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Abstract

General Relativity describes gravity in geometrical terms. This sug-
gests that quantizing such theory is the same as quantizing geometry.
The subject can therefore be called quantum geometry and one may think
that mathematicians are responsible of this subject. Unfortunately, most
mathematicians are not aware of this beautiful area of study. Here we
give a basic introduction to what quantum geometry means to a commu-
nity working in a theory known as loop quantum gravity. It is directed
towards graduate or upper students of physics and mathematics. We do
it from a point of view of a mathematician.
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1 Introduction

The two most important physical theories of the 20th century are, of course,
general relativity and quantum mechanics. It is very well known to a physicist
that classical physical theories have a quantum version. The question then is:
what is the quantum version of general relativity? The thing is that there is no
known correct answer to this question.

Physically the question is what is quantum gravity? It is impressive that
such problem has been studied using many different directions; each one of these
directions claims their theory is the solution to such problem.

Loop quantum gravity [1], [2], [3] [4], [5] is one of these many directions.
Among all of these directions, loop quantum gravity is the second most studied
one, just after string theory.

There is no easy way to start learning loop quantum gravity. It is a difficult
theory, there is plenty of literature out there most of which is very technical,
and in fact there are many different problems on which people are working.

In this paper we give a basic introduction to only one of the constructions
of loop quantum gravity. We selected this particular problem because we per-
sonally think it is the easiest one of all and, in fact, it is very beautiful.

The problem is the following. It is known that general relativity is a theory
of gravity which is described in geometrical terms. Therefore, quantizing general
relativity must be equivalent to quantizing classical geometry.

We can now rephrase the question: what is quantum geometry? And this
is again a question with no good answer, because quantizing classical geometry
may mean a different thing to different scientific communities. For example, it
may mean something to a mathematician which is very different from what a
physicist thinks. Mathematically speaking quantum geometry may refer to a
theory known as noncommutative geometry [9] or in fact, it may refer to loop
quantum gravity. There have been some studies relating some ideas of loop
quantum gravity to noncommutative geometry. We do not explore this latter
problem here.

The problem we introduce here is1: if we want to start understanding what
quantum geometry may be, we should ask ourselves; is there a quantum version
of a classical polyhedron.

It turns out that the answer is yes. Classical polyhedra such as the Pla-
tonic solids for example have a quantum version. This is very exciting in fact.
However, unfortunately mathematicians are not aware of this fact and it may
be because this idea emerged in loop quantum gravity which is a theory mostly
invented by physicists. This is why our intention is to spread the idea to the
mathematical community, and therefore give a basic introduction from the point
of view of a mathematician.

1The one we consider is the simplest one in order to start understanding the idea behind
loop quantum gravity.
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This review is directed from a mathematician point of view towards ad-
vanced undergraduates or postgraduates in mathematics and in physics. The
mathematics of section 2 will be more familiar to mathematicians, whereas the
mathematics of section 3 will be more familiar to physicists.

We will start by recalling what classical polyhedra are and then will describe
the quantum analogues.

2 Classical Polyhedra

This section is based on reference [10]; however it is all written as we understand
it, that is, our own words. A classical polyhedron P is just a solid in three
dimensional space R

3, (P ⊂ R
3) such that ∂P is composed of a finite number

k of flat polygons.2 The polygons forming the polyhedron are called faces, and
the sides and vertices of the faces are called edges and vertices. We denote the
set of k faces of the polyhedron by f1, f2, ..., fk.

We will restrict ourselves to convex polyhedra. Through each flat face fi
of a classical polyhedron there exists a plane Pi that contains it. A convex
polyhedron Π is a classical polyhedron such that any two polygonal faces fi 6= fj
are connected through other faces with common edges, and given a plane Pi

which contains the fi face, we have that Pi ∩Π = fi for all i = 1, ..., k.
We will consider bounded convex polyhedra, that is, polyhedra with bounded

faces.
Given a convex polyhedron Π, consider Pi, the plane which contains the face

fi. The unit vector ni perpendicular to Pi and pointing to the side which does
not contain any points of Π is called the outward normal of Pi relative to Π.

Now the most important theorem of this section.3

Theorem 1 (Minkowski). Let n1,n2, ....,nk be unit vectors, k ≥ 4, such that

any three different vectors ni,nj ,nℓ, are linearly independent.

Let A(f1), A(f2), ...., A(fk) ∈ R>0 such that

k
∑

i=1

A(fi)ni = 0

Then there exists a closed convex polyhedron Π with faces fi having areas A(fi)
and outward normals ni.

This theorem implies that under given conditions there exist a convex poly-
hedron which satisfies the prescribed conditions.4

However, it also turns out that given a convex polyhedron whose faces fi have
areas A(fi) and whose outward unit normals to the faces are ni, the equation

2∂P denotes the boundary of the polyhedron P .
3In this theorem we use loop quantum gravity notation when referring to face areas.
4For a proof of theorem 1 we refer the reader to [10].
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k
∑

i=1

A(fi)ni = 0 (1)

is satisfied. This is easy to see.
Let n be a unit vector in R3. Consider the Euclidean inner product< n ,ni >

of the unit vector n with all of the unit normals to the faces of the convex
polyhedron Π. The number < n ,ni > A(fi) is the area of the projection of the
face fi into a plane n⊥ whose all vectors are orthogonal to n. All of the unit
vectors n,n1, ....,nk ∈ S2, where

S2 = {(z, x, y) ∈ R
3 | z2 + x2 + y2 = 1}

is the unit sphere; therefore we have that some of the interior products< n ,ni >

will be positive, and some others will be negative, since some of the ni point in
the same direction as n and some point in the opposite direction. The projection
to the plane n⊥ of the faces whose normal vectors ni point in the same direction
as n, and the projection of those whose normal vectors ni point in the opposite
direction as n cover the same area. Then

k
∑

i=1

< n ,ni > A(fi) = 0

⇒

< n ,

k
∑

i=1

A(fi)ni >= 0

Since n 6= ~0, and it is an arbitrary vector, we have that

k
∑

i=1

A(fi)ni = 0

Therefore equation (1) is proved.

3 Quantum Polyhedra

Classical physical theories have a quantum version.5 The question is: can math-
ematics be quantized? Well, let us start by asking, is there a quantum version
of a classical convex polyhedron described in the previous section?

Surprisingly there is, and loop quantum gravity has described these quantum
versions [5], [6] [7]. But the idea can be generalised to quantizing any convex
polyhedron. In this section we describe the quantum version of a classical convex

5For instance, a quantum version of space exists. See for example [8].
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polyhedron. We give a very basic introduction to this beautiful subject. It is
in fact a hard thing to do since the subject is full of difficult and advanced
mathematics. At least in this first introduction paper we keep it simple. This
section is mathematically inspired in reference [11].

There is an action of the Lie group SO(3) of rotations in the Euclidean space
R3, and the areas A(fi) of the faces fi of the convex polyhedron Π as well as
its volume remain invariant under such rotations. The set of the normal unit
vectors ni to the faces obviously remain unit vectors.

Quantizing a convex polyhedron is defined by assigning a Hilbert space Hi to
each of its faces fi and the tensor product H1⊗H2⊗·· · ·⊗Hk to the polyhedron
in the following way. This implies that the observables are related to measures
on the quantum polyhedron faces. In classical geometry a polyhedron Π has
faces fi of certain area A(fi). Area in classical geometry is a classical observable.
Therefore its quantum counterpart is called quantum area and it must be an
operator defined on a Hilbert space. This is understood as follows.

As SO(3) sends the unit sphere S2 to itself, the Hilbert space associated
to each face is in fact L2(S2), the space of complex valued squared-integrable
functions.6 That is,

L2(S2) =

{

ψ : S2 → C |

∫

S2

| ψ(~x) |2 d~x <∞

}

Just as the Lie group of rotations SO(3) acts in S2, it also acts in the Hilbert
space L2(S2) by

R ψ(~x) := ψ(R−1 ~x)

where R : S2 → S2 is a rotation and R−1 is its inverse.
To the polyhedron we assign the tensor product ⊗k L2(S2), so that a vector

in ⊗k L2(S2) is given by ψ1( ~x1) ⊗ ψ2( ~x2)⊗ · · · · ⊗ψk( ~xk) such that the SO(3)
action on this tensor product space is given by

R (ψ1( ~x1)⊗ψ2( ~x2)⊗···⊗ψk( ~xk)) := ψ1(R
−1 ~x1)⊗ψ2(R

−1 ~x2)⊗···⊗ψk(R
−1 ~xk)

Physically, the wave function of a quantum polyhedron is a complex valued
function defined on the tensor product ⊗k L2(S2) Hilbert space, such that
ψ1( ~x1)⊗ψ2( ~x2)⊗ · · · · ⊗ψk( ~xk) is a unit vector in the Hilbert space ⊗k L2(S2).
Mathematically this is written

∫

S2×S2···×S2

| ψ1( ~x1)⊗ ψ2( ~x2)⊗ · · · · ⊗ψk( ~xk) |
2 d ~x1 d ~x2....d ~xk = 1

6SO(3) not only acts on the Hilbert space L2(S2), it can also act on L2(R3) for instance.
However we choice the action restricted to L2(S2) since our equations will not depend on the
radial coordinate.
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where the integral is over k products of S2. In fact this latter integral is given
by

∏k

i=1

∫

S2 | ψi(~xi) |
2 d~xi.

When we study quantum mechanics, we know that the wave function of a
system is a superposition (linear combination of basis vectors in the Hilbert
vector space) of states which are eigenvectors of an observable (self-adjoint op-
erator in the Hilbert space). The eigenvalues of the observable are the observed
quantities with a certain probability.

When we say that the quantum polyhedron has a wave function, or is in
the state ψ1( ~x1) ⊗ ψ2( ~x2) ⊗ · · · · ⊗ψk( ~xk), we must understand that it is a
superposition state. What are the observed quantities? What is an observable
in this theory of quantum polyhedra? In order to answer these questions we
should know some more things. Let us discuss these issues.

The Hilbert space L2(S2) of squared-integrable functions over S2 has an
inner product given by

< ψ(~x) | χ(~x) > =

∫

S2

ψ(~x) χ(~x) d~x

If we introduce spherical coordinates in S2

f(θ, φ) = (cos θ, sin θ cosφ, sin θ sin φ)

such that 0 < θ < π, 0 < φ < 2π. Then the functions ψ(~x) become functions of
the spherical angles ψ(θ, φ) and the inner product can be written explicitly as

< ψ(θ, φ) | χ(θ, φ) > =
1

4π

∫

S2

ψ(θ, φ) χ(θ, φ) sin θ dθ dφ

4π is the area of the unit sphere, or in other words.7

In this Hilbert space the observables include the self-adjoint operators J1, J2, J3 :
Dom(L2(S2)) → L2(S2) given by

J1 = i

(

sinφ
∂

∂θ
+ cosφ

cos θ

sin θ

∂

∂φ

)

J2 = i

(

− cosφ
∂

∂θ
+ sin φ

cos θ

sin θ

∂

∂φ

)

J3 = −i
∂

∂φ

and the commutation relations of these operators are given by

[J1, J2] = i J3 , [J2, J3] = i J1 , [J3, J1] = i J2

7 1

4π

∫

S2 sin θ dθ dφ = 1
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There is also an operator known as the Casimir operator given by

J2 = J2

1
+ J2

2
+ J2

3

Using the expressions for J1, J2, J3 it can be seen that

J2 = −
1

sin θ

(

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin θ

∂2

∂φ2

)

This latter expression is the minus Laplacian on the sphere which has eigenvec-
tors given by the well known spherical harmonics functions Y (θ, φ). This means
that

J2 Y (θ, φ) = j(j + 1) Y (θ, φ) (2)

where j ∈ Z≥0. Each eigenvalue j(j + 1) is of multiplicity 2j + 1 and therefore
the eigenvectors of the operator J2 with eigenvalue j(j+1) generate a subspace
Hj of L

2(S2). This implies that the Hilbert space L2(S2) is a direct sum given
by

L2(S2) =

∞
⊕

j=0

Hj

It is customary to denote the orthogonal basis of eigenvectors with eigenvalue
j(j+1) that generate the subspace Hj by Y

j
m(θ, φ) where m takes integer values

−j ≤ m ≤ j.
In loop quantum gravity the observable J is the area operator,8 and formula

(2) is interpreted physically as the squared area of face fi of the quantum
polyhedron Π. Face fi has therefore quantized area given by the numbers

A(fi) =
√

ji(ji + 1)

On the other hand, a general vector ψ(θ, φ) (wave function) in the Hilbert
space L2(S2) is a linear combination of bases vectors (superposition) given by

ψ(θ, φ) =
∞
∑

j=0

j
∑

m=−j

cjm Y j
m(θ, φ)

where cjm ∈ C.
A wave function of a quantum polyhedron is given by

ψ1(θ1, φ1)⊗ ψ2(θ2, φ2)⊗ · · · ⊗ ψk(θk, φk)

8The relation of the observable operator J and an area operator is a construction derived
in loop quantum gravity. This relation derivation is out of the scope of this review and we
do not plan to deal with it at the moment. However it is our intention to have a new review
in a future and it will be explained there.
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where k is the number of faces of the classical polyhedron. It is of course a linear
combination(superposition of states) of basis vectors which can be written as

k
⊗

i=1

ψi(θi, φi) =

∞
∑

ji=0

ji
∑

mi=−ji

k
∏

i=1

cjimi

k
⊗

i=1

Y ji
mi
(θi, φi)

After a measurement of the observable J the quantum polyhedron will be
in a particular state

Y j1
m1

(θ1, φ1)⊗ Y j2
m2

(θ2, φ2)⊗ · · · ⊗ Y jk
mk

(θk, φk)

This implies that we have a quantum polyhedron which area faces are quantized
and the total area of the quantum surface is9

A(Π) = ℓ2P

k
∑

i=1

√

ji(ji + 1)

where ℓP is the Planck length and it is introduced in the previous formula in
order to have the correct dimensions.

4 Conclusions

This short review was intended to be a simple first introduction to one partic-
ular subject of loop quantum gravity; quantum polyhedra. It was directed to
undergraduate or to first year postgraduate students in physics and mathemat-
ics. It was our intention to describe it from the perspective of a mathematician,
and we hope we have succeeded in this task.

It is our intention to continue introducing loop quantum gravity to math-
ematicians, since most mathematicians are not aware of the beautiful subject
called loop quantum gravity.

As this is a first introduction we have left so many things out; loop quan-
tum gravity is a very extensive field and no first introduction will be satisfac-
tory. Even dealing with quantum polyhedra requires more formal, and advanced
mathematics we have not dealt with.

From what we studied in this first introduction, we have learnt that quantum
polyhedra states are superposed and once we have performed a measure of its
faces areas the superposition collapses to a polyhedron which faces have discrete
areas. This means that the area operator is quantised and therefore we have a

9We have studied a very simplified problem. We have not dealt for instance with more
complicated mathematics behind quantum polyhedra, like the theory of representations, in-
cluding the quantum version of classical formula (1). We will deal with this in a future
review.
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first glimpse of what quantum geometry is form the perspective of loop quantum
gravity.

When quantizing geometry, area is not continuous but discrete. It happens
the same when considering a volume operator and finding that its spectrum
is discrete. We did not consider the volume operator here, since it is more
complicated. But physicists of loop quantum gravity interpret the discrete
spectrums as thinking of space formed by quantum entities called quanta of
space.
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