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1 Introduction

The official birth of quantum logic is represented by a famous article of
Birkhoff and von Neumann “The logic of quantum mechanics” (Birkhoff
and von Neumann 1936). At the very beginning of their paper, Birkhoff
and von Neumann observe:

One of the aspects of quantum theory which has attracted the
most general attention, is the novelty of the logical notions which
it presupposes .... The object of the present paper is to discover
what logical structures one may hope to find in physical theories
which, like quantum mechanics, do not conform to classical logic.

In order to understand the basic reason why a non classical logic arises
from the mathematical formalism of quantum theory (QT), a comparison
with classical physics will be useful.

There is one concept which quantum theory shares alike with
classical mechanics and classical electrodynamics. This is the
concept of a mathematical “phase-space”. According to this
concept, any physical system S is at each instant hypothetically
associated with a “point” in a fixed phase-space Σ; this point
is supposed to represent mathematically, the “state” of S, and
the “state” of S is supposed to be ascertainable by “maximal”
observations.

Maximal pieces of information about physical systems are called also pure
states. For instance, in classical particle mechanics, a pure state of a sin-
gle particle can be represented by a sequence of six real numbers 〈r1, . . . , r6〉
where the first three numbers correspond to the position-coordinates, whereas
the last ones are the momentum-components.

As a consequence, the phase-space of a single particle system can be
identified with the set IR6, consisting of all sextuples of real numbers. Sim-
ilarly for the case of compound systems, consisting of a finite number n of
particles.

Let us now consider an experimental proposition P about our system,
asserting that a given physical quantity has a certain value (for instance:
“the value of position in the x-direction lies in a certain interval”). Such
a proposition P will be naturally associated with a subset X of our phase-
space, consisting of all the pure states for which P holds. In other words,
the subsets of Σ seem to represent good mathematical representatives of
experimental propositions. These subsets are called by Birkhoff and von

3



Neumann physical qualities (we will say simply events). Needless to say,
the correspondence between the set of all experimental propositions and the
set of all events will be many-to-one. When a pure state p belongs to an
event X, we will say that our system in state p verifies both X and the
corresponding experimental proposition.

What about the structure of all events? As is well known, the power-set
of any set is a Boolean algebra. And also the set F(Σ) of all measurable
subsets of Σ (which is more tractable than the full power-set of Σ) turns out
to have a Boolean structure. Hence, we may refer to the following Boolean
algebra:

B = 〈F(Σ) ,⊆ ,∩ ,∪ , − ,1 ,0〉 ,

where:

1) ⊆ ,∩ ,∪ , − are, respectively, the set-theoretic inclusion relation and
the operations intersection, union, relative complement;

2) 1 is the total space Σ, while 0 is the empty set.

According to a standard interpretation, ∩ ,∪ , − can be naturally re-
garded as a set-theoretic realization of the classical logical connectives and ,
or , not . As a consequence, we will obtain a classical semantic behaviour:

• a state p verifies a conjunction X ∩ Y iff p ∈ X ∩ Y iff p verifies both
members;

• p verifies a disjunction X ∪ Y iff p ∈ X ∪ Y iff p verifies at least one
member;

• p verifies a negation −X iff p /∈ X iff p does not verify X.

To what extent can such a picture be adequately extended to QT?
Birkhoff and von Neumann observe:

In quantum theory the points of Σ correspond to the so called
“wave-functions” and hence Σ is a ... a function-space, usually
assumed to be Hilbert space.

As a consequence, we immediately obtain a basic difference between the
quantum and the classical case. The excluded middle principle holds in
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classical mechanics. In other words, pure states semantically decide any
event: for any p and X,

p ∈ X or p ∈ −X.

QT is, instead, essentially probabilistic. Generally, pure states assign
only probability-values to quantum events. Let ψ represent a pure state (a
wave function) of a quantum system and let P be an experimental proposi-
tion (for instance “the spin value in the x-direction is up”). The following
cases are possible:

(i) ψ assigns to P probability-value 1 (ψ(P) = 1);

(ii) ψ assigns to P probability-value 0 (ψ(P) = 0);

(iii) ψ assigns to P a probability-value different from 1 and from 0 (ψ(P) 6=
0, 1).

In the first two cases, we will say that P is true (false) for our system
in state ψ. In the third case, P will be semantically indetermined.

Now the question arises: what will be an adequate mathematical rep-
resentative for the notion of quantum experimental proposition? The most
important novelty of Birkhoff and von Neumann’s proposal is based on the
following answer: “The mathematical representative of any experimental
proposition is a closed linear subspace of Hilbert space” (we will say simply
a closed subspace) 1. Let H be a (separable) Hilbert space, whose unitary
vectors correspond to possible wave functions of a quantum system. The
closed subspaces of H are particular instances of subsets of H that are closed
under linear combinations and Cauchy sequences. Why are mere subsets of
the phase-space not interesting in QT? The reason depends on the super-
position principle, which represents one of the basic dividing line between
the quantum and the classical case. Differently from classical mechanics,
in quantum mechanics, finite and even infinite linear combinations of pure
states give rise to new pure states (provided only some formal conditions

1 A Hilbert space is a vector space over a division ring whose elements are the real or
the complex or the quaternionic numbers such that

(i) An inner product ( . , .) that transforms any pair of vectors into an element of the
division ring is defined;

(ii) the space is metrically complete with respect to the metrics induced by the inner
product ( . , .).

A Hilbert space H is called separable iff H admits a countable basis.
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are satisfied). Suppose three pure states ψ ,ψ1 , ψ2 and let ψ be a linear
combination of ψ1 , ψ2:

ψ = c1ψ1 + c2ψ2.

According to the standard interpretation of the formalism, this means that
a quantum system in state ψ might verify with probability |c1|

2 those propo-
sitions that are certain for state ψ1 and might verify with probability |c2|

2

those propositions that are certain for state ψ2. Suppose now some pure
states ψ1, ψ2, . . . each assigning probability 1 to a certain experimental
proposition P, and suppose that the linear combination

ψ =
∑

i

ciψi (ci 6= 0)

is a pure state. Then also ψ will assign probability 1 to our proposition
P. As a consequence, the mathematical representatives of experimental
propositions should be closed under finite and infinite linear combinations.
The closed subspaces of H are just the mathematical objects that can realize
such a role.

What about the algebraic structure that can be defined on the set C(H)
of all mathematical representatives of experimental propositions (let us call
them quantum events)? For instance, what does it mean negation, con-
junction and disjunction in the realm of quantum events? As to negation,
Birkhoff and von Neumann’s answer is the following:

The mathematical representative of the negative of any ex-
perimental proposition is the orthogonal complement of the
mathematical representative of the proposition itself.

The orthogonal complement X ′ of a subspaceX is defined as the set of all
vectors that are orthogonal to all elements of X. In other words, ψ ∈ X ′ iff
ψ ⊥ X iff for any φ ∈ X: (ψ, φ) = 0 (where (ψ, φ) is the inner product of ψ
and φ). From the point of view of the physical interpretation, the orthogonal
complement (called also orthocomplement) is particularly interesting, since
it satisfies the following property: for any event X and any pure state ψ,

ψ(X) = 1 iff ψ(X ′) = 0;

ψ(X) = 0 iff ψ(X ′) = 1;
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In other words, ψ assigns to an event probability 1 (0, respectively) iff ψ
assigns to the orthocomplement of X probability 0 (1, respectively). As a
consequence, one is dealing with an operation that inverts the two extreme
probability-values, which naturally correspond to the truth-values truth and
falsity (similarly to the classical truth-table of negation).

As to conjunction, Birkhoff and von Neumann notice that this can be
still represented by the set-theoretic intersection (like in the classical case).
For, the intersection X∩Y of two closed subspaces is again a closed subspace.
Hence, we will obtain the usual truth-table for the connective and :

ψ verifies X ∩ Y iff ψ verifies both members.

Disjunction, however, cannot be represented here as a set-theoretic union.
For, generally, the union X ∪ Y of two closed subspaces is not a closed sub-
space. In spite of this, we have at our disposal another good representative
for the connective or : the supremum X ⊔ Y of two closed subspaces, that
is the smallest closed subspace including both X and Y . Of course, X ⊔ Y
will include X ∪ Y .

As a consequence, we obtain the following structure

C(H) =
〈

C(H) ,⊑ ,⊓ ,⊔ , ′ ,1 ,0
〉

where ⊑ ,⊓ are the set-theoretic inclusion and intersection; ⊔ , ′ are defined
as above; while 1 and 0 represent, respectively, the total space H and the
null subspace (the singleton of the null vector, representing the smallest
possible subspace). An isomorphic structure can be obtained by using as
a support, instead of C(H), the set P (H) of all projections P of H. As is
well known projections (i.e. idempotent and self-adjoint linear operators)
and closed subspaces are in one-to-one correspondence, by the projection
theorem. Our structure C(H) turns out to simulate a “quasi-Boolean be-
haviour”; however, it is not a Boolean algebra. Something very essential is
missing. For instance, conjunction and disjunction are no more distributive.
Generally,

X ⊓ (Y ⊔ Z) 6= (X ⊓ Y ) ⊔ (X ⊓ Z).

It turns out that C(H) belongs to the variety of all orthocomplemented or-
thomodular lattices, that are not necessarily distributive.

The failure of distributivity is connected with a characteristic property of
disjunction in QT. Differently from classical (bivalent) semantics, a quantum
disjunction X ⊔ Y may be true even if neither member is true. In fact, it
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Figure 1: Failure of bivalence in QT

may happen that a pure state ψ belongs to a subspace X ⊔ Y , even if ψ
belongs neither to X nor to Y (see Figure 1).

Such a semantic behaviour, which may appear prima facie somewhat
strange, seems to reflect pretty well a number of concrete quantum situa-
tions. In QT one is often dealing with alternatives that are semantically
determined and true, while both members are, in principle, strongly un-
determined. For instance, suppose we are referring to some one-half spin
particle (say an electron) whose spin may assume only two possible values:
either up or down. Now, according to one of the uncertainty principles, the
spin in the x direction (spinx) and the spin in the y direction (spiny) rep-
resent two strongly incompatible quantities that cannot be simultaneously
measured. Suppose an electron in state ψ verifies the proposition “spinx is
up”. As a consequence of the uncertainty principle both propositions “spiny

is up” and “spiny is down” shall be strongly undetermined. However the
disjunction “either spiny is up or spiny is down” must be true.

Birkhoff and von Neumann’s proposal did not arouse any immediate in-
terest, either in the logical or in the physical community. Probably, the
quantum logical approach appeared too abstract for the foundational de-
bate about QT, which in the Thirties was generally formulated in a more
traditional philosophical language. As an example, let us only think of the
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famous discussion between Einstein and Bohr. At the same time, the work
of logicians was still mainly devoted to classical logic.

Only twenty years later, after the appearance of George Mackey’s book
Mathematical Foundations of Quantum Theory (Mackey 1957), one has wit-
nessed a “renaissance period“ for the logico-algebraic approach to QT. This
has been mainly stimulated by the researches of Jauch, Piron, Varadara-
jan, Suppes, Finkelstein, Foulis, Randall, Greechie, Gudder, Beltrametti,
Cassinelli, Mittelstaedt and many others. The new proposals are charac-
terized by a more general approach, based on a kind of abstraction from
the Hilbert space structures. The starting point of the new trends can be
summarized as follows. Generally, any physical theory T determines a class
of event-state systems 〈E , S〉, where E contains the events that may occur
to our system, while S contains the states that a physical system described
by the theory may assume. The question arises: what are the abstract con-
ditions that one should postulate for any pair 〈E , S〉? In the case of QT,
having in mind the Hilbert space model, one is naturally led to the following
requirement:

• the set E of events should be a good abstraction from the structure of
all closed subspaces in a Hilbert space. As a consequence E should be
at least a σ-complete orthomodular lattice (generally non distributive).

• The set S of states should be a good abstraction from the statistical
operators in a Hilbert space, that represent possible states of physical
systems. As a consequence, any state shall behave as a probability
measure, that assigns to any event in E a value in the interval [0, 1].
Both in the concrete and in the abstract case, states may be either pure
(maximal pieces of information that cannot be consistently extended to
a richer knowledge) or mixtures (non maximal pieces of information).

In such a framework two basic problems arise:

I) Is it possible to capture, by means of some abstract conditions that are
required for any event-state pair 〈E , S〉, the behaviour of the concrete
Hilbert space pairs?

II) To what extent should the Hilbert space model be absolutely binding?

The first problem gave rise to a number of attempts to prove a kind of
representation theorem. More precisely, the main question was: what are
the necessary and sufficient conditions for a generic event-state pair 〈E , S〉
that make E isomorphic to the lattice of all closed subspaces in a Hilbert
space?
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Our second problem stimulated the investigation about more and more
general quantum structures. Of course, looking for more general structures
seems to imply a kind of discontent towards the standard quantum logical
approach, based on Hilbert space lattices. The fundamental criticisms that
have been moved concern the following items:

1) The standard structures seem to determine a kind of extensional col-
lapse. In fact, the closed subspaces of a Hilbert space represent at
the same time physical properties in an intensional sense and the ex-
tensions thereof (sets of states that certainly verify the properties in
question). As happens in classical set theoretical semantics, there is no
mathematical representative for physical properties in an intensional
sense. Foulis and Randall have called such an extensional collapse “the
metaphysical disaster” of the standard quantum logical approach.

2) The lattice structure of the closed subspaces automatically renders the
quantum proposition system closed under logical conjunction. This
seems to imply some counterintuitive consequences from the physical
point of view. Suppose two experimental propositions that concern
two strongly incompatible quantities, like “the spin in the x direction
is up”, “the spin in the y direction is down”. In such a situation,
the intuition of the quantum physicist seems to suggest the following
semantic requirement: the conjunction of our propositions has no def-
inite meaning; for, they cannot be experimentally tested at the same
time. As a consequence, the lattice proposition structure seems to be
too strong.

An interesting weakening can be obtained by giving up the lattice condi-
tion: generally the infimum and the supremum are assumed to exist only
for countable sets of propositions that are pairwise orthogonal. In the recent
quantum logical literature an orthomodular partially ordered set that satis-
fies the above condition is simply called a quantum logic. At the same time,
by standard quantum logic one usually means the complete orthomodular
lattice based on the closed subspaces in a Hilbert space. Needless to ob-
serve, such a terminology that identifies a logic with a particular example of
an algebraic structure turns out to be somewhat misleading from the strict
logical point of view. As we will see in the next sections, different forms of
quantum logic, which represent “genuine logics” according to the standard
way of thinking of the logical tradition, can be characterized by convenient
abstraction from the physical models.
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2 Orthomodular quantum logic and orthologic

We will first study two interesting examples of logic that represent a natu-
ral logical abstraction from the class of all Hilbert space lattices.These are
represented respectively by orthomodular quantum logic (OQL) and by the
weaker orthologic (OL), which for a long time has been also termed min-
imal quantum logic. In fact, the name “minimal quantum logic” appears
today quite inappropriate, since a number of weaker forms of quantum logic
have been recently investigated. In the following we will use QL as an
abbreviation for both OL and OQL.

The language of QL consists of a denumerable set of sentential literals
and of two primitive connectives: ¬ (not), ∧ (and). The notion of formula
of the language is defined in the expected way. We will use the following
metavariables: p, q, r, . . . for sentential literals and α, β, γ, . . . for formulas.
The connective disjunction (∨ ) is supposed defined via de Morgan’s law:

α ∨ β := ¬ (¬α ∧ ¬β) .

The problem concerning the possibility of a well behaved conditional con-
nective will be discussed in the next Section. We will indicate the basic
metalogical constants as follows: not, and, or, y (if...then), iff (if and only
if), ∀ (for all ), ∃ (for at least one).

Because of its historical origin, the most natural characterization of QL

can be carried out in the framework of an algebraic semantics. It will be
expedient to recall first the definition of ortholattice:

Definition 2.1 Ortholattice.
An ortholattice is a structure B = 〈B ,⊑ , ′ ,1 ,0〉, where

(2.1.1) 〈B ,⊑ ,1 ,0〉 is a bounded lattice, where 1 is the maximum and
0 is the minimum. In other words:

(i) ⊑ is a partial order relation on B (reflexive, antisymmetric
and transitive);

(ii) any pair of elements a, b has an infimum a⊓b and a supremum
a ⊔ b such that:
a ⊓ b ⊑ a, b and ∀c: c ⊑ a, b y c ⊑ a ⊓ b;
a, b ⊑ a ⊔ b and ∀c: a, b ⊑ c y a ⊔ b ⊑ c;

(iii) ∀a: 0 ⊑ a; a ⊑ 1.

(2.1.2) the 1-ary operation ′ (called orthocomplement) satisfies the fol-
lowing conditions:

11



(i) a′′ = a (double negation);

(ii) a ⊑ b y b′ ⊑ a′ (contraposition);

(iii) a ⊓ a′ = 0 (non contradiction).

Differently from Boolean algebras, ortholattices do not generally satisfy
the distributive laws of ⊓ and ⊔. There holds only

(a ⊓ b) ⊔ (a ⊓ c) ⊑ a ⊓ (b ⊔ c)

and the dual form

a ⊔ (b ⊓ c) ⊑(a ⊔ b) ⊓ (a ⊔ c).

The lattice 〈C(H) ,⊑ , ′ ,1 ,0〉 of all closed subspaces in a Hilbert space
H is a characteristic example of a non distributive ortholattice.

Definition 2.2 Algebraic realization for OL.
An algebraic realization for OL is a pair A = 〈B , v〉, consisting of an or-
tholattice B = 〈B ,⊑ , ′ ,1 ,0〉 and a valuation-function v that associates to
any formula α of the language an element (truth-value) in B, satisfying the
following conditions:

(i) v(¬β) = v(β)′;

(ii) v(β ∧ γ) = v(β) ⊓ v(γ).

Definition 2.3 Truth and logical truth.
A formula α is true in a realization A = 〈B , v〉 (abbreviated as |=A α) iff
v(α) = 1;
α is a logical truth of OL (|=

OL
α) iff for any algebraic realization A = 〈B , v〉,

|=A α.

When |=A α, we will also say that A is a model of α; A will be called a
model of a set of formulas T (|=A T ) iff A is a model of any β ∈ T .

Definition 2.4 Consequence in a realization and logical consequence.
Let T be a set of formulas and let A = 〈B , v〉 be a realization. A formula α
is a consequence in A of T (T |=A α) iff for any element a of B:
if for any β ∈ T , a ⊑ v(β) then a ⊑ v(α).
A formula α is a logical consequence of T (T |=

OL
α) iff for any algebraic

realization A: T |=A α.
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Instead of {α} |=
OL
β we will write α |=

OL
β. If T is finite and equal to

{α1, . . . , αn}, we will obviously have: T |=
OL
α iff v(α1)⊓ · · · ⊓ v(αn) ⊑ v(α).

One can easily check that |=
OL
α iff for any T , T |=

OL
α.

OL can be equivalently characterized also by means of a Kripke-style
semantics, which has been first proposed by Dishkant (1972). As is well
known, the algebraic semantic approach can be described as founded on the
following intuitive idea: interpreting a language essentially means associat-
ing to any sentence α an abstract truth-value or, more generally, an abstract
meaning (an element of an algebraic structure). In the Kripkean semantics,
instead, one assumes that interpreting a language essentially means associ-
ating to any sentence α the set of the possible worlds or situations where
α holds. This set, which represents the extensional meaning of α, is called
the proposition associated to α (or simply the proposition of α). Hence,
generally, a Kripkean realization for a logic L will have the form:

K =
〈

I ,
−→
Ri ,−→oj ,Π , ρ

〉

,

where

(i) I is a non-empty set of possible worlds possibly correlated by relations
in the sequence

−→
Ri and operations in the sequence −→oj . In most cases,

we have only one binary relation R, called accessibility relation.

(ii) Π is a set of sets of possible worlds, representing possible propositions
of sentences. Any proposition and the total set of propositions Π must
satisfy convenient closure conditions that depend on the particular
logic.

(iii) ρ transforms sentences into propositions preserving the logical form.

The Kripkean realizations that turn out to be adequate for OL have only
one accessibility relation, which is reflexive and symmetric. As is well known,
many logics, that are stronger than positive logic, are instead characterized
by Kripkean realizations where the accessibility relation is at least reflexive
and transitive. As an example, let us think of intuitionistic logic. From an
intuitive point of view, one can easily understand the reason why semantic
models with a reflexive and symmetric accessibility relation may be physi-
cally significant. In fact, physical theories are not generally concerned with
possible evolutions of states of knowledge with respect to a constant world,
but rather with sets of physical situations that may be similar , where states
of knowledge must single out some invariants. And similarity relations are
reflexive and symmetric, but generally not transitive.

13



Let us now introduce the basic concepts of a Kripkean semantics for OL.

Definition 2.5 Orthoframe.
An orthoframe is a relational structure F = 〈I,R 〉, where I is a non-empty
set (called the set of worlds) and R (the accessibility relation) is a binary
reflexive and symmetric relation on I.

Given an orthoframe, we will use i, j, k, . . . as variables ranging over the
set of worlds. Instead of Rij (not Rij) we will also write i ⊥/ j (i ⊥ j).

Definition 2.6 Orthocomplement in an orthoframe.
Let F = 〈I,R 〉 be an orthoframe. For any set of worlds X ⊆ I, the ortho-
complement X ′ of X is defined as follows:

X ′ = {i | ∀j(j ∈ X y j ⊥ i)} .

In other words, X is the set of all worlds that are unaccessible to all elements
of X. Instead of i ∈ X ′, we will also write i ⊥ X (and we will read it as “i
is orthogonal to the set X”). Instead of i /∈ X ′, we will also write i ⊥/ X.

Definition 2.7 Proposition.
Let F = 〈I,R 〉 be an orthoframe. A set of worlds X is called a proposition
of F iff it satisfies the following condition:

∀i [i ∈ X iff ∀j(i ⊥/ j y j ⊥/ X)] .

In other words, a proposition is a set of worlds X that contains all and
only the worlds whose accessible worlds are not unaccessible to X. Notice
that the conditional i ∈ X y ∀j(i ⊥/ j y j ⊥/ X) trivially holds for any set
of worlds X.

Our definition of proposition represents a quite general notion of “possi-
ble meaning of a formula”, that can be significantly extended also to other
logics. Suppose for instance, a Kripkean frame F = 〈I,R 〉, where the ac-
cessibility relation is at least reflexive and transitive (as happens in the
Kripkean semantics for intuitionistic logic). Then a set of worlds X turns
out to be a proposition (in the sense of Definition 2.7) iff it is R-closed (i.e.,
∀ij(i ∈ X and Rij y j ∈ X)). And R-closed sets of worlds represent pre-
cisely the possible meanings of formulas in the Kripkean characterization of
intuitionistic logic.

Lemma 2.1 Let F be an orthoframe and X a set of worlds of F .

14



(2.1.1) X is a proposition of F iff ∀i [i /∈ X y ∃j(i ⊥/ j and j ⊥ X)]

(2.1.2) X is a proposition of F iff X = X ′′.

Lemma 2.2 Let F = 〈I,R 〉 be an orthoframe.

(2.2.1) I and ∅ are propositions.

(2.2.2) If X is any set of worlds, then X ′ is a proposition.

(2.2.3) If C is a family of propositions, then
⋂

C is a proposition.

Definition 2.8 Kripkean realization for OL.
A Kripkean realization for OL is a system K = 〈I, R ,Π , ρ〉, where:

(i) F = 〈I,R 〉 is an orthoframe and Π is a set of propositions of the
frame that contains ∅, I and is closed under the orthocomplement
′ and the set-theoretic intersection ∩;

(ii) ρ is a function that associates to any formula α a proposition in
Π, satisfying the following conditions:

ρ(¬β) = ρ(β)′;

ρ(β ∧ γ) = ρ(β) ∩ ρ(γ).

Instead of i ∈ ρ(α), we will also write i |= α (or,i |=K α, in case of
possible confusions) and we will read:s “α is true in the world i”. If T is a
set of formulas, i |= T will mean i |= β for any β ∈ T .

Theorem 2.1 For any Kripkean realization K and any formula α:

i |= α iff ∀j ⊥/ i∃k ⊥/ j (k |= α).

Proof. Since the accessibility relation is symmetric, the left to right im-
plication is trivial. Let us prove i |=/α y not∀j ⊥/ i∃k ⊥/ j (k |= α),
which is equivalent to i /∈ ρ(α) y ∃j ⊥/ i∀k ⊥/ j (k /∈ ρ(α)). Suppose
i /∈ ρ(α). Since ρ(α) is a proposition, by Lemma 2.1.1 there holds for a
certain j: j ⊥/ i and j ⊥ ρ(α). Let k ⊥/ j, and suppose, by contradiction,
k ∈ ρ(α). Since j ⊥ ρ(α), there follows j ⊥ k, against k ⊥/ j. Consequently,
∃j ⊥/ i∀k ⊥/ j (k /∈ ρ(α)).

Lemma 2.3 In any Kripkean realization K:
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(2.3.1) i |= ¬β iff ∀j ⊥/ i (j |=/ β);

(2.3.2) i |= β ∧ γ iff i |= β and i |= γ.

Definition 2.9 Truth and logical truth.
A formula α is true in a realization K = 〈I, R ,Π , ρ〉 (abbreviated |=K α)
iff ρ(α) = I;
α is a logical truth of OL (|=

OL
α) iff for any realization K, |=K α.

When |=K α, we will also say that K is a model of α. Similarly in the
case of a set of formulas T .

Definition 2.10 Consequence in a realization and logical consequence.
Let T be a set of formulas and let K be a realization. A formula α is a
consequence in K of T (T |=K α) iff for any world i of K, i |= T y i |= α.
A formula α is a logical consequence of T (T |=

OL
α) iff for any realization K:

T |=K α. When no confusion is possible we will simply write T |= α.

Now we will prove that the algebraic and the Kripkean semantics for OL

characterize the same logic. Let us abbreviate the metalogical expressions
“α is a logical truth of OL according to the algebraic semantics”, “α is
a logical consequence in OL of T according to the algebraic semantics”,
“α is a logical truth of OL according to the Kripkean semantics”, “α is a
logical consequence in OL of T according to the Kripkean semantics”, by

|=
A

OL
α , T |=

A

OL
α , |=

K

OL
α , T |=

K

OL
α, respectively.

Theorem 2.2 |=
A

OL
α iff |=

K

OL
α, for any α.

The Theorem is an immediate corollary of the following Lemma:

Lemma 2.4

(2.4.1) For any algebraic realization A there exists a Kripkean realiza-
tion KA such that for any α, |=A α iff |=KA α.

(2.4.2) For any Kripkean realization K there exists an algebraic real-
ization AK such that for any α, |=K α iff |=AK α.

Sketch of the proof.
(2.4.1) The basic intuitive idea of the proof is the following: any alge-

braic realization can be canonically transformed into a Kripkean realization
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by identifying the set of worlds with the set of all non-null elements of
the algebra, the accessibility-relation with the non-orthogonality relation in
the algebra, and finally the set of propositions with the set of all principal
quasi-ideals (i.e., the principal ideals, devoided of the zero-element). More
precisely, given A = 〈B , v〉, the Kripkean realization KA = 〈I, R ,Π , ρ〉 is
defined as follows:

I = {b ∈ B | b 6= 0};

Rij iff i 6⊑ j′;

Π = {{b ∈ B | b 6= 0 and b ⊑ a} | a ∈ B};

ρ(p) = {b ∈ I | b ⊑ v(p)}.

One can easily check that KA is a “good” Kripkean realization; further, there
holds, for any α : ρ(α) = {b ∈ B | b 6= 0 and b ⊑ v(α)}. Consequently,
|=A α iff |=KA α.

(2.4.2) Any Kripkean realization K = 〈I, R ,Π , ρ〉 can be canonically
transformed into an algebraic realization AK = 〈B , v〉 by putting:

B = Π;

for any a, b ∈ B: a ⊑ b iff a ⊆ b;

a′ = {i ∈ I | i ⊥ a};

1 = I; 0 = ∅;

v(p) = ρ(p).

It turns out that B is an ortholattice. Further, for any α, v(α) = ρ(α).
Consequently: |=K α iff |=AK α.

Theorem 2.3 T |=
A

OL
α iff T |=

K

OL
α.

Proof. In order to prove the left to right implication, suppose by contra-

diction: T |=
A

OL
α and T |=

K

OL
/α. Hence there exists a Kripkean realization

K = 〈I, R ,Π , ρ〉 and a world i of K such that i |= T and i |=/α. One can
easily see that K can be transformed into K◦ = 〈I, R ,Π◦ , ρ〉 where Π◦ is the
smallest subset of the power-set of I, that includes Π and is closed under
infinitary intersection. Owing to Lemma 2.2.3, K◦ is a “good” Kripkean
realization for OL and for any β, ρ(β) turns out to be the same proposition
in K and in K◦. Consequently, also in K◦, there holds: i |= T and i |=/α.
Let us now consider AK◦

. The algebra B of AK◦
is complete, because Π◦ is

closed under infinitary intersection. Hence,
⋂

{ρ(β) | β ∈ T} is an element
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of B. Since i |= β for any β ∈ T , we will have i ∈
⋂

{ρ(β) | β ∈ T}. Thus
there is an element of B, which is less or equal than v(β)(= ρ(β)) for any
β ∈ T , but is not less or equal than v(α)(= ρ(α)), because i /∈ ρ(α). This

contradicts the hypothesis T |=
A

OL
α.

The right to left implication is trivial.

Let us now turn to a semantic characterization of OQL. We will first
recall the definition of orthomodular lattice.

Definition 2.11 Orthomodular lattice.
An orthomodular lattice is an ortholattice B = 〈B ,⊑ ,′ ,1 ,0〉 such that for
any a, b ∈ B:

a ⊓
(

a′ ⊔ (a ⊓ b)
)

⊑ b.

Orthomodularity clearly represents a weak form of distributivity.

Lemma 2.5 Let B be an ortholattice. The following conditions are equiva-
lent:

(i) B is orthomodular.

(ii) For any a, b ∈ B: a ⊑ b y b = a ⊔ (a′ ⊓ b).

(iii) For any a, b ∈ B: a ⊑ b iff a ⊓ (a ⊓ b)′ = 0.

(iv) For any a, b ∈ B: a ⊑ b and a′ ⊓ b = 0 y a = b.

The property considered in (2.5.(iii)) represents a significant weakening
of the Boolean condition:

a ⊑ b iff a ⊓ b′ = 0.

Definition 2.12 Algebraic realization for OQL.
An algebraic realization for OQL is an algebraic realization A = 〈B, v〉 for
OL, where B is an orthomodular lattice.

The definitions of truth, logical truth and logical consequence in OQL

are analogous to the corresponding definitions of OL.
Like OL, also OQL can be characterized by means of a Kripkean se-

mantics.

Definition 2.13 Kripkean realization for OQL.
A Kripkean realization for OQL is a Kripkean realization K = 〈I, R ,Π , ρ〉
for OL, where the set of propositions Π satisfies the orthomodular property :
X 6⊆ Y y X ∩ (X ∩ Y )′ 6= ∅.
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The definitions of truth, logical truth and logical consequence in OQL

are analogous to the corresponding definitions of OL. Also in the case of
OQL one can show:

Theorem 2.4 |=
A

OQL
α iff |=

K

OQL
α.

The Theorem is an immediate corollary of Lemma 2.4 and of the follow-
ing lemma:

Lemma 2.6

(2.6.1) If A is orthomodular then KA is orthomodular;

(2.6.2) If K is orthomodular then AK is orthomodular.

Proof. (2.6.1) We have to prove X 6⊆ Y y X ∩ (X ∩ Y )′ 6= ∅ for any
propositions X,Y of KA. Suppose X 6⊆ Y . By definition of proposition in
KA:

X = {b | b 6= 0 and b ⊑ x} for a given x;

Y = {b | b 6= 0 and b ⊑ y} for a given y;

Consequently, x 6⊑ y, and by Lemma 2.5: x ⊓ (x ⊓ y)′ 6= 0 , because A
is orthomodular. Hence, x ⊓ (x ⊓ y)′ is a world in KA. In order to prove
X ∩ (X ∩ Y )′ 6= ∅, it is sufficient to prove x ⊓ (x ⊓ y)′ ∈ X ∩ (X ∩ Y )′.
There holds trivially x ⊓ (x ⊓ y)′ ∈ X. Further, x ⊓ (x ⊓ y)′ ∈ (X ∩ Y )′,
because (x ⊓ y)′ is the generator of the quasi-ideal (X ∩ Y )′ . Consequently,
x ⊓ (x ⊓ y)′ ∈ X ∩ (X ∩ Y )′.
(2.6.2) Let K be orthomodular. Then for any X,Y ∈ Π:

X 6⊆ Y y X ∩ (X ∩ Y )′ 6= ∅.

One can trivially prove:

X ∩ (X ∩ Y )′ 6= ∅ y X 6⊆ Y.

Hence, by Lemma 2.5, the algebra B of AK is orthomodular.

As to the concept of logical consequence, the proof we have given for OL

(Theorem 2.3) cannot be automatically extended to the case of OQL. The
critical point is represented by the transformation of K into K◦ whose set of
propositions is closed under infinitary intersection: K◦ is trivially a “good”
OL-realization; at the same time, it is not granted that K◦ preserves the
orthomodular property. One can easily prove:
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Theorem 2.5 T |=
K

OQL
α y T |=

A

OQL
α.

The inverse relation has been proved by Minari (1987):

Theorem 2.6 T |=
A

OQL
α y T |=

K

OQL
α.

Are there any significant structural relations between A and KAK
and be-

tween K and AKA
? The question admits a very strong answer in the case

of A and KAK
.

Theorem 2.7 A = 〈B, v〉 and AKA
= 〈B∗, v∗〉 are isomorphic realizations.

Sketch of the proof. Let us define the function ψ : B → B∗ in the following
way:

ψ(a) = {b | b 6= 0 and b ⊑ a} for any a ∈ B.

One can easily check that: (1) ψ is an isomorphism (from B onto B∗); (2)
v∗(p) = ψ(v(p)) for any atomic formula p.

At the same time, in the case of K and KAK

, there is no natural cor-
respondence between I and Π. As a consequence, one can prove only the
weaker relation:

Theorem 2.8 Given K = 〈I ,R ,Π , ρ〉 and KAK

= 〈I∗ , R∗ ,Π∗ , ρ∗〉, there
holds:

ρ∗(α) = {X ∈ Π | X ⊆ ρ(α)} , for any α.

In the class of all Kripkean realizations for QL, the realizations KA

(which have been obtained by canonical transformation of an algebraic re-
alization A) present some interesting properties, which are summarized by
the following theorem.

Theorem 2.9 In any KA = 〈I ,R ,Π , ρ〉 there is a one-to-one correspon-
dence φ between the set of worlds I and the set of propositions Π−{∅} such
that:

(2.9.1) i ∈ φ(i);

(2.9.2) i ⊥/ j iff φ(i) 6⊆ φ(j)′;

(2.9.3) ∀X ∈ Π: i ∈ X iff ∀k ∈ φ(i)(k ∈ X).

Sketch of the proof. Let us take as φ(i) the quasi-ideal generated by i.
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Theorem 2.9 suggests to isolate, in the class of all K, an interesting
subclass of Kripkean realizations, that we will call algebraically adequate.

Definition 2.14 A Kripkean realization K is algebraically adequate iff it
satisfies the conditions of Theorem 2.9.

When restricting to the class of all algebraically adequate Kripkean re-
alizations one can prove:

Theorem 2.10 K = 〈I ,R ,Π , ρ〉 and KAK

= 〈I∗ , R∗ ,Π∗ , ρ∗〉 are isomor-
phic realizations; i.e., there exists a bijective function ψ from I onto I∗ such
that:

(2.10.1) Rij iff R∗ψ(i)ψ(j), for any i, j ∈ I;

(2.10.2) Π∗ = {ψ(X) | X ∈ Π}, where ψ(X) := {ψ(i) | i ∈ X};

(2.10.3) ρ∗(p) = ψ(ρ(p)), for any atomic formula p.

One can easily show that the class of all algebraically adequate Krip-
kean realizations determines the same concept of logical consequence that is
determined by the larger class of all possible realizations.

The Kripkean characterization of QL turns out to have a quite natural
physical interpretation. As we have seen in the Introduction, the mathemat-
ical formalism of quantum theory (QT) associates to any physical system S
a Hilbert space H, while pure states of S are mathematically represented by
unitary vectors ψ of H. Let us now consider an elementary sublanguage LQ

of QT, whose atomic formulas represent possible measurement reports (i.e.,
statements of the form “the value for the observable Q lies in the Borel set
∆”) and suppose LQ closed under the quantum logical connectives. Given
a physical system S (whose associated Hilbert space is H), one can define a
natural Kripkean realization for the language LQ as follows:

KS = 〈I ,R ,Π , ρ〉 ,

where:

• I is the set of all pure states ψ of S.

• R is the non-orthogonality relation between vectors (in other words,
two pure states are accessible iff their inner product is different from
zero).

• Π is the set of all propositions that is univocally determined by the
set of all closed subspaces of H (one can easily check that the set of
all unitary vectors of any subspace is a proposition).
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• For any atomic formula p, ρ(p) is the proposition containing all the
pure states that assign to p probability-value 1.

Interestingly enough, the accessibility relation turns out to have the fol-
lowing physical meaning: Rij iff j is a pure state into which i can be
transformed after the performance of a physical measurement that concern
an observable of the system.

3 The implication problem

Differently from most weak logics, QL gives rise to a critical “implication-
problem”. All conditional connectives one can reasonably introduce in QL

are, to a certain extent, anomalous; for, they do not share most of the
characteristic properties that are satisfied by the positive conditionals (which
are governed by a logic that is at least as strong as positive logic). Just the
failure of a well-behaved conditional led some authors to the conclusion
that QL cannot be a “real” logic. In spite of these difficulties, these days
one cannot help recognizing that QL admits a set of different implicational
connectives, even if none of them has a positive behaviour. Let us first
propose a general semantic condition for a logical connective to be classified
as an implication-connective.

Definition 3.1 In any semantics, a binary connective
∗
→ is called an implication-

connective iff it satisfies at least the two following conditions:

(3.1.1) α
∗
→ α is always true (identity);

(3.1.2) if α is true and α
∗
→ β is true then β is true (modus ponens).

In the particular case of QL, one can easily obtain:

Lemma 3.1 A sufficient condition for a connective
∗
→ to be an implication-

connective is:

(i) in the algebraic semantics: for any realization A = 〈A, v〉, |=A α
∗
→ β

iff v(α) ⊑ v(β);

(ii) in the Kripkean semantics: for any realization K = 〈I,R,Π, ρ〉,

|=K α
∗
→ β iff ρ(α) ⊆ ρ(β).

In QL it seems reasonable to assume the sufficient condition of Lemma
3.1 as a minimal condition for a connective to be an implication-connective.
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Suppose we have independently defined two different implication-connectives
in the algebraic and in the Kripkean semantics. When shall we admit that
they represent the “same logical connective”? A reasonable answer to this
question is represented by the following convention:

Definition 3.2 Let
A
∗ be a binary connective defined in the algebraic se-

mantics and
K
∗ a binary connective defined in the Kripkean semantics:

A
∗

and
K
∗ represent the same logical connective iff the following conditions are

satisfied:

(3.2.1) given any A = 〈B, v〉 and given the corresponding KA = 〈I,R,Π, ρ〉,

ρ(α
K
∗ β) is the quasi-ideal generated by v(α

A
∗ β);

(3.2.2) given any K = 〈I,R,Π, ρ〉 and given the corresponding AK =

〈B , v〉, there holds: v(α
A
∗ β) = ρ(α

K
∗ β).

We will now consider different possible semantic characterizations of an
implication-connective in QL. Differently from classical logic, in QL a mate-
rial conditional defined by Philo-law (α→ β := ¬α∨β), does not give rise to
an implication-connective. For, there are algebraic realizations A = 〈B, v〉
such that v(¬α ∨ β) = 1, while v(α) 6⊑ v(β). Further, ortholattices and
orthomodular lattices are not, generally, pseudocomplemented lattices: in
other words, given a, b ∈ B, the maximum c such that a ⊓ c ⊑ b does
not necessarily exist in B. In fact, one can prove (Birkhoff 1995) that any
pseudocomplemented lattice is distributive.

We will first consider the case of polynomial conditionals, that can be
defined in terms of the connectives ∧ ,∨ ,¬. In the algebraic semantics, the
minimal requirement of Lemma 3.1 restricts the choice only to five possible
candidates (Kalmbach 1983). This result follows from the fact that in the
orthomodular lattice freely generated by two elements there are only five
polynomial binary operations ◦ satisfying the condition a ⊑ b iff a ◦ b = 1.
These are our five candidates:

(i) v(α→1 β) = v(α)′ ⊔ (v(α) ⊓ v(β)).

(ii) v(α→2 β) = v(β) ⊔ (v(α)′ ⊓ v(β)′).

(iii) v(α→3 β) = (v(α)′ ⊓ v(β)) ⊔ (v(α) ⊓ v(β)) ⊔ (v(α)′ ⊓ v(β)′).

(iv) v(α→4 β) = (v(α)′ ⊓ v(β))⊔ (v(α)⊓ v(β))⊔ ((v(α)′ ⊔ v(β))⊓ v(β)′).

(v) v(α→5 β) = (v(α)′⊓v(β))⊔ (v(α)′ ⊓v(β)′)⊔ (v(α)⊓ (v(α)′⊔v(β))).

23



The corresponding five implication-connectives in the Kripkean seman-
tics can be easily obtained. It is not hard to see that for any i (1 ≤ i ≤ 5),
→i represents the same logical connective in both semantics (in the sense of
Definition 3.2).

Theorem 3.1 The polynomial conditionals →i (1 ≤ i ≤ 5) are implication-
connectives in OQL; at the same time they are not implication-connectives
in OL.

Proof. Since →i represent the same connective in both semantics, it will be
sufficient to refer to the algebraic semantics. As an example, let us prove
the theorem for i = 1 (the other cases are similar). First we have to prove
v(α) ⊑ v(β) iff 1 = v(α →1 β) = v(α)′ ⊔ (v(α) ⊓ v(β)), which is equivalent
to v(α) ⊑ v(β) iff v(α)⊓(v(α)⊓v(β))′ = 0. From Lemma 2.5, we know that
the latter condition holds for any pair of elements of B iff B is orthomodular.
This proves at the same time that →1 is an implication-connective in OQL,
but cannot be an implication-connective in OL.

Interestingly enough, each polynomial conditional →i represents a good
weakening of the classical material conditional. In order to show this result,
let us first introduce an important relation that describe a “Boolean mutual
behaviour” between elements of an orthomodular lattice.

Definition 3.3 Compatibility.
Two elements a, b of an orthomodular lattice B are compatible iff

a = (a ⊓ b′) ⊔ (a ⊓ b).

One can prove that a, b are compatible iff the subalgebra of B generated by
{a, b} is Boolean.

Theorem 3.2 For any algebraic realization A = 〈B, v〉 and for any α, β:

v(α→i β) = v(α)′ ⊔ v(β) iff v(α) and v(β) are compatible.

As previously mentioned, Boolean algebras are pseudocomplemented lat-
tices. Therefore they satisfy the following condition for any a, b, c:

c ⊓ a ⊑ b iff c ⊑ a b,

where: a b := a′ ⊔ b.
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An orthomodular lattice B turns out to be a Boolean algebra iff for any
algebraic realization A = 〈B, v〉, any i (1 ≤ i ≤ 5) and any α, β the following
import-export condition is satisfied:

v(γ) ⊓ v(α) ⊑ v(β) iff v(γ) ⊑ v(α→i β).

In order to single out a unique polynomial conditional, various weaken-
ings of the import-export condition have been proposed. For instance the
following condition (which we will call weak import-export):

v(γ)⊓v(α) ⊑ v(β) iff v(γ) ⊑ v(α) →i v(β), if v(α) and v(β) are compatible.

One can prove (Hardegree 1975, Mittelstaedt 1972) that a polynomial
conditional →i satisfies the weak import-export condition iff i = 1. As a con-
sequence, we can conclude that →1 represents, in a sense, the best possible
approximation for a material conditional in quantum logic. This connective
(often called Sasaki-hook) was originally proposed by Mittelstaedt (1972)
and Finch (1970), and was further investigated by Hardegree (1976) and
other authors. In the following, we will usually write → instead of →1 and
we will neglect the other four polynomial conditionals.

Some important positive laws that are violated by our quantum logical
conditional are the following:

α→ (β → α);

(α→ (β → γ)) → ((α → β) → (α→ γ));

(α→ β) → ((β → γ) → (α→ γ));

(α ∧ β → γ) → (α→ (β → γ));

(α→ (β → γ)) → (β → (α→ γ)).

This somewhat “anomalous” behaviour has suggested that one is deal-
ing with a kind of counterfactual conditional . Such a conjecture seems to
be confirmed by some important physical examples. Let us consider again
the class of the Kripkean realizations of the sublanguage LQ of QT (whose
atomic sentences express measurement reports). And let KS = 〈I,R,Π, ρ〉
represent a Kripkean realization of our language, which is associated to a
physical system S. As Hardegree (1975) has shown, in such a case the con-
ditional → turns out to receive a quite natural counterfactual interpretation
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(in the sense of Stalnaker). More precisely, one can define, for any formula
α, a partial Stalnaker-function function fα in the following way:

fα : Dom(fα) → I,

where:
Dom(fα) = {i ∈ I | i ⊥/ ρ(α)}

In other words, fα is defined for all and only the states that are not orthog-
onal to the proposition of α.

If i ∈ Dom(fα), then:

fα(i) = Pρ(α)i,

where Pρ(α) is the projection that is uniquely associated with the closed
subspace determined by ρ(α). There holds:

i |= α→ β iff either ∀j ⊥/ i(j |=/α) or fα(i) |= β.

In other words: should i verify α, then i would verify also β.
From an intuitive point of view, one can say that fρ(α)(i) represents the “pure
state nearest” to i, that verifies α, where “nearest” is here defined in terms
of the metrics of the Hilbert space H. By definition and in virtue of one of
the basic postulates of QT (von Neumann’s collapse of the wave function),
fρ(α) turns out to have the following physical meaning: it represents the
transformation of state i after the performance of a measurement concerning
the physical property expressed by α, provided the result was positive. As a
consequence, one obtains: α→ β is true in a state i iff either α is impossible
for i or the state into which i has been transformed after a positive α-test,
verifies α.

Another interesting characteristic of our connective →, is a weak non
monotonic behaviour. In fact, in the algebraic semantics the inequality

v(α → γ) ⊑ v(α ∧ β → γ)

can be violated (a counterexample can be easily obtained in the orthomod-
ular lattice based on IR3). As a consequence:

α→ γ |=/α ∧ β → γ.

Polynomial conditionals are not the only significant examples of implication-
connectives in QL. In the framework of a Kripkean semantic approach, it
seems quite natural to introduce a conditional connective, that represents a
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kind of strict implication. Given a Kripkean realization K = 〈I,R,Π, ρ〉 one
would like to require:

i |= α⊸ β iff ∀j ⊥/ i (j |= α y j |= β).

However such a condition does not automatically represent a correct
semantic definition, because it is not granted that ρ(α⊸ β) is an element
of Π. In order to overcome this difficulty, let us first define a new operation
in the power-set of an orthoframe 〈I,R〉.

Definition 3.4 Strict-implication operation ( ⊸ ).
Given an orthoframe 〈I,R〉 and X,Y ⊆ I:

X ⊸ Y := {i | ∀j (i ⊥/ j and j ∈ X y j ∈ Y )} .

If X and Y are sets of worlds in the orthoframe, then X ⊸ Y turns out
to be a proposition of the frame.

When the set Π of K is closed under ⊸ , we will say that K is a realization
for a strict-implication language.

Definition 3.5 Strict implication (⊸).
If K = 〈I,R,Π, ρ〉 is a realization for a strict-implication language, then

ρ(α⊸ β) := ρ(α) ⊸ ρ(β).

One can easily check that ⊸ is a “good” conditional. There follows
immediately:

i |= α⊸ β iff ∀j ⊥/ i (j |= α y j |= β).

Another interesting implication that can be defined in QL is represented by
an entailment-connective.

Definition 3.6 Entailment (։).
Given K = 〈I,R,Π, ρ〉,

ρ(α։ β) :=

{

I, if ρ(α) ⊆ ρ(β);

∅, otherwise.

Since I, ∅ ∈ Π, the definition is correct. One can trivially check that ։ is
a “good” conditional. Interestingly enough, our strict implication and our
entailment represent “good” implications also for OL.

The general relations between →,⊸ and։ are described by the follow-
ing theorem:
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Theorem 3.3 For any realization K for a strict-implication language of
OL:

|=K (α։ β)։ (α⊸ β).

For any realization K for a strict-implication language of OQL:

|=K (α։ β)։ (α→ β); |=K (α⊸ β)։ (α→ β).

But the inverse relations do not generally hold!
Are the connectives⊸ and ։ definable also in the algebraic semantics?

The possibility of defining ։ is straightforward.

Definition 3.7 Entailment in the algebraic semantics.
Given A = 〈B, v〉,

v(α։ β) :=

{

1, if v(α) ⊑ v(β);

0, otherwise.

One can easily check that ։ represents the same connective in the two
semantics. As to ⊸, given A = 〈B, v〉, one would like to require:

v(α⊸ β) =
⊔

{

b ∈ B | b 6= 0 and ∀c(c 6= 0 and b 6⊑ c′ and c ⊑ v(α) y c ⊑ v(β))
}

.

However such a definition supposes the algebraic completeness of B. Fur-
ther we can prove that⊸ represents the same connective in the two seman-
tics only if we restrict our consideration to the class of all algebraically
adequate Kripkean realizations.

4 Metalogical properties and anomalies

Some metalogical distinctions that are not interesting in the case of a number
of familiar logics weaker than classical logic turn out to be significant for
QL (and for non distributive logics in general).

We have already defined (both in the algebraic and in the Kripkean
semantics) the concepts of model and of logical consequence. Now we will
introduce, in both semantics, the notions of quasi-model , weak consequence
and quasi-consequence. Let T be any set of formulas.

Definition 4.1 Quasi-model .
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Algebraic semantics Kripkean semantics
A realization A = 〈B, v〉 A realization K = 〈I,R,Π, ρ〉
is a quasi-model of T iff is a quasi-model of T iff
∃a[a ∈ B and a 6= 0 and ∃i(i ∈ I and i |= T ).
∀β ∈ T (a ⊑ v(β))].

The following definitions can be expressed in both semantics.

Definition 4.2 Realizability and verifiability .
T is realizable (RealT ) iff it has a quasi-model; T is verifiable (Verif T ) iff
it has a model.

Definition 4.3 Weak consequence.
A formula α is a weak consequence of T (T |≡ α) iff any model of T is a

model of α.

Definition 4.4 Quasi-consequence.
A formula α is a quasi-consequence of T (T |≈ α) iff any quasi-model of

T is a quasi-model of α.

One can easily check that the algebraic notions of verifiability, realizabil-
ity, weak consequence and quasi-consequence turn out to coincide with the
corresponding Kripkean notions. In other words, T is Kripke-realizable iff
T is algebraically realizable. Similarly for the other concepts.

In both semantics one can trivially prove the following lemmas.

Lemma 4.1 Verif T y Real T.

Lemma 4.2 Real T iff for any contradiction β ∧ ¬β, T |=/ β ∧ ¬β.

Lemma 4.3 T |= α y T |≡ α; T |= α y T |≈ α.

Lemma 4.4 α |≡ β iff ¬β |≈ ¬α.

Most familiar logics, that are stronger than positive logic, turn out to
satisfy the following metalogical properties, which we will call Herbrand-
Tarski , verifiability and Lindenbaum, respectively.
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• Herbrand-Tarski

T |= α iff T |≡ α iff T |≈ α

• Verifiability

VerT iff Real T

• Lindenbaum

RealT y ∃T ∗ [T ⊆ T ∗ and ComplT ∗], where

ComplT iff ∀α [α ∈ T or ¬α ∈ T ].

The Herbrand-Tarski property represents a semantic version of the de-
duction theorem. The Lindenbaum property asserts that any semantically
non-contradictory set of formulas admits a semantically non-contradictory
complete extension. In the algebraic semantics, canonical proofs of these
properties essentially use some versions of Stone-theorem, according to which
any proper filter F in an algebra B can be extended to a proper complete
filter F ∗ (such that ∀a(a ∈ F ∗ or a′ ∈ F ∗)). However, Stone-theorem does
not generally hold for non distributive orthomodular lattices! In the case of
ortholattices, one can still prove that every proper filter can be extended to
an ultrafilter (i.e., a maximal filter that does not admit any extension that
is a proper filter). However, differently from Boolean algebras, ultrafilters
need not be complete.

A counterexample to the Herbrand-Tarski property in OL can be ob-
tained using the “non-valid” part of the distributive law. We know that
(owing to the failure of distributivity in ortholattices):

α ∧ (β ∨ γ) |=/ (α ∧ β) ∨ (α ∧ γ).

At the same time

α ∧ (β ∨ γ) |≡ (α ∧ β) ∨ (α ∧ γ),

since one can easily calculate that for any realization A = 〈B, v〉 the hypoth-
esis v(α ∧ (β ∨ γ)) = 1, v((α ∧ β) ∨ (α ∧ γ)) 6= 1 leads to a contradiction 2.

A counterexample to the verifiability-property is represented by the
negation of the a fortiori principle for the quantum logical conditional →:

γ := ¬(α→ (β → α)) = ¬(¬α ∨ (α ∧ (¬β ∨ (α ∧ β)))).

2In OQL a counterexample in two variables can be obtained by using the failure
of the contraposition law for →. One has: α → β |=/¬β → ¬α. At the same time
α → β |≡ ¬β → ¬α; since for any realization A = 〈B, v〉 the hypothesis v(α → β) = 1,
implies v(α) ⊑ v(β) and therefore v(¬β → ¬α) = v(β)⊔(v(α)′⊓v(β)′) = v(β)⊔v(β)′ = 1.
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This γ has an algebraic quasi-model. For instance the realization A =
〈B, v〉, where B is the orthomodular lattice determined by all subspaces of
the plane (as shown in Figure 2). There holds: v(γ) = v(α) 6= 0. But one
can easily check that γ cannot have any model, since the hypothesis that
v(γ) = 1 leads to a contradiction in any algebraic realization of QL.

OO

��

oo //

v(β)

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

v(α)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2: Quasi-model for γ

The same γ also represents a counterexample to the Lindenbaum-property.
Let us first prove the following lemma.

Lemma 4.5 If T is realizable and T ⊆ T ∗, where T ∗ is realizable and com-
plete, then T is verifiable.

Sketch of the proof. Let us define a realization A = 〈B, v〉 such that

(i) B = {1, 0};

(ii)

v(α) =

{

1, if T ∗ |= α;

0, otherwise.

Since T ∗ is realizable and complete, A is a good realization and is trivially
a model of T .
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Now, one can easily show that γ violates Lindenbaum. Suppose, by con-
tradiction, that γ has a realizable and complete extension. Then, by Lemma
4.5, γ must have a model, and we already know that this is impossible.

The failure of the metalogical properties we have considered represents,
in a sense, a relevant “anomaly” of quantum logics. Just these anomalies
suggest the following conjecture: the distinction between epistemic logics
(characterized by Kripkean models where the accessibility relation is at least
reflexive and transitive) and similarity logics (characterized by Kripkean
models where the accessibility relation is at least reflexive and symmetric)
seems to represent a highly significant dividing line in the class of all logics
that are weaker than classical logic.

5 A modal interpretation of OL and OQL

QL admits a modal interpretation ((Goldblatt 1974), (Dalla Chiara 1981))
which is formally very similar to the modal interpretation of intuitionistic
logic. Any modal interpretation of a given non-classical logic turns out to
be quite interesting from the intuitive point of view, since it permits us
to associate a classical meaning to a given system of non-classical logical
constants. As is well known, intuitionistic logic can be translated into the
modal system S4. The modal basis that turns out to be adequate for OL is
instead the logic B. Such a result is of course not surprising, since both the
B-realizations and the OL-realizations are characterized by frames where
the accessibility relation is reflexive and symmetric.

Suppose a modal language LM whose alphabet contains the same senten-
tial literals as QL and the following primitive logical constants: the classical
connectives ∼ (not), f (and) and the modal operator � (necessarily). At
the same time, the connectives g (or), ⊃ (if ... then), ≡ (if and only if ),
and the modal operator ♦ (possibly) are supposed defined in the standard
way.

The modal logic B is semantically characterized by a class of Kripkean
realizations that we will call B-realizations.

Definition 5.1 A B-realization is a system M = 〈I,R,Π, ρ〉 where:

(i) 〈I,R〉 is an orthoframe;

(ii) Π is a subset of the power-set of I satisfying the following condi-
tions:

I, ∅ ∈ Π;
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Π is closed under the set-theoretic relative complement −,
the set-theoretic intersection ∩ and the modal operation ⊡,
which is defined as follows:
for any X ⊆ I, ⊡X := {i | ∀j (Rij y j ∈ X)};

(iii) ρ associates to any formula α of LM a proposition in Π satisfying
the conditions: ρ(∼ β) = −ρ(β); ρ(βfγ) = ρ(β)∩ρ(γ); ρ(�β) =
⊡ρ(β).

Instead of i ∈ ρ(α), we will write i |= α. The definitions of truth, logical
truth and logical consequence for B are analogous to the corresponding
definitions in the Kripkean semantics for QL.

Let us now define a translation τ of the language of QL into the language
LB.

Definition 5.2 Modal translation of OL.

• τ(p) = �♦p;

• τ(¬β) = � ∼ τ(β);

• τ(β ∧ γ) = τ(β)f τ(γ).

In other words, τ translates any atomic formula as the necessity of the
possibility of the same formula; further, the quantum logical negation is
interpreted as the necessity of the classical negation, while the quantum log-
ical conjunction is interpreted as the classical conjunction. We will indicate
the set {τ(β) | β ∈ T} by τ(T ).

Theorem 5.1 For any α and T of OL: T |=
OL
α iff T |=

B
τ(α)

Theorem 5.1 is an immediate corollary of the following Lemmas 5.1 and
5.2.

Lemma 5.1 Any OL-realization K = 〈I,R,Π, ρ〉 can be transformed into
a B-realization MK = 〈I∗, R∗,Π∗, ρ∗〉 such that: I∗ = I; R∗ = R;
∀i (i |=K α iff i |=MK τ(α)).

Sketch of the proof. Take Π∗ as the smallest subset of the power-set of I that
contains ρ(p) for any atomic formula p and that is closed under I, ∅,−,∩,⊡.
Further, take ρ∗(p) equal to ρ(p).
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Lemma 5.2 Any B-realization M = 〈I,R,Π, ρ〉 can be transformed into a
OL-realization KM = 〈I∗, R∗,Π∗, ρ∗〉 such that: I∗ = I; R∗ = R;
∀i (i |=KM α iff i |=M τ(α)).

Sketch of the proof. Take Π∗ as the smallest subset of the power-set of I
that contains ρ(�♦p) for any atomic formula p and that is closed under
I, ∅,′ ,∩ (where for any set X of worlds, X ′ := {j | notRij}). Further take
ρ∗(p) equal to ρ(�♦p). The set ρ∗(p) turns out to be a proposition in the
orthoframe 〈I∗, R∗〉, owing to the B-logical truth: �♦α ≡ �♦�♦α.

The translation of OL into B is technically very useful, since it permits
us to transfer to OL some nice metalogical properties such as decidability
and the finite-model property .

Does also OQL admit a modal interpretation? The question has a some-
what trivial answer. It is sufficient to apply the technique used for OL

by referring to a convenient modal system Bo (stronger than B) which is
founded on a modal version of the orthomodular principle. Semantically
Bo can be characterized by a particular class of realizations. In order to
determine this class, let us first define the concept of quantum proposition
in a B-realization.

Definition 5.3 Given a B-realization M = 〈I,R,Π, ρ〉 the set ΠQ of all
quantum propositions of M is the smallest subset of the power-set of I
which contains ρ(�♦p) for any atomic p and is closed under ′ and ∩.

Lemma 5.3 In any B-realization M = 〈I,R,Π, ρ〉, there holds ΠQ ⊆ Π.

Sketch of the proof. The only non-trivial point of the proof is represented
by the closure of Π under ′. This holds since one can prove: ∀X ∈ Π (X ′ =
⊡−X).

Lemma 5.4 Given M = 〈I,R,Π, ρ〉 and KM = 〈I,R,Π∗, ρ∗〉, there holds
ΠQ = Π∗.

Lemma 5.5 Given K = 〈I,R,Π, ρ〉 and MK = 〈I,R,Π∗, ρ∗〉, there holds
Π ⊇ Π∗

Q.
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Definition 5.4 A Bo-realization is a B-realization 〈I,R,Π, ρ〉 that satisfies
the orthomodular property:

∀X,Y ∈ ΠQ : X 6⊆ Y y X ∩ (X ∩ Y )′ 6= ∅.

We will also call the Bo-realizations orthomodular realizations.

Theorem 5.2 For any T and α of OQL: T |=
OL
α iff τ(T ) |=

Bo
τ(α).

The Theorem is an immediate corollary of Lemmas 5.1, 5.2 and of the fol-
lowing Lemma:

Lemma 5.6

(5.6.1) If K is orthomodular then MK is orthomodular.

(5.6.2) If M is orthomodular then KM is orthomodular.

Unfortunately, our modal interpretation of OQL is not particularly in-
teresting from a logical point of view. Differently from the OL-case, Bo

does not correspond to a familiar modal system with well-behaved metalog-
ical properties. A characteristic logical truth of this logic will be a modal
version of orthomodularity:

αf ∼ β ⊃ ♦ [αf� ∼ (α f β)] ,

where α, β are modal translations of formulas of OQL into the language
LM.

6 An axiomatization of OL and OQL

QL is an axiomatizable logic. Many axiomatizations are known: both in
the Hilbert-Bernays style and in the Gentzen-style (natural deduction and
sequent-calculi) 3. We will present here a QL-calculus (in the natural deduc-
tion style) which is a slight modification of a calculus proposed by Goldblatt
(1974). The advantage of this axiomatization is represented by the fact that
it is formally very close to the algebraic definition of ortholattice; further it
is independent of any idea of quantum logical implication.

Our calculus (which has no axioms) is determined as a set of rules. Let
T1, . . . , Tn be finite or infinite (possibly empty) sets of formulas. Any rule
has the form

T1 |−α1, . . . , Tn |−αn

T |−α
3Sequent calculi for different forms of quantum logic will be described in Section 17.
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( if α1 has been inferred from T1, . . . , αn has been inferred from Tn, then α
can be inferred from T ). We will call any T |−α a configuration. The con-
figurations T1 |−α1, . . . , Tn |−αn represent the premisses of the rule, while
T |−α is the conclusion. As a limit case, we may have a rule, where the
set of premisses is empty; in such a case we will speak of an improper rule.
Instead of ∅

T |−α
we will write T |−α; instead of ∅ |−α, we will write |−α.

Rules of OL

(OL1) T ∪ {α} |−α (identity)

(OL2)
T |−α, T ∗ ∪ {α} |−β

T ∪ T ∗ |−β
(transitivity)

(OL3) T ∪ {α ∧ β} |−α (∧-elimination)

(OL4) T ∪ {α ∧ β} |− β (∧-elimination)

(OL5)
T |−α, T |−β

T |−α ∧ β
(∧-introduction)

(OL6)
T ∪ {α, β} |− γ

T ∪ {α ∧ β} |− γ
(∧-introduction)

(OL7)
{α} |− β, {α} |−¬β

¬α
(absurdity)

(OL8) T ∪ {α} |−¬¬α (weak double negation)

(OL9) T ∪ {¬¬α} |−α (strong double negation)

(OL10) T ∪ {α ∧ ¬α} |−β (Duns Scotus)

(OL11)
{α} |−β

{¬β} |−¬α
(contraposition)

Definition 6.1 Derivation.
A derivation of OL is a finite sequence of configurations T |−α, where any
element of the sequence is either the conclusion of an improper rule or the
conclusion of a proper rule whose premisses are previous elements of the
sequence.

36



Definition 6.2 Derivability .
A formula α is derivable from T (T |−

OL
α) iff there is a derivation such that

the configuration T |−α is the last element of the derivation.

Instead of {α} |−
OL
β we will write α |−

OL
β. When no confusion is possible,

we will write T |−α instead of T |−
OL
α.

Definition 6.3 Logical theorem.
A formula α is a logical theorem of OL ( |−

OL
α) iff ∅ |−

OL
α.

One can easily prove the following syntactical lemmas.

Lemma 6.1 α1, . . . , αn |−α iff α1 ∧ · · · ∧ αn |−α.

Lemma 6.2 Syntactical compactness.
T |−α iff ∃T ∗ ⊆ T (T ∗ is finite and T ∗ |−α).

Lemma 6.3 T |−α iff ∃α1, . . . , αn : (α1 ∈ T and . . . and αn ∈ T and
α1 ∧ · · · ∧ αn |−α).

Definition 6.4 Consistency .
T is an inconsistent set of formulas if ∃α (T |−α ∧ ¬α); T is consistent ,
otherwise.

Definition 6.5 Deductive closure.
The deductive closure T of a set of formulas T is the smallest set which
includes the set {α | T |−α}. T is called deductively closed iff T = T .

Definition 6.6 Syntactical compatibility .
Two sets of formulas T1 and T2 are called syntactically compatible iff

∀α (T1 |−α y T2 |−/¬α).

The following theorem represents a kind of “weak Lindenbaum theorem”.

Theorem 6.1 Weak Lindenbaum theorem.
If T |−/¬α, then there exists a set of formulas T ∗ such that T ∗ is compatible
with T and T ∗ |−α.
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Proof. Suppose T |−/¬α. Take T ∗ = {α}. There holds trivially: T ∗ |−α.
Let us prove the compatibility between T and T ∗ . Suppose, by contradic-
tion, T and T ∗ incompatible. Then, for a certain β, T ∗ |− β and T |−¬β.
Hence (by definition of T ∗), α |− β and by contraposition, ¬β |−¬α. Conse-
quently, because T |−¬β, one obtains by transitivity: T |−¬α, against our
hypothesis.

We will now prove a soundness and a completeness theorem with respect
to the Kripkean semantics.

Theorem 6.2 Soundness theorem.

T |−α y T |= α.

Proof. Straightforward.

Theorem 6.3 Completeness theorem.

T |= α y T |−α.

Proof. It is sufficient to construct a canonical model K = 〈I,R,Π, ρ〉 such
that:

T |−α iff T |=K α.

As a consequence we will immediately obtain:

T |−/α y T |=/Kα y T |=/α.

Definition of the canonical model

(i) I is the set of all consistent and deductively closed sets of formulas;

(ii) R is the compatibility relation between sets of formulas;

(iii) Π is the set of all propositions in the frame 〈I,R〉;

(iv) ρ(p) = {i ∈ I | p ∈ i}.

In order to recognize that K is a “good” OL-realization, it is sufficient
to prove that: (a) R is reflexive and symmetric; (b) ρ(p) is a proposition in
the frame 〈I,R〉.
The proof of (a) is immediate (reflexivity depends on the consistency of any
i, and symmetry can be shown using the weak double negation rule).
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In order to prove (b), it is sufficient to show (by Lemma 2.1.1): i /∈
ρ(p) y ∃j ⊥/ i (j ⊥ ρ(p)). Let i /∈ ρ(p). Then (by definition of ρ(p)):
p /∈ i; and, since i is deductively closed, i |−/ p. Consequently, by the weak
Lindenbaum theorem (and by the strong double negation rule), for a certain
j: j ⊥/ i and ¬p ∈ j. Hence, j ⊥ ρ(p).

Lemma 6.4 Lemma of the canonical model.

For any α and any i ∈ I, i |= α iff α ∈ i.

Sketch of the proof. By induction on the length of α. The case α = p holds
by definition of ρ(p). The case α = ¬β can be proved by using Lemma 2.3.1
and the weak Lindenbaum theorem. The case α = β∧γ can be proved using
the ∧-introduction and the ∧-elimination rules.

Finally we can show that T |−α iff T |=K α. Since the left to right impli-
cation is a consequence of the soundness-theorem, it is sufficient to prove:
T |−/α y T |=/Kα. Let T |−/α; then, by Duns Scotus, T is consistent. Take
i := T . There holds: i ∈ I and T ⊆ i. As a consequence, by the Lemma of
the canonical model, i |= T . At the same time i |=/α. For, should i |= α be
the case, we would obtain α ∈ i and by definition of i, T |−α, against our
hypothesis.

An axiomatization of OQL can be obtained by adding to the OL-
calculus the following rule:

(OQL) α ∧ ¬(α ∧ ¬(α ∧ β)) |− β. (orthomodularity)

All the syntactical definitions we have considered for OL can be extended
to OQL. Also Lemmas 6.1, 6.2, 6.3 and the weak Lindenbaum theorem
can be proved exactly in the same way. Since OQL admits a material
conditional, we will be able to prove here a deduction theorem:

Theorem 6.4 α |−
OQL

β iff |−
OQL

α→ β.

This version of the deduction-theorem is obviously not in contrast with
the failure in QL of the semantical property we have called Herbrand-Tarski.
For, differently from other logics, here the syntactical relation |− does not
correspond to the weak consequence relation!

The soundness theorem can be easily proved, since in any orthomodular
realization K there holds:

α ∧ ¬(α ∧ ¬(α ∧ β)) |=K β.
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As to the completeness theorem, we need a slight modification of the
proof we have given for OL. In fact, should we try and construct the canon-
ical model K, by taking Π as the set of all possible propositions of the
frame, we would not be able to prove the orthomodularity of K. In order
to obtain an orthomodular canonical model K = {I,R,Π, ρ}, it is suffi-
cient to define Π as the set of all propositions X of K such that X = ρ(α)
for a certain α. One immediately recognizes that ρ(p) ∈ Π and that Π
is closed under ′ and ∩. Hence K is a “good” OL-realization. Also for
this K one can easily show that i |= α iff α ∈ i. In order to prove the
orthomodularity of K, one has to prove for any propositions X,Y ∈ Π,
X 6⊆ Y y X ∩ (X ∩ Y )′ 6= ∅; which is equivalent (by Lemma 2.5) to
X ∩ (X ∩ (X ∩Y )′)′ ⊆ Y . By construction of Π, X = ρ(α) and Y = ρ(β) for
certain α, β. By the orthomodular rule there holds α∧¬(α∧¬(α∧β)) |− β.
Consequently, for any i ∈ I, i |= α ∧ ¬(α ∧ ¬(α ∧ β)) y i |= β. Hence,
ρ(α) ∩ (ρ(α) ∩ (ρ(α) ∩ ρ(β))′)′ ⊆ ρ(β).

Of course, also the canonical model of OL could be constructed by taking
Π as the set of all propositions that are “meanings” of formulas. Neverthe-
less, in this case, we would lose the following important information: the
canonical model of OL gives rise to an algebraically complete realization
(closed under infinitary intersection).

7 The intractability of orthomodularity

As we have seen, the proposition-ortholattice in a Kripkean realization
K = 〈I,R,Π , ρ〉 does not generally coincide with the (algebraically) com-
plete ortholattice of all propositions of the orthoframe 〈I,R〉 4. When Π
is the set of all propositions, K will be called standard . Thus, a standard
orthomodular Kripkean realization is a standard realization, where Π is or-
thomodular. In the case of OL, every non standard Kripkean realization
can be naturally extended to a standard one (see the proof of Theorem 2.3).
In particular, Π can be always embedded into the complete ortholattice of
all propositions of the orthoframe at issue. Moreover, as we have learnt
from the completeness proof, the canonical model of OL is standard. In the
case of OQL, instead, there are variuos reasons that make significant the
distinction between standard and non standard realizations:

(i) Orthomodularity is not elementary (Goldblatt 1984). In other words,

4 For the sake of simplicity, we indicate briefly by Π the ortholattice 〈Π ,⊑ , ′ , 1 ,0〉.
Similarly, in the case of other structures dealt with in this section.
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there is no way to express the orthomodular property of the ortholat-
tice Π in an orthoframe 〈I,R〉 as an elementary (first-order) property.

(ii) It is not known whether every orthomodular lattice is embeddable into
a complete orthomodular lattice.

(iii) It is an open question whether OQL is characterized by the class of
all standard orthomodular Kripkean realization.

(iv) It is not known whether the canonical model of OQL is standard. Try
and construct a canonical realization for OQL by taking Π as the set
of all possible propositions (similarly to the OL-case). Let us call such
a realization a pseudo canonical realization. Do we obtain in this way
an OQL-realization, satisfying the orthomodular property? In other
words, is the pseudo canonical realization a model of OQL?

In order to prove that OQL is characterized by the class of all standard
Kripkean realizations it would be sufficient to show that the canonical model
belongs to such a class. Should orthomodularity be elementary, then, by a
general result proved by Fine, this problem would amount to showing the
following statement: there is an elementary condition (or a set thereof)
implying the orthomodularity of the standard pseudo canonical realization.
Result (i), however, makes this way definitively unpracticable.

Notice that a positive solution to problem (iv) would automatically pro-
vide a proof of the full equivalence between the algebraic and the Kripkean

consequence relation (T |=
A

OQL
α iff T |=

K

OQL
α). If OQL is characterized by a

standard canonical model, then we can apply the same argument used in the
case of OL, the ortholattice Π of the canonical model being orthomodular.
By similar reasons, also a positive solution to problem (ii) would provide a
direct proof of the same result. For, the orthomodular lattice Π of the (not
necessarily standard) canonical model of OQL would be embeddable into a
complete orthomodular lattice.

We will now present Goldblatt’s result proving that orthomodularity is
not elementarity. Further, we will show how orthomodularity leaves defeated
one of the most powerful embedding technique: the MacNeille completion
method.

Orthomodularity is not elementary

Let us consider a first-order language L2 with a single predicate denoting
a binary relation R. Any frame 〈I,R〉 (where I is a non-empty set and R
any binary relation) will represent a classical realization of L2.
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Definition 7.1 Elementary class.

(i) Let Γ be a class of frames. A possible property P of the elements of Γ
is called first-order (or elementary) iff there exists a sentence η of L2

such that for any 〈I,R〉 ∈ Γ:

〈I,R〉 |= η iff 〈I,R〉 has the property P .

(ii) Γ is said to be an elementary class iff the property of being in Γ is an
elementary property of Γ.

Thus, Γ is an elementary class iff there is a sentence η of L2 such that

Γ = {〈I,R〉 | 〈I,R〉 |= η} .

Definition 7.2 Elementary substructure.
Let 〈I1, R1〉 , 〈I2, R2〉 be two frames.

(a) 〈I1, R1〉 is a substructure of 〈I2, R2〉 iff the following conditions are
satisfied:

(i) I1 ⊆ I2;

(ii) R1 = R2 ∩ (I1 × I1);

(b) 〈I1, R1〉 is an elementary substructure of 〈I2, R2〉 iff the following con-
ditions hold:

(i) 〈I1, R1〉 is a substructure of 〈I2, R2〉;

(ii) For any formula α(x1, . . . , xn) of L2 and any i1, . . . , in of I1:

〈I1, R1〉 |= α[i1, . . . in] iff 〈I2, R2〉 |= α[i1, . . . in].

In other words, the elements of the “smaller” structure satisfy exactly the
same L2-formulas in both structures. The following Theorem ((Bell and
Slomson 1969))provides an useful criterion to check whether a substructure
is an elementary substructure.

Theorem 7.1 Let 〈I1, R1〉 be a substructure of 〈I2, R2〉. Then, 〈I1, R1〉
is an elementary substructure of 〈I2, R2〉 iff whenever α(x1, · · · , xn, y) is a
formula of L2 (in the free variables x1, · · · , xn, y) and i1, · · · , in are elements
of I1 such that for some j ∈ I2, 〈I2, R2〉 |= α[i1, · · · , in, j], then there is some
i ∈ I1 such that 〈I2, R2〉 |= α[i1, · · · , in, i].
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Let us now consider a pre-Hilbert space 5 H and let H+ := {ψ ∈ H | ψ 6= 0},
where 0 is the null vector. The pair

〈

H+,⊥/
〉

is an orthoframe, where ∀ψ, φ ∈ H+: ψ ⊥/ φ iff the inner product of ψ
and φ is different from the null vector 0 (i.e., (ψ, φ) 6= 0). Let Π(H) be the
ortholattice of all propositions of 〈H+,⊥/ 〉, which turns out to be isomorphic
to the ortholattice C(H) of all (not necessarily closed) subspaces of H (a
proposition is simply a subspace devoided of the null vector). The following
deep Theorem, due to Amemiya and Halperin (Varadarajan 1985) permits
us to characterize the class of all Hilbert spaces in the larger class of all
pre-Hilbert spaces, by means of the orthomodular property.

Theorem 7.2 Amemiya-Halperin Theorem.
C(H) is orthomodular iff H is a Hilbert space.

In other words, C(H) is orthomodular iff H is metrically complete.
As is well known (Bell and Slomson 1969), the property of “being metri-

cally complete” is not elementary. On this basis, it will be highly expected
that also the orthomodular property is not elementary. The key-lemma in
Goldblatt’s proof is the following:

Lemma 7.1 Let Y be an infinite-dimensional (not necessarily closed) sub-
space of a separable Hilbert space H. If α is any formula of L2 and ψ1, · · · , ψn

are vectors of Y such that for some φ ∈ H, 〈H+,⊥/ 〉 |= α[ψ1, · · · , ψn, φ], then
there is a vector ψ ∈ Y such that 〈H+,⊥/ 〉 |= α[ψ1, · · · , ψn, ψ].

As a consequence one obtains:

Theorem 7.3 The orthomodular property is not elementary.

Proof. Let H be any metrically incomplete pre-Hilbert space. Let H be its
metric completion. Thus H is an infinite-dimensional subspace of the Hilbert
space H. By Lemma 7.1 and by Theorem 7.1, 〈H+,⊥/ 〉 is an elementary sub-

structure of
〈

H
+
,⊥/

〉

. At the same time, by Amemiya-Halperin’s Theorem,

C(H) cannot be orthomodular, because H is metrically incomplete. How-
ever, C(H) is orthomodular. As a consequence, orthomodularity cannot be
expressed as an elementary property.

5A pre-Hilbert space is a vector space over a division ring whose elements are the real
or the complex or the quaternionic numbers such that an inner product (which transforms
any pair of vectors into an element of the ring) is defined. Differently from Hilbert spaces,
pre-Hilbert spaces need not be metrically complete.
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The embeddability problem

As we have seen in Section 2, the class of all propositions of an or-
thoframe is a complete ortholattice. Conversely, the representation theorem
for ortholattices states that every ortholattice B = 〈B,⊑ , ′ ,1 ,0〉 is embed-
dable into the complete ortholattice of all propositions of the orthoframe
〈B+,⊥/ 〉, where: B+ := B − {0} and ∀a, b ∈ B: a ⊥/ b iff a 6⊑ b′. The
embedding is given by the map

h : a 7→ 〈a ],

where 〈a ] is the quasi-ideal generated by a. In other words: 〈a ] = {b 6= 0 | b ⊑ a}.
One can prove the following Theorem:

Theorem 7.4 Let B = 〈B,⊑ , ′ ,1 ,0〉 be an ortholattice. ∀X ⊆ B, X is a
proposition of 〈B+,⊥/ 〉 iff X = l(u(X)), where:

u(Y ) :=
{

b ∈ B+ | ∀a ∈ Y : a ⊑ b
}

and l(Y ) :=
{

b ∈ B+ | ∀a ∈ Y : b ⊑ a
}

.

Accordingly, the complete ortholattice of all propositions of the orthoframe
〈B+,⊥/ 〉 is isomorphic to the MacNeille completion (or completion by cuts)
of B (Kalmbach 1983). 6 At the same time, orthomodularity (similarly to
distributivity and modularity) is not preserved by the MacNeille completion,
as the following example shows (Kalmbach 1983).

Let C0
(2)(IR) be the class of all continuous complex-valued functions f on

IR such that
∫ +∞

−∞

| f(x) |2 dx <∞

Let us define the following bilinear form (. , .) : C0
(2)(IR) × C0

(2)(IR) → |C

(representing an inner product):

(f, g) =

∫ +∞

−∞

f∗(x)g(x)dx,

where f∗(x) is the complex conjugate of f(x). It turns out that C0
(2)(IR),

equipped with the inner product (. , .), gives rise to a metrically incomplete
infinite-dimensional pre-Hilbert space. Thus, by Amemiya-Halperin’s The-
orem (Theorem 7.2), the algebraically complete ortholattice C(C0

(2)(IR)) of

6The Mac Neille completion of an ortholattice B = 〈B,⊑ , ′ ,1 ,0〉 is the lattice
whose support consists of all X ⊆ B such that X = l(u(X)), where: u(Y ) :=
{b ∈ B | ∀a ∈ Y : a ⊑ b} and l(Y ) := {b ∈ B | ∀a ∈ Y : b ⊑ a}. Clearly the only differ-
ence between the proposition-lattice of the frame

〈

B+,⊥/
〉

and the Mac Neille completion
of B is due to the fact that propositions do not contain 0.

44



all subspaces of C0
(2)(IR) cannot be orthomodular. Now consider the sub-

lattice FI of C(C0
(2)(IR)), consisting of all finite or cofinite dimensional sub-

spaces. It is not hard to see that FI is orthomodular. One can prove that
C(C0

(2)(IR)) is sup-dense in FI; in other words, any X ∈ C(C0
(2)(IR)) is the

sup of a set of elements of FI. Thus, by a theorem proved by McLaren
(Kalmbach 1983), the MacNeille completion of C(C0

(2)(IR)) is isomorphic to

the MacNeille completion of FI. Since C(C0
(2)(IR)) is algebraically complete,

the MacNeille completion of C(C0
(2)(IR)) is isomorphic to C(C0

(2)(IR)) itself.
As a consequence, FI is orthomodular, while its MacNeille completion is
not.

8 Hilbert quantum logic and the orthomodular

law

As we have seen, the prototypical models of OQL that are interesting from
the physical point of view are based on the class H of all Hilbert lattices,
whose support is the set C(H) of all closed subspaces of a Hilbert space
H. Let us call Hilbert quantum logic (HQL) the logic that is semantically
characterized by H. A question naturally arises: do OQL and HQL repre-
sent one and the same logic? As proved by Greechie (1981) 7, this question
has a negative answer: there is a lattice-theoretical equation (the so-called
orthoarguesian law) that holds in H, but fails in a particular orthomodu-
lar lattice. As a consequence, OQL does not represent a faithful logical
abstraction from its quantum theoretical origin.

Definition 8.1 Let Γ be a class of orthomodular lattices. We say that
OQL is characterized by Γ iff for any T and any α the following condition
is satisfied:

T |=
OQL
α iff for any B ∈ Γ and any A = 〈B, v〉 : T |=A α.

In order to formulate the orthoarguesian law in an equational way, let
us first introduce the notion of Sasaki projection.

Definition 8.2 The Sasaki projection.
Let B be an orthomodular lattice and let a, b be any two elements of B. The
Sasaki projection of a onto b, denoted by a ⋓ b, is defined as follows:

a ⋓ b := (a ⊔ b′) ⊓ b.

7See also Kalmbach (1983).
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Figure 3: The Greechie diagram of G12

It is easy to see that two elements a, b of an orthomodular lattice are
compatible (a = (a ⊓ b′) ⊔ (a ⊓ b)) iff a ⋓ b = a ⊓ b. Consequently, in any
Boolean lattice, ⋓ coincides with ⊓.

Definition 8.3 The orthoarguesian law.

a ⊑ b ⊔
{

(a ⋓ b′) ⊓ [(a ⋓ c′) ⊔ ((b ⊔ c) ⊓ ((a ⋓ b′) ⊔ (a ⋓ c′)))]
}

(OAL)

Greechie has proved that (OAL) holds in H but fails in a particular finite
orthomodular lattice. In order to understand Greechie’s counterexample, it
will be expedient to illustrate the notion of Greechie diagram.

Let us first recall the definition of atom.

Definition 8.4 Atom.
Let B = 〈B,⊑,1,0〉 any bounded lattice. An atom is an element a ∈ B−{0}
such that:

∀b ∈ B : 0 ⊑ b ⊑ a y b = 0 or a = b.

Greechie diagrams are hypergraphs that permits us to represent partic-
ular orthomodular lattices. The representation is essentially based on the
fact that a finite Boolean algebra is completely determined by its atoms. A
Greechie diagram of an orthomodular lattice B consists of points and lines.
Points are in one-to-one correspondence with the atoms of B; lines are in
one-to-one correspondence with the maximal Boolean subalgebras 8 of B.
Two lines are crossing in a common atom. For example, the Greechie dia-
gram pictured in Figure 3. represents the orthomodular lattice G12 (Figure
4).

Let us now consider a particular finite orthomodular lattice, called B30,
whose Greechie diagram is pictured in Figure 3.

8A maximal Boolean subalgebra of an ortholattice B is a Boolean subalgebra of B, that
is not a proper subalgebra of any Boolean subalgebra of B.
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Theorem 8.1 (OAL) fails in B30.

Proof. There holds: a ⋓ b′ = (a ⊔ b) ⊓ b′ = s′ ⊓ b′ = e, a ⋓ c′ = (a ⊔ c) ⊓ c′ =
n′ ⊓ c′ = i and b ⊔ c = l′. Thus,

b ⊔ {(a ⋓ b′) ⊓ [(a ⋓ c′) ⊔ ((b ⊔ c) ⊓ ((a ⋓ b′) ⊔ (a ⋓ c′)))]}

= b ⊔
{

e ⊓
[

i ⊔ (l′ ⊓ (e ⊔ i))
]}

= b ⊔
{

e ⊓
[

i ⊔ (l′ ⊓ g′)
]}

= b ⊔ (e ⊓ (i ⊔ 0))

= b ⊔ (e ⊓ i)

= b

6⊒ a.

Hence, there are two formulas α and β (whose valuations in a convenient
realization represent the left- and right- hand side of (OAL), respectively)
such that α |=

OQL
/ β. At the same time, for any C(H) ∈ H and for any

realization A = 〈C(H), v〉, there holds: α |=A β.
As a consequence, OQL is not characterized by H. Accordingly, HQL

is definitely stronger than OQL. We are faced with the problem of finding
out a calculus, if any, that turns out to be sound and complete with respect
to H. The main question is whether the class of all formulas valid in H is
recursively enumerable. In order to solve this problem, it would be sufficient
(but not necessary) to show that the canonical model of HQL is isomorphic
to the subdirect product of a class of Hilbert lattices. So far, very little is
known about this question.

Lattice characterization of Hilbert lattices

As mentioned in the Introduction, the algebraic structure of the set E of the
events in an event-state system 〈E , S〉 is usually assumed to be a σ-complete
orthomodular lattice. Hilbert lattices, however, satisfy further important
structural properties. It will be expedient to recall first some standard
lattice theoretical definitions. Let B = 〈B,⊑,1,0〉 be any bounded lattice.

Definition 8.5 Atomicity .
A bounded lattice B is atomic iff ∀a ∈ B − {0} there exists an atom b such
that b ⊑ a.
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Definition 8.6 Covering property .
Let a, b be two elements of a lattice B. We say that b covers a iff a ⊑ b , a 6= b,
and ∀c ∈ B : a ⊑ c ⊑ b y a = c or b = c.
A lattice B satisfies the covering property iff ∀a, b ∈ B: a covers a ⊓ b y

a ⊔ b covers b.

Definition 8.7 Irreducibility .
Let B be an orthomodular lattice. B is said to be irreducible iff

{a ∈ B | ∀b ∈ B : a is compatible with b} = {0,1}.

One can prove the following theorem:

Theorem 8.2 Any Hilbert lattice is a complete, irreducible, atomic ortho-
modular lattice, which satisfies the covering property.

Are these conditions sufficient for a lattice B to be isomorphic to (or
embeddable into) a Hilbert lattice? In other words, is it possible to capture
lattice-theoretically the structure of Hilbert lattices? An important result
along these lines is represented by the so-called Piron-McLaren’s coordina-
tization theorem (Varadarajan 1985).

Theorem 8.3 Piron-McLaren coordinatization theorem.
Any lattice B (of length 9 at least 4) that is complete, irreducible, atomic
with the covering property, is isomorphic to the orthomodular lattice of all
(. , .)-closed subspaces of a Hilbertian space 〈V, θ, (. , .),D〉. 10

Do the properties of the coordinatized lattice B restrict the choice to one
of the real, the complex or the quaternionic numbers ( |Q) and therefore
to a classical Hilbert space? Quite unexpectedly, Keller (1980) proved a
negative result: there are lattices that satisfy all the conditions of Piron-
McLaren’s Theorem; at the same time, they are coordinatized by Hilbertian
spaces over non-archimedean division rings. Keller’s counterexamples have
been interpreted by some authors as showing the definitive impossibility for

9 The length of a lattice B is the supremum over the numbers of elements of all the
chains of B, minus 1.

10 A Hilbertian space is a 4-tuple 〈V, θ, (. , .),D〉, where V is a vector space over a
division ring D, θ is an involutive antiautomorphism on D, and (. , .) (to be interpreted
as an inner product) is a definite symmetric θ-bilinear form on V. Let X be any subset of
V and let X ′ := {ψ ∈ V | ∀φ ∈ X, (ψ, φ) = 0}; X is called (. , .)-closed iff X = X ′′.
If D is either IR or |C or |Q and the antiautomorphism θ is continuous, then 〈V, θ, (. , .),D〉
turns out to be a classical Hilbert space.
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the quantum logical approach to capture the Hilbert space mathematics.
This impossibility was supposed to demonstrate the failure of the quantum
logic approach in reaching its main goal: the “bottom-top” reconstruction of
Hilbert lattices. Interestingly enough, such a negative conclusion has been
recently contradicted by an important result proved by Solèr (Solèr 1995):
Hilbert lattices can be characterized in a lattice-theoretical way. Solèr result
is essentially based on the following Theorem:

Theorem 8.4 Let 〈V, θ, (. , .),D〉 be an infinite-dimensional Hilbertian space
over a division ring D. Suppose our space includes a k-orthogonal set
{ψi}i∈IN, i.e., a family of vectors of V such that ∀i : (ψi, ψi) = k and
∀i, j(i 6= j) : (ψi, ψj) = 0. Then D is either IR or |C or |Q. Therefore
〈V, θ, (. , .),D〉 is a classical Hilbert space.

As a consequence, the existence of k-orthogonal sets characterizes Hilbert
spaces in the class of all Hilbertian spaces. The point is that the existence
of such sets admits of a purely lattice-theoretic characterization, by means
of the so-called angle bisecting condition (Morash 1973). Accordingly, every
lattice which satisfies the angle bisecting condition (in addition to the usual
conditions of Piron-McLaren’s Theorem) is isomorphic to a classical Hilbert
lattice.

Solèr’s Theorem is a purely mathematical result and a plausible phys-
ical interpretation of the angle bisecting condition is presently beyond the
research horizon.

9 First-order quantum logic

The most significant logical and metalogical peculiarities of QL arise at the
sentential level. At the same time the extension of sentential QL to a first-
order logic seems to be quite natural. Similarly to the case of sentential
QL, we will characterize first-order QL both by means of an algebraic and
a Kripkean semantics.

Suppose a standard first-order language with predicates Pn
m and individ-

ual constants am.11 The primitive logical constants are the connectives ¬,∧
and the universal quantifier ∀. The concepts of term, formula and sentence
are defined in the usual way. We will use x, y, z, x1, · · · , xn, · · · as metavari-
ables ranging over the individual variables, and t, t1, t2, · · · as metavariables

11For the sake of simplicity, we do not assume functional symbols.
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ranging over terms. The existential quantifier ∃ is supposed defined by a
generalized de Morgan law:

∃xα := ¬∀x¬α.

Definition 9.1 Algebraic realization for first-order OL.
An algebraic realization for (first-order) OL is a system A =

〈

BC ,D , v
〉

where:

(i) BC =
〈

BC ,⊑ , ′ ,1 ,0
〉

is an ortholattice closed under infinitary
infimum (

⊔

) and supremum (
⊔

) for any F ⊆ BC such that F ∈ C
(C being a particular family of subsets of BC).

(ii) D is a non-empty set (disjoint from B) called the domain of A.

(iii) v is the valuation-function satisfying the following conditions:

• for any constant am: v(am) ∈ D; for any predicate Pn
m, v(Pn

n )
is an n-ary attribute in A, i.e., a function that associates to
any n-tuple 〈d1, · · · ,dn〉 of elements of D an element (truth-
value) of B;

• for any interpretation σ of the variables in the domain D (i.e.,
for any function from the set of all variables into D) the pair
〈v, σ〉 (abbreviated by vσ and called generalized valuation)
associates to any term an element in D and to any formula
a truth-value in B, according to the conditions:

vσ(am) = v(am)

vσ(x) = σ(x)

vσ(Pn
mt1, · · · , tn) = v(Pn

m)(vσ(t1), · · · , vσ(tn))

vσ(¬β) = vσ(β)′

vσ(β ∧ γ) = vσ(β) ⊓ vσ(γ)

vσ(∀xβ) =

⊔

{

vσ[x/d](β) | d ∈ D
}

, where
{

vσ[x/d](β) | d ∈ D
}

∈
C

(σ[x/d] is the interpretation that associates to x the individual
d and differs from σ at most in the value attributed to x).

Definition 9.2 Truth and logical truth.
A formula α is true in A =

〈

BC ,D, v
〉

(abbreviated as |=A α) iff for any
interpretation of the variables σ, vσ(α) = 1;
α is a logical truth of OL (|=

OL
α) iff for any A, |=A α

51



Definition 9.3 Consequence in a realization and logical consequence.
Let A =

〈

BC ,D, v
〉

be a realization. A formula α is a consequence of T in
A (abbreviated T |=A α ) iff for any element a of B and any interpretation
σ: if for any β ∈ T , a ⊑ vσ(β), then a ⊑ vσ(α);
α is a logical consequence of T (T |=

OL
α ) iff for any realization A: T |=A α.

Definition 9.4 Kripkean realization for (first-order) OL.
A Kripkean realization for (first-order) OL is a system K =

〈

I ,R ,ΠC , U , ρ
〉

where:

(i)
〈

I ,R ,ΠC
〉

satisfies the same conditions as in the sentential case;
further ΠC is closed under infinitary intersection for any F ⊆ Π
such that F ∈ C (where C is a particular family of subsets of
ΠC);

(ii) U , called the domain of K, is a non-empty set, disjoint from the
set of worlds I. The elements of U are individual concepts u such
that for any world i: u(i) is an individual (called the reference of
u in the world i). An individual concept u is called rigid iff for any
pairs of worlds i, j: u(i) = u(j). The set Ui = {u(i) | u ∈ U}
represents the domain of individuals in the world i . Whenever
Ui = Uj for all i,j we will say that the realization K has a constant
domain.

(iii) ρ associates a meaning to any individual constant am and to any
predicate Pn

m according to the following conditions:

ρ(am) is an individual concept in U .

ρ(Pn
m) is a predicate-concept , i.e. a function that associates to

any n-tuple of individual concepts 〈u1, · · · ,un〉 a proposition
in ΠC ;

(iv) for any interpretation of the variables σ in the domain U , the
pair 〈ρ , σ〉 (abbreviated as ρσ and called valuation) associates
to any term t an individual concept in U and to any formula a
proposition in ΠC according to the conditions:

ρσ(x) = σ(x)

ρσ(am) = ρ(am)

ρσ(Pn
mt1, · · · , tn) = ρ(Pn

m)(ρσ(t1), · · · , ρσ(tn))

ρσ(¬β) = ρσ(β)′

ρσ(β ∧ γ) = ρσ(β) ∩ ρσ(γ)
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ρσ(∀xβ) =
⋂

{

ρσ[x/u](β) | u ∈ U
}

, where
{

ρσ[x/u](β) | u ∈ U
}

∈
C.

For any world i and any interpretation σ of the variables, the triplet 〈ρ , i , σ〉
(abbreviated as ρσ

i ) will be called a world-valuation.

Definition 9.5 Satisfaction.
ρσ

i |= α (ρσ
i satisfies α) iff i ∈ ρσ(α).

Definition 9.6 Verification.
ρσ

i |= α (i verifies α) iff for any σ: ρσ
i |= α.

Definition 9.7 Truth and logical truth.
|=K α (α is true in K) iff for any i: i |= α;
|=

OL
α (α is a logical truth of OL) iff for any K: |=K α.

Definition 9.8 Consequence in a realization and logical consequence.
T |=K α iff for any i of K and any σ: ρσ

i |= T y ρσ
i |= α;

T |=
OL
α iff for any realization K: T |=K α.

The algebraic and the Kripkean characterization for first-order OQL

can be obtained, in the obvious way, by requiring that any realization be
orthomodular.

In both semantics for first-order QL one can prove a coincidence lemma:

Lemma 9.1 Given A =
〈

BC ,D , v
〉

and K =
〈

I ,R ,ΠC , U, ρ
〉

:

(9.1.1) If σ and σ∗ coincide in the values attributed to the variables oc-
curring in a term t, then vσ(t) = vσ∗

(t); ρσ(t) = ρσ∗
(t).

(9.1.2) If σ and σ∗ coincide in the values attributed to the free variables
occurring in a formula α, then vσ(α) = vσ∗

(α); ρσ(α) = ρσ∗
(α).

One can easily prove, like in the sentential case, the following lemma:

Lemma 9.2

(9.2.1) For any algebraic realization A there exists a Kripkean realization
KA such that for any α: |=A α iff |=KA α. Further, if A is
orthomodular then KA is orthomodular.
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(9.2.2) For any Kripkean realization K, there exists an algebraic realiza-
tion AK such that for any for any α: |=K α iff |=AK α. Further,
if K is orthomodular then AK is orthomodular.

An axiomatization of first-order OL (OQL) can be obtained by adding
to the rules of our OL (OQL)-sentential calculus the following new rules:

(PR1) T ∪ {∀xα} |−α(x/t), where α(x/t) indicates a legitimate sub-
stitution).

(PR2)
T |−α

T |− ∀xα
(provided x is not free in T ).

All the basic syntactical notions are defined like in the sentential case.
One can prove that any consistent set of sentences T admits of a consistent
inductive extension T ∗, such that T ∗ |− ∀xα(t) whenever for any closed term
t, T ∗ |−α(t). The “weak Lindenbaum theorem” can be strengthened as
follows: if T |−/¬α then there exists a consistent and inductive T ∗ such that:

T is syntactically compatible with T ∗ and T ∗ |−α.12

One can prove a soundness and a completeness theorem of our calculus
with respect to the Kripkean semantics.

Theorem 9.1 Soundness.
T |−α y T |= α.

Proof. Straightforward.

Theorem 9.2 Completeness.
T |= α y T |−α.

Sketch of the proof. Like in the sentential case, it is sufficient to construct
a canonical model K =

〈

I ,R ,ΠC , U , ρ
〉

such that T |−α iff T |=K α.

Definition of the canonical model

(i) I is the set of all consistent, deductively closed and inductive sets of
sentences expressed in a common language LK , which is an extension
of the original language;

12By Definition 6.6, T is syntactically compatible with T ∗ iff there is no formula α such
that T |−α and T ∗ |− ¬α.
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(ii) R is determined like in the sentential case;

(iii) U is a set of rigid individual concepts that is naturally determined by
the set of all individual constants of the extended language LK. For
any constant c of LK, let uc be the corresponding individual concept
in U . We require: for any world i, uc(i) = c. In other words, the
reference of the individual concept uc is in any world the constant c.
We will indicate by cu the constant corresponding to u.

(iv) ρ(am) = uam ;

ρ(Pn
m)(uc1

1 , . . . ,u
cn
n ) = {i | Pn

mc1, . . . , cn ∈ i} .

Our ρ is well defined since one can prove for any sentence α of LK:

i |−/α y ∃j ⊥/ i : j |−¬α.

As a consequence, ρσ(Pn
mt1, . . . , tn) is a possible proposition.

(v) ΠC is the set of all “meanings” of formulas (i.e., X ∈ ΠC iff ∃α∃σ(X =
ρσ(α)); C is the set of all sets

{

ρσ[x/u](β) | u ∈ U
}

for any formula β.

One can easily check that K is a “good” realization with a constant
domain.

Lemma 9.3 Lemma of the canonical model.
For any α, any i ∈ I and any σ:

ρσ
i |= α iff ασ ∈ i,

where ασ is the sentence obtained by substituting in α any free variable x
with the constant cσ(x) corresponding to the individual concept σ(x).

Sketch of the proof. By induction on the length of α. The cases α =
Pn

mt1, · · · , tn, α = ¬β, α = β ∧ γ are proved by an obvious transformation
of the sentential argument. Let us consider the case α = ∀xβ and suppose
x occurring in β (otherwise the proof is trivial). In order to prove the left
to right implication, suppose ρσ

i |= ∀xβ. Then, for any u in U , ρσ[x/u] |=
β(x). Hence, by inductive hypothesis, ∀u ∈ U , [β(x)]σ[x/u] ∈ i. In other
words, for any constant cu of i: [β(x)]σ(x/cu) ∈ i. And, since i is inductive
and deductively closed: ∀xβ(x)σ ∈ i. In order to prove the right to left
implication, suppose [∀xβ(x)]σ ∈ i. Then, [by (PR1)], for any constant c of

i: [β(x/c)]σ ∈ i. Hence by inductive hypothesis: for any uc ∈ U , ρ
σ[x/uc]
i |=

β(x), i.e., ρσ
i |= ∀xβ(x). On this ground, similarly to the sentential case,

one can prove T |−α iff T |=K α.
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First-order QL can be easily extended (in a standard way) to a first-
order logic with identity. However, a critical problem is represented by the
possibility of developing, within this logic, a satisfactory theory of descrip-
tions. The main difficulty can be sketched as follows. A natural condition to
be required in any characterization of a ι-operator is obviously the following:

∃x {β(x) ∧ ∀y [(β(y) ∧ x = y) ∨ (¬β(y) ∧ ¬x = y)] ∧ α(x)}

is true y α(ιxβ(x)) is true.

However, in QL, the truth of the antecedent of our implication does not
generally guarantee the existence of a particular individual such that ιxβ can
be regarded as a name for such an individual. As a counterexample, let us
consider the following case (in the algebraic semantics): let A be 〈B ,D , v〉
where B is the complete orthomodular lattice based on the set of all closed
subspaces of the plane IR2, and D contains exactly two individuals d1,d2.
Let P be a monadic predicate and X,Y two orthogonal unidimensional
subspaces of B such that v(P )(d1) = X, v(P )(d2) = Y . If the equality
predicate = is interpreted as the standard identity relation (i.e., vσ(t1 =
t2) = 1, if vσ(t1) = vσ(t2); 0, otherwise), one can easily calculate:

v (∃x [Px ∧ ∀y((Py ∧ x = y) ∨ (¬Py ∧ ¬x = y))]) = 1.

However, for both individuals d1,d2 of the domain, we have:

vσ[x/d1](Px) 6= 1, vσ[x/d2](Px) 6= 1.

In other words, there is no precise individual in the domain that satisfies
the property expressed by predicate P !

10 Quantum set theories and theories of quasisets

An important application of QL to set theory has been developed by Takeuti
(1981). We will sketch here only the fundamental idea of this application.
Let L be a standard set-theoretical language. One can construct ortho-
valued models for L, which are formally very similar to the usual Boolean-
valued models for standard set-theory, with the following difference: the set
of truth-values is supposed to have the algebraic structure of a complete
orthomodular lattice, instead of a complete Boolean algebra. Let B be a
complete orthomodular lattice, and let ν, λ,... represent ordinal numbers.
An ortho-valued (set-theoretical) universe V is constructed as follows:
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V B =
⋃

ν∈On V (ν) , where:

V (0) = ∅.

V (ν+1) = {g | g is a function andDom(g) ⊆ V (ν) andRang(g) ⊆ B}.

V (λ) =
⋃

ν<λ V (ν), for any limit-ordinal λ.

( Dom(g) and Rang(g) are the domain and the range of function
g, respectively).

Given an orthovalued universe V B one can define for any formula of L the
truth-value [[α]]σ in B induced by any interpretation σ of the variables into
the universe V B.

[[x ∈ y]]σ =
⊔

g∈Dom(σ(y))

{

σ(y)(g) ⊓ [[x = z]]σ[z/g]
}

[[x = y]]σ =

⊔g∈Dom(σ(x))

{

σ(x)(g)  [[z ∈ y]]σ[z/g]
}

⊓

⊔g∈Dom(σ(y))

{

σ(y)(g)  [[z ∈ x]]σ[z/g]
}

.

where is the quantum logical conditional operation (a b := a′⊔ (a⊓ b),
for any a, b ∈ B).

A formula α is called true in the universe V B (|=V B α) iff [[α]]σ = 1, for
any σ.

Interestingly enough, the segment V (ω) of V B turns out to contain some
important mathematical objects, that we can call quantum-logical natural
numbers.

The standard axioms of set-theory hold in B only in a restricted form.
An extremely interesting property of V B is connected with the notion of
identity. Differently from the case of Boolean-valued models, the identity
relation in V B turns out to be non-Leibnizian. For, one can choose an
orthomodular lattice B such that:

6|=V B x = y → ∀z(x ∈ z ↔ y ∈ z).

According to our semantic definitions, the relation = represents a kind
of “extensional equality”. As a consequence, one may conclude that two
quantum-sets that are extensionally equal do not necessarily share all the
same properties. Such a failure of the Leibniz-substitutivity principle in
quantum set theory might perhaps find interesting applications in the field
of intensional logics.

A completely different approach is followed in the framework of the the-
ories of quasisets (or quasets). The basic aim of these theories is to provide
a mathematical description for collections of microobjects, which seem to
violate some characteristic properties of the classical identity relation.
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In some of his general writings, Schrödinger discussed the inconsistency
between the classical concept of physical object (conceived as an individual
entity) and the behaviour of particles in quantum mechanics. Quantum
particles – he noticed – lack individuality and the concept of identity cannot
be applied to them, similarly to the case of classical objects.

One of the aims of the theories of quasisets (proposed by da Costa,
French and Krause (1992)) is to describe formally the following idea de-
fended by Schrödinger: identity is generally not defined for microobjects.
As a consequence, one cannot even assert that an “electron is identical with
itself”. In the realm of microobjects only an indistinguishability relation
(an equivalence relation that may violate the substitutivity principle) makes
sense.

On this basis, different formal systems have been proposed. Generally,
these systems represent convenient generalizations of a Zermelo-Fraenkel like
set theory with urelements. Differently from the classical case, an urelement
may be either a macro or a micro object . Collections are represented by
quasisets and classical sets turn out to be limit cases of quasisets.

A somewhat different approach has been followed in the theory of quasets
(proposed in (Dalla Chiara and Toraldo di Francia 1993)).

The starting point is based on the following observation: physical kinds
and compound systems in QM seem to share some features that are charac-
teristic of intensional entities. Further, the relation between intensions and
extensions turns out to behave quite differently from the classical semantic
situations. Generally, one cannot say that a quantum intensional notion
uniquely determines a corresponding extension. For instance, take the no-
tion of electron, whose intension is well defined by the following physical
property: mass = 9.1 × 10−28g, electron charge = 4.8 × 10−10e.s.u., spin
= 1/2. Does this property determine a corresponding set , whose elements
should be all and only the physical objects that satisfy our property at a
certain time interval? The answer is negative. In fact, physicists have the
possibility of recognizing, by theoretical or experimental means, whether a
given physical system is an electron system or not. If yes, they can also
enumerate all the quantum states available within it. But they can do so
in a number of different ways. For example, take the spin. One can choose
the x-axis and state how many electrons have spin up and how many have
spin down. However, we could instead refer to the z-axis or any other direc-
tion, obtaining different collections of quantum states, all having the same
cardinality. This seems to suggest that microobject systems present an ir-
reducibly intensional behaviour: generally they do not determine precise
extensions and are not determined thereby. Accordingly, a basic feature of
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the theory is a strong violation of the extensionality principle.
Quasets are convenient generalizations of classical sets, where both the

extensionality axiom and Leibniz’ principle of indiscernibles are violated.
Generally a quaset has only a cardinal but not an ordinal number, since it
cannot be well ordered.

11 The unsharp approaches

The unsharp approaches to QT (first proposed by Ludwig (1983) and further
developed by Kraus, Davies, Mittelstaedt, Busch, Lahti, Bugajski, Beltram-
etti, Cattaneo and many others) have been suggested by some deep criticism
of the standard logico-algebraic approach. Orthodox quantum logic (based
on Birkhoff and von Neumann’s proposal) turns out to be at the same time
a total and a sharp logic. It is total because the meaningful propositions
are represented as closed under the basic logical operations: the conjunction
(disjunction) of two meaningful propositions is a meaningful proposition.
Further, it is also sharp, because propositions, in the standard interpreta-
tion, correspond to exact possible properties of the physical system under
investigation. These properties express the fact that “the value of a given
observable lies in a certain exact Borel set”.

As we have seen, the set of the physical properties, that may hold for
a quantum system, is mathematically represented by the set of all closed
subspaces of the Hilbert space associated to our system. Instead of closed
subspaces, one can equivalently refer to the set of all projections, that is in
one-to-one correspondence with the set of all closed subspaces. Such a cor-
respondence leads to a collapse of different semantic notions, which Foulis
and Randall described as the “metaphysical disaster” of orthodox QT. The
collapse involves the notions of “experimental proposition”, “physical prop-
erty”, “physical event” (which represent empirical and intensional con-
cepts), and the notion of proposition as a set of states (which corresponds
to a typical extensional notion according to the tradition of standard se-
mantics).

Both the total and the sharp character of QL have been put in question
in different contexts. One of the basic ideas of the unsharp approaches is a
“liberalization” of the mathematical counterpart for the intuitive notion of
“experimental proposition”. Let P be a projection operator in the Hilbert
space H, associated to the physical system under investigation. Suppose P
describes an experimental proposition and let W be a statistical operator
representing a possible state of our system. Then, according to one of the
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axioms of the theory (the Born rule), the number Tr(WP ) (the trace of
the operator WP ) will represent the probability-value that our system in
state W verifies P . This value is also called Born probability . However,
projections are not the only operators for which a Born probability can be
defined. Let us consider the class E(H) of all linear bounded operators E
such that for any statistical operator W ,

Tr(WE) ∈ [0, 1].

It turns out that E(H) properly includes the set P (H) of all projections on
H. The elements of E(H) represent, in a sense, a “maximal” mathematical
representative for the notion of experimental proposition, in agreement with
the probabilistic rules of quantum theory. In the framework of the unsharp
approach, E(H) has been called the set of all effects13. An important dif-
ference between projections and proper effects is the following: projections
can be associated to sharp propositions having the form “the value for the
observable A lies in the exact Borel set ∆”, while effects may represent also
fuzzy propositions like “the value of the observable A lies in the fuzzy Borel
set Γ”. As a consequence, there are effects E, different from the null pro-
jection |O, such that no state W can verify E with probability 1. A limit
case is represented by the semitransparent effect 1

21I (where 1I is the identity
operator), to which any state W assigns probability-value 1

2 .
From the intuitive point of view, one could say that moving to an unsharp

approach represents an important step towards a kind of “second degree of
fuzziness”. In the framework of the sharp approach, any physical event E
can be regarded as a kind of “clear” property. Whenever a state W assigns
to E a probability value different from 1 and 0, one can think that the
semantic uncertainty involved in such a situation totally depends on the
ambiguity of the state (first degree of fuzziness). In other words, even a
pure state in QT does not represent a logically complete information, that
is able to decide any possible physical event. In the unsharp approaches,
instead, one take into account also “genuine ambiguous properties”. This
second degree of fuzziness may be regarded as depending on the accuracy
of the measurement (which tests the property), and also on the accuracy
involved in the operational definition for the physical quantities which our
property refers to.

13It is easy to see that an effect E is a projection iff E2 := EE = E. In other words,
projections are idempotent effects.

60



12 Effect structures

Different algebraic structures can be induced on the class E(H) of all effects.
Let us first recall some definitions.

Definition 12.1 Involutive bounded poset (lattice).
An involutive bounded poset (lattice) is a structure B = 〈B ,⊑ , ′ ,1 ,0〉,
where 〈B ,⊑ ,1 ,0〉 is a partially ordered set (lattice) with maximum (1) and
minimum (0); ′ is a 1-ary operation on B such that the following conditions
are satisfied: (i) a′′ = a; (ii) a ⊑ b y b′ ⊑ a′.

Definition 12.2 Orthoposet.
An orthoposet is an involutive bounded poset that satisfies the non contra-
diction principle:

a ⊓ a′ = 0.

Definition 12.3 Orthomodular poset.
An orthomodular poset is an orthoposet that is closed under the orthogonal
sup (a ⊑ b′ y a ⊔ b exists) and satisfies the orthomodular property:

a ⊑ b y ∃c such that a ⊑ c′ and b = a ⊔ c.

Definition 12.4 Regularity.
An involutive bounded poset (lattice) B is regular iff a ⊑ a′ and b ⊑ b′ y

a ⊑ b′.

Whenever an involutive bounded poset B is a lattice, then B is regular iff it
satisfies the Kleene condition:

a ⊓ a′ ⊑ b ⊔ b′.

The set E(H) of all effects can be naturally structured as an involutive
bounded poset:

E(H) =
〈

E(H) ,⊑ , ′ ,1 ,0
〉

,

where

(i) E ⊑ F iff for any state (statistical operator) W , Tr(WE) ≤ Tr(WE)
(in other words, any state assigns to E a probability-value that is less
or equal than the probability-value assigned to F );
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(ii) 1, 0 are the identity (1I) and the null ( |O) projection, respectively;

(iii) E′ = 1 − E.

One can easily check that ⊑ is a partial order, ′ is an order-reversing invo-
lution, while 1 and 0 are respectively the maximum and the minimum with
respect to ⊑. At the same time this poset fails to be a lattice. Differently
from projections, some pairs of effects have no infimum and no supremum
as the following example shows (Greechie and Gudder n.d.):

Example 12.1 Let us consider the following effects (in the matrix-representation)
on the Hilbert space IR2:

E =

(

1
2 0
0 1

2

)

F =

(

3
4 0
0 1

4

)

G =

(

1
2 0
0 1

4

)

It is not hard to see that G ⊑ E,F . Suppose, by contradiction, that L =
E ⊓ F exists in E(IR2). An easy computation shows that L must be equal
to G. Let

M =

(

7
16

1
8

1
8

3
16

)

Then M is an effect such that M ⊑ E,F ; however, M 6⊑ L, which is a
contradiction.

In order to obtain a lattice structure, one has to embed E(H) into its
Mac Neille completion E(H).

The Mac Neille completion of an involutive bounded poset

Let 〈B ,⊑ ,1 ,0〉 be an involutive bounded poset. For any non-empty
subset X of B, let l(X) and u(X) represent respectively the set of all
lower bounds and the set of all upper bounds of X. Let MC(B) :=
{X ⊆ B | X = u(l(X))}. It turns out that X ∈ MC(B) iff X = X ′′,
where X ′ := {a ∈ B | ∀b ∈ X : a ⊑ b′}. Moreover, the structure

B =
〈

MC(B) ,⊆ ,′ , {0} , B
〉

is a complete involutive bounded lattice (which is regular if B is regu-
lar), where X ⊓ Y = X ∩ Y and X ⊔ Y = (X ∪ Y )′′.

It turns out that B is embeddable into B, via the map h : a → 〈a],
where 〈a] is the principal ideal generated by a. Such an embedding
preserves the infimum and the supremum, when existing in B.
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The Mac Neille completion of an involutive bounded poset does not
generally satisfies the non contradiction principle (a ⊓ a′ = 0 ) and the ex-
cluded middle principle (a⊔a′ = 1 ). As a consequence, differently from the
projection case, the Mac Neille completion of E(H) is not an ortholattice.
Apparently, our operation ′ turns out to behave as a fuzzy negation, both
in the case of E(H) and of its Mac Neille completion. This is one of the
reasons why proper effects (that are not projections) may be regarded as
representing unsharp physical properties, possibly violating the non contra-
diction principle.

The effect poset E(H) can be naturally extended to a richer structure,
equipped with a new complement ∼, that has an intuitionistic-like behaviour:

E∼ is the projection operator PKer(E) whose range is the kernelKer(E)
of E, consisting of all vectors that are transformed by the operator E
into the null vector.

By definition, the intuitionistic complement of an effect is always a pro-
jection. In the particular case, where E is a projection, it turns out that:
E′ = E∼. In other words, the fuzzy and the intuitionistic complement
collapse into one and the same operation.

The structure 〈E(H) ,⊑ , ′ , ∼ ,1 ,0〉 turns out to be a particular example
of a Brouwer Zadeh poset(Cattaneo and Nisticò 1986).

Definition 12.5 A Brouwer Zadeh poset (simply a BZ-poset) is a structure
〈B ,⊑ , ′ , ∼ ,1 ,0〉, where

(12.3.1) 〈B ,⊑ , ′ ,1 ,0〉 is a regular involutive bounded poset;

(12.3.2) ∼ is a 1-ary operation on B, which behaves like an intuitionistic
complement:

(i) a ⊓ a∼ = 0.

(ii) a ⊑ a∼∼.

(iii) a ⊑ b y b∼ ⊑ a∼.

(12.3.3) The following relation connects the fuzzy and the intuitionistic
complement:

a∼′ = a∼∼.

Definition 12.6 A Brouwer Zadeh lattice is a BZ-poset that is also a lat-
tice.

The Mac Neille completion of a BZ-poset
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Let B = 〈B ,⊑ , ′ , ∼ ,1 ,0〉 be a BZ-poset and let B the Mac Neille
completion of the regular involutive bounded poset 〈B ,⊑ , ′ , 1 ,0〉.
For any non-empty subset X of B, let

X∼ := {a ∈ B | ∀b ∈ X : a ⊑ b∼} .

It turns out that B = 〈MC(B),⊆ , ′ , ∼ , {0} , B〉 is a complete BZ-
lattice (Giuntini 1991), which B can be embedded into, via the map h
defined above.

Another interesting way of structuring the set of all effects can be ob-
tained by using a particular kind of partial structure, that has been called ef-
fect algebra (Foulis and Bennett 1994) or unsharp orthoalgebra (Dalla Chiara
and Giuntini (1994)). Abstract effect algebras are defined as follows:

Definition 12.7 An effect algebra is a partial structure A = 〈A ,⊞ ,1 ,0〉
where ⊞ is a partial binary operation on A. When ⊞ is defined for a pair
a , b ∈ A, we will write ∃ (a⊞ b). The following conditions hold:

(i) Weak commutativity

∃(a⊞ b) y ∃(b⊞ a) and a⊞ b = b⊞ a.

(ii) Weak associativity

[∃(b ⊞ c) and ∃(a ⊞ (b ⊞ c))] y [∃(a ⊞ b) and ∃((a ⊞ b) ⊞ c)
and a⊞ (b⊞ c) = (a⊞ b)⊞ c].

(iii) Strong excluded middle

For any a, there exists a unique x such that a⊞ x = 1.

(iv) Weak consistency

∃(a⊞ 1) y a = 0.

From an intuitive point of view, our operation ⊞ can be regarded as an
exclusive disjunction (aut), which is defined only for pairs of logically in-
compatible events.

An orthogonality relation ⊥, a partial order relation ⊑ and a generalized
complement ′ can be defined in any effect algebra.

Definition 12.8 Let A = 〈A ,⊞ ,1 ,0〉 be an effect algebra and let a, b ∈ A.

(i) a ⊥ b iff a⊞ b is defined in A.

(ii) a ⊑ b iff ∃c ∈ A such that a ⊥ c and b = a⊞ c.
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(iii) The generalized complement of a is the unique element a′ such
that a⊞ a′ = 1 (the definition is justified by the strong excluded
middle condition).

The category of all effect algebras turns out to be (categorically) equiva-
lent to the category of all difference posets, which have been first studied in
Kôpka and Chovanec (1994) and further investigated in Dvurečenskij and
Pulmannová (1994).

Effect algebras that satisfy the non contradiction principle are called
orthoalgebras:

Definition 12.9 An orthoalgebra is an effect algebra B = 〈B ,⊞ ,1 ,0〉 such
that the following condition is satisfied:

Strong consistency

∃ (a⊞ a) y a = 0.

In other words: 0 is the only element that is orthogonal to itself.

In order to induce the structure of an effect algebra on E(H), it is suffi-
cient to define a partial sum ⊞ as follows:

∃ (E ⊞ F ) iff E + F ∈ E(H),

where + is the usual sum-operator. Further:

∃ (E ⊞ F ) y E ⊞ F = E + F.

It turns out that the structure 〈E(H) ,⊞ , 1I , |O〉 is an effect algebra, where
the generalized complement of any effect E is just 1I−E. At the same time,
this structure fails to be an orthoalgebra.

Any abstract effect algebra

A = 〈A ,⊞ ,1 ,0〉

can be naturally extended to a kind of total structure, that has been termed
quantum MV-algebra(abbreviated as QMV-algebra) (Giuntini 1996).

Before introducing QMV-algebras, it will be expedient to recall the def-
inition of MV-algebra. As is well known, MV-algebras (multi-valued alge-
bras) have been introduced by Chang (Chang 1957) in order to provide an
algebraic proof of the completeness theorem for  Lukasiewicz ’ infinite-many-
valued logic Lℵ. A “privileged” model of this logic is based on the real
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interval [0, 1], which gives rise to a particular example of a totally ordered
(or linear) MV-algebra.

Both MV-algebras and quantum QMV-algebras are total structures hav-
ing the following form:

M = (M ,⊕ , ∗ ,1,0)

where:

(i) 1 ,0 represent the certain and the impossible propositions (or alterna-
tively the two extreme truth values);

(ii) ∗ is the negation-operation;

(iii) ⊕ represents a disjunction (or) which is generally non idempotent
(a⊕ a 6= a).

A (generally non idempotent) conjunction (and) is then defined via de
Morgan law:

a⊙ b := (a∗ ⊕ b∗)∗ .

On this basis, a pair consisting of an idempotent conjunction et (⋓) and
of an idempotent disjunction vel (⋒) is then defined:

a ⋓ b := (a⊕ b∗) ⊙ b

a ⋒ b := (a⊙ b∗) ⊕ b.

In the concrete MV-algebra based on [0, 1], the operations are defined as
follows:

(i) 1 = 1; 0 = 0;

(ii) a∗ = 1 − a;

(iii) ⊕ is the truncated sum:

a⊕ b =

{

a+ b, if a+ b ≤ 1;

1, otherwise.
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In this particular case, it turns out that:

a ⋓ b = Min{a, b}

(a et b is the minimum between a and b).

a ⋒ b = Max{a, b}

(a vel b is the maximum between a and b).

A standard abstract definition of MV-algebras is the following (Mangani
1973):

Definition 12.10 An MV-algebra is a structure M = (M ,⊕ , ∗ ,1,0),
where ⊕ is a binary operation, ∗ is a unary operation and 0 and 1 are
special elements of M , satisfying the following axioms:

(MV1) (a⊕ b) ⊕ c = a⊕ (b⊕ c)

(MV2) a⊕ 0 = a

(MV3) a⊕ b = b⊕ a

(MV4) a⊕ 1 = 1

(MV5) (a∗)∗ = a

(MV6) 0∗ = 1

(MV7) a⊕ a∗ = 1

(MV8) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a

In other words, an MV-algebra represents a particular weakening of a
Boolean algebra, where ⊕ and ⊙ are generally non idempotent.

A partial order relation can be defined in any MV-algebra in the following
way:

a � b iff a ⋓ b = a.

Some important properties of MV-algebras are the following:

(i) the structure 〈M ,� ,∗ ,1 ,0〉 is a bounded involutive distributive lat-
tice, where a ⋓ b (a ⋒ b) is the inf (sup) of a, b;

(ii) the non-contradiction principle and the excluded middle principles for
∗,⋓,⋒ are generally violated: a ⋒ a∗ 6= 1 and a ⋓ a∗ 6= 0 are pos-
sible. As a consequence, MV algebras permit to describe fuzzy and
paraconsistent situations;

(iii) a∗ ⊕ b = 1 iff a � b. In other words: similarly to the Boolean case,
“not-a or b” represents a good material implication;
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(iv) every MV-algebra is a subdirect product of totally ordered MV-algebras
(Chang 1958);

(v) an equation holds in the class of all MV-algebras iff it holds in the
concrete MV-algebra based on [0, 1] (Chang 1958).

Let us now go back to our effect-structure 〈E(H) ,⊞ ,1 ,0〉. The partial
operation ⊞ can be extended to a total operation ⊕ that behaves like a
truncated sum. For any E,F ∈ E(H):

E ⊕ F =

{

E + F, if ∃(E ⊞ F );

1, otherwise.

Further, let us put:
E∗ = 1I − E.

The structure E(H) = 〈E(H) ,⊕ ,∗ ,1 ,0〉 turns out to be “very close” to an
MV-algebra. However, something is missing: E(H) satisfies the first seven
axioms of our definition (MV1-MV7); at the same time one can easily check
that the axiom (MV8) (usually called “ Lukasiewicz axiom”) is violated. For
instance, let us consider two non trivial projections P,Q such that P is not
orthogonal to Q∗ and Q is not orthogonal to P ∗. Then, by definition of ⊕,
we have that P ⊕Q∗ = 1I and Q⊕ P ∗ = 1I. Hence: (P ∗ ⊕Q)∗ ⊕Q = Q 6=
P = (P ⊕Q∗)∗ ⊕ P .

As a consequence,  Lukasiewicz axiom must be conveniently weakened to
obtain a representation for our concrete effect structure. This can be done
by means of the notion of QMV-algebra

Definition 12.11 A quantum MV-algebra (QMV-algebra) is a structure
M = (M ,⊕ , ∗ ,1,0) where ⊕ is a binary operation, ∗ is a 1-ary operation,
and 0,1 are special elements of M . For any a, b ∈M : a⊙b := (a∗⊕b∗)∗ , a⋓
b := (a⊕ b∗) ⊙ a , a ⋒ b := (a⊙ b∗) ⊕ b. The following axioms are required:

(QMV1) a⊕ (b⊕ c) = (b⊕ a) ⊕ c,

(QMV2) a⊕ a∗ = 1,

(QMV3) a⊕ 0 = a,

(QMV4) a⊕ 1 = 1,

(QMV5) a∗∗ = a,

(QMV6) 0∗ = 1,

(QMV7) a⊕ [(a∗ ⋓ b) ⋓ (c ⋓ a∗)] = (a⊕ b) ⋓ (a⊕ c).
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The operations ⋓ and ⋒ of a QMV-algebra M are generally non com-
mutative. As a consequence, they do not represent lattice-operations. It is
not difficult to prove that a QMV-algebra M is an MV-algebra iff for all
a, b ∈M : a ⋓ b = b ⋓ a.

At the same time, any QMV-algebra M = (M ,⊕ , ∗ ,1,0) gives rise
to an involutive bounded poset 〈M ,� , ∗ ,1 ,0〉, where the partial order
relation is defined like in the MV case.

One can easily show that QMV-algebras represent a “good abstraction”
from the effect-structures:

Theorem 12.1 The structure E(H) = 〈E(H) ,⊕ ,∗ ,1 ,0〉 (where ⊕ ,∗ ,1 ,0
are the operations and the special elements previously defined) is a QMV-
algebra.

The QMV-algebra E(H) cannot be linear. For, one can easily check that
any linear QMV-algebra collapses into an MV-algebra.

In spite of this, our algebra of effects turns out to satisfy some weak
forms of linearity.

Definition 12.12 A QMV-algebra M is called weakly linear iff ∀a, b ∈M :
a ⋓ b = b or b ⋓ a = a.

Definition 12.13 A QMV-algebra M is called quasi-linear iff ∀a, b ∈ M :
a ⋓ b = a or a ⋓ b = b.

It is easy to see that every quasi-linear QMV-algebra is weakly linear, but
not the other way around (because ⋓ is not commutative).

A very strong relation connects the class of all effect algebras with the
class of all quasi-linear QMV-algebras: every effect algebra can be uniquely
transformed into a quasi-linear QMV-algebra and viceversa.

Let B = 〈B ,⊞ ,1 ,0〉 be an effect algebra. The operation ⊞ can be
extended to a total operation

⊞ : B ×B → B

in the following way:

a⊞ b :=

{

a⊞ b, if ∃(a⊞ b);

1, otherwise.

The resulting structure
〈

B ,⊞ , ′ , 1 ,0
〉

will be denoted by Bqmv.
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Viceversa, let M = (M ,⊕ , ∗ ,1,0) be a QMV-algebra. Then, one can
define a partial operation ⊕ on M such that

Dom(⊕) := {〈a, b〉 ∈M ×M | a � b∗} .

∃(a⊕ b) y a⊕ b = a⊕ b.

The resulting structure 〈M ,⊕ ,1 ,0〉 will be denoted by Mea.

Theorem 12.2 (Gudder 1995, Giuntini 1995) Let B = 〈B ,⊞ ,1 ,0〉 be an
effect algebra and let M = (M ,⊕ , ∗ ,1,0) be a QMV-algebra.

(i) Bqmv is a quasi-linear QMV-algebra;

(ii) Mea is an effect algebra;

(iii) (Bqmv)ea = B;

(iv) M is quasi-linear iff (Mea)qmv = M;

(v) Bqmv is the unique quasi-linear QMV-algebra such that ⊞ extends
⊞ and a � b in Bqmv implies a ⊑ b in B.

As a consequence, the effect algebra E(H) of all effects on a Hilbert space
H determines a quasi-linear QMV-algebra E(H)qmv = 〈E(H) ,⊕ ,∗ ,1 ,0〉,
where

E ⊕ F =

{

E + F, if ∃(E ⊞ F );

1, otherwise,

and
E∗ = 1 − E = E′.

These different ways of inducing a structure on the set of all unsharp
physical properties have suggested different logical abstractions. In the fol-
lowing sections, we will investigate some interesting examples of unsharp
quantum logics.

13 Paraconsistent quantum logic

Paraconsistent quantum logic (PQL) represents the most obvious unsharp
weakening of orthologic. In the algebraic semantics, this logic is character-
ized by the class of all realizations based on an involutive bounded lattice,
where the non contradiction principle (a ⊓ a′ = 0) is possibly violated.

In the Kripkean semantics, instead, PQL is characterized by the class of
all realizations 〈I ,R ,Π , ρ〉, where the accessibility relation R is symmetric
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(but not necessarily reflexive), while Π behaves like in the OL - case. Any
pair 〈I,R〉, where R is a symmetric relation on I, will be called symmetric
frame. Differently from OL and OQL, a world i of a PQL realization may
verify a contradiction. Since R is generally not reflexive, it may happen that
i ∈ ρ (α) and i ⊥ ρ (α). Hence: i |= α ∧ ¬α.

All the other semantic definitions are given like in the case of OL, mutatis
mutandis. On this basis, one can show that our algebraic and Kripkean
semantics characterize the same logic.

An axiomatization of PQL can be obtained by dropping the absurdity
rule and the Duns Scotus rule in the OL calculus. Similarly to OL, our
logic PQL satisfies the finite model property and is consequently decidable.

Hilbert-space realizations for PQL can be constructed, in a natural way,
both in the algebraic and in the Kripkean semantics. In the algebraic se-
mantics, take the realizations based on the Mac Neille completion of an
involutive bounded poset having the form

〈

E(H) ,⊑ ,′ ,1 ,0
〉

,

where H is any Hilbert space. In the Kripkean semantics, consider the
realizations based on the following frames

〈E(H) − {0} , 6⊥〉 ,

where ⊥/ represents the non orthogonality relation between effects (E 6⊥ F
iff E 6⊑ F ′). Differently from the projection case, here the accessibility
relation is symmetric but generally non-reflexive. For instance, the semi-
transparent effect 1

21I (representing the prototypical ambiguous property)
is a fixed point of the generalized complement ′; hence 1

21I ⊥ 1
21I and

(1
21I)′ ⊥ (1

21I)′. From the physical point of view, possible worlds are here
identified with possible pieces of information about the physical system un-
der investigation. Any information may be either maximal (a pure state)
or non maximal (a mixed state); either sharp (a projection) or unsharp (a
proper effect). Violations of the non contradiction principle are determined
by unsharp (ambiguous) pieces of knowledge. Interestingly enough, proper
mixed states (which cannot be represented as projections) turn out to coin-
cide with particular effects. In other words, within the unsharp approach,
it is possible to represent both states and events by a unique kind of math-
ematical object, an effect.

PQL represents a somewhat rough logical abstraction from the class
of all effect-realizations. An important condition that holds in all effect
realizations is represented by the regularity property (which may fail in a
generic PQL-realization).

71



Definition 13.1 An algebraic PQL realization 〈B , v 〉 is called regular iff
the involutive bounded lattice B is regular (a ⊓ a′ ⊑ b ⊔ b′).

The regularity property can be naturally formulated also in the frame-
work of the Kripkean semantics:

Definition 13.2 A PQL Kripkean realization 〈I,R ,Π , ρ〉 is regular iff its
frame 〈I ,R 〉 is regular . In other words, ∀i, j ∈ I: i ⊥ i and j ⊥ j y

i ⊥ j.

One can prove that a symmetric frame 〈I,R〉 is regular iff the involutive
bounded lattice of all propositions of 〈I,R〉 is regular. As a consequence,
an algebraic realization is regular iff its Kripkean transformation is regular
and viceversa (where the Kripkean [algebraic] transformation of an algebraic
[Kripkean] realization is defined like in OL).

On this basis one can introduce a proper extension of PQL: regular
paraconsistent quantum logic (RPQL). Semantically RPQL is character-
ized by the class of all regular realizations (both in the algebraic and in the
Kripkean semantics). The calculus for RPQL is obtained by adding to the
PQL-calculus the following rule:

α ∧ ¬α |− β ∨ ¬β (Kleene rule)

A completeness theorem for both PQL and RPQL can be proved, simi-
larly to the case of OL. Both logics PQL and RPQL admit a natural modal
translation (similarly to OL). The suitable modal system which PQL can
be transformed into is the system KB, semantically characterized by the
class of all symmetric frames. A convenient strengthening of KB gives rise
to a regular modal system, that is suitable for RPQL.

An interesting question concerns the relation between PQL and the
orthomodular property.

Let B = 〈A,⊑ , ′ , 1 ,0〉 be an ortholattice. By Lemma 2.5 the following
three conditions (expressing possible definitions of the orthomodular prop-
erty) turn out to be equivalent:

(i) ∀a, b ∈ B: a ⊑ b y b = a ⊔ (a′ ⊓ b);

(ii) ∀a, b ∈ B: a ⊑ b and a′ ⊓ b = 0 y a = b;

(iii) ∀a, b ∈ B: a ⊓ (a′ ⊔ (a ⊓ b)) ⊑ b.

However, this equivalence breaks down in the case of involutive bounded
lattices. One can prove only:
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Lemma 13.1 Let B be an involutive bounded lattice. If B satisfies condition
(i), then B satisfies conditions (ii) and (iii).

Proof. (i) implies (ii): trivial. Suppose (i); we want to show that (iii) holds.
Now, a′ ⊑ a′ ⊔ b′ = (a ⊓ b)′. Therefore, by (i), (a ⊓ b)′ = a′ ⊔ (a ⊓ (a ⊓ b)′).
By de Morgan law: a ⊓ b = (a ⊓ (a′ ⊔ (a ⊓ b)) ⊑ b.

Lemma 13.2 Any involutive bounded lattice B that satisfies condition (iii)
is an ortholattice.

Proof. Suppose (iii). It is sufficient to prove that ∀a, b ∈ B: a ⊓ a′ ⊑ b.
Now, a ⊓ a′ ⊑ a, a′. Moreover, a′ ⊑ a′ ⊔ (a ⊓ b). Therefore, by (iii), a ⊓ a′ ⊑
a ⊓ (a′ ⊔ (a ⊓ b)) ⊑ b. Thus, ∀a ∈ B: a ⊓ a′ = 0.

As a consequence, we can conclude that there exists no proper ortho-
modular paraconsistent quantum logic when orthomodularity is understood
in the sense (i) or (iii). A residual possibility for a proper paraconsistent
quantum logic to be orthomodular is orthomodularity in the sense (ii). In
fact, the lattice G14 (see Figure 6) is an involutive bounded lattice which
turns out be orthomodular (ii) but not orthomodular (i).

Since f ⊓ f ′ = f 6= 0, G14 cannot be an ortholattice. Hence, G14 is
neither orthomodular (i) nor orthomodular (iii). However, G14 is trivially
orthomodular (ii) since the premiss of condition (ii) is satisfied only in the
trivial case where both a, b are either 0 or 1.

Hilbert space realizations for orthomodular paraconsistent quantum logic
can be constructed in the algebraic semantics by taking as support the fol-
lowing proper subset of the set of all effects:

I(H) := {a1I | a ∈ [0, 1]} ∪ P (H).

In other words, a possible meaning of the formula is either a sharp property
(projection) or an unsharp property that can be represented as a multiple
of the universal property (1I).

The set I(H) determines an orthomodular involutive regular bounded
lattice, where the partial order is the partial order of E(H) restricted to
I(H), while the fuzzy complement is defined like in the class of all effects
(E′ := 1I − E).

An interesting feature of PQL is represented by the fact that this logic
turns out to be a common sublogic in a wide class of important logics. In
particular, PQL is a sublogic of Girard’s linear logic ((Girard 1987)), of
 Lukasiewicz ’ infinite many-valued logic and of some relevant logics.
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Figure 6: G14

As we will see in Section 17, PQL represents the most natural quantum
logical extension of a quite weak and general logic, that has been called basic
logic.

14 The Brouwer-Zadeh logics

The Brouwer Zadeh logics (called also fuzzy intuitionistic logics) represent
natural abstractions from the class of all BZ-lattices (defined in Section 12).
As a consequence, a characteristic property of these logics is a splitting of
the connective “not” into two forms of negation: a fuzzy-like negation, that
gives rise to a paraconsistent behaviour and an intuitionistic-like negation.
The fuzzy “not” represents a weak negation, that inverts the two extreme
truth-values (truth and falsity), satisfies the double negation principle but
generally violates the non-contradiction principle. The second “not” is a
stronger negation, a kind of necessitation of the fuzzy “not”.

We will consider two forms of Brouwer-Zadeh logic: BZL (weak Brouwer-
Zadeh logic) and BZL3 (strong Brouwer-Zadeh logic). The language of both
BZL and BZL3 is an extension of the language of QL. The primitive con-
nectives are: the conjunction (∧), the fuzzy negation (¬), the intuitionistic
negation (∼).
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Disjunction is metatheoretically defined in terms of conjunction and of
the fuzzy negation:

α ∨ β := ¬(¬α ∧ ¬β) .

A necessity operator is defined in terms of the intuitionistic and of the fuzzy
negation:

Lα :=∼ ¬α .

A possibility operator is defined in terms of the necessity operator and of
the fuzzy negation:

Mα := ¬L¬α .

Let us first consider our weaker logic BZL. Similarly to OL and PQL,
also BZL can be characterized by an algebraic and a Kripkean semantics.

Definition 14.1 Algebraic realization for BZL.
An algebraic realization of BZL is a pair 〈B , v〉, consisting of a BZ-lattice
〈B ,⊑ , ′ ,∼ ,1 ,0〉 and a valuation-function v that associates to any formula
α an element in B, satisfying the following conditions:

(i) v(¬β) = v(β)′

(ii) v(∼ β) = v(β)∼

(iii) v(β ∧ γ) = v(β) ⊓ v(γ).

The definitions of truth, consequence in an algebraic realization for BZL,
logical truth and logical consequence are given similarly to the case of OL.

A Kripkean semantics for BZL has been first proposed in Giuntini
(1991). A characteristic feature of this semantics is the use of frames with
two accessibility relations.

Definition 14.2 A Kripkean realization of BZL is a system K = 〈I , 6⊥ , 6⊥∼ ,Π , ρ〉
where:

(i) 〈I , 6⊥ , 6⊥∼〉 is a frame with a non empty set I of possible worlds
and two accessibility relations: 6⊥ (the fuzzy accessibility relation)
and 6⊥∼ (the intuitionistic accessibility relation).

Two worlds i , j are called fuzzy-accessible iff i 6⊥ j. They are
called intuitionistically-accessible iff i 6⊥∼ j. Instead of not(i 6⊥ j)
and not(i 6⊥∼ j), we will write i ⊥ j and i ⊥∼ j, respectively.

The following conditions are required for the two accessibility
relations:

(ia) 〈I, 6⊥〉 is a regular symmetric frame;
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(ib) any world is fuzzy-accessible to at least one world:

∀i ∃j : i 6⊥ j .

(ic) 〈I, 6⊥∼〉 is an orthoframe;

(id) Fuzzy accessibility implies intuitionistic accessibility:

i 6⊥ j y i 6⊥∼ j.

(ie) Any world i has a kind of “twin-world” j such that for any
world k:

(a) i 6⊥∼ k iff j 6⊥∼ k

(b) i 6⊥∼ k y j 6⊥ k.

For any setX of worlds, the fuzzy-orthogonal set X ′ is defined
like in OL:

X ′ = {i ∈ I | ∀j ∈ X : i ⊥ j} .

Similarly, the intuitionistic orthogonal set X∼ is defined as
follows:

X∼ = {i ∈ I | ∀j ∈ X : i ⊥∼ j} .

The notion of proposition is defined like in OL. It turns out
that a set of worlds X is a proposition iff X = X ′′.
One can prove that for any set of worlds X, both X ′ and X∼

are propositions. Further, like in OL, X ⊓ Y (the greatest
proposition included in the propositions X and Y ) is X ∩ Y ,
while X ⊔Y (the smallest proposition including X and Y ) is
(X ∪ Y )′′.

(ii) Π is a set of propositions that contains I, and is closed under
′ ,∼ ,⊓.

(iii) ρ associates to any formula a proposition in Π according to the
following conditions:

ρ(¬β) = ρ(β)′;

ρ(∼ β) = ρ(β)∼;

ρ(β ∧ γ) = ρ(β) ⊓ ρ(γ).

Theorem 14.1 Let 〈I , 6⊥ , 6⊥∼ 〉 be a BZ-frame (i.e. a frame satisfying the
conditions of Definition 14.2) and let Π0 be the set of all propositions of the
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frame. Then, the structure
〈

Π0 ,⊆ , ′ , ∼ , ∅ , I
〉

is a complete BZ-lattice such
that for any set Γ ⊆ Π0:

inf (Γ) :=

⊔

Γ =
⋂

Γ and sup (Γ) :=
⊔

Γ =
(

⋃

Γ
)′′
.

As a consequence, the proposition-structure 〈Π ,⊆ , ′ , ∼ , ∅ , I〉 of a BZL

realization, turns out to be a BZ-lattice.
The definitions of truth, consequence in a Kripkean realization, logical

truth and logical consequence, are given similarly to the case of OL.
One can prove, with standard techniques, that the algebraic and the

Kripkean semantics for BZL characterize the same logic.
We will now introduce a calculus that represents an adequate axiomati-

zation for the logic BZL. The most intuitive way to formulate our calculus
is to present it as a modal extension of the axiomatic version of regular
paraconsistent quantum logic RPQL. (Recall that the modal operators of
BZL are defined as follows: Lα :=∼ ¬α; Mα := ¬L¬α).

Rules of BZL.

The BZL-calculus includes, besides the rules of RPQL the following modal
rules:

(BZ1) Lα |−α

(BZ2) Lα |−LLα

(BZ3) MLα |−Lα

(BZ4)
α |−β

Lα |−Lβ

(BZ5) Lα ∧ Lβ |−L(α ∧ β)

(BZ6) ∅ |− ¬(Lα ∧ ¬Lα)

The rules (BZ1)-(BZ5) give rise to a S5–like modal behaviour. The
rule (BZ6) (the non-contradiction principle for necessitated formulas) is, of
course, trivial in any classical modal system.

One can prove a soundness and completeness Theorem with respect to
the Kripkean semantics (by an appropriate modification of the corresponding
proofs for QL).

Characteristic logical properties of BZL are the following:
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(a) like in PQL, the distributive principles, Duns Scotus, the non-
contradiction and the excluded middle principles break down for
the fuzzy negation;

(b) like in intuitionistic logic, we have:

|=
BZL
∼ (α∧ ∼ α); |=

BZL
/ α∨ ∼ α ; α |=

BZL
∼∼ α ; ∼∼ α |=

BZL
/ α ;

∼∼∼ α |=
BZL
∼ α ; α |=

BZL
β y ∼ β |=

BZL
∼ α ;

(c) moreover, we have:

∼ α |=
BZL

¬α ; ¬α |=
BZL
/ ∼ α ; ¬ ∼ α |=

BZL
∼∼ α ;

One can prove that BZL has the finite model property; as a consequence
it is decidable (Giuntini 1992).

The ortho-pair semantics

Our stronger logic BZL3 has been suggested by a form of fuzzy-intuitionistic
semantics, that has been first studied in Cattaneo and Nisticò (1986). The
intuitive idea, underlying this semantics (which has some features in common
with Klaua’s partielle Mengen and with Dunn’s polarities) can be sketched
as follows: one supposes that interpreting a language means associating
to any sentence two domains of certainty : the domain of the situations
where our sentence certainly holds, and the domain of the situations where
our sentence certainly does not hold. Similarly to Kripkean semantics, the
situations we are referring to can be thought of as a kind of possible worlds.
However, differently from the standard Kripkean behaviour, the positive
domain of a given sentence does not generally determine the negative domain
of the same sentence. As a consequence, propositions are here identified with
particular pairs of sets of worlds, rather than with particular sets of worlds.

Let us again assume the BZL language. We will define the notion of
realization with positive and negative certainty domains (shortly ortho-pair
realization) for a BZL language.

Definition 14.3 An ortho-pair realization is a system O = 〈I ,R ,Ω , v〉 ,
where:

(i) 〈I ,R 〉 is an orthoframe.

(ii) Let Π0 be the set of all propositions of the orthoframe 〈I ,R〉.
As we already know, this set gives rise to an ortholattice with
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respect to the operations ⊓,⊔ and ′ (where ⊓ is the set-theoretic
intersection).

An orthopairproposition of 〈I ,R 〉 is any pair 〈A1 , A0〉, where
A1, A0 are propositions in Π0 such that A1 ⊆ A′

0. An orthopair-
proposition 〈A1 , A0〉 is called exact iff A0 = A′

1 (in other words,
A0 is maximal). The following operations and relations can be
defined on the set of all orthopairpropositions:

(iia) The fuzzy complement:

〈A1 , A0〉
©′ := 〈A0 , A1〉 .

(iib) The intuitionistic complement:

〈A1 , A0〉
©∼ :=

〈

A0 , A
′
0

〉

.

(iic) The orthopairpropositional conjunction:

〈A1 , A0〉 ⊓ 〈B1 , B0〉 := 〈A1 ⊓B1 , A0 ⊔B0〉 .

(iid) The orthopairpropositional disjunction:

〈A1 , A0〉 ⊔ 〈B1 , B0〉 := 〈A1 ⊔B1 , A0 ⊓B0〉 .

(iie) The infinitary conjunction:

⊔n{〈A
n
1 , A

n
0 〉} :=

〈

⋂

n

{An
1} ,

⊔

n

{An
0}

〉

.

(iif) The infinitary disjunction:

⊔

n
{〈An

1 , A
n
0 〉} :=

〈

⊔

n

{An
1} ,

⋂

n

{An
0}

〉

.

(iig) The necessity operator:

�(〈A1 , A0〉) :=
〈

A1 , A
′
1

〉

.

(iih) The possibility operator:

♦(〈A1 , A0〉) := (�(〈A1 , A0〉
©′))©′ .

(iik) The order-relation:

〈A1 , A0〉 ⊑ 〈B1 , B0〉 iff A1 ⊆ B1 and B0 ⊆ A0.
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(iii) Ω is a set of orthopairpropositions, that is closed under ©′ ,©∼ ,⊓ ,⊔
and 0 := 〈∅ , I〉 .

(iv) v is a valuation-function that maps formulas into orthopairpropo-
sitions according to the following conditions:

v(¬β) = v(β)©′;

v(∼ β) = v(β)©∼;

v(β ∧ γ) = v(β)⊓v(γ).

The other basic semantic definitions are given like in the algebraic se-
mantics. One can prove the following Theorem:

Theorem 14.2 Let 〈I ,R 〉 be an orthoframe and let Ω0 be the set of all or-
thopairpropositions of 〈I ,R 〉. Then, the structure

〈

Ω0 ,⊆ , ©′ ,©∼ , 〈∅, I〉 , 〈I, ∅〉
〉

is a complete BZ-lattice with respect to the infinitary conjunction and dis-
junction defined above. Further, the following conditions are satisfied: for
any 〈A0, A1〉 , 〈B0 , B1〉 ∈ Ω0:

(i) � 〈A1 , A0〉 = 〈A1 , A0〉
©′©∼.

(ii) 〈A1 , A0〉
©∼ = �(〈A1 , A0〉

©′ ).

(iii) ♦ 〈A1 , A0〉 = 〈A1 , A0〉
©∼©′.

(iv) (〈A1, A0〉 ©⊓ 〈B1, B0〉)
©∼ = 〈A1, A0〉

©∼ ©⊔ 〈B1, B0〉
©∼ .

(Strong de Morgan law)

(v) (〈A1, A0〉 ©⊓ 〈B1, B0〉
©∼©∼) ⊆ (〈A1, A0〉

©′©∼ ©⊔ 〈B1, B0〉).

Accordingly, in any ortho-pair realization the set of all orthopairpropo-
sitions Ω0 gives rise to a BZ-lattice. As a consequence, one can immediately
prove a soundness theorem with respect to the ortho-pair semantics. Does
perhaps the ortho-pair semantics characterizes the logic BZL? The answer
to this question is negative. As a counterexample, let us consider an instance
of the fuzzy excluded middle and an instance of the intuitionistic excluded
middle applied to the same formula α:

α ∨ ¬α and α∨ ∼ α.

One can easily check that they are logically equivalent in the ortho-pair
semantics. For, given any ortho-pair realization O, there holds::

α ∨ ¬α |=O α∨ ∼ α and α∨ ∼ α |=O α ∨ ¬α .

However, generally
α ∨ ¬α |=

BZL
/ α∨ ∼ α .
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For instance, let us consider the following algebraic BZL–realization A =
〈B , v〉, where the support B of is the real interval [0 , 1] and the algebraic
structure on B is defined as follows:

a ⊑ b iff a ≤ b;

a′ = 1 − a;

a∼ =

{

1 , if a = 0;

0 , otherwise.

1 = 1; 0 = 0.

Suppose for a given sentential literal p: 0 < v(p) < 1/2. We will have
v(p∨ ∼ p) = Max(v(p) , 0) = v(p) < 1/2. But v(p ∨ ¬p) = Max(v(p) , 1 −
v(p)) = 1 − v(p) ≥ 1/2. Hence: v(p∨ ∼ p) < v(p ∨ ¬p).
As a consequence, the orthopair-semantics characterizes a logic stronger
than BZL. We will call this logic BZL3. The name is due to the character-
istic three-valued features of the ortho-pair semantics.

Our logic BZL3 is axiomatizable. A suitable calculus can be obtained
by adding to the BZL-calculus the following rules.

Rules of BZL3.

(BZ31) L(α ∨ β) |−Lα ∨ Lβ

(BZ32)
Lα |−β, α |−Mβ

α |−β

The following rules turn out to be derivable:

(DR1)
Lα |−β ,Mα |−Mβ

α |− β

(DR2) Mα ∧Mβ |−M(α ∧ β)

(DR3) ∼ (α ∧ β) |− ∼ α∨ ∼ β

The validity of a strong de Morgan’s principle for the connective ∼ (DR3)
shows that this connective represents, in this logic, a kind of strong “super-
intuitionistic” negation (differently from BZL, where the strong de Morgan
law fails, like in intuitionistic logic).

One can prove a soundness and a completeness theorem of our calculus
with respect to the ortho-pair semantics.
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Theorem 14.3 Soundness theorem.

T |−−BZL3 α y T |=
BZL3

α.

Proof. By routine techniques.

Theorem 14.4 Completeness theorem.

T |=
BZL3

α y T |−−BZL3 α.

Sketch of the proof. Instead of T |=
BZL3
α and T |−−BZL3α, we will shortly write

T |= α and T |−α. It is sufficient to construct a canonical model O =
〈I ,R ,Ω , v〉 such that:

T |=O α y T |−α .

(The other way around follows from the soundness theorem).

Definition of the canonical model

(i) I is the set of all possible sets i of formulas satisfying the following
conditions:

(ia) i is non contradictory with respect to the fuzzy negation ¬:
for any α, if α ∈ i, then ¬α 6∈ i;

(ib) i is L-closed : for any α, if α ∈ i, then Lα ∈ i;

(ic) i is deductively closed : for any α, if i |−α, then α ∈ i.

(ii) The accessibility relation R is defined as follows:

Rij iff for any formula α: α ∈ i y ¬α 6∈ j.

(In other words, i and j are not contradictory with respect
to the fuzzy negation).

Instead of notRij, we will write i ⊥ j.

(iii) Ω is the set of all orthopairpropositions of 〈I,R〉.

(iv) For any atomic formula p:

v(p) = 〈v1(p) , v0(p)〉 ,

where:

v1(p) = {i | i |− p} and v0(p) = {i | i |−¬p} .
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O is well defined since one can prove the following Lemmas:

Lemma 14.1 R is reflexive and symmetric.

Lemma 14.2 For any α , {i | i |−α} is a proposition of the orthoframe
〈I ,R〉.

Lemma 14.3 For any α, {i | i |−α} ⊆ {i | i |−¬α}′.

Further, one can prove

Lemma 14.4 For any α, v(α) = 〈v1(α) , v0(α)〉, where:

v1(α) = {i | i |−α}

v0(α) = {i | i |−¬α}

Lemma 14.5 For any formula α:
0 := 〈∅, I〉 = 〈{i | i |−Lα ∧ ¬Lα} , {i | i |−¬(Lα ∧ ¬Lα)}〉.

Lemma 14.6 Let T = {α1 , . . . , αn , . . . } be a set of formulas and let α be
any formula.
⋂

{v1(αn) | αn ∈ T} ⊆ v1(α) y Lα1 , . . . , Lαn , . . . |−α.

As a consequence, one can prove:

Lemma 14.7 Lemma of the canonical model

T |=M α y T |−α.

Suppose T |=O α. Hence (by definition of consequence in a given re-
alization): for any orthopairproposition 〈A1 , A0〉 ∈ Ω, if for all αn ∈ T ,
〈A1 , A0〉 ⊑ v(αn), then 〈A1 , A0〉 ⊑ v(α).

The propositional lattice, consisting of all orthopairpropositions of O
is complete (see Theorem 14.2). Hence:

⊔n {v(αn) | αn ∈ T} ⊑ v(α). In
other words, by definition of ⊑:

(i)
⋂

{v1(αn) | αn ∈ T} ⊆ v1(α);

(ii) v0(α) ⊆
⊔

{v0(αn) | αn ∈ T}.
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Thus, by (i) and by Lemma 14.6: Lα1 , . . . , Lαn , . . . |−α. Consequently,
there exists a finite subset {αn1

, . . . , αnk
} of T such that Lαn1

∧ . . . ∧
Lαnk

|−α. Hence, by the rules for ∧ and L: L(αn1
∧ . . . ∧ αnk

) |−α. At the
same time, we obtain from (ii) and by Lemma 14.4: v1(¬α) ⊑

⊔

{v1(¬αn) | αn ∈
T}.
Whence, by de Morgan,

v1(¬α) ⊆
[

⋂

{

(v1(¬αn))′ | αn ∈ T
}

]′
.

Now, one can easily check that in any realization: v1(¬α)′ = v1(Mα). As
a consequence: v1(¬α) ⊆ [

⋂

{(v1(Mαn) | αn ∈ T}]′ . Hence, by contraposi-
tion:

⋂

{v1(Mαn) | αn ∈ T} ⊆ (v1(¬α))′

and
⋂

{v1(Mαn) | αn ∈ T} ⊆ v1(Mα).

Consequently, by Lemma 14.6 and by the S5-rules:

LMα1 , . . . , LMαn , . . . |−Mα , Mα1 , . . . ,Mαn , . . . |−Mα .

By syntactical compactness, there exists a finite subset {αm1
, . . . , αmh

} of
T such that Mαm1

, . . . ,Mαmh
|−Mα. Whence, by the rules for ∧ and M :

M(αm1
∧ . . . ∧ αmh

) |−Mα. Let us put γ1 = αn1
∧ . . . ∧ αnk

and γ2 =
αm1

∧ . . . ∧ αmh
. We have obtained: Lγ1 |−α and Mγ2 |−Mα. Whence,

Lγ1 ∧Lγ2 |−α, L(γ1 ∧ γ2) |−α, Mγ1 ∧Mγ2 |−Mα, M(γ1 ∧ γ2) |−Mα. From
L(γ1∧γ2) |−α, and M(γ1∧γ2) |−Mα we obtain, by the derivable rule (DR1):
γ1 ∧ γ2 |−α. Consequently: T |−α.

Similarly to other forms of quantum logic, also BZL3 admits an algebraic
semantic characterization (Giuntini (1993)) based on the notion of BZ3-
lattice.

Definition 14.4 A BZ3-lattice is a BZ-lattice B = 〈B ,⊑ , ′ ,∼ ,1 ,0〉, which
satisfies the following conditions:

(i) (a ⊓ b)∼ = a∼ ⊔ b∼;

(ii) a ⊓ b∼∼ ⊑ a
′∼ ⊔ b.

By Theorem 14.2, the set of all orthopairpropositions of an orthoframe
determines a complete BZ3-lattice. One can prove the following representa-
tion theorem:
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Theorem 14.5 Every BZ3-lattice is embeddable into the (complete) BZ3-
lattice of all orthopairpropositions of an orthoframe.

A slight modification of the proof of Theorem 2.3 permits us to show
that ortho-pair semantics and the algebraic semantics strongly characterize
the same logic.

One can prove that BZL3 can be also characterized by means of a non
standard version of Kripkean semantics (Giuntini (1993)).

Some problems concerning the Brouwer-Zadeh logics remain still open:

1) Is there any Kripkean characterization of the logic that is alge-
braically characterized by the class of all de Morgan BZ-lattices?
In this framework, the problem can be reformulated in this way:
is the (strong) de Morgan law elementary?

2) Is it possible to axiomatize a logic based on an infinite many-
valued generalization of the ortho-pair semantics?

3) Find possible conditional connectives in BZL3.

4) Find an appropriate orthomodular extension of BZL3.

Unsharp quantum models for BZL3

The ortho-pair semantics has been suggested by the effect- structures in
Hilbert-space QT. In this framework, natural quantum ortho-pair realiza-
tions for BZL3 can be constructed. Let us refer again to the language LQ

(whose atoms express possible measurement reports) and let S be a quantum
system whose associated Hilbert space is H. As usual, E(H) will represent
the set of all effects of H. Now, an ortho-pair realization MS = 〈I ,R ,Ω , v〉
(for the system S) can be defined as follows:

(i) I is the set of all pure states of S in H.

(ii) Rij iff for any effect E ∈ E(H) the following condition holds:
whenever i assigns to E probability 1, then j assigns to E a
probability different from 0.

In other words, i and j are accessible iff they cannot be strongly
distinguished by any physical property represented by an effect.

(iii) The propositions of the orthoframe 〈I R 〉 are determined by the
set of all closed subspaces of H (sharp properties), like in OQL.
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(iv) Ω is the set of all orthopairpropositions of 〈I,R 〉. Any effect E
can be transformed into an orthopairproposition f(E) :=

〈

XE
1 ,X

E
0

〉

of Ω, where:

XE
1 := {i | i assigns to E probability 1} ;

XE
0 := {i | i assign to E probability 0} .

In other words, XE
1 ,XE

0 represent the positive and the negative
domain of E, respectively. The map f turns out to preserve the
order relation and the two complements:

E ⊑ F iff f(E) ⊑ f(F ).

f(E′) = f(E)©′ =
〈

XE
1 ,X

E
0

〉©′
=

〈

XE
0 ,X

E
1

〉

.

f(E∼) = f(E)©∼ =
〈

XE
1 ,X

E
0

〉©∼
=

〈

XE
0 , (X

E
0 )′

〉

.

(v) The valuation-function v follows the intuitive physical meaning
of the atomic sentences. Let p express the assertion “the value
for the observable A lies in the sharp (or fuzzy) Borel set ∆ and
let Ep be the effect that is associated to p in H. We define v as
follows:

v(p) = f(Ep) =
〈

XEp

1 ,XEp

0

〉

.

It is worth-while to notice that our map f is not injective: different effects
will be transformed into one and the same orthopairproposition. As a con-
sequence, moving from effects to orthopairpropositions clearly determines a
loss of information. In fact, orthopairpropositions are only concerned with
the two extreme probability value (0,1), a situation that corresponds to a
three-valued semantics.

15 Partial quantum logics

In Section 12, we have considered examples of partial algebraic structures,
where the basic operations are not always defined. How to give a seman-
tic characterization for different forms of quantum logic, corresponding re-
spectively to the class of all effect algebras, of all orthoalgebras and of all
orthomodular posets? We will call these logics: unsharp partial quantum
logic (UPaQL), weak partial quantum logic (WPaQL) and strong partial
quantum logic (SPaQL).

86



Let us first consider the case of UPaQL, that represents the “logic of
effect algebras” (Dalla Chiara and Giuntini 1995).

The language of UPaQL consists of a denumerably infinite list of atomic
sentences and of two primitive connectives: the negation ¬ and the exclusive
disjunction ∨+ (aut).

The set of sentences is defined in the usual way. A conjunction is met-
alinguistically defined, via de Morgan law:

α ∧. β := ¬(¬α∨+ ¬β).

The intuitive idea underlying our semantics for UPaQL is the following:
disjunctions and conjunctions are always considered “legitimate” from a
mere linguistic point of view. However, semantically, a disjunction α∨+ β
will have the intended meaning only in the “well behaved cases” (where the
values of α and β are orthogonal in the corresponding effect orthoalgebra).
Otherwise, α∨+ β will have any meaning whatsoever (generally not connected
with the meanings of α and β). As is well known, a similar semantic “trick” is
used in some classical treatments of the description operator ι (“the unique
individual satisfying a given property”; for instance, “the present king of
Italy”).

Definition 15.1 A realization for UPaQL is a pair A = 〈B , v〉, where
B = 〈B ,⊞ ,1 ,0〉 is an effect algebra (see Definition 12.5); v (the valuation-
function) associates to any formula α an element of B, satisfying the follow-
ing conditions:

(i) v(¬β) = v(β)′, where ′ is the generalized complement (defined in B).

(ii)

v(β ∨+ γ) =

{

v(β)⊞ v(γ), if v(β)⊞ v(γ) is defined inB;

any element, otherwise.

The other semantic definitions (truth, consequence in a given realization,
logical truth, logical consequence) are given like in the QL-case.

Weak partial quantum logic (WPaQL) and strong partial quantum logic
(SPaQL) (formalized in the same language as UPaQL) will be naturally
characterized mutatis mutandis. It will be sufficient to replace, in the defi-
nition of realization, the notion of effect algebra with the notion of orthoal-
gebra and of orthomodular poset (see Definition 12.9 and Definition 12.3).
Of course, UPaQL is weaker than WPaQL, which is, in turn, weaker than
SPaQL.
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Partial quantum logics are axiomatizable. We will first present a calculus
for UPaQL, which is obtained as a natural transformation of the calculus
for orthologic.

Differently from QL, the rules of our calculus will always have the form:

α1 |− β1, . . . , αn |− βn

α |− β

In other words, we will consider only inferences from single formulas.

Rules of UPaQL

(UPa1) α |−α (identity)

(UPa2)
α |− β β |− γ

α |− γ
(transitivity)

(UPa3) α |−¬¬α (weak double negation)

(UPa4) ¬¬α |−α (strong double negation)

(UPa5)
α |−β

¬β |−¬α
(contraposition)

(UPa6) β |−α∨+ ¬α (excluded middle)

(UPa7)
α |−¬β α∨+ ¬α |−α∨+ β

¬α |−β
(unicity of negation)
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(UPa8)
α |−¬β α |−α1 α1 |−α β |− β1 β1 |−β

α∨+ β |−α1 ∨+ β1
(weak substitutiv-

ity)

(UPa9)
α |−¬β

α∨+ β |− β ∨+ α
(weak commutativity)

(UPa10)
β |−¬γ α |−¬(β ∨+ γ)

α |−¬β
(weak associativity)

(UPa11)
β |−¬γ α |−¬(β ∨+ γ)

α∨+ β |−¬γ
(weak associativity)

(UPa12)
β |−¬γ α |−¬(β ∨+ γ)

α∨+ (β ∨+ γ) |− (α∨+ β)∨+ γ
(weak associativity)

(UPa13)
β |−¬γ α |−¬(β ∨+ γ)

(α∨+ β)∨+ γ) |−α∨+ (β ∨+ γ)
(weak associativity)

The concepts of derivation and of derivability are defined in the expected
way. In order to axiomatize weak partial quantum logic (WPaQL) it is
sufficient to add a rule, which corresponds to a Duns Scotus-principle:

(WPaQL)
α |−¬α

α |− β
(Duns Scotus)

Clearly, the Duns Scotus-rule corresponds to the strong consistency con-
dition in our definition of orthoalgebra (see Definition 12.7). In other words,
differently from UPaQL, the logic WPaQL forbids paraconsistent situa-
tions.
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Finally, an axiomatization of strong partial quantum logic (SPaQL) can
be obtained, by adding the following rule to (UPa1)-(UPa13), (WPa):

(SPaQL)
α |−¬β α |− γ β |− γ

α∨+ β |− γ

In other words, (SPaQL) requires that the disjunction ∨+ behaves like a
supremum, whenever it has the “right meaning”.

Let PaQL represent any instance of our three calculi. We will use the
following abbreviations. Instead of α |−

PaQL
β we will write α |−β. When α

and β are logically equivalent (α |− β and β |−α) we will write α ≡ β.
Let p represent a particular sentential literal of the language: T will be

an abbreviation for p∨+ ¬p; while F will be an abbreviation for ¬ (p∨+ ¬p).
Some important derivable rules of all calculi are the following:

(D1) F |−β , β |−T (Weak Duns Scotus)

(D2)
α |−¬β

α |−α∨+ β
(weak sup rule)

(D3)
α |−β

β ≡ α∨+ ¬ (α∨+ ¬β)
(orthomodular-like rule)

(D4)
α |−¬γ β |−¬γ α∨+ γ ≡ β ∨+ γ

α ≡ β
(cancellation)

As a consequence, the following syntactical lemma holds:

Lemma 15.1 For any α , β: α |−β iff there exists a formula γ such that

(i) α |−¬γ;

(ii) β ≡ α∨+ γ.

In other words, the logical implication behaves similarly to the partial order
relation in the effect algebras.

The following derivable rule holds for WPaQL and for SPaQL:

(D5)
α |−¬β α |− γ β |− γ γ |−α∨+ β

α∨+ β |− γ

Our calculi turn out to be adequate with respect to the corresponding seman-
tic characterizations. Soundness proofs are straightforward. Let us sketch
the proof of the completeness theorem for our weakest calculus (UPaQL).
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Theorem 15.1 Completeness.

α |= β y α |− β.

Proof. Following the usual procedure, it is sufficient to construct a canonical
model B = 〈B , v〉 such that for any formulas α, β:

α |−β y α |=A β.

Definition of the canonical model.

(i) The algebra A = 〈B ,⊞ ,1 ,0〉 is determined as follows:

(ia) B is the class of all equivalence classes of logically equivalent
formulas: B := {[α]≡ | α is a formula}. (In the following,
we will write [α] instead of [α]≡).

(ib) [α]⊞ [β] is defined iff α |−¬β. If defined, [α]⊞ [β] := [α∨+ β].

(ic) 1 := [T]; 0 := [F].

(ii) The valuation function v is defined as follows: v(α) = [α].

One can easily check that A is a “good” model for our logic. The op-
eration ⊞ is well defined (by the transitivity, contraposition and weak sub-
stitutivity rules). Further, B is an effect algebra: ⊞ is weakly commutative
and weakly associative, because of the corresponding rules of our calculus.
The strong excluded middle axiom holds by definition of ⊞ and in virtue of
the following rules: excluded middle, unicity of negation, double negation.
Finally, the weak consistency axiom holds by weak Duns Scotus (D1) and
by definition of ⊞.

Lemma 15.2 Lemma of the canonical model

[α] ⊑ [β] iff α |−β.

Sketch of the proof. By definition of ⊑ (in any effect algebra) one has
to prove:

α |−β iff for a given γ such that [α] ⊥ [γ] : [α]⊞ [γ] = [β].

This equivalence holds by Lemma 15.1 and by definition of ⊞.
Finally, let us check that v is a “good” valuation function. In other

words:

(i) v(¬β) = v(β)′
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(ii) v(β ∨+ γ) = v(β)⊞ v(γ), if v(β) ⊞ v(γ) is defined.

(i) By definition of v, we have to show that [¬β] is the unique [γ] such that
[β]⊞ [γ] = 1 := [T]. In other words,

(ia) [T] ⊑ [β]⊞ [¬β].

(ib) [T] ⊑ [β]⊞ [γ] y ¬β ≡ γ.

This holds by definition of the canonical model, by definition of ⊞ and by
the following rules: double negation, excluded middle, unicity of negation.
(ii) Suppose v(β) ⊞ v(γ) is defined. Then β |−¬γ. Hence, by definition of
⊞ and of v: v(β)⊞ v(γ) = [β]⊞ [γ] = [β ∨+ γ] = v(β ∨+ γ).

As a consequence, we obtain:

α |− β iff [α] ⊑ [β] iff v(α) ⊑ v(β) iff α |=A β

The completeness argument can be easily transformed, mutatis mutandis
for the case of weak and strong partial quantum logic.

16  Lukasiewicz quantum logic

As we have seen in Section 12, the class E(H) of all effects on a Hilbert space
H determines a quasi-linear QMV-algebra. The theory of QMV- algebras
suggests, in a natural way, the semantic characterization of a new form of
quantum logic (called  Lukasiewicz quantum logic ( LQL)), which generalizes
both OQL and Lℵ.

The language of  LQL contains the same primitive connectives as WPaQL

(∨+ ,¬). The conjunction (∧. ) is defined via de Morgan law (like in WPaQL).
Further, a new pair of conjunction (∧∧ ) and disjunction (∨∨ ) connectives are
be defined as follows:

α∧∧ β := (α∨+ ¬β) ∧. β

α∨∨ β := ¬(¬α∧∧ ¬β)

Definition 16.1 A realization of  LQL is a pair A = 〈M , v〉, where

(i) M = 〈M ,⊕ ,∗ ,1 ,0〉 is a QMV-algebra.

(ii) v (the valuation-function) associates to any formula α an element
of M , satisfying the following conditions:
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v(¬β) = v(β)∗.

v(β ∨+ γ) = v(β) ⊕ v(γ).

The other semantic definitions (truth, consequence in a given realization,
logical truth, logical consequence) are given like in the QL-case.

 LQL can be easily axiomatized by means of a calculus that simply mim-
ics the axioms of QMV-algebras.

The quasi-linearity property, which is satisfied by the QMV-algebras of
effects, is highly non equational. Thus, the following question naturally
arises: is  LQL characterized by the class of all quasi-linear QMV-algebras
(QLQMV)? In the case of Lℵ, Chang has proved that Lℵ is characterized
by the MV-algebra determined by the real interval [0, 1]. This MV-algebra
is clearly quasi-linear, being totally ordered.

The relation between  LQL and QMV algebras turns out to be much
more complicated. In fact on can show that  LQL cannot be character-
ized even by the class of all weakly linear QMV-algebras (WLQMV). Since
WLQMV is strictly contained in QLQMV, there follows that  LQL is not
characterized by QLQMV. To obtain these results, something stronger is
proved. In particular, we can show that:

• the variety of all QMV-algebras (QMV) strictly includes the variety
generated by the class of all weakly linear QMV-algebras (HSP(WLQMV)).

• HSP(WLQMV) strictly includes the variety generated by the class of
all quasi-linear QMV-algebras (HSP(QLQMV)).

So far, little is known about the axiomatizability of the logic based on
HSP(QLQMV ). In the case of HSP(WLQMV ), instead, one can prove that
this variety is generated by the QMV-axioms together with the following
axiom:

a = (a⊕ c⊙ b∗) ⋓ (a⊕ c∗ ⊙ b).

The problem of the axiomatizability of the logic based on HSP(QLQMV )
is complicated by the fact that not every (quasi-linear) QMV-algebra M =
〈M ,⊕ ,∗ ,1 ,0〉 admits of a “good polynomial conditional”, i.e., a polyno-
mial binary operation ◦ such that

a ◦ b = 1 iff a � b.

Thus, it might happen that the notion of logical truth of the logic based
on HSP(QLQMV ) is (finitely) axiomatizable, while the notion of “logical
entailment” (α |= β) is not.
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We will now show that the QMV-algebra M4 (see Figure 7 below) does
not admit any good polynomial conditional. The operations of M4 are
defined as follows:

⊕

0 0 0

0 a a

0 b b

0 1 1

a 0 a

a a 1

a b 1

a 1 1

b 0 b

b b 1

b a 1

b 1 1

1 0 1

1 a 1

1 b 1

1 1 1

∗

0 1

a a

b b

1 0

•
1

•a
��

��
��

��

•
0

??
??

??
??

• b
??

??
??

??

•
��

��
��

��

Figure 7: M4

Let us consider the three-valued MV-algebra M3, whose operations are
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•
1

• 1
2

•
0

Figure 8: M3

defined as follows:

⊕

0 0 0

0 1
2

1
2

0 1 1
1
2 0 1

2
1
2

1
2 1

1
2 1 1

1 0 1

1 1
2 1

1 1 1

∗

0 1
1
2

1
2

1 0

It is easy to see that the map h : M4 → M3 such that ∀x ∈M4

h(x) :=











0, if x = 0;
1
2 , if x = a or x = b;

1, otherwise

is a homomorphism of M4 into M3.
Suppose, by contradiction, that M4 admits of a good polynomial conditional
→M4

. Since a 6� b, we have h(a→M4
b) 6= 1. Thus,

1 6= h(a→M4
b) = h(a) →M3

h(b) =
1

2
→M3

1

2
= 1,

contradiction.
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17 Conclusion

Some general questions that have been often discussed in connection with
(or against) quantum logic are the following:

(a) Why quantum logics?

(b) Are quantum logics helpful to solve the difficulties of QT?

(c) Are quantum logics “real logics”? And how is their use compatible
with the mathematical formalism of QT, based on classical logic?

(d) Does quantum logic confirm the thesis that “logic is empirical”?

Our answers to these questions are, in a sense, trivial, and close to a
position that Gibbins (1991) has defined a “quietist view of quantum logic”.
It seems to us that quantum logics are not to be regarded as a kind of “clue”,
capable of solving the main physical and epistemological difficulties of QT.
This was perhaps an illusion of some pioneering workers in quantum logic.
Let us think of the attempts to recover a realistic interpretation of QT based
on the properties of the quantum logical connectives14.

Why quantum logics? Simply because “quantum logics are there!” They
seem to be deeply incorporated in the abstract structures generated by QT.
Quantum logics are, without any doubt, logics. As we have seen, they
satisfy all the canonical conditions that the present community of logicians
require in order to call a given abstract object a logic. A question that has
been often discussed concerns the compatibility between quantum logic and
the mathematical formalism of quantum theory, based on classical logic.
Is the quantum physicist bound to a kind of “logical schizophrenia”? At
first sight, the compresence of different logics in one and the same theory
may give a sense of uneasiness. However, the splitting of the basic logical
operations (negation, conjunction, disjunction,...) into different connectives
with different meanings and uses is now a well accepted logical phenomenon,
that admits consistent descriptions. Classical and quantum logic turn out
to apply to different sublanguages of quantum theory, that must be sharply
distinguished.

Finally, does quantum logic confirm the thesis that “logic is empirical”?
At the very beginning of the contemporary discussion about the nature of
logic, the claim that the “right logic” to be used in a given theoretical
situation may depend also on experimental data appeared to be a kind of

14See for instance Putnam (1969)
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extremistic view, in contrast with a leading philosophical tradition according
to which a characteristic feature of logic should be its absolute independence
from any content.

These days, an empirical position in logic is generally no longer regarded
as a “daring heresy” . At the same time, as we have seen, we are facing
not only a variety of logics, but even a variety of quantum logics. As a
consequence, the original question seems to have turned to the new one : to
what extent is it reasonable to look for the “right logic” of QT?
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