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We discuss the relation between coarse-graining and the holographic principle in the framework of
loop quantum gravity and ask the following question: when we coarse-grain arbitrary spin network
states of quantum geometry, are we integrating out physical degrees of freedom or gauge degrees
of freedom? Focusing on how bulk spin network states for bounded regions of space are projected
onto boundary states, we show that all possible boundary states can be recovered from bulk spin
networks with a single vertex in the bulk and a single internal loop attached to it. This partial
reconstruction of the bulk from the boundary leads us to the idea of realizing the Hamiltonian
constraints at the quantum level as a gauge equivalence reducing arbitrary spin network states to
one-loop bulk states. This proposal of “dynamics through coarse-graining” would lead to a one-to-
one map between equivalence classes of physical states under gauge transformations and boundary
states, thus defining holographic dynamics for loop quantum gravity.

Loop quantum gravity sets up a non-perturbative
framework for quantum gravity, with evolving quantum
state of geometries and area and volume operators with
quantized spectra at the Planck scale (for reviews of both
the basic formalism and recents developments, see [1–4]).
It faces a triptych of interlaced issues: the coarse-graining
of quantum geometry states from the Planck scale to
larger scales, the definition of quantum dynamics con-
sistent with the holographic principle and the implemen-
tation of (discretized) diffeomorphism at quantum level
as the fundamental gauge symmetry of the theory (or, in
other words, the implementation of a relativity principle
for quantum geometry). These encompass more technical
questions, such as anomaly cancellation, a well-behaved
continuum limit and the perturbative renormalisation of
quantum gravity corrections. In this short letter, we
would like to discuss the relation between coarse-graining
and holography.

First, there is the natural question of whether loop
quantum gravity, and more generally any approach to
quantum gravity, should be holographic. On top on the
area-entropy law for black holes, the related generalized
entropy bounds for general relativity and the AdS/CFT
correspondence at asymptotic infinity, the insight into
holography is directly related to the invariance under dif-
feomorphism. This symmetry is at the heart of general
relativity and is the mathematical translation of the rel-
ativity principle. However it is a tough challenge to iden-
tify and construct diffeomorphism-invariant observables
(especially in pure gravity). Considering a bounded re-
gion allows to introduce a boundary, which acts on an an-
chor: looking for observables invariant under bulk diffeo-
morphisms leaving the boundary invariant seems to point
towards the idea that all physical observables about the
bulk geometry could/should be represented as boundary
observables. We believe it is crucial, in order to under-
stand better the structure and implications of loop quan-
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tum gravity, to investigate if the formalism can support
such a (quasi-local) version of holography.

Let us start by describing the standard setting for
coarse-graining LQG. Quantum states of geometry are
spin networks, that is graphs dressed with algebraic data:
SU(2) representations, or spins, on the graph links and
singlet states, or intertwiners, on the graph nodes. These
spin networks define the bulk geometry, with the under-
lying graph representing a network of points as the back-
bone of the 3d space. A node represents an elementary
chunk of volume and is usually thought of geometrically
in terms of a dual surface surrounding it. We now split up
space into regions by partitioning the spin network into
connected collections of nodes, as shown on fig.1. The
procedure is to coarse-grain each region to a single node,
thus leading to a coarse-grained network describing the
coarse-grained geometry of space. The data attached to
each coarse-grained node should reflect the information
available on the geometry of the corresponding region of
space: we define a projector mapping quantum states of
bulk geometry inside each region onto states living on
the region’s boundary surface. This boundary surface is
thought of as the dual surface to the coarse-grained node
and the projected boundary state is the new algebraic
data attached to coarse-grained node.

•
•

•

•

•

•

•
•
•

FIG. 1: A two-dimensional illustration of the partitioning of
the graph in order to coarse-grain the spin network state.

Actually this is exactly the same framework as when
discussing the implementation of the holographic prin-
ciple in loop quantum gravity by describing the bulk
geometry through the dynamics of holographic screens
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throughout space, except for an apparent essential dis-
crepancy in the point of view: coarse-graining means nat-
urally loss of information, while the holographic principle
claims that all the physically relevant degrees of freedom
of the bulk are described by a surface theory without loss
of information. This is resolved by underlining a crucial
difference in the premises: kinematics versus dynamics.

Indeed, the coarse-graining procedure is to be applied
to arbitrary quantum spin network states, not necessar-
ily satisfying the Hamiltonian constraints: the goal is to
understand the large scale structure emerging from ar-
bitrary Planck scale quantum geometries. On the other
hand, the holographic principle is a statement about the
quantum gravity dynamics and applies to physical states
satisfying the Hamiltonian constraints. This leads to
one big question: is the information, lost when coarse-
graining by projecting the bulk geometry onto the bound-
ary, physically-relevant or is it pure gauge (for instance,
under diffeomorphisms generated by the quantum Hamil-
tonian constraints)? For example1, in topological BF
theory, all the detail of the graph within a region can be
gauged out and physical spin network states exactly pro-
jected onto the topological defects living on its boundary.
Actually, this natural interplay between holography and
topological invariance was at the root of the proposal of
considering general relativity as a constrained BF theory
and realizing quantum gravity from topological quantum
field theory (TQFT), which materialized into the spin-
foam path integral for loop quantum gravity [8–11].

This logic leads us to a drastic proposal to implement
the dynamics of loop quantum gravity: we could con-
sider all the information lost in the coarse-graining pro-
jection are gauge degrees of freedom and take this as a
definition of the Hamiltonian constraints defining the dif-
feormophism invariance at the quantum level. This can
be understood as an extension of the topological invari-
ance (in particular, of the triangulation invariance under
Pachner moves) of BF theories to theories, such as (quan-
tum) gravity, which are non-topological but nevertheless
holographic. This would be in spirit similar to the pro-
posal of “dynamics through coarse-graining” by Dittrich
and Steinhaus [12] and sets coarse-graining procedures
for spin network states as a fundamental building block
of the theory.

Following this line of thought, we propose to analyze
the projection from bulk geometry to boundary state in

1 Another example is provided by the distinction between bulk
entropy and boundary entropy for black holes in loop quantum
gravity [5]: holonomies wrapping around internal loops of the
spin network graph within a region are non-trivial degrees of
freedom generating entropy. If we want the bulk entropy to scale
with the area at leading order, we should either bound the num-
ber of loops that can develop in the bulk or consider that these
internal holonomies are partly gauge degrees of freedom. On the
other hand, it was shown recently in [6, 7] that, as soon as the
number of internal loops is large enough, the boundary state is
automatically thermal and respects the area-entropy law.

loop quantum gravity and focus on two points. First,
can we classify2 all the bulk spin network states (graph
and algebraic data) leading to a same boundary state?
What is the “redundant” information stored in the bulk?
Second, what is the simplest bulk structure compatible
with a given boundary state? We investigate these ques-
tions in the most straightforward LQG formulation, with
quantum states of geometry defined as SU(2) spin net-
works and not as some notion of extended spin network3.
We consider a bounded region of a spin network state,

with the graph puncturing the boundary surface at N
points (see e.g. [20] for a discussion on the definition of
quantum surfaces in loop quantum gravity). Each punc-
ture carries an arbitrary spin, so that the boundary state
lives in the tensor product of N arbitrary spins with the
only constraint that the sum of all N boundary spins is
an integer:

BN =
⊕

∑
N

i=1
ji∈N

Bj1,..,jN ⊂


⊕

j∈ N

2

Vj



⊗N

, (1)

Bj1,..,jN =

N⊗

i=1

Vji , dimBj1,..,jN =

N∏

i

dji ,

where ji are the spins carried by the N links puncturing
the boundary surface and the dimension of the spin-j
representation dj = dimVj = 2j + 1. If the spin net-
work graph in the bulk (here referring to the interior of
the bounded region) is a tree, i.e. does not contain any
loop, then it is known that the resulting boundary states
are necessarily intertwiners, that is singlet states with
vanishing overall spin. This clearly does not allow for ar-
bitrary boundary state and can not be the generic case.
So the question we will address in this letter is how much
should we complicate the graph in order to allow for all
possible boundary states.

2 We could go further by formulating this question as a Kadison-
Singer problem. Given a diagonal boundary state, attributing
values to a maximal set of commuting observables probing the
geometry of the boundary, what are its possible extension of a
quantum state of the bulk geometry? This could be especially
interesting from the perspective of the relation between this ques-
tion and the sparsification of networks, which is relevant to the
issue of coarse-graining spin networks.

3 Various extensions of spin networks have been introduced since
the original formulation of loop quantum gravity in terms of
SU(2) spin networks: SL(2,C) simple and projected spin net-
works used in spinfoam path integrals [13, 14], spin networks
labeled with representations of the Drinfled double D(SU(2)) to
account for curvature and torsion excitations [15, 16], double spin
networks with holonomies both along the graph edge and looping
around them [17] or the recently developed “loop gravity string”
framework mixing the SU(2) algebraic structures with the Vira-
soro algebra of surface diffeomorphism living on each boundary
surface [18, 19].
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I. BOUNDARY STATES FOR A SINGLE LOOP

IN THE BULK

Let us start by the simplest extension of a tree graph
and consider a graph with a single loop. We will show
that we get all possible boundary states if we allow for
an arbitrary SU(2) holonomy around the loop.
A useful decomposition of the boundary Hilbert space

is to partition it in terms of the closure defect [6, 7, 20,
21]. Mathematically, this means recoupling all the spins
ji carried by the N punctures into a single overall spin
s. This spin, living on the intermediate channel, is nec-
essarily an integer4:

BN =
⊕

s∈N

Bs
N , Bs

N =
⊕

{ji}i=1..N

Bs
j1,..,jN

, (2)

Bs
j1,..,jN

= Vs ⊗ Inv

[
Vs ⊗

N⊗

i=1

Vji

]
. (3)

As depicted on fig.2, a convenient basis of each subspace
Bs
N is given by choosing a basis state |s,M〉 with mag-

netic moment M in Vs and an intertwiner I recoupling
the N spins ji with the spin s:

I ∈ Inv

[
Vs ⊗

N⊗

i=1

Vji

]
, 〈s,M |I〉 ∈ Bs

j1,..,jN
. (4)

j1

j2

j3

jN

.

.

.
∨G

k

s
•
I

•

j1

j2

j3

jN

.

.

.
s

•
I

M

FIG. 2: On the left hand side, we illustrate the basis states of
the boundary Hilbert space BN , as given in eqn.(2-4), labeled
by the boundary spins j1, .., jN , the closure defect spin s and
magnetic moment M and intertwiner I recoupling the bound-
ary spins and the closure defect. On the right hand side, we
draw spin network states for a one-loop bulk, as defined in
eqn.(5), with the intermediate spin s on the link between the
boundary spins j1, .., jN and the internal loop carrying the
spin k and the holonomy G ∈ SU(2).

4 A bounded region R is a set of nodes of the spin networks,
with all the links connected to them. We distinguish the interior
links, whose both ends belong to R and the boundary links with
a single node in R. The parity condition at a node v is that the
sum of the spins around that node is an integer. Summing all
the parity conditions for the vertices in R implies that the sum
of the boundary spins is necessarily an integer. This holds as
long as there is no source of torsion (e.g. fermions) within the
region.

Now let us look at spin network states with boundary
spins ji based on the single node graph with a self-loop,
as drawn on fig.2. A convenient basis is to separate the
loop from the boundary edges, choose a spin k carried by
the loop and once more intertwine the boundary spins
ji into a single overall spin s. Then the spin network
states is defined by two intertwiners, one defining the
recoupling of the ji’s to s and one defining the recoupling
of two copies of the spin k into s. The latter is actually
unique once k and s are given since it is a 3-valent node.
The boundary states defined by these spin network basis
states are expressed in terms of the holonomy G ∈ SU(2)
carried by the loop and the intertwiner I ∈ Bs

j1,..,jN
:

ψ
s,k,I
{ji}

[G] = Dk
m,m̃(G)C

k,s|k
m̃,M|m〈s,M |I〉 ∈ Bj1,..,jN . (5)

with the Wigner-matrix of the holonomy,

Dk
m,m̃(G) = 〈k, m̃|G|k,m〉 ,

and the Clebsh-Gordan coefficient recoupling three spins:

C
k,s|k
m̃,M|m = 〈k,m|(k, m̃)⊗ (s,M)〉 .

We would like to prove that these states ψs,I
{ji}

[G] cover

the whole boundary space Bj1,..,jN for any given bound-
ary spins j1, .., jN . We compute5 the density matrix ρk
integrating over the holonomy G carried by the loop at
fixed loop spin k:

ρk =

∫
dG |ψs,k,I

{ji}
[G]〉〈ψs,k,I

{ji}
[G]| (6)

=

∫
dhχk(h)

2Ds
MM ′(h)〈s,M |I〉〈I|s,M ′〉 ,

where χk(h) = TrDk(h) is the character of the group
element h ∈ SU(2) for the spin-k representation. An
interesting formula6 for distributions over SU(2) is:

δSO(3)(h) =
∑

n∈N

(2n+ 1)χn(h) = −2
∑

k∈ N

2

χ2
k(h) . (7)

Since the spin s in the intermediate channel is always an
integer, we can sum over the loop spin k and obtain the

5 We use the useful realization of the product of two Clebsh-
Gordan coefficients as an integral over the product of three
Wigner-matrices:

C
k,s|k
m̃,M|m

C
k|k,s
m′|m̃′,M′

= (2k+1)

∫
dhDs

MM′ (h)D
k
m̃m̃′ (h)D

k
m′m(h−1) .

6 We distinguish the δ-distribution on SU(2), which expands over
all spins in N/2, and the δ-distribution on SO(3), which involves
only integer spins. Then we use the tensor product formula for
characters, recoupling two copies of a spin k:

∀k ∈
N

2
, χ2

k =
2k∑

n=0

χn , ∀n ∈ N∗ , χn = χ2
n

2

− χ2
n−1

2

.
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density matrix ρ:

ρ = −
1

2

∑

k

ρk = 〈s,M |I〉〈I|s,M〉 = Isj1,..,jN , (8)

which we recognize as the identity of the boundary
Hilbert space Bs

j1,..,jN
.

This not only shows that the boundary states induced
by a one-loop bulk cover the whole boundary Hilbert
space, but it also provides an explicit decomposition of
the identity on the boundary space in terms of intertwin-
ers with one self-loop. This allows to decompose an ar-
bitrary boundary state in BN in terms of those one-loop
spin networks, thus providing them with an interpreta-
tion of coherent bulk states.

II. FROM BOUNDARY STATES TO BULK

STATES AND VICE-VERSA

The mathematical result proved above has a direct ap-
plication to the question of the local reconstruction of
the bulk geometry from the boundary state in LQG. The
minimal reconstruction does not require a complex graph
structure in the bulk, we only need a single loop in the
bulk. Using the formula for the decomposition of the
identity on Bs

j1,..,jN
in terms of one-loop bulk states, an

arbitrary boundary state unfolds on a graph with one in-
ternal loop and determines the (probability amplitude for
the) values of the internal holonomy G, internal spin k
living on the loop and the closure defect spin s. From this
point of view, the boundary state does not carry further
information on the bulk structure and it seems that we
should consider any more complicated graph structure in
the bulk as gauge degrees of freedom.
This can be put in contrast with the loopy spin net-

work framework developed in [22] in an attempt to de-
fine a consistent coarse-graining procedure for loop quan-
tum gravity, proposing to consider the dynamics of spin
networks on a fixed graph background but allowing for
an arbitrary number of self-loops attached to each node.
These self-loops (or little loops as named in [22]) are in-
terpreted as representing local excitations of curvature
(localized at each node of the background graph). Here,
our result seems to collapse this multi-loop structure and
require a single loop at each graph node to deal with the
coarse-graining of the theory.
So we formulate a very crude proposal, which will nec-

essarily need to be refined: the Hamiltonian constraints
imposing diffeomorphism invariance can be implemented
in loop quantum gravity as a gauge invariance render-
ing all bulk graph and spin network states to be gauge-
equivalent to a one-loop bulk state. Although this would
drastically simplify the theory, it does not reduce to a
topological BF theory and is clearly an extension beyond
it: in BF theory, all internal loops are pure gauge and
can be entirely gauged-out, while here we allow for one-
loop states and thus for local curvature and local degrees
of freedom living on those loops. This is consistent with

the formulation of general relativity as a BF theory with
extra constraints, which is the standard starting point
for constructing spinfoam path integrals for implement-
ing the dynamics of loop quantum gravity [9, 23–25] (see
[26] for a review).
Let us try to be more explicit and use the simplified

setting of flower graphs to illustrate our approach. We
consider graph with a single vertex and L loops attached
to it, as on fig.3, as introduced to the context of loop
quantum gravity in [22, 27]. We could attach exterior
legs carrying spins ji but they will not be coupled to the
spins on the loops in our examples of dynamics, although
there will clearly be an possibility to investigate further
in future work. The spin network states on a flower graph
with L loops or petals are labelled by spins k1,.., kL and
a central intertwiner IL living in their tensor products:

|{k1, .., kL}, IL〉 , IL ∈ InvSU(2)

[ L⊗

l=1

Vkl ⊗ Vkl

]
. (9)

Let us call l, l′ the two half-edges of each loop connected

k1

k2

k3

kL

•
IL

11’
2
2’

FIG. 3: A spin network state on a flower graph, with a single
central vertex and L loops/petals: the L spins k1,..,kL live on
pair of half-edges and are recoupled by the intertwiner IL.

to the vertex. The BF dynamics is encoded in the equiv-
alence relation between spin networks:

|{k1, .., kL}, IL〉 ∼
BF

|{k1, .., ki −
1

2
, .., kL}, ĨL〉 , (10)

where the new intertwiner ĨL is obtained from the initial
one IL through a Fll′ -operator, as defined in the U(N)
framework for SU(2)-intertwiners [28, 29], which lowers
the spins ki by

1
2 while preserving the SU(2)-invariance.

Let us choose i = L. Then, as kL decreases, we eventually
get kL = 0, which is equivalent to no loop L at all:

|{k1, .., kL}, IL〉 ∼
BF

|{k1, .., kL−1}, ĨL−1〉 , (11)

where the reduced intertwiner ĨL−1 is obtained from IL
by contracting it with the states on the two half-edges
L,L′ glued by the identity group element I. This equiv-
alence can be realized through the action of (modified)
holonomy operators, as shown in detail in [22], and ulti-
mately means that all loops can be removed: all flower
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states are equivalent and they are equivalent to the trivial
vaccuum state with no loop at all.
We would like to put this topological case in contrast

with a non-trivial example where the coarse-grained state
retain information on the bulk geometry. We introduce
an “spin-preserving” , or “area-preserving”, equivalence
relation, which couples pair of loops:

|{.., ki, .., kj , ..}, IL〉 ∼
new

|{.., ki +
1

2
, .., kj −

1

2
, ..}, ĨL〉 ,

where the new intertwiner ĨL is obtained from IL
by a product operator F †

ii′Fjj′ , increasing the spin ki
and lowering the spin kj while preserving the SU(2)-
invariance. This equivalence relation preserving the to-
tal area around the vertex,

∑
l kl. Ultimately, setting as

many spins as possible to 0, we are left with a single loop
carrying the total area:

|{k1, .., kL}, IL〉 ∼
new

|{

L∑

l=1

kl}〉 , (12)

where the bivalent intertwiner, for the one-loop case,
is unique. This provides a first example in the simpli-
fied setting on flower graphs of non-trivial loop quantum
gravity dynamics, such that spin network states are all
dynamically-equivalent to single loop bulk states.

In order to make this proposal explicit in general, we
need the operator(s) at the quantum level which gen-
erate(s) the gauge invariance under diffeomorphism be-
tween arbitrary graphs and states and map(s) any bulk
spin network state onto the corresponding one-loop bulk
state. Here we follow the coarse-graining procedure,
“coarse-graining by gauge-fixing” defined in detail in
[21, 22, 30] to project any bulk state onto the correspond-
ing boundary state and then use the formula presented
in the previous section to map that boundary state onto
the corresponding one-loop bulk state. More generally,
we can generalize this logic to any coarse-graining proce-
dure defined for kinematical spin network states and turn
it into a definition of the gauge invariance implementing
the dynamics of spin networks in loop quantum grav-
ity. This underlines the fundamental physical relevance
of a coarse-graining procedure for spin networks. And
it underlines the need for a systematic study of coarse-
graining procedures in order to classify them and analyze
the universality of their flows.
Finally, this proposal would automatically implement

the holographic principle in loop quantum gravity: phys-
ical states for the bulk geometry would be exactly gauge-
equivalent to one-loop bulk states and thus, in other
words, gauge-equivalent to boundary states.

Outlook & Conclusion

We proved that it is possible to interpret all bound-
ary states, on a quantum surface with N punctures, as

spin network states on a bulk graph consisting in a unique
vertex dressed with an intertwiner and a single little loop
attached to it and carrying an arbitrary SU(2) holonomy.
This led us to the idea of “dynamics by coarse-graining”
for loop quantum gravity, where the Hamiltonian con-
straints would translate to gauge transformations map-
ping arbitrary bulk spin network states to one-loop bulk
states. This would mean that physical states (solving
the Hamiltonian constraints) would be in a one-to-one
correspondence with boundary states. It would be a
straightforward extension of the dynamics of BF theory:
(little) loops would not be completely pure gauge but al-
most, so that we gauged-out all internal loops but one
for any bounded region of space. Although this is, for
now, more the outline of a proposal than an explicit real-
ization, this framework would automatically implement
the holographic principle in the heart of loop quantum
gravity.
This proposal implicitly means that there is no

diffeomorphism-invariant observable - that is an operator
commuting with the quantum Hamiltonian constraints -
measuring the geometry of a bounded finite region of
space that is sensitive to fine details to the bulk graph
structure. Identifying such an observable (e.g. such that
its spectrummeasures the number of bulk vertices or bulk
loops) would be a great progress for loop quantum grav-
ity and would imply that the Hilbert space of physical
states inside a bounded region be larger than just one-
loop bulk states. This could be investigated in recent
proposals of Hamiltonian constraints for loop quantum
gravity [31, 32].
To go further along this line of investigation, the next

step would be to check whether our conclusion is robust
to the proposed extensions of spin network states, for in-
stance if we consider both curvature and torsion defects
with spin networks labeled with Drinfeld double repre-
sentations (based on exponentiated fluxes) as in [15, 33]
or if we add the information of the Virasoro currents liv-
ing on the surfaces (encoding information on the intrinsic
geometry of the surface) as advocated in [19]. Consid-
ering the latter proposal, it will be very interesting to
understand how the coarse-graining procedure for spin
networks could lead to conformal field theory states on
the boundary and how such a proposal for the loop quan-
tum gravity dynamics fits with the possibility of a local
gravity/CFT correspondence.
Finally, it would be essential to understand the relation

between the point of view we developed and the recent
result by Anzà and Chirco [7] that a complicated-enough
bulk (defined by a graph with a large enough number of
internal loops) would typically lead to thermal boundary
states. This points towards the necessity of a finer anal-
ysis of the bulk-to-boundary relation in loop quantum
gravity. For instance, we can formulate the issue of pu-
rification in quantum geometry: considering an arbitrary
mixed boundary state defined by an arbitrary density ma-
trix, can we identify it as the projection of a pure bulk

state defined on a potentially complicated bulk graph?
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