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Closed timelike curves via post-selection: theory and experimental demonstration
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Closed timelike curves (CTCs) are trajectories in spacetime that effectively travel backwards in
time: a test particle following a CTC can in principle interact with its former self in the past.
CTCs appear in many solutions of Einstein’s field equations and any future quantum version of
general relativity will have to reconcile them with the requirements of quantum mechanics and of
quantum field theory. A widely accepted quantum theory of CTCs was proposed by Deutsch. Here
we explore an alternative quantum formulation of CTCs and show that it is physically inequivalent
to Deutsch’s. Because it is based on combining quantum teleportation with post-selection, the
predictions/retrodictions of our theory are experimentally testable: we report the results of an
experiment demonstrating our theory’s resolution of the well-known ‘grandfather paradox.’
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Although time travel is usually taken to be the stuff
of science fiction, it is not ruled out by scientific fact.
Einstein’s theory of general relativity admits the possi-
bility of closed timelike curves (CTCs) [1], paths through
spacetime which, if followed, allow a time traveller to go
back in time and interact with her own past. The logical
paradoxes inherent in time travel make it hard to formu-
late self-consistent physical theories of time travel [2–6].
This paper proposes an empirical self-consistency condi-
tion for closed timelike curves: we demand that a gen-
eralized measurement made before a quantum system
enters a closed timelike curve yield the same statistics
– including correlations with other measurements – as
would result if the same measurement were made after
the system exits from the curve. That is, the closed time-
like curve behaves like an ideal, noiseless quantum chan-
nel that displaces systems in time without affecting the
correlations with external systems. To satisfy this cri-
terion without introducing contradictions, we construct
a theory of closed timelike curves via quantum post-
selection (P-CTCs). The theory is based on Bennett and
Schumacher’s suggestion [7] to describe time travel in
terms of quantum teleportation, and on the Horowitz-
Maldacena model for black hole evaporation [8]. We
show that P-CTCs are consistent with path integral ap-
proaches [9, 10], but physically inequivalent to the pre-
vailing theory of closed timelike curves due to Deutsch [2].
Moreover, because they are based on post-selection [11],
closed timelike curves can be simulated experimentally.
We present an experimental realization of the grandfa-
ther paradox: the experiment tests what happens when
a photon is sent a few billionths of a second back in time
to try to ‘kill’ its former self.

Deutsch’s elegant quantum treatment of closed time-
like curves [2] provides a self-consistent resolution of the

various paradoxes of time travel by requiring simply that
a system that enters such a curve in a particular quantum
state ρ, emerges in the past in the same state (Fig. 1a)
even after interacting with a “chronology-respecting” sys-
tem in a state ρA through a unitary U . This translates
into the consistency condition,

ρ = TrA[U(ρ⊗ ρA)U
†] . (1)

A state ρ that satisfies Eq. (1) always exists because the
above interaction is a completely positive map which pos-
sesses at least one fixed point.
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FIG. 1: a) Deutsch’s quantum description of CTCs is based
on the consistency condition of Eq. (1), where the unitary
U describes an interaction between a chronology-respecting
system A, initially in the state ρA, and a system B in a
CTC. Deutsch demands that the state ρ of B at the input
and output of U be equal, inducing a nonlinear transforma-
tion ρA → ρ′A. Time goes from bottom to top in this and
in the following diagrams. b) P-CTC: post-selected quantum
teleportation is employed as a description of the closed time-
like curve. The bottom curve

⋃
represents the creation of

a maximally entangled state of two systems and the upper
curve

⋂
represents the projection onto the same state.

Here we propose an alternative consistency condition
for CTCs: a generalized measurement made on the state
entering the curve should yield the same results, includ-
ing correlations with other measurements, as would oc-
cur if the same measurement were made on the state
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emerging from the curve. The CTC should behave like an
ideal quantum channel (even though, as we shall see, in-
side a CTC a proper definition of state cannot be given).
Deutsch’s CTCs fail this requirement, thus are physically
inequivalent to our proposed solution. To make the CTC
behave like a quantum channel, we describe it using quan-
tum teleportation [12], namely the perfect transfer of an
unknown quantum state |ψ〉 between two parties (Alice
and Bob) using a shared entangled state, the transmis-
sion of classical information, and a unitary transforma-
tion V on Bob’s side. A curious feature of teleportation is
that, whenever Alice’s Bell measurement gives the same
result it would when measuring the initial shared state,
then Bob’s unitary V is the identity. In this case, Bob
does not have to perform any transformation to obtain
Alice’s state |ψ〉: in some sense, Bob possesses the un-
known state even before Alice implements the teleporta-
tion! Causality is not violated because Bob cannot fore-
see Alice’s measurement result, which is completely ran-
dom. However, if we could pick out only the proper result
with probability one, the resulting ‘projective’ teleporta-
tion would allow information to propagate along spacelike
intervals, to escape from black holes [8], or to travel back-
wards in time along a closed timelike curve. We call this
mechanism a projective or post-selected CTC, or P-CTC.

The P-CTC (see Fig. 1b) starts from two systems pre-
pared in a maximally entangled state “

⋃
”, and ends by

projecting them into the same state “
⋂
”. If non-zero,

the probability amplitude of the final state is renormal-
ized to one, a nonlinear process. If zero, the event cannot
happen: our mechanism embodies in a natural way the
Novikov principle [13] that only logically self-consistent

sequences of events occur in the universe. Because they
rely on post-selection, P-CTCs share some properties
with the weak value interpretation of quantum mechan-
ics [14], notably that there is no unique way to assign a
definite state to the system in a CTC at a definite time.
This is not surprising due to the cyclic nature of time
there. Moreover, Hartle [10] showed that quantum me-
chanics on closed timelike curves is non-unitary (indeed,
it allows cloning) and requires events in the future to af-
fect the past. He noted that the Hilbert space formalism
for quantum mechanics might be inadequate to capture
the behavior of closed timelike curves, and suggested a
path integral approach instead. In future work we will
show that, in contrast [9] to Deutsch’s, P-CTCs are con-
sistent with the “traditional” path-integral approaches
to CTCs (e.g. see [5, 9, 10, 15]): we use the normal
path-integral self-consistency requirement that the clas-
sical paths that make up the path integral have the same
values of all variables (e.g. x and p) when they exit the
CTC as when they enter. For example, our approach
coincides with Politzer’s [9] path-integral treatment of
fermions. However, P-CTCs can also be described in
Hilbert space, showing that this approach can be recon-
ciled with path integrals when post-selection is allowed.

We now analyze how P-CTC deal with time travel
paradoxes. In the grandfather paradox, for example, the
time traveller goes back in time and kills her grandfather,
so she cannot be born and cannot kill her grandfather: a
logical contradiction. This paradox can be implemented
through a quantum circuit where a ‘living’ qubit (i.e., a
bit in the state 1), goes back in time and tries to ‘kill’
itself, i.e., flip to the state 0, see Fig. 2a. There are
many possible variants: but any circuit in which trav-
els back in time and gives rise to intrinsic logical self-
contradiction is an embodiment of the grandfather para-
dox. Deutsch’s consistency condition (1) requires that
the state is ρ = (|0〉〈0| + |1〉〈1|)/2, the only fixed point
of the corresponding map. Note that if the CNOT be-
fore the bit flip measures a 0 then the CNOT afterwards
measures a 1, and vice versa: the time traveller really
manages to kill her grandfather! So far, so good. The
strange aspect of Deutsch’s solution comes when one at-
tempts to follow the state of the time-traveller through
the CTC. To preserve self-consistency, the 1 component
(time traveller alive) that enters the loop emerges as the
0 component (time traveller dead), while the 0 compo-
nent (time traveller dead) that enters the loop emerges as
the 1 component (time traveller alive). Thus, the CTC
preserves the overall mixed state, but not the identity of
the components: projective measurements at the input
and output yield different results.
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FIG. 2: a) Grandfather paradox circuit. If we take 1 to rep-
resent ‘time-traveler exists,’ and 0 to represent ‘she doesn’t
exist,’ then the NOT (σx) operation implies that if she exists,
then she ‘kills her grandfather’ and ceases to exist; conversely,
if she doesn’t exist, then she fails to kill her grandfather
and so she exists. The difference between Deutsch’s CTCs
and our P-CTCs is revealed by monitoring the time-traveler
with two controlled-NOTs (CNOT): the two controlled bits
are measured to determine the value of the time-traveling
bit before and after the σx. Opposite values mean she has
killed her grandfather; same values mean she has failed. Us-
ing Deutsch’s CTCs, she always succeeds; using P-CTCs she
always fails. b) Unproved theorem paradox circuit. The time-
traveler obtains a bit of information from the future via the
upper CNOT. She then takes it back in time and deposits
a copy an earlier time in the same location from which she
obtained it (rather, will obtain it), via the lower CNOT. Be-
cause the circuit is unbiased as to the value of the ‘proof’ bit,
it automatically assigns that bit a completely mixed value,
since it is maximally entangled with the one emerging from
the post-selected CTC.

P-CTCs give a different resolution of the grandfather
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paradox: the probability amplitude of the projection onto
the final entangled state

⋂
is always null, namely this

event (and all logically contradictory ones) cannot hap-
pen. In any real-world situations, the σx transforma-
tion in not perfect. Then, replacing σx with e−iθσx =
cos θ

211 − i sin θ
2σx (with θ ≃ π), the non-linear post-

selection amplifies fluctuations of θ away from π. This
eliminates the histories plagued by the paradox and re-
tains only the self-consistent histories in which the time-
traveler fails to kill her grandfather (the unitary in the
curve is 11 instead of σx), and the two output qubits have
equal value: P-CTC fulfill our self-consistency condition.
In other words, no matter how hard the time-traveler
tries, she finds her grandfather a tough guy to kill.

Because P-CTCs are based on post-selected telepor-
tation, their predictions can be experimentally demon-
strated. To experimentally demonstrate the grandfather
paradox, we store two qubits in a single photon: one
in the polarization degree of freedom, which represents
the forward-travelling qubit, and one in a path degree
of freedom representing the backward travelling qubit as
shown in Fig 3. Our single photons, with a wavelength of
941.7 nm, are coupled into a single-mode fiber from an
InGaAs/GaAs quantum dot cooled to 21.5K by liquid
Helium [16] and sent to the circuit. Using a Hanbury-
Brown-Twiss interferometer, the g(2)(0) of the quantum
dot emission was measured to be 0.29± 0.01, confirming
the single-photon character of the source. At the start
of the circuit, (

⋃
) we entangle the path and polarization

qubits using a beam displacer (BD1), generating the Bell
state |φ+〉 = (1/

√
2)(|00〉+ |11〉). To close the CTC (

⋂
),

we perform a Bell state measurement and post-select on
cases where |φ+〉 is detected. The Bell state measurement
consists of a CNOT with polarization (forward traveller)
acting on path (backward traveller), followed by post-
selection on the now-disentangled qubits. The CNOT
is implemented by a polarizing beam splitter that flips
the backward-travelling (path) qubit conditioned on the
value of the forward-travelling (polarization) qubit. We
then post-select on photons exiting the appropriate spa-
tial port using a polarizer at 45◦ and an Andor iDus CCD
camera cooled to 188K. Within the loop, we implement
a “quantum gun” eiθσx with a wave plate that rotates the
polarization by an angle θ/2. The accuracy of the quan-
tum gun can be varied from θ = π (the photon “kills”
its past self) to θ = 0 (the photon always “misses” and
survives).

The teleportation circuit forms a polarization inter-
ferometer whose visibility was measured to be 93 ± 3%
(see the inset in Fig. 4). To verify the operation of the
teleportation circuit, all four Bell states |φ±〉, |ψ±〉 were
prepared and sent to the measurement apparatus: post-
selection on |φ+〉 behaved as expected yielding success
probabilities of 0.96± 0.08, 0.10± 0.11, 0.02± 0.05, and
0.02± 0.05 for |φ+〉, |φ−〉, |ψ+〉, and |ψ−〉 inputs respec-
tively. After verifying the operation of the teleporta-

tion circuit, calcite beam displacers were inserted (BD2
and BD3), coupling the polarization qubit to two probe
qubits encoded in additional path degrees of freedom of
the photon. These probe qubits measure the state of the
polarization qubit before and after the quantum gun is
“fired”. When the post-selection succeeds (i.e. the time
travel occurs), the state of the probe qubits is measured.
If the two probe qubits are in agreement (00 or 11) the
quantum gun has failed to flip the polarization and the
photon “survives”. If the two probe qubits disagree, the
photon has “killed” its past self.

The state of the probe qubits, conditioned on the time
travel succeeding, was measured for different values of θ,
see Fig. 4. The probe qubits are never found in the states
01 or 10: time travel succeeds only when the quantum
gun misfires, leaving the polarization unchanged and the
probe qubits in 00 or 11. Our suicidal photons obey the
Novikov principle and never succeed in travelling back in
time and killing their former selves. The required non-
linearity is due to post-selection here: no CTCs nor any
evidence of the nonlinear signature of a P-CTC has ever
been observed in nature up to now.

Unlike Deutsch’s CTCs, our P-CTCs always send pure
states to pure states: they do not create entropy. As a
result, P-CTCs provide a distinct resolution to Deutsch’s
unproved theorem paradox, in which the time traveller
reveals the proof of a theorem to a mathematician, who
includes it in the same book from which the traveller has
learned it (rather, will learn it). How did the proof come
into existence? Deutsch adds an additional maximum
entropy postulate to eliminate this paradox. By contrast,
post-selected CTCs automatically solve it as shown in
Fig. 2b through entanglement: because the circuit has
no bias to one proof or another, the CTC creates an
unbiased mixture of all possible ‘proofs.’
A user that has access to a closed timelike curve might

be able to perform computations very efficiently: for pure
state inputs, Deutsch’s CTCs permit the efficient solution
of all problems in PSPACE [17, 18] (i.e. all problems that
can be solved with polynomial space resources). How-
ever, Bennett et al. argued that this may be useless for
computation, because CTCs decorrelate the outputs of
the computation from its inputs stored elsewhere [19].
In contrast, Aaronson’s results on the power of post-
selection in quantum computing imply that the P-CTCs
considered here permit the efficient solution of problems
in PP [20] (i.e. problems that a probabilistic polynomial
Turing machine accepts with probability 1

2 if and only if
the answer is “yes.”) Although PP is a putatively less
powerful class than PSPACE, P-CTCs are computation-
ally very powerful: they do not decorrelate the inputs
from the outputs and can efficiently solve NP-complete
problems. Indeed, it is easy to see that P-CTCs can per-
form any computation a circuit of depth one.
We thank C. Bennett and D. Deutsch for discussions

and suggestions. This work was supported by the W.M.
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FIG. 3: Experiment to illustrate the P-CTC predictions of the grandfather paradox. a) Diagram of the quantum circuit. Using
a CNOT gate sandwiched between optional Z and X gates, it is possible to prepare all of the maximally entangled Bell states.
The Bell state measurement is implemented using a CNOT and a Hadamard. Each of the probe qubits is coupled to the
forward qubit via a CNOT gate. b) Diagram of experimental apparatus. The polarization and path degrees of freedom of
single photons from a quantum dot are entangled via a calcite polarization-dependent beam displacer (BD1), implementing
the CNOT. Half-wave plates (HWP) before and after BD1 implement the optional Z and X gates. The state |φ+〉 is created
by setting the angle of both HWPs to zero. To complete the teleportation circuit, the post-selection onto |φ+〉 is carried out
by first recombining the path degrees of freedom on a polarizing beamsplitter (performing a CNOT gate between path and
polarization) and then passing the photons through a calcite polarizer set to 45 degrees and detecting them on a cooled CCD.
A rotatable HWP acts as a quantum gun, implementing the unitary U(θ) = e−iθσx . Removable calcite beam displacers (BD2
and BD3) couple the polarization qubit to two probe qubits encoded in additional spatial degrees of freedom. When the beam
displacers are inserted in the setup, four spots on the CCD correspond to the probe states 11, 10, 01, and 00.
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FIG. 4: Probability that time travel succeeds and the probes are found in the same state (red circles) or in opposite states (blue
diamonds). When the quantum gun “misfires”, the polarization qubit is not flipped and the probe qubits are found in either
the 00 or 11 state. As the accuracy θ of the quantum gun increases from 0 to π, the probability that the teleportation succeeds
decreases. When the quantum gun “kills” the photon (flips the polarization qubit), the probes record opposite values (01 or
10). The probability that the probe qubits are found in either the 10 or 01 state is 0.01 ± 0.04, indicating that the photons
never succeed in travelling back in time and killing their former selves. Solid curves correspond to theoretical predictions.
The discrepancy between theory and experiment when the probes are found in the same state is due to a 1.1± 0.1◦ mismatch
between polarizers used in the state creation and measurement portions of the teleportation circuit. Data were collected for 6
seconds at each point. The error bars are due to photon counting statistics and background fluctuations from the cooled CCD.
Inset: the teleportation loop constitutes a polarization interferometer. Its visibility was measured as 93 ± 3% by varying the
phase (path-length difference) between the two paths, converting |φ+〉 to (|00〉 + eiφ|11〉)/

√
2 before post-selecting on |φ+〉.


