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Abstract

Should nature be supersymmetric, then it will be described by Quantum Supergravity at least
in some energy regimes. The currently most advanced description of Quantum Supergravity and
beyond is Superstring Theory/M-Theory in 10/11 dimensions. String Theory is a top to bottom
approach to Quantum Supergravity in that it postulates a new object, the string, from which
classical supergravity emerges as a low energy limit. On the other hand, one may try more
traditional bottom to top routes and apply the techniques of Quantum Field Theory.

Loop Quantum Gravity (LQG) is a manifestly background independent and non perturbative
approach to the quantisation of classical General Relativity, however, so far mostly without super-
symmetry. The main obstacle to the extension of the techniques of LQG to the quantisation of
higher dimensional Supergravity is that LQG rests on a specific connection formulation of General
Relativity which exists only in D + 1 = 4 dimensions.

In this paper we introduce a new connection formulation of General Relativity which exists
in all spacetime dimensions. We show that all LQG techniques developed in D + 1 = 4 can be
transferred to the new variables in all dimensions and describe how they can be generalised to
the new types of fields that appear in Supergravity Theories as compared to standard matter,
specifically Rarita – Schwinger and p-form gauge fields.
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String/M Theory (ST) [1, 2] and Loop Quantum Gravity (LQG) [3, 4] are rather different pro-
grammes that aim for a consistent synthesis of the principles of General Relativity and Quantum
Theory. String/M Theory is necessarily 10/11 dimensional, necessarily supersymmetric and is
perturbatively defined on appropriate background spacetimes. Loop Quantum Gravity, on the
other hand, is to date restricted to 4 spacetime dimensions, does not need supersymmetry and
by design is background independently and non perturbatively defined. It is therefore very hard
to compare these two approaches.

One possibility to make contact between them consists in the consideration of String/M
Theory on spacetime manifolds for which the excess dimensions are compactified and in regimes
where supersymmetry is broken, so that only an effective 4d theory of General Relativity and
the Standard Model plus quantum corrections survives, which then can be compared to the
sector of LQG with small geometry fluctuations around the chosen background. We refer to [5]
for the state of the art of String Theory Phenomenology but it transpires that there are many
possibilities for doing this and there appears to be no specific model that one can compare LQG
to.

Another possibility would be to generalise LQG to higher dimensions including supersym-
metric matter in order to compare the methods of the two theories directly in 10/11 dimensions.
This idea appears to be easier to implement because in its fundamental dimension, String/M
Theory is much simpler to describe and there are much less choices to be made. Concretely,
String Theory can be considered as a specific proposal for quantising classical Supergravity [6] in
10/11 dimensions on a background defined by a solution to the classical Supergravity equations
of motion. With the possible exception of N = 8 Supergravity in 4 spacetime dimensions [7, 8],
perturbative approaches seem to fail due to non renormalisability1 whence non perturbative
methods appear to be more promising. Thus, the natural question arises, how to apply non
perturbative methods, such as those of LQG, to the quantisation of classical Supergravity in
10/11 dimensions. This is a subject of obvious interest to Supergravity research, but, to the
best of our knowledge, the literature on it is rather sparse [9].

When pursuing this question further in the context of LQG, one almost immediately gets stuck:
LQG in 4 dimensions is fundamentally based on a connection formulation of the gravitational
degrees of freedom (“Graviton”) and the construction of this connection and the properties it has
and which make it so adapted for purposes of quantisation, exists only in 4 spacetime dimensions
[10, 11, 12]. Specifically, in 4 dimensions, General Relativity can be described, in its Hamilto-
nian form, by an SU(2) Yang – Mills phase space, subject to Gauß, spatial diffeomorphism and
Hamiltonian constraints. The key properties of this formulation are:

I. The connection Aj
a and its canonically conjugate momentum Ea

j (Yang-Mills “electric
field”) are real valued, the ∗−relations of the associated Poisson algebra are trivial. Here
a, b, c, .. = 1, 2, 3 are spatial, tensorial indices and j, k, l, .. = 1, 2, 3 are su(2) indices.

II. The Poisson algebra is of the usual, simple CCR form

{Aj
a(x), A

k
b (y)} = {Ea

j (x), E
b
k(y)} = 0; {Ea

j (x), A
k
b (y)} = −Gγδab δ

k
j δ(x, y), (1)

1More precisely, to date no counterterm has been found for N = 8 SUGRA in 4 dimensions in any loop

contribution carried out so far, some of them way beyond 3 loop order. This could mean that the theory is

perturbatively finite like QED in 4 dimensions. It does not mean that it is a UV completion of General Relativity

because the perturbation theories most likely diverges. Therefore strictly speaking, also here non perturbative

methods need to be employed.
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where G is Newton’s constant and γ is a free, real valued parameter, called the Immrizi
parameter.

III. The gauge group SU(2) is compact.

These three properties are essential for the whole LQG framework. Without them, LQG would
not exist. Properties I. and II. imply that there is a sufficiently simple ∗−algebra A of functions
on phase space separating its points so that one has a chance to find non trivial Hilbert space
representations thereof. Property III. implies that the holonomies of A are valued in a compact
set. It is therefore possible to construct a probability measure on the space of (distributional)
connections. The Hilbert space is then an L2 space of functions of connections which makes
sense due to (1) because on such a space the connection acts by multiplication which is only
consistent with the algebra if the connection is Poisson self-commuting.

Put together, this enabled to develop a rigorous kinematical mathematical framework [13, 14]
and to find a background independent representation of the holonomy – flux ∗-algebra A which
was later shown to be the unique one [15, 16] when one insists on a unitary representation of the
spatial diffeomorphism group. Moreover, this representation is also well adapted to the quantum
dynamics as one may rigorously implement the spatial diffeomorphism constraint [17] and the
Hamiltonian constraint [18] including standard matter [19, 20] without anomalies.

It transpires that LQG heavily relies on a connection formulation with the properties listed
above. This connection can be found by two independent methods. The first stays purely
within the Hamiltonian framework [10] and uses an extension of the ADM phase space of General
Relativity [21] to the afore mentioned Yang Mills phase space which is subjected to the additional
su(2) Gauß constraint in order that its symplectic reduction recovers the ADM phase space. The
core of the proof of this so called symplectic reduction theorem is the observation, that the spin
connection of the triad eaj = Ea

j /
√

|det(E)| has a potential, that is, there exists a functional F [E]

such that Γj
a(x) = δF/δEa

j (x). The second method uses the Lagrangian framework and starts
from the Holst generalisation [22, 23] of the Palatini action in order to accommodate the Immirzi
parameter. This is actually an SO(1,3) Yang-Mills theory phase space in Lorentzian signature,
however, it is subject to second class constraints which in particular imply that the connection
is not self-commuting with respect to the corresponding Dirac bracket [24]. Therefore properties
II. and III. listed above are not satisfied and no kinematical Hilbert space representation of the
Dirac bracket algebra have been found so far. In order to obtain the SU(2) Yang-Mills phase
space without second class constraints, one therefore imposes the so called time gauge which
fixes the boosts of SO(1,3) and solves the second class constraints. What remains from the
so(1,3) connection is the afore mentioned su(2) connection whose Dirac brackets are the Poisson
brackets (1).

One would now guess that one can simply repeat either of these methods in dimensions
D + 1 > 4. However, this is not the case. As has been shown in [25], the second route leads to
a SO(D) gauge theory in the time gauge but it is not a theory with a connection. In order to
obtain a connection formulation one would therefore need the analog of a topological Immirzi
term, but such a term is not available in all dimensions. Without time gauge, one does have
an SO(1,D) connection formulation but subject to a Dirac bracket which leads to the same
complication as in D + 1 = 4. Moreover, the gauge group SO(1,D) is not compact so that the
functional analytic and measure theoretic tools mentioned before do not apply. The first route
also meets difficulties:
In D spatial dimensions, the metric of the ADM phase space has D(D + 1)/2 degrees of free-
dom while an so(D) connection has D2(D − 1)/2 degrees of freedom of which the so(D) Gauß
constraint fixes D(D − 1)/2. The symplectic reduction of the Yang-Mills phase space by the
Gauß constraint therefore leaves D2(D− 1)/2−D(D− 1)/2 = D(D− 1)2/2 degrees of freedom
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which equals D(D + 1)/2 precisely for D = 3. If one wants to go beyond D = 3 one therefore
must add more constraints and/or change the gauge group in order to match the correct amount
of ADM degrees of freedom and these constraints should better be first class in order to avoid
complicated Dirac brackets and associated non commuting connections.

The general analysis of the first route has been started in [26, 27]. We take an unbiased
viewpoint and consider a general Yang – Mills phase space with gauge group G, connection Aα

a

and conjugate momentum πa
α where α = 1, .., N = dim(G) denotes the Lie algebra index. There

are DN degrees of freedom in the connection of which the Gauß constraint removes N . If there
are no other constraints then we must have (D− 1)N = D(D + 1)/2. The only positive integer
solutions to this equation are (D,N) = (2, 3), (3, 3) which again corresponds to 3d or 4d gravity
respectively with gauge groups SO(1,2) and SO(3) respectively (with Lorentzian signature).
Thus, necessarily more constraints are required.

As has been demonstrated in [26], one can obtain GUT theories by varying G. We are for the
time being only interested in General Relativity and ask for the group G of minimal dimension
that accomplishes all our requirements. To constrain the possible choices we try to follow as
closely as possible the treatment of [10, 26] in D=3 and consider a “square root” eIa of the
spatial metric qab = ηIJe

I
ae

J
b where I, J,K, ... = 1, ..n ≥ D. Here η defines a G invariant metric

of signature (p, q) with q ≥ D in order that qab is positive definite. This constrains the gauge
group to be SO(p, q), n = p + q which has dimension N = n(n − 1)/2. In order to build the
extrinsic curvature we need to construct from eIa the so called hybrid connection ΓaIJ defined
by

Dae
I
b = ∂ae

I
b − Γc

abe
I
c + Γa

I
Je

J
b = 0 (2)

and define the extrinsic curvature by
√

det(q) Ka
b := [AaIJ − ΓaIJ ]π

bIJ , (3)

where A is the so(p, q) connection and π its conjugate momentum. Notice that (3) is meaningful
since A−Γ transforms as a Lie algebra valued one form and not as a connection under SO(p, q).
The question is of course whether Γ exists. The fact that Γa(IJ) = 0 leads to the consistency
condition (all internal indices are moved with η)

e(c|I∂a|e
I
b) − Γ(c|a|b) = 0, (4)

which can be shown to be identically satisfied. Therefore of the D2n equations (2) for the
Dn(n − 1)/2 coefficients ΓaIJ only D2n −D2(D + 1)/2 are independent. Requiring that ΓaIJ

can be uniquely solved for leads to a quadratic equation with the 2 roots n = D, n = D + 1,
that is, either p = 0, q = D or p = ±1, q = D.

Finally the number of constraints additional to the Gauß constraint needed is given by
Dn(n−1)/2−n(n−1)/2−D(D+1)/2 which equals D2[D−3]/2 for n = D andD(D+1)[D−2]/2
for n = D + 1. The question is of course what these constraints should be. A natural choice is
that these constraints should somehow impose that πaIJ is entirely determined by eIa. The excess
number of degrees of freedom in πaIJ as compared to eIa is given by Dn(n − 1)/2 −Dn which
equals precisely the number of additional constraints needed for both n = D and n = D + 1.
In order to write πaIJ purely in terms of eIa we require an internal vector nI built from eIa such
that

πaIJ = 2
√

det(q)qabn[Ie
J ]
b . (5)

There is no way to construct nI out of eIa algebraically for n = D so that in this case we must
resort to D = 3. For n = D + 1, however, we may build the unit normal

nI :=
1

D!
√

det(q)
ǫIJ1..JD ǫa1..aD eJ1a1 ..e

JD
aD

(6)
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satisfying nIn
I = ±1 for SO(±1,D).

We conclude that if we want to obtain a connection representation with compact gauge
group for Lorentzian General Relativity, a natural choice is to consider the phase space of an
SO(D + 1) Yang-Mills theory subject to an so(D + 1) Gauß constraint and additional simplic-

ity constraints which impose that πaIJ is determined by a generalised D-bein eIa via (5) where
nIe

I
a = nIn

I − 1 = 0 is the unit normal determined by eIa. In fact, one might have almost
guessed that:
If one performs the Hamiltonian analysis of the Lorentzian Palatini action in D+ 1 dimensions
(see e.g. [28] and references therein) then one obtains a primary constraint precisely of the form
(5). However, as secondary constraints one obtains an so(1,D) Gauß constraint next to spatial
diffeomorphism and Hamiltonian constraints plus one more constraint. This last constraint, let
us call it D-constraint, is a second class constraint partner to the simplicity constraint S. Thus,
the Hamiltonian analysis of the D + 1 Palatini action for Lorentzian gravity fails to deliver a
canonical theory of connections with the properties I., II. and III. listed above for two reasons:
1. The gauge group is SO(1,D) rather than SO(D + 1) and thus non compact.
2. The theory suffers from second class constraints and thus leads to Dirac bracket non com-
muting connections.

As it turns out [28], the second problem can be circumvented by employing the machinery
of gauge unfixing [29, 30]. Under certain conditions, which are satisfied for our second class pair
(S,D), it is possible to trade the second class system under consideration for an equivalent first
class system equipped with the original Poisson bracket rather than the Dirac bracket so that
the connection remains Poisson commuting. However, the first problem cannot be overcome
starting from the Palatini action for Lorentzian General Relativity. Therefore, the canonical
theory that we are about to describe does not have an obvious Lagrangian origin (other than
by backwards Legendre transform).

The first step [31] consists in writing both the hybrid connection and the simplicity constraint
purely in terms of πaIJ . The guideline for doing this consists in replacing the solution ΓaIJ [e]
of (2), which can be computed explicitly, by a function ΓaIJ [π] of π alone such that it reduces
to ΓaIJ [e] when πaIJ = 2n[IEa|J ] where EaI =

√

det(q)qabeIb . This has been done explicitly
in [31] which leads to a rather complicated expression which can be displayed as a rational
homogeneous function of degree zero in terms of π and its first partial derivatives and which
transforms as an so(D + 1) connection.

Next one shows [31] that the condition that πaIJ is of the form 2n[IEa|J ][E] is equivalent to
the condition

SaIJ ;bKL := πa[IJ π|b|KL] = 0 (7)

provided that for any non zero vector n the object Qab = πaIKπbJLδIJnKnL is non degenerate.
The proof follows closely the seminal paper [32] in which the possibility of a higher dimensional,
canonical version of LQG is also contemplated.

We are now in the position to establish the relation with the ADM phase space. We postulate
the following non trivial Poisson brackets

{AaIJ (x), π
bKL(y)} := 2β G δba δK[I δLJ ] δ(x, y), (8)

where β is a free real parameter and consider the following quantities

det(q) qab := −Tr(πaπb),
√

det(q) Ka
b := −

1

β
Tr([Aa − Γa]π

b) (9)

which play the role of the intrinsic D metric and the extrinsic curvature. Then one can show
[31] that with the usual formula P ab :=

√

det(q)qac[Kc
b − δbc Kd

d] one obtains the following
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non trivial Poisson brackets

{P ab(x), qcd(y)} = −G δ(ac δ
b)
d

δ(x, y) (10)

modulo terms that vanish on the joint constraint surface defined by the simplicity constraint (7)
and the so(D + 1) Gauß constraint

GIJ = ∂aπ
aIJ + [Aa, π]

IJ . (11)

This is non trivial and heavily relies on the fact that the hybrid connection ΓaIJ [π] has a weak

potential, that is, there is a functional F [π] such that ΓaIJ(x) = δF/δπaIJ (x) modulo terms that
vanish on the simplicity constraint surface. Without this property, the bracket {P ab(x), P cd(y)}
would not vanish on the constraint surface. It is also not difficult to show that the algebra
of the simplicity and Gauß constraints is first class and that the variables (9) are weak Dirac
observables with respect to both constraints.

Thus, as with the usual LQG variables [10], the (weak) integrability of the spin (hybrid)
connection is central to show that the symplectic reduction of the SO(D + 1) Yang-Mills phase
space by Gauß and simplicity constraints results in the ADM phase space. That the ADM
spatial diffeomorphism constraints Ca and Hamiltonian constraint C, when expressed in terms
of (9), weakly Poisson commute with SaIJ ;bKL, GIJ and that their algebra among themselves,
as compared to the ADM phase space, is unchanged modulo terms vanishing when SaIJ ;bKL =
GIJ = 0 is a simple corollary. We conclude that we have found a connection formulation for
Lorentzian General Relativity in D + 1 dimensions with D ≥ 2 with all the desired properties,
in particular, all four types of constraints form a first class algebra.

Remarkably, all we have said so far can be performed for all four combinations of the space-
time and internal signatures (s, ζ) respectively where s = ±1 for Euclidian and Lorentzian
General Relativity respectively and ζ = ±1 for SO(D + 1) and SO(1,D) respectively.

Similar to the situation with the usual variables [10], the constraints take a simple form
when written in terms of the curvature FabIJ of AaIJ . One finds modulo Gauß and simplicity
constraints [31]

Ca = −Tr(Fabπ
b), (12)

√

det(q)C = −ζTr(Fabπ
aπb) +

1

(D − 1)2
[ζ −

s

β2
] [Ka

bKb
a − (Kc

c)2]−KTT
aIJ T aIJ ;bKL KTT

bKL.

The spatial diffeomorphism constraint takes unsurprisingly a form analogous to the formulation
in D = 3. Also the first two terms in C look familiar. However, the third term in the expression
for C is new. Here KaIJ = (AaIJ − ΓaIJ)/β and KTT

aIJ is transversal nIKTT
aIJ = 0 and trace free

EaIKTT
aIJ = 0 on the solution πaIJ = 2n[IEa|J ] of the simplicity constraint, it can be written as

PaIJ
bKL[π] KbKL where P [π] is a transverse tracefree projector and just depends on π. Also

T aIJ ;bKL[π] is a tensor constructed entirely from π. The significance of this third term is that it
removes the dependence of the curvature on the transverse tracefree components of KaIJ which
are pure gauge with respect to the simplicity constraints and on which the ADM variables do not
depend. Notice that for matching internal and spacetime signature ζ = s and β = 1 the second
term in C vanishes and the Hamiltonian constraint simplifies, a feature that also is familiar from
the usual formulation. In this case one can arrive at (12) also starting from the Palatini action
by the method of gauge unfixing [28] where now the third term is generated when making the
Hamiltonian constraint invariant under the gauge transformations generated by the simplicity
constraint so that the afore mentioned second class partner can be dropped.

In order to quantise the Hamiltonian constraint, we observe that the terms quadratic in KaIJ

can be written, as in the D = 3 situation [18] as [33]

KaIJ (x) ∝ {AaIJ(x), {V,CE}}, (13)
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where V =
∫

dDx
√

det(q) is the total volume and

√

det(q) CE := −Tr(Fabπ
aπb) (14)

is the “Euclidian piece” of the Hamiltonian constraint. Similar remarks apply to the tensors T, P
which can be treated by analogous Poisson bracket identities as displayed in [18, 19]. Notice that
the kinematical Hilbert space techniques [13, 14, 15, 16] as well as the treatment of the spatial
diffeomorphism constraint [17] have been formulated for canonical theories of connections for
compact gauge groups in any dimension and thus can be applied to our situation without further
effort. In particular, the holonomy flux algebra now consists of SO(D+1) valued holonomies of
A along piecewise analytic (or semianalytic) one dimensional paths and so(D+1) valued fluxes
of π through semianalytic D − 1 surfaces.

The following remark is due at this point for the case of D = 3:
In the usual formulation the connection ALQG is an SU(2) connection and is related to the
extrinsic curvature by

ALQG
ajk − ΓSPIN

ajk [E] = γǫjklK
l
a; ALQG

a0j = ΓSPIN
a0j [E] ≡ 0, (15)

where Kab = Kj
ae

j
b and where ΓSPIN

ajk [E] is the spin connection of the co-triad eja built from Ea
j .

Neither ALQG nor ΓSPIN have a “boost” part, the information about the extrinsic curvature is
encoded in the rotational part of ALQG and depends on the Immirzi parameter γ. On the other
hand, in the “time gauge” nI = δI0

ANEW
ajk − ΓHYB

ajk [π] ≈ S− gauge, ANEW
a0j − ΓHYB

a0j [π] = βKj
a, (16)

where ΓHYB[π] is the hybrid connection built from π. The tracefree rotational components of the
new connection are pure gauge and the trace piece of the rotational components vanishes by the
boost part of the Gauß constraint. Therefore the information about the extrinsic curvature is
encoded in the boost part of the new connection and depends on the parameter β. It transpires
that the Immirzi parameter γ and β have nothing to do with each other and that the new
formulation is a rather different extension of the ADM phase space as compared to the LQG
formulation even in D = 3 which nevertheless have the same symplectic reduction, namely the
ADM phase space. In [28] we show that for D = 3 one can generalise the exposition given so far
by considering a 2 parameter family of connection formulations depending on both γ, β. The
essential features remain the same, the connection remains Poisson commuting.

The price to pay for the higher dimensional connection formulation are the additional sim-
plicity constraints. On the other hand, this makes this canonical formulation appear much closer
to the spin foam models [34] which aim to be a path integral formulation of LQG in D + 1 = 4
dimensions. For instance, we expect that the β = 1, ζ = s theory with arbitrary γ corresponds to
the “new spin foam models” [35, 36] because both can be obtained from the Holst modification
of the Palatini action without imposing the time gauge. Notice that our formulation is in the
continuum rather than on a fixed triangulation. In particular, we must define the simplicity
constraint operators on spin network functions for all graphs not only simplicial ones. The ne-
cessity of doing that in order to make contact with the canonical formulation has been recently
emphasised also in [37].

The quadratic, canonical quantum simplicity constraints are naturally quantised by smearing
the two factors of π in (7) over two independent D− 1 surfaces in order to obtain flux operators
which are then shrunk to a point x [33]. Then two types of simplicity constraints arise: Either
x is an interior point of an edge (edge simplicity constraints) or a vertex (vertex simplicity
constraints). Taking advantage of the flexibility in the choice of the surfaces available in the

7



continuum formulation as well as taking linear combinations one can show that one can reduce
the simplicity constraints to the following building blocks

SIJKL
e,e′ := X [IJ

e X
KL]
e′

= 0 (17)

for all pairs of edges e, e′ of a the given graph which share a vertex. Here XIJ
e is right invariant

vector field on the copy of SO(D+1) associated with the edge e. The edge simplicity constraints
arise for e = e′, the vertex simplicity constraints for e 6= e′. These are the analogs of the diagonal
and cross simplicity constraints appearing in the spin foam literature which involve either one
face or two faces sharing a “temporal edge”. These faces arise from our edges by “time evolving”
them into faces.

The edge simplicity constraints enforce the irreducible SO(D+1) representations on the edges
of the SO(D + 1) spin network functions to be simple representations which have already been
described in great detail in [32] for SO(D+1). The vertex simplicity constraints are anomalous
and strong imposition leads to the higher dimensional analog of the Barrett-Crane intertwiner
also described already in [32]. To avoid the anomaly one can invent several strategies none
of which are entirely satisfactory. Either one can try to construct a vertex master constraint
[33] for each vertex whose solutions, however, are beyond any analytic control at the moment.
Another possibility is to consider for each vertex a preferred recoupling scheme which then
selects a maximal commuting subset of vertex simplicity constraints which in turn select a so
called simple intertwiner [38] which appears to establish a unitary map between the old and new
formulation in D + 1 = 4. The unnatural feature here is that the notion of simple intertwiner
depends on the chosen recoupling scheme. Yet another option in the spirit of the “improved
spin foam models” [35, 36] is to consider linear simplicity constraints [38] instead. These arise
in the canonical framework by considering the time normal nI as an independent quantum field
subject to the normalisation constraint N = nInI − 1 and to replace the quadratic constraints
(7) by the linear constraints

SaIJK = πa[IJnK]. (18)

The framework described so far can be adapted to this formulation of the simplicity constraint
and all essential features are preserved. This formulation automatically avoids the topological
sector for D = 3. The then needed Hilbert space representation for the time normal field is
supplied in [39]. Again, it is natural to smear the π appearing in (18) over arbitrary surfaces.
Notice that now the wave functions depend on both A and n where A is located along the edges
and n along the vertices. The building blocks of the simplicity constraint are now the operators

X [IJ
e,x n

K](x) (19)

for each point x on the edge e and each edge e of the graph. Here Xe,x denotes the right invariant
vector field on the copy of SO(D+1) corresponding to segment of e which starts at x and ends
at the end point of e. The nice thing is that these constraints are non anomalous because they
generate the Lie algebra of the SO(D) subgroup of SO(D+1) stabilising n, however, they enforce
that at each point of an edge there should be a specific n dependence which maps out of the
space of spin network functions described above. While some strategies for matching linear and
quadratic simplicity constraints are spelled out in [38] based on ideas from group averaging,
none of them can be considered as complete so far and they deserve further research.

Notice that especially in D = 3 we are now faced with a real challenge and opportunity to
make progress with the simplicity constraint:
We have two classically equivalent connection formulations, the one based on the Ashtekar-
Barbero-Immirzi SU(2) connection with SU(2) Gauß constraint and the new SO(4) connection
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formulation with SO(4) Gauß and simplicity constraint. One would therefore expect the cor-
responding quantum theories to be unitarily or at least semiclassically equivalent. Thus, the
usual LQG formulation may help us to find a consistent and non anomalous definition of the
simplicity constraint as argued in [38].

So far we have only considered the purely gravitational degrees of freedom (graviton). We
now turn to matter. As far as standard matter is concerned, all the machinery developed for
D = 3 straightforwardly generalises to arbitrary D as far as gauge bosons and (Higgs) scalars are
concerned [19]. Slightly more attention is required when considering fermionic matter because
the Lorentzian theory uses Dirac matrices for the SO(1,D) Clifford algebra which we would like
to recast in terms of the Dirac matrices for the SO(D+1) Clifford algebra in order that matter
and gravitational degrees of freedom transform under the same gauge group SO(D + 1). As
far as Dirac fermions are concerned, one can proceed similar [40] as in the case D = 3 in [19]:
Consider the Lorentzian theory first in time gauge nI = δI0 which breaks the SO(1,D) internal
group down to the SO(D) subgroup preserving the time gauge. In particular, the theory is
now formulated in terms of Ea

j , Kj
a as in [25]. Now extend all constraints and variables in

an SO(D + 1) covariant way such that they reduce to the previous expressions in the time
gauge. This can be done using that Eai = πai0 in time gauge when the simplicity constraint
holds, by subtracting terms proportional to KTT

aIJ as we did for the gravitational degrees of
freedom and by replacing the Lorentzian γ0L Dirac matrix by the Euclidian one γ0 := γ0E := iγ0L
wherever it appears. For instance, the term Ea

jΨ
†γ0γj∇aΨ where Ψ are the Dirac fermions and

∇a is the covariant derivative defined by the SO(D) spin connection of Ea
i , can be written as

πaIJΨ†γ[IγJ ]DaΨ plus terms involvingKaIJ whereDa is the covariant derivative defined by AaIJ .
Here we used the fact that the SO(D) spin connection is the SO(D+1) hybrid connection in time
gauge. The KaIJ terms then need to be written as above in double Poisson brackets involving
volume and Euclidian piece of the gravitational contribution to the Hamiltonian constraint. This
produces 4-fermion terms, see [40] for details but apart from this one can copy the Hilbert space
representation from the case D = 3 for Dirac fermions given in [20]. We conclude that standard
matter can be treated just as in D = 3.

The reason why this worked so well is that both SO(D + 1) and SO(1,D) act on the same
complex representation spaces. When we turn to Supergravity theories, this is no longer helps
because Supergravity multiplets contain the Rarita – Schwinger field (gravitino) as a Majorana

fermion and these belong to real representation spaces. In particular, the Lorentzian Dirac
matrices (for our mostly plus signature choice in D + 1 = 4, 10, 11) are real valued which is
crucial in order that the real vector space V formed by Majorana Fermions is preserved under
SO(1,D). Since γ0E = iγ0L is then purely imaginary this is no longer the case for SO(D + 1) so
that SO(D + 1) does not act on the vector space of Majorana fermions. To see this explicitly,
notice that [γI , γJ ]/8 are the generators of so(1,D) or so(D + 1) respectively in the spinor
representation. We resolve the arising tension by noticing that while there is no action of
SO(D+ 1) on V there is an action on the set of pairs (n, θ) where θ is a Majorana fermion and
n is the time normal field. To see this, notice that the action of g ∈ SO(D+1) on n is simply by
n 7→ g ·n. Let us now build an SO(D+1) matrix A(n) from the components of n, for instance the
one that is given in [39] and which maps nI to the time gauge normal vector δI0 . Then one can
show that gA(n)−1 = A(g · n)−1R(g, n), where R(g, n) is a rotation preserving the time gauge.
Such a rotation is generated in the spinor representation by [γj , γk]/8, j, k = 1, ..,D and thus
only involves the real Dirac matrices γj . We now consider the extension θ 7→ A(n)−1 · θ off the
time gauge and observe that the SO(D+1) orbit of these vectors is preserved as g ·A(n)−1 · θ =
A(g · n)−1 ·R(g, n) · θ. In other words, we have the action on pairs g · (n, θ) = (g · n,R(g, n) · θ).
Starting from time gauge, one then rewrites all constraints in terms of these variables, replaces
Lorentzian γ0 by the Euclidian one and finally extends off the time gauge similar as for Dirac
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fermions. There is still a remaining complication which arises from the fact that there is a reality
condition on the Majorana spinors which effectively gives rise to a non trivial Dirac antibracket
and which prohibits to use the formalism of [20]. We supply the missing details and provide a
proper Hilbert space representation of the Dirac antibracket [39].

Supergravity theories not only contain the Rarita Schwinger field but often additional tensor
fields such as the 3-index photon field A in 11d Supergravity. This field is self-interacting due to
a Chern-Simons term in the action (the Hamiltonian is a polynomial of fourth order in A and
the momentum π conjugate to it) and it is constrained by a twisted Gauß Law constraint which
is of the form G = d ∗ π− c/2F ∧ F . Here, F = dA is the curvature of A and c is related to the
level of the Chern Simons theory. The appearance of the F ∧ F term implies that one cannot
simply solve the constraint by considering the theory as the 3-form equivalent of Maxwell the-
ory in higher dimensions and for which gauge invariant states would simply be gauge invariant
“Spin network states”, i.e. functions of A integrated over closed 3-surfaces. In particular the
analog of the LQG representation is inappropriate to solve the constraint. We resolve the ten-
sion [41] by considering the Weyl algebra generated by the exponentials of the Dirac observables
F, P = ∗π+ cA∧F with respect to G which can be computed in closed form and show that the
resulting ∗−algebra admits a state (positive linear functional) which is discontinuous in both
F,P and is thus of the Narnhofer-Thirring type2 [42]. The resulting background independent
Hilbert space representation then follows from the GNS construction [44] and since the con-
tribution of the 3-index Photon to the Hamiltonian and spatial diffeomorphism constraint can
be written just in terms of the observables, they can be quantised in terms of Weyl elements [41].

Thus we believe to have provided the tools for an LQG type of quantisation of at least a
subset of Supergravity theories in higher dimensions, notably 11d Supergravity and 4d N = 8
Supergravity which can be obtained from the 11d theory by dimensional reduction as well as
some Supergravity theories in 10d and 4d. This by far does not exhaust all of them. Some
Supergravity theories contain non Abelian p-form fields whose quantisation most probably re-
quires techniques from higher gauge theory [43]. Other Supergravity theories only have an on
shell formulation, that is, the algebra of local supersymmetry constraints closes only modulo
the equations of motion making them second class off shell. We do not have yet any concrete
proposal for how to deal with these kinds of Supergravity Theories, possibly ideas from gauge
unfixing may be applied in order to turn such a system first class.

Many questions are not answered by our work, for instance:
The precise relation with String Theory/M Theory is not provided. Our formulation works but
is most certainly not the most elegant one. The treatment of the simplicity constraint remains
unsatisfactory. A formulation in terms of superfields is maybe more desirable. We hope to
be able to improve on this in future publications and have many other applications in mind
such as revisiting the AdS/CFT correspondence [45] and its integrability structure [46] between
(classical?) Supergravity Theories in the bulk of 11d manifolds with asymptotic AdS topology
and N = 4 Super Yang-Mills Theories on its conformal boundary which is a 10d conformal field
theory.

2This state is different from the Fock state and has the attractive feature of being ghost free while manifestly

Poincaré invariant.
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