

We start by showing a probabilistic teleportation scheme
that achieves success probability pA = 1/dA for every
system A.

Theorem 11 (Probability of teleportation). For every system
A, probabilistic teleportation can be achieved with probability
pA = 1/d2

A.

Proof. Let Ã and |�)AÃ be the conjugate system and the
pure state defined in corollary 16. Then, the state |�)AÃ|�)AÃ
satisfies the identity

On the other hand, by lemma 33 the maximum probability
of a pure state in the convex decomposition of χAÃ is
pmax = 1/dAÃ, and by corollaries 15 and 16 one has pmax =
1/(dAdÃ) = 1/d2

A. Therefore, by lemma 12 there exists an
atomic effect E such that

(18)

and, since � is dynamically faithful,

(19)

as can be verified applying both members of Eq. (19) to �,
thus obtaining Eq. (18). �

B. Isotropic states and effects

Here we define two maps that send reversible transforma-
tions of A to reversible transformations of Ã: the transpose
and the conjugate. Using these maps we will also define the
notions of isotropic states and effects and we will prove some
properties of them.

Let us start from the definition of the transpose.
Lemma 37 (Transpose of a reversible transformation). Let

� ∈ St(AÃ) be a purification of the invariant state χA. The
reversible transformations of system Ã are in one-to-one
correspondence with the reversible transformations of system
A via the transposition τ defined as follows:

(20)

[note that the transposition is defined with respect to the given
state �].

Proof. Since (U ⊗ IÃ)|�) and |�) are purifications of
the same state χA, there exists a reversible transformation
U τ ∈ GÃ such that Eq. (20) holds. Since � is dynamically
faithful on A, the map U �→ U τ is injective. Furthermore,
the map is surjective: for every reversible V ∈ GÃ the states
(IA ⊗ V )|�) and |�) are two purifications of the same state
χÃ, and, by the uniqueness of purification stated in postulate
1, there exists a reversible U ∈ GA such that

(21)

namely V = U τ . �
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The conjugate is just defined as the inverse of the transpose.
Definition 7. Let τ be the transpose defined with respect to

the state � ∈ St1(AÃ). The conjugate of the reversible channel
U ∈ GA is the reversible channel U ∗ ∈ GÃ defined by U ∗ :=
(U τ )−1.

We can now give the definition of isotropic pure state
(isotropic atomic effect).

Definition 8. A pure state  ∈ St(AÃ) [an atomic effect
F ∈ Eff(ÃA)] is isotropic if it is invariant under the U ⊗ U ∗
(under U ∗ ⊗ U ). Diagrammatically

∀U ∈ GA

∀U ∈ GA. (22)

An example of isotropic state is �: indeed, by definition of
conjugate we have, for every U ∈ GA,

(U ⊗ U ∗) |�) = (U ⊗ (U τ )−1) |�)

= (IA ⊗ (U τ )−1U τ ) |�) = |�) .

As a consequence, the teleportation effect E is isotropic:
indeed one has

which implies (E|(U ∗ ⊗ U ) = (E|, since the state � ⊗ � is
dynamically faithful.

We now show that all isotropic pure states (isotropic atomic
effects) are connected to the state � (to the effect E) through
a local reversible transformation.

Lemma 38. If a pure state  ∈ St1(AÃ) is isotropic then
|) = (V ⊗ IÃ)|�) for some reversible transformation V ∈
GA such that V U = U V for every U ∈ GA.

Proof. Since  satisfies Eq. (22), its marginal on system Ã
is the invariant state |χÃ). Since  and � are purifications of
the same state, there must exist a reversible channel V ∈ GA

such that |) = (V ⊗ IÃ)|�). Moreover, we have for every

U ∈ GA

(U V U −1 ⊗ IÃ) |�) = (U V ⊗ U ∗) |�)

= (U ⊗ U ∗) |)

= |)

= (V ⊗ IÃ) |�) .

Since � is dynamically faithful, the above equation implies
U V U −1 = V for every U ∈ GA. �

By the duality between states and effects, it is easy to obtain
the following.

Lemma 39. Let A ∈ Eff(AÃ) be the atomic effect such that
(A|�) = 1. If an atomic effect F ∈ Eff(ÃA) is isotropic then
(F |ÃA = (A|ÃA(IÃ ⊗ V ) for some reversible transformation
V ∈ GA such such that V U = U V for every U ∈ GA.

Proof. Let  be the pure state such that (F |) = 1. Clearly
 is isotropic: one has (F |(U ⊗ U ∗)|) = (F |) = 1, and,
therefore, (U ⊗ U ∗)|) = |). By lemma 38, there exists a
reversible transformation V such that |) = (V −1 ⊗ IÃ)|�)
and V −1U = U V −1 for every U ∈ GA. Now, this implies
(F |(V −1 ⊗ IÃ)|�) = (F |) = 1, which by theorem 8 im-
plies (F | = (A|(V ⊗ IÃ). �

As a consequence, every isotropic effect is connected to the
teleportation effect by a local reversible transformation:

Corollary 24. If an atomic effect F ∈ Eff(ÃA) is isotropic
then (F |ÃA = (E|ÃA(IÃ ⊗ V ) for some reversible transfor-
mation V ∈ GA such that V U = U V for every U ∈ GA.

Proof. Since (E| and (F | are both isotropic, lemma 39
implies that they are both connected to (A| through a local re-
versible transformation, say V and W , respectively. Therefore,
they are connected to each other through the transformation
W V −1. �

C. Dimension of the state space

In this subsection we use the local distinguishability axiom
to prove the equality DA = d2

A (see theorem 12). As a
consequence, we will be able to represent the states of a
system A as square dA × dA Hermitian complex matrices, that
is, Hermitian operators on the complex Hilbert space CdA .
Theorem 12 is thus the point where the complex field (as
opposed to the real field) enters in our derivation. Notice that,
even if the local distinguishability excludes quantum theory
on real Hilbert spaces since the very beginning, to prove the
emergence of complex Hilbert spaces we need to use all the
six principles.

Due to local distinguishability, any bipartite state  ∈
St(AB) can be written as

|) =
DA∑
i=1

DB∑
j=1

ij |αi)|βj ),

where {αi} ({βj }) is a basis for the vector space StR(A)
[StR(B)]. Similarly, a bipartite effect F ∈ Eff(BA) can be
written as

(F | =
DB∑
k=1

DA∑
l=1

Fkl(β
∗
k |(α∗

l |
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with (α∗
l |αi) = δil and (β∗

k |βj ) = δjk . Finally, a transformation
C from A to B can be written as

C =
DB∑
j=1

DA∑
i=1

Cji |βj )(α∗
i |.

In this matrix representation the teleportation diagram of
Eq. (19) becomes

�E = IDA

d2
A

, (23)

where IDA is the identity matrix in dimension DA. On the other
hand, we also have

1 � (E|�) = Tr[�E] = DA

d2
A

and, therefore,

DA � d2
A.

We now show that one has the equality, using the following
standard lemma.

Lemma 40. With a suitable choice of basis for the vector
space StR(A), every reversible transformation U ∈ GA is
represented by a matrix MU of the form

MU =
(

1 0

0 OU

)
, (24)

where OU is an orthogonal (DA − 1) × (DA − 1) matrix.
Proof. Let {ξi} be a basis for StR(A), chosen in such a way

that the first basis vector is χ , while the remaining vectors
satisfy (e|ξi) = 0,∀ i = 2, . . . ,DA. Such a choice is always
possible since every vector v ∈ StR(A) can be written as v =
(e|v)χ + ξ , where ξ satisfies (e|ξ ) = 0. Now, since U χ = χ ,
the first column of MU must be (1,0, . . . ,0)T . Moreover, since
for every normalized state ρ, U ρ is a normalized state, one
must have (e|U |ξ ) = 0 for every ξ such that (e|ξ ) = 0. Hence
the first row of MU must be (1,0, . . . ,0), namely MU has
the block form of Eq. (24). It remains to show that, with a
suitable choice of basis, the matrix OU in the second block
can be chosen to be orthogonal. Observe that by definition the
matrices {MU }U ∈GA form a representation of the group GA:
indeed, one has MI = IDA and MU V = MU MV for every
U ,V ∈ G. Consider the positive definite matrix P defined by
the integral

P :=
∫

dU OT
U OU ,

where dU is the Haar measure on the compact group GA (see
corollary 30 of Ref. [22] for the proof of compactness) and AT

denotes the transpose of A. By definition, one has P T = P

and OT
U POU = P for every U ∈ GA. Let us now define the

new representation

O ′
U := P

1
2 OU P − 1

2 ,

obtained from OU by a change of basis in the subspace
spanned by {ξi}DA

i=2. With this choice, each matrix O ′
U is

orthogonal:

O ′T
U O ′

U = (
P

1
2 OU P − 1

2
)T (

P
1
2 OU P − 1

2
)

= P − 1
2
(
OT

U POU

)
P − 1

2 = IDA−1.

�
As a consequence, we have the following.
Corollary 25. For every system A, the group of reversible

transformations GA is (isomorphic to) a compact subgroup of
O(DA − 1).

Lemma 41. Let E ∈ Eff(AÃ) be the teleportation effect of
Eq. (19). Then one has (E|�) = 1.

Proof. Let A ∈ Eff(AÃ) be the atomic effect such that
(A|�) = 1. We now prove that A = E. Indeed, by corollary
24 there exists a reversible transformation V ∈ GA such that
(A| = (E|(V ⊗ IÃ). Using a basis for StR(A) such that the
transformations in GA are represented by orthogonal matrices
as in Eq. (24), one has

1 = (A|�)

= (E| (V ⊗ IÃ) |�)

= Tr[EMV �]

= Tr[�EMV ]

= Tr[MV ]

d2
A

,

having used Eq. (23) for the last equality. Using the inequality
Tr[MV ] � Tr[IDA ], that holds for every orthogonal DA × DA

matrix, we then obtain

1 = Tr[MV ]

d2
A

� Tr[IDA ]

d2
A

= Tr[E�]

= (E|�)

� 1,

and, therefore (E|�) = 1. �
Theorem 12 (Dimension of the state space). The dimension

DA of the vector space generated by the states in St(A) is
DA = d2

A.
Proof. Using lemma 41 and Eq. (23) we ob-

tain 1 = (E|�) = Tr[E�] = Tr[IDA ]/d2
A = DA/d2

A. Hence,
DA = d2

A. �
An interesting consequence of the relation (E|�) = 1 is the

following.
Corollary 26 (No inversion). Let us write an arbitrary

state ρ ∈ St1(A) as ρ = χA + ξ , with (e|ξ ) = 0. Then, the
linear map N defined by N (ρ) = χA − ξ is not a physical
transformation.

Proof. Write the state � as � = χA ⊗ χÃ + �. Since
(e|A|�)AÃ = |χ )Ã one must have (e|A|�)AÃ = 0. Therefore,
� must be of the form � = ∑

i αi ⊗ βi with (e|αi) = 0
for all i. Applying the transformation N one then obtains
(N ⊗ IÃ)� = χA ⊗ χÃ − �. We now prove that this is not
a state, and therefore, N cannot be a physical transformation.
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Let E be the teleportation effect. Since (E|�) = 1, we have
1 = (E|χA ⊗ χÃ) + (E|�) = 1/d2

A + (E|�). Now, we have

(E|(N ⊗ IÃ)|�) = 1

d2
A

− (E|�) = 2

d2
A

− 1.

Since this quantity is negative for every dA > 1, the map N
cannot be a physical transformation. �

Corollary 27. The matrix MN defined as

MN =
(

1 0
0 −IDA−1

)
(25)

cannot represent a physical transformation of system A.

X. DERIVATION OF THE QUBIT

In this section we show that every two-dimensional system
in our theory is a qubit. With this expression we mean that
the normalized states in St1(A) can be represented as density
matrices for a quantum system with two-dimensional Hilbert
space. With this choice of representation we also show that
the effects in Eff(A) are all the positive Hermitian matrices
bounded by the identity, and that the reversible transformations
GA act on the states by conjugation with unitary matrices in
SU(2).

The first step is to prove that the set of normalized
states St1(A) is a sphere. The idea of the proof is a simple
geometric observation: in the ordinary three-dimensional
space the sphere is the only compact convex set that has
an infinite number of pure states connected by orthogonal
transformations. The complete proof is given in the following.

Theorem 13 (The Bloch sphere). The normalized states of
a system A with dA = 2 form a sphere and the group GA is
SO(3).

Proof. According to corollary 25, the group of reversible
transformations GA is a compact subgroup of the orthogonal
group O(3). It cannot be the whole O(3) because, as we
saw in corollary 27, the inversion −I cannot represent a
physical transformation. We now show that GA must be
SO(3) by excluding all the other possibilities. From corollary
22 we know that the system A has a continuum of pure
states. Therefore, the group GA must contain a continuous
set of transformations. Now, from the classification of the
closed subgroups of O(3) we know that there are only two
possibilities: (i) GA is SO(3) and (ii) GA is the subgroup
generated by SO(2), the group of rotations around a fixed axis,
say the z axis, and possibly by the reflections with respect
to planes containing the z axis. Note that the reflection in
the xy plane is forbidden, because the composition of this
reflection with the rotation of π around the z axis would give
the inversion, which is forbidden by corollary 26. Case (ii)
is excluded because in this case the action of the group GA

cannot be transitive. The detailed proof is as follows: because
of the SO(2) symmetry, the set of pure states must contain at
least a circle in the xy plane. This circle will be necessarily
invariant under all operations in the group. However, since the
convex set of states is three dimensional, there is at least a pure
state outside the circle. Clearly there is no way to transform a
state on the circle into a state outside the circle by means of an
operation in GA. This is in contradiction with the fact that every
two pure states are connected by a reversible transformation.

Hence, case (ii) is ruled out. The only remaining alternative is
(i), namely that GA = SO(3) and, hence, the set of pure states
generated by its action on a fixed pure state is a sphere. �

Since the convex set of density matrices on a two-
dimensional Hilbert space is a sphere, we can represent
the states in St1(A) as density matrices. Precisely, we can
choose three orthogonal axes passing through the center of the
sphere and call them x,y,z axes, take ϕ+,k,ϕ−,k , k = x,y,z to
be the two perfectly distinguishable pure states in the direction
of the k axis and define σk := ϕk,+ − ϕk,−. From the geometry
of the sphere we know that any state ρ ∈ St1(A) can be written
as

|ρ) = |χ ) + 1

2

∑
k=x,y,z

nk |σk) ,
∑

k=x,y,z

n2
k � 1, (26)

where the pure states are those for which
∑

k=x,y,z n2
k = 1. The

Bloch representation Sρ of quantum state ρ is then obtained
by associating the basis vectors χ,σx,σy,σz to the matrices

Sχ = 1

2

(
1 0
0 1

)
, Sσx

=
(

0 1
1 0

)
,

Sσy
=

(
0 −i

i 0

)
, Sσz

=
(

1 0
0 −1

)
,

and by defining Sρ by linearity from Eq. (26). Clearly, in this
way we obtain

Sρ = 1

2

(
1 + nz nx − iny

nx + iny 1 − nz

)
,

which is the expression of a generic density matrix. Denoting
by M2(C) the set of complex two-by-two matrices we have
the following.

Corollary 28 (Qubit density matrices). For dA = 2 the set
of states St1(A) is isomorphic to the set of density matrices in
M2(C) through the isomorphism ρ �→ Sρ .

Once we decide to represent the states in St1(A) as matrices,
the effects in Eff(A) are necessarily represented by matrices
too. The matrix representation of an effect, given by the map
a ∈ Eff(A) �→ Ea ∈ M2(C) is defined uniquely by the relation

Tr[EaSρ] = (a|ρ) ∀ ρ ∈ St(A).

We then have the following.
Corollary 29. For dA = 2 the set of effects Eff(A) is

isomorphic to the set of positive Hermitian matrices P ∈
M2(C) such that P � I .

Proof. Clearly the matrix Ea must be positive for every
effect a, since we have Tr[EaSρ] = (a|ρ) � 0 for every density
matrix Sρ . Moreover, since we have Tr[EaSρ] = (a|ρ) � 1
for every density matrix Sρ , we must have Ea � I . Finally,
we know that for every couple of perfectly distinguishable
pure states ϕ,ϕ⊥ there exists an atomic effect a such that
(a|ϕ) = 1 and (a|ϕ⊥) = 0. Since the two pure states ϕ,ϕ⊥ are
represented by orthogonal rank-one projectors Sϕ and Sϕ⊥ , we
must have Ea = Sϕ . This proves that the atomic effects are the
whole set of positive rank-one projectors. As a consequence,
also every positive matrix P with P � I must represent some
effect a. �

Finally, the reversible transformations are represented as
conjugations by unitary matrices in SU(2).
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Corollary 30. For every reversible transformation U ∈ GA

with dA = 2 there exists a unitary matrix U ∈ SU(2) such that

SU ρ = USρU
†, ρ ∈ St(A). (27)

Conversely, for every U ∈ SU(2) there exists a reversible
transformation U ∈ GA such that Eq. (27) holds.

Proof. Every rotation of the Bloch sphere is represented
by conjugation by some SU(2) matrix. Conversely, every
conjugation by an SU(2) matrix represents some rotation on
the Bloch sphere. On the other hand, we know that GA is the
group of all rotations on the Bloch sphere (theorem 13). �

Note that we proved that all two-dimensional systems A
and B in our theory have the same states [St1(A) 
 St1(B)],
the same effects [Eff(A) 
 Eff(B)], and the same reversible
transformations (GA 
 GB), but we did not show that A and
B are operationally equivalent. For example, A and B could be
different when we compose them with a third system C: the
set of states St1(AC) and St1(BC) could be nonisomorphic.
The fact that every couple of two-dimensional systems A
and B are operationally equivalent will be proved later (cf.
corollary 40).

We conclude this section with a simple fact that will be very
useful later.

Corollary 31 (Superposition principle for qubits). Let
{ϕ1,ϕ2} ⊂ St1(A) be two perfectly distinguishable pure states
of a system A with dA = 2. Let {a1,a2} be the observation test
such that (ai |ϕj ) = δij . Then, for every probability 0 � p � 1
there exists a pure state ψp ∈ St1(A) such that

(a1| ψp) = p, (a2| ψp) = 1 − p. (28)

Precisely, the set of pure states ψp ∈ St1(A) satisfying Eq. (28)
is a circle in the Bloch sphere.

Proof. Elementary property of density matrices. �

XI. PROJECTIONS

In this section we define the projection on a face F of
the convex set St1(A) and we prove several properties of
projections. The projection on the face F will be defined as
an atomic operation �F ∈ Transf(A) that acts as the identity
on states in the face F and that annihilates the states on
the orthogonal face F⊥. In the following we first introduce
the concept of orthogonal face, then prove the existence and
uniqueness of projections, and finally give some useful results
on the projection of a pure state on two orthogonal faces.

A. Orthogonal faces and orthogonal complements

In order to introduce the notion of orthogonal face we need
first a few elementary results. We start by showing that there
is a canonical way to associate a state ωF to a face F .

Lemma 42 (State associated to a face). Let F be a face
of the convex set St1(A) and let {ϕi}|F |

i=1 be a maximal set
of perfectly distinguishable pure states in F . Then the state
ωF := 1

|F |
∑|F |

i=1 ϕi depends only on the face F and not on the

particular set {ϕi}|F |
i=1. Moreover, F is the face identified by ωF .

Proof. Suppose that F is the face identified by ρ and
let E ∈ Transf(A,C) [or D ∈ Transf(C,A)] be the encoding
(or decoding) in the ideal compression for ρ. By lemma 4

and corollary 12, {E ϕi}|F |
i=1 is a maximal set of perfectly

distinguishable pure states of C and by theorem 9 one has χC =
1

|F |
∑|F |

i=1 E ϕi . Hence, ωF = 1
|F |

∑|F |
i=1 ϕi = 1

|F |
∑|F |

i=1 DE ϕi =
DχC. Since the right-hand side of the equality is independent
of the particular set {ϕi}|F |

i=1, the state ωF in the left-hand side
is independent too. To prove that F is the face identified by ωF

it is enough to observe that ωF is completely mixed relative
to F : this fact follows from the relation ωF = DχC and from
lemma 5. �

We now define the orthogonal complement of the state ωF .
Definition 9. The orthogonal complement of the state ωF is

the state ω⊥
F ∈ St1(A) ∪ {0} defined as follows:

(1) if |F | = dA, then ω⊥
F = 0;

(2) if F < dA, then ω⊥
F is defined by the relation

χA = |F |
dA

ωF + dA − |F |
dA

ω⊥
F . (29)

An easy way to write the orthogonal complement.
Lemma 43. Take a maximal set {ϕi}|F |

i=1 of perfectly
distinguishable pure states in F and extend it to a maximal
set {ϕi}dA

i=1 of perfectly distinguishable pure states in St1(A),
then for |F | < dA we have

ω⊥
F = 1

dA − |F |
dA∑

i=|F |+1

ϕi.

Proof. By definition, for |F | < dA we have ω⊥
F =

1
dA−|F | (dAχA − |F |ωF ). Substituting the expressions χA =
1
dA

∑dA
i=1 ϕi and ωF = 1

|F |
∑|F |

i=1 ϕi we then obtain the
thesis. �

Note, however, that by definition the orthogonal comple-
ment ω⊥

F depends only on the face F and not on the choice of
the maximal set in lemma 43.

An obvious consequence of lemma 43.
Corollary 32. The states ωF and ω⊥

F are perfectly distin-
guishable.

Proof. Take a maximal set {ϕi}|F |
i=1 of perfectly distin-

guishable pure states in F , extend it to a maximal set
{ϕi}dA

i=1, and take the observation test such that (ai |ϕj ) = δij .
Then the binary test {aF ,e − aF }, defined by aF := ∑|F |

i=1 ai

distinguishes perfectly between ωF and ω⊥
F . �

We say that a state τ ∈ St1(A) is perfectly distinguishable
from the face F if τ is perfectly distinguishable from every state
σ in the face F . With this definition we have the following.

Lemma 44. The following are equivalent:
(1) τ is perfectly distinguishable from the face F ,
(2) τ is perfectly distinguishable from ωF ,
(3) τ belongs to the face identified by ω⊥

F , that is, τ ∈ Fω⊥
F

.
Proof. (1 ⇔ 2) τ is perfectly distinguishable from ωF

if and only if then there exists a binary test {a,e − a}
such that (a|τ ) = 1 and (a|ωF ) = 0. By lemma 19 this is
equivalent to the condition (a|τ ) = 1 and a =ωF

0, that is, τ is
distinguishable from any state σ in the face identified by ωF ,
which by definition is F . (2 → 3) Let {ϕi}|F |

i=1 be a maximal set
of perfectly distinguishable states in F , ωF = 1

|F |
∑|F |

i=1 ϕi , and

let {ϕi}ki=|F |+1 be the maximal set of perfectly distinguishable

pure states in the spectral decomposition τ = ∑k
i=|F |+1 piϕi ,

012311-23



CHIRIBELLA, D’ARIANO, AND PERINOTTI PHYSICAL REVIEW A 84, 012311 (2011)

with pi > 0 for every i = |F | + 1, . . . ,k. Since τ is perfectly
distinguishable from ωF , by lemma 23 we have that the
states {ϕi}ki=1 are all perfectly distinguishable. Let us extend
this set to a maximal set {ϕi}dA

i=1. By lemma 43 have ω⊥
F =

1
dA−|F |

∑dA
i=|F |+1 ϕi . Hence, all the states {ϕi}dA

i=|F |+1 are in the
face Fω⊥

F
. Since τ is a mixture of these states, it also belongs

to the face Fω⊥
F

. (3 ⇒ 2). Since ωF and ω⊥
F are perfectly

distinguishable, if τ belongs to the face identified by ω⊥
F , then

by lemma 22 τ is perfectly distinguishable from ωF . �
Corollary 33. If ρ is perfectly distinguishable from σ and

from τ , then ρ is perfectly distinguishable from any convex
mixture of σ and τ .

Proof. Let F be the face identified by ρ. Then by lemma 44
we have σ,τ ∈ Fω⊥

F
. Since Fω⊥

F
is a convex set, any mixture

of σ and τ belongs to it. By lemma 44, this means that any
mixture of σ and τ is perfectly distinguishable from ρ. �

We are now ready to give the definition of orthogonal face.
Definition 10 (Orthogonal face). The orthogonal face F⊥

is the set of all states that are perfectly distinguishable from
the face F .

By lemma 44 it is clear that F⊥ is the face identified by ω⊥
F ,

that is F⊥ = Fω⊥
F

.
In the following we list few elementary facts about

orthogonal faces.
Lemma 45. The following properties hold

(1) |F⊥| = dA − |F |,
(2) χA = |F |

dA
ωF + |F⊥|

dA
ωF⊥ ,

(3) ωF⊥ = ω⊥
F ,

(4) ω⊥
F⊥ = ωF ,

(5) (F⊥)⊥ = F .
Proof. Item 1. If |F | = dA the thesis is obvious. If |F | <

dA, take a maximal set {ϕi}|F |
i=1 (or {ϕj }|F |+|F⊥|

j=|F |+1 ) of perfectly
distinguishable pure states in F (or F⊥). Hence we have

ωF = 1

|F |
|F |∑
i=1

ϕi

⎛⎝or ωF⊥ = 1

|F⊥|
|F |+|F⊥|∑
j=|F |+1

ϕj

⎞⎠ .

By corollary 32 the states ωF and ωF⊥ are perfectly distinguish-

able. Hence the states {ϕi}|F |+|F⊥|
i=1 are perfectly distinguishable

jointly (lemma 23). Now we must have |F | + |F⊥| = dA,
otherwise there would be a pure state ψ that is perfectly

distinguishable from the states {ϕi}|F |+|F⊥|
i=1 . This implies that ψ

belongs to F⊥ and that states {ψ} ∪ {ϕj }|F |+|F⊥|
j=|F |+1 are perfectly

distinguishable in F⊥, in contradiction with the hypotheses

that the set {ϕj }|F |+|F⊥|
j=|F |+1 is maximal in F⊥. Item 2 Immediate

from item 1 and definition 9. Items 3 and 4 Both items follow
by comparison of item 2 with Eq. (29). Item 5 By condition 3
of lemma 44, (F⊥)⊥ is the face identified by the state ω⊥

F⊥ ,
which, by item 4, is ωF . Since the face identified by ωF is F ,
we have (F⊥)⊥ = F . �

We now show that there is a canonical way to associate an
effect aF to a face F .

Definition 11 (Effect associated to a face). We say that
aF ∈ Eff(A) is the effect associated to the face F ⊆ St1(A) if
and only if aF =ωF

e and aF =ω⊥
F

0.
In other words, the definition imposes that (aF |ρ) = 1 for

every ρ ∈ F and (aF |σ ) = 0 for every σ ∈ F⊥.

Lemma 46. A state ρ ∈ St1(A) belongs to the face F if and
only if (aF |ρ) = 1.

Proof. By definition, if ρ belongs to F , then (aF |ρ) = 1.
Conversely, if (aF |ρ) = 1, then ρ is perfectly distinguishable
from ω⊥

F , because (aF |ω⊥
F ) = 0. Now, we know that ω⊥

F is
equal to ωF⊥ (item 4 of lemma 45). By item 2 of lemma 44 the
fact that ρ is perfectly distinguishable from ωF⊥ implies that
ρ belongs to (F⊥)⊥, which is just F (item 5 of lemma 45). �

We now show that the effect aF associated to the face
F exists and is unique. A preliminary result needed to this
purpose is the following.

Lemma 47. The effect aF must have the form aF = ∑|F |
i=1 ai ,

where ai is the atomic effect such that (ai |ϕi) = 1 and {ϕi}|F |
i=1

is a maximal set of perfectly distinguishable pure states in F .
Proof. By corollary 23 we have that aF can be written as

(aF | = ∑
i di(ai | where {ai}dA

i=1 is a perfectly distinguishing
test. Moreover, since aF is an effect, we must have di � 0 for
all i = 1, . . . ,dA. Now, by definition we have (aF |ω⊥

F ) = 0,
which implies di(ai |ω⊥

F ) = 0 for every i = 1, . . . ,dA, that is,
(ai |ω⊥

F ) = 0 whenever di �= 0. Let us focus on the values
of i for which di �= 0. Let ϕi be the pure state such that
(ai |ϕi) = 1. The condition (ai |ω⊥

F ) = 0 implies that ϕi is
perfectly distinguishable from ω⊥

F . Therefore, ϕi belongs
to (F⊥)⊥, which is F . Since by definition we must have
(aF |ϕi) = 1, this also implies that di = 1. In summary, we
proved that aF = ∑′

i ai where the prime means that the sum
is restricted to those values of i such that ϕi ∈ F . The condition
aF =ωF

e also implies that the number of terms in the sum must
be exactly |F |. The thesis is then proved by suitably relabelling
the effects {ai}dA

i=1, in such a way that ϕi belongs to F for every
i = 1, . . . ,|F |. �

Lemma 48. The effect aF associated to the face F is unique.
Proof. Suppose that aF = ∑|F |

i=1 ai and a′
F =∑|F |

i=1 a′
i are two effects associated to the

face F , both written as in lemma 47.
Let {ϕi}|F |

i=1 (or {ϕ′
i}|F |

i=1) be the maximal set of perfectly
distinguishable pure states in F such that (ai |ϕi) = 1 for every
i = 1, . . . ,|F | [or (a′

i |ϕ′
i) = 1 for every i = 1, . . . ,|F |], and

let {ψj }|F
⊥|

j=1 be a maximal set of perfectly distinguishable pure
states in F⊥. Since ωF and ω⊥

F are perfectly distinguishable,

the states {ϕi}|F |
i=1 ∪ {ψj }|F

⊥|
j=1 (or {ϕ′

i}|F |
i=1 ∪ {ψj }|F

⊥|
j=1 ) are

perfectly distinguishable (lemma 23). Moreover, the set is
maximal since |F | + |F⊥| = dA. Let bj be the atomic effect
such that (bj |ψj ) = 1. Then, the test that distinguishes the

states {ϕi}|F |
i=1 ∪ {ψj }|F

⊥|
j=1 (or {ϕ′

i}|F |
i=1 ∪ {ψj }|F

⊥|
j=1 ) is given by

{ai}|F |
i=1 ∪ {bj }|F

⊥|
j=1 (or {a′

i}|F |
i=1 ∪ {bj }|F

⊥|
j=1 ) and its normalization

reads

e =
|F |∑
i=1

ai +
|F⊥|∑
j=1

bj = aF +
|F⊥|∑
j=1

bj ,

e =
|F |∑
i=1

a′
i +

|F⊥|∑
j=1

bj = a′
F +

|F⊥|∑
j=1

bj .

By comparison we obtain aF = a′
F . �
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B. Projections

We are now in position to define the projection on a face.
Definition 12 (Projection). Let F be a face of St1(A). A

projection on the face F is an atomic transformation �F such
that

(1) �F =ωF
IA,

(2) �F =ω⊥
F

0.
When F is the face identified by a pure state ϕ ∈ St1(A),

we have F = {ϕ} and call �{ϕ} a projection on the pure
state ϕ.

The first condition in definition 12 means that the projection
�F does not disturb the states in the face F . The second
condition means that �F annihilates all states in the orthogonal
face F⊥. As a notation, we will indicate with �⊥

F the projection
on the face F⊥, that is, we will use the definition �⊥

F := �F⊥ .
An equivalent condition for �F to be a projection on the

face F is the following.
Lemma 49. Let {ϕi}dA

i=1 be a maximal set of perfectly
distinguishable pure states for system A. The transformation
�F in Transf(A) is a projection on the face generated by the
subset {ϕi}|F |

i=1 if and only if
(1) �F =ωF

IA,
(2) �F |ϕl) = 0 for all l > |F |.
Proof. The condition is clearly necessary, since by definition

12�F |ϕl) = 0 for l > |F |. On the other hand, if �F |ϕl) = 0
for l > |F | then by definition of ω⊥

F we have �F |ω⊥
F ) = 0 and,

therefore, �F =ω⊥
F

0. �
A result that will be useful later.
Lemma 50. The transformation �F ⊗ IB is a projection on

the face F̃ identified by the state ωF ⊗ χB.
Proof. �F ⊗ IB is atomic, being the product of two

atomic transformations. We now show that �F ⊗ IB =ωF ⊗χB

IA ⊗ IB: Indeed, by the local tomography axiom it is easy
to see that every state σ ∈ FωF ⊗χB can be written as |σ ) =∑r

i=1

∑dB
j=1 σij |αi)|βj ), where {αi}ri=1 is a basis for Span(F)

and {βj }dB
j=1 is a basis for St1(B). Since �F =ωF

IA, we have

|σ ) = (�F ⊗ IB) |σ )

=
r∑

i=1

dB∑
j=1

σij�F |αi)|βj )

=
r∑

i=1

dB∑
j=1

σij |αi)|βj )

= |σ ) ,

which implies �F ⊗ IB =ωF ⊗χB IA ⊗ IB. Finally, note that
ωF̃ = ωF ⊗ χB, while ω⊥

F̃
= ω⊥

F ⊗ χB. Since we have (�F ⊗
IB)|ω⊥

F̃
) = �F |ω⊥

F ) ⊗ |χB) = 0, we can conclude �F ⊗
IB =ω⊥

F̃
0. Hence �F ⊗ IB is a projection on F̃ . �

In the following we will show that for every face F there
exists a unique projection �F and we will prove several
properties of projections. Let us start from an elementary
observation.

Lemma 51. Let ϕ be a pure state in the face F ⊆ St1(A)
and let a ∈ Eff(A) be the atomic effect such that (a|ϕ) = 1. If

A ∈ Transf(A) is an atomic transformation such that A =ωF

IA, then (a|A = (a|. Moreover, if aF is the effect associated
to the face F , then we have (aF |A = (aF |.

Proof. By lemma 16, the effect (a|A is atomic. Now, since
A |ϕ) = |ϕ), we have (a|A |ϕ) = (a|ϕ) = 1. However, by
theorem 8 (a| is the unique atomic effect such that (a|ϕ) = 1.
Hence, (a|A = (a|. Moreover, writing aF as aF = ∑|F |

i=1 ai

with (ai |ϕi) = 1, ϕi ∈ F (lemma 47), we obtain (aF |A =∑|F |
i=1(ai |A = ∑|F |

i=1(ai | = (aF |. �
When applied to the case of projections, the above lemma

gives the following.
Corollary 34. Let ϕ be a pure state in the face F ⊆ St1(A)

and let a ∈ Eff(A) be the atomic effect such that (a|ϕ) = 1.
Then we have (a|�F = (a|. Moreover, if aF is the effect
associated to the face F , then we have (aF | = (aF |�F .

The counterpart of corollary 34 is given as follows.
Lemma 52. Let ψ be a pure state in the face F⊥ and let

b be the atomic effect such that (b|ψ) = 1. Then, we have
(b|�F = 0. Moreover, if a⊥

F is the effect associated to the face
F⊥, then we have (a⊥

F |�F = 0.
Proof. By lemma 16, the effect (b|�F is atomic. Hence

(b|�F must be proportional to an atomic effect b′ with
‖b′‖ = 1, for some proportionality constant λ ∈ [0,1], that
is (b|�F = λ(b′|. We want to prove that λ is zero. By
contradiction, suppose that λ �= 0. Let ψ ′ be the pure state
such that (b′|ψ ′) = 1. Now, since �F |ω⊥

F ) = 0, we have 0 =
(b|�F |ω⊥

F ) = λ(b′|ω⊥
F ), which implies (b′|ω⊥

F ) = 0. Hence,
ψ ′ is perfectly distinguishable from ω⊥

F , which in turn
implies that ψ ′ belongs to (F⊥)⊥ = F . We then have λ =
(b|�F |ψ ′) = (b|ψ ′) = 0 (the last equality follows from the
fact that ψ and ψ ′ belong to F⊥ and F , respectively, and hence
are perfectly distinguishable). This is in contradiction with the
assumption λ �= 0, thus concluding the proof that (b|�F = 0.

Moreover, writing a⊥
F as a⊥

F = ∑|F⊥|
i=1 bi with (bi |ψi) = 1,

ψi ∈ F⊥, we obtain (a⊥
F |�F = ∑|F⊥|

i=1 (bi |�F = 0. �
Combining corollary 34 and lemma 52 we obtain an

important property of projections, expressed by the following.
Corollary 35. If �F is a projection on the face F , then one

has (eA|�F = (aF |.
Proof. The thesis follows from corollary 34 and lemma 52

and from the fact that aF + a⊥
F = e. �

In the following we will see that for every face F there
exists a unique projection. To prove that, let us start from the
existence.

Lemma 53 (Existence of projections). For every face F of
St1(A) there exists a projection �F .

Proof. By lemma 18, there exists a system B and an
atomic transformation A ∈ Transf(A,B) with (e|BA = (aF |.
Then, if ωF

∈ St(AC) is a purification of ωF , we can define
the state |�)BC := (A ⊗ IC)|ωF

)AC. By lemma 16 � is a
pure state. Moreover, the pure states � and ωF

have the
same marginal on system C: indeed, we have (eB||�) =
[(eB|A ]|ωF

) = (aF ||ωF
) and, by definition, aF =ωF

eA,
which by theorem 1 implies (aF ||ωF

) = (eA||ωF
). If ϕ0

and ψ0 are two arbitrary pure states of A and B, respec-
tively, the uniqueness of purification stated by postulate
1 implies that there exists a reversible channel U ∈ GAB
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such that

(30)

Now, take the atomic effect b ∈ Eff(B) such that (b|ψ0) = 1,
and define the transformation �F ∈ Transf(A) as

Applying b on both sides of Eq. (30) we then obtain

(�F ⊗ IC)|ωF
) = |ωF

)

and, therefore, �F =ωF
IA. Moreover, the transformation �F

is atomic, being the composition of atomic transformations
(lemma 16). Finally, we have �F =ω⊥

F
0: indeed, by construc-

tion of �F we have

(eA| �F |ρ) = (eA ⊗ b| U (A ⊗ IA) |ρ ⊗ ϕ0)

� (eA ⊗ eB| U (A ⊗ IA) |ρ ⊗ ϕ0)

= (eA| A |ρ)

= (aF |ρ) .

This implies (eA|�F |ω⊥
F ) = (aF |ω⊥

F )0 and, therefore,
�F =ω⊥

F
0. In conclusion, �F is the desired projection. �

To prove the uniqueness of the projection �F we need two
auxiliary lemmas, given in the following.

Lemma 54. Let � ∈ St1(AÃ) be a purification of the
invariant state χA, and let �F ∈ Transf(A) be a projection
on the face F ⊆ St1(A). Then, the pure state �F ∈ St1(AÃ)
defined by

|�F ) := dA

|F | (�F ⊗ IÃ)|�) (31)

is a purification of ωF .
Proof. The state �F is pure by lemma 16. Let us choose

a maximal set of perfectly distinguishable pure states {ϕi}dA
i=1

such that {ϕi}|F |
i=1 is maximal in F . Now, we have

(eÃ| |�F )AÃ = dA

|F |
[
�F ⊗ (eÃ|] |�)AÃ

= dA

|F |�F |χA)

having used the relation (eÃ||�)AÃ = |χA) (corollary 16). We
then obtain

(eÃ| |�F )AÃ = dA

|F |�F |χA)

= 1

|F |
dA∑
i=1

�F |ϕi)

= 1

|F |
|F |∑
i=1

|φi)

= |ωF )

having used that χA = ∑dA
i=1 ϕi/dA (theorem 9), and the

definition of �F . �
Lemma 55. Let �F ∈ Transf(A) be a projection. A trans-

formation C ∈ Transf(A) satisfies C =ωF
IA if and only if

C �F = �F . (32)

Proof. Let �F be the purification of ωF defined in
lemma 54. Since C =ωF

IA, we have (C ⊗ I )|�F ) = |�F ).
In other words, we have (C �F ⊗ I )|�) = (�F ⊗ I )|�).
Since � is dynamically faithful, this implies that C �F =
�F . Conversely, Eq. (32) implies that for σ ∈ FωF

, C |σ ) =
C �F |σ ) = �F |σ ) = |σ ), namely C =ωF

IA. �
Theorem 14 (Uniqueness of projections). The projection

�F satisfying definition 12 is unique.
Proof. Let �F and �′

F be two projections on the same face
F , and define the pure states �F and �′

F as in lemma 54. Now,
�F and �′

F are both purifications of the same state ω̃F ∈ Ã :
indeed, one has

(eA| |�F )AÃ = dA

|F | [(eA| �F ] |�)AÃ

= dA

|F | (eF | |�)AÃ

= dA

|F | [(eA| �′
F ] |�)AÃ

= (eA||�′
F )AÃ

having used the relation (eA|�F = (aF | = (eA|�′
F , which

comes from corollary 34 and from the uniqueness of the effect
aF (lemma 48). By the uniqueness of purification, we have
|�′

F ) = (U ⊗ IÃ)|�F ) for some reversible transformation
U ∈ GA. This implies (�′

F ⊗ IÃ)|�) = (U �F ⊗ IÃ)|�),
and, since � is dynamically faithful, �′

F = U �F . Since
by definition 12 we have �′

F =ωF
IA and �F =ωF

IA, we
can conclude that U =ωF

IA. Finally, using lemma 55 with
C = U we obtain �′

F = U �F = �F . �
We now show a few simple properties of projections. In the

following, given a maximal set of perfectly distinguishable
pure states {ϕi}dA

i=1 and any subset V ⊆ {1, . . . ,dA} we define
(with a slight abuse of notation) ωV := ∑

i∈V ϕi/|V |, and �V

as the projection on the face FV := FωV
. We will refer to FV

as the face generated by V .
Lemma 56. For two arbitrary subsets V,W ⊆ {1, . . . ,dA}

one has

�V �W = �V ∩W .

In particular, if V ∩ W = ∅ one has �V �W = 0.
Proof. First of all, �V �W is atomic, being the product

of two atomic transformations. Moreover, since the face
FV ∩W is contained in the faces FV and FW , we have
�V �W |ρ) = �V |ρ) = |ρ) for every ρ ∈ FV ∩W . In other
words, �V �W =ωV ∩W

IA. Moreover, if l �∈ V ∩ W we have
�V �W |ϕl) = 0. By lemma 49 and and by the uniqueness of
projections (theorem 14) we then obtain that �V �W is the
projection on the face generated by V ∩ W . �
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Corollary 36 (Idempotence). Every projection �F satisfies
the identity �2

F = �F .
Proof. Consider a maximal set of perfectly distinguishable

pure states {ϕi}dA
i=1 such that {ϕi}i∈V is maximal in F . In this

way F is the face generated by V , and, therefore �F = �V .
The thesis follows by taking V = W in lemma 56. �

Corollary 37. For every state ρ ∈ St1(A) such that ρ �∈ F⊥,
the normalized state ρ ′ defined by

∣∣ρ ′) = �F |ρ)

(e| �F |ρ)
(33)

belongs to the face F .
Proof. By corollary 35, we have (e|�F = (aF |. Since ρ �∈

F⊥, we must have (e|�F |ρ) = (aF |ρ) > 0, and, therefore,
the state ρ ′ in Eq. (33) is well defined. Moreover, using the
definition of ρ ′ we obtain

(aF |ρ ′) = (aF | �F |ρ)

(e| �F |ρ)
= 1

having used corollaries 34 and 35 for the last equality. Finally,
lemma 46 implies that ρ ′ belongs to the face F . �

Corollary 38. Let �{ϕ} be the projection on the pure state
ϕ ∈ St1(A) and a be the atomic effect such that (a|ϕ) = 1.
Then for every state ρ ∈ St1(A) one has �{ϕ}|ρ) = p|ϕ) where
p = (a|ρ).

Proof. Recall that, by corollary 35, we have (a| = (e|�{ϕ}.
If (a|ρ) = 0 then clearly �{ϕ}|ρ) = 0. Otherwise, the proof is
a straightforward application of corollary 37. �

We conclude the present subsection with a result that will
be useful in the next subsection.

Lemma 57. An atomic transformation A ∈ Transf(A)
satisfies A =ωF

IA if and only if

�F A = �F . (34)

Proof. Suppose that A =ωF
IA. Let � ∈ St1(AÃ) be a

purification of the invariant state χA and define the two pure
states

|�F ) := dA

|F | (�F ⊗ IÃ)|�),

|�′
F ) =:

dA

|F | (�F A ⊗ IÃ)|�).

Then we have

(eA||�′
F ) = [(aF |A ]|�)

= (aF ||�)

= (eA||�F )

having used the condition (aF |A = (aF | (lemma 51). Now we
proved that �F and �′

F have the same marginal on system Ã.
By the uniqueness of purification, there exists a reversible
transformation V ∈ GA such that |�′

F ) = (V ⊗ IÃ)|�F ).
Since � is dynamically faithful, this implies �F A = V �F .

Now, for every ρ in F one has V |ρ) = V �F |ρ) =
�F A |ρ) = |ρ), namely V =ωF

IA. Applying lemma 55 with

C = V �F and using the idempotence of projections we then
obtain

�F A = V �F

= (V �F )�F

= �F �F

= �F .

Conversely, suppose that Eq. (34) is satisfied. Let ϕ ∈ F be a
pure state in F and a be the atomic effect such that (a|ϕ) = 1.
Then, we have

(a| A |ϕ) = (a|�F A |ϕ) = (a|�F |ϕ) = (a|ϕ) = 1

having used the relation (a|�F = (a| (corollary 34). Then,
by theorem 7 A ϕ = ϕ. Since ϕ ∈ F is arbitrary this implies
A = ωF

IA. �

C. Projection of a pure state on two orthogonal faces

In Sec. X we proved a number of results concerning two-
dimensional systems. Some properties of two-dimensional
systems will be extended to the case of generic systems using
the following lemma.

Lemma 58. Consider a pure state ϕ ∈ St1(A) and two
complementary projections �F and �⊥

F . Then ϕ belongs to
the face identified by the state |θ ) := (�F + �⊥

F )|ϕ).
Proof. If �F |ϕ) = 0 (or �⊥

F |ϕ) = 0), then there is nothing
to prove: this means that �⊥

F |ϕ) = |ϕ) (or �F |ϕ) = |ϕ)) and
the thesis is trivially true. Suppose now that �F |ϕ) �= 0 and
�⊥

F |ϕ) �= 0. Using the notation �1 := �F , �2 := �⊥
F , we can

define the two pure states |ϕi) := �i |ϕ)/(e|�i |ϕ), i = 1,2,
and the probabilities pi = (e|�i |ϕ). In this way we have
�i |ϕ) = pi |ϕi) for i = 1,2 and θ = p1ϕ1 + p2ϕ2. Taking the
atomic effect (ai | such that (ai |ϕi) = 1 we have aFθ

= a1 + a2,
where aFθ

is the effect associated to the face Fθ . Recalling that
(ai |�i = (ai | for i = 1,2 (corollary 34), we then conclude the
following:

(aFθ
|ϕ) = [(a1| + (a2|]|ϕ)

= (a1|�1|ϕ) + (a2|�2|ϕ)

=
∑
i=1,2

pi (ai |ϕi) = 1.

Finally, lemma 46 yields ϕ ∈ Fθ . �
A consequence of lemma 58 is the following.
Lemma 59. Let ϕ ∈ St1(A) be a pure state, a ∈ Eff(A) be

the unique atomic effect such that (a|ϕ) = 1, and F be a face
in St1(A). If ρ is perfectly distinguishable from �F |ϕ) and
from �⊥

F |ϕ) then ρ is perfectly distinguishable from |ϕ). In
particular, one has (a|ρ) = 0.

Proof. Since ρ is perfectly distinguishable from �F |ϕ)
and �⊥

F |ϕ), it is also perfectly distinguishable from any
convex combination of them (corollary 33). Equivalently, ρ

is perfectly distinguishable from the face Fθ identified by
|θ ) := �F |ϕ) + �⊥

F |ϕ). In particular, it must be perfectly
distinguishable from ϕ, which belongs to Fθ by virtue of
lemma 58. If a is the atomic effect such that (a|ϕ) = 1, then
by lemma 36 we have (a|ρ) = 0. �

A technical result that will be useful in the following.
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Lemma 60. Let ϕ ∈ St1(A) be a pure state such that
�F |ϕ) �= 0 and �⊥

F |ϕ) �= 0. Define the pure states |ϕ1) :=
�F |ϕ)/(e|�F |ϕ) and |ϕ2) := �⊥

F |ϕ)/(e|�⊥
F |ϕ) and the mixed

state |θ ) := (�F + �⊥
F )|ϕ). Then, we have

�F �Fθ
= �{ϕ1},

�⊥
F �Fθ

= �{ϕ2}.

Proof. Let {ψi}|F |
i=1 be a maximal set of perfectly distinguish-

able pure states in F , chosen in such a way that ψ1 = ϕ1, and
let {ψi}dA

i=|F |+1 be a maximal set of perfectly distinguishable
pure states in F⊥, chosen in such a way that ψ|F |+1 = ϕ2.
Defining the sets V := {1, . . . ,|F |}, W := {|F | + 1, . . . ,dA},
and U := {1,|F | + 1} we then have �V = �F , �W = �⊥

F ,
and �U = �Fθ

. Using lemma 56 we obtain

�F �θ = �V �U

= �V ∩U

= �{ψ1}
= �{ϕ1}

and

�⊥
F �θ = �W�U

= �W∩U

= �{ψ|F |+1}
= �{ϕ2} �

We conclude this subsection with an important observation
about the group of reversible transformations that act as the
identity on two orthogonal faces F and F⊥. If F is a face
of St1(A), let us define GF,F⊥ as the group of all reversible
transformations U ∈ GA such that

U =ωF
IA, U =ω⊥

F
IA.

Then we have the following.
Theorem 15. For every face F ⊂ St1(A) such that F �= {0}

and F �= St1(A), the group GF,F⊥ is topologically equivalent
to a circle.

Proof. Let U be a transformation in GF,F⊥ , � ∈ St(AÃ)
be a purification of the invariant state χA and |�U ) :=
(U ⊗ IÃ)|�) be the Choi state of U . Define the orthogonal
faces F̃ := FωF ⊗χÃ

and F̃⊥ = FωF̃ ⊗χÃ
, and the projections

�F̃ := �F ⊗ IÃ and �⊥
F̃

:= �⊥
F ⊗ IÃ (see lemma 50).

Using lemma 57 we then obtain

�F̃ |�U ) = (�F ⊗ IÃ) |�U )

= (�F U ⊗ IÃ) |�)

= (�F ⊗ IÃ) |�)

= |F |
dA

|�F )

and, similarly,

�⊥
F̃

|�U ) = (�⊥
F ⊗ IÃ) |�U )

= (�⊥
F U ⊗ IÃ) |�)

= (�⊥
F ⊗ IÃ) |�)

= |F⊥|
dA

|�F⊥ ) .

This means that the projections of �U on the faces F̃ and
F̃⊥ are independent of U . Also, it means that �U belongs to
the face Fθ identified by the state |θ ) := |F |

dA
|�F ) + |F⊥|

dA
|�F⊥)

(lemma 58). Now, by the compression axiom, Fθ is isomorphic
to the state space of a qubit, say with �F and �F⊥ indicating
the north and south poles of the Bloch sphere, respectively,
and we know that all the Choi states {�U }U ∈GF,F⊥ are
at the same latitude [precisely, the latitude is the angle ζ

given by cos ζ = (|F | − |F⊥|)/dA]. This implies that the
states {�U }U ∈GF,F⊥ are a subset of a circle Cζ in the Bloch
sphere describing the face Fθ . Precisely, the circle Cζ is
given by

Cζ :=
{
 ∈ Fθ |�{�F } |) = |F |

dA
|�F ) ,

�{�F⊥ } |) = |F⊥|
dA

|�F⊥ )

}
.

We now prove that in fact they are the whole circle. Let  be
a state in Cζ . Since |) belongs to the face Fθ , we obtain

(�F ⊗ IÃ) |) = �F̃ |)

= �F̃ �Fθ
|)

= �{�F } |)

= |F |
dA

|�F )

(the third equality comes from lemma 60 with the substitutions
F → F̃ , ϕ → , ϕ1 → �F , and ϕ2 → �F⊥ ) and, similarly,

(�⊥
F ⊗ IÃ) |) = �⊥

F̃
|)

= �⊥
F̃
�Fθ

|)

= �{�F⊥ } |)

= |F⊥|
dA

|�F⊥ ) .

Therefore, we have

(eA| |) = [(aF | + (a⊥
F |] |)

= [(eA| �F ⊗ IÃ] |) + [(eA| �⊥
F ⊗ IÃ] |)

= |F |
dA

(eA| |�)F + |F⊥|
dA

(eA| |�F⊥)

= [(eA| �F ⊗ IÃ] |�) + [(eA| �⊥
F ⊗ IÃ] |�)

= [(aF | + (a⊥
F |] |�)

= (eA| |�)

= |χÃ).

Since  and � are both purifications of the invariant
state χÃ, by the uniqueness of purification there must be
a reversible transformation U ∈ GA such that |) = (U ⊗
IÃ)|�). Finally, it is easy to check that �F U = �F and
�⊥

F U = �⊥
F , which, by lemma 57 implies U =ωF

IA and
U =ω⊥

F
IA. This proves that the Choi states {�U }U ∈GF,F⊥

are the whole circle Cζ . Since the Choi isomorphism is
continuous in the operational norm (see theorem 14 of
[22]), the group GF,F⊥ is topologically equivalent to a
circle. �
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XII. THE SUPERPOSITION PRINCIPLE

The validity of the superposition principle, proved for two-
dimensional systems using the geometry of the Bloch sphere
(corollary 31), can be now extended to arbitrary systems thanks
to lemma 58.

Theorem 16 (Superposition principle for general systems).
Let {ϕi}dA

i=1 ⊆ St1(A) be a maximal set of perfectly distin-
guishable pure states and {ai}dA

i=1 be the observation test such
that (ai |ϕj ) = δij . Then, for every choice of probabilities
{pi}dA

i=1, pi � 0,
∑dA

i=1 pi = 1 there exists at least one pure
state ϕp ∈ St1(A) such that

pi = (ai |ϕp
) ∀ i = 1, . . . ,dA (35)

or, equivalently,

�{ϕi }|ϕp) = pi |ϕi) ∀ i = 1, . . . ,dA, (36)

where �{ϕi } is the projection on ϕi .
Proof. Let us first prove the equivalence between Eqs. (35)

and (36). From Eq. (36) we obtain Eq. (35) using the relation
(e|�{i} = (ai |, which follows from corollary 35. Conversely,
from Eq. (35) we obtain Eq. (36) using corollary 38. Now, we
will prove Eq. (35) by induction. The statement for N = 2 is
proved by corollary 31. Assume that the statement holds for
every system B of dimension dB = N and suppose that dA =
N + 1. Let F be the face identified by ωF = 1/N

∑N
i=1 ϕi

and F⊥ be the orthogonal face, identified by the state ϕN+1.
Now there are two cases: either pN+1 = 1 or pN+1 �= 1. If
pN+1 = 1, then there is nothing to prove: the desired state
is ϕN+1. Then, suppose that pN+1 �= 1. Using the induction
hypothesis and the compression axiom 3 we can find a state
ψq ∈ F such that (ai |ψq) = qi , with qi = pi/(1 − pN+1), i =
1, . . . ,N . Let us then define a new maximal set of perfectly
distinguishable pure states {ϕ′

i}N+1
i=1 , with ϕ′

1 = ψq and ϕ′
N+1 =

ϕN+1. Note that one has ωF = 1/N
∑N

i=1 ϕ′
i , that is, F is the

face generated by the states {ϕ′
i}Ni=1. Now consider the two-

dimensional face F ′ identified by θ = 1/2(ϕ′
1 + ϕ′

N+1). By
corollary 31 (superposition principle for qubits) we know that
there exists a pure state ϕ ∈ F ′ with (a′

1|ϕ) = 1 − pN+1 and
(a′

N+1|ϕ) = pN+1. Let us define V := {1, . . . ,N} and W :=
{1,N + 1}. Then, we have �F = �V and �F ′ = �W , and by
lemma 56,

�F |ϕ) = �F �F ′ |ϕ)

= �V ∩W |ϕ)

= �{ϕ′
1}|ϕ)

= �{ψq}|ϕ)

= (1 − pN+1)|ψq)

having used corollary 38 for the last equality. Finally, for i =
1, . . . ,N we have

(ai |ϕ) = (ai |�F |ϕ)

= (1 − pN+1)(ai |ψq)

= (1 − pN+1)qi

= pi.

On the other hand we have (aN+1|ϕ) = (a′
N+1|ϕ) = pN+1. �

A. Completeness for purification

Using the superposition principle and the spectral decom-
position of theorem 10 we can now show that every state of
system A has a purification in AB provided dB � dA:

Lemma 61. For every state ρ ∈ St1(A) and for every system
B with dB � dA there exists a purification of ρ in St1(AB).

Proof. Take the spectral decomposition of ρ, given by ρ =∑dA
i=1 piϕi , where {pi} are probabilities and {ϕi}dA

i=1 ⊂ St1(A)
is a maximal set of perfectly distinguishable pure states. Let
{ψi}dB

i=1 be a maximal set of perfectly distinguishable pure
states and {ai}dA

i=1 ⊂ Eff(A) [or {bi}dB
i=1 ⊂ Eff(B)] be the test

such that (ai |ϕj ) = δij [or (bi |ψj ) = δij ]. Clearly {ϕi ⊗ ψj } is
a maximal set of perfectly distinguishable pure states for AB.
Then, by the superposition principle (theorem 16) there exists
a pure state ρ such that (ai ⊗ bj |ρ) = piδij . Equivalently,
we have (bi |B|ρ)AB = pi |ϕi)A for every i = 1, . . . ,dA and
(bi |B|ρ)AB = 0 for i > dA. Summing over i we then obtain
(e|B|ρ)AB = ∑dB

i=1(bi |B|ρ)AB = ∑dA
i=1 pi |ϕi)A = |ρ)A. �

In the terminology of Ref. [22], lemma 61 states that a
system B with dB � dA is complete for the purification of
system A.

As a consequence of lemma 61 we have the following.
Corollary 39. Every system B with dB = dA is operationally

equivalent to the conjugate system Ã.
Proof. By corollary 61, the invariant state χA ∈ St1(A) has

a purification  in St1(AB). By corollary 18, the marginal of
 on B is the invariant state χB. By definition, this means
that B is a conjugate system of A. Since the conjugate system
Ã is unique up to operational equivalence (corollary 16), this
implies the thesis. �

B. Equivalence of systems with equal dimension

We are now in position to prove that two systems A and B
with the same dimension are operationally equivalent, namely
that there is a reversible transformation from A to B. In other
words, we prove that the informational dimension classifies
the systems of our theory up to operational equivalence. The
fact that this property is derived from the principles, rather
than being assumed from the start, is one of the important
differences of our work with respect to Refs. [16–18]. Another
difference is that here the equivalence of systems with the
same dimension is proved after the derivation of the qubit,
whereas in Refs. [16–18] the derivation of the qubit requires
the equivalence of systems with the same dimension.

Corollary 40 (Operational equivalence of systems with
equal dimension). Every two systems A an B with dA = dB

are operationally equivalent.
Proof. By corollary 39, A and B are both operationally

equivalent to the conjugate system Ã. Hence they are opera-
tionally equivalent to each other. �

C. Reversible operations of perfectly distinguishable
pure states

An important consequence of the superposition principle
is the possibility of transforming an arbitrary maximal set
of perfectly distinguishable pure states into another via a
reversible transformation:
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Corollary 41. Let A and B be two systems with dA =
dB =: d and let {ϕi}di=1 (or {ψi}di=1) be a maximal set of
perfectly distinguishable pure states in A (or B). Then, there
exists a reversible transformation U ∈ Transf(A,B) such that
U |ϕi) = |ψi).

Proof. Let � ∈ St(AÃ) be a purification of the invariant
state χA. Although we know that A and Ã are operationally
equivalent (corollary 39) we use the notation A and Ã to
distinguish between the two subsystems of AÃ. Define the pure
state ϕ̃i via the relation (ai |A|�)AÃ = 1

d
|ϕ̃i)Ã, where {ai}di=1 is

the observation test such that (ai |ϕi) = δij . Let {ãi}di=1 be the
observation test such that (ãi |ϕ̃j ) = δij . Then, by lemma 30
we have

(ãi |Ã |�)AÃ = 1

d
|ϕi)A . (37)

On the other hand, if {bi}di=1 is the observation test such that
(bi |ψj ) = δij , then using the superposition principle (theorem
16) we can construct a state  ∈ St1(BÃ) such that (bi ⊗
ãj |) = δij /d, or, equivalently,

(ãi |Ã |)BÃ = 1

d
|ψi)B . (38)

Now, � and  have the same marginal on system Ã: they
are both purifications of the invariant state χÃ. Moreover,
A and B are operationally equivalent because they have the
same dimension (corollary 40). Hence, by the uniqueness
of purification, there must be a reversible transformation
U ∈ Transf(A,B) such that

|)BÃ = (U ⊗ IÃ) |�)AÃ . (39)

Combining Eqs. (37), (38), and (39) we finally obtain

1

d
U |ϕi)A = [U ⊗ (ãi |Ã]|�)BÃ

= (ãi |Ã |)BÃ

= 1

d
|ψi)B ,

that is, U |ϕi) = |ψi) for every i = 1, . . . ,d. �

XIII. DERIVATION OF THE DENSITY
MATRIX FORMALISM

The goal of this section is to show that our set of axioms
implies that

(1) the set of states for a system A of dimension dA is the
set of density matrices on the Hilbert space CdA ,

(2) the set of effects is the set of positive matrices bounded
by the identity, and

(3) the pairing between a state and an effect is given by the
trace of the product of the corresponding matrices.

Using the result of theorem 3, we will then obtain that
all the physical transformations in our theory are exactly the
physical transformations allowed in quantum mechanics. This
will conclude our derivation of quantum theory.

A. The basis

In order to specify the correspondence between states and
matrices we choose a particular basis for the vector space

StR(A). For this purpose, we adopt the choice of basis used
in Ref. [16]. The basis is constructed as follows: Let us first
choose a maximal set of dA perfectly distinguishable states
{ϕm}dA

m=1, and declare that they are the first dA basis vectors.
Then, for every m < n the face Fmn generated by {ϕm,ϕn}
defines a “two-dimensional subsystem”: precisely, the face
Fmn := Fωmn

with ωmn := ϕm+ϕn

2 can be ideally encoded in
a two-dimensional system. Now, the convex set of states of
a two-dimensional system is the Bloch sphere, and we can
choose the z axis to be the line joining the two states {ϕm,ϕn},
for example, with the positive direction of the z axis being
the direction from ϕm to ϕn. Once the direction of the z axis
has been specified, we can choose the x and y axes. Note that
any couple of orthogonal directions in the plane orthogonal
to z axis is a valid choice for the x and y axes (here we do
not restrict ourselves to the choice of a right-handed coordinate
system). At the moment there is no relation among the different
choices of axes made for different values of m and n. However,
to prove that the states are represented by positive matrices,
later we will have to find a suitable way of connecting all these
choices of axes.

Let ϕmn
x,+,ϕmn

x,− ∈ Fmn (ϕmn
y,+,ϕmn

y,− ∈ Fmn) be the two per-
fectly distinguishable states in the direction of the x axis
(y axis) and define

σmn
k := ϕmn

k,+ − ϕmn
k,−, k = x,y. (40)

An immediate observation is the following.
Lemma 62. The four vectors {ϕm,ϕn,σ

mn
x ,σmn

y } ⊆ StR(A)
are linearly independent.

Proof. Linear independence is evident from the geometry
of the Bloch sphere. �

We now show that the collection of all vectors obtained
in this way is a basis for StR(A). To this purpose we use the
following.

Lemma 63. Let V ⊂ {1, . . . ,dA}, and consider the projec-
tion �V . Then, for m ∈ V and n �∈ V , one has �V |σmn

k ) = 0
for k = x,y.

Proof. Using lemma 56 and corollary 38 we obtain

�V |ϕmn
k,±) = �V �{m,n}

∣∣ϕmn
k,±

)
= �{m}

∣∣ϕmn
k,±

)
= |ϕm)

(
am

∣∣ϕmn
k,±

)
.

Since the face Fmn is isomorphic to the Bloch sphere and the
state since ϕmn

k± , k = x,y lie on the equator of the Bloch sphere,
we know that (am|ϕmn

k± ) = 1
2 . This implies

�V

∣∣σmn
k

) = �V

(∣∣ϕmn
k,+

) − ∣∣ϕmn
k,−

))
= |ϕm)

(
1
2 − 1

2

) = 0.

�
Lemma 64. The vectors {ϕn}dA

m=1 ∪ {σmn
k }n>m=1,...,dA k=x,y

form a basis for StR(A).
Proof. Since the number of vectors is exactly d2

A, to prove
that they form a basis it is enough to show that they are linearly
independent. Suppose that there exists a vector of coefficients
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{cm} ∪ {cmn
k } such that∑

m

cmϕm +
∑

n>m, k=x,y

cmn
k σmn

k = 0.

Applying the projection �{m,n} on both sides and using
lemma 63 we obtain

cm|ϕm) + cn|ϕn) + cx
mn

∣∣σmn
x

) + cmn
y

∣∣σmn
y

) = 0.

However, from lemma 62 we know that the vectors
{ϕm,ϕn,σ

mn
x ,σmn

y } are linearly independent. Consequently,
cm = cn = ck

mn = 0 for all m,n,k. �

B. The matrices

Since the state space St(A) for system A spans a real vector
space of dimension DA = d2

A, we can decide to represent the
vectors {ϕm}dA

m=1 ∪ {σmn
k }n>m=1,...,dA k=x,y as Hermitian dA ×

dA matrices. Precisely, we associate the vector ϕm to the matrix
Sϕm

defined by [
Sϕm

]
rs

= δrmδsm, (41)

the vector σmn
x to the matrix[

Sσmn
x

]
rs

= δrmδsn + δrnδsm (42)

and the vector σmn
y to the matrix[

Sσmn
y

]
rs

= iλ (δrmδsn − δrnδsm) , (43)

where λ can take the values +1 or −1. The freedom in the
choice of λ will be useful in Sec. XIII C, where we will
introduce the representation of composite systems of two
qubits. However, this choice of sign plays no role in the present
subsection, and for simplicity we will take the positive sign.

Recall that in principle any orthogonal direction in the plane
orthogonal to the z axis can be chosen to be the x axis. In
general, the other possible choices for the x axis will lead to
matrices of the form[

Sσmn
x,θ

]
rs

= δrmδsne
iθ + δrnδsme−iθ , θ ∈ [0,2π ), (44)

and the corresponding choice for the y axis will lead to a
matrices of the form[

Sσmn
y,θ

]
rs

= iλ(δrmδsne
iθ − δrnδsme−iθ ), θ ∈ [0,2π ). (45)

Since the vectors {ϕm}dA
m=1 ∪ {σmn

k }n>m=1,...,dA; k=x,y are a
basis for the real vector space StR(A), we can expand any
state ρ ∈ St(A) on them:

|ρ) =
∑
m

ρm |ϕm) +
∑

n>m, k=x,y

ρmn
k

∣∣σmn
k

)
(46)

and the expansion coefficients {ρm}dA
m=1 ∪

{ρmn
k }n>m=1,...,dA; k=x,y are all real. Hence each state ρ

is in one-to-one correspondence with a Hermitian matrix,
given by

Sρ =
∑
m

ρmSϕm
+

∑
n>m, k=x,y

ρmn
k Sσmn

k
. (47)

Since effects are linear functionals on states, they are also
represented by Hermitian matrices. We will indicate with Ea

the Hermitian matrix associated to the effect a ∈ Eff(A). The
matrix Ea is uniquely defined by the relation

(a|ρ) = Tr[EaSρ].

In the rest of the section we show that the set of matrices
{Sρ |ρ ∈ St1(A)} is the whole set of positive Hermitian matrices
with unit trace and that the set of matrices {Ea|a ∈ Eff(A)} is
the set of positive Hermitian matrices bounded by the identity.

Let us start from some simple facts:
Lemma 65. The invariant state χA has matrix representation

SχA = IdA
dA

, where IdA is the identity matrix in dimension dA.

Proof. Obvious from the expression χA = 1
d

∑
m ϕm and

from the matrix representation of the states {ϕm}dA
m=1 in

Eq. (41). �
Lemma 66. Let am ∈ Eff(A) be the atomic effect such that

(am|ϕm) = 1. Then, the effect am has matrix representation
Eam

such that Eam
= Sϕm

.
Proof. Let ρ ∈ St1(A) be an arbitrary state. Expanding ρ as

in Eq. (46) and using lemma 62 we obtain (am|ρ) = ρm. On the
other hand, by Eq. (47) we have that ρm is the mth diagonal
element of the matrix Sρ : by definition of Sϕm

[Eq. (41)],
this implies ρm = Tr[Sϕm

Sρ]. Now, by construction we have
Tr[Eam

Sρ] = (am|ρ) = ρm = Tr[Sϕm
Sρ] for every ρ ∈ St1(A).

Hence Eam
= Sϕm

. �
Lemma 67. The deterministic effect e ∈ Eff(A) has matrix

representation Ee = IdA .
Proof. Obvious from the expression e = ∑

m am, combined
with lemma 66 and Eq. (41). �

Corollary 42. For every state ρ ∈ St1(A) one has

Tr[Sρ] = 1.

Proof. Tr[Sρ] = Tr[EeSρ] = (e|ρ) = 1. �
Theorem 17. The matrix elements of Sϕ for a pure state ϕ ∈

St1(A) are (Sϕ)mn = √
pmpne

iθmn , with
∑dA

m=1 pm = 1, θmn ∈
[0,2π ), θmn = 0 and θmn = −θnm.

Proof. First of all, the diagonal elements of Sϕ are given
by [Sϕ]mm = (am|ϕ) [cf. Eqs. (46) and (47)]. Denoting the
mth element by pm, we clearly have

∑dA
m=1 pm = (e|ϕ) = 1.

Now, the projection �{m,n}|ϕ) is a state in the face Fmn, and,
by our choice of representation, the corresponding matrix
S�{m,n}|ϕ) is proportional to a pure qubit state (nonnegative
rank-one matrix). On the other hand, it is easy to see from
Eqs. (46) and (47) that S�{m,n}|ϕ) is the matrix with the same
elements as Sϕ in the block corresponding to the qubit (m,n)
and 0 elsewhere. In order to be positive and rank-one the
corresponding 2 × 2 submatrix must have the off-diagonal
elements (Sϕ)mn = √

pmpne
iθmn for some θmn ∈ [0,2π ) with

θnm = −θmn. Repeating the same argument for all choices of
indices m,n, the thesis follows. �

Theorem 18. For a pure state ϕ ∈ St1(A), the corresponding
atomic effect aϕ such that (aϕ|ϕ) = 1 has a matrix representa-
tion Eϕ with the property that Eϕ = Sϕ .

Proof. We already know that the statement holds for dA = 2,
where we proved the Bloch sphere representation, equivalent
to the fact that states and effects are represented as 2 × 2
positive complex matrices, with the set of pure states identified
with the set of all rank-one projectors. Let us now consider a
generic system A. For every m < n, the face Fmn generated
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by {ϕm,ϕn} can be encoded in a two-dimensional system.
Therefore, the matrices S�{m,n}|ϕ) and E(a|�{m,n} are positive
[also, recall that all matrix elements outside the (m,n) block
are zero]. Let ϕ

(mn)
⊥ be the pure state in the face Fmn that is

perfectly distinguishable from �{m,n}|ϕ). Note that, since ϕ
(mn)
⊥

belongs to the face Fmn, it is also perfectly distinguishable from
�{1,...,dA}\{m,n}|ϕ). Hence ϕ

(mn)
⊥ is perfectly distinguishable

from ϕ and, in particular, (a|ϕ(mn)
⊥ ) = 0 (lemma 59). This

implies the relation

Tr
[
E(a|�{m,n}S|ϕ(mn)

⊥ )

] = (a| �{m,n}
∣∣ϕ(mn)

⊥
)

= (a|ϕ(mn)
⊥ ) = 0.

Now, since the matrix E(a|�{m,n} is positive, the above rela-
tion implies E(a|�{m,n} = cmnS�{m,n}|ϕ), where cmn � 0. Finally,
repeating the argument for all possible values of (m,n), we
obtain that cmn = c for every m,n, that is, Ea = cSϕ . Taking
the trace on both sides we obtain Tr[Ea] = c. To prove that
c = 1, we use the relation Tr[Ea]/dA = (a|χA) = 1/dA. �

We conclude with a simple corollary that will be used in
the next subsection.

Corollary 43. Let ϕ ∈ St1(A) be a pure state and let
{γi}ri=1 ⊂ St1(A) be a set of pure states. If the state ϕ can
be written as

|ϕ) =
∑

i

xi |γi)

for some real coefficients {xi}ri=1, then the atomic effect a such
that (a|ϕ) = 1 is given by

(a| =
∑

i

xi(ci |,

where ci is the atomic effect such that (ci |γi) = 1.
Proof. For every ρ ∈ St(A) by theorem 18 one has

(a|ρ) = Tr[EaSρ] = Tr[SϕSρ] =
∑

i

xiTr[Sγi
Sρ]

=
∑

i

xiTr[Eci
Sρ] =

∑
i

xi (ci |ρ) ,

thus implying the thesis. �

C. Choice of axes for a two-qubit system

If A and B are two systems with dA = dB = 2, then we can
use two different types of matrix representations for the states
of the composite systemAB.

The first type of representation is the representation Sϕ

introduced through lemma 64: here we will refer to it as the
standard representation. Note that there are many different
representations of this type because for every pair (m,n) there
is freedom in choice of the x and y axis [cf. Eqs. (44) and
(45)].

The second type of representation is the tensor product
representation Tϕ , defined by the tensor product of matrices
representing states of systems A and B: for a state |ρ) =∑

i,j ρij |αi)|βj ), with αi ∈ St(A),βj ∈ St(B), we have

Tρ :=
∑
i,j

ρij S
A
αi

⊗ SB
βj

, (48)

where SA (or SB) is the matrix representation for system A
(or B). Here the freedom is in the choice of the axes for
the Bloch spheres of qubits A and B. Since A and B are
operationally equivalent, we will indicate the elements of the
bases for StR(A) and StR(B) with the same letters: {ϕm}2

m=1
for the two perfectly distinguishable pure states and {σk}k=x,y

for the remaining basis vectors.
We now show a few properties of the tensor representation.

Let FA denote the matrix corresponding to the effect A ∈
Eff(AB) in the tensor representation, that is, the matrix
defined by

(A|ρ) := Tr[FATρ] ∀ ρ ∈ St(AB). (49)

It is easy to show that the matrix representation for effects
must satisfy the analog of Eq. (48).

Lemma 68. Let A ∈ Eff(AB) be a bipartite effect, written
as (A| = ∑

i,j Aij (ai |(bj |. Then one has

FA =
∑
i,j

AijE
A
ai

⊗ EB
bj

,

where EA
ai

(or EB
bj

) is the matrix representing the single-qubit
effect ai (or bj ) in the standard representation for qubit A
(or B).

Proof. For every bipartite state |ρ) = ∑
k,l ρkl|αk)|βl)

one has

Tr[FATρ] = (A|ρ)

=
∑
i,j,k,l

Aijρkl (ai |αk) (bj |βl)

=
∑
i,j,k,l

AijρklTr
[
EA

ai
SA

αk

]
Tr

[
EB

bj
SB

βl

]
=

∑
i,j,k,l

AijρklTr
[(

EA
ai

⊗ EB
bj

)
Tαk⊗βl

]
=

∑
i,j

Aij Tr
[(

EA
ai

⊗ EB
bj

)
Tρ

]
which implies the thesis. �

Corollary 44. Let  ∈ St1(AB) be a pure state and let A ∈
Eff(AB) be the atomic effect such that (A|) = 1. Then one
has FA = T .

Proof. Let {ai}4
i=1 (or {βj }4

j=1) be a set of pure
states that span StR(A) [or StR(B)] and expand  as
|) = ∑

i,j cij |αi)|βj ). Then, corollary 43 yields (A| =∑
i,j cij (ai |(bj | where ai and bj are the atomic effects such

that (ai |αi) = (bj |βj ) = 1. Therefore, we have

FA =
∑
i,j

cijE
A
ai

⊗ EB
bj

=
∑
i,j

cij S
A
αi

⊗ SB
βj

= T.

�
Corollary 45. For every bipartite state ρ ∈ St1(AB), dA =

dB = 2 one has Tr[Tρ] = 1.
Proof. For each qubit we have

Ea1 =
(

1 0
0 0

)
, Ea2 =

(
0 0
0 1

)
. (50)
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Hence EA
eA

= EB
eB

= I , where I is the 2 × 2 identity matrix.
By lemma 68 we then have FeA⊗eB = I ⊗ I and, therefore,
Tr[Tρ] = Tr[FeA⊗eBTρ] = (eA ⊗ eB|ρ) = 1. �

Finally, an immediate consequence of local distinguisha-
bility is the following.

Lemma 69. Suppose that U ∈ GA and V ∈ GB are two
reversible transformations for qubits A and B, respectively,
and that U,V ∈ SU(2) are such that

SA
U ρ = USA

ρ U † ∀ ρ ∈ St1(A),

SB
V σ = V SB

σ V † ∀ σ ∈ St1(B).

Then, we have T(U ⊗V )τ = (U ⊗ V )Tτ (U † ⊗ V †) for every
τ ∈ St1(AB).

Proof. The thesis follows by linearity expanding τ as τ =∑4
i,j=1 τijαi ⊗ βj , where {αi}4

i=1 and {βj }4
j=1 are bases for the

StR(A) and StR(B). �
The rest of this subsection is aimed at showing that,

with a suitable choice of matrix representation for system B,
the standard representation coincides with the tensor represen-
tation, that is, Sρ = Tρ for every ρ ∈ St(AB). This technical
result is important because some properties used in our
derivation are easily proved in the standard representation,
while the property expressed by lemma 69 is easily proved in
the tensor representation: it is then essential to show that we
can construct a representation that enjoys both properties.

The four states {ϕm ⊗ ϕn}2
m,n=1 are clearly a maximal set of

perfectly distinguishable pure states in AB. In the following
we will construct the standard representation starting from this
set.

Lemma 70. For a composite system AB with dA = dB = 2
one can choose the standard representation in such a way that
the following equalities hold:

Sϕm⊗ϕn
= Tϕm⊗ϕn

, (51)

Sϕm⊗σk
= Tϕm⊗σk

, k = x,y, (52)

Sσk⊗ϕm
= Tσk⊗ϕm

, k = x,y. (53)

Proof. Let us choose single-qubit representations SA and
SB that satisfy Eqs. (41), (42), and (43). On the other hand,
choosing the states {ϕn ⊗ ϕn} in lexicographic order as the
four distinguishable states for the standard representation, we
have

[Sϕ1⊗ϕ1 ]rs = δ1r δ1s , [Sϕ1⊗ϕ2 ]rs = δ2r δ2s ,

[Sϕ2⊗ϕ1 ]rs = δ3r δ3s , [Sϕ2⊗ϕ2 ]rs = δ4r δ4s .

With this choice we get Sϕm⊗ϕn
= SA

ϕm
⊗ SB

ϕn
= Tϕm⊗ϕn

for
every m,n = 1,2. This proves Eq. (51). Let us now prove
Eqs. (52) and (53). Consider the two-dimensional face F11,12,
generated by the states ϕ1 ⊗ ϕ1 and ϕ1 ⊗ ϕ2. This face is the
face identified by the state ω11,12 := ϕ1 ⊗ χB, and we have
F11,12 
 {ϕ1} ⊗ St1(B). Therefore we can choose the vectors
σ

11,12
k , k = x,y to satisfy the relation σ

11,12
k := ϕ1 ⊗ σk , k =

x,y. Now, in the standard representation we have[
S11,12

σx

]
rs

= δr1δs2 + δr2δs1,[
S11,12

σy

]
rs

= iλ(δr1δs2 − δr2δs1)

[cf. Eqs. (42) and (43)]. This implies Sσ
11,12
k

= SA
ϕ11

⊗ SB
σk

=
Tϕ11⊗σk

for k = x,y. Repeating the same argument for the face
F22,21, F11,21, and F21,22 we obtain the proof of Eqs. (52)
and (53). �

In order to prove that, with a suitable choice of
axes, the standard representation coincides with the tensor
representation—that is, Sρ = Tρ for every ρ ∈ St(AB)—it
remains to find a choice of axes such that Sσk⊗σl

= Tσk⊗σl
,

k = x,y. This will be proved in the following.
Lemma 71. Let � ∈ St1(AB) be a pure state such that

(a1 ⊗ a1|�) = (a2 ⊗ a2|�) = 1/2 [such a state exists due to
the superposition principle]. With a suitable choice of the
matrix representation SB, the state � is represented by the
matrix

T� = 1

2

⎛⎜⎝1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎠. (54)

Moreover, one has

� = χA ⊗ χB + 1
4 (σx ⊗ σx − σy ⊗ σy + σz ⊗ σz). (55)

Proof. Let us start with the proof of Eq. (54). For
every reversible transformation U ∈ GA, let U ∗ ∈ GB be the
conjugate of U , defined with respect to the state �. Since all
2 × 2 unitary (nontrivial) representations of SU(2) are unitarily
equivalent, by a suitable choice of the standard representation
SB

ρ for system B, one has

SB
U ∗ρ = U ∗SB

ρ UT , (56)

where U ∗ and UT are the complex conjugate and the transpose
of the matrix U ∈ SU(2) such that SA

U ρ = USA
ρ U †. Due to

Eq. (56) and to lemma 69, the isotropic state � must satisfy the
condition (U ⊗ U ∗)T�(U † ⊗ UT ) = T�,∀ U ∈ SU(2). Now,
the unitary representation {U ⊗ U ∗} has two irreducible
subspaces and the projectors on them are given by the matrices

P0 = 1

2

⎛⎜⎝1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎠,

P1 = 1

2

⎛⎜⎝ 1 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 1

⎞⎟⎠ = I ⊗ I − P0,

where I is the 2 × 2 identity matrix. The most general form
for T� is then the following:

T� = x0P0 + x1P1

= (x0 − x1)P0 + x1I ⊗ I

=

⎛⎜⎝α + β 0 0 β

0 α 0 0
0 0 α 0
β 0 0 α + β

⎞⎟⎠
having defined α := x1 and β := (x0 − x1)/2. Now, by con-
struction the state � satisfies the condition

(am|A |�)AB = 1
2 |ϕm)B , m = 1,2.
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By definition of the tensor representation, the conditional states
(am|A|�)AB are described by the diagonal blocks of the matrix
T�:

SB
(a1||�)AB

=
(

α + β 0
0 α

)
, SB

(a2||�)AB
=

(
α 0
0 α + β

)
. (57)

Since the states ϕ1 and ϕ2 are pure, the above matrices
must be be rank-one. Moreover, their trace must be equal to
(am ⊗ eB|�) = 1/2(eB|ϕm) = 1

2 , m = 1,2. Then we have two
possibilities. Either (i) α = 0 and β = 1

2 or (ii) α = −β = 1
2 .

In case (i) Eq. (54) holds. In case (ii) to prove Eq. (54) we need
to change our choice of matrix representation for the qubit B.
Precisely, we make the following change:

SB
σx

�→ S̃B
σx

= −SB
σx

,

SB
σy

�→ S̃B
σy

= −SB
σy

, (58)

SB
σz

�→ S̃B
σz

= −SB
σz

,

where σz := ϕ1 − ϕ2. Note that the inversion of the axes,
sending σk to −σk for every k = x,y,z is not an allowed
physical transformation, but this is not a problem here, because
Eq. (58) is just a new choice of matrix representation, in which
the set of states of system B is still represented by the Bloch
sphere.

More concisely, the change of matrix representation SB �→
S̃B can be expressed as

SB
ρ �→ S̃B

ρ := Y
[
SB

ρ

]T
Y †, Y :=

(
0 −1
1 0

)
.

Note that in the new representation S̃B the physical transfor-
mation U ∗ is still represented as S̃B

U ρ = U ∗S̃B
ρ UT : indeed we

have

S̃B
U ∗ρ = Y

[
SB

U ∗ρ
]T

Y †

= Y
(
U ∗SB

ρ UT
)T

Y †

= Y
(
U

[
SB

ρ

]T
U †)Y †

= (YUY †)
(
Y

[
SB

ρ

]T
Y †)(YU †Y †)

= U ∗(Y [
SB

ρ

]T
Y †)UT

= U ∗S̃B
ρ UT

having used the relations Y †Y = I and YUY † = U ∗ for every
U ∈ SU(2). Clearly the change of standard representation
S → S̃ for the qubit B induces a change of tensor represen-
tation T → T̃ , where T̃ is the tensor representation defined
by T̃ρ⊗σ := SA

ρ ⊗ S̃B
σ . With this change of representation, we

have

T̃� = 1

2

⎛⎜⎝1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎠.

This concludes the proof of Eq. (54).
Let us now prove Eq. (55). Using the fact that by definition

Tρ⊗τ = (SA
ρ ⊗ SB

τ ) one can directly verify the relation

T� = SA
χ ⊗ SB

χ + 1
4

(
SA

σx
⊗ SB

σx
− SA

σy
⊗ SB

σy
+ SA

σz
⊗ SB

σz

)
.

This is precisely the matrix version of Eq. (55). �

Note that the choice of SB needed in Eq. (54) is compatible
with the choice of SB needed in lemma 70: indeed, to prove
compatibility we only have to show that the representation
SB used in Eq. (54) has the property [SB

ϕm
]rs = δmrδms , m =

1,2. This property is automatically guaranteed by the relation
(am|A|�)AB = 1/2|ϕm), m = 1,2 and by Eq. (57) with α = 0
and β = 1/2.

Corollary 46. In the standard representation the state � ∈
St1(AB) is represented by the matrix

S� = 1

2

⎛⎜⎝ 1 0 0 eiθ

0 0 0 0
0 0 0 0

e−iθ 0 0 1

⎞⎟⎠. (59)

Proof. The thesis follows from theorem 17 and
lemma 70. �

We now define the reversible transformations Ux,π and
Uz, π

2
as follows:

SUx,π ρ = XSρX, X :=
(

0 1
1 0

)
,

SUz, π
2

ρ = e−i π
4 ZSρe

i π
4 Z, Z :=

(
1 0
0 −1

)
.

(60)

Also, we define the states ,�z, π
2
, and z, π

2
as

|) := (
Ux,π ⊗ I

) |�) ,∣∣�z, π
2

)
:= (

Uz, π
2

⊗ I
) |�) ,∣∣z, π

2

)
:= (

Uz, π
2

⊗ I
) |) .

Lemma 72 The states ,�z, π
2
, and z, π

2
have the following

tensor representation:

T = 1

2

⎛⎜⎝0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎠, T�z, π
2

= 12

⎛⎜⎝1 0 0 −i

0 0 0 0
0 0 0 0
i 0 0 1

⎞⎟⎠,

Tz, π
2

= 1

2

⎛⎜⎝0 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 0

⎞⎟⎠. (61)

Moreover, one has

 = χA ⊗ χB + 1
4 (σx ⊗ σx + σy ⊗ σy − σz ⊗ σz),

�z, π
2

= χA ⊗ χB + 1
4 (σy ⊗ σx + σx ⊗ σy + σz ⊗ σz),

z, π
2

= χA ⊗ χB + 1
4 (σy ⊗ σx − σx ⊗ σy − σz ⊗ σz).

(62)

Proof. Equation (61) is obtained from Eq. (54) by explicit
calculation using lemma 69 and Eq. (60). Then, the validity of
Eq. (62) is easily obtained from Eq. (55) using the relations

Ux,π |σx) = |σx) ,

Ux,π |σy) = −|σy),

Ux,π |σz) = − |σz) ,
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and

Uz,π/2 |σx) = |σy),

Uz,π/2|σy) = −|σx),

Uz,π/2 |σz) = |σz) .

�
Lemma 73. The states ,�z, π

2
, and z, π

2
have a standard

representation of the form

S = 1

2

⎛⎜⎝
0 0 0 0
0 1 eiγ 0
0 e−iγ 1 0
0 0 0 0

⎞⎟⎠,

S�z, π
2

= 1

2

⎛⎜⎝ 1 0 0 λieiθ

0 0 0 0
0 0 0 0

−λie−iθ 0 0 1

⎞⎟⎠,

Sz, π
2

= 1

2

⎛⎜⎝
0 0 0 0
0 1 μieiγ 0
0 −μie−iγ 1 0
0 0 0 0

⎞⎟⎠.

(63)

with θ as in corollary 46, γ ∈ [0,2π ) and λ,μ ∈ {−1,1}.
Proof. Let us start from . First, from Eq. (62) it

is immediate to obtain (a1 ⊗ a1|) = (a2 ⊗ a2|) = 0 and
(a1 ⊗ a2|) = (a2 ⊗ a1|) = 1/2. This gives the diagonal
elements of S . Then, using theorem 17 we obtain that
S must be as in Eq. (63), for some value of γ . Let
us now consider �z, π

2
. Again, the diagonal elements of

the matrix S�z, π
2

are obtained from Eq. (62), which in
this case yields (a1 ⊗ a1|�z, π

2
) = (a2 ⊗ a2|�z, π

2
) = 1/2 and

(a1 ⊗ a2|�z, π
2
) = (a2 ⊗ a1|�z, π

2
) = 0. Hence, by theorem 17

we must have

S�z, π
2

= 1

2

⎛⎜⎜⎝
1 0 0 eiθ ′

0 0 0 0
0 0 0 0

e−iθ ′
0 0 1

⎞⎟⎟⎠
for some value of θ ′ ∈ [0,2π ). Now, denote by A the effect
such that (A|�) = 1. We then have(

A|�z, π
2

) = Tr
[
EAS�z, π

2

] = Tr
[
S�S�z, π

2

]
,(

A|�z, π
2

) = Tr
[
FAT�z, π

2

] = Tr
[
T�T�z, π

2

] = 1

2

having used theorem 18, corollary 44, and Eq. (61). Hence
we have Tr[S�S�z, π

2
] = 1/2, which implies θ ′ = θ ± π

2 , as in
Eq. (63). Finally, the same arguments can be used for z, π

2
:

The diagonal elements of Sz, π
2

are obtained from the relations
(a1 ⊗ a1|z, π

2
) = (a2 ⊗ a2|z, π

2
) = 0 and (a1 ⊗ a2|z, π

2
) =

(a2 ⊗ a1|z, π
2
) = 1/2, which follow from Eq. (62). This

implies that the matrix Sz, π
2

has the form

Sz, π
2

= 1

2

⎛⎜⎜⎝
0 0 0 0
0 1 eiγ ′

0
0 e−iγ ′

1 0
0 0 0 0

⎞⎟⎟⎠

for some γ ′ ∈ [0,2π ). The relation Tr[SSz, π
2

] =
Tr[TTz, π

2
] = 1/2 then implies γ ′ = γ ± π

2 . �
Let us now consider the four vectors

�(11,22)
x ,�(11,22)

y ,�(12,21)
x ,�(12,21)

y defined as follows:

�(11,22)
x = 2

(
� − χA ⊗ χB − 1

4
σz ⊗ σz

)
,

�(11,22)
y = 2

(
�z, π

2
− χA ⊗ χB − 1

4
σz ⊗ σz

)
,

(64)

�(12,21)
x = 2

(
 − χA ⊗ χB + 1

4
σz ⊗ σz

)
,

�(12,21)
x = 2

(
z, π

2
− χA ⊗ χB + 1

4
σz ⊗ σz

)
.

By the previous results, it is immediate to obtain the matrix
representations of these vectors. In the tensor representation,
using Eqs. (54) and (61), we obtain

T
�

(11,22)
x

=

⎛⎜⎝0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎠, T
�

(11,22)
y

=

⎛⎜⎝0 0 0 −i

0 0 0 0
0 0 0 0
i 0 0 0

⎞⎟⎠,

T
�

(12,21)
x

=

⎛⎜⎝0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎠, T
�

(12,21)
y

=

⎛⎜⎝0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞⎟⎠,

while in the standard representation, using Eqs. (46) and (63),
we obtain

S
�

(11,22)
x

=

⎛⎜⎝ 0 0 0 eiθ

0 0 0 0
0 0 0 0

e−iθ 0 0 0

⎞⎟⎠,

S
�

(11,22)
y

=

⎛⎜⎝ 0 0 0 −λieiθ

0 0 0 0
0 0 0 0

λie−iθ 0 0 0

⎞⎟⎠,

S
�

(12,21)
x

=

⎛⎜⎝
0 0 0 0
0 0 eiγ 0
0 e−iγ 0 0
0 0 0 0

⎞⎟⎠,

S
�

(11,22)
x

=

⎛⎜⎝
0 0 0 0
0 0 −μieiγ 0
0 μie−γ 0 0
0 0 0 0

⎞⎟⎠,

Comparing the two matrix representations we are now in
position to prove the desired result.

Lemma 74. With a suitable choice of axes, one has Sσk⊗σl
=

Tσk⊗σl
for every k,l = x,y.

Proof. For the face (11,22), using the freedom coming from
Eqs. (43) and (44), we redefine the x and y axes so that
σ (11,22)

x := �(11,22)
x and λσ (11,22)

y := �(11,22)
y . In this way we

have

S
�

(11,22)
k

= T
�

(11,22)
k

∀ k = x,y.
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Likewise, for the face (12,21) we redefine the x and y axes
so that σ (12,21)

x := �(12,21)
x and μσ (12,21)

y := �(12,21)
y , so that we

have

S
�

(12,21)
k

= T
�

(12,21)
k

∀ k = x,y.

Finally, using Eqs. (55), (62), and (64) we have the relations

σx ⊗ σx = �(11,22)
x + �(12,21)

x ,

σy ⊗ σy = �(11,22)
x − �(12,21)

x ,

σx ⊗ σy = �(11,22)
y − �(12,21)

y ,

σy ⊗ σx = �(11,22)
y + �(12,21)

y .

Since S and T coincide on the right-hand side of each equality,
they must also coincide on the left-hand side. �

Theorem 19. With a suitable choice of axes, the standard
representation coincides with the tensor representation, that is,
Sρ = Tρ for every ρ ∈ St(AB).

Proof. Combining lemma 70 with lemma 74 we obtain that
S and T coincide on the tensor products basis B × B, where
B = {ϕ1,ϕ2,σx,σy}. By linearity, S and T coincide on every
state. �

From now on, whenever we will consider a composite
system AB where A and B are two dimensional we will adopt
the choice that guarantees that the standard representation
coincides with the tensor representation.

D. Positivity of the matrices

In this paragraph we show that the states in our theory can
be represented by positive matrices. This amounts to prove that
for every system A, the set of states St1(A) can be represented
as a subset of the set of density matrices in dimension dA. This
result will be completed in Sec. XIII E, where we will see that,
in fact, every density matrix in dimension dA corresponds to
some state of St1(A).

The starting point to prove positivity is the following.
Lemma 75. Let A and B be two-dimensional systems. Then,

for every pure state  ∈ St(AB) one has S � 0.
Proof. Take an arbitrary vector Z ∈ C2 ⊗ C2, written in

the Schmidt form as |Z〉 = ∑2
n=1

√
λn|vn〉|wn〉. Introducing

the unitaries U,V such that U |vn〉 = |n〉 and V |wn〉 = |n〉
for every n = 1,2 then we have |Z〉 = (U † ⊗ V †)|W 〉, where
|W 〉 = ∑2

n=1

√
λn|n〉|n〉. Therefore, we have

〈Z|S |Z〉 = 〈W |S(U ⊗V ) |W 〉,

where U and V are the reversible transformations defined by
SU ρ = USρU

† and SV ρ = V SρV
†, respectively (U and V

are physical transformations by virtue of corollary 30). Here
we used the fact that the standard two-qubit representation
coincides with the tensor representation and, therefore,
S(U ⊗V ) = (U ⊗ V )S(U ⊗ V )†. Denoting the pure state
(U ⊗ V )|) by | ′) we then have

〈Z|S |Z〉 = λ1 [S ′ ]11,11 + λ2 [S ′ ]22,22

+2
√

λ1λ2Re([S ′ ]11,22).

Since by theorem 17 we have [S ′]11,22 =√
[S ′ ]11,11[S ′ ]22,22e

iθ , we conclude

〈Z|S |Z〉 =λ1 [S ′ ]11,11 + λ2 [S ′ ]22,22

+ 2 cos θ
√

λ1λ2[S ′]11,11[S ′ ]22,22

�(
√

λ1[S ′]11,11 − √
λ2[S ′ ]22,22)2 � 0.

Finally, since the vector Z ∈ C2 ⊗ C2 is arbitrary, the matrix
S is positive. �

Corollary 47. Let C be a system of dimension dC = 4. Then,
with a suitable choice of matrix representation the pure states
of C are represented by positive matrices.

Proof. The system C is operationally equivalent to
the composite system AB, where dA = dB = 2. Let U ∈
Transf(AB,C) be the reversible transformation implementing
the equivalence. Now, we know that the states of AB are
represented by positive matrices. If we define the basis vectors
for C by applying U to the basis for AB, then we obtain that the
states of C are represented by the same matrices representing
the states of AB. �

Corollary 48. Let A be a system with dA = 3. With a
suitable choice of matrix representation, the matrix Sϕ is
positive for every pure state ϕ ∈ St(A).

Proof. Let C be a system with dC = 4. By corollary 47 the
states of C are represented by positive matrices. Define the
state ω := 1

3 (ϕ1 + ϕ2 + ϕ3), where {ϕm}4
m=1 are four perfectly

distinguishable pure states. By the compression axiom, the
face Fω can be encoded in a three-dimensional system D
(corollary 40). In fact, since D is operationally equivalent to
A, the face Fω can be encoded in A. Let E ∈ Transf(D,A) and
D ∈ Transf(A,D) be the encoding and decoding operation,
respectively. If we define the basis vectors for A by applying
E to the basis vectors for the face Fω, then we obtain that the
states of A are represented by the same matrices representing
the states in the face Fω. Since these matrices are positive, the
thesis follows. �

From now on, for every three-dimensional system A we
will choose the x and y axes so that Sρ is positive for every
ρ ∈ St(A).

Corollary 49. Let ϕ ∈ St1(A) be a pure state with dA = 3.
Then, the corresponding matrix Sϕ , given by

Sϕ =
⎛⎝ p1

√
p1p2e

iθ12
√

p1p3e
iθ13√

p1p2e
−iθ12 p2

√
p2p3e

iθ23√
p1p3e

−iθ13
√

p2p3e
−iθ23 p3

⎞⎠ (65)

satisfies the property

eiθ13 = ei(θ12+θ23).

Equivalently, Sϕ = |v〉〈v|, where v ∈ C3 is the vector given
by |v〉 := (

√
p1,

√
p2e

−iθ12 ,
√

p3e
−iθ13 )T .

Proof. The relation can be trivially satisfied when pi = 0
for some i ∈ {1,2,3}. Hence let us assume p1,p2,p3 > 0.
Computing the determinant of Sϕ one obtains det(Sϕ) =
2p1p2p3[cos(θ12 + θ23 − θ13) − 1]. Since Sϕ is positive, we
must have det(Sϕ) � 0. If p1,p2,p3 > 0 the only possibility is
θ13 = θ12 + θ23 mod 2π . �

Corollary 49 can be easily extended to systems of arbitrary
dimension. To this purpose, we choose the x and y axes in
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such a way that the projection of every state ρ ∈ St1(A) on a
three-dimensional face is represented by a positive matrix.

Lemma 76. If ϕ ∈ St1(A) is a pure state and dA = N ,
then Sϕ = |v〉〈v|, where v ∈ CN is the vector given by v :=
(
√

p1,
√

p2e
−iα2 , . . . ,

√
pNe−iαN )T with αi ∈ [0,2π ) ∀ i =

2, . . . ,N .
Proof. Consider a triple V = {p,q,r} ⊆ {1, . . . ,N}. Then

the state �V |ϕ) is proportional to a pure state of a
three-dimensional system, whose representation S�V ϕ is
the 3 × 3 square submatrix of Sϕ with elements [Sϕ]kl =√

pkpke
iθkl , (k,l) ∈ V × V . Now, corollary 49 forces the

relation eiθpr = ei(θpq+θqr ). Since this relation must hold for
every choice of the triple V = {p,q,r}, if we define αp :=
θp1, then we have eiθpq = ei(θp1+θ1q ) = ei(θp1−θq1) = ei(αp−αq ).
It is then immediate to verify that Sϕ = |v〉〈v|, where v =
(
√

p1,
√

p2e
−iα2 , . . . ,

√
pNe−iαN )T . �

In conclusion, we proved the following.
Corollary 50. For every system A, the state space St1(A)

can be represented as a subset of the set of density matrices in
dimension dA.

Proof. For every state ρ ∈ St1(A) the matrix Sρ is Hermitian
by construction, with unit trace by corollary 42, and positive
since it is a convex mixture of positive matrices. �

E. Quantum theory in finite dimensions

Here we conclude our derivation of quantum theory by
showing that every density matrix in dimension dA corresponds
to some state ρ ∈ St1(A).

We already know from the superposition principle (lemma
16) that for every choice probabilities {pi}dA

i=1 there is a pure
state ϕ ∈ St1(A) such that {pi}dA

i=1 are the diagonal elements
of Sϕ . Thus the set of density matrices corresponding to pure
states contains at least one matrix of the form Sϕ = |v〉〈v|,
with |v〉 = (

√
p1,

√
p2e

−iβ2 , . . . ,
√

pdAe−iβdA ). It only remains
to prove that every possible choice of phases βi ∈ [0,2π )
corresponds to some pure state.

Recall that for a face F ⊆ St1(A) we defined the group
GF,F⊥ to be the group of reversible transformations U ∈ GA

such that U =ωF
IA and U =ω⊥

F
IA. We then have the

following.
Lemma 77. Consider a system A with dA = N . Let

{ϕi}Ni=1 ⊂ St1(A) be a maximal set of perfectly distinguish-
able pure states, F be the face identified by ωF = 1/(N −
1)

∑N−1
i=1 ϕi and F⊥ its orthogonal face, identified by the state

ϕN . If U is a reversible transformation in GF,F⊥ , then the
action of U is given by

SU ρ = USρU
† U =

⎛⎜⎜⎜⎝
0

IN−1
...
0

0 . . . 0 e−iβ

⎞⎟⎟⎟⎠ , (66)

where IN−1 is the (N − 1) × (N − 1) identity matrix and β ∈
[0,2π ).

Proof. Consider an arbitrary state ρ ∈ St1(A) and its matrix
representation

Sρ =
(

S�F ρ f
f† S�⊥

F ρ

)
,

where f ∈ CN−1 is a suitable vector. Since U =ωF
IA and

U =ω⊥
F

IA, we have that

SU ρ =
(

S�F ρ g
g† S�⊥

F ρ

)
,

where g ∈ CN−1 is a suitable vector. To prove Eq. (66), we
will now prove that g = eiβf for some suitable β ∈ [0,2π ).

Let us start from the case N = 3. Since U |ϕi) =
|ϕi) ∀ i = 1,2,3, we have (ai |U = (ai | ∀ i = 1,2,3
(lemma 51). This implies that U sends states in the face F13

to states in the face F13: indeed, for every ρ ∈ F13 one has
(a13|U |ρ) = (a13|ρ) = 1, which implies U ρ ∈ F13 (lemma
46). In other words, the restriction of U to the face F13 is a
reversible qubit transformation. Therefore, the action of U on
a state ρ ∈ F13 must be given by

SU ρ =
⎛⎝ ρ11 0 ρ13e

iβ

0 0 0
ρ31e

−iβ 0 ρ33,

⎞⎠
for some β ∈ [0,2π ). Similarly, we can see that U sends
states in the face F23 to states in the face F23. Hence, for every
σ ∈ F23 we have

SU σ =
⎛⎝0 0 0

0 σ22 σ23e
iβ ′

0 σ32e
−iβ ′

ρ33

⎞⎠
for some β ′ ∈ [0,2π ). We now show that eiβ ′ = eiβ . To see
that, consider a generic state ϕ ∈ St1(A), with the property
that pi = (ai |ϕ) > 0 for every i = 1,2,3 (such state exists due
to the superposition principle of theorem 16). Writing Sϕ as in
Eq. (65) we then have

SU ϕ

=

⎛⎜⎝ p1
√

p1p2e
iθ12

√
p1p3e

i(θ13+β)

√
p1p2e

−iθ12 p2
√

p2p3e
i(θ23+β ′)

√
p1p3e

−i(θ13+β) √
p2p3e

−i(θ23+β ′) p3

⎞⎟⎠.

Now since ϕ and U ϕ are pure states, by corollary 49 we must
have

eiθ13 = ei(θ12+θ23),

ei(θ13+β) = ei(θ12+θ23+β ′).

By comparison we obtain eiβ = eiβ ′
. This proves Eq. (66) for

N = 3. The proof for N > 3 is then immediate: for every
three-dimensional face FpqN the action of U is given Eq. (66)
for some βpq . However, since the two faces FpqN and Fpq ′N
overlap on ϕp we must have βpq = βpq ′ . Similarly βpq = βp′q .
We conclude that βpq = β for every p,q. This proves Eq. (66)
in the general case. �

We now show that every possible phase shift in Eq. (66)
corresponds to a physical transformation.

Lemma 78. A transformation U of the form of Eq. (66) is
a reversible transformation for every β ∈ [0,2π ).

Proof. By lemma 77, the group GF,F⊥ is a subgroup of U (1).
Now, there are two possibilities: either GF,F⊥ is a (finite) cyclic
group or GF,F⊥ coincides with U (1). However, we know from
theorem 15 that GF,F⊥ has a continuum of elements. Hence,
GF,F⊥ 
 U (1) and β can take every value in [0,2π ). �

012311-37



CHIRIBELLA, D’ARIANO, AND PERINOTTI PHYSICAL REVIEW A 84, 012311 (2011)

An obvious corollary of the previous lemmas is the
following.

Corollary 51. The transformation Uβ defined by

SUβρ = USρU
†, (67)

where U is the diagonal matrix with diagonal elements
(1,eiβ1 , . . . ,eiβN−1 ) is a reversible transformation for every
vector β := (β2, . . . ,βN ) ∈ [0,2π ) × · · · × [0,2π ).

This leads directly to the conclusion of our derivation.
Theorem 20. For every system A, the state space St1(A) is

the set of all density matrices on the Hilbert space CdA .
Proof. Let N = dA. For every choice of probabilities

p = (p1, . . . ,pN ) there exists at least one pure state ϕp such
that pk = (ak|ϕp) for every k = 1, . . . ,N(lemma 16). This
state is represented by the matrix Sϕp = |vp〉〈vp| with |vp〉 =
(
√

p1,
√

p2e
−iα2 , . . . ,

√
pNe−iαN )T (lemma 76). Finally, we

can transform ϕp with every reversible transformation Uβ

defined in Eq. (67), thus obtaining SUβϕp = Uβ |vp〉〈vp|U †
β ,

where Uβ |vp〉 = (
√

p1,
√

p2e
−i(α2+β2), . . . ,

√
pNe−i(αN +βN ))T .

Since p and β are arbitrary, this means that every rank-one
density matrix corresponds to some pure state. Taking the
possible convex mixtures we obtain that every N × N density
matrix corresponds to some state of system A. �

Choosing a suitable representation ρ �→ Sρ , we proved that
for every system A the set of normalized states St1(A) is the
whole set of density matrices in dimension dA. Thanks to the
purification postulate, this is enough to prove that all the effects
Eff(A) and all the transformations Transf(A,B) allowed in our
theory are exactly the effects and the transformations allowed
in quantum theory. Precisely we have the following.

Corollary 52. For every couple of systems A and B the set
of physical transformations Transf(A,B) coincides with the
set of all completely positive trace nonincreasing maps from
MdA (C) to MdB (C).

Proof. We proved that our theory has the same normalized
states of quantum theory. On the other hand, quantum theory
is a theory with purification and in quantum theory the
possible physical transformations are quantum operations, that
is, completely positive trace-preserving maps. The thesis then
follows from the fact that two theories with purification that
have the same set of normalized states are necessarily the same
(theorem 3). �

XIV. CONCLUSION

Quantum theory can be derived from purely informational
principles. In particular, it belongs to a broad class of
theories of information processing that includes classical and
quantum information theory as special cases. Within this
class, quantum theory is identified uniquely by the purification
postulate, stating that the ignorance about a part is always
compatible with the maximal knowledge of the whole in an
essentially unique way. This postulate appears as the origin
of the key features of quantum information processing, such
as no-cloning, teleportation, and error correction (see also
Ref. [22]). The general vision underlying the present work
is that the main primitives of quantum information processing
should be derived directly from the principles, without the
abstract mathematics of Hilbert spaces, in order to make the

revolutionary aspects of quantum information immediately
accessible and to place them in the broader context of the
fundamental laws of physics.

Finally, we would like to comment on possible gener-
alizations of our work. As in any axiomatic construction,
one can ask how the results change when the principles are
modified. For example, one may be interested in relaxing the
local distinguishability axiom and in considering theories,
like quantum theory on real Hilbert spaces, where global
measurements are essential to characterize the state of a
composite system. In this direction, the results of Ref. [22]
suggest that also quantum theory on real Hilbert spaces can
be derived from the purification principle, after that the local
distinguishability requirement has been suitably relaxed. A
possible way to weaken the local distinguishability require-
ment is to assume only the property of local distinguishability
from pure states proposed in Ref. [22]: this property states
that the probability of distinguishing two states by local
measurements is larger than 1/2 whenever one of the two
states is pure. A different way to relax local distinguishability
would be to assume the property of 2-local tomography
proposed in Ref. [39], which requires that the state of a
multipartite system can be completely characterized using
only measurements on bipartite subsystems. This property
is equivalent to 2-local distinguishability, defined as the
requirement that two different states of a multipartite system
can be distinguished with probability of success larger than 1/2
using only local measurements or measurements on bipartite
subsystems.

A more radical generalization of our work would be to
relax the assumption of causality. This would be particularly
important for the discussion of quantum gravity scenarios,
where the causal structure is not given a priori but is part
of the dynamical variables of the theory. In this respect,
the contribution of our work is twofold. First, it makes
evident how fundamental is the assumption of causality in the
ordinary formulation of quantum theory: the whole formalism
of quantum states as density matrices with unit trace, quantum
measurements as resolutions of the identity, and quantum
channels as trace-preserving maps is crucially based on it.
Technically speaking, the fact that the normalization of a state
is given by a single linear functional (the trace, in quantum
theory) is the signature of causality. This partly explains the
troubles and paradoxes encountered when trying to combine
the formalism of density matrices with noncausal evolutions,
as in Deutsch’s model for close time-like curves [40,41].
Moreover, given that the usual notion of normalization has to
be abandoned in the noncausal scenario, and that the ordinary
quantum formalism becomes inadequate, one may ask in what
sense a theory of quantum gravity would be “quantum”. The
suggestion coming from our work is that a quantum theory
is a theory satisfying the purification principle, which can
be suitably formulated even in the absence of causality [42].
The discussion of theories with purification in the noncausal
scenario is an exciting avenue of future research.
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