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Foreword

Calculations in Loop Quantum Gravity (LQG) and spin-foams theory rely heavily on group theory
of SU(2) and SL2(C). Even though many monographs exist devoted to this theory, the different
tools needed (e.g. representation theory, harmonic analysis, recoupling theory...) are often dispersed
in different books and with different conventions and notations. This has initially motivated the
compilation of the present document. Nowadays, these notes can serve three main purposes:

1. A concise introduction for students to the essential mathematical tools of LQG. It bridges a gap
between the level of students at the end of a Master programme, and the minimum level required
to start doing research in LQG. In case it is going too fast, paragraphs have been inserted for
a quick memory refreshing. They are written in small font size, and introduced by ‘♣ Reminder’.
Instead of introducing a new formula out of nowhere, we insists on motivations for doing it. The
proofs are done if helpful for understanding, but are sometimes only sketched . They are written
in small font size introduced by ‘I Proof’, so that they can also be skipped easily.

2. A convenient compendium for researchers. Instead of having the formulas lost each in a different
heavy and old book, the most useful ones are now gathered in a short toolbox.

3. A translational hub between the conventions of the main references. For many notions, no
standard notations are universally used. Each author tends to use its own notations, which
makes it difficult to switch easily from one reference to another. We have made some choices
ourselves, but we show explicitly how they relate to various of the major references : such
discussions are done in small font size introduced by ‘? Nota Bene’. We see this attempt as a step
towards a more widely use of common notations. In particular, we give the conventions of the
Wolfram Language which are helpful for implementing numerical computations.

Although most of the content is not new, we also offer some new derivations of results, simpler than
what can be found elsewhere, or sometimes not written anywhere else. A commented bibliography is
provided at the end to give a panorama of the existing literature and to help readers looking for more
details.

These notes are aimed both at physicists, caring about their tools to be mathematically well
grounded, and at mathematicians, curious about how some of their familiar abstract structures can
reveal the beauty of quantum gravity. For the latter, we have introduced specific short paragraphs
in small font size, introduced by ‘♥ Physics’, that provides general ideas and references on how the
mathematics have been exploited by theoretical physicists, especially in quantum gravity.

The first chapter introduces SU(2) and SL2(C) the two Lie groups of main interest for quantum
gravity. It is aimed at gathering the main ingredients which will be extensively used later, fixing
notations and refreshing memories of the reader. Chapter 2 deals with representations of SU(2), and
present various possible realisations which are used in the literature. Chapter 3 condenses the main
results of recoupling theory of SU(2). Chapter 4 deals with the representations of SL2(C). Finally
chapter 5 wraps everything up into a mathematical presentation of quantum gravity (with loops and
spin-foams).

In writing these notes, I received much help from Simone Speziale, Giorgio Sarno, Fabio D’Ambrosio,
Alexander Thomas and Carlo Rovelli, who I warmly thank for this.
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Chapter 1

Warmup

The central role of group theory in physics has been largely revealed in the modern theories of the
XXth century. Quantum gravity makes no exception. The two main groups of interest for quantum
gravity are SL2(C) and its subgroup SU(2). This may seem natural since SL2(C) is, in some sense,
the ’quantum version’ (more precisely the universal cover) of the restricted Lorentz group SO+(3, 1),
which is the symmetry group of Minkowski spacetime, and SU(2) is the subgroup obtained when a
preferred time-slice is chosen; but the reason why these groups come out in quantum gravity is actually
more subtle (see section 5).

This first chapter is a quick and dense summary of the very basic tools and facts about SL2(C)
and SU(2), which will be later used extensively. It also fixes many of the notations. If you already feel
warmed up, you would do well skipping this chapter. If you have never seen these notions in your life,
you would do better to first learn them with an introductory book (see the references in the commented
bibliography, appendix C).

1.1 Basics of SL2(C)

The algebra of 2× 2 complex matrices is denotedM2(C). The linear group

GL2(C)
def
= {M ∈M2(C) | detM 6= 0} (1.1)

is a Lie group. Its associated Lie algebra gl2(C) is actually isomorphic to M2(C) endowed with the
Lie product [M,N ] = MN −NM .

♣ Reminder. The set M2(C) is an algebra because it is a vector space (for addition of matrices) endowed with a
bilinear product (the usual matrix product). GL2(C) is not a linear subspace, but it is a complex differential manifold
of dimension 4. What’s more, the inversion and the multiplication are both analytical map, which makes GL2(C) a
complex Lie group. A complex Lie group of dimension n is also a real Lie group of dimension 2n. Therefore GL2(C)
is a real Lie group of dimension 8. The associated Lie algebra is the tangent space over the neutral element of the
Lie group, usually denoted with Gothic letters. It is indeed a Lie algebra, that is to say an algebra were the bilinear
product, called the Lie bracket, is antisymmetric and satisfies the Jacobi identity.

The subset of invertible uni-modular matrices,

SL2(C)
def
= {M ∈ GL2(C) | detM = 1} , (1.2)

is a complex Lie sub-group of dimension 3, called the special linear group SL2(C). Therefore, it is also
a real Lie group of dimension 6. Topologically, SL2(C) is not compact, but it is simply connected.

The Lie algebra of SL2(C) is

sl2(C) = {M ∈M2(C) | Tr M = 0} . (1.3)

It is a 3-dimensional complex Lie sub-algebra of gl2(C). A basis is given by the three Pauli matrices:

σ1
def
=

(
0 1
1 0

)
, σ2

def
=

(
0 −i
i 0

)
, σ3

def
=

(
1 0
0 −1

)
. (1.4)
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Interestingly, they satisfy1

[σi, σj ] = 2i εijk σk. (1.5)

With the identity matrix 1, the Pauli matrices also provide a basis forM2(C): any a ∈M2(C) can be
written uniquely

a = a01 +

3∑
k=1

akσk with a0, a1, a2, a3 ∈ C. (1.6)

Note that in this basis, the determinant reads det a = a2
0− a2

1− a2
2− a2

3. Moreover, the identity matrix
and the Pauli matrices also provide a basis to the real vector space of 2×2 hermitian matrices, defined
by

H2(C)
def
= {M ∈M2(C) |M † = M}. (1.7)

Any h ∈ H2(C) can be written uniquely

h = h01 +
3∑

k=1

hkσk with h0, h1, h2, h3 ∈ R. (1.8)

1.2 The restricted Lorentz group SO+(3, 1)

The spacetime of special relativity is Minkowski spacetime M. Mathematically, it is the vector space
R4, endowed with a Lorentzian inner product, whose signature is either (−,+,+,+) (general relativists
convention) or (+,−,−,−) (particle physicists convention). The group of all isometries (distance-
preserving transformations) of Minkoswki spacetime is called the Poincaré group (sometimes the inho-
mogeneous Lorentz group). The isometries that leave the origin fixed form a linear subgroup, called the
Lorentz group (sometimes the homogeneous Lorentz group), and denoted O(3, 1) (or O(1, 3)). It is com-
posed of four connected components related to each other by the operators of parity (space inversion)
and time-reversal. The identity component forms a subgroup of O(3, 1), made of transformations that
preserves orientation and the direction of time. It is called the proper orthochronous Lorentz group, or
the restricted Lorentz group, denoted SO+(3, 1).

As a real vector space, Minkowski spacetime M is isomorphic to H2(C), with the map

X = (t, x, y, z) 7→ h = t1 + xσ1 + yσ2 + zσ3 =

(
t+ z x− iy
x+ iy t− z

)
. (1.9)

The inverse map is given by

h 7→ X =
1

2
(Trh,Trhσ1,Trhσ2,Trhσ3), (1.10)

and the pseudo-scalar product (with convention (+,−,−,−))

X ·X ′ = tt′ − xx′ − yy′ − zz′ = −1

4
Tr
(
hh′ − hσ1h

′σ1 − hσ2h
′σ2 − hσ3h

′σ3

)
(1.11)

Note that the pseudo-norm of M is mapped to the determinant over H2(C):

X ·X = deth. (1.12)

From the latter property, we see that the action of a ∈ SL2(C) upon h ∈ H2(C), given by

h 7→ aha†, (1.13)

defines a linear isometry on M. Thus, it defines an homomorphism between SO+(3, 1) and SL2(C),
and it is easy to show the following isomorphism of groups

SL2(C)/{1,−1} ∼= SO+(3, 1). (1.14)

SL2(C) is said to be the double cover, or the universal cover, of SO+(3, 1), or sometimes also the
Lorentz spin group. This gives a first glimpse on the role of SL2(C) in fundamental physics.

1Here and everywhere else, Einstein notation is understood over repeated indices.
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1.3 The sub-groups of SL2(C)

There are many sub-groups of SL2(C). We describe below the main ones. The figure 1 shows the
relations of inclusion between them.

Figure 1: This graph represents the relations of inclusions between the subgroups of SL2(C).

� SU(2)SU(2)SU(2), the unitary special group, is defined by:

SU(2)
def
=
{
u ∈ SL2(C) | u†u = 1

}
. (1.15)

Any u ∈ SU(2) can be uniquely written as

u = u0e+ i

3∑
k=1

ukσk with u0, u1, u2, u3 ∈ R and

3∑
k=0

u2
k = 1. (1.16)

♥ Physics. Through the isomorphism 1.9 and the action 1.13, the definition 1.15 enables to see SU(2) as the
stabilizer of the unit time vector (1, 0, 0, 0). Sometimes, the stabilizer is also called the little group or the isotropy
group. Physically, it means that SU(2) only acts over the space, and not in the time direction. Choosing another
time direction, related to (1, 0, 0, 0) by a boost Λ, would have defined another stabilizer, isomorphic to SU(2), which
makes physicists sometimes talk of a SU(2), as if there were several.

� SU(1, 1)SU(1, 1)SU(1, 1) is defined by:
SU(1, 1)

def
=
{
v ∈ SL2(C) | v†σ3v = σ3

}
. (1.17)

Any v ∈ SU(1, 1) can be uniquely written as:

v = v0e+ v1σ1 + v2σ2 + iv3σ3 with v0, v1, v2, v3 ∈ R and v2
0 − v2

1 − v2
2 + v2

3 = 1. (1.18)

♥ Physics. Similarly to the SU(2) case, SU(1, 1) can be understood by its action in Minkoswki spacetime as the
stabilizer of (0, 0, 0, 1).

� SL2(R)SL2(R)SL2(R), the real linear special group, is defined by

SL2(R)
def
= {a ∈M2(R) | det a = 1} , (1.19)

and interestingly it is also
SL2(R) =

{
a ∈ SL2(C) | a†σ2a = σ2

}
. (1.20)

Any a ∈ SU(1, 1) can be uniquely written as:

a = a0e+ a1σ1 + ia2σ2 + a3σ3 with a0, a1, a2, a3 ∈ R and a2
0 − a2

1 + a2
2 − a2

3 = 1. (1.21)
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♥ Physics. Similarly to the SU(2) case, SL2(R) can be understood by its action in Minkoswki spacetime as the
stabilizer of (0, 0, 1, 0).

F Nota Bene. Following the previous sequence, it would be fair to expect next sub-group to be the one defined by{
b ∈ SL(2,C) | b†σ1 = σ1b

−1
}
. (1.22)

To the knowledge of the author, this group has no name and is not much studied in the literature.

� The upper K+K+K+ and lower K−K−K− triangular group are defined by:

K+
def
=

{(
λ−1 µ

0 λ

)
| λ ∈ C∗ and µ ∈ C

}
K−

def
=

{(
λ−1 0
µ λ

)
| λ ∈ C∗ and µ ∈ C

}
.

They are also called the Borel sub-groups or the parabolic sub-groups.

� The subgroups Z+Z+Z+ et Z−Z−Z− are defined by:

Z+
def
=

{(
1 z
0 1

)
| z ∈ C

}
Z−

def
=

{(
1 0
z 1

)
| z ∈ C

}
.

� The diagonal group DDD is defined by:

D
def
=

{(
δ 0
0 δ−1

)
| δ ∈ C∗

}
. (1.23)

� SU(1)SU(1)SU(1), the uni-dimensional unitary group, is defined by:

SU(1)
def
=

{(
eiθ 0
0 e−iθ

)
| θ ∈ R

}
. (1.24)

It is isomorphic to U(1) = {eiθ | θ ∈ R}. Be aware that the notation ‘SU(1)’ is not broadly used.
SU(1) is also the maximal torus (biggest compact, connected, abelian Lie subgroup) of SU(2).

� Z2Z2Z2, the center, defined as the subset of matrices which commute with all SL2(C), is shown to be

Z2 = {1,−1} . (1.25)

Since it is a normal subgroup (as any center of any group), the quotient SL2(C)/Z2 is also a group,
which can be shown to be isomorphic to the restricted Lorentz group SO+(3, 1), as was already said
in 1.14.

1.4 Decomposing SL2(C)

The structural properties of a matrix group can be grasped through the study of its decompositions.
We are going to present four different decompositions of SL2(C). First of all, let us introduce the
notation Sp(M) for the set of the eigenvalues of M , and

H++
2 (C)

def
= {M ∈ H2(C) | ∀λ ∈ Sp(H), λ > 0} , (1.26)

for the set of 2× 2 hermitian positive-definite matrices.
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♣ Reminder. Recall that any hermitian matrix is diagonalizable. It is the content of the spectral theorem, which
says that H is an hermitian matrix if and only if there exists a unitary matrix U and a diagonal matrix D with real
coefficients such that

H = U†DU.

The coefficients of D are the eigenvalues of H.

� Polar decomposition. For all M ∈ GL2(C), there exists a unique unitary matrix U ∈ U(2) and
a unique positive-definite hermitian matrix H ∈ H++

2 (C) such that:

M = HU. (1.27)

I Proof. The polar decomposition actually works for the set H++
2 (C) of n×n positive-definite hermitian matrices.

Recall that if H ∈ H++
n (C), then there exists a unique matrix S ∈ H++

n (C), called the square root of H, such that
H = S2.

Existence. Let M ∈ GLn(C) be the matrix to be decomposed, then M†M is hermitian and positive. Thus we have
a unique matrix S ∈ H++

n (C) such that M†M = S2. We check finally that MS−1 is unitary.

Uniqueness. If M = QS with Q unitary and S definite-positive hermitian, then M† = SQ−1, so M†M = S2. But
M†M is positive hermitian and has therefore a unique positive hermitian square root, so that S is this square root
and Q is equal to MS−1.

For n = 1, it is the decomposition z = reiθ of a non-zero complex number. It is the reason why we call it polar
decomposition (kind of generalisation of polar coordinates). �

Remarks:

1. The order does not matter, and the theorem would also be true with M = UH.

2. If M = HU ∈ SL2(C), then U ∈ SU(2) and detH = 1.

♥ Physics. The polar decomposition has been used notably by Thiemann and Winkler in their analysis of the
coherent states of quantum gravity (see [Thi01, TW01b, TW01c, TW01a]).

� Cartan decomposition. For all g ∈ SL2(C), there exists u, v ∈ SU(2) and r ∈ R+ such that:

g = uerσ3/2v−1. (1.28)

I Proof. The proof is essentially the same as previously. Existence. Let g ∈ SL2(C) to be decomposed. g†g is
positive-definite hermitian. With the spectral theorem, we have v ∈ U(2) and d a real diagonal matrix with strictly
positive coefficients such that g†g = v†dv. If det v = eiθ, then u = e−iθv ∈ SU(2) and g†g = u†du. Since det d = 1,
one can write d = erσ3 . Note that

erσ3/2 =

(
er/2 0

0 e−r/2

)
, (1.29)

Then we show guerσ3/2 ∈ SU(2). �

Remark:

1. The number r is called the rapidity of the boost along the axis z.

2. This theorem can be generalized to the case SLn(C).

3. Given the decomposition g = uerσ3/2v−1, r is uniquely determined, but u and v are not. The
other possible choices are obtained by (u, v) 7→ (ueiθσ3 , veiθσ3), with θ ∈ R.

4. The polar decomposition of SL2(C) is a particular case of the Cartan decomposition where
v−1 = 1.

♥ Physics. This decomposition has been used notably for the asymptotics of spin-foams amplitude[Spe17], and also
for twisted geometries in [LS16].
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� Gauss decomposition. Let g ∈ SL2(C) such that g22 6= 0. There exists a unique triplet
(z+, d, z−) ∈ Z+ ×D × Z− such that

g = z+dz− (1.30)

I Proof. Explicit computation. If g =

(
α β
γ δ

)
∈ SL(2,C), then one can write:

g =

(
1 βδ−1

0 1

)(
δ−1 0

0 δ

)(
1 0

γδ−1 1

)
(1.31)

�

� Iwasawa decomposition. According to the Japanese mathematician (1917 - 1998), for any matrix
M ∈ SL2(C), there exists a unique triplet (Z,D,U) ∈ Z+ ×DR+ × SU(2) that decomposes M :

M = ZDU =

(
1 z
0 1

)(
λ−1 0

0 λ

)(
α −β∗
β α∗

)
(1.32)

with (z, λ, α, β) ∈ C× R∗+ × C2.
♥ Physics. This decomposition has been used notably for the study of covariant twisted geometries [LST12].

1.5 Basics of SU(2)

Let us now focus on the special unitary subgroup

SU(2)
def
=
{
u ∈ SL2(C) | u†u = 1

}
. (1.33)

It is a 3-dimensional real Lie subgroup of the 6-dimensional real Lie group SL2(C). Any u ∈ SU(2)
can be uniquely written as

u =

(
α −β∗
β α∗

)
with (α, β) ∈ C2, |α|2 + |β|2 = 1, (1.34)

or equivalently

u =

(
a+ ib −c+ id
c+ id a− ib

)
with (a, b, c, d) ∈ R4, a2 + b2 + c2 + d2 = 1. (1.35)

The latter expression shows that SU(2) is diffeomorphic to S3 (the unit sphere of R4). Therefore it
is connected, simply connected and compact. The center of SU(2) is Z2 = {1,−1}, and the quotient
SU(2)/Z2 is also a group, which happens to be isomorphic to SO(3) (see section 1.6).

♥ Physics. The group SU(2) is central in quantum physics. First, it appears for the theory of the angular momentum
(spin). Historically, it was also used as an approximate symmetry group for the isospin that relates protons and
neutrons. Then it reappeared to describe the electro-weak interaction. In LQG, SU(2) comes with the holonomies,
which are obtained by exponentiation of the Ashtekar variables, used for the quantization (see section 5).

The real Lie algebra of SU(2) is

su(2) =
{
M ∈M2(C) |M † = −M and Tr M = 0

}
. (1.36)

It is a real vector space, of which a basis is given by (iσ1, iσ2, iσ3). Since SU(2) is a compact Lie group,
any element of SU(2) can be written (non uniquely) as the exponential of an element of the associated
Lie algebra su(2) (it is a general theorem for compact Lie group).

� Exponential decomposition. If u ∈ SU(2), there exists a (non-unique) ~α ∈ R3 such that

u = ei~α·~σ = cos ‖~α‖I + i sin ‖~α‖ ~α

‖~α‖
· ~σ. (1.37)
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I Proof. Let M =

(
a −b∗
b a∗

)
∈ SU(2). The equality is easy to check for r = arccos(Re a) and α1 = r

sin r
Im b,

α2 = − r
sin r

Re b, α3 = r
sin r

Im a. �

� Euler angles decomposition. For all u ∈ SU(2), there exists α, β, γ ∈ R (called Euler angles)
such that:

u = e−
iα
2
σ3e−

iβ
2
σ2e−

iγ
2
σ3 (1.38)

The choice can be made unique by restricting the domain of definition of the angles, with for instance
α ∈]− 2π, 2π[, β ∈ [0, π] and γ ∈ [|α|, 4π − |α|[.

I Proof. Explicit computation. The right hand side (RHS) gives(
e−

i(α+γ)
2 cosβ/2 −e

i(γ−α)
2 sinβ/2

e−
i(γ−α)

2 sinβ/2 e
i(α+γ)

2 cosβ/2

)
(1.39)

and for any u ∈ SU(2), it is clearly possible to find α, β, γ ∈ R to write u in this form. Note that there are other
conventions for the definition of Euler angles. The definition we have chosen is the one of Varshalovich ([VMK87]
p. 27) and Sakurai ([SN11] p. 177). Instead, Rühl ([Rüh70] p. 43) and the Wolfram Language have chosen the

convention u = e
iα
2
σ3e

iβ
2
σ2e

iγ
2
σ3 . �

1.6 The rotations SO(3)

As we have said in section 1.3, the action of SU(2) over Minkowski space, given by 1.13, preserves
the time direction. Then, SU(2) acts on the spatial dimensions as the group of rotations over the
Euclidean space R3. The group of rotations of R3 is

SO(3)
def
=
{
M ∈M3(R) |MTM = 1 and detM = 1

}
. (1.40)

It is a Lie group whose Lie algebra is

so(3) =
{
M ∈M3(R) |MT +M = 0 and TrM = 0

}
. (1.41)

We can show the following isomorphism of Lie algebra

so(3) ∼= su(2). (1.42)

Besides we have the following group isomorphism:

SO(3) ∼= SU(2)/Z2. (1.43)

This can be seen with the map

g :

(
α −β∗
β α∗

)
7→

 1
2(α2 + α∗2 − β2 − β∗2) i

2(α2 − α∗2 − β2 + β∗2) αβ∗ + α∗β
i
2(−α2 + α∗2 − β2 + β∗2) 1

2(α2 + α∗2 + β2 + β∗2) i(−αβ∗ + α∗β)
−αβ − α∗β∗ i(−αβ + α∗β∗) αα∗ − ββ∗

 (1.44)

which is a 2-to-1 onto homomorphism from SU(2) to SO(3). It satisfies notably g(u) = g(−u).
Topologically, SO(3) is homeomorphic to the sphere S3 where the antipodal points have been identified.
It is notably connected, but not simply connected.

The action of the homomorphism 1.44 over the Euler decomposition 1.38, shows that any rotation
r ∈ SO(3), can be decomposed as

r = rz(α)ry(β)rz(γ)

with rz(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 and ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (1.45)

where (α, β, γ) are (any choice of) Euler angles of (any choice of) one of the two antecedents of r by
g. The unicity of the decomposition can be obtained for instance with the restriction α ∈]− π, π[, β ∈
[0, π] and γ ∈ [|α|, 2π − |α|[.
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1.7 Integrable functions over SU(2)

Haar measure. It can be shown that there exists a unique quasi-regular Borel measure µ over SU(2)
which satisfies

1. Invariant: µ(u) = µ(gu) = µ(ug);

2. Normalised: µ(SU(2)) = 1.

It is called the (two-sided normalised) Haar measure of SU(2).

♣ Reminder. A Borel set in SU(2) is any subset of SU(2) obtained from open sets through countable union,
countable intersection, or taking the complement. All Borel sets form an algebra called the Borel algebra B(SU(2)).
A Borel SU(2)-measure µ is a non-negative function over B(SU(2)) for which µ(∅) = 0, and which is countable
additive (the measure of a disjoint union is the sum of the disjoint sets). A Borel measure is said to be quasi-regular
if it is outer regular (µ(S) = inf{µ(U) | S ⊆ U,U open}) and inner regular: µ(S) = sup{µ(K) | K ⊆ S,K compact).

The Haar measure enables to define integrals of functions f over SU(2):∫
SU(2)

f(u) dµ(u) also denoted
∫
SU(2)

f(u) du (1.46)

The Hilbert space L2(SU(2)). The space of complex functions over SU(2) satisfying∫
SU(2)

|f(u)|2du <∞, (1.47)

is denoted L2(SU(2)). It is an infinite-dimensional Hilbert space with the scalar product

(f1, f2)
def
=

∫
SU(2)

f∗1 (u)f2(u)du. (1.48)

1.8 Integrable functions over SL2(C)

In Vilenkin ([GGV66] pp. 214-215), an invariant measure da over SL2(C) is defined, so that for any
g ∈ SL2(C), we have

da = d(ga) = d(ag) = d(a−1). (1.49)

It is given explicitly by

da =

(
i

2

)3

|a12|−2 da11da11 da12da12 da22da22. (1.50)

In Rühl [Rüh70], the invariant measure is given in terms of the coefficients in the decomposition 1.6,
by

da = π−4δ

(
a0 −

3∑
k=1

a2
k − 1

)
da0da0 da1da1 da2da2 da3da3. (1.51)

It is normalised so that the induced measure over SU(2) is the same Haar measure defined in the
previous section. In Rühl ([Rüh70] p. 285), it is shown that using the Cartan decomposition a =
uerσ3/2v−1, we have:

dµ(a) =
1

4π
sinh2 rdrdudv. (1.52)
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Chapter 2

Representation theory of SU(2)

Motivated by their omnipresence in quantum physics, we are going to study the representations of
SU(2) over finite-dimensional Hilbert spaces1. Now, due to Peter-Weyl’s theorem (see appendix A), a
complex finite representations of a compact group can be decomposed into a direct sum of irreps. We
thus focus on irreps of SU(2).

2.1 Irreps of SU(2)

To start with, we make use of the following correspondence, which is a particular case of the so-called
Weyl’s unitary trick. For finite dimensional representations, we can show that the following sets of
representations are in one-to-one correspondence:

1. Holomorphic representations2 of SL2(C),

2. Representations of SU(2),

3. Representations of su(2),

4. C-linear representations3 of sl2(C).

Moreover, this correspondence preserves invariant subspaces and equivalences of representations.
I Proof. We can show the following bijections [Kna86]:

(1)⇒ (2) Restriction of the action of SL2(C) to that of its subgroup SU(2).
(2)⇒ (3) Differentiation as shown in appendix A.
(3)⇒ (4) Use the fact that sl2(C) ∼= su(2)⊕ isu(2).
(4)⇒ (1) If G and H are two analytical groups with G simply connected, and if φ : g→ h is an homomorphism between

there Lie algebras, then there exists a smooth homomorphism Φ : G→ H whose differential at the identity is
φ. In our case, SL2(C) is simply connected, and since φ is assumed C-linear, Φ is holomorphic.

�

We can now describe all the C-linear irreps of sl2(C).

Theorem. For all n ∈ N, there exists a n-dimensional C-linear irreducible representation of sl2(C),
unique up to equivalence.

I Proof. The proof is constructive. Analysis: assume the existence of a (n + 1)-dimensional representation over
a vector space H. One shows then that there exists a basis (vi) with i = 0..n such that the action of the elements
h, e, f ∈ sl2(C), defined by

h
def
= σ3 =

(
1 0
0 −1

)
e

def
= (σ1 + iσ2)/2 =

(
0 1
0 0

)
f

def
= (σ1 − iσ2)/2 =

(
0 0
1 0

)
,

1Hilbert spaces are of main interest for quantum physics. But many physicists may not be aware of the real repre-
sentations of SU(2), which are much less studied (see [IRS91] for more about them).

2‘Holomorphic representation’ means that the map defined by the representation over the vector space is holomorphic.
3As we will see later, sl2(C) can be seen both as a complex or as a real vector space. ‘C-linear representations’ means

that we care about the complex structure of sl2(C). We will care about the R-linear representations of sl2(C) in section
4.1.
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and which satisfy the commuting relations

[h, e] = 2e [h, f ] = −2f [e, f ] = h,

is given by:

h · vk = 2(j − k)vk, e · vk = k(n− k + 1)vk−1, f · vk = vk+1.

Synthesis: one choose any basis (vi) and defines the action of h, e, and f by the previous formulas. One checks
easily that the obtained representation is irreducible. �

The 3-dimensional complex vector space sl2(C) can also be seen as a 6-dimensional real vector
space, which has su(2) as subspace. Thus, by restriction of the action of sl2(C) to su(2), the previously
found C-linear irreps of sl2(C), define also irreps of su(2). Finally, by exponentiating with 1.37, we find
all irreps of SU(2) over complex vector spaces.

2.2 Angular momentum realisation

In physic textbooks, the representations of sl2(C) are indexed by an half-integer, called a spin. To
each spin j ∈ N/2 is associated an Hilbert space Qj of dimension 2j + 1. The canonical basis, also
called magnetic basis is composed of the vectors (or ‘kets’ in the Dirac language) denoted |j,m〉 with
m ∈ {−j, ..., 0, ..., j}. It is made orthonormal by choosing the scalar product that satisfies the property
(in Dirac notations):

〈j,m|j, n〉 = δmn. (2.1)

We now define the angular momentum observables Ji
def
= 1

2σi, sometimes called simplygenerators of
SU(2) or generators of rotations. They satisfy:

[Ji, Jj ] = iεijkJk. (2.2)

We then define their linear action over Qj by

J1 |j,m〉 =
1

2

√
(j −m)(j +m+ 1) |j,m+ 1〉+

1

2

√
(j +m)(j −m+ 1) |j,m− 1〉 ,

J2 |j,m〉 =
1

2i

√
(j −m)(j +m+ 1) |j,m+ 1〉 − 1

2i

√
(j +m)(j −m+ 1) |j,m− 1〉 ,

J3 |j,m〉 = m |j,m〉 .

(2.3)

♥ Physics. In some textbooks, the generators are defined as Ji
def
= ~

2
σi where ~ is the reduced Planck constant,

which has the dimension of an action. Indeed, this realisation originally comes from atomic physics, where the Ji
represent ‘observables’ of angular momentum. For simplicity, we are working in the units where ~ = 1, keeping in
mind the possibility to restore ~ explicitly at any moment by dimensional analysis. By the way, notice also that
since ‘observables’ are required to be hermitian operators, the Ji are elements of isu(2) and not of su(2).

The action of the generators over Qj defines a (2j + 1)-dimensional irrep of SU(2), called the spin-j
representation. This is shown by exhibiting the following equivalence4 with the irreps defined in the
previous section: |jm〉 ∼= vj−m. The generators are related by J3

∼= h/2, J+
∼= e and J− ∼= f , where

we define the ladder operators J+
def
= J1 + iJ2 (up) and J−

def
= J1 − iJ2 (down). Their action is

J+ |j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉 ,

J− |j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉 .
(2.4)

Sometimes the action of J+ over |jm〉 is written with a constant phase eiδ. This choice defines an
equivalent representation, but the choice of a null phase (called the Condon-Shortley convention from
[CS59]) is the most widespread.

4Two representations are equivalent if there exists a bijective intertwiner, i.e. a bijective map T between the two
vector spaces, so that it commutes with the action of the group (see appendix A). It would be too heavy to write explicitly
|jm〉 = T (vj−m), so that we choose to write rather |jm〉 = T (vj−m). Similarly, for the operators we write J+

∼= e, rather
than J+ = T ◦ e ◦ T−1.

13



Finally notice that |jm〉 is also an eigenvector of the total angular momentum ~J2 def
= J2

1 + J2
2 + J2

3 :

~J2 |jm〉 = j(j + 1) |jm〉 . (2.5)

In fact, the |jm〉 form the unique orthonormal basis that diagonalises simultaneously the commuting
operators J3 and ~J2. We say that J3 and ~J2 form a complete set of commuting operators (CSCO). From
a mathematical perspective, notice also that ~J2 is not a element of the algebra isu(2), but an element
of the universal enveloping algebra U(isu(2)) whose action can be easily computed by successive action
of su(2). Since ~J2 has the property to be a quadratic element that commutes with all of U(isu(2)), it
is called the Casimir operator of U(isu(2)).

Wigner matrix. The action of the generators of SU(2) over Qj defines a linear action of the group
SU(2) by exponentiation (see appendix A). The Wigner matrix Dj(g), is the matrix that represents
the action of g ∈ SU(2) in the |j,m〉 basis. It is thus a square matrix of size 2j + 1. By definition, the
coefficients of the Wigner matrix are the functions

Dj
mn(g)

def
= 〈j,m|g|j, n〉 . (2.6)

F Nota Bene. One should be aware of a small ambiguity in the notation ‘ 〈j,m|g|j, n〉’ that arises when g is a matrix
that belongs simultaneously to SU(2) and to su(2). Then it should be said explicitly if one considers the group action
or the algebra action when computing 〈j,m|g|j, n〉, because it gives a different result. This ambiguity comes from the
fact that physicists do not usually write explicitly if they consider the group representation ρ, or its differential Dρ.
Mathematicians would write 〈j,m|ρ(g)|j, n〉, or 〈j,m|Dρ(g)|j, n〉. From equation 1.37, if g = ea ∈ SU(2) ∩ su(2),
with a ∈ su(2), then we know from A, that ρ(g) = eDρ(a), but ρ(g) 6= Dρ(ea) = Dρ(g). In the definition of the
Wigner matrix above, it is the group action which is considered.

The functions Dj
mn form an orthogonal family of L2(SU(2)):∫

SU(2)
dg Dj′

m′n′(g)Dj
mn(g) =

1

2j + 1
δjj′δmm′δnn′ . (2.7)

I Proof. The left hand side (LHS) is the coefficient 〈j′n′|A|jn〉 of the operator A : Qj → Qj′ defined by

A
def
=

∫
du u†

∣∣j′m′〉〈jm∣∣u. (2.8)

We first show that A is an intertwiner. If j 6= j′, then, by Schur’s lemmas (cf. section A), A = 0. Otherwise, j′ = j,
and A is bijective, and there exists λ ∈ C so that A = λ1. Taking the trace on both sides, we see that λ =

δmm′
2j+1

. �

In fact, Peter-Weyl’s theorem (see A) even asserts that the functions Dj
mn form a basis of L2(SU(2)):

any function f ∈ L2(SU(2)) can be written

f(g) =
∑
j∈N/2

j∑
m=−j

j∑
n=−j

f jmnD
j
mn(g), (2.9)

with coefficients f jmn ∈ C. It implies notably an equivalence between the following Hilbert spaces

L2(SU(2)) ∼=
⊕
j∈N/2

(Qj ⊗Qj). (2.10)

We are going to derive explicit expressions for computing Dj
mn(g), but we first need to introduce

another realisation of the spin-j irreps.
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2.3 Homogeneous realisation

Let C2j [z0, z1] be the vector space of polynomials of two complex variables, homogeneous of degree
2j ∈ N. If P (z0, z1) ∈ C2j [z0, z1], it can be written as

P (z0, z1) =

2j∑
k=0

akz
k
0z

2j−k
1 , (2.11)

with coefficients a0, ..., a2j ∈ C. The action of SU(2) given by

g · P (z) = P (gT z) (2.12)

defines a (2j + 1)-dimensional group representation.

I Proof. The action satisfies

(g1g2) · P = g1 · (g2 · P ) and e · P = P,

which defines a group action over the vector space C2j [z0, z1]. �

F Nota Bene. We could also have defined the action by P (a−1zzz), P (a†zzz) or P (zzza). In fact P (zzza) = P (aTzzz),
defines the same action. The convention that we have chosen here is the one of Rovelli ([RV14] p. 173). Moreover
our convention is consistent with the choice we have made later for the representations of the principal series (cf.
4.3.1). In Bernard ([BLR12] p. 128) the convention P (a−1zzz) is used.

This group action induces the following action of the generators5

J+
∼= z0

∂

∂z1
J− ∼= z1

∂

∂z0
J3
∼=

1

2

(
z0

∂

∂z0
− z1

∂

∂z1

)
. (2.13)

I Proof. Let g(t) = etM . The differential of the representation is given by (see A):

M · P (z0, z1) =
d

dt
(g(t) · P (z0, z1))

∣∣
t=0

=
d

dt
(P (g11(t)z0 + g21(t)z1, g12(t)z0 + g22(t)z1))

∣∣
t=0

= (M11z0 +M21z1)
∂P

∂z0
(z0, z1) + (M12z0 +M22z1)

∂P

∂z1
(z0, z1).

Then it suffices to apply to J3, J+, J−. �

This representation of is equivalent to the spin-j irrep through the correspondence:

|j,m〉 ∼=
(

(2j)!

(j +m)!(j −m)!

)1/2

zj+m0 zj−m1 , (2.14)

The RHS is sometimes denoted with Dirac notations 〈z0z1|jm〉.
I Proof. One look for an intertwiner Φ : Qj → C2j [z0, z1], such that for all i, Ji · Φ(|j,m〉) = Φ(Ji |j,m〉). We
show easily the necessary condition:

Φ(|j,m〉) = c

(
(2j)!

(j +m)!(j −m)!

)1/2

zj+m0 zj−m1 , (2.15)

We choose c = 1. �

The homogeneous realisation is very convenient to derive an explicit expression for the Wigner matrix
coefficients, as we show now.

5See the footnote of page 13 for the notation ∼=.
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Wigner matrix formula.

Dj
mn(g) =

(
(j +m)!(j −m)!

(j + n)!(j − n)!

)1/2∑
k

(
j + n

k

)(
j − n

j +m− k

)
gk11g

j+n−k
21 gj+m−k12 gk−m−n22 . (2.16)

The sum is done over the integers k ∈ {max(0,m+ n), ...,min(j +m, j + n)}.

I Proof. First of all remark that action 2.12 is well defined for any g =

(
g11 g12

g21 g22

)
∈ GL2(C). Explicitly, it acts

over the canonical basis of C2j [z0, z1] like

g · zk0 z
2j−k
1 = P

((
g11 g21

g12 g22

)(z0
z1

))
= P

((g11z0 + g21z1

g12z0 + g22z1

))
= (g11z0 + g21z1)k(g12z0 + g22z1)2j−k

=

(
k∑
i=0

(k
i

)
(g11z0)i(g21z1)k−i

)2j−k∑
l=0

(2j − k
l

)
(g12z0)l(g22z1)2j−k−l

 [formule du binôme]

=

k∑
i=0

2j−k∑
l=0

(k
i

)(2j − k
l

)
gi11g

k−i
21 gl12g

2j−k−l
22 zi+l0 z2j−i−l

1

=

k∑
i=0

2j−k+i∑
n=i

((k
i

)(2j − k
n− i

)
gi11g

k−i
21 gn−i12 g2j−k−n+i

22

)
zn0 z

2j−n
1 [n := i+ l]

=

2j∑
n=0

 min(k,n)∑
i=max(0,n+k−2j)

(k
i

)(2j − k
n− i

)
gi11g

k−i
21 gn−i12 g2j−k−n+i

22

 zn0 z
2j−n
1

Up to there, nothing but simple computation. Now, a subtle change of variables:

m := n− j q := k − j. (2.17)

(The subtlety is that j is a spin, and we generalise the notation
∑

for half-integers bounds with still a step of 1. A
general polynomial is written

P (z) =

j∑
m=−j

aj+mz
j+m
0 zj−m1 . (2.18)

The action of GL2(C) is:

g · zj+q0 zj−q1 =

j∑
m=−j

min(j+m,j+q)∑
i=max(0,m+q)

(q + j

i

)( j − q
m+ j − i

)
gi11g

q+j−i
21 gm+j−i

12 g−q−m+i
22

 zj+m0 zj−m1 .

�

This explicit formula is useful to show some symmetry properties like

Dj
mn(u) = (−1)m−nDj

−m,−n(u). (2.19)

♥ Physics. This formula is much used for numerical computations with spin-networks and spin-foams, like in
[BDF+10].

Euler angles expression. Wigner proposed also another explicit expression for its matrix, in terms
of the so-called Euler angles. If u ∈ SU(2), and α, β, γ ∈ R3 are the Euler angles of u, such that
u = e−

iα
2
σ3e−

iβ
2
σ2e−

iγ
2
σ3 , then

Dj
m′m(u) = e−i(αm

′+γm)djm′m(β)

with the reduced Wigner matrix

djm′m(β) =

(
(j +m′)!(j −m′)!
(j +m)!(j −m)!

) 1
2

min(j+m′,j+m)∑
k=max(0,m′+m)

(−1)m
′+j−k

(
j +m

k

)(
j −m

j − k +m′

)

×
(

cos
β

2

)2k−m−m′ (
sin

β

2

)m+m′+2j−2k

. (2.20)
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I Proof. The proof is very easy once given formula 2.16. It only consists in applying it to the matrix

e−
iα
2
σ3e−

iβ
2
σ2e−

iγ
2
σ3 =

(
e−

i(α+γ)
2 cosβ/2 −e

i(γ−α)
2 sinβ/2

e−
i(γ−α)

2 sinβ/2 e
i(α+γ)

2 cosβ/2

)
.

This is what Rühl is doing ([Rüh70] p. 43), except that in his convention, the Euler angles are defined with no
minus sign in front, so α 7→ −α, β 7→ −β, γ 7→ −γ, and so dj

m′m(β)|Rühl = dj
m′m(−β), which finally also equals the

RHO of 2.20 provided the coefficient (−1)m
′+j−k is changed into (−1)m+j−k. It is also the convention chosen by

the Wolfram Language to define its function WignerD, hence:

WignerD[{j,m, n}, α, β, γ] = ei(αm+γn)dj
m′m(−β). (2.21)

A proof that does not presupposed formula 2.16 can be found in Sakurai ([SN11] p. 236-238) who has the same
convention as ours for Euler angles. It uses the Schwinger’s oscillator model for angular momentum. He obtains
the same formula as ours, but written in a slightly different way, changing the index of summation k → j +m− k.
Finally, Varshalovich ([VMK87] p. 76), who has also the same convention, gives a series of variations in the way of
writing the above formula. �

2.4 Projective realisation

The spin-j irrep can be realised over C2j [z], the vector space of complex polynomials of one variable z
of degree at most 2j. This realisation is obtained from the C2j [z0, z1] realisation by the map:{

C2j [z0, z1] → C2j [z]
P (z0, z1) 7→ P (z, 1)

(2.22)

This map is constructed from a projection from C2 to C, hence the name ‘projective’ we give to this
realisation. Sometimes it is also named the ‘holomorphic’ realisation. From this we deduce the action
of SU(2)

a · f(z) = (a12z + a22)2jf

(
a11z + a21

a12z + a22

)
, (2.23)

and of the algebra su(2)

J+
∼= −z2 d

dz
+ 2jz J3

∼= z
d

dz
− j J− ∼=

d

dz
. (2.24)

The canonical basis becomes

|j,m〉 ∼=

√
(2j)!

(j +m)!(j −m)!
zj+m. (2.25)

We can give the following explicit expression for the scalar product that makes the canonical basis
orthonormal:

〈f |g〉 def
=

i

2

2j + 1

π

∫
C
f(z)g(z)

dzdz

(1 + |z|2)2j+2
. (2.26)

2.5 Spinorial realisation

The following realisation of the spin-j irreps relies on notations which have been much developed by
Penrose [PR84]. It was found useful for twistor theory [PR86], and later in quantum gravity for the
so-called twisted geometries [FS10, LS16].

Abstract indices. We are going to use the clever conventions of abstract indices of Penrose ([PR84]
pp. 68-115). To start with we need a set of ‘abstract indices’ L, that is to say a countable set of
symbols. We use for instance capital letters:

L def
= {A,B, ..., Z,A0, ..., Z0, A1, ...}. (2.27)
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Then we denote S•
def
= C2, and for any abstract index A ∈ L, SA def

= S• × {A}. Obviously SA is
isomorphic to C2 as a complex vector space. An element of SA will be typically denoted zA = (z,A) ∈
SA. The abstract index A serves as a marker to ‘type’ the vector z ∈ C2 (thus zA 6= zB). This notation
is very efficient to deal with several copies of the same space (here C2), like in tensor theory.

The vector space of linear forms from C2 to C, is called the dual space, and denoted S•. Similarly,
we denote SA

def
= S• × {A}, which is trivially isomorphic to the dual space of SA. Its elements,

called covectors, are denoted with an abstract lower capital index, zA. Then the evaluation of a
covector yA = (y,A) on a vector zA = (z,A) (called a ‘contraction’ or a ‘scalar product’) is denoted
yAz

A = y(z) ∈ C (the order does not matter yAzA = zAyA).

Spinors. Consider the space of formal (commutative and associative) finite sums of formal (com-
mutative and associative) products of elements, one from each SA1 , ...,SAp ,SB1 , ...,SBq . A typical
element can be written:

t
A1...Ap

B1...Bq
=

m∑
i=1

z A1
1,i ... z

Ap
p,i y1,i

B1
... yq,iBq . (2.28)

Then impose the rules

1. (Homogeneity) ∀α ∈ C, (αz A1
1 ) z A2

2 ... z
Ap
p = z A1

1 (αz A2
2 ) ... z

Ap
p

2. (Distributivity) (z A1
1 + z A2

2 ) zA3
3 ... z

Ap
p = z A1

1 z A3
3 ... z

Ap
p + z A2

2 z A3
3 ... z

Ap
p .

The resulting space is a vector space denoted S
A1...Ap
B1...Bq

. Its elements are called spinors of type (p, q),
and its dimension is 2p+q.

F Nota Bene. The spinor space S
A1...Ap
B1...Bq

is isomorphic, but not equal, to SA1 ⊗ ... ⊗ SAp ⊗ SB1
⊗ ... ⊗ SBq .

The difference is the commutativity of the product. For instance the formal product of SAB is commutative (by
assumption) in the sense that, for zA ∈ SA and yB ∈ SB , zAyB = yBzA, whereas the tensor product is not,
zA ⊗ yB 6= yB ⊗ zA, simply because zA ⊗ yB ∈ SA ⊗SB and yB ⊗ zA ∈ SB ⊗SA do not belong to the same set.
Heuristically it can be said that the abstract indices keep track of the position in the tensor product.

The spinor space is endowed with a bunch a basic operations defined by a set of rules. It would
be utterly unpedagogical to state these rules in the most general case. On the contrary they are very
intuitive for simple examples, and generalise without ambiguities for higher order spinors.

1. (Index substitution) If zA = (z,A) ∈ SA, we denote zB = (z,B) ∈ SB. Thus zA 6= zB.

2. (Index permutation) If tAB =
∑

i z
A
i y

B
i ∈ SAB, we denote tBA =

∑
i z
B
i y

A
i ∈ SAB.

3. (Symmetrisation) t(AB) def
= 1

2(tAB + tBA) or generally z(A1...An) def
= 1

n!

∑
σ∈Sn z

Aσ(1)...Aσ(n) .

4. (Anti-symmetrisation) t[AB] def
= 1

2(tAB − tBA) or generally z[A1...An] def
= 1

n!

∑
σ∈Sn εσz

Aσ(1)...Aσ(n) ,
with εσ the signature of the permutation σ.

5. (Contraction) If
∑

i z
A
i y

i
B = tAB, then t

A
A =

∑
i z
A
i y

i
A ∈ C.

Index dualisation We denote the canonical basis of C2:

e0
def
=

(
1

0

)
e1

def
=

(
0

1

)
. (2.29)

It is easy to show that there exists a unique normalised skew-symmetric spinor of type (0, 2). It is
denoted εAB, and satisfies by definition:

εAB = −εBA, εABe
A
0 e

B
1 = 1. (2.30)
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F Nota Bene. εAB corresponds over C2 to the unique 2-form ε normalised by the condition ε(e0, e1) = 1, which is
nothing but the determinant over C2.

For two vectors z = (z0, z1) and y = (y0, y1), we show easily that:

εABz
AyB = z0y1 − z1y0. (2.31)

Interestingly, εAB defines a canonical mapping between SA and SA, given by

zA 7→ zA = zBεBA. (2.32)

It is called index dualisation.

F Nota Bene. Actually the mapping could also have been defined by zA 7→ zA = zBεAB . It gives the same
mapping ‘up to a sign’, since εAB is skew-symmetric. This other convention is chosen by Rovelli ([RV14] p. 23).
Our convention is the one of Penrose ([PR84] p. 104).

The covectors of the dual space S• can also be described by a pair of components in the dual basis. The
index dualisation can then be expressed in components as ((z0, z1), A) 7→ ((−z1, z0), A). Similarly to
the usual Dirac notation |z〉 = (z0, z1), a notation is sometimes introduced for the dual [z| = (−z1, z0).
With this choice, the RHS of 2.31 reads [z|y〉.

Conjugation. The conjugation of z ∈ C is denoted z̄ or z∗. We define the conjugation over SA by
zA = (z,A)

def
= (z, Ȧ) = z̄Ȧ ∈ SȦ. Thus we have introduced a new set of abstract indices, the dotted

indices:
L̇ def

= {Ȧ, Ḃ, ..., Ż, Ȧ0, ..., Ż0, Ȧ1, ...}. (2.33)

We impose moreover that z̄Ȧ = zA, i.e. Ä = A, so that the conjugation is an involution. Importantly,
we regard the set L and L̇ as incompatible classes of abstract indices, meaning that we forbid index
substitution between them two. In other words, dotted and undotted indices commute: for any
tAḂ ∈ SAḂ, we have tAḂ = tḂA.

F Nota Bene. One way to formalise this ‘incompatibility’ between dotted and undotted indices would be to define
rather zA = (z,A, 0) and zȦ = (z,A, 1). Thus the index substitution zA = (z,A, 0) 7→ zA = (z,B, 0) = zB

clearly does not enable to translate from a dotted to an undotted index. Only the complex conjugation can through
zA = (z,A, 0) 7→ (z,A, 1) = zȦ.

Inner product. We define the map J by:

J

(
z0

z1

)
=

(
−z1

z0

)
. (2.34)

Using the previously introduced generalised Dirac notation, we read J |z〉 = |z]. Since J2 = −1, the
map J behaves over C2 very much as the imaginary number i behaves over C. For this reason the map
J is said to define a complex structure over C2. A combination of εAB and J defines an inner product
over SA:

− εAB(Jz)AyB = z0y0 + z1y1. (2.35)

In generalised Dirac notations, we read −[Jz|y〉 = 〈z|y〉, which is consistent with the usual Dirac
notation for the scalar product.

F Nota Bene. With the matrix action over spinors, defined just below, equation 2.36, we can see that the inner
product is invariant under the action of SU(2): 〈u · z|u · y〉 = 〈z|y〉. There is no surprise since it is actually one
way of defining SU(2). However the inner product is not invariant under SL2(C) (contrary to the determinant).
So, to ‘another choice of SU(2)’, in the sense of a stabilizer of a time direction (see 1.3), would correspond another
invariant inner product, and thus another complex structure J . For instance, in [LST12], they choose rather (−J)
for the complex structure. The choice we have made here is the one of Rovelli ([RV14] p. 24).
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Representation. The vector space M2(C) is isomorphic to SA
B, through the isomorphism that

associates to any t ∈M2(C) the unique spinor tAB such that:

∀z ∈ C2, (tz)A = tAB z
B. (2.36)

Then the groups SL2(C) and SU(2) can be represented over SA1...Ap such as:

u · zA1...Ap = uA1
B1
...u

Ap
Bp
zB1...Bp . (2.37)

Yet this representation is not irreducible, since it is stable over the subspace of completely symmetric
spinors S(A1...Ap).

I Proof. Let’s see that the action is stable over this subspace. Suppose zA1...Ap is completely symmetric, i.e.
z(A1...Ap) = zA1...Ap . Then (sketching the proof, the details are left to the reader):

u · z(A1...Ap) = u
(A1
B1
...u

Ap)

Bp
zB1...Bp

= uA1
(B1

...u
Ap
Bp)

zB1...Bp

= uA1
B1
...u

Ap
Bp

z(B1...Bp)

= uA1
B1
...u

Ap
Bp

zB1...Bp

= u · zA1...Ap

thus u · zA1...Ap is also completely symmetric. �

Thus SL2(C) and SU(2) can be represented of the vector space S(A1...Ap) of dimension p+ 1. A basis
is given by

{e(A1

i1
...e

Ap)
ip
| i1, ..., ip ∈ {0, 1}} = {e(A1

0 ...eAm0 e
Am+1

1 ...e
Ap)
1 | m ∈ {0, ..., p}}. (2.38)

This representation is irreducible and equivalent to the spin p/2 representation through the intertwiner:

e
(A1

0 ...eAm0 e
Am+1

1 ...e
Ap)
1
∼= zm0 z

p−m
1 . (2.39)

I Proof. To see this, it is simpler to write the spinors in the canonical basis of SA1...Ap :

ξA1...Ap =
1∑

i1,i2,...,ip=0

ci1,...,ip eA1
i1
...e

Ap
ip

(2.40)

The total symmetry of ξA1...Ap imposes a total symmetry of the coefficients ci1,...,ip . Then we define the following
bijection between S(A1...Ap) and Cp[z0, z1]:

ξA1...Ap ∼=
1∑

p1,...pn=0

cp1...pnzp1 ...zp2 (2.41)

This defines an intertwiner as can be checked by looking at the action of a group element. �
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Chapter 3

Recoupling theory of SU(2)

The SU(2) irreps provide the fundamental building blocks of quantum space-time. From a mathemat-
ical perspective, irreps are the fundamental bricks from which other representations are built. Indeed
any finite representation of SU(2) is completely reducible (i.e. it can be written as a direct sum of
irreps). In particular, a tensor product of irreps can be decomposed into a direct sum of irreps: in
other words there exists a bijective intertwiner that maps the tensor product to a direct sum of irreps.
Such an intertwiner is sometimes called a ‘coupling tensor ’ (see Moussouris [Mou83] pp. 10-11). This
naming comes from quantum physics: when two systems couple (i.e. interact), the total system is
described by states of the tensor product of the Hilbert spaces of the subsystems. Notice that there
may exist several coupling tensors between a tensor product and its corresponding sum of irreps. It is
precisely the goal of ‘recoupling theory ’ to describe these coupling tensors and to understand how one
can translate from one decomposition to another.

3.1 Clebsch-Gordan coefficients

Given Qj1 and Qj2 , two irreps of SU(2), the tensor representation is defined over Qj1 ⊗ Qj2 . The
canonical basis of Qj1 ⊗Qj2 is given by the elements

|j1m1; j2m2〉
def
= |j1,m1〉 ⊗ |j2,m2〉 (3.1)

where m1 and m2 belong to the usual range of magnetic indices. Interestingly, this basis is the unique
orthonormal basis that diagonalises simultaneously the commuting operators:

J3 ⊗ 1, 1⊗ J3, ~J2 ⊗ 1, 1⊗ ~J2. (3.2)

Another complete set of commuting operators is given by

J3 ⊗ 1 + 1⊗ J3,
(
~J ⊗ 1 + 1⊗ ~J

)2
, ~J2 ⊗ 1, 1⊗ ~J2. (3.3)

Therefore, there exists an orthonormal basis that diagonalises them simultaneously. It is given by

|j1j2; k;n〉 with k ∈ {|j1 − j2|, ..., j1 + j2} and n ∈ {−k, ..., k}, (3.4)

and characterised by the action of the operators:

(J3 ⊗ 1 + 1⊗ J3) |j1j2; k;n〉 = n |j1j2; k;n〉 (3.5)(
~J ⊗ 1 + 1⊗ ~J

)2
|j1j2; k;n〉 = k(k + 1) |j1j2; k;n〉 (3.6)

~J2 ⊗ 1 |j1j2; k;n〉 = j1(j1 + 1) |j1j2; k;n〉 (3.7)

1⊗ ~J2 |j1j2; k;n〉 = j2(j2 + 1) |j1j2; k;n〉 . (3.8)
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A proof can be found in Sakurai ([SN11] pp. 217-231). This result proves that Qj1 ⊗ Qj2 can be
decomposed into a direct sum of irreps, namely we have the following equivalence of representations

Qj1 ⊗Qj2 ∼=
j1+j2⊕

k=|j1−j2|

Qk. (3.9)

The equivalence is given by the bijective intertwiner ι : Qj1 ⊗Qj2 →
⊕j1+j2

k=|j1−j2|Qk, which satisfies

ι |j1, j2; km〉 = |km〉 . (3.10)

We define the Clebsch-Gordan coefficients by the scalar product

Cjmj1m1j2m2

def
= 〈j1m1j2m2|j1j2; jm〉 . (3.11)

Say differently, we have

|j1j2; j,m〉 =

j1∑
m1=−j1

j2∑
m2=−j2

Cjmj1m1j2m2
|j1m1j2m2〉 . (3.12)

The Clebsh-Gordan coefficients can be seen as the matrix coefficients of the intertwiner in the canonical
bases.

♥ Physics. The Clebsh-Gordan coefficients appear largely in the quantum theory of angular momentum. Two
spin-systems are described as one single spin-system with a larger total angular momentum.

Remarks

1. Due to the Condon-Shortley convention for the SU(2)-action, we have Cjmj1m1j2m2
∈ R.

2. The coefficients Cjmj1m1j2m2
are well-defined and non-zero, only if the following Clebsch-Gordan

inequality (aka triangle inequality) is satisfied

|j1 − j2| ≤ j ≤ j1 + j2. (3.13)

Otherwise, we choose by convention, that Cjmj1m1j2m2
= 0.

3. If m 6= m1 +m1, then C
jm
j1m1j2m2

= 0.

4. Since the |jm〉 form an orthonormal basis, we have the following ‘orthogonality relations’

j1∑
m1=−j1

j2∑
m2=−j2

Cjmj1m1j2m2
Cj
′m′

j1m1j2m2
= δj,j′δm,m′ . (3.14)

The Clebsch-Gordan coefficients are numbers, but their definition is quite implicit. Hopefully, there
are also explicit formulas to compute them!

Explicit formula

Cjmj1m1j2m2
= δm,m1+m2

√
2j + 1

√
(j +m)!(j −m)!(−j + j1 + j2)!(j − j1 + j2)!(j + j1 − j2)!

(j + j1 + j2 + 1)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

×
∑
k

(−1)k+j2+m2(j + j2 +m1 − k)!(j1 −m1 + k)!

(j − j1 + j2 − k)!(j +m− k)!k!(k + j1 − j2 −m)!
(3.15)
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I Proof. Other similar expressions can be found in Varshalovich ([VMK87] p. 238), with references to various
proofs. It can be notably convenient to recognise in the sum above the so-called hyper-geometrical function 3F2:

Cjmj1m1j2m2
= δm,m1+m2

√
2j + 1

√
(j + j1 − j2)!(j − j1 + j2)!√

(−j + j1 + j2)!(j + j1 + j2 + 1)!

√
(j +m)!(j −m)!(j1 +m1)!(j2 −m2)!√

(j1 −m1)!(j2 +m2)!

× 3F2(j − j1 − j2,m1 − j1,−j2 −m2; j − j2 +m1 + 1, j + j1 −m2 + 1; 1). (3.16)

�

In the Wolfram Language, they are implemented as

Cj3m3
j1m1j2m2

= ClebschGordan[{j1,m1}, {j2,m2}, {j3,m3}]. (3.17)

.

Exercise. Show that

Dj1
m1n1

(g)Dj2
m2n2

(g) =
∑
j∈N/2

j∑
m=−j

j∑
m′=−j

Cjmj1m1j2m2
Cjm

′

j1n1j2n2
Dj
mm′(g). (3.18)

I Proof.

Dj1m1n1
(g)Dj2m2n2

(g) = 〈j1m1| g |j1n1〉 〈j2m2| g |j2n2〉

= 〈j1m1; j2m2| g |j1n1; j2n2〉

=
∑
j∈N/2

j∑
m=−j

∑
j′∈N/2

j′∑
m′=−j′

〈j1m1j2m2|jm〉 〈jm| g
∣∣j′m′〉 〈j′m′∣∣j1n1j2n2

〉

=
∑
j∈N/2

j∑
m=−j

j∑
m′=−j

Cjmj1m1j2m2
Cjm

′

j1n1j2n2
Dj
mm′ (g)

�

3.2 Invariant subspace

A general tensor product of n irreps can be decomposed into a direct sum

n⊗
i=1

Qji ∼=
J⊕
k=0

Qk ⊕ ...⊕Qk︸ ︷︷ ︸
dk times

 , (3.19)

where J =
∑

i ji and dk is the degeneracy of the irrep Qk. Here, ‘decomposing’ means ‘finding
a bijective intertwiner between the two spaces’. Concretely, such a decomposition is obtained by
applying successively the decomposition of only two, given by 3.9. The operator 1 ⊗ ... ⊗ Ji ⊗ ... ⊗
1 corresponding to Ji acting on the kth Hilbert space of the product is denoted (Ji)k. The three
components (J1)k, (J2)k, (J3)k form the vectorial operator ~Jk.

♥ Physics. In quantum gravity, such tensor spaces appear in the kinematical Hilbert space H. The description
of the dynamics requires to impose constraints that select subspaces of H. One important constraint is the Gauss
constraint which reduces H to its SU(2)-invariant subspace InvSU(2)H that we define below.

We define the SU(2)-invariant subspace as

InvSU(2)

(
n⊗
i=1

Qji

)
def
=

{
ψ ∈

n⊗
i=1

Qji | ∀g ∈ SU(2), g · ψ = ψ

}
. (3.20)

It can also be characterized rather by the action of the algebra:

InvSU(2)

(
n⊗
i=1

Qji

)
=

{
ψ ∈

n⊗
i=1

Qji | ∀s ∈ su(2), s · ψ = 0

}
. (3.21)

23



From this, it is easy to see that

InvSU(2)

(
n⊗
i=1

Qji

)
∼= Q0 ⊕ ...⊕Q0︸ ︷︷ ︸

d0 times

, (3.22)

where Q0
∼= C is the trivial representation. Interestingly, we also have the following isomorphism:

InvSU(2)

(
n⊗
i=1

Qji

)
∼= HomSU(2)

(
n⊗
i=1

Qji ,Q0

)
, (3.23)

where the RHS is the vector space of SU(2)-intertwiners between
⊗n

i=1Qji and Q0.

I Proof. Let T :
⊗n
k=1Qjk → Q0 be an intertwiner. Since T is a linear form, there exists ψT ∈

⊗n
k=1Qjk such

that T (φ) = 〈φ|ψT 〉. Since T is also an intertwiner, we have for all ψ ∈
⊗n
k=1Qjk and u ∈ SU(2), 〈φ|u · ψT 〉 =〈

u† · φ
∣∣ψT 〉 = T (u† ·φ) = u† ·T (φ) = T (φ) = 〈φ|ψT 〉. So u ·ψT = ψT . We can check that the map T 7→ ψT is linear

and bijective. QED. �

Orthogonal projector. By definition, the orthogonal projector P over InvSU(2) (
⊗n

i=1Qji) satisfies

P 2 = P and P † = P. (3.24)

It is easy to show that

P =

∫
SU(2)

dg

n⊗
k=1

Djk(g). (3.25)

Remember also that if |j〉 is an orthonormal basis of InvSU(2) (
⊗n

i=1Qji), then P can also be written
as

P =
∑
j

|j〉〈j| . (3.26)

3.3 Wigner’s 3jm-symbol

We can decompose Qj1 ⊗Qj2 ⊗Qj3 into a direct sum by applying 3.9 first on the left tensor product:

Qj1 ⊗Qj2 ⊗Qj3 →

⊕
j12

Qj12

⊗Qj3 → j1+j2⊕
j12=|j1−j2|

j12+j3⊕
k=|j12−j3|

Qk (3.27)

Thus we construct an orthonormal basis of Qj1 ⊗Qj2 ⊗Qj3 given by the states

|(j1j2)j3; j12kn〉 =
∑

m1,m2,m3,m12

Cj12m12
j1m1j2m2

Cknj12m12j3m3

3⊗
i=1

|ji,mi〉 ,

with j12 ∈ {|j1 − j2|, ..., j1 + j2} and k ∈ {|j12 − j3|, ..., j12 + j3} and n ∈ {−k, ..., k}. (3.28)

I Proof. This orthonormal basis is obtained by applying two times the relation 3.28, applied first to the left tensor
product. Notice that applying it first on the right would build rather the states:

|j1(j2j3); j23kn〉 =
∑

m1,m2,m3,m23

Cj23m23
j2m2j3m3

Cknj1m1j23m23

3⊗
i=1

|ji,mi〉 . (3.29)

�

Then we show
InvSU(2) (Qj1 ⊗Qj2 ⊗Qj3) = Span {|(j1j2)j3; j300〉} . (3.30)
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I Proof. First we show the equivalence:

~J2 |(j1j2)j3; j12kn〉 = 0 ⇔ k = 0.

We conclude using the characterisation 3.21. �

Thus if the Clebsch-Gordan condition is satisfied (|j1 − j2| ≤ j3 ≤ j1 + j2), InvSU(2)(Qj1 ⊗Qj2 ⊗Qj3)
is one dimensional. Otherwise InvSU(2)(Qj1 ⊗Qj2 ⊗Qj3) = {0}. Now supposing that the condition is
satisfied, there exists a unique unit vector in InvSU(2)(Qj1 ⊗Qj2 ⊗Qj3),

|0〉 =
∑

m1,m2,m3

(
j1 j2 j3
m1 m2 m3

) 3⊗
k=1

|jk,mk〉 , (3.31)

such that the coefficients
(
j1 j2 j3
m1 m2 m3

)
in the canonical basis are real and satisfy the symmetry

properties: (
j1 j2 j3
m1 m2 m3

)
=

(
j3 j1 j2
m3 m1 m2

)
=

(
j2 j3 j1
m2 m3 m1

)
. (3.32)

The coefficients
(
j1 j2 j3
m1 m2 m3

)
are called the Wigner’s 3jm-symbol and are related to the Clebsch-

Gordan coefficients by (
j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

Cj3,−m3
j1m1j2m2

. (3.33)

In Mathematica, they are given by ThreeJSymbol[{j1,m1}, {j2,m2}, {j3,m3}].
I Proof. In InvSU(2) (Qj1 ⊗Qj2 ⊗Qj3 ), all vectors are proportional to

|(j1j2)j3; j300〉 =
∑

m1,m2,m3,m

C00
jmj3m3

Cjmj1m1;j2m2
|j1m1; j2m2; j3m3〉 [applying 3.28]

=
∑

m1,m2,m3,m

δm,−m3δj,j3
(−1)j3+m3

√
2j3 + 1

Cjmj1m1;j2m2
|j1m1; j2m2; j3m3〉 [computing 3.15]

=
∑

m1,m2,m3

(−1)j3+m3

√
2j3 + 1

Cj3,−m3
j1m1;j2m2

|j1m1; j2m2; j3m3〉 [simplifying].

The proportionality factor is chosen to be (−1)j1−j2+j3 to match the reality and the symmetry requirements. �

Remarks.

1. These symbols satisfy nice symmetry properties such as:(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
.

(3.34)

2. The orthogonality relations 3.14 become∑
jm

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′1 m′2 m

)
= δm1m′1

δm2m′2
(3.35)

∑
m1m2

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
= δjj′δmm′ (3.36)

Exercise. Show that∫
SU(2)

Dj1
m1n1

(u)Dj2
m2n2

(u)Dj3
m3n3

(u)du =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
(3.37)

I Proof. The result can be directly obtained by equating 3.25 and 3.26, and expressing the equality in the magnetic
basis. �
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3.4 Wigner’s 4jm-symbol

Similarly to the previous section we can decompose Qj1⊗Qj2⊗Qj3⊗Qj4 into a direct sum by applying
3.9 successively:

Qj1 ⊗Qj2 ⊗Qj3 ⊗Qj4 ∼=
j1+j2⊕

j12=|j1−j2|

j12+j3⊕
k=|j12−j3|

k+j4⊕
l=|k−j4|

Ql (3.38)

In particular, we can see that

InvSU(2)

(
4⊗
i=1

Qji

)
∼= Q0 ⊕ ...⊕Q0︸ ︷︷ ︸

d0 times

with d0 = max(|j1 − j2|, |j3 − j4|)−min(j1 + j2, j3 + j4). (3.39)

An orthonormal basis of InvSU(2)

(⊗4
i=1Qji

)
is given by

|j〉12 =
∑

m1,m2,m3,m4

√
2j + 1

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j) 4⊗
k=1

|jk,mk〉 ,

with j ∈ {max(|j1 − j2|, |j3 − j4|), ...,min(j1 + j2, j3 + j4)} (3.40)

and (
j1 j2 j3 j4
m1 m2 m3 m4

)(j)
def
=
∑
m

(−1)j−m
(
j1 j2 j
m1 m2 m

)(
j j3 j4
−m m3 m4

)
(3.41)

I Proof. First, we construct an orthonormal basis of Qj1 ⊗Qj2 ⊗Qj3 ⊗Qj4 given by the states

|((j1j2)j3)j4; jklm〉 =
∑

m1,m2,m3,m,n,m4

Cjmj1m1j2m2
Cknjmj3m3

Clmknj4m4

4⊗
i=1

|ji,mi〉 ,

with j ∈ {|j1 − j2|, ..., j1 + j2} and k ∈ {|j − j3|, ..., j + j3}
and l ∈ {|k − j4|, ..., k + j4} and n ∈ {−l, ..., l}. (3.42)

InvSU(2)

(⊗4
i=1Qji

)
is spanned by the vectors with l = 0. Similarly to the case n = 3, we compute

|((j1j2)j3)j4; jj400〉 = (−1)j4+j1−j2−j3
∑

m1,m2,m3,m4

√
2j + 1

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j) 4⊗
i=1

|ji,mi〉 .

�

This basis has the interesting property that it diagonalises ( ~J1 + ~J2)2:

( ~J1 + ~J2)2 |j〉12 = j(j + 1) |j〉12 . (3.43)

The 4jm-symbol also satisfy orthogonality relations:

∑
m1,m2,m3

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j12)(
j1 j2 j3 l4
m1 m2 m3 n4

)(l12)

=
δj12l12

dj12

δj4l4δm4n4

dj4
. (3.44)

Finally we can show, similarly to 3.37, that∫
SU(2)

Dj1
m1n1

(u)Dj2
m2n2

(u)Dj3
m3n3

(u)Dj4
m4n4

(u)du

=
∑
j

(2j + 1)

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)(
j1 j2 j3 j4
n1 n2 n3 n4

)(j)

. (3.45)
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3.5 Wigner’s 6j-symbol

In the previous section, we have exhibited an orthonormal basis for InvSU(2)

(⊗4
i=1Qji

)
. It is built

from one possible decomposition of
⊗4

i=1Qji into irreps. Another possible decomposition leads to
another basis

|j〉23 =
∑

m1,m2,m3,m4

√
2j + 1

(
j4 j1 j2 j3
m4 m1 m2 m3

)(j) 4⊗
i=1

|ji,mi〉 (3.46)

I Proof. From

|(j1(j2j3))j4; jklm〉 =
∑

m1,m2,m3,m,n,m4

Cjmj2m2j3m3
Cknj1m1jm

Clmknj4m4

4⊗
i=1

|ji,mi〉 , (3.47)

we show that

|(j1(j2j3))j4; jj400〉 = (−1)j1+j2−j3+j4
∑

m1,m2,m3,m4

√
2j23 + 1

(
j4 j1 j2 j3
m4 m1 m2 m3

)(j23) 4⊗
i=1

|ji,mi〉 .

�

The change of basis is given by

12 〈j|k〉23 =
√

2j + 1
√

2k + 1(−1)j1+j2+j3−j4−2j−2k

{
j1 j2 j
j3 j4 k

}
(3.48)

where we have defined a new symbol:{
j1 j2 j3
j4 j5 j6

}
def
=

∑
m1,...,m6

(−1)
∑6
i=1(ji−mi)

(
j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)
×
(
j4 j2 j6
m4 m2 −m6

)(
j3 j4 j5
m3 −m4 m5

)
(3.49)

In the Wolfram Language, it is returned by the function SixJSymbol[{j1, j2, j3}, {j4, j5, j6}]. These
symbols satisfy the symmetries{

j1 j2 j3
j4 j5 j6

}
=

{
j2 j1 j3
j5 j4 j6

}
=

{
j3 j2 j1
j6 j5 j4

}
=

{
j4 j2 j3
j1 j5 j6

}
. (3.50)

Similarly one can define the symbols 9j and 15j.
♥ Physics. The {6j}-symbol appeared in quantum gravity when Ponzano and Regge realised that the {6j}-symbol
approximate the action of general relativity in the semi-classical limit [PR68]. More precisely they have shown that{

j1 j2 j3
j4 j5 j6

}
∼

ji→∞

1
√

12πV
cos(S(ji) + π/4) , (3.51)

where V is the volume of a tetrahedron whose edges have a length of ji + 1/2, and S(ji) is the so-called Regge
action, which is a discrete 3-dimensional version of the Einstein-Hilbert action. This result was a important source
of inspiration for later development of spin-foams.

3.6 Graphical calculus

The recoupling theory of SU(2) can be nicely implemented graphically. The underlying philosophy
of it, is to take advantage of the 2-dimensional surface offered by our sheets of paper and our black-
boards to literally draw our calculations, rather than restricting oneself to the usual one dimensional
lines of calculations. If done properly, the method can help to understand the structure of analytical
expressions, and make computations faster. Of course, the first principle of graphical calculus is that
there should be a one-to-one correspondence between analytical expressions and diagrams. There exists
many conventions for this correspondence in the literature, so we have chosen one that seems to be
quite popular [SSS18], and which is described in details by Varshalovich ([VMK87], Chap. 11).
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Definitions. The basic object of this graphical calculus is the 3-valent node, that represent the
Wigner’s 3jm symbol:

(
j1 j2 j3
m1 m2 m3

)
=

j1

j2
j3

−

=
j1

j3
j2

+

. (3.52)

Remark that

1. The signs +/− on the nodes indicate the sense of rotation (anticlockwise/clockwise) in which
the spins must be read. To alleviate notations we can decide not to write them by choosing
conventionally that the default sign of the nodes is minus, if not otherwise specified. The arrows
on the wires will be used below to define the operation of summation.

2. Everywhere we implicitly assumed that the Clebsch-Gordan inequalities are satisfied.

3. The magnetic indices are implicit on the diagram, which creates no ambiguity, as long as we
associate mi to the spin ji.

4. The symmetry properties 3.32 are naturally implemented on the diagram, which also guarantees
the one-to-one correspondence between the analytical expression and the diagram.

5. Only the topology of the diagram matters, which means that all topological deformations are
allowed.

j1

j2
j3

=
j1

j2

j3 =

j1

j2

j3
(3.53)

This principle of topological equivalence is a strong principle of graphical calculus, that will hold
for any other diagram constructed later.

Then we can define graphically the two basic operations of algebra: multiplication and summation.
Multiplication is implemented simply by juxtaposition of two diagrams:

j1

j2
j3

j4

j5
j6

=

(
j1 j2 j3
m1 m2 m3

)(
j4 j5 j6
m4 m5 m6

)
(3.54)

To define the summation, we shall first tell more about the orientation of external wires. As you may
have noticed, the arrows on the wires are all outgoing. Now we define also the ingoing orientation
with the general rule that inverting the orientation1 of an external line (jm) amounts analytically to
transforming m to −m and multiplying the overall expression by a factor (−1)j−m. For instance

j1

j2
j3

= (−1)j1−m1

(
j1 j2 j3
−m1 m2 m3

)
. (3.55)

1It can be seen as the contraction with the ‘metric tensor’ εmm′ = (−1)j−mδm,−m′ , as it is often said.
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The summation over a magnetic index m (from −j to j) is now represented by gluing two external
wires with the same spin j and magnetic index m, but of opposite directions, like:

j1 j2 j3 j4

j

=

j∑
m=−j

j1

j2
j

j

j3
j4

(3.56)

On the RHS, we recognise the definition of the 4jm-symbol, so that

j1 j2 j3 j4

j

=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(j)

(3.57)

The line between two nodes, whose magnetic index is summed over, is called an internal line, in
opposition to external lines, which have a free hand. Contrary to the previous rule of inversion for
external lines, it is easy to show that changing the orientation of an internal line gives a phase:

j1 j2 j3 j4

j

= (−1)2j

j1 j2 j3 j4

j

.

A powerful aspect of graphical calculus comes from the representation of the Kronecker delta with a
single line

(j1,m1)

(j2,m2)

= δj1j2δm1m2 or
j

m

n

= δmn . (3.58)

The rule of summation applied to it enables to compute its trace:

j
= 2j + 1 (3.59)

For instance, the orthogonality relation 3.36 now reads

(j1,m1)

(j2,m2)

j3 j4 j1
=

(j1,m1)

(j2,m2)

(3.60)

Lemmas. From all the rules described above, the following lemma can already be checked as an
exercise.
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1. Reversing all external lines has no effect:

j1

j2
j3

=
j1

j2
j3

. (3.61)

2. Changing the sign of the node gives a phase

j1

j2
j3

−

= (−1)j1+j2+j3
j1

j2
j3

+

. (3.62)

3. The evaluation of the so-called Θ-graph:

j1
j2

j3

= 1. (3.63)

4. Similarly, 3.44 implies
j1

j2
j3

j4

i k =
δi,k
di
. (3.64)

Invariant functions. One nice thing about this graphical calculus is that it makes easy to represent
and to remember the Wigner 6j-symbols:

{
j1 j2 j3
j4 j5 j6

}
=

j1 j2 j3

j4

j5 j6

(3.65)

As we can see, the 6j-symbol looks like a tetrahedron. All magnetic indices are summed over, so that
it is only a function of the spins ji, what we can call an invariant function. It gives us the idea to define
other invariant functions by finding other diagrams with no external links. For instance we define the
9j-symbol:


j1 j2 j3
j4 j5 j6
j7 j8 j9

 =

j1

j2
j3

j4 j5

j6j7

j8
j9 (3.66)
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Notice that we could have also defined the 9j-symbol to be rather

j1

j2
j3

j4

j5

j6
j7

j8
j9 (3.67)

but this one can be actually rewritten as the product of two 6j-symbol. Such a decomposition cannot
be done with the 9j-symbol 3.66, so that it is said ‘irreducible’2. We also have the 15j-symbol:


j1 j2 j11

j4 j5 j15

j7 j3 j14

j9 j6 j13

j8 j10 j12

 =

j1

j2
j3

j4

j5

j6 j7j8

j9

j10

j11

j12

j13
j14

j15

(3.68)

which is the definition used by [SSS18]. It is different from the convention chosen in [Oog92], which is


l1 l2 l3 l4 l5
j1 j2 j3 j4 j5
l10 l9 l8 l7 l6

 =

l2

j4

j3

l10

j1

j5
l8

j2

l6

l4

l1

l3

l5
l7

l9

(3.69)

Contrary to the 6j-symbol, there is no consensus about what is called the 15j-symbol, but in all cases
it corresponds to an invariant function associated to 3-valent graph with 15 links. Actually, we can
built 5 topologically different 15j-symbols3. Here we see the power of graphical calculus: imagine if
we had given the analytical formula for it... that is doable, but unreadable.

♥ Physics. In the spirit of the result of Ponzano and Regge 3.51, Ooguri used the 15j-symbol to provide a model
of quantum gravity [Oog92]. It still plays a major role in the EPRL model [Spe17].

2For more details on the 9j-symbol, see [Edm57] pp. 100-114.
3For more details on the 15j-symbol, see [YLV62] pp. 65-70.
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Chapter 4

Representation theory of SL2(C)

To put it in a nutshell, the kinematic aspects of loop quantum gravity deal with representations of
SU(2), while the dynamics, in its spin-foam formulation lies in the representation theory of SL2(C).
The current models of spin-foams, like the EPRL one, use extensively the principal series of SL2(C).

Fortunately all the irreps of SL2(C) are known. Whether or not all representations, including
non-reducible ones, have been classified is unknown to the author. In section 4.1, we present the
finite-dimensional ones. In section 4.2, we summarize the infinite-dimensional ones. Finally, in section
4.3, we focus on the principal series which are of main interest for quantum gravity.

4.1 Finite irreps

The finite irreps of SL2(C) are well-known. They can be obtained from the irreps of sl2(C). In section
2.1, we have already seen the finite irreps of its 3-dimensional (complex) Lie algebra sl2(C): they are
indexed by a spin j ∈ N/2. It is also possible to see sl2(C) as a real Lie algebra of dimension 6, in which
case, we will rather denote it sl2(C)R. In his section, we will describe the (real) linear representations
of sl2(C)R. We have the following isomorphism between real vector spaces:

sl2(C)R
∼= su(2)⊕ su(2). (4.1)

The algebra su(2)⊕su(2) is the Lie algebra of SU(2)×SU(2). A consequence of Peter-Weyl’s theorem
is that the irreps of a cartesian product is a tensor product of the irreps of the factors ([Kna86] p. 32).
Thus the irreps of sl2(C)R are given by the usual tensor representation over Qj1 ⊗Qj2 , abbreviated by
(j1, j2). The action is given by:

a · (|j1,m2〉 ⊗ |j2,m2〉)
def
= (a |j1,m1〉)⊗ |j2,m2〉+ |j1,m1〉 ⊗ (a |j2,m2〉). (4.2)

The isomorphism 4.1 provides naturally a basis of sl2(C)R, given by the three Pauli matrices
σi ∈ isu(2) and the three matrices iσi ∈ su(2). To match the earlier notations introduced in section
2.2, we often denote the rotation generators Ji

def
= 1

2σi and the boost generators Ki
def
= i

2σi. These
generators satisfy the commutation relations:

[Ji, Jj ] = iεijkJk [Ji,Kj ] = iεijkKk [Ki,Kj ] = −iεijkJk.

FNota Bene. Another basis is given by the complexified generators. Posing Ai = 1
2

(Ji+iKi) and Bi = 1
2

(Ji−iKi),
the commutation relations become:

[Ai, Aj ] = iεijkAk [Bi, Bj ] = iεijkBk [Ai, Bj ] = 0.

We can also define the scale operators. Posing K±
def
= K1 ± iK2 and J±

def
= J1 ± iJ2, the scale operators satisfy:

[J3, J±] = ±J± [J+, J−] = 2J3

[K3,K±] = ∓J± [K+,K−] = −2J3

[J+,K+] = [J−,K−] = [J3,K3] = 0

[K3, J±] = ±K± [J±,K∓] = ±2K3 [J3,K±] = ±K±
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Then the various realisations, which where described in chapter 2 for the action of su(2), can
adapted to sl2(C)R.

Homogeneous realisation. Let m,n ≥ 2, and C(m,n)[z0, z1; z0, z1] the vector space of homogeneous
polynomials of degree m in (z0, z1) and homogeneous of degree n in (z0, z1). The action of SL2(C) is
given by

g · P (z0, z1) = P

(
gT
(
z0

z1

))
.

The associated action of the algebra sl2(C)R is given by

J+
∼= z0

∂

∂z1
+ z0

∂

∂z1
J− ∼= z1

∂

∂z0
+ z1

∂

∂z0
J3
∼=

1

2

(
z0

∂

∂z0
− z1

∂

∂z1
+ z0

∂

∂z0
− z1

∂

∂z1

)
.

Projective realisation. As seen in section 2.4, the restriction of P (z0, z1) to P (z, 1) induces another
realisation over the space of polynomials of degree at most m in z and at most n in z. The action is
given by

g · φ(ξ) = (g12ξ + g22)m(g12ξ + g22)
n
φ

(
g11ξ + g21

g12ξ + g22

)
.

Spinorial realisation. Finally the (m,n) representation of SL2(C) can be realised over the space
of totally symmetric spinors S(A1...Am)(Ȧ1...Ȧn) such as (see Penrose [PR84] p. 142)

u · zA1...AmȦ1...Ȧn = uA1
B1
...uAmBm u

Ȧ1

Ḃ1
...uȦn

Ḃn
zB1...BmḂ1...Ḃn . (4.3)

Finite representations of SL2(C) cannot be unitary (except the trivial one), because it is a simply
connected non-compact Lie group. If we want unitary representations, we shall turn to infinite ones.

4.2 Infinite irreps

In this section, we describe all the infinite-dimensional irreps of SL2(C).

F Nota Bene. All the unitary irreps of the Lorentz group have been found simultaneously in 1946 by Gel’fand and
Naimark [GN47], by Harish-Chandra [HC47] and by Bargmann [Bar47]. It seems nevertheless that Gel’fand and
Naimark had the priority in publishing (unfortunately their article is only in Russian). The question remained to find
all the irreps, unitary or not, and this was solved also by Naimark in [Nai54]. In 1963, Gel’fand, Minlos and Shapiro
published a first book (with english translation) that review all these results [GMS63]. In 1964, Naimark wrote a
more detailed and well-written book that wraps up the subject for mathematically-oriented physicists [Nai64].

The infinite irreps of SL2(C) are parametrised by (m, ρ) ∈ Z× C with Im ρ ≥ 0 and ρ2 6= −(|m|+
2n)2 ∈ N∗. A realisation is given over the Hilbert space L2(C) endowed with the scalar product

〈ϕ|φ〉 =
i

2

∫
C
ϕ(ξ)φ(ξ)(1 + |ξ|2)− Im ρdξdξ, (4.4)

and the action

a · f(z) = (a12z + a22)
m
2

+ iρ
2
−1(a12z + a22)

−m
2

+ iρ
2
−1
f

(
a11z + a21

a12z + a22

)
. (4.5)

Remarks:
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1. If ρ2 = −(|m|+ 2n)2 with n ∈ N∗, the Hilbert space and the action still defines a representation,
but a reducible one. Then, if one restricts the action to the subspace of polynomials of degree
at most p = m

2 + iρ2 − 1 in z and q = −m
2 + iρ2 − 1 in z, the representation is irreducible and

equivalent to the finite-dimensional representation (p, q).

2. Not all the representations (m, ρ) are unitary. They are unitary in only two cases: when ρ ∈ R
(principal series) and when m = 0 and iρ ∈] − 2, 0[ (complementary series), provided another
scalar product is chosen is the latter case (see below).

3. Among these infinite irreps, only the principal representations (ρ, k) and (−ρ,−k) are equivalent.

4. A proof of the result above can be found in Naimark ([Nai64] pp. 294-295). A sketch of it in the
case of the principal series can be found in appendix B.

Principal series. When ρ ∈ R, the scalar product over L2(C) becomes the more usual

(f1, f2)
def
=

i

2

∫
C
f1(z)f2(z)dzdz, (4.6)

and the representation (ρ,m) ∈ R × Z is unitary. It is called the principal series. Moreover the
representations (ρ,m) et (−ρ,−m) are unitarily equivalent.

F Nota Bene. We have used below the convention of Naimark for indexing the representations of the principal
unitary series, (ρ,m) ∈ R × Z (see [Nai64] p. 150). Vilenkin uses the same convention ([GGV66] p. 191). Rühl
uses rather the convention (ρR,mR) = (ρ,−m) ([Rüh70] p. 54). Gel’fand uses the convention (ρG,mG) = (ρ/2,m)
([GMS63] p. 247). In LQG, it is common to use the conventions (p, k) = (ρ/2,m/2), as Rovelli does ([RV14] p. 182)
or Barrett [BDF+10]. Usually in LQG, the parameter k is even restricted to be non-negative, which actually does
not suppress any representation since (p, k) and (−p,−k) are equivalent.

Complementary series. When m = 0 and iρ ∈]− 2, 0[, the action becomes

a · φ(ξ) = |a12ξ + a22|iρ−2φ

(
a11ξ + a21

a12ξ + a22

)
. (4.7)

It also defines a unitary representation for the scalar product

〈ϕ|φ〉 =

(
i

2

)2 ∫
C2

ϕ(ξ)φ(η)

|ξ − η|2+iρ
dξdξdηdη. (4.8)

4.3 Principal unitary series

In this section, we will present three realisation of the unitary principal series. The construction of
the principal series by Gel’fand and Naimark is based on the induced representations method (see
appendix B for a sketch of the proof). Though rigorous from the mathematical point of view, it
is not very intuitive, especially for physicists. In 1962, Gel’fand, Graev and Vilenkin published a
book (referred to as ‘the Vilenkin’ hereafter) where they build the principal series from a space of
homogeneous functions, which may seem more natural ([GGV66] pp. 139-201). A beautiful and
concise exposure can be found in the article of Dao and Nguyen ([DN67] pp. 18-21). We present the
method in the following subsection.

4.3.1 Homogeneous realisation

Consider F(C2), the vector space of the complex functions over C2. A function F ∈ F(C2) is said to
be homogeneous of degree (λ, µ) ∈ C2 if it satisfy for all α ∈ C :

F (αzzz) = αλαµF (zzz). (4.9)
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To be consistently defined (when α = e2iπn), the degree should satisfy the condition :

µ− λ ∈ Z. (4.10)

Instead of (λ, µ), we will rather use in the following, the parameters (p = µ+λ+2
2i , k = λ−µ

2 ) (same
choice of parameters as Rovelli [RV14] p. 182). Define D(p,k)[z0, z1] as the subspace of homogeneous
functions of degree (λ, µ) infinitely differentiable over C2 \ {0} in the variables z0, z1, z̄0 et z̄1 with a
certain topology1. We define a continuous representation SL2(C) over D(p,k)[z0, z1] by

a · F (zzz)
def
= F (aTzzz). (4.11)

F Nota Bene. We could also have defined the action by F (a−1zzz), F (a†zzz) or F (zzza). In fact F (zzza) = F (aTzzz),
defines the same action. The action with a† is obtained by the transformation aij 7→ aij . The action with a−1 is
obtained by the transformation aij 7→ (2δij − 1)

∑
kl(1− δik)(1− δjl)akl. The convention that we have chosen here

is the one of Vilenkin ([GGV66] p. 145), Dao and Nguyen ([DN67] p. 18), Rühl ([Rüh70] p. 53), Rovelli ([RV14] p.
182) and Barrett [BDF+10]. Knapp ([Kna86] p. 28) is using the convention F (a−1zzz).

Now define the following 2-form over C2:

Ω(z0, z1) =
i

2
(z0dz1 − z1dz0) ∧ (z0dz1 − z1dz0).

Interestingly, it is invariant for the action of SL2(C): Ω(azzz) = Ω(zzz). Let Γ be a path in C2 that
intersects each projective line exactly once. Then define the scalar product over D(p,k)[z0, z1]:

(F,G) =

∫
Γ
F (zzz)G(zzz)Ω(zzz).

Thus D(p,k)[z0, z1] is an Hilbert space. Interestingly, the result does not depend on the path Γ provided
p ∈ R, which we consider to be the case in the following. This scalar product is invariant for SL2(C):
(a · F, a ·G) = (F,G). Thus the representation is unitary. It could be also shown to be irreducible. In
the next subsection, we will see that the representation D(p,k)[z0, z1] is equivalent to the representation
(ρ = 2p,m = 2k) of the principal series described in section 4.2.

4.3.2 Projective realisation

Consider the map

ι :

{
C → C2

ζ 7→ (ζ, 1)

ι is a diffeomorphism from C to its range. It parametrises an horizontal straight line of the complex
plane. The projective construction consists in restricting the domain of definition of the homogeneous
function to this line. If F ∈ F(C2), define ι∗F ∈ F(C) as

ι∗F (z)
def
= F ◦ ι(z) = F (z, 1). (4.12)

The 2-form Ω becomes similarly

ι∗Ω(z) =
i

2
dz ∧ dz,

which is nothing but the usual Lebesgue measure over C. Thus we define the Hilbert space L2(C) with
the the scalar product

(f, g) =
i

2

∫
C
f(z)g(z)dz ∧ dz.

1The topology is defined by the following property of convergence: a sequence Fn(z0, z1) is said to converge to 0 if
it converges to zero uniformly together with all its derivatives on any compact set in the (z0, z1)-p1ane which does not
contain the (0, 0) (see Vilenkin [GGV66] p. 142).
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Thus we have a map ι∗ : D(p,k)[z0, z1]→ L2(C). In fact ι∗ is bijective: for all f ∈ L2(C), there exists a
unique F ∈ D(p,k)[z0, z1] such that f = ι∗F . F is given explicitly by

F (z0, z1) = z−1+ip+k
1 z̄−1+ip−k

1 f

(
z0

z1

)
. (4.13)

Importantly, ι∗ induces naturally an action of SL2(C) over F(C), such that ι∗ becomes an inter-
twiner between two equivalent representations. After computation, we obtain:

a · f(z)
def
= (a12z + a22)−1+ip+k(a12z + a22)

−1+ip−k
f

(
a11z + a21

a12z + a22

)
. (4.14)

This formula is exactly the same formula as 4.5, with the indices (p, k) = (ρ/2,m/2)! Thus we have
constructed explicitly the representations of the principal series, and we have shown the equivalence
of the realisations D(p,k)[z0, z1] and L2(C).

4.3.3 SU(2)-realisation

We are going to build another realisation of the unitary principal representations. It is based on
a space of ‘U(1)-covariant’ functions over SU(2). The general idea lies over the observation that
SU(2)/SU(1) ∼= CP 1. To be precise, consider the map

κ :

{
SU(2) → C2

u 7→ (u21, u22)

κ is a diffeomorphism to its range. Since SU(2) is homeomorphic to the unit circle of C2, this con-
struction can be seen as the injection of the circle in the plane C2.

Then, define κ∗ : F(C2)→ F(SU(2)) such that

κ∗F (u)
def
= F ◦ κ(u) = F (u21, u22) . (4.15)

If F ∈ D(p,k)[z0, z1], then we show easily that κ∗F satisfies the covariance property

κ∗F (eiθσ3u) = e−2iθkκ∗F (u). (4.16)

We denote D(p,k)[u]
def
= κ∗D(p,k)[z0, z1]. Thus κ∗ : Dk[z0, z1] → D(p,k)[u] is a bijection. Its inverse is

given explicitly by

F (z0, z1) = (|z0|2 + |z1|2)−1+ipφ

(
1√

|z0|2 + |z1|2

(
z∗1 −z∗0
z0 z1

))
. (4.17)

I Proof. We have to check that 4.17 is the inverse expression of 4.15. Then we check the homogeneity property
(κ∗)−1φ(α(z0, z1)) = αλαµ(κ∗)−1φ(z0, z1). �

We could also translate the measure κ∗Ω, and thus endow D(p,k)[u] with the structure of an Hilbert
space. Interestingly, it is a subspace of L2(SU(2)). As previously, one can translate the action of
SL2(C) over D(p,k)[u] such that κ∗ become a bijective intertwiner, and we obtain

a · φ(u) = (|βa,u|2 + |αa,u|2)−1+ipφ

(
1√

|βa,u|2 + |αa,u|2

(
αa,u −β∗a,u
βa,u α∗a,u

))
, (4.18)

with αa,u
def
= (u21a12 + u22a22)∗ and βa,u

def
= u21a11 + u22a21. Thus D(p,k)[u] is a third equivalent

realisation of the unitary principal series. The equivalence with L2(C) is made through (κ ◦ ι−1)∗

which gives explicitly

φ(u) = u−1+ip+k
22 u22

−1+ip−kf

(
u21

u22

)
, (4.19)

and conversely

f(z) = (1 + |z|2)−1+ipφ

(
1√

1 + |z|2

(
1 −z∗
z 1

))
. (4.20)
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4.3.4 Canonical basis

The advantage of the SU(2)-realisation is that we already know interesting function over SU(2), namely
the coefficients of the Wigner matrix Dj

pq. Are they elements of D(p,k)[u]? They are indeed, provided
they satisfy the covariance property 4.16. We compute easily

Dj
pq

(
eiθσ3u

)
=

j∑
k=−j

〈j, p| eiθσ3 |j, k〉Dj
kq (u) =

j∑
k=−j

δpke
2ikθDj

kq (u) = e2ipθDj
pq (u) .

Thus, the covariance property it is satisfied if p = −k, and so

∀j ∈ {|k|, |k|+ 1, ...}, ∀q ∈ {−j, ..., j}, Dj
−k,q ∈ D

(p,k)[u]. (4.21)

Since the Dj
mn(u) form a basis of L2(SU(2)), we show easily that the subset exhibited in 4.21 form a

basis of D(p,k)[u]. Another consequence is the following decomposition of D(p,k)[u] into irreps of SU(2):

D(p,k)[u] ∼=
∞⊕

j=|k|

Qj . (4.22)

We then call canonical basis of D(p,k)[u] the set of functions:

φ
(p,k)
jm (u)

def
=

√
2j + 1

π
Dj
−k,m(u), with j = |k|, |k|+ 1, ... and − j ≤ m ≤ j. (4.23)

From 2.7, we see that they satisfy the orthogonality relations∫
SU(2)

du φ
(p,k)
jm (u)φ

(p,k)
ln (u) =

1

π
δjlδmn. (4.24)

F Nota Bene. In Rühl ([Rüh70] p. 59), the factor 1√
π

is absent from the definition of the φ(p,k)
jm . Thus, the

orthogonality relations do not show a factor 1
π

on the RHS. We have chosen this factor so that the canonical basis

f
(p,k)
jm of L2(C) (see below 4.25) is orthonormal for the usual scalar product with the Lebesgue measure dz (for Rühl
the measure is dz/π).

Moreover φ(p,k)
jm could have been defined with a phase factor eiψ(p,j). This is is set to zero in some literature

including [Rüh70, BDF+10], and we follow that convention here. An alternative phase convention leading to real

SL2(C)-Clebsch-Gordan coefficients is obtained for the choice [KVM78, Spe17] eiψ(p,j) = (−1)−
j
2

Γ(j+iρ+1)
|Γ(j+iρ+1)| . This

phase convention is the one used in the approach of [Spe17] to compute the coefficients and vertex amplitudes and
to the numerical analysis [DS18, Don18, FMDS] that implement this approach. From the perspective of the large
spin asymptotics this additional phase plays no role and can be taken into account independently, if so desired.

An intermediate choice of phase is the one of [DN67, Ras03], which has the advantage of simplifying the recursion
relations satisfied by the Clebsch-Gordan coefficients [ARRW70b, ARRW70a]. The latter are now either real or
purely imaginary.

The intertwiner κ∗ enables to translate this basis in D(p,k)[z0, z1], and we obtain the canonical basis:

F
(p,k)
jm (z0, z1) =

√
2j + 1

π
(|z0|2 + |z1|2)ip−1Dj

−k,m

(
1√

|z0|2 + |z1|2

(
z∗1 −z∗0
z0 z1

))
,

where an explicit expression for Dj
−k,m is given by equation 2.16. The same is done with the intertwiner

ι∗ to L2(C), and we obtain the canonical basis:

f
(p,k)
jm (z) =

√
2j + 1

π
(1 + |z|2)ip−1−jDj

−k,m

(
1 −z∗
z 1

)
(4.25)

♣ Reminder. From 2.16 we have

Dj−k,m

(
1 −z∗
z 1

)
=

(
(j − k)!(j + k)!

(j +m)!(j −m)!

)1/2 min(j−k,j+m)∑
i=max(0,m−k)

(j +m

i

)( j −m
j − k − i

)
zj+m−i(−z∗)j−k−i. (4.26)

The constant factors of 4.23 have been chosen so that
i

2

∫
C
f

(p,k)
jm (z)f

(p,k)
ln (z)dzdz = δjlδmn.

Finally, in ket notations, the canonical basis is denoted |p, k, jm〉.
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4.3.5 Action of the generators

Similarly to 2.13, the action of the SL2(C)-generators can be computed from the action of the group (see
Naimark [Nai64] pp. 104-117). The generators of the rotations ‘stays inside’ the same SU(2)-irreps:

J3 |p, k, j,m〉 = m |p, k, j,m〉
J+ |p, k, j,m〉 =

√
(j +m+ 1)(j −m) |p, k, j,m+ 1〉

J− |p, k, j,m〉 =
√

(j +m)(j −m+ 1) |p, k, j,m− 1〉
(4.27)

The generators of the boost spread over the neighbouring subspaces:

K3 |p, k, j,m〉 = αj
√
j2 −m2 |p, k, j − 1,m〉+ γjm |p, k, j,m〉

− αj+1

√
(j + 1)2 −m2 |p, k, j + 1,m〉 , (4.28)

K+ |p, k, j,m〉 = αj
√

(j −m)(j −m− 1) |p, k, j − 1,m+ 1〉

+ γj
√

(j −m)(j +m+ 1) |p, k, j,m+ 1〉

+ αj+1

√
(j +m+ 1)(j +m+ 2) |p, k, j + 1,m+ 1〉 (4.29)

K− |p, k, j,m〉 = −αj
√

(j +m)(j +m− 1) |p, k, j − 1,m− 1〉

+ γj
√

(j +m)(j −m+ 1) |p, k, j,m− 1〉

− αj+1

√
(j −m+ 1)(j −m+ 2) |p, k, j + 1,m− 1〉 (4.30)

with γj
def
= kp

j(j+1) and αj
def
= i

√
(j2−k2)(j2+p2)
j2(4j2−1)

. From these expressions, it is possible to compute the
action of the two Casimir operators:

( ~K2 − ~L2) |p, k, j,m〉 = (p2 − k2 + 1) |p, k, j,m〉 ,
~K · ~L |p, k, j,m〉 = pk |k, p, j,m〉 .

(4.31)

4.3.6 SL2(C) Wigner’s matrix

We define the SL2(C) Wigner’s matrix by its coefficients

D
(p,k)
j1q1j2q2

(a)
def
= 〈p, k; j1q1| a |p, k; j2q2〉 . (4.32)

These coefficients satisfy the orthogonality relations:∫
SL2(C)

dhD
(p1,k1)
j1m1l1n1

(h)D
(p2,k2)
j2m2l2n2

(h) =
1

4(p2
1 + k2

1)
δ(p1 − p2)δk1k2δj1j2δl1l2δm1m2δn1n2 . (4.33)

Explicit expressions. To compute explicitly, we use a concrete realisation, for instance

D
(p,k)
jplq (g) =

i

2

∫
C

dωdω f
(p,k)
jp (ω)(g12ω + g22)−1+ip+k(g12ω + g22)

−1+ip−k
f

(p,k)
lq

(
g11ω + g21

g12ω + g22

)
. (4.34)

Cartan decomposition states that any g ∈ SL2(C) can be written (non uniquely) as g = uerσ3/2v−1,
with u, v ∈ SU(2) and r ∈ R+ (see 1.4). Then, we show that

D
(p,k)
jmln(g) =

min(j,l)∑
q=−min(j,l)

Dj
mq(u)d

(p,k)
jlq (r)Dl

qn(v−1). (4.35)

with the reduced SL2(C) Wigner’s matrix defined as

d
(p,k)
jlm (r)

def
= D

(p,k)
jmlm(erσ3/2). (4.36)
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I Proof.

D
(p,k)
jmln(g) =

∑
p≥|k|

p∑
q=−p

∑
p′≥|k|

p′∑
q′=−p′

D
(p,k)
jmpq(u)D

(p,k)
pqp′q′ (e

rσ3/2)D
(p,q)
p′q′ln(v−1)

=
∑
p≥|k|

p∑
q=−p

∑
p′≥|k|

p′∑
q′=−p′

δjpD
j
mq(u)D

(p,k)
pqp′q′ (e

rσ3/2)δp′lD
l
q′n(v−1)

=

j∑
q=−j

l∑
q′=−l

Djmq(u)D
(p,k)
jqlq′ (e

rσ3/2)Dlq′n(v−1)

=

j∑
q=−j

l∑
q′=−l

Djmq(u)
〈
p, k, jq

∣∣erσ3/2∣∣p, k, lq′〉Dlq′n(v−1)

=

min(j,l)∑
q=−min(j,l)

Djmq(u)D
(p,k)
jqlq (erσ3/2)Dlqn(v−1)

�

We have the following symmetry properties:

d
(p,k)
jlm (r) = d

(−p,k)
ljm (−r) = d

(p,−k)
jl,−m (r) = (−1)j−ld

(−p,−k)
ljm (r) = d

(p,k)
ljm (−r). (4.37)

� Integral formula 1.

d
(p,k)
jlm (r) =

√
(2j + 1)(2l + 1)

(
(j − k)!(j + k)!

(j + p)!(j − p)!

)1/2((l − k)!(l + k)!

(l + p)!(l − p)!

)1/2

×
min(j−k,j+p)∑
i=max(0,p−k)

min(l−k,l+p)∑
i′=max(0,p−k)

[
(−1)j+l−2k−i−i′

(
j + p

i

)(
j − p

j − k − i

)(
l + p

i′

)(
l − p

l − k − i′

)

× er(ip−1+p−k−2i′)

∫ ∞
0

2|ω|(1 + |ω|2)−ip−1−j(e−2r + |ω|2)ip−1−l|ω|2(j+l−i′−i+p−k)d|ω|

]
(4.38)

I Proof.

D
(p,k)
jplp (erσ3/2) =

∫
C
dωf

(p,k)
jp (ω)er(1−ip)f

(p,k)
lp (erω)

=

∫
C
dω

√
2j + 1

π
(1 + |ω|2)−ip−1−jD

j
−k,p

(
1 −ω∗
ω 1

)
er(1−ip)

×
√

2l + 1

π
(1 + e2r|ω|2)ip−1−lDl−k,p

(
1 −erω∗
erω 1

)
.

We conclude using the explicit expression of equation 4.26. �

� Integral formula 2.

d
(p,k)
jlm (r) =

√
(2j + 1)(2l + 1)

√
(j − k)!(j + k)!(l − k)!(l + k)!

(j +m)!(j −m)!(l +m)!(l −m)!

×
∑
n1,n2

[
(−1)j+l+2m−n1−n2

(
j +m

n1

)(
j −m

j − k − n1

)(
l +m

n2

)(
l −m

l − k − n2

)

× er(ip−1−2n2−k+m)

∫ 1

0
dt
[
1− (1− e−2r)t

]ip−1−l
tn1+n2+k−m(1− t)j+l−n1−n2−k+m

]
. (4.39)

I Proof. Change of variables: |ω|2 = 1−t
t
⇔ t = 1

1+|ω|2 et dω2 = − 1
t2
dt. �
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� Hyper-geometrical formula.

d
(p,k)
jlm (r) =

√
(2j + 1)(2l + 1)

(j + l + 1)!

√
(j − k)!(j + k)!(l − k)!(l + k)!

(j −m)!(j +m)!(l −m)!(l +m)!

×
∑
n1,n2

(−1)n1+n2

(
j +m

n1

)(
j −m

n1 −m− k

)(
l +m

n2

)(
l −m

n2 −m− k

)
× (j + l − n1 − n2 +m+ k)!(n1 + n2 −m− k)!er(m+k−ip−1−2n1)

× 2F1(n1 + n2 −m− k + 1, j + ip+ 1, j + l + 2; 1− e−2r). (4.40)

I Proof. We have used the integral expression of the hyper-geometrical function 2F1,

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a. (4.41)

�

� Rühl’s formula. ([Rüh70] p. 64)

d
(p,k)
jlq (r) = (2j + 1)1/2(2l + 1)1/2

∫ 1

0
dt((1− t)er + te−r)−1+ipdj−k,q (arccos(2t− 1))

× dl−k,q
(

arccos

(
te−r − (1− t)er

te−r + (1− t)er

))
(4.42)

4.4 Recoupling of SL2(C)

SL2(C)-Clebsch-Gordan coefficients. Similarly to the SU(2) case, the tensor product of two irreps
of SL2(C) can be decomposed into a direct sum of irreps:

D(p1,k1) ⊗D(p2,k2) ∼=
∫

R
dp

⊕
k∈Z/2

k1+k2+k∈N

D(p,k). (4.43)

Kerimov and Verdiev first got interested in the generalisation of the Clebsch-Gordan coefficients to the
irreps of SL2(C) [KVM78]. The SL2(C)-Clebsch-Gordan coefficients are defined by the relation

|p, k; j,m〉 =

∫
dp1dp2

∑
k1j1m1

∑
k2j2m2

Cpkjmp1k1j1m1,p2k2j2m2
|p1, k1; j1m1〉 ⊗ |p2, k2; j2,m2〉 . (4.44)

The coefficients are non-zero only when k1 + k2 + k3 ∈ N, in addition to the usual triangle inequality
|j1 − j2| ≤ j3 ≤ j1 + j2.

We have explicit expression for the SL2(C)-Clebsch-Gordan coefficients but they are a bit tough.
First of all, remark that the magnetic part factorises as

Cp3k3j3m3

p1k1j1m1,p2k2j2m2
= χ(p1, p2, p3, k1, k2, k3; j1, j2, j3)Cj3m3

j1m1j2m2
. (4.45)

χ is a function of 9 variables which can be computed by the following expression (found initially in
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[KVM78] but corrected slightly in [Spe17]):

χ(p1, p2, p3, k1, k2, k3; j1, j2, j3) = κ(−1)(j1+j2+j3+k1+k2+k3)/2(−1)−k2−k1N j1
p1
N j2
p2
N j3
p3

× 1

4
√

2π

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

(
(j1 − k1)!(j2 + k2)!

(j1 + k1)!(j2 − k2)!

)1/2

× Γ(1− ν3 + µ3)Γ(1− ν3 − µ3)

j1∑
n=−j1

(
(j1 − n)!(j2 + k3 − n)!

(j1 + n)!(j2 − k3 + n)!

)1/2

Cj3k3

j1n;j2,k3−n

×
min(j1,k3+j2)∑
l1=max(k1,n)

j2∑
l2=max(−k2,n−k3)

(j1 + l1)!(j2 + l2)!(−1)l1−k1+l2+k2

(j1 − l1)!(l1 − k1)!(l1 − n)!(j2 − l2)!(l2 + k2)!(l2 − n+ k3)!

×

× Γ(2− ν1 − ν2 − ν3 + µ1 + l1 + l2 − n)Γ(1− ν1 + µ3 + l1)Γ(1− ν2 − µ3 + l2)

Γ(2− ν1 − ν2 + l1 + l2)Γ(1− ν3 + µ1 − n)Γ(2− ν1 − ν3 + l1)Γ(2− ν3 − ν2 + l2)
(4.46)

with
ν1 = 1

2(1 + ip1 − ip2 − ip3)
ν2 = 1

2(1− ip1 + ip2 − ip3)
ν3 = 1

2(1 + ip1 + ip2 + ip3)
µ1 = 1

2(−k1 + k2 + k3)
µ2 = 1

2(k1 − k2 + k3)
µ3 = 1

2(−k1 − k2 − k3)

(4.47)

and a phase

κ =
Γ(ν1 + µ1)Γ(ν2 + µ2)Γ(ν3 + µ3)Γ(−1 + ν1 + ν2 + ν3 + µ1 + µ2 + µ3)

|Γ(ν1 + µ1)Γ(ν2 + µ2)Γ(ν3 + µ3)Γ(−1 + ν1 + ν2 + ν3 + µ1 + µ2 + µ3)|
, (4.48)

and
N j
p =

Γ(1 + j + ip)

|Γ(1 + j + ip)|
, (4.49)

and the usual gamma function defined over C by analytic continuation of

Γ(z) =

∫ +∞

0
tz−1 e−t dt, with Re z > 0. (4.50)

F Nota Bene. The phase κ satisfies |κ| = 1 was chosen to make the SL2(C)-Clebsch-Gordan coefficients real
(equivalent to the Condon-Shortley convention in the SU(2) case). Contrary to the usual SU(2)-Clebsh-Gordan
coefficients, there is no consensual convention for this phase. The choice of Kerimov differs from that of Anderson
[ARRW70b] or Speziale [Spe17].

These seemingly intricate expressions have nevertheless been used with much efficiency in [Spe17] to
compute numerically spin-foam amplitudes. The formula is indeed interesting because expressed with
only finite sums.

Graphical calculus. When willing to define a graphical calculus for SL2(C) one encounters the
difficulty of finding a good SL2(C)-equivalent to the 3jm-symbol of SU(2) recoupling theory, so that
it would satisfy the good symmetry relations to be well-represented by a 3-valent vertex. This issue is
investigated in [ARRW70b], but the symmetry relations are intricate and depends on the convention
chosen for the phase κ. As a result there is no consensus about the definition of the rules of graphical
calculus for SL2(C). Following the phase convention of [Spe17], we define then(

(p1, k1) (p2, k2) (p3, k3)
(j1,m1) (j2,m2) (j3,m3)

)
def
= (−1)2j1−j2+j3−m3Cp3k3j3,−m3

p1k1j1m1,p2k2j2m2
. (4.51)
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Graphically it corresponds to the 3-valent vertex

(
(p1, k1) (p2, k2) (p3, k3)
(j1,m1) (j2,m2) (j3,m3)

)
=

(p1, k1) (p2, k2) (p3, k3)

(4.52)

With the same rules of orientation and summation as that of section 3.6, we can then fully develop
the graphical calculus of SL2(C). For instance, we can define SL2(C)-invariant functions, like the
(6p, 6k)-symbol. The SL2(C)-15j-symbol can be used to define the spin-foam amplitude (see section
5.2).
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Chapter 5

Loops and Foams in a nutshell

Loop Quantum Gravity (LQG) is a good candidate theory for quantum gravity. It is obtained by the
canonical quantization of general relativity and describes the quantum states of space with the so-called
spin-networks. Spin-foam theory is a later spinoff of both LQG and the sum-over-histories approach
to quantum gravity. It describes quantum space-time, seen as the time evolution of spin-networks.

Most of the main textbook provide a derivation of the theory, following more or less its historical
developments through the process of quantization [RV14, Bae00, DS10]. Here we will only introduce
the general mathematical framework of the theory, trying to be as concise as possible, since we believe
that a full-fledged fundamental theory should come to a point where it stands on its own, with its
mathematical framework and physical principles, without any reference to older approximate theories
like general relativity or non-relativistic quantum mechanics.

5.1 Spin-network

As any good quantum theory, LQG comes with an Hilbert space. It is the mathematical space of
the various possible states of physical space. A very convenient basis is parametrised by the so-called
spin-networks that we first define.

Spin-network. An abstract1 oriented graph Γ is an ordered pair Γ = (N ,L), where N = {n1, ..., nN}
is a finite set of N nodes, and L = {l1, ..., lL} a finite set of L links, endowed with a target map
t : L → N and a source map s : L → N , assigning each link to its endpoints (respectively the head or
the tail, defined by the orientation). We denote Ln the set of links attached to a given node n. The
valency of a node n is the number of links which have n as a endpoint. A graph is said to be p-valent
if the valency of each node is p. Given an oriented graph Γ, we denote ΛΓ the set of labellings j that
assign to any link l ∈ L, an SU(2)-irrep jl ∈ N/2. Given a labelling j ∈ ΛΓ, we denote

Inv(n, j)
def
= InvSU(2)

⊗
l∈Ln

Qjl

 . (5.1)

The tensor product above assumes that an ordering of the links around a node, i.e. a sense of rotation
and a starting link, has been prescribed. A spin-network is a triple Σ = (Γ, j, ι), where Γ is an oriented
graph, j ∈ ΛΓ, and ι is a map that assigns to any n ∈ N an intertwiner |ιn〉 ∈ Inv(n, j). Figure 1
shows a pictorial representation of a 4-valent spin-network.

Hilbert space. The Hilbert space of LQG is given by

H =
⊕

Γ

HΓ (5.2)

1Strictly speaking ‘LQG’ refers to the canonical approach for which the spin-networks are embedded. Here, we adopt
a more abstract point of view, sometimes called ‘covariant LQG’, which is motivated by spin-foams. This alternative
construction raises difficulties for defining the hamiltonian, but they are circumvented by the spin-foam formalism.
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j1
j2

j3

j4
j5

j6

j7
j8

|ι1〉

|ι2〉
|ι3〉

|ι4〉

Figure 1: A 4-valent spin-network.

where the direct sum is made over all possible oriented 4-valent graphs Γ, and HΓ is

HΓ =
⊕
j∈ΛΓ

⊗
n∈N

Inv(n, j) (5.3)

It is spanned by the set of spin-networks states

|Γ, j, ι〉 =
⊗
n∈N
|ιn〉 (5.4)

where Γ range over all possible 4-valent graphs, j over ΛΓ, and |ιn〉 over an orthonormal basis of
Inv(n, j). By definition of the invariant space Inv(n, j), it is straightforward to see that ‘the action of
any gn ∈ SU(2) over a node n’, i.e. over Inv(n, j), let the spin-network states invariant:

gn · |Γ, j, ι〉 = |Γ, j, ι〉 . (5.5)

With this property, the spin-network states are said to satisfy the Gauss constraint2 at each node.
Since we only consider 4-valent graphs, an orthonormal basis of Inv(n, j) is given by the states of

equation 3.40. Thus, instead of writing the abstract states |ι〉, it is equivalent to split each 4-valent
node (according to the prescribed ordering of the links around the nodes), like

j1 j2

j3j4

|ι〉12 =

j1 j2

j3j4

ι (5.6)

and then associate to the virtual link the spin ι ∈ {max(|j1−j2|, |j3−j4|), ...,min(j1+j2, j3+j4)}, which
parametrises the basis |ι〉12 of equation 3.40. By metonymy the spin ι is also called an intertwiner.
Thus the spin-network of Figure 1, becomes

j1 j2

j3

j4
j5 j6

j7

j8

ι1

ι2

ι3

ι4 (5.7)
2This designation comes from an analogy with Maxwell theory of electromagnetism.
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Spin-network wave function. The isomorphism 2.10, deduced from Peter-Weyl’s theorem, of-
fers another possible realisation of HΓ, as a subspace of L2(SU(2)N ), denoted L2(SU(2)N )Γ. A
spin-network state |Γ, j, ι〉 becomes a function Ψ(Γ,j,ι) ∈ L2(SU(2)N )Γ, obtained with the following
procedure:

1. Associate to each link l

jl
nl ml∼= Djl

mlnl
(gl) (5.8)

with the magnetic indices ml or nl, depending of the orientation, and the variable gl ∈ SU(2).

2. Associate to each (splitted) node a 4jm symbol, like

j1 j2

j3j4

ι ∼= (−1)j4−n4

(
j1 j2 j3 j4
m1 m2 m3 −n4

)(ι)

(5.9)

with an index −n and a phase (−1)j−n for outgoing links.

3. Finally multiply all together, and sum over all the magnetic indices.

Thus, we obtain a set of spin-network wave functions Ψ(Γ,j,ι)(gl1 , ..., glL) that span a peculiar subspace
of L2(SU(2)N ), denoted3 L2(SU(2)N )Γ. For instance, the spin-network

j1 j2

j3

j4

ι κ (5.10)

encodes the function

Ψ(u1, u2, u3, u4)

=
∑
mi,ni

(−1)
∑
i(ji−ni)

(
j1 j2 j3 j4
−n1 −n2 −n3 −n4

)(ι)(
j1 j2 j3 j4
m1 m2 m3 m4

)(κ) 4∏
i=1

Dji
mini(ui). (5.11)

From the isomorphism 2.10, we can express the Gauss constraint 5.5 as an invariance of the functions
Ψ(Γ,j,ι)(gl1 , ..., glN ): for all set (un) ∈ SU(2)L, parametrised by the nodes n ∈ N , we have

Ψ(Γ,j,ι)(gl1 , ..., glN ) = Ψ(Γ,j,ι)(us(l1)gl1u
−1
t(l1), ..., us(lN )glNu

−1
t(l1)) (5.12)

with s and t the source and target map of the gr aph. In fact, L2(SU(2)N )Γ can be characterized as
the subspace of functions of L2(SU(2)N ) that satisfy this property.

Notice finally that evaluating the function at the identity on all links result in the graphical calculus
previously defined in section 3.6.

3This subspace is sometimes denoted L2
(
SU(2)L/SU(2)N

)
, but this is not mathematically rigorous.
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Algebra of observables. In fact, there is not much information in the Hilbert space itself. What
really matters physically is the algebra of observables A acting upon it. The observables of LQG are
obtained by the principle of correspondence. Thus, they come with a geometrical interpretation: they
correspond notably to measurements of area or measurement of volume. The Hilbert space H is built
from the building block spaces Qjl , where jl labels a link l. Similarly, the algebra of observables is
built from the action of su(2) (the flux) and SU(2) (the holonomy) over Qjl . Notice that an observable
should not ‘go out’ of H: in other words, an observable should commute with the Gauss constraint.

Given a graph Γ, the observable of area associated to a link l is

Âl
def
= 8π

~G
c3
γ

√
~J2
l , (5.13)

where γ is a real parameter called the Immirzi parameter, and ~Jl are the generators of SU(2) acting
over Qjl . The spin-network basis diagonalise Âl:

Âl |Γ, j, ι〉
def
= jl(jl + 1) |Γ, j, ι〉 . (5.14)

It also diagonalise the observable ( ~J1 + ~J2)2, acting over a node n,

j1 j2

j3j4

ι12 , (5.15)

so that

( ~J1 + ~J2)2 |Γ, j, ι〉 def
= ι12(ι12 + 1) |Γ, j, ι〉 . (5.16)

The latter observable encodes a notion of ‘angle’ between the links j1 and j2. Given a graph Γ, the
set of area observables associated to each link and a set of ‘angle operators’ like ( ~J1 + ~J2)2 (one per
each node), define a complete set of commuting observables over HΓ, diagonalised by the spin-network
basis.

On each node like 5.15, we can also define the volume operator

V̂n =

√
2

3
(8πG~γ)3/2

√
| ~J1 · ( ~J2 × ~J3)|. (5.17)

It is not diagonalised by the spin-network basis, but its eigenvalues can be computed numerically. It
does not commute with ( ~J1 + ~J2)2 but it does with the areas, so that the areas Âl and the volumes
V̂n form another complete set of commuting observables (diagonalised by another basis than that of
spin-networks).

These geometric operators of area, volume or angle, built from the principle of correspondance,
suggest a vision of the ‘quantum geometry’. It is obtained as the dual picture of a graph Γ: a
tetrahedron is associated to each node, and they glue together along faces (whose area is given by the
eigenvalue of Âl) dual to links.

5.2 Spin-foam

Dynamics. The latter mathematical framework of loop quantum gravity is obtained through the
canonical quantization of general relativity: the spin-network states represent quantum states of space.
The time evolution of these states should be found by finding the subspace formed by the solution
to the hamiltonian constraint Ĥ |Ψ〉 = 0, where |Ψ〉 is a superposition of spin-network states, Ĥ the
quantized hamiltonian. This hard path of finding the dynamics was followed notably by Thiemann
[Thi07]. Below we present a way to short-circuit the issue, called spin-foams, which takes inspiration
from former sum-over-histories approaches to quantum gravity.
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Spin-foams. Spin-foams can be seen both as higher dimensional version of Feynman diagrams prop-
agating the gravitational field, and as the time evolution of spin-networks. Spin-foams are built out of
combinatorial objects, which generalises graphs to higher dimensions, called piecewise linear cell com-
plexes, often abbreviated as complexes. A oriented 2-complex is an ordered triple κ = (E ,V,F), with a
finite set E = {e1, ...eE} of edges, a finite set V = {v1, ...vV } of vertices, and a finite set F = {f1, ..., fF }
of faces, such that they all ‘glue consistently’4. The orientation is given on the edges by a target map
t : E → V and a source map s : E → V, and and the orientation of each faces gives a cyclic ordering of
its bounding vertices.

Given an oriented 2-complex κ, we denote Λκ the set of labellings j that assign an SU(2)-irrep
jf ∈ N/2 to any face f ∈ F . Similarly we denote Iκ the set of labellings ι that assign to each edge e
an intertwiner ιe,

ιe ∈ Inv(e, j)
def
= InvSU(2)

 ⊗
f∈F(e)

Qjf

 , (5.18)

where F(e) is the set of faces adjacent to the edge e. A spin-foam is a triple F = (κ, j, ι). where κ is an
oriented 2-complex, j ∈ Λκ, and ι ∈ Iκ. We can stick to a purely ‘abstract’ combinatorial definition of
2-complexes, but we can also adopt a geometrical ‘hypostasis’ that represents ‘faces’ as polygons. For
instance, Figure 2 shows a spin-foam embedded into 3-dimensional euclidean space. Notice that such

Figure 2: A 2-complex embedded in 3-dimensional euclidean space. Its boundary is a graph (in red).

a graphical representation is not always possible in 3 dimensions, and sometimes a fourth dimension
can be required. Interestingly, the boundary of a 2-complex5 is a graph, as can be seen on Figure 2.
Thus, the boundary of a spin-foam is spin-network. The vertices and the edges of the boundary are
called respectively nodes and links. Each link bounds an inside face, so that the spin of the link is
also the spin of the face. Similarly, each node is an endpoint of an inside edge, so that the associated
intertwiners match.

Spin-foam amplitude. To each spin-foam we associate an amplitude, which is like the propagator
associated to a Feynman diagram. Its interpretation is made precise below. Given a spin-foam (κ, j, ι),
we define the spin-foam amplitude as

A(κ, j, ι) =

∏
f∈F

(2jf + 1)

(∏
e∈E

(2ιe + 1)

)(∏
v∈V

Av(j, ι)

)
. (5.19)

4There is a way to give a precise meaning to this gluing, but it will be sufficient to keep it intuitive below, and to
avoid these technicalities.

5The notion of boundary of an abstract 2-complex requires a formal definition, but we keep it intuitive below for
simplicity. We can admit that any 2-complex comes with a boundary.
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Av is called the vertex amplitude. In the short history of spin-foam amplitudes there has already been
many various formula proposed for the vertex amplitude. First, let us say that for quantum gravity,
it is sufficient to consider spin-foams whose vertices are 5-valent (5 edges attached to it) and whose
edges are 4-valent (4 faces attached to it). This restriction comes from the fact that the 2-complex of
quantum gravity are built by dualising the triangulation of a 4-dimensional manifold. Unfortunately
there is no possible nice picture as Figure 2 to visualise such a 2-complex since it cannot be embedded
into the 3-dimensional euclidean space. However it is sufficient to get an idea of the combinatorial
structure of each vertex by representing the adjacent edges with dots and the faces with lines, so that
we draw the vertex graph

j1

j2 j3

j4j5

j6
j7

j8

j9

j10

|ι1〉

|ι2〉

|ι3〉
|ι4〉

|ι5〉
=

j1

j2
j3

j4

j5

j6 j7j8

j9

j10

ι1

ι2

ι3
ι4

ι5

(5.20)

The orientation and the spin of the links, and the intertwiners of the nodes are naturally inherited
from the underlying spin-foam, so that the vertex graph is a spin-network.

F Nota Bene. To avoid confusion, let us recap. Each spin-foam comes with a boundary spin-network, and also with
a vertex graph for each of its vertex. If the spin-foam is made of only one vertex, then the boundary spin-network
and the vertex graph coincides. Contrary to the the boundary spin-network, there is in general no interpretation of
the vertex graphs in terms of quantum states of space.

The combinatorial shape of each vertex suggests to define the amplitude Av as the value obtained with
the rules of graphical calculus of SU(2) recoupling theory, defined in section 3.6. This is precisely what
Ooguri did in [Oog92] by defining the vertex amplitude as the {15j}-symbol, but it later appear not
to be a good candidate for quantum gravity. Since then many other models were suggested [Per13].
They all consist in finding other rules than that of SU(2) recoupling theory to assign a value to the
vertex graph 5.20.

The EPRL model, introduced in [ELPR08], is a model that is still considered as a good candidate
for quantum gravity. The vertex amplitude is computed from the vertex graph 5.20 with the following
rules:

1. Compute the spin-network wave function as shown in the previous section. We obtain a function
of L2(SU(2)10) which satisfies the Gauss constraint 5.12:

Ψ(Γ,j,ι)(gl1 , ..., gl10) (5.21)

2. Apply the so-called Yγ-map, which is the linear map Yγ : L2(SU(2)10) → F(SL2(C)10) defined
over the canonical basis of Wigner matrix coefficients by

Yγ

(∏
i

Dji
mini

)
=
∏
i

D
(γji,ji)
jimijini

, (5.22)

where γ is the Immirzi parameter. We thus obtain a function of F(SL2(C)10)

YγΨ(Γ,j,ι)(hl1 , ..., hl10). (5.23)

It still satisfies the invariance of the Gauss constraint 5.12 for SU(2) action, be not for SL2(C).
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3. Project down to the SL2(C)-invariant subspace on each node with the projector PSL2(C) acting
as

PSL2(C)YγΨ(Γ,j,ι)(hl1 , ..., hl10) =

∫
SL2(C)

(
δ(an5)

∏
n∈N

dan

)
Ψ(Γ,j,ι)(as(l1)hl1a

−1
t(l1), ..., as(l10)hl10a

−1
t(l1)).

(5.24)
with n5 any of the 5 nodes. The delta function δ(a) (only non-vaninshing when a = 1) is required
to avoid the divergence of the integration, but the final result does not depend on the choice of
node n5. To put it differently the integration is only effective over (any) four nodes, while the
fifth an5 is fixed to the identity 1.

4. Evaluate all the variables hl to 1. So if (Γ, j, ι) is the vertex graph of a vertex v in a spin-foam
(κ, j, ι), we can finally write in a nutshell

Av(j, ι) =
(
PSL2(C)YγΨ(Γ,j,ι)

)
(1). (5.25)

Thus we have fully defined the spin-foam amplitude A(κ, j, ι) of the EPRL model. The specificity of
this model is the Yγ-map which selects only the irreps (p = γj, k = j) among the principal series of
SL2(C). It implements the so-called simplicity constraints, which enable to formulate general relativity
as a BF theory [Bae00]. Besides, the apparent sophisticated procedure should not hide the fact that
the value of Av(j, ι) is the same than that obtained from the SL2(C) graphical calculus, defined in
section 4.4, when the simplicity constraint is applied.

F Nota Bene. For those only interested in the actual computation of the amplitude of a given vertex graph, we
can summarise the previous procedure with the following algorithm:

1. Associate a variable hp ∈ SL2(C) to each intertwiner ιp.
2. Associate to each link

j ιpιq ∼= D
(γj,j)
jmjn (h−1

p hq). (5.26)

3. Associate a 3jm-symbol to each node as in usual graphical calculus (equation 3.52).
4. Multiply everything together and sum over all the magnetic indices m and n.
5. Integrate over (any) four of the five SL2(C) variables hp, and fix the fourth to the identity 1.

Interpretation. The interpretation of spin-foams relies on the general boundary formulation of quan-
tum mechanics which was introduced by Oeckl [Oec03, Oec08]. Consider a finite region of spacetime.
Its boundary Σ is a 3-dimensional hypersurface which constitutes the quantum system under consid-
eration. Its space of states is the Hilbert space of LQG, H, spanned by the spin-network states. An
observer O may know some partial information about the state ψ of Σ, which can be expressed by
the fact that ψ ∈ S, where S is a linear subspace of H. Then O can carry on measurements with the
operators of the algebra to know more about ψ. If A is a linear subspace of S, then the probability to
find ψ ∈ A is

P (A|S) =

∑
i∈I |ρ(ξi)|2∑
j∈J |ρ(ζj)|2

, (5.27)

where ξi (resp. ζj) is an orthonormal basis of A (resp. S). ρ : H → C is a linear map, called the
transition amplitude defined for a spin-network state Ψ by

ρ(Ψ)
def
=
∑
σ

Wσ(Ψ) (5.28)

where the sum is done over all possible spin-foams σ which have Ψ as a boundary, and Wσ(Ψ) is the
2-complex amplitude defined as

Wσ(Ψ) =
∑
j

∑
ι

A(σ, j, ι) (5.29)
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where the sum is done over all the possible spin labelling j ∈ Λκ, and intertwiner labellings ι ∈ Iκ,
that are compatible with the spin-network Ψ at the boundary.

This completes the mathematical formulation of the theory and its probabilistic interpretation. Of
course, much remain to be discovered. In particular, the theory has yet to meet the benchmark of the
experimental evidence, but this would be another story to tell!
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Appendix A

Representations and intertwiners

Representation of groups. A good way to understand the structural properties of a group is to
look how it can act on vector spaces. By ‘action’, I mean a linear action that preserves the group
product: it is called a ‘representation’.

In physics, notably in quantum mechanics, we often focus on representations over Hilbert spaces.
Let G be a locally compact group, and GL(H) the group of bounded linear operators over a Hilbert
space H that admit a bounded inverse. A (bounded continuous) representation ρ of G over H is an
homomorphism ρ : G → GL(H), such that the resulting map G × H → H is continuous. In the
case of a finite dimensional Hilbert space H, GL(H) is just the space of invertible linear maps, and a
representation is any linear action of G over H. It is said unitary if it preserves the scalar product.

Representation of Lie algebras. There are also representations of Lie algebra, which are linear
action preserving the Lie bracket. Any representation of a Lie group defines by differentiation a
representation of its Lie algebra. Precisely, if ρ : G→ GL(H) is a representation of a Lie group G, the
differential of the representation ρ, is the linear map Dρ : g→ gl(H) defined for all X ∈ g by:

(Dρ)(X) =
d

dt
ρ(etX)|t=0. (A.1)

It is shown to be a Lie algebra representation. Moreover, for all X ∈ g,

ρ(eX) = eDρ(X). (A.2)

One shows

1. If F ⊂ H is stable for ρ, then F is also stable for Dρ.

2. If Dρ is irreducible, then ρ is also irreducible.

3. If G is connected, the converse of (1) and (2) are also true.

Conversely, given a Lie algebra g, there is no unique Lie group associated to it, but there is a unique
simply connected one G, which is obtained by exponentiation of g. Then given any morphism of Lie
algebra φ, there exists a morphism of Lie group ρ such that φ = Dρ. Thus a representation of g will
entail a representation on each of its associated Lie groups.

Irrep. A representation is irreducible if it admits no other closed stable subspace than {0} and H.
To go faster, we commonly say ‘irrep’ instead of ‘irreducible representation’. They can be seen as the
building blocks of the other representations. From two representations, one can build others: the direct
sum and the tensor product notably. If V and W are two vector spaces of representation for a group
G and its algebra g, we define a representation over the direct sum V ⊕W by

∀g ∈ G, g · (v + w) = g · v + g · w (A.3)
∀X ∈ g, X · (v + w) = X · v +X · w. (A.4)
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We also define a representation over the tensor product V ⊗W

∀g ∈ G, g · (v ⊗ w) = (g · v)⊗ (g · w) (A.5)
∀X ∈ g, X · (v ⊗ w) = (X · v)⊗ w + v ⊗ (X · w). (A.6)

Intertwiners. If V and W are two vector spaces of representation for a group G and its algebra g,
an intertwiner (or equivariant map or intertwining operator) is a linear map T : V →W satisfying:

T (g · v) = g · T (v). (A.7)

The space of intertwiners, denoted HomG(V,W ), is a subspace of the vector space of linear maps
Hom(V,W ). Two representations are equivalent if there is an invertible intertwiner between them two.
An invertible intertwiner is a way to identify two representations, as if there were only a change of
notation between them. In the language of category theory, an intertwiner is nothing but a natural
transformation between two functors, each functor being a representation of the group. In the main
text, we have chosen to alleviate the notations by making the intertwiner implicit, so that we write for
instance (see section 2.3)

J+
∼= z0

∂

∂z1
and |j,m〉 ∼=

(
(2j)!

(j +m)!(j −m)!

)1/2

zj+m0 zj−m1 , (A.8)

where the symbol of congruence ‘∼=’ should be understood as ‘equal from the perspective of the group
representation’. Thus, two equivalent representations will often be presented as two realisations of the
same representation. But of course ∼= is not a strict equality ‘=’ in the mathematical sense since for
instance C2j [z0, z1] carries other mathematical structures to which the intertwiner is blind.

Schur’s Lemma. If T : V →W is an intertwiner between two finite irreps of G, then either T = 0,
or T is bijective. Moreover, if the irreps are unitary and T is bijective, then for any other bijective
intertwiner T ′ there exists λ ∈ C such that T ′ = λT .

Peter-Weyl’s theorem. Any important case is when the group G is compact (like SU(2), but not
like SL2(C)). In this case we have the following properties:

1. Any (complex) finite representation of G can be endowed with an hermitian product which makes
the representation unitary.

2. Any unitary irrep of G is finite-dimensional.

3. Any unitary representation can be decomposed into a direct sum of irreps.

Theses results justify notably that focusing on unitary irreps of SU(2), as we do in chapter 2, is
sufficient to describe all possible finite or unitary representations of SU(2). Finally, the compactness
of G enables to define the space of square-integrable functions L2(G) with the Haar measure, and we
have

4. the linear span of all matrix coefficients of all finite unitary irreps of G is dense in L2(G).

A proof can be found in Knapp ([Kna86] pp. 17-20).
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Appendix B

Induced representation

There is a well-known method to build a representation of group, induced from a representation of one
of its subgroup. We present below two possible formal definitions of the method (see the book [Mau97]
for more details). Then we apply it to the case of SL2(C).

Let K be a subgroup of G, and ρ a representation of K over a vector space V .

Definition 1. To build a representation of G starting from ρ, we first build a vector space Hρ, then
a group homomorphism Uρ : G → GL(Hρ). Let Hρ be the vector space of functions f : G → V such
that

∀g ∈ G, ∀k ∈ K, f(gk) = ρ(k)f(g). (B.1)

For all g ∈ G, we define the linear map Uρ(g) : Hρ → Hρ by

∀f ∈ Hρ, ∀x ∈ G, Uρ(g)f(x) = f(g−1x). (B.2)

Thus (Uρ,Hρ) is the representation of G induced from the representation (ρ, V ) of the subgroup K.

Definition 2. Denote the quotient M def
= G/K. Let P (M,K) be a K-principal bundle. Denote

P ×ρ V →M the associated vector bundle. It is a bundle of base M and fibre V . Let

Hρ = {sections f of the bundle P ×ρ V →M} . (B.3)

For all g ∈ G, we define the linear map Uρ(g) by

∀f ∈ Hρ, ∀x ∈ G/K, (Uρ(g)f)(x) = f(g−1x). (B.4)

Thus (Uρ,Hρ) is the representation of G induced from the representation (ρ, V ) of the subgroup K.
It is equivalent to the first definition.

Example. Consider the trivial subgroup {e} of a Lie group G, and its trivial representation over C.
The induced representation is then given by the Hilbert space L2(G), endowed with an left-invariant
(resp. right-invariant) measure, and the linear action g · f(h) = f(g−1h) (resp. g · f(h) = f(hg)). It is
also called the left (resp. right) regular representation.

Application to SL2(C). Naimark has built the unitary representations of SL2(C) induced by the
uni-dimensional representations of the upper-triangular subgroup K+ [Nai64]. First he shows he fol-
lowing diffeomorphism between differentiable manifolds:

SL2(C)/K+
∼= C̄. (B.5)
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I Proof. Let H be a subgroup of G. The quotient G/H is the set of all sets Hg with g ∈ G. From Gauss
decomposition, equation 1.30, if g ∈ SL2(C) such that g22 6= 0, there exists a unique (k, z) ∈ K+ × Z− such that:

g = kz. (B.6)

The group Z− is isomorphic to C. If a ∈ SL2(C) satisfies a22 = 0 then it belongs to the class of
(

0 −1
1 0

)
since

(
a11 a12

a21 0

)
=

(
a−1

21 a11

0 a21

)(
0 −1
1 0

)
. (B.7)

Thus, identifying the class of
(

0 −1
1 0

)
with {∞}, we see that SL2(C)/K+

∼= C̄. �

Then we compute the expression of the induced linear action of SL2(C) over C̄:

a · z =
a11z + a21

a12z + a22
. (B.8)

It is nothing but the so-called Möbius transformation.

I Proof. An action of SL2(C) over SL2(C)/K+, is naturally given by:

a ·Kg = Kga. (B.9)

It leads to the given expression over C̄. �

Consider the Hilbert space of square integrable complex functions L2(C) with the scalar product:

(f1, f2)
def
=

i

2

∫
C
f1(z)f2(z) dz ∧ dz. (B.10)

Here we use the usual Lebesgue measure over C. We look for a unitary representation over L2(C) of
the form:

a · f(z) = α(z, a)f(a · z). (B.11)

Then it can be shown (after lines of computation) that for all (ρ,m) ∈ R × Z, there exists a unitary
representation of SL2(C) over L2(C) given by

Vaf(z) = (a12z + a22)
m
2

+ iρ
2
−1(a12z + a22)

−m
2

+ iρ
2
−1
f(
a11z + a21

a12z + a22
). (B.12)

The set of representations is called the principal unitary series of SL2(C). It can be shown these
representations are irreducible!

Variation. Rühl constructs an induced representation in [Rüh70] (p. 57). Formally, he first observes
the following diffeomorphism between manifolds:

SL2(C)/K+
∼= SU(2)/U(1). (B.13)

I Proof. A convenient way to see it is to decompose a ∈ SL2(C) with k ∈ K+ and u ∈ SU(2) such that:

a = ku. (B.14)

Such a decomposition exists since for all θ ∈ R:

(
a11 a12

a21 a22

)
=

 e−iθ√
|a21|2+|a22|2

a12a
∗
22+a11a

∗
21√

|a21|2+|a22|2
eiθ

0
√
|a21|2 + |a22|2eiθ


 a∗22e

iθ

√
|a21|2+|a22|2

− a∗21e
iθ

√
|a21|2+|a22|2

a21e
−iθ

√
|a21|2+|a22|2

a22e
−iθ

√
|a21|2+|a22|2

 . (B.15)

But there is no uniqueness of the decomposition. If u ∈ SU(2) decomposes a, then also does for all θ ∈ R(
eiθ 0
0 e−iθ

)
u. (B.16)

Conversely, it is easy to show that these are the only possible matrices of SU(2) decomposing a. �
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Instead of constructing a space of functions over SL2(C)/K+, it is then equivalent to consider functions
over SU(2) satisfying a covariance condition for the group U(1) (in the spirit of definition 1). Thus,
we consider functions over SU(2) satisfying the condition:

φ

((
eiθ 0
0 e−iθ

)
u

)
= einθφ(u) (B.17)

with n ∈ Z. The choice of the factor einθ corresponds to uni-dimensional representations of U(1).
This way another representation of SL2(C) can be built. It is equivalent to the previous of Naimark
provided that n = −2k.
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Appendix C

Commented bibliography

This commented bibliography gathers the main textbooks that will provide more details than this
primer.

Warmup

[Kna86] A. W. Knapp, Representation Theory of Semisimple Groups, Princeton University Press, 1986.

This book is a clear and exhaustive introduction to the representation theory of semi-simple
groups, with specific focus on SL2(C) and its subgroup. It requires nevertheless to have
followed a first semester course on Lie groups and algebras.

[Hal03] Brian C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, 2003.

This book provides a beautifully written introduction for physicists.

[BLR12] D. Bernard, Y. Laszlo and D. Renard, Éléments de théorie des groupes et symétries quantiques,
cours de l’École polytechnique, 2012.

This very pedagogical introduction to groups gets inspiration from physics. It is taking on
a wide series of subjects in a concise manner. Unfortunately, there is only a French version.

Representation and recoupling of SU(2)

[SN11] J.J Sakurai and Jim Napolitano, Modern Quantum Mechanics, Addison-Wesley, 2011.

This classic book is an introduction to quantum mechanics. The chapter 3 deals with the
theory of angular momentum. A numbers of basic formulas can be found there. Here,
we have used it for the Euler angles decomposition. Many other classical textbooks cover
the angular momentum with small (but interesting) variations like [Edm57], [CS59] and
[YLV62].

[VMK87] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum theory of angular
momentum, World Scientific, 1987.

As the title suggests, this book could be looked at as the bible for the quantum aspects of
angular momentum. It is supposed to be exhaustive in terms of formulas. So it is not really
the kind of book you read, but rather something like a directory when you need something
specific and not very memorable.
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[Mou83] John P. Moussouris, Quantum Models of Space-Time based on Recoupling Theory, PhD. thesis
(Oxford), 1983.

This is a beautifully written PhD thesis by Moussouris, under the supervision of Roger
Penrose. It deals notably with the recoupling theory of SU(2), and its link to space-time.
Unfortunately, the document is not easily accessible.

Representation of SL2(C)

[Rüh70] W. Rühl, The Lorentz Group and Harmonic Analysis, W. A. Benjamin, Inc, 1970.

This old book was written by a physicist and is maybe too sloppy in the mathematical
exposure. It is nevertheless a classic textbook with a lot of useful formulas. It focuses on
the study of SL2(C) and SL2(R).

[GMS63] I. M. Gel’fand, R. A. Minlos and Z. Ya. Shapiro, Representations of the rotation and Lorentz
groups and their applications, Pergamon Press, 1963.

This book proposes a self-contained presentation of the representations of the rotation and
Lorentz groups. However, its rudimentary page layout makes it a bit hard to read. From
that respect, the book of Naimark, one year later, is a better introduction (and is also
probably more detailed in its content).

[Nai64] M. A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, 1964.

This book introduces the subject to physicists. It is well-written, very introductory in the
beginning, complete on the subject and quite rigorous (through not reaching the usual
purely mathematical standards). Unfortunately the formalism and the notation start get-
ting old and sometimes look a bit clumsy, which make the reading a bit bumpy.

[GGV66] I. M. Gel’fand, M. I. Graev and N. Ya. Vilenkin, Generalized Functions: Volume 5, Integral
Geometry and Representation Theory, Academic Press, 1966.

This book is the English translation of the Russian version, published in 1962. The chapters
of interest for us are chapter III devoted to the representations of SL2(C) and chapter IV
for its harmonic analysis.

Loop Quantum Gravity and Spin-Foams

[Rov04] C. Rovelli, Quantum Gravity, Cambridge University Press, 2004.

This major textbook is recommended for its insistence on underlying physical ideas. The
mathematical formulas are also present but some of the tools of representation and recou-
pling theories are assumed to be already known.

[RV14] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity, Cambridge University Press,
2014.

This book is a concise exposition of the covariant formulation of LQG, also known as the
spin-foam formalism. It gathers all the main achievements of the theory. It can alternatively
be used as a technical toolbox ready for use or as a general introduction that sketches the
programme and the physical ideas upon which it relies. Nevertheless, the mathematics
are not explained in details (through lots of formulas are found) and it is sometimes a bit
sloppy with the mathematical accuracy.
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