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. . .‘‘but we do not have quantum gravity.’’ This phrase is often used when analysis of a physical

problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are

several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can

be completed using loop quantum gravity techniques. The model we present in this paper consists of the

gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology

models, except that it involves all the local degrees of freedom of the gravitational field because no

symmetry reduction has been performed at the classical level.
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I. INTRODUCTION

The recent advances in loop quantum gravity (LQG)
[1–4] strongly suggest that the goal of constructing a can-
didate for quantum theory of gravity and the standard model
is within reach. Remarkably, that goal can be addressed
within the canonical formulation of the original Einstein’s
general relativity in four-dimensional spacetime. A way to
define ‘‘physical’’ dynamics in a background independent
theory, where spacetime diffeomorphisms are treated as a
gauge symmetry, is the framework of relational Dirac ob-
servables (often also called ‘‘partial’’ observables [5–8],
Sec. I.2 of [2]). The main idea is that part of the fields adopt
the role of a dynamically coupled observer, with respect to
which the physics of the remaining degrees of freedom in
the system is formulated. In this framework the emergence
of the dynamics, time, and space can be explained as an
effect of the relations between the fields. As far as technical
issues of a corresponding quantum theory are concerned,
the most powerful example of the relational observables
framework is the deparametrization technique [9–12]. This
allows one to map canonical general relativity into a theory
with a (true) nonvanishing Hamiltonian that is independent
of the (emergent) time provided by the observer fields. All
this can be achieved at the classical level; the framework of
LQG itself provides then the tools of the quantum theory
like quantum states, the Hilbert spaces, quantum operators
of the geometry and fields, and well-defined quantum op-
erators for the classical constraints of general relativity (see
[2,4], and references therein). The combination of LQG
with the relational observables and deparametrization
frameworkmakes it possible to construct general relativistic
quantum models. Applying LQG techniques to perform the

quantization step has the consequence that the quantum
fields of the standard model have to be reintroduced within
the scheme of LQG. This is due to the reason that the
standard quantum field theory (QFT) defined on the
Minkowski (or even anti–de Sitter) background is incom-
patible with the quantization approach used in LQG.
Therefore, the resulting quantum theory of gravity cannot
be just coupled to the standard model in its present form.
The formulation of the full standard model within LQG will
require somework. For this reason, we proceed step by step,
increasing gradually the level of complexity. The first step
was constructing various cosmological models by analogy
with LQG by performing a symmetry reduction already at
the classical level. They give rise to loop quantum cosmol-
ogy (LQC) [13–19]. We have learned from them a lot about
qualitative properties of quantum spacetime and its quan-
tum dynamics [20,21]. That knowledge is very useful in
performing the second step, which is introducing quantum
models with the full set of the local gravitational degrees
of freedom. The first quantum model of the full, four-
dimensional theory of gravity was obtained by applying
LQG techniques [22] to the Brown-Kuchar model of gravity
coupled to dust [9]. In the current paper we apply LQG to
the model introduced by Rovelli and Smolin [23] whose
classical canonical structure was studied in detail by Kuchar
and Romano [24]. This is a model of gravity coupled to a
massless scalar field. Our goal is to complete the construc-
tion of the quantummodel with the tools of LQG. In the first
part of the paper (Secs. I and II) we introduce the model,
study the structure of the space of solutions to the quantum
constraints, and study the Dirac observables, assuming only
suitable Hilbert products and operators exist. The result of
this part is a list of mathematical elements necessary and
sufficient for the model to exist. In the second part (Sec. III)
we apply the framework of LQG. We show it provides the
necessary Hilbert spaces and operators, and we complete
the construction of the model.
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II. CANONICAL GRAVITY COUPLED TO
A CLASSICAL SCALAR FIELD

A. The standard approach

The point of our interest in this paper is gravity coupled
to a scalar field. We are considering a metric tensor field
qab and a scalar field� on a 3-manifoldM (the space). The
conjugate momenta are denoted, respectively, by pab and
�. The only nonvanishing Poisson brackets among them
are

fqabðxÞ; pcdðyÞg ¼ �ðx; yÞ�c
ða�

d
bÞ;

f�ðxÞ; �ðyÞg ¼ �ðx; yÞ:
(2.1)

The intrinsic and extrinsic geometry of M (with M being
the Cauchy surface of four-dimensional spacetime) is de-
scribed by the first pair of canonically conjugate variables
ðqab; pabÞ. The field qab defines the intrinsic Riemann
geometry of M, whereas pab contains the information
about the extrinsic curvature of M embedded in the
spacetime.

The variables ðqab; pabÞ are known from the standard
canonical formulation of gravity usually called Arnowitt-
Deser-Misner (ADM) formalism [25] (see also Chapter 10
and Appendix E of [26]). But one can use any other
variables in this part of our paper (Secs. I and II). In
Sec. III we will apply LQG, and therein we will be using
the Ashtekar-Barbero variables ðAi

a; P
a
i Þ, i ¼ 1; 2; 3 (and

the notation of [4]). They are also canonically conjugate to
each other, and the only nonvanishing Poisson bracket is

fAi
aðxÞ; Pb

j ðyÞg ¼ �ðx; yÞ�b
a�

i
j: (2.2)

The intrinsic and extrinsic geometry ofM can be recovered
out of them, as they are defined by the orthonormal
coframe eia, the corresponding connection 1-form �i

a, the
extrinsic curvature 1-form Ki

a, and a fixed Barbero-
Immirzi parameter � (for its value see [27–29]), namely,

Ai
a ¼ �i

a þ �Ki
a; Pc

i ¼
1

16�G�
ejaekb�

abc�ijk; (2.3)

where �123 ¼ 1 ¼ �123 and �abc, �abc are completely
antisymmetric.

The fields ðAi
a; P

a
i Þ set an su(2) valued 1-form and,

respectively, suð2Þ� valued vector density

A ¼ Ai
aðxÞ�i � dxa; P ¼ Pa

i ðxÞ�i �
@

@xa
; (2.4)

where xa are local coordinates inM, �1, �2, �3 2 su 2ð Þ is a
basis such that

�ð�i; �jÞ :¼ �2Trð�i�jÞ ¼ �ij;

and �1, �2, �3 is the dual basis.
Einstein’s theory of gravity is subject to constraints. In the

standard ADM approach we have two constraints, namely,
the vector constraint generating the diffeomorphisms of M

and the scalar constraint generating dynamics, that is, dif-
feomorphisms orthogonal to the Cauchy hypersurface M:

CaðxÞ ¼ C
gr
a ðxÞ þ �ðxÞ�;aðxÞ; (2.5)

CðxÞ ¼ CgrðxÞ þ 1

2

�2ðxÞffiffiffiffiffiffiffiffiffi
qðxÞp þ 1

2
qabðxÞ�;aðxÞ�;bðxÞ

ffiffiffiffiffiffiffiffiffi
qðxÞ

q

þ Vð�Þ
ffiffiffiffiffiffiffiffiffi
qðxÞ

q
; (2.6)

where the terms Cgr
a and Cgr involve the gravitational field

variables qab and pab only.
In LQG, the fields qab and pab in the constraints are

expressed by the variables Ai
a and Pa

i , and we get an addi-
tional constraint—the Gauss constraint generating the
‘‘Yang-Mills’’1 gauge transformations of the fields ðA; PÞ:

Gi
aðxÞ ¼ @aP

a
i þ �ij

kAj
aPa

k: (2.7)

All the transformations generated by the vector, the
scalar, and the Yang-Mills constraint are gauge transfor-
mations, because the constraints are of first class.
In Secs. I and II the choice of the variables describing the

gravitational part does not matter, so one can use either the
ADM variables ðqab; pabÞ and the constraints (2.5) and
(2.6) or, respectively, the Ashtekar-Barbero variables
ðAi

a; P
a
i Þ and the constraints (2.5), (2.6), and (2.7). In

Sec. III, the latter choice is necessary, because we will
apply LQG. For the sake of the continuity, we will stick to
the Ashtekar-Barbero variables, remembering that qab,
pab, Cgr, and Cgr

a should be considered as functions of
ðAi

a; P
a
i Þ.

Each choice of the fields ðAi
a; P

a
i ; �;�Þ defines a point in

the phase space �. The solutions to the constraints form a
constraint surface. We will also consider separately the
phase space of gravitational degrees of freedom denoted
by �gr, which by definition is set by the pairs ðAi

a; P
a
i Þ.

By assuming that the vector and the scalar constraints
are satisfied

CðxÞ ¼ 0; CaðxÞ ¼ 0; (2.8)

we can solve the vector constraint in (2.5) for the gradient

�;a obtaining �;a ¼ � C
gr
a

� and inserting this into the scalar

constraint (2.6). What we get, remembering (2.8) and
solving the scalar constraint for �, is an expression for
�2 as a function of the geometry variables ðAi

a; P
a
i Þ and the

potential Vð�Þ only,
�2 ¼ ffiffiffi

q
p ð�ðCgr þ ffiffiffi

q
p

Vð�ÞÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCgr þ ffiffiffi

q
p

Vð�ÞÞ2 � qabC
gr
a C

gr
b

q
Þ: (2.9)

1Although we do not consider the Yang-Mills theory itself, the
Ashtekar-Barbero variables are subject to the gauge transforma-
tions known from the Yang-Mills theory.
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The ambiguous sign � in (2.9) defines different regions in
the phase space �. In particular, only the choice of a plus
sign includes the special case of a homogeneous and iso-
tropic geometry coupled to a scalar field. In the case of the
minus sign specialized to cosmological spacetimes, where
each vector constraint vanishes identically, the expression
for �2 above will just yield zero on the right-hand side.

B. A deparametrized model

What we have done in the last section is solve the scalar
constraint for the scalar field momentum by using the
vector constraint. Physically, this corresponds, as will be
explained more in detail below, to choose the scalar field�
as our emergent time with respect to which the dynamics of
the observables will be formulated. This calculation pro-
vides the relation between the standard real scalar field
coupled to gravity, on the one hand, and the model we
actually define below, on the other hand.

In our paper we will consider a model that is defined by
the vector constraint (2.5), the Gauss constraint (2.7), and
the following scalar constraint:

C0ðxÞ ¼ �ðxÞ � hðxÞ; (2.10)

h :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ffiffiffi

q
p

Cgr þ ffiffiffi
q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCgrÞ2 � qabCgr

a C
gr
b

qr
: (2.11)

The scalar constraint CðxÞ has been rewritten using (2.9).
That theory is equivalent to the theory defined in the
previous subsection in the case of no potential

Vð�Þ ¼ 0 (2.12)

and in the region of the phase space � such that ‘‘þ’’ holds
in (2.9) and

�> 0: (2.13)

Since the potential is set to zero in the model, � no longer
occurs in the function h and the scalar constraints depar-
ametrize. Notice that in the consequence of the constraints,
in that region

Cgr < 0: (2.14)

The deparametrized scalar constraints, being linear in the
scalar field momentum, strongly Poisson commute

fC0ðxÞ; C0ðyÞg ¼ 0; (2.15)

as a consequence of the following identity:

fhðxÞ; hðyÞg ¼ 0 (2.16)

proved in [24]. A Dirac observable is the restriction to the
constraint surface of a function f: � ! R, such that

ff; CaðxÞg ¼ ff; C0ðxÞg ¼ ff;Gi
aðxÞg ¼ 0: (2.17)

The vanishing of the first Poisson bracket means that f is
invariant with respect to the action of the local diffeo-
morphisms (that is, all diffeomorphisms generated by the

vector fields tangent to M), and the vanishing of the third
Poisson bracket is equivalent to the Yang-Mills gauge
invariance of f. The vanishing of the second Poisson
bracket reads

ff; �ðxÞg ¼ ff; hðxÞg: (2.18)

III. QUANTUM CANONICAL GRAVITY COUPLED
TO A SCALAR FIELD

In this section we introduce a ‘‘formal’’ structure of our
theory. Our goal, at this point, is to conclude what mathe-
matical structures (Hilbert spaces, operators, etc.) are
needed to complete the quantization of the model. How
to construct them using LQG will be explained in the next
section.
Assuming for the time being that all Hilbert spaces and

operators we need exist, and that they have the usual
properties, we will now derive:
(i) a general solution to the quantum constraints,
(ii) a general quantum Dirac observable, its classical

interpretation, and its physical evolution,
(iii) the Hilbert product between two solutions.

A. Quantum states and quantum fields

The quantum states are complex valued functions

ð�;AÞ � �ð�;AÞ; (3.1)

where � and A are the scalar field and the Ashtekar-
Barbero connection defined on M in the previous section
(henceforth, we will write A and P instead of Ai

a and Pa
i ).

For a given representation the fields �, �, A, P give rise
to quantum operators

�̂ðxÞ�ð�;AÞ ¼ �ðxÞ�ð�;AÞ;
�̂ðxÞ�ð�;AÞ ¼ 1

i

�

��ðxÞ�ð�;AÞ;
(3.2)

Âj
bðxÞ�ð�;AÞ ¼ Aj

bðxÞ�ð�;AÞ;
P̂b
j ðxÞ�ð�;AÞ ¼ 1

i

�

�Aj
bðxÞ

�ð�;AÞ:
(3.3)

These elementary operators are needed to define the op-
erators corresponding to the classical constraints and to
define the quantum observables.

B. The quantum constraints and their solutions

We turn now to the quantum constraints and their
solutions. The first step is defining the quantum counter-
parts of the classical constraints (2.5), (2.6), and (2.7).
In LQG we assume that the quantum Gauss constraints
corresponding to the classical expression in (2.7) still gen-
erate the ‘‘Yang-Mills’’ gauge transformations; hence their
solutions are functions such that
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�ð�; a�1Aaþ a�1daÞ ¼ �ð�;AÞ (3.4)

for every a: M ! SUð2Þ.
Similarly, we assume that the quantum vector con-

straints generate the local diffeomorphism transformations
of the quantum states, and in the consequence, the quantum
vector constraint carries over to the condition that � be
invariant with respect to all local diffeomorphisms
’: M ! M, that is,

�ð’��;’�AÞ ¼ �ð�;AÞ: (3.5)

The quantum deparametrized scalar constraint operator
has the following form:

Ĉ 0ðxÞ� ¼ ð�̂ðxÞ � ĥðxÞÞ�: (3.6)

We use Eq. (2.11) (which gives the expression for h as a
functional of A and P) to quantize the second term in the
parentheses. Heuristically we get

ĥðxÞ ¼ hðÂ; P̂ÞðxÞ:
Because of operator ordering aspects the definition of ĥ is
not unique and will be completed later in this paper. In
order to avoid a quantum anomaly we must respect the
classical symmetry in (2.16) also at the quantum level and
must make sure that

½ĥðxÞ; ĥðyÞ� ¼ 0 (3.7)

[compare to (2.16)]. Given the quantum constraint operator
(3.6), the constraint itself reads

ð�̂ðxÞ � ĥðxÞÞ� ¼ 0: (3.8)

To solve the quantum deparametrized scalar constraint, we
write � as

� ¼ ei
R

d3x�̂ðxÞĥðxÞc ; (3.9)

with a new function c , and insert it in (3.8) to obtain

�

��ðxÞ�ð�;AÞ ¼ iĥðxÞ�ð�;AÞ: (3.10)

Because of the commutator in (3.7), the constraint equa-
tion (3.10) turns into

�

��ðxÞ c ¼ 0: (3.11)

Hence, a general solution to (3.10) is

�ð�;AÞ ¼ ei
R

d3x�̂ðxÞĥðxÞc ðAÞ: (3.12)

Notice that the exponentiated operator acting at c on the
right-hand side of (3.9) is Yang-Mills gauge and diffeo-
morphism invariant itself. Therefore, note the following.

A general solution to the quantum vector, Gauss, and
scalar constraints is every function (3.12), such that for
every local diffeomorphism ’: M ! M,

c ð’�AÞ ¼ c ðAÞ; (3.13)

and for every a: M ! SUð2Þ
c ða�1Aaþ a�1daÞ ¼ c ðAÞ: (3.14)

In the remaining part of the article we will be using the
abbreviation

Z
d3x�̂ ĥ :¼

Z
d3x�̂ðxÞĥðxÞ: (3.15)

C. Quantum Dirac observables

A quantum Dirac observable is the restriction to the
space of solutions to the quantum constraints of an operator
O which satisfies the following two properties:

(i) Ô is invariant under local diffeomorphism and Yang-
Mills gauge transformations,

(ii)

½Ô; Ĉ0ðxÞ� ¼ 0: (3.16)

Following the ideas of the relational framework for ob-
servables [5–7], it is easy to construct a large family of

Dirac observables. Let L̂ be a linear operator which maps

the functions A � c ðAÞ into functions A � L̂c ðAÞ.
Consider an operator

O ðL̂Þ :¼ ei
R

d3x�̂ ĥL̂e�i
R

d3x�̂ ĥ: (3.17)

As required, the operator OðL̂Þ commutes with the quan-
tum version of the deparametrized scalar constraints,

½OðL̂Þ; Ĉ0ðxÞ� ¼ 0: (3.18)

Moreover, the operatorOðL̂Þ is Yang-Mills gauge and local

diffeomorphism invariant provided the operator L̂ is.

Each of the operators OðL̂Þ defined by a Yang-Mills

gauge and diffeomorphism invariant operator L̂ preserves
the space of solutions to the constraints. Indeed,

O ðL̂Þei
R

d3x�̂ ĥc ðAÞ ¼ ei
R

d3x�̂ ĥc 0ðAÞ; c 0 ¼ L̂c :

(3.19)

The operators (3.19) with the Yang-Mills gauge and local

diffeomorphism invariant operators L̂ set a family (algebra,
modulo the domains) of the Dirac observables. The total
scalar field momentum

R
M d3x�̂ðxÞ also defines one of the

quantum Dirac observables (3.19), namely

O
�Z

M
d3xĥðxÞ

�
¼

Z
M
d3xĥðxÞ: (3.20)

The family of the Dirac observables (3.19), in fact,
contains all the quantum Dirac observables. To see that
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this is true, suppose an operator Ô satisfies the condition
(3.16) at each x 2 M. Let us write the operator in the
following way:

Ô ¼ ei
R

d3x�̂ ĥK̂e�i
R

d3x�̂ ĥ; (3.21)

where K̂ is the a priori arbitrary operator. The condition

(3.16) with Ô substituted for the right-hand side of (3.21)
takes the following form:

½K̂; �̂ðxÞ� ¼ 0: (3.22)

The set of all the solutions K̂ to (3.22) is generated by the
following solutions: (i) given any x 2 M,

K̂ ¼ �̂ðxÞ;
and (ii)

K̂ ¼ L̂;

considered above, that is, L̂, which maps the functions

A � c ðAÞ into functions A � L̂c ðAÞ.
The solutions of type (ii) give rise exactly to the family

of the quantum Dirac observables (3.19) we have intro-
duced above. On the other hand, a solution of type (i) gives
rise to the following quantum Dirac observable:

ei
R

d3x�̂ ĥ�̂ðxÞe�i
R

d3x�̂ ĥ ¼ �̂ðxÞ � ĥðxÞ: (3.23)

However, we should keep in mind that what really defines a
quantum Dirac observable is the restriction to the space of
solutions to the quantum constraints. The restriction of
(3.23) is identically zero. This shows that all the quantum
Dirac observables are those defined by (3.19) and diffeo-

morphism and Young-Mills invariant operator L̂.

D. Classical interpretation of the Dirac observables

Suppose that a given operator L̂ used to construct the

Dirac observable OðL̂Þ corresponds in the quantum theory
to a classical function L defined on the gravitational phase
space �gr, and that the support of L is contained in the set

on which

Cgr < 0: (3.24)

To find a classical observable OðLÞ whose quantum coun-

terpart is OðL̂Þ, it is convenient to express the operator
(3.26) in terms of a formal power series given by

O ðL̂Þ ¼ X1
n¼0

in

n!

�
L̂;

Z
d3x�̂ ĥ

�
ðnÞ
; (3.25)

where ½:; :�ðnÞ denotes the iterated commutator

defined by ½L̂;R d3x�̂ ĥ�ð0Þ ¼ L̂ and ½L̂;R d3x�̂ ĥ�ðnÞ ¼
½½L̂;R d3x�̂ ĥ�ðn�1Þ;

R
d3x�̂ ĥ�. The usual substitution

½�; �� � �if�; �g leads to a formal series

O ðLÞ ¼ X1
n¼0

1

n!

�
L;

Z
d3x�h

�
ðnÞ

(3.26)

for a classical observable OðLÞ. That series is very well
known in the theory of relational observables [6–8,22]. To
recall its meaning we first consider a slightly more general
expression with� replaced by a point dependent parameter
M 3 x � tðxÞ, namely,

��
t ðLÞ ¼

X1
n¼0

1

n!

�
L;

Z
d3xth

�
ðnÞ
: (3.27)

The � denotes the pullback, and the map

�t: �gr ! �gr

is defined by the Hamiltonian flow 	t: � ! � generated in
the full phase space � by the constraints C0ðxÞ with the
parameters tðxÞ. The action of the flow reads

	tðA; P;�;�Þ ¼ ð�tðA; PÞ; �� t; �Þ:
Clearly

	�ðA; P;�;�Þ ¼ ð��ðA; PÞ; 0; �Þ: (3.28)

The value ofOðLÞ at any point ðA; P;�;�Þ is defined to be
O ðLÞðA; P;�;�Þ ¼ Lð��ðA; PÞÞ: (3.29)

In conclusion, the quantum Dirac observable OðL̂Þ cor-
responds to the classical function that is also an observable,
OðLÞ,

̂OðLÞ ¼ OðL̂Þ: (3.30)

At this point a comment about the status of the operator

OðL̂Þ is appropriate. It may happen that given a point
ðA; P;�;�Þ in the classical phase space, the series (3.26)
is nonconverging. In fact, we encounter cases like that in
the LQC models of a homogeneous isotropic universe with
a positive cosmological constant [30]. However, still the

operator OðL̂Þ is well defined as long as a self-adjoint

extension for the operator
R
d3x�ĥ is fixed, and therefore

the unitary operator expðiR dx�ĥÞ is well defined. Then,
the quantum evolution just goes beyond the classical the-
ory. That is exactly the reason we have chosen to define the
Dirac observables directly in the quantum theory, and only
interpret them in the classical theory as secondary objects.

E. Dynamical evolution of the observables

The Dirac observables we have defined are relational
observables (often called partial [5,6], Sec. I.2 of [2]).
For that class of observables one is able to define a
nonvanishing evolution generated by a so-called physical
Hamiltonian, which will be introduced in the next section.
The dynamics is defined with respect to an internal time
given by the values, which that field � takes while being
transformed along its gauge orbit. This can be seen in the
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construction of the quantity OðLÞ from a given function L
by generalizing the choice of the evaluation point from
(3.28) to

	���0
ðA; P;�;�Þ ¼ ð����0

ðA; PÞ; �0; �Þ; (3.31)

where �0 is an arbitrarily fixed function on M. We denote
the resulting function defined on the phase space � by
O�0

ðLÞ, that is,
O �0

ðLÞðA; P;�;�Þ ¼ Lð����0
ðA; PÞÞ: (3.32)

For the function O�0
ðLÞ to be well defined, the flow

	t: � ! � has to be well defined for

t ¼ ���0

in the domain of the function L.
That classical construction leads to a corresponding

quantum operator definition

O�0
ðL̂Þ�ð�;AÞ
¼ ei

R
d3xð�ðxÞ��0ðxÞÞĥðxÞL̂e�i

R
d3xð�ðxÞ��0ÞĥðxÞ�ð�;AÞ;

(3.33)

where we used �̂�ð�;AÞ ¼ ��ð�;AÞ. This definition
will not enlarge the class of the Dirac observables (3.19);
indeed,

O �0
ðL̂Þ ¼ OðL̂0Þ (3.34)

with

L̂ 0 ¼ e�i
R

d3x�0ðxÞĥðxÞL̂ei
R

d3x�0ĥðxÞ: (3.35)

In this way, in the algebra of the (formal) solutions to the
condition

½Ô; Ĉ0ðxÞ� ¼ 0 (3.36)

we have defined an Abelian group of automorphisms
labeled by the functions �0 defined on M, namely,

O ðL̂Þ � O�0
ðL̂Þ: (3.37)

If we want to restrict the automorphisms to the algebra of
the quantum Dirac observables, we encounter an obstacle.
Given a function �0, we want the operator (3.35) to be
diffeomorphism invariant for every diffeomorphism invari-

ant operator L̂. For the operators ĥðxÞ that will be con-
structed from the LQG framework, that condition can be
satisfied only for a constant function,

�0ðxÞ ¼ �0 2 R; for every x 2 M: (3.38)

The result is a one-dimensional group of automorphisms of
the algebra of the quantum Dirac observables. The group
encodes the dependence on the internal time of the algebra
of the quantum Dirac observables.

F. The physical Hamiltonian

The dynamics is generated by the following equation:

d

d�0

O�0
ðL̂Þ ¼ �i½ĥphys;O�0

ðL̂Þ�; (3.39)

where

ĥ phys :¼
Z

d3xĥðxÞ (3.40)

is usually called the physical Hamiltonian for the reason
that it is a nonvanishing Dirac observable generating true
‘‘physical’’ evolution in contrast to the Hamiltonian
constraint.
The physical Hamiltonian will be an exact implementa-

tion of the heuristic formula

ĥ phys ¼
Z

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ffiffiffî

q
p

Ĉgr þ ffiffiffî
q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĈgrÞ2 � q̂abĈgr

a Ĉ
gr
b

qr
:

(3.41)

We remember however, that the operator will be applied
to diffeomorphism invariant states (3.5), whereas the op-

erator Ĉ
gr
a should generate the diffeomorphisms. Therefore,

assuming the suitable choice of the ordering, the physical
Hamiltonian acting on the diffeomorphism invariant func-
tions c is

ĥ physc ðAÞ ¼
Z

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ffiffiffî
q

p
Ĉgr

q
c ðAÞ; (3.42)

where we also took into account [recall (2.14)]

Ĉ gr < 0: (3.43)

This result coincides with that of [23].

G. The Hilbert product between the solutions: H phys

Suppose we have a sesquilinear scalar product for the
Yang-Mills gauge and local diffeomorphism invariant
functions (or distributions) defined on the space of the
Ashtekar-Barbero connections. Denote the product of the
functions c and c 0 by

ðc jc 0Þ; (3.44)

and the corresponding Hilbert space by H diff .
We can use it to define the physical (that is, respecting

the dynamics) Hilbert product in the space of solutions
(3.12):

ðei
R

�̂ ĥc jei
R

�̂ ĥc 0Þphys :¼ ðc jc 0Þ: (3.45)

The resulting Hilbert space H phys is physical, and its

elements are the physical states.

H. Summary: The exact structures we need

In summary, in order to construct the quantum model we
will need:
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(i) the Hilbert spaceH diff of the Yang-Mills gauge and
the local diffeomorphism invariant quantum states of
geometry,

(ii) the operators in H diff , which admit a well-
understood geometric interpretation,

(iii) the physical Hamiltonian operator ĥphys defined in a

suitable domain in H diff (which is not expected to
be dense, because the heuristic formula for the
operator involves the square roots of nondefinite
expressions).

Given all that, the physical Hilbert space is unitarily
isomorphic via

ei
R

d3x�̂ ĥc � c (3.46)

with the domain of ĥphys in H diff .

Every observableOðL̂Þ (for simplicity let L̂ be bounded)

is the pullback by (3.46) of an operator L̂, which preserves

the completion of the domain of ĥphys.

Finally, the emerged dynamical evolution (3.39) of the
observables reads

L̂ð�Þ ¼ e�i�ĥphysL̂ei�ĥphys : (3.47)

This is precisely the very well-known Heisenberg picture

evolution defined by the Hamiltonian ĥphys.

Notice that, in fact, it is not necessary for L̂ to preserve

the domain of ĥphys. Indeed, given any c in that domain,

the expectation value

ðc je�i�ĥphysL̂ei�ĥphysc Þ ¼ ðei�ĥphysc jL̂ei�ĥphysc Þ
is well defined. This can be seen by using that it is equiva-

lent to replace L̂ by the operator

L̂ 0 ¼ PL̂P; (3.48)

where P is the orthogonal projection onto the completion

of the domain of ĥphys, and to considering the pullback of

the Dirac observable OðL̂0Þ together with its dynamics.
This kind of structure will be necessary for the outcome.

This is all we need to complete the quantization of a model
of quantum gravity coupled to a scalar field.

In the derivation of the operator corresponding to the

physical Hamiltonian ĥphys, however, we will need yet

more structure:

(i) the operator ĥphys should be defined by using the

suitably defined operator valued distribution M 3
x � ̂

ffiffiffi
q

p ðxÞCgrðxÞ,
(ii) the distribution should be self-adjoint, so that we

can use the spectral decomposition to define the
subspace

̂
ffiffiffi
q

p ðxÞCgrðxÞ< 0 (3.49)

and thereon the new operator valued distribution

ĥðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ffiffiffi
q

p ðxÞCgrðxÞ
q

; (3.50)

(iii) we should be able to verify the condition

½ĥðxÞ; ĥðyÞ� ¼ 0; (3.51)

(iv) and finally define

ĥ phys ¼
Z

d3xĥðxÞ: (3.52)

Notice, that none of the operators
ffiffiffi
q

p ðxÞCgrðxÞ or ĥðxÞ
can be defined within the Hilbert space H diff , because the
x dependence manifestly breaks the diffeomorphism in-
variance. Therefore, the properties of the self-adjointness
require some extra Hilbert spaces, H diff;x, labeled by the

points ofM, whereas the commuting at different points can
be defined only on a yet bigger Hilbert space.
Remarkably, all the suitable structures can be con-

structed within the LQG framework, as we will explain
in the next section.

IV. APPLICATION OF LQG

A. The Hilbert spaces

1. The kinematical Hilbert space of quantum
states of the geometry

In LQG (we use the notation of [4]), the kinematical
Hilbert space of quantum states of the geometry is set by
the so-called cylindrical functions of the connection A.
A cylindrical function is defined by a set � of finite
curves e1; . . . ; en in M and by a continuous function
f: SUð2Þn ! C, in the following way:

c �;fðAÞ ¼ fðAðe1Þ; . . . ; AðenÞÞ; (4.1)

where the symbol AðeÞ denotes the parallel transport along
e defined by the connection A. The set Cyl of the cylindri-
cal functions is a vector space, and an associative algebra.
The space of the cylindrical functions Cyl is endowed with
an integral

c �;f �
Z

c �;f (4.2)

used to define the sesquilinear scalar product

ðc �;fjc �0;f0 Þgr ¼
Z

�c �;fc �0;f0 ; (4.3)

and defines (after the completion) the kinematical Hilbert
space H for the geometric operators in LQG. We assume
in this paper that the manifold and the curves are piecewise
analytic. Then, for every cylindrical function there exist
curves � ¼ fe1; . . . ; eng, which form a graph embedded in
M (that is, they are allowed to intersect only at the ends)
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such that the function is given by (4.1). The curves eI are
called edges of the given graph �.2

For a cylindrical function defined by a graph, we have

Z
c �;f ¼

Z
SUð2Þn

dngfðg1; . . . ; gnÞ; (4.4)

where dng is the Haar measure on SUð2Þn. The geometric
operators preserving the space Cyl are

ÂðeÞBCc �;fðAÞ ¼ AðeÞBCfðAðe1Þ; . . . ; AðenÞÞ (4.5)

and

Z
S
P̂a
i c �;f ¼ 1

2i

Z
S

�

�Ai
a

c �;f�abcdx
b ^ dxc: (4.6)

There is an orthogonal decomposition of H into sub-
spaces H 0

� labeled by the embedded graphs �. To define
it, denote first by (unprimed) H � � H the Hilbert sub-
space spanned by the cylindrical functions c �;f, with all

the possible functions f. Those spaces, however, are too
big to provide the orthogonal decomposition. Given a
graph �, whenever a graph 	 can be obtained from the
edges of � by glueing, or reversing the orientation or
removing some of them, then H 	 � H �. Therefore,

define H 0
� � H � to be the orthogonal complement in

H � of the subspace spanned by those subspacesH 	. The

decomposition is

H ¼ M
�

H 0
�; (4.7)

where � runs through the set of all the semianalytic em-
bedded graphs in M.

2. The Hilbert space of the diffeomorphism invariant
states of the geometry

Semianalytic diffeomorphisms DiffðMÞ of M preserve
the space Cyl and act unitarily in the Hilbert spaceH just
by the natural pullback of the Ashtekar-Barbero connec-
tions. Denote the action of ’ 2 DiffðMÞ by

U’: H ! H : (4.8)

To implement the construction of the quantum operator
corresponding to the physical Hamiltonian, we will need
two different Hilbert spaces: One of them includes states
that are invariant with respect to all (semianalytic) local
diffeomorphisms DiffðMÞ of M, and the other one is the
home of the states invariant with respect to the subgroup
DiffðM; xÞ, which preserves a given point x 2 M. (Later,
we will also impose the Gauss constraint, which is the
condition of Yang-Mills gauge invariance.) Let ‘‘Diff’’

stand for either DiffðMÞ or DiffðM; xÞ. The only Diff
invariant direction in H is the constant function.
However, since the group Diff is not compact, we expect
the invariant states to be distributions on the space of the
Ashtekar-Barbero connections, that is, linear maps

h�j: Cyl ! C: (4.9)

Whereas the space of all distributions seems to be too big, a
suitable rigging map can be defined, which carries each
c 2 Cyl into a Diff invariant distribution �Diffðc Þ. To
recall the definition of this map, we need the orthogonal
decomposition (4.7). The map �Diff is introduced for each
subspace H 0

� individually. By the linearity, it extends to
every cylindrical function. That is, the domain of the
rigging map �Diff is Cyl � H . The first step in the con-
struction of the rigging map �Diff is identification of the
elements of H 0

� that will be annihilated. Consider those
diffeomorphisms’ 2 Diff, which map each edge of� into
another edge modulo of the orientation, and let us call them
the symmetries of � and denote their group by Diff�. The
functions c 2 H 0

� invariant with respect to Diff� form a
subspace denoted by either H 0

�;inv in the Diff ¼ DiffðMÞ
case or H 0

�;inv;x in the case of Diff ¼ DiffðM; xÞ. The
elements of H 0

� orthogonal to H 0
�;inv are annihilated by

the rigging map�Diff . For c 2 H 0
�;inv,�Diffðc Þ is defined

as follows:

�Diffðc Þ: c 00 �
X

½��2Diff=Diff�

ðU�c jc 00Þ: (4.10)

Note that if c 00 2 H 0
�00 , then the right-hand side is zero

if �00 is not Diff equivalent to �, and in the case there is
�00 2 Diff such that

�00ð�Þ ¼ �00; (4.11)

the only possibly nonzero term in the sum in (4.10) is

�Diffðc Þ: c 00 � ðU�00c jc 00Þ: (4.12)

Since every cylindrical function is a finite sum of ele-
ments of the Hilbert spaces H 0

�, �Diffðc Þ is defined in
Cyl. For the same reason, the map

c�Diffðc Þ (4.13)

extends by the finite linearity to Cyl.
With the rigging map �Diff we define not only the vector

space of the Diff invariant states to be the image�DiffðCylÞ,
but also the sesquilinear product

ð�Diffðc Þj�Diffðc 0ÞÞDiff :¼ h�Diffðc Þ; c 0i: (4.14)

In this way we have defined a Hilbert space H Diff . The
map �Diff defines a natural isometry

H Diff �
M
½��

H 0
�;Diff ; (4.15)

2To be more precise, in what follows, an edge is either an
oriented semianalytic embedding of a circle in M or a
parametrization-free, oriented, finite curve defined by
e: ½0; 1� ! M such that either e is an embedding or eð0Þ ¼ eð1Þ.
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where ½�� runs through the set of the Diff classes of the
graphs embedded in M. Recall that Diff ¼ DiffðMÞ,
DiffðM; xÞ. Therefore, we have defined two types of the
Hilbert spaces: the Hilbert H DiffðMÞ and, respectively, per
each point x 2 M, the Hilbert space H DiffðM;xÞ.

3. The Hilbert spaces of the Yang-Mills gauge and
diffeomorphism invariant states of the geometry

Imposing the Gauss constraint is yet easier than requir-
ing diffeomorphism invariance, and could be equivalently
done either before or after solving the diffeomorphism
constraint. The group of unitary transformations of H
given by the Yang-Mills gauge transformations is compact.
Hence all solutions to the Gauss constraint in H are
invariant elements of H (as opposed to non-normalizable
states, distributions). Moreover, the group of the Yang-
Mills gauge transformations (3.4) preserves each of the
subspacesH 0

�. For every Yang-Mills gauge invariant c 2
Cyl, the Diff invariant distribution

�Diffðc Þ 2 H Diff (4.16)

is also insensitive to gauge transformations of c 00 2 Cyl.
Namely, the number

�Diffðc Þðc 00Þ
is invariant. The converse is also true: If �Diffðc Þðc 00Þ is
invariant with respect to the Yang-Mills gauge transforma-
tions of c 00, then c is Yang-Mills gauge invariant.

In conclusion, the Yang-Mills gauge and diffeomor-
phism invariant distributions on the space of the
Ashtekar-Barbero connections we want to use to construct
the Hilbert space H diff of Sec. III G are the distributions

�DiffðMÞðc Þ (4.17)

obtained from the Yang-Mills gauge invariant cylindrical
functions c . Denote their Hilbert space by H diff . By
construction

H diff � H DiffðMÞ: (4.18)

For the introduction of the physical Hamiltonian we will
also use the Hilbert space H diff;x obtained by replacing in

the construction of the Hilbert space H diff the group
DiffðMÞ by the group DiffðM; xÞ.

B. The operators

1. The Dirac observables

From the previous subsection we already have the LQG
candidate for the Hilbert space H diff of the Yang-Mills
gauge invariant and diffeomorphism invariant quantum
states of geometry. As we already know from Sec. III G,
from a suitable subspace of this space we will construct
the physical Hilbert space of solutions to all the constraints
of the model we are considering. Second, in the Hilbert
space H diff we will need the operators representing the

geometry of the initial data defined on M, from which we
will construct the Dirac observables.
Let us begin with this second task, because it is easier.

We assume below that the operators we consider in the
Hilbert space H as the domain have the vector subspace
Cyl of the cylindrical functions. Every Yang-Mills gauge
andDiffðMÞ symmetric operator ~L defined in the kinemati-
cal Hilbert space H defines naturally by the duality a

symmetric operator L̂ in H diff ,

hL̂�DiffðMÞðc Þ; c 00i :¼ h�DiffðMÞðc Þ; ~Lc 00i
¼ h�DiffðMÞð ~Lc Þ; c 00i; (4.19)

where the bracket is the action of a distribution (a first
entry) into a given cylindrical function c 00; that is, we
could phrase it in a simpler way,

L̂�DiffðMÞðc Þ ¼ �DiffðMÞðL̂c Þ: (4.20)

An excellent example of a Yang-Mills gauge and diffeo-
morphism invariant operator in H available in the litera-
ture [4,31] is the volume of the underlying manifold M
operator

~V M ¼
Z

dx ~ffiffiffiqp ðxÞ: (4.21)

Another example we manage to construct might be any
quantum operator representing the integral of a scalar
constructed from the intrinsic or extrinsic curvature.
In the kinematical Hilbert spaceH , there is also a well-

defined operator valued distribution

~ffiffiffiqp ðxÞ ¼ X
x02M

�ðx; x0Þ ~ffiffiffiqp x0 ; (4.22)

where each of the operators ~ffiffiffiqp x0 is DiffðM; x0Þ invariant.
The uncountable sum on the right-hand side is well de-
fined, because for every smearing function F: M ! R, and
a cylindrical function c �;f, we have

Z
d3xFðxÞ ~ffiffiffiqp ðxÞc �;f ¼

Xn
I¼1

FðvIÞ ~ffiffiffiqp vI
c �;f; (4.23)

where v1; . . . ; vn are the vertices of the graph�. Via (4.20),

for every x0 2 M, the operator ~ffiffiffiqp x0 defines an operatorffîffiffi
q

p
x0 inH diff;x0 . Morally, ~ffiffiffiqp ðxÞ is alsoDiffðM; xÞ invariant

for every given x 2 M; therefore (4.20) should also be
somehow generalized to this case. Indeed (see [32]),
the suitable generalization is natural and provides in this
case a distribution

ffîffiffi
q

p ðxÞ ¼ X
x02M

�ðx; x0Þ ffîffiffi
q

p
x0 ; (4.24)

which makes sense due to the fact that all the Hilbert
spaces H diff;x are embedded in the single vector space

Cyl�.
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There is one more technical remark in order at this point.
Consider two operator valued distributions in H , of the
form

~AðxÞ ¼ X
x02M

�ðx;x0Þ ~Ax0 ; ~BðxÞ ¼ X
x02M

�ðx;x0Þ ~Bx0 ; (4.25)

each of which satisfies the property (4.23). A natural
regularization by smearing leads to a new operator valued
distribution

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~AðxÞ ~BðxÞ

q
¼ X

x02M

�ðx; x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð ~Ax0 ~Bx0 Þ

q
; (4.26)

which also has the property (4.23), where S stands for a
symmetric product of the operators, and the domain of
the resulting operator is restricted by the positivity of the

Sð ~Ax
~BxÞ requirement. The regularization consists in the

smearing

~A�ðxÞ ¼
Z

d3 ~AðyÞ��ðy; xÞ;

~B�ðxÞ ¼
Z

d3 ~BðyÞ��ðy; xÞ; (4.27)

with a smearing function whose support goes uniformly to
x ¼ y as � ! 0, and which goes to the Dirac �ðx; yÞ. The
key trick is an observation that for every fixed graph �, for
sufficiently small �,

~A �ðxÞ ~B�ðxÞc �;f ¼ Xn
I¼1

ð��ðx; vIÞÞ2 ~AvI
~BvI

c �;f; (4.28)

for any cylindrical function c �;f, and moreover, the sum

on the right-hand side contains at most one nonzero
element. Because of the latter propertyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~A�ðxÞ ~B�ðxÞ
q

¼ Xn
I¼1

��ðx; vIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~AvI

~BvI

q
c �;f; (4.29)

provided the square root is well defined itself. Finally,

Z
d3xFðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~A�ðxÞ ~B�ðxÞ

q
c �;f !

Xn
I¼1

FðvIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~AvI

~BvI

q
c �;f:

(4.30)

2. The quantum scalar constraint and
the physical Hamiltonian

As we remember, our first task we can finally turn to now
is a construction of the physical Hamiltonian operator

ĥ phys ¼
Z

d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

̂
ffiffiffi
q

p ðxÞCgrðxÞ
r

(4.31)

defined in H diff .

A quantum scalar constraint Ĉgr was defined in [33],

and its properties and possible generalizations were studied
in [4,32]. We will be using here the formulation of the
scalar constraint of [4]. In order to use it for our current

construction, we will need a new element. Thus far, the
scalar constraint was used as smeared against arbitrary

laps function
R
d3xNðxÞĈðxÞ, or as the master constraintR

d3x
ffîffiffi
q

p ðxÞ�1ĈðxÞĈyðxÞ, or as a physical Hamiltonian de-

fined after deparametrization with respect to 4 scalar fields.
The smeared scalar constraint maps a domain inH diff into
Cyl�, and there is no sense in which it could be symmetric
or self-adjoint. The master constraint, on the other hand, as
well as the physical Hamiltonian after the 4-fold depara-
metrization, respectively, is defined in the kinematical
Hilbert space H as a graph-preserving operator. The
current case is a new one, and we will need an operatorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

̂
ffiffiffi
q

p ðxÞCgrðxÞ
r

defined in H diff .

The quantum scalar constraint presented in [4] takes the
following form:

Z
d3xNðxÞĈðxÞ ¼ X

x2M

Ĉx; (4.32)

where each of the operators Ĉx maps its domain contained
in H diff into H diff;x. However, as it follows from [32], it

naturally defines an operator in the corresponding Hilbert
space H diff;x. The advantage is that only now can we

require the symmetry (self-adjointness) of those operators.

As defined in [4], the operators Ĉx come out nonsymmetric.
The minor improvement, but necessary for our current
work, consists in replacing them by symmetric operators

Ĉ
gr
x ¼ 1

2ðĈx þ Ĉyx Þ (4.33)

and choosing an essentially self-adjoint extension that may
be nonunique. Then, the quantum scalar constraint opera-
tor we will use for the physical Hamiltonian takes the
following form:

Ĉ grðxÞ ¼ X
x02M

�ðx; x0ÞĈgr
x0 : (4.34)

On the other hand, we have already considered above the
volume density quantum operator written in the similar
form,

̂

ffiffiffî
q

p ðxÞ ¼ X
x02M

�ðx; x0Þ ̂ ffiffiffiffiffiffiq̂x0
p

: (4.35)

At this point, we are in the position to define the operator

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

̂
ffiffiffi
q

p ðxÞCgrðxÞ
r

: (4.36)

A regularization in H similar to the one discussed above
gives (modulo the symmetrization of the product of the

operators
̂
ffiffiffiffiffiffi
qx0

p
and Ĉgr

x0 )
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

̂
ffiffiffi
q

p ðxÞCgrðxÞ
r

¼ X
x02M

�ðx; x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

̂
ffiffiffiffiffiffi
qx0

p 1=2
Ĉ
gr
x0
̂
ffiffiffiffiffiffi
qx0

p 1=2
r

¼: ĥðxÞ: (4.37)

However, the operator is well defined only in the sub-
space of H diff;x corresponding to the positive part of the

spectrum of
ffîffiffiffiffi
qx

p 1=2Ĉgr
x

ffîffiffiffiffi
qx

p 1=2. To formulate that condition

we need to choose a self-adjoint extension of the operator
in the case it is not unique. Denote the resulting subspace
of H diff;x by H diff;xþ. There is a natural averaging map

�M: H diff;x ! H diff ; (4.38)

�DiffðM;xÞðc Þ � �DiffðMÞðc Þ: (4.39)

The domain of the physical Hamiltonian is

H phys ¼ �MðH diff;xþÞ; (4.40)

and the formula for the physical Hamiltonian reads

ĥ phys ¼
Z

d3xĥðxÞ ¼ X
x2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

ffîffiffiffiffi
qx

p 1=2Ĉgr
x

ffîffiffiffiffi
qx

p 1=2
q

: (4.41)

We remember the anomaly-free condition (3.51) that
should be satisfied by our construction. In [32] an exten-
sion of the Hilbert space H phys is introduced in which the

smeared scalar constraint operators

Ĉ grðNÞ ¼
Z
M
d3xNðxÞĈgrðxÞ (4.42)

are defined and their products

Ĉ grðNÞĈgrðN0Þ (4.43)

are contained. It follows from the results of [32] that the
smeared constraint operators commute

½ĈgrðNÞ; ĈgrðN0Þ� ¼ 0 (4.44)

on a large subspace of the enlarged vector space. It justifies
our conjecture that the condition

½ĥðxÞ; ĥðyÞ� ¼ 0 (4.45)

is a restriction on the ambiguities in the definition of the

operators ĥðxÞ, that is, on the loop assignment [2,4] and the
self-adjoint extensions.

V. CONCLUDING REMARKS, OUTLOOK

We have another quantum model of gravity involving
all the degrees of freedom. The model discussed here
assumes a vanishing potential for the scalar field that
becomes the internal time for the Dirac observables.
Neglecting this requirement has the effect that the physical
Hamiltonian depends on the internal time � as can be
seen in Eq. (2.9). Nonconservative Hamiltonians usually

increase the intricacy as far as the technical perspective is
concerned. Likewise, if we use, for instance, standard
model matter instead of a scalar field, the system will
also not deparametrize anymore. Hence, all the technical
simplifications due to deparametrization used in this work
are not available any longer. A discussion about which kind
of matter Lagrangians induce a deparametrization for gen-
eral relativity can be found in [12].
The quantization of this model is complete and every

necessary element exists within the framework of LQG.
However, there are still ambiguities present in the LQG
definition of the quantum scalar constraint operator due to
its nonpolynomial structure. The only way to understand
them and their possible physical meaning is to start apply-
ing the model. Before explaining what the model discussed
in this work is good for, let us compare it briefly to the first
model that was completed by Giesel and Thiemann.

A. Comparison with the Brown-Kuchar model
applied to LQG

The Brown-Kuchar (BK) model [9] considers four scalar
fields that have the properties of dust and become a dy-
namically coupled observer, with respect to which the
dynamics of the remaining degrees of freedom is formu-
lated. This model was used by Giesel and Thiemann [22],
and a reduced phase space of gravity coupled to dust was
derived. For this purpose the BK model needed to be
extended since the reduced phase space requires also the
construction of (classical) Dirac observables with respect
to the scalar constraint. The original BKmodel is rather the
counterpart of what is done in this paper because there
the vector constraint was reduced classically, whereas for
the scalar constraint a quantum condition was formulated.
In the reduced phase space quantization procedure dis-

cussed in [22], both, the scalar as well as the diffeomor-
phism constraint, are reduced classically. The Gauss
constraint is, as in this paper, solved at the quantum level.
This yields to an algebra of observables describing the
classical physical phase space. Because of the deparamet-
rization of the scalar constraints, this algebra turns out to be
isomorphic to the kinematical one. In contrast to what is
done in this paper, a quantization of the observable algebra
accesses directly the physical Hilbert space (once also the
Gauss constraint is satisfied). Since the kinematical algebra
is isomorphic to the physical one, in [22] the standard
kinematical representation of LQG can also be used for
the physical Hilbert space H phys. Similar to the work in

this paper, the generator of the physical dynamics, the so-
called physical Hamiltonian hphys, is invariant under local

diffeomorphisms. In the reduced approach this leads to the
requirement that in order to avoid a quantum anomaly, the
operator needs to be invariant under local diffeomorphisms
too. As shown in [34] operators being invariant under local
diffeomorphisms and defined in the standard (kinematical)
LQG representation cannot be graph changing. This means
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that they need to preserve the graph they are acting on,
yielding the condition that the LQG constraint operators

[4,33] entering the physical Hamiltonian ĥphys in [22] need

to be quantized in a graph-preserving way. As we ex-
plained above, LQG is glued from the Hilbert spaces
corresponding to all possible graphs. The original LQG
scalar constraint operator does not preserve those graph
Hilbert spaces. In the model of [22] the physical
Hamiltonian must preserve each graph Hilbert space. In
the consequence, the constraint operator has to be suitably
redefined in [22] when the standard (kinematical) LQG
representation is used for H phys. The paper [22] also

discusses the quantization of the reduced model in the
framework of algebraic quantum gravity [35], where a
different representation is used, namely, von Neumann’s
infinite tensor product representation. The quantum dy-
namics is not defined on embedded graphs but on abstract
ones, carrying only combinatorial information. In this
framework only the infinite combinatorial graph that the
theory is defined on and that acts like an abstract lattice

needs to be preserved by ĥphys, whereas any possible sub-

graph of this does not. In the case of the model presented in
this paper here, the graph Hilbert spaces are not preserved
and they evolve in the emergent time.

B. Application of this model

Our model can be used to verify the properties of quan-
tum space-time we expect after learning the lessons from
LQC and QFT in curved spacetime.

In the LQC models of the homogeneous massless scalar
field coupled to gravity, big bang turns out to be replaced
by big bounce, as the result of the quantum gravity effects.

Now, with our model, we can consider the same system of
fields from the point of view of the full theory, without the
symmetry reduction. Similarly, we can also consider the
quantum gravitational collapse, quantum black holes, and
theory entropy. All those cases are manageable within our
model, and the only difficulty is of a technical nature. Also
the Hawking radiation and black hole evaporation process
expected from the theory of quantum fields on the classical
black hole background are in the range of our model. The
next step to obtain progress in this direction is the con-
struction of semiclassical states for full LQG, which are
preserved under quantum dynamics generated by the
physical Hamiltonian on appropriate time scales.
In conclusion, our paper opens the door to understanding

the properties of quantum spacetime from the point of view
of the full quantum gravity.
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