Disproof of Bell's Theorem

Joy Christian*
Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

We illustrate an explicit counterexample to Bell's theorem by constructing a pair of dichotomic variables that exactly reproduce the EPR-Bohm correlations in a manifestly local-realistic manner.

Central to Bell's theorem [1] is the claim that no local and realistic model can reproduce the correlations observed in the EPR-Bohm experiments. Here we construct such a model. Let Alice and Bob be equipped with the variables

$$
\begin{align*}
& \quad A(\mathbf{a}, \lambda)=\left\{-a_{j} \boldsymbol{\beta}_{j}\right\}\left\{a_{k} \boldsymbol{\beta}_{k}(\lambda)\right\}=\left\{\begin{array}{lll}
+1 & \text { if } & \lambda=+1 \\
-1 & \text { if } & \lambda=-1
\end{array}\right. \tag{1}\\
& \text { and } B(\mathbf{b}, \lambda)=\left\{b_{j} \boldsymbol{\beta}_{j}(\lambda)\right\}\left\{b_{k} \boldsymbol{\beta}_{k}\right\}=\left\{\begin{array}{lll}
-1 & \text { if } & \lambda=+1 \\
+1 & \text { if } & \lambda=-1
\end{array}\right. \tag{2}
\end{align*}
$$

where the repeated indices are summed over x, y, and z; the fixed bivector basis $\left\{\boldsymbol{\beta}_{x}, \boldsymbol{\beta}_{y}, \boldsymbol{\beta}_{z}\right\}$ is defined by the algebra

$$
\begin{equation*}
\boldsymbol{\beta}_{j} \boldsymbol{\beta}_{k}=-\delta_{j k}-\epsilon_{j k l} \boldsymbol{\beta}_{l} \tag{3}
\end{equation*}
$$

and-together with $\boldsymbol{\beta}_{j}(\lambda)=\lambda \boldsymbol{\beta}_{j}$-the λ-dependent bivector basis $\left\{\boldsymbol{\beta}_{x}(\lambda), \boldsymbol{\beta}_{y}(\lambda), \boldsymbol{\beta}_{z}(\lambda)\right\}$ is defined by the algebra

$$
\begin{equation*}
\boldsymbol{\beta}_{j} \boldsymbol{\beta}_{k}=-\delta_{j k}-\lambda \epsilon_{j k l} \boldsymbol{\beta}_{l}, \quad \text { where } \lambda= \pm 1 \text { is a fair coin [2], } \tag{4}
\end{equation*}
$$

$\delta_{j k}$ is the Kronecker delta, $\epsilon_{j k l}$ is the Levi-Civita symbol, $\mathbf{a}=a_{x} \mathbf{e}_{x}+a_{y} \mathbf{e}_{y}+a_{z} \mathbf{e}_{z}$ and $\mathbf{b}=b_{x} \mathbf{e}_{x}+b_{y} \mathbf{e}_{y}+b_{z} \mathbf{e}_{z}$ are unit vectors, and the indices $j, k, l=x, y$, or z. The correlation between $A(\mathbf{a}, \lambda)$ and $B(\mathbf{b}, \lambda)$ then works out to be

$$
\begin{align*}
\mathcal{E}(\mathbf{a}, \mathbf{b}) & =\frac{\lim _{n \rightarrow \infty}\left\{\frac{1}{n} \sum_{i=1}^{n} A\left(\mathbf{a}, \lambda^{i}\right) B\left(\mathbf{b}, \lambda^{i}\right)\right\}}{\left\{-a_{j} \boldsymbol{\beta}_{j}\right\}\left\{b_{k} \boldsymbol{\beta}_{k}\right\}}=\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=1}^{n} \frac{A\left(\mathbf{a}, \lambda^{i}\right) B\left(\mathbf{b}, \lambda^{i}\right)}{\left\{-a_{j} \boldsymbol{\beta}_{j}\right\}\left\{b_{k} \boldsymbol{\beta}_{k}\right\}}\right] \tag{5}\\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=1}^{n}\left\{a_{j} \boldsymbol{\beta}_{j}\right\}\left\{A\left(\mathbf{a}, \lambda^{i}\right) B\left(\mathbf{b}, \lambda^{i}\right)\right\}\left\{-b_{k} \boldsymbol{\beta}_{k}\right\}\right]=\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=1}^{n}\left\{a_{j} \boldsymbol{\beta}_{j}\left(\lambda^{i}\right)\right\}\left\{b_{k} \boldsymbol{\beta}_{k}\left(\lambda^{i}\right)\right\}\right] \tag{6}\\
& =-a_{j} b_{j}-\lim _{n \rightarrow \infty}\left[\frac{1}{n} \sum_{i=1}^{n}\left\{\lambda^{i} \epsilon_{j k l} a_{j} b_{k} \boldsymbol{\beta}_{l}\right\}\right]=-a_{j} b_{j}+0=-\mathbf{a} \cdot \mathbf{b} \tag{7}
\end{align*}
$$

where the denominators in (5) are standard deviations. The corresponding CHSH string of expectation values gives

$$
\begin{equation*}
\left|\mathcal{E}(\mathbf{a}, \mathbf{b})+\mathcal{E}\left(\mathbf{a}, \mathbf{b}^{\prime}\right)+\mathcal{E}\left(\mathbf{a}^{\prime}, \mathbf{b}\right)-\mathcal{E}\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}\right)\right| \leq 2 \sqrt{1-\left(\mathbf{a} \times \mathbf{a}^{\prime}\right) \cdot\left(\mathbf{b}^{\prime} \times \mathbf{b}\right)} \leq 2 \sqrt{2} \tag{8}
\end{equation*}
$$

Evidently, the variables $A(\mathbf{a}, \lambda)$ and $B(\mathbf{b}, \lambda)$ defined above respect both the remote parameter independence and the remote outcome independence (which has been checked rigorously [2] [3] [4] [5] [6] [7]). This contradicts Bell's theorem.

Acknowledgments

I wish to thank Gregor Weihs for kindly explaining to me the experimental procedure of analyzing the bipartite data. I also wish to thank the Foundational Questions Institute (FQXi) for supporting this work through a Mini-Grant.

References

[1] J. S. Bell, Physics 1, 195 (1964).
[2] J. Christian, Disproof of Bell's Theorem by Clifford Algebra Valued Local Variables, arXiv:quant-ph/0703179
[3] J. Christian, Disproof of Bell's Theorem: Further Consolidations, arXiv:0707.1333
[4] J. Christian, Can Bell's Prescription for Physical Reality Be Considered Complete?, arXiv:0806.3078
[5] J. Christian, Disproofs of Bell, GHZ, and Hardy Type Theorems and the Illusion of Entanglement, arXiv:0904.4259
[6] J. Christian, Failure of Bell's Theorem and the Local Causality of the Entangled Photons, arXiv:1005.4932
[7] J. Christian, What Really Sets the Upper Bound on Quantum Correlations?, arXiv:1101.1958

[^0]
[^0]: *Electronic address: joy.christian@wolfson.ox.ac.uk

