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Abstract

An introduction to loop quantum gravity is given, focussing on the fundamental aspects of the
theory, different approaches to the dynamics, as well as possible future directions. It is structured
in five lectures, including exercises, and requires only little prior knowledge of quantum mechanics,
gauge theory, and general relativity. The main aim of these lectures is to provide non-experts
with an elementary understanding of loop quantum gravity and to evaluate the state of the art
of the field. Technical details are avoided wherever possible.
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1 Why (loop) quantum gravity

1.1 Motivations for studying quantum gravity

In this section, we are going to gather some motivations for conducting research in quantum
gravity. The choice given here represents the personal preferences of the author and includes
arguments that he considers to be especially compelling. Clearly, more arguments can be given
in favour of studying quantum theories of gravity, and we do not mean to criticise them via our
omissions here.

• Geometry is determined by matter, which is quantised
The classical Einstein equations Gµν = 8πG

c4
Tµν tell us that geometry, described by the

Einstein tensor Gµν = Rµν − 1
2Rgµν , is determined by the energy-momentum tensor Tµν .

Quantum field theory on the other hand tells us that matter is quantised, i.e. the energy-
momentum tensor becomes an operator T̂µν on a Hilbert space. There are essentially two
possibilities to reconcile this:

1. Also geometry has to be quantised, leading to a “Quantum Einstein Equation” of the
form Ĝµν = 8πG

c4
T̂µν , or a similar formulation of the quantum theory, e.g. via path

integrals, or as an embedding in a more general framework such as string theory.

2. Geometry stays classical and the energy-momentum tensor entering the Einstein eq-
uitations is an expectation value in a quantum state depending on the classical ge-
ometry. This approach is known as semiclassical gravity and interesting to consider
even if one expects the first possibility to be realised in nature.

While the second approach seems to be a logical possibility, most researchers consider the
first case to be more probable and the second as an approximation to it, including the
author.

• Singularities in classical general relativity
Singularities appear generically in classical general relativity. The most famous ones are
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the cosmological singularity at the beginning of our universe, the “big bang”, as well as the
singularities at the centre of black holes. Appearance of singularities in physical theories
usually signals the breakdown of the theoretical description and the need to go beyond the
current framework. In particular, the strong gravitational fields close to such singularities
signal that quantum effects might become relevant and alter the classical trajectories. An
explicit example of this, curing the singularity, will be discussed in detail in the second
lecture.

• Black hole thermodynamics
Classical black holes exhibit a very intriguing thermodynamic behaviour, and laws resem-
bling the three laws of thermodynamics characterise their behaviour. In particular, one
assigns an entropy to black holes which is proportional to their surface area. This observa-
tion signals that black holes could have microscopic constituents which are responsible for
this entropy. These microscopic constituents are expected to be the degrees of freedom of
a suitable quantum theory of gravity, and counting them should result in the black hole’s
entropy.

• Cutoff for quantum field theory
In quantum field theory, integrations in the evaluations of Feynman integrals usually lead
to infinities, which have to be subtracted by suitable regularisation schemes. On the other
hand, one would expect a fundamental theory of nature to be finite. It is conceivable that
quantum gravity cures such infinities by providing a suitable physical cutoff, and examples
of this have been given for example in string theory and loop quantum gravity. Another
popular way to put this problem is to consider a (virtual) photon which exceeds Planck
energy: its de Broglie wave length becomes shorter than the Planck length, and one would
naively expect a black hole to form. To understand the details of what is happening here,
one needs a quantum theory of gravity.

1.2 Possible scenarios for observations

• Modified dispersion relations / deformed symmetries
Since quantum gravity is expected to alter spacetime at the Planck scale, it is plausible that
quantum theories of gravity might modify the dispersion relations of matter propagating
on these quantum spacetimes or deform symmetries such as Lorentz invariance. However,
there exist strong bounds from experiments which are sensitive to such effects piling up
over a long time or distance, such as observations of particle emission in a supernova [1].

• Quantum gravity effects from black holes
While quantum gravity is believed to resolve the singularities inside a black hole, an
observation of this fact is a priori impossible due to the horizons shielding the singularity.
However, some scenarios for observations are conceivable: it is first of all possible that
quantum gravity effects pile up over time and leak outside of the horizon, as the model in
[2] shows. Associated phenomenology has been discussed in [3, 4]. On the other hand, it
might be possible to observe signatures of evaporating black holes which were formed at
colliders [5], which however generally requires a lowering of the Planck scale in the TeV
range, possibly due to extra dimensions [6].

• Cosmology
Quantum gravity is expected to provide a resolution for the big bang singularity at the
beginning of our universe. In such a scenario, observational effects from the pre-inflationary
era due to quantum gravity could still be detectable in the sky. A possible scenario was
discussed in, e.g., [7], and more recent work can be found in [8].

• Particle spectrum from unification
A theory of quantum gravity based on unification, such as string theory, can lead to
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observable effects also due to the prediction of additional matter fields at energies much
below the Planck scale. Such scenarios are considered mainly in string theory and often
include supersymmetry, see, e.g., [9, 10].

• Gauge / Gravity
An indirect way of observing quantum gravity effects is via the gauge / gravity correspon-
dence, which relates quantum field theories and quantum gravity. Via the gauge / gravity
dictionary, phenomena happening in quantum gravity, i.e. beyond the classical gravity
or classical string theory approximation of the correspondence, then have an analogue in
quantum field theory which might be observable, or already observed, see, e.g., [11–13].

1.3 Approaches to quantum gravity

In this section, we will list the largest existing research programmes aimed at finding a quantum
theory of gravity, while unfortunately omitting some smaller, yet very interesting, approaches.
A much more extensive account is given in [14]. For an historical overview, we recommend [15].

• Semiclassical gravity
Semiclassical gravity is a first step towards quantum gravity, where matter fields are treated
using full quantum field theory, while the geometry remains classical. However, semiclassi-
cal gravity goes beyond quantum field theory on curved spacetimes: the energy-momentum
tensor determining the spacetime geometry via Einstein’s equations is taken to be the ex-
pectation value of the QFT energy-momentum tensor. The state in which this expectation
value is evaluated in turn depends on the geometry, and one has to find a self-consistent
solution. Many of the original problems of semi-classical gravity, see for example [16], have
been addressed recently and the theory can be applied in practise, e.g. as. in [17].

• Ordinary quantum field theory
The most straight forward approach to quantising gravity itself is to use ordinary perturba-
tive quantum field theory to quantise the deviation of the metric from a given background.
While it turned out that general relativity is non-renormalisable in the standard picture
[18], it is possible to use effective field theory techniques in order to have a well-defined no-
tion of perturbative quantum gravity up to some energy scale lower than the Planck scale
[19]. Ordinary effective field theory thus can describe a theory of quantum gravity at low
energies, whereas it does not aim to understand quantum gravity in extreme situations,
such as cosmological or black hole singularities.

• Supergravity
Supergravity has been invented with the hope of providing a unified theory of matter and
geometry which is better behaved in the UV than Einstein gravity. As opposed to stan-
dard supersymmetric quantum field theories, supergravity exhibits a local supersymmetry
relating matter and gravitational degrees of freedom. In the symmetry algebra, this fact
is reflected by the generator of local supersymmetries squaring to spacetime-dependent
translations, i.e. general coordinate transformations.

While the local supersymmetry generally improved the UV behaviour of the theories, it
turned out that also supergravity theories were non-renormalisable [20]. The only possible
exception seems to be N = 8 supergravity in four dimensions, which is known to be finite
at four loops, but it is unclear what happens beyond [21]. Nowadays, supergravity is
mostly considered within string theory, where 10-dimensional supergravity appears as a
low energy limit. Due to its finiteness properties, string theory can thus be considered as
a UV-completion for supergravity. Moreover, 11-dimensional supergravity is considered
as the low-energy limit of M-theory, which is conjectured to have the 5 different string
theories as specific limits.
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• Asymptotic safety
The underlying idea of asymptotic safety [22] is that while general relativity is perturba-
tively non-renormalisable, its renormalisation group flow might possess a non-trivial fixed
point where the couplings are finite. In order to investigate this possibility, the renormali-
sation group equations need to be solved. For this, the “theory space”, i.e. the space of all
action functionals respecting the symmetries of the theory, has to be suitably truncated
in practise. Up to now, much evidence has been gathered that general relativity is asymp-
totically safe, including matter couplings [23], however always in certain truncations, so
that the general viability of the asymptotic safety scenario has not been rigorously estab-
lished so far. Also, one mostly works in the Euclidean. At microscopic scales, one finds
a fractal-like effective spacetime and a reduction of the (spectral) dimension from 4 to 2
(or 3/2, which is favoured by holographic arguments [24], depending on the calculation).
Moreover, a derivation of the Higgs mass has been given in the asymptotic safety scenario,
correctly predicting it before its actual measurement [25].

• Canonical quantisation: Wheeler-de Witt
The oldest approach to full non-perturbative quantum gravity is the Wheeler-de Witt
theory [26, 27], i.e. the canonical quantisation of the Arnowitt-Deser-Misner formulation
[28] of general relativity. In this approach, also known as quantum geometrodynamics,
one uses the spatial metric qab and its conjugate momentum P ab = 1

2κ

√
q
(
Kab − qabK

)
,

where Kab is the extrinsic curvature, as canonical variables.

The main problems of the Wheeler-de Witt approach are of mathematical nature: the
Hamiltonian constraint operator is extremely difficult to define due to its non-linearity
and a Hilbert space to support is is not known. It is therefore strongly desirable to find
new canonical variables for general relativity in which the quantisation is more tractable.
While the so called “problem of time”, i.e. the absence of a physical background notion of
time in general relativity, is present both in the quantum and the classical theory, possible
ways to deal with it are known and continuously developed [29, 30].

• Euclidean quantum gravity
In Euclidean quantum gravity, see [31] for an overview, a Wick rotation to Euclidean
space is performed, in which the gravity path integral is formulated as a path integral
over all metrics. Most notably, this approach allows to extract thermodynamic properties
of black holes. In practise, the path integral is often approximated by the exponential
of the classical on-shell action. Its main problematic aspect is that the Wick rotation
to Euclidean space is well defined only for a certain limited class of spacetimes, and in
particular dynamical phenomena are hard to track.

• Causal dynamical triangulations
Causal dynamical triangulations (CDT) [32] is a non-perturbative approach to rigorously
define a path integral for general relativity based on a triangulation. It grew out of the
Euclidean dynamical triangulations programme, which encountered several difficulties in
the 90’s, by adding a causality constraint on the triangulations. The path integral is then
evaluated using Monte Carlo techniques. The phase diagram of CDT in four dimensions
exhibits three phases, one of which is interpreted as a continuum four-dimensional universe.
Moreover, the transition between this phase and one other phase is of second order, hinting
that one might be able to extract a genuine continuum limit. More recently, also Euclidean
dynamical triangulations has been reconsidered and evidence for a good semiclassical limit
has been reported [33].

• String theory
String theory was initially conceived as a theory of the strong interactions, where the
particle concept is replaced by one-dimensional strings propagating in some background
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spacetime [34–36]. It was soon realised that the particle spectrum of string theory in-
cludes a massless spin 2 excitation, which is identified as the graviton. Moreover, internal
consistency requirements demand (in lowest order) the Einstein equations to be satisfied
for the background spacetimes. String theory thus is automatically also a candidate for a
quantum theory of gravity. The main difference of string theory with the other approaches
listed here is therefore that the quantisation of gravity is achieved via unification of gravity
with the other forces of nature, as opposed to considering the problem of quantum gravity
separately.

The main problem of string theory is that it seems to predict the wrong spacetime dimen-
sion: 26 for bosonic strings, 10 for supersymmetric strings, and 11 in the case of M-theory.
In order to be compatible with the observed 3 + 1 dimensions at the currently accessible
energies, one needs to compactify some of the extra dimensions. In this process, a large
amount of arbitrariness is introduced and it has remained an open problem to extract pre-
dictions from string theory which are independent of the details of the compactification.
Also, our knowledge about full non-perturbative string theory is limited, with the main
exceptions of D-branes and using AdS/CFT as a definition of string theory.

• Gauge / gravity
The gauge / gravity correspondence [37], also known as AdS/CFT, has grown out of string
theory [38–40], but was later recognised to be applicable more widely. Its statement is a
(in most cases conjectured) duality between a quantum gravity theory on some class of
spacetimes, and a gauge theory living on the boundary of the respective spacetime. Once
a complete dictionary between gravity and field theory computations is known, one can
in principle use the gauge / gravity correspondence as a definition of quantum gravity on
that class of spacetimes.

The main problem of gauge / gravity as a tool to understand quantum gravity is the lack
of a complete dictionary between the two theories, in particular for local bulk observables.
Also, it is usually very hard to find gauge theory duals of realistic gravity theories already
at the classical gravity level (i.e. in an appropriate field theory limit), and many known
examples are very special supersymmetric theories.

• Loop quantum gravity
Loop quantum gravity [41–43] originally started as a canonical quantisation of general
relativity, in the spirit of the Wheeler-de Witt approach, however based on connection
variables parametrising the phase space of general relativity, e.g. the Ashtekar-Barbero
variables [44, 45] based on the gauge group SU(2). The main advantage of these variables
is that one can rigorously define a Hilbert space and quantise the Hamiltonian constraint.
The application of the main technical and conceptual ideas of loop quantum gravity to
quantum cosmology resulted in the subfield of loop quantum cosmology [46, 47], which
offers a quantum gravity resolution of the big bang singularity and successfully makes
contact to observation.

The main problem of loop quantum gravity is to obtain general relativity in a suitably
defined classical limit. In other words, the fundamental quantum geometry present in loop
quantum gravity has to be coarse grained in order to yield a smooth classical spacetime,
while the behaviour of matter fields coupled to the theory should be dictated by standard
quantum field theory on curved spacetimes in this limit. The situation is thus roughly the
opposite of that in string theory. Also, it has not been possible so far to fully constrain the
regularisation ambiguities that one encounters in quantising the Hamiltonian constraint.
In order to cope with these issues, a path integral approach, known as spin foams [48], has
been developed, as well as the group field theory approach [49], which is well suited for
dealing with the question of renormalisation.
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1.4 General comments on the canonical quantisation programme

The aim of this lecture series is to provide an introduction to the canonical formulation of loop
quantum gravity. As a starting point, it is instructive to consider the canonical quantisation
programme quite abstractly and highlight where choices have to be made, and which important
steps have to be taken.

1. Hamiltonian formulation

As a first step, a Hamiltonian formulation of general relativity has to be constructed. For
this, one needs to foliate the spacetime manifold into equal time hypersurfaces, which
restricts the allowed spacetimes to be globally hyperbolic. This is for example achieved
by the Arnowitt-Deser-Misner formulation [28], in which the spatial metric qab and its
momentum P ab are the conjugate variables.

In the process of the Legendre transform, one finds four independent constraints per point
on the spatial slice, the Hamiltonian constraint H ≈ 0 and the vector constraints Ha ≈ 0.
While the vector constraint simply generates spatial diffeomorphisms, the action of the
Hamiltonian constraint is more complicated, as it includes the dynamics of the theory and
generates time-like diffeomorphisms only on-shell. Together, these constraints generate
the hypersurface deformation algebra, also known as Dirac algebra. The constraints can
either (partially) be solved classically, thereby reducing the free phase space coordinates
per point to 2 + 2, or they can be quantised and subsequently solved. Similarly, one can
also enlarge the phase space prior to quantisation and account for the new degrees of
freedom by adding constraints.

2. Choice of a preferred Poisson-subalgebra

Before quantisation, we are free to choose a different set of canonical variables to describe
the gravitational phase space. An example would be to use SU(2) connection variables
in 3 + 1 dimensions, the Ashtekar-Barbero variables [44, 45], which forces us to add an
additional Gauß constraint to the theory.

Since we cannot quantise all functions on the classical phase space, we have to choose a
preferred subalgebra which we later want to represent as operators. This subalgebra should
be large enough to separate points on the phase space. For example, this subalgebra could
include all holonomies that we can construct from a connection parametrising the phase
space.

3. Hilbert space representation

We now look for a representation of our preferred subalgebra of phase space functions on
a Hilbert space so that the reality conditions of the classical theory are implemented as
Ô∗ = Ô† for any O in the preferred subalgebra. This Hilbert space is usually denoted as
“kinematical” if we still have constraints left to impose.

An important question is to investigate whether the representation is unique under some
natural assumptions, since this is generically not the case for infinitely many degrees of
freedom.

4. Imposing constraints

If the constraints have not been solved at the classical level, we need to impose them on the
kinematical Hilbert space. This process might be gradual, i.e. we could first solve some
part of the constraints, leading to a new Hilbert space, and then impose the remaining
constraints. It is often the case that solutions to the constraints are not normalisable w.r.t.
the kinematical scalar product, so that a new scalar product has to be introduced. This
process is for example formalised in the refined algebraic quantisation programme [50, 51].
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In this process, attention has to be payed to possible anomalies in the quantum constraint
algebra. In particular, the structure functions in the Dirac algebra make this a very difficult
task.

5. Physical Hilbert space and observables

Finally, the physical Hilbert space is obtained after all constraints are solved and a suitable
scalar product on the space of their solutions has been constructed. It then remains to
understand the physical content of the theory, i.e. to extract physics from the gauge
invariant “time-less” observables.

1.5 Arguments for canonical loop quantum gravity

We will now present a list of arguments for studying loop quantum gravity as a specific approach
to quantum gravity. The selection is according to the preferences of the author and thus subject
to personal bias. It is neither meant to be exhaustive, nor to imply that these arguments cannot
be used in favour of other approaches.

Before starting, let us summarise in a few sentences the result of the quantisation procedure
which starts with a classical reformulation of general relativity in terms of connection variables.
The Hilbert space of the theory is spanned by so-called spin network functions, which can be
roughly interpreted as spatial lattices labelled with quantum numbers encoding the geometry.
Matter fields can be coupled to the theory similarly as in lattice gauge theory. The quantum
dynamics evolves those lattices and matter in particular backreacts on them. Another main
difference to standard lattice gauge theory is that one can consider superpositions of lattices.

• No extra structure
The framework of loop quantum gravity does, for the most part, not introduce any extra
structure on top of general relativity and quantum field theory. It follows well established
canonical quantisation techniques, based on a specific choice of connection variables and
ideas which have been successful in lattice gauge theory.

• Background independence is taken seriously
No expansion around a certain background spacetime is employed, and background in-
dependence is at the core of the quantum theory. While this poses certain technical
challenges, it upholds the key lesson of general relativity. In the resulting theory, mat-
ter fields are really living on the non-perturbative quantum geometry, as opposed to the
perturbative graviton just being another particle.

• Quantum geometry as a UV regulator
The quantum geometry appearing in loop quantum gravity naturally cuts off UV diver-
gences [52] due to discrete spectra of geometric operators and background independence.
The Hamiltonian (constraint) of the theory, including standard model matter, is a finite
and well defined operator without the need of renormalisation. Loop quantum gravity is
thus a candidate for a rigorous definition of quantum field theory.

• Entanglement = geometry
The quantum geometry described by loop quantum gravity suggests and deep relation
between geometry and the entanglement entropy of the gravitational field. Quanta of area
always are accompanied by quanta of entanglement [53–55].

• Freedom in choice of variables
In the Hamiltonian approach, there is a large freedom to choose suitable canonical vari-
ables before quantisation. In particular, they do not need to be pullbacks of variables
in a covariant action principle. By choosing suitable variables, certain problems such as
symmetry reductions [56–59] or the impositions of certain gauge fixings [60, 61] can be
achieved much more efficiently than with standard variables.
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1.6 Criticism of canonical loop quantum gravity

In this section, we will gather some criticism which has been expressed towards loop quantum
gravity and comment on the current status of the respective issues. Again, the points raised
here are the ones most serious in the view of the author, and different lists and opinions could
be expressed by others.

• Obtaining general relativity in the appropriate limit
The kinematics and dynamics of loop quantum gravity are defined in an ultra high energy
quantum gravity regime, where the usual notion of continuum spacetime or the idea of
fields propagating on a background do not make sense any more. It is thus of utmost
importance to understand how general relativity and quantum field theory on curved
spacetime emerges in a suitable limit, and what the quantum corrections are. There does
not seem to complete agreement on how such a limit should be constructed, and depending
on the route chosen, one finds different statements about the status of this endeavour in
the literature. The level of complexity of this task can be compared to having a theory of
atoms and the aim to compute the properties of solids.

In order to understand the current status, let us remark that there are two limits which
can be taken in order to obtain a spacetime of large scale in loop quantum gravity: large
quantum numbers (spins), or many quantum numbers, i.e. very fine spin networks. Much
is known about the limit of large spins, where the number of quanta is fixed. Here, one
finds strong evidence that the theory reproduces general relativity on large scales both in
the canonical [62, 63] and in the covariant approach [64, 65]. The resulting semiclassical
picture however corresponds to Regge-gravity on a given lattice which is specified by the
underlying graph on which the (coherent) quantum state labelled by the large spins lives.
This limit is usually referred to as the “semiclassical” limit in the literature and should
not be confused with the following:

On the other hand, one can leave the quantum numbers arbitrary, in particular maximally
small, and only increase the number of quanta. This corresponds to a continuum limit
and it should be a priori preferred over the large spin limit in the opinion of the author.
In particular, the large spin and continuum limit do not need to commute and may in
principle lead to different physics, even on macroscopic scales. The problem with this
approach is that we know only very little about the dynamics in this sector of the theory,
apart from several concrete proposals for its implementation. The dynamics on large scales
is then expected to emerge via a coarse graining procedure. More discussion on this point
of view can be found in [66, 67], see also [68] for recent progress on the related issue of
renormalisation. The dynamical emergence of a low spin sector is discussed in [69] within
group field theory. Interesting recent work on constructing quantum states with long range
correlations found in quantum field theory can be found in [70].

As an additional subtlety, we can consider arbitrary superpositions of spin networks, in
other words we can have quantum superpositions of “lattices”. The impact on the dynam-
ics of this feature is so far unclear and may strongly depend on the regularisation details
of the Hamiltonian, e.g. whether it is graph preserving or not, and thus superselecting.
Especially here it becomes clear that while individual basis elements in the Hilbert space
can be given a certain interpretation as discrete geometries, generic states could behave
quite differently and conclusions based on certain lattice-like truncations of the full theory
need to be taken with great care. Concerning a limit to obtain quantum field theory on
curved spacetimes, we point out the pioneering works [71–75].

To conclude, the situation of whether general relativity emerges in the continuum limit is
so far unclear, whereas there is strong evidence for a Regge-truncation thereof emerging in
the large spin limit. Whether one is satisfied with one or the other limit, or a combination
of both, also depends on the following problem.
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• Local Lorentz invariance
It is sometimes suggested that loop quantum gravity is not locally Lorentz invariant in
the sense that modified dispersion relations might arise which could be in conflict with
observation. Unfortunately, our current understanding of loop quantum gravity does not
allow us to answer whether there are Lorentz violations, and how severe they might be. In
order to make a meaningful statement, one would essentially have to identify a quantum
state corresponding to Minkowski space, which should be thought of as a (possibly infinite)
superposition of lattices, put matter fields thereon, and track their dynamics, including
back-reaction, on a coarse grained scale where geometry can already be considered smooth.
This is a formidable task, and currently out of reach not because of lacking proposals for
how to define the involved structures, but mainly due to computational complexity.

In order to judge certain statements that one might find in the literature or on the internet,
one should keep the following in mind to avoid confusion:

– Discrete eigenvalues of geometric operators 6=⇒ Lorentz violations

One might naively think that discrete eigenvalues of geometric operators violate spe-
cial relativity: if an observer at rest measures a certain discrete eigenvalue of, say,
an area, what does another observer measure who is not at rest? The short answer
is that he might in principle measure any value for the area, as long as it is in the
(discrete) spectrum of the area operator. However, the expectation value can still
transform properly according to special relativity. A well-known example of this is
the theory of angular momentum: while the eigenvalues of components of the angular
momentum are always (half)-integers, expectation values transform properly accord-
ing to the continuous rotation symmetry. This point has been made for example in
[76], with further discussion in [77], where the ideas of [76] are verified in the context
of a simplified toy model related to 3d Euclidean LQG. Similar conclusions are also
drawn in other contexts [78, 79].

– Internal gauge groups do not determine isometries of the spacetime
Different formulations of loop quantum gravity, canonically or covariant, use differ-
ent internal gauge groups. While the covariant path integral formulations of the
Lorentzian theory use either SL(2,C) [80] or SU(2) [81] in a gauge-fixed version, the
Lorentzian canonical theory in 3+1 dimensions can be formulated using either SU(2)
[45], SO(1, 3) [82–85], or SO(4) [85]. This is because one is coding the spatial metric
and its momentum in a connection, whereas the signature of spacetime in the canon-
ical formalism is determined by the Hamiltonian constraint, more precisely a relative
sign between two terms. In fact, the structure of spacetime, coded in the hypersurface
deformation algebra, is already set at the level of metric variables, and completely
insensitive of the additional gauge redundancy that one introduces by passing to
connection variables. Also, it does not matter for this whether the connection that
one uses can be interpreted as the pullback of some manifestly covariant spacetime
connection. While it is a possibility that only a certain choice of variables or in-
ternal gauge group leads to a consistent quantum theory in agreement with current
bounds on Lorentz violations, such a conclusion cannot be drawn given our current
understanding of the theory.

– Expectations for possible Lorentz violations
In order to parametrise the violation of Lorentz invariance in a model-independent
way, one usually constrains the free parameters cn in a modified dispersion relation
such as

E2 = m2 + p2 +
∑

n≥3

cn
pn

En−2
pl

, (1.1)

where Epl =
√
~c/G is the Planck energy. It is worthwhile to formulate a general
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expectation at what order one expects the first quantum corrections to appear. While
an appropriate calculation as outlined above will finally have to decide this question,
we can still try to extrapolate from our current understanding of loop quantum gravity
at what order effects could occur. At the moment, the best understood setting is
homogeneous and isotropic loop quantum cosmology, where we know how to compute
the quantum corrections to the classical theory. We obtain a correction of the order
~, i.e. the effective Friedmann equation

(
ȧ

a

)2

∼ ρ
(

1− ρ

ρcrit

)
, ρcrit ∼

1

G2~
. (1.2)

If we furthermore invoke anomaly freedom of the effective constraints for inhomoge-
neous perturbations in cosmology [86, 87] or in the spherically symmetric setting [88],
we obtain a universal deformation β 6= 1 of the propagation equation for gravity and
matter as

∂2φ2

∂t2
− β

a2
∆φ = S[φ] (1.3)

where S[φ] contains source and lower derivative terms and β depends on the spatial
metric and the extrinsic curvature, see [89, 90] for an overview. In the simplest case of
holonomy corrections, we have β = 1−2ρ/ρcrit. While the speed of light is affected in
this context, there is no dependence so far on the energy of the particle, as the energy
density ρ is that of the background. For the purpose of our estimate, we can however
include a qualitative form of backreaction by adding to the background energy density
the energy density of the particle under consideration, say a photon of frequency ω
and wave length λ = 2π/ω. We have ρPhoton ∼ EPhoton/λ

3
Photon = ~ω4/(2π)3. Using

this most naive approach, we estimate

1− β ∼ ρPhoton

ρcrit
∼ ~2G2ω4 ∼ E4

Photon

E4
Planck

. (1.4)

Therefore, we would expect that a frequency dependent speed of light would not
occur before order n = 6, which seems to be unconstrained so far [1], see however
also [91, 92]. It is important to mention again that this estimate is based on a very
naive inclusion of backreaction and that the issue of anomaly freedom of the constraint
algebra entering the derivation of (1.3) is not well understood in the full theory so
far. Therefore, these estimates need to be taken with great care and quantitative
predictions should definitely not be drawn from them. However, they show that
while it is natural to expect violations of Lorentz invariance from a theory of quantum
gravity, these violation can be heavily suppressed because there are two powers of
~ entering, one from the quantum gravity effect causing the change in propagation
speed, and the other from the particle contributing to the energy density determining
the magnitude of the effect.

Experimentally, it turns out that there are very strong constraints on the n = 3
terms, as well as quite strong constraints on n = 4 [1]. The fact that n = 6 seems
to be favoured by our analysis here points to an interesting window for observable
effects without apparent conflict to existing observations.

• Testability and ambiguities
A general problem for theories of quantum gravity is to come up with testable predictions
which are independent of free parameters in the theory that can be tuned in order to hide
any observable effect below the measurement uncertainty. Furthermore, one would like
to have a uniquely defined fundamental theory whose dynamics depend only on a finite
number of free parameters.
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In loop quantum cosmology, much progress towards predictions for observable effects have
been made [8, 93, 94], however the choice of parameters in the models, such as the e-
foldings during inflation, can so far hide any observable effects. Also, there are different
approaches to the dynamics of cosmological perturbations [47].

Within full loop quantum gravity (and also loop quantum cosmology), the Barbero-Immirzi
parameter β [45, 95], a free real parameter entering, e.g., the spectra of geometric operators,
constitutes a famous ambiguity. It enters the classical theory in a canonical transformation
which is not implementable as a unitary transformation or even an algebra automorphism
at the quantum level and thus constitutes a quantisation ambiguity. Since this parameter
can enter physical observables, one would like to fix it by an experiment or derive its (only
consistent) value by theoretical means. An example for how to fix it by theoretical means is
to consider black hole entropy computations and match them to the expected Bekenstein-
Hawking entropy. Within the original approach to black hole entropy from loop quantum
gravity, this gives a certain value for β [96], however this computation neglects a possible
running of the gravitational constant, i.e. it identifies the high and low energy Newton
constants. More recently, it has been observed that the Bekenstein-Hawking entropy can
also be reproduced by an analytic continuation of β to the complex self-dual values ±i [97],
which interestingly also agrees with a computation of the effective action [98]. In fact, the
classical theory is easiest when expressed in self-dual variables, so that it might turn out
that the value β = ±i could be favoured also in the quantum theory. The current problem
is however that the quantum theory is ill-defined for complex β and the above mentioned
results were obtained via analytic continuation from real beta.

In addition to quantisation ambiguities resulting from the choice of variables, as above,
there are quantisation ambiguities in the regularisation of the Hamiltonian constraint,
and thus the dynamics of the theory. These go somewhat beyond factor ordering, as the
techniques used in regularising the Hamiltonian also involve classical Poisson bracket iden-
tities which are used to construct otherwise ill-defined operators [99]. The requirement of
anomaly freedom of the quantum constraint algebra already removed many of those am-
biguities in Thiemann’s original construction [99]. The precise notion of anomaly freedom
used in [99] has been criticised on the ground that it corresponds to a certain “on-shell”
notion [100], which is however the one that makes sense in the context of [99]. More recent
work based on a slightly changed quantisation seems to make significant progress towards
the goal of implementing a satisfactory “off-shell” version of the quantum constraint alge-
bra, at least in simplified toy models, [101–104]. The possible regularisations then seem
to be very constrained, although no unique prescription has emerged so far.

To conclude, it is so far not possible to extract definite predictions from full loop quantum
gravity due to the existence of ambiguities in its construction, whose influence on the
dynamics is not well understood. However, there is promising recent work on the removal
of such ambiguities, which could eventually lead to clear predictions which would allow to
falsify the theory.

• Quantising hydrodynamics
It is possible that the dynamics of classical general relativity arise in a thermodynamic
limit from some more fundamental theory. This possibility was in particular stressed by
Jacobson in [105], where the Einstein equations are derived as an equation of state under
some natural assumptions. If such a scenario is realised in nature, then it is questionable
whether one should directly quantise general relativity to obtain a fundamental theory of
quantum gravity, as e.g. done in canonical LQG, or whether one should simply try to find
a fundamental theory that reduces to general relativity in a suitable limit.

This criticism is certainly warranted to a certain degree. However, taking it at face value,
it makes the task of “guessing” the correct fundamental theory from scratch very difficult.
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Instead, one can approach the issue of the quantum dynamics in loop quantum gravity from
a naturalness point of view, as e.g. done in group field theory or spinfoam models. Here,
one takes only the kinematical setting emerging from the canonical quantisation, selects
the quantum dynamics by appealing to simplicity, and checks whether they yield the
Einstein equations in a suitable limit. In fact, the kinematical structure of loop quantum
gravity is consistent with the basic ingredients of Jacobson’s derivation [106]. It should
also be stressed that even if the scenario of [105] is realised, then one could still learn from
quantising gravity: in an analogy to solid state physics, instead of obtaining the “atoms of
space”, one would obtain “phonons of space”, which still could provide valuable insights.

To conclude, research in loop quantum gravity makes the assumption that we can learn
about the microscopic degrees of freedom of quantum gravity by quantising diffeomorphism
invariant theories in a background independent way. While this strategy may turn out to
be misguided, it may also be very hard to find the correct microscopic description without
any such hints.

1.7 Exercises

Read about what other people have to say about quantum gravity and make up your own mind.

2 Elements of loop quantum gravity through cosmology

In this section, we will introduce some of the main aspects of loop quantum gravity at the
example of a simple cosmological model, following [107]. We consider a homogeneous and
isotropic spacetime in the presence of a massless and minimally coupled scalar field. Already
with this simple example, many important features of loop quantum gravity are visible and can
be grasped much easier than in the context of full general relativity, which involves many more
technicalities. We set c = ~ = 12πG = 1 (12πG = 1 instead of the usual 8πG = 1 gives the
biggest simplification here).

The introductory lectures in [108] give a far more complete account of the subject of this
section and we refer the interested reader there for more details. In this section, we mainly follow
[107] (with a few changes incorporating e.g. a more natural choice of physical scalar product and
Dirac observables based on [109], see also [110], and [111, 112] for other exactly soluble models).
Seminal papers on loop quantum cosmology include [113–115]. More recent developments of the
subject are summarised in [46, 47]. Since this is only a short presentation of a specific result, we
cannot discuss all the motivation and insights that were necessary to arrive at the final picture
sketched here, and we refer the interested reader to the cited literature.

As a word of caution, we need to mention that the qualitative picture obtained in this
section may not survive a more detailed analysis when inhomogeneities are taken into account.
In particular, invoking anomaly freedom of the algebra of effective constraints, one arrives at a
scenario where the signature of spacetime is changing before the bounce that replaces the big
bang happens, see [90] for an overview. These issues are however subject to current research
and no final conclusions have been drawn.

2.1 Preliminaries

We will leave a more detailed look at full general relativity for the next lecture. For now, let just
recall that the Einstein equations describe how matter influences the geometry of spacetime.
Spacetime is described by a Lorentzian 4-metric gµν , with µ, ν = 0, 1, 2, 3. In the case of a
homogeneous and isotropic spacetime, we may write the line element associated to the metric
as

ds2 = −N2dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (2.1)
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where N is the lapse function. Choosing N is a matter of gauge, and we will set it to 1 in
the following section on the classical dynamics, meaning that t measures proper time. For
quantisation, the most convenient choice is N = a3, as it renders the theory exactly solvable.
Let us pass now to the Hamiltonian description of this system. Again, we will leave details for
the next lecture and simply postulate now that the resulting Hamiltonian for homogeneous and
isotropic cosmology minimally coupled to a massless scalar field φ has the form

H = N

(
P 2
φ

2v
− b2v

2

)
(2.2)

where b = −3ȧ/a, v = a3V0, Pφ = −a3φ̇V0, and V0 is the fiducial1 (coordinate) volume of
the universe. The interpretation of v is thus to measure the volume of the universe. The
non-vanishing Poisson brackets are

{v, b} = 1 and {φ, Pφ} = 1. (2.3)

A peculiar feature of general relativity is that its Hamiltonian is constrained to vanish; we
write H ≈ 0 following [116]. This “weak equality” means that we can use H = 0 only at the end
of computations, in particular after evaluating Poisson brackets. In turn, H generates gauge
transformations. In our case, this is the freedom of choosing a time coordinate. Thus, it is not
a gauge invariant statement to ask for the volume v of the universe at a certain time t. Rather,
we should ask for the value of v when some other event takes place, e.g. when the scalar field
φ takes a certain value. We will come back to this issue soon. In the next lecture, this gauge
invariance will be generalised to also include the freedom to choose spatial coordinates, which
is (largely) fixed in the current context by our choice of metric.

2.2 Classical dynamics

Let us derive and solve the equations of motion for N = 1. Hamilton’s equations give

v̇ = {v,H} = −bv ḃ = {b,H} =
P 2
φ

2v2
+

1

2
b2 (2.4)

φ̇ = {φ,H} =
Pφ
v

Ṗφ = {Pφ, H} = 0. (2.5)

Furthermore, we can now use
H = 0 ⇔ P 2

φ = b2v2. (2.6)

First, we note that Pφ is a constant of motion. We insert (2.6) into (2.4) to obtain ḃ = b2, giving
b = −1

t−t0 . Inserting this into the first equation of (2.4) gives v̇ = v
t−t0 , leading to

v = ±|Pφ|(t− t0). (2.7)

The sign of v is not determined by the equations of motion and it corresponds to an arbitrary
choice of orientation of the manifold. In the classical theory, it would be most natural to restrict
to positive v, but in the quantum theory we will need impose a symmetry condition on the wave
function relating positive and negative v. Already here we see that we reach v = 0 within finite
proper time. v = 0, i.e. t = t0, can be identified as the big bang singularity, or a big crunch in
the time reversed picture.

Next, let us solve the equations of motion for the scalar field. Inserting (2.7) into (2.5), we
find

φ̇ = ±Sign(Pφ)
1

t− t0
⇔ φ− φ̃0 = ±Sign(Pφ) Log (t− t0) . (2.8)

1V0 comes about since the Hamiltonian is actually an integral of the 3-dimensional spatial slice. Here, all
densities (in the differential geometric sense) are multiplied by V0, i.e. integrated, whereas scalars such as φ are
simply independent of the spatial coordinate. Since V0 needs to be finite, we could work with a fiducial cell in
the case of a non-compact universe, but will not look at those details here.
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We can thus express v as a function of φ and Pφ as

v = ± exp (±Sign(Pφ)(φ− φ0)) . (2.9)

with some new constant φ0. Next to Pφ, this also suggests another function commuting with
the constraint, a so called Dirac observable,

v|φ=φ̃ := v exp
(
∓Sign(Pφ)(φ− φ̃)

)
. (2.10)

v|φ=φ̃ is simply the value that the volume v of the universe takes at scalar field time φ̃. The two
independent Dirac observables are thus (2.10) as well as Pφ, leaving us with 1 + 1 phase space
degrees of freedom. Physically, this means that at some point φ̃ in scalar field time, we can fix
v and Pφ.

As we have seen, the evolution predicted by general relativity leads to a singularity in this
simple model. While it was initially believed that such a phenomenon was due to the high level
of symmetry involved, it was later shown that singularities occur generically [117]. It is believed
that a quantum theory of gravity could provide a natural resolution of singularities by quantum
effects. In fact, the energy density close to the singularity surpasses the Planck density and
quantum gravitational effects should become relevant. In the following, we will see how the
initial singularity can be resolved by quantum effects within loop quantum cosmology, however
persists in the metric based Wheeler-de Witt approach.

2.3 Wheeler-de Witt quantisation

We continue to follow [107], up to some minor changes in the choice of Dirac observables and
scalar products. The Poisson brackets (2.3) along with the quantisation rule {·, ·} → −i[·, ·]
suggest that we look for self-adjoint operators satisfying

[v̂, b̂] = i and [φ̂, P̂φ] = i. (2.11)

Using wave functions χ(b), this can be done for example as

b̂χ(b, φ) = bχ(b, φ) φ̂χ(b, φ) = φχ(b, φ) (2.12)

v̂χ(b, φ) = i
∂

∂b
χ(b, φ) P̂φχ(b, φ) = −i ∂

∂φ
χ(b, φ). (2.13)

on the Hilbert space L2(R2, db dφ). With the necessary hindsight, we rescale our wave functions
as Ψ(b) =

√
|b|χ(b). The previous operators become

b̂Ψ(b, φ) = bΨ(b, φ) φ̂Ψ(b, φ) = φΨ(b, φ) (2.14)

v̂Ψ(b, φ) =
√
|b|i ∂

∂b

1√
|b|

Ψ(b, φ) P̂φΨ(b, φ) = −i ∂
∂φ

Ψ(b, φ). (2.15)

on the Hilbert space L2(R2, db/|b| dφ). Next, we quantise the Hamiltonian constraint H = 0,
which we do in the form (2.6), i.e. for N = a3 with the symmetric ordering

√
|b|v|b|v

√
|b| (on

L2(R2, db dφ)), resulting in
∂2
φΨ(b, φ) = (|b|∂b)2Ψ(b, φ). (2.16)

By definition, physical states need to satisfy (2.16). In addition, we have to incorporate another
symmetry of our model, the invariance under large gauge transformations which invert the
spatial orientation (i.e. parity transformations). Physical states then have to transform in an
irreducible representation and wave functionals therefore have to be either even or odd functions
in b. One can therefore restrict to functions of positive b only (or negative). Then, it is convenient
to perform the variable transformation

y = log b ⇔ b = ey. (2.17)
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The Hamiltonian constraint (2.16) now simplifies to

∂2
φΨ(y, φ) = ∂2

yΨ(y, φ) =: −ΘΨ(y, φ), (2.18)

which is nothing else than the 1 + 1-dimensional Klein-Gordon equation, with φ interpreted as
time and y as the spatial coordiate. Admissible physical states are positive frequency solutions
to (2.18) and thus have to satisfy

− i∂φΨ(y, φ) =
√

ΘΨ(y, φ). (2.19)

We can construct them from an initial state Ψ(y, φ0) =
∫∞
−∞ dkΨ̃(k)e−iky as

Ψ(y, φ) =

∫ ∞

−∞
dkΨ̃(k)e−iky+i|k|(φ−φ0)

=

∫ 0

−∞
dkΨ̃(k)e−ik(φ+y)eikφ0 +

∫ ∞

0
dkΨ̃(k)eik(φ−y)e−ikφ0

=: ΨL(y+) + ΨR(y−), (2.20)

where y± = φ± y and left and right moving states where labelled by L and R respectively.
As is often the case, the solutions (2.20) to the quantum constraint (2.19) are not normalisable

w.r.t. the kinematical scalar product. We therefore need to introduce a new scalar product on
the physical Hilbert space. The framework of refined algebraic quantisation [50, 118] offers a
systematic way of doing so, however is somewhat technical and thus not ideally suited for an
introductory treatment. An exhaustive discussion in the context of loop quantum cosmology,
including the construction of Dirac observables, can be found in [109]. Here, we will choose a
simple shortcut leading to the same results:

Instead of applying the whole machinery of refined algebraic quantisation, we can simply
interpret (2.19) as a Schrödinger equation with Hamiltonian

√
Θ in the time variable φ. The

Hilbert space is then simply given by L2(R, dy), and the evolution of wave functions is governed
by (2.19). The solutions constructed in (2.20) remain valid and are in particular normalisable
w.r.t. L2(R, dy) for appropriate Ψ̃(k).

We are now in a position to address the question of whether the big bang or big crunch
singularities get resolved. For this, we note that the relevant parameter is

ρ := P 2
φ/2v

2, (2.21)

which can be interpreted as the energy density of the scalar field, or equivalently, due to H = 0,
as the spacetime curvature. Since Pφ is a constant of motion, we can check for a singularity in
the evolution of a given state Ψ by looking at the expectation value of the total volume of the
universe as a function of φ.

Based on our solutions solutions (2.20), we can now compute this expectation value in the
Schrödinger picture, that is for evolving states and a fixed time volume operator. Let us first
consider a purely left-moving state. We find

〈ΨL(φ) | v̂ | ΨL(φ)〉 =

∫ ∞

−∞
dyΨL(y + φ)e−y/2i∂ye

−y/2ΨL(y + φ)

=

∫ ∞

−∞
d(y + φ) ΨL(y + φ)e−(y+φ)/2i∂y+φe

−(y+φ)/2ΨL(y + φ) eφ

=

∫ ∞

−∞
dy′ΨL(y′)e−(y′)/2i∂y′e

−(y′)/2ΨL(y′) eφ

=: V0 e
φ. (2.22)

We note that V0 is a constant that can be computed from ΨL. It follows that the volume becomes
zero as φ → −∞, resulting in the blowup of the energy density ρ and thus a singularity. For
right-moving states, we find a contracting universe as φ increases, i.e. the same result up to
the substitution eφ → e−φ. Some more comments about the singularity resolution, including
superpositions of left and right moving states are given in section (2.6).
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2.4 Loop quantum cosmology

We will now repeat the same steps as above using a slightly different quantisation inspired
by loop quantum gravity. Let us consider wave functions χ̃(v) (suppressing for now the φ-
dependence) which have support2 only at v ∈ Z. Such a choice can be thought of to be inspired
by the discrete eigenvalues of the geometric operators in loop quantum gravity, which in this
case would correspond to the integers labelling the irreducible representations of U(1). Since
χ̃(v) is discontinuous as a function of v, there can be no operator corresponding to b, which
would be a derivative w.r.t. v. However, einb for n ∈ Z can be given a well-defined meaning as

êinb χ̃(v) = χ̃(v + n). (2.23)

Both v̂ and êinb are self-adjoint w.r.t. the kinematical scalar product

〈
χ̃
∣∣ χ̃′
〉

= π
∑

v∈Z

χ̃(v)χ̃′(v). (2.24)

On this Hilbert space, we can approximate b→ sin b = eib−e−ib
2i . This approximation is good

whenever b� 1. Due to the Hamiltonian constraint H ≈ 0, this corresponds to ρ� 1, i.e. to a
matter energy density much smaller than the Planck density. Since we would anyway expect for
quantum gravity effects to become relevant at the Planck scale, the approximation b → sin b is
perfectly acceptable as a means to construct a quantum theory of gravity which gives standard
cosmology for ρ � 1, but features UV-modifications with the potential to cure the singularity
encountered before.

In order to be mimic the computation in the Wheeler-de Witt framework, we perform a
Fourier transform to go to the b-representation:

χ(b) =
∑

v∈Z

eivb χ̃(v), χ̃(v) =
1

2π

∫ π

−π
db e−ivbχ(b) (2.25)

χ(b) is 2π-periodic and we restrict us to the support (−π, π). Invariance under parity again leads
us to consider only symmetric Ψ(b) and we choose to work only with functions on the interval
(0, π). Again, it is convenient to rescale the wave functions as Ψ(b) =

√
sin b χ(b). Then, the

inner product reads
〈
Ψ
∣∣ Ψ′

〉
=

∫ π

0

db

sin b
Ψ(b)Ψ′(b) (2.26)

The quantised Hamiltonian constraint, in the same ordering as chosen in the Wheeler-de Witt
case, now reads

∂2
φΨ(b, φ) = (sin(b)∂b)

2Ψ(b, φ). (2.27)

Next, we map the interval (0, π) to (−∞,∞) via the variable transformation

x = log (tan(b/2)) ⇔ b = 2 tan−1(ex). (2.28)

It follows that

∂x = sin(b)∂b, ∂b = cosh(x)∂x, dx =
1

sin b
db, db =

1

coshx
dx. (2.29)

The Hamiltonian constraint thus again takes the form

∂2
φΨ(x, φ) = ∂2

xΨ(x, φ) =: −ΘΨ(x, φ), (2.30)

2In loop quantum cosmology, one usually takes v ∈ R, which corresponds to using square integrable functions
on the Bohr compactification of the real line as wave functions. We will avoid these technicalities here as the
Bohr compactification is not needed when using our current variables.
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however with a different interpretation of x as opposed to y in (2.18).
We can now go through the same procedure as above: we choose positive frequency solu-

tions to (2.30), interpreted as a Schrödinger equation for the time φ. We again compute the
expectation value of the volume as a function of φ by repeating the computation (2.22) with the
substitution e−y → cosh(x), coming from the difference in the variable transformations (2.17)
and (2.28), and thus ultimately from the difference in the choice of algebra, i.e. the non-existence
of b̂ in LQC and the resulting substitution b→ sin b:

〈ΨL(φ) | v̂ | ΨL(φ)〉 =

∫ ∞

−∞
dxΨL(x+ φ)

√
cosh(x)i∂x

√
cosh(x)ΨL(x+ φ)

=

∫ ∞

−∞
dxΨL(x+ φ)

(
cosh(x)i∂x +

i

2
sinh(x)

)
ΨL(x+ φ)

= Re

∫ ∞

−∞
dxΨL(x+ φ)

1

2

(
ex+φe−φ + e−x−φeφ

)
i∂xΨL(x+ φ)

=: V+ e
φ + V− e

−φ

=: Vmin 〈ΨL | ΨL〉 cosh(φ− φbounce), (2.31)

with

V± = Re

∫ ∞

−∞
dxΨL(x)

1

2
e∓xi∂xΨL(x), Vmin =

2
√
V+V−

〈ΨL | ΨL〉
, φbounce =

1

2
log

V−
V+

. (2.32)

Thus, we find, as opposed to the Wheeler-de Witt theory, that the expectation value of
the spatial volume has a lower bound Vmin. Moreover, the evolution is symmetric around the
bounce point. The singularity that persisted in the Wheeler-de Witt approach at the level of
expectation values of the volume operator is thus resolved if one chooses a quantisation strategy
inspired by loop quantum gravity (see however section 2.6). For right-moving states, we would
obtain the same behaviour.

2.5 Kinematical scalar products and ordering

For clarity, we recall the kinematical scalar product written in terms of different variables
and wave functions, suppressing the φ-dependence for simplicity. For defining and solving the
Wheeler-de Witt equation, we used the kinematical scalar product

〈
Ψ
∣∣ Ψ′

〉
kin, LQC

=

∫ ∞

−∞
dxΨ(x)Ψ′(x),

〈
Ψ
∣∣ Ψ′

〉
kin, WdW

=

∫ ∞

−∞
dyΨ(y)Ψ′(y) (2.33)

in the gravitational sector. Transforming back to wave functions of b, we obtain

〈
Ψ
∣∣ Ψ′

〉
kin, LQC

=

∫ π

0

db

sin b
Ψ(b)Ψ′(b),

〈
Ψ
∣∣ Ψ′

〉
kin, WdW

=

∫ ∞

0

db

b
Ψ(b)Ψ′(b). (2.34)

It is clear that Θ as given in (2.16) and (2.27) is self-adjoint in those scalar products. In order to
have standard scalar products also in the v representation, we define χ(b) = Ψ(b)/

√
sin b in the

LQC case and χ(b) = Ψ(b)/
√
b in the WdW case. After a Fourier transform similar to (2.25), it

follows that

〈
Ψ
∣∣ Ψ′

〉
kin, LQC

= π
∑

v∈Z

χ̃(v)χ̃′(v),
〈
Ψ
∣∣ Ψ′

〉
kin, WdW

= π

∫ ∞

−∞
dv χ̃(v)χ̃′(v). (2.35)

The ordering that we chose for the operator Θ when using the wave functions χ̃(v) with the
scalar products (2.35) is thus

−Θχ,LQC =
√

sin b v sin b v
√

sin b, −Θχ,WdW =
√
b v b v

√
b (2.36)
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This is equivalent to using the wave functions Ψ(b) with ordering sin b ∂b sin b ∂b or Ψ(x) with
the (trivial) ordering ∂x∂x.

In the Schrödinger picture used above, the scalar product is simply the kinematical scalar
product stripped of the φ-integration. This scalar product can also be arrived at as the physical
scalar product by refined algebraic quantisation3.

2.6 Superselection and superpositions

Our treatment here so far differs slightly from [107] in that we did not take into account
superselection induced by the action of the Hamiltonian constraint. For instance, in the v-
representation, the gravitational part (in the given ordering) acts as

(ŝin b)v̂(ŝin b)v̂Ψ̃(v) = −1

4
v
(

(v + 1)Ψ̃(v + 2) + (v − 1)Ψ̃(v − 2)− 2vΨ̃(v)
)

(2.37)

Therefore, wave functions with support on 2Z and 2Z + 1 are superselected. Restriction to one
of these sectors imposes a constraint on the wave functions Ψ(x) as follows. From the Fourier
transform (2.25), we see that a wave function in the v-representation (with Ψ̃(v) = Ψ̃(−v))
with support on 2Z becomes a wave function in the b-representation which is symmetric around
b = π/2. On the other hand, support on 2Z + 1 results in a function which is antisymmetric
around b = π/2. This then translates to (anti)symmetry for Ψ(x) around x = 0.

We chose not to include this discussion in the main derivation for the following reason. In the
loop quantum cosmology computation, considering symmetric Ψ(x) does not change the result.
However, in case of the Wheeler-de Witt quantisation, considering (anti)symmetric Ψ(y), which
are also superselected by the analogous operator ∂2

y , corresponds to taking superpositions of
expanding and contracting branches. One might naively think that from such a superposition
one would obtain a non-singular universe also in the Wheeler-de Witt case. This is however
misleading, as one needs to invoke a quantum mechanical formalism applicable to the universe
as a whole, as well as to sequences of events, such as the consistent histories approach. In
doing this, one finds that the probability for a singularity to occur in the Wheeler-de Witt
case is 1 [119], while it is 0 in the case of loop quantum cosmology [120]. These more rigorous
computations thus back the conclusions that we have drawn here. See however also [121] for a
treatment using the Bohmian approach to quantum mechanics, where different conclusions are
reached. A recent review is given in [122].

2.7 Outlook on full theory

In order to establish a connection to the full theory, we need to slightly change our variables4.
Instead of using v and b, we use a2 and ba. Then, a2 can be integrated over a surface, while ba
corresponds geometrically a one-form and wants to be integrated over a line. This corresponds
in the full theory to computing holonomies from the SU(2)-connection Aia, the analogue of ba,
and fluxes form the densitised triad Eai , which corresponds to a2.

The substitution b → sin b in the full theory corresponds to the fact that there exists no
operator corresponding to the connection Aia and we thus have to approximate all expressions
involving it via holonomies constructed from Aia.

One can be more explicit in constructing embeddings of loop quantum cosmology into the
full theory if one quantises using the diagonal metric gauge and using a set of variables which
resembles those of loop quantum cosmology more closely [57, 59].

3Here, some subtleties arise due to the precise form of the constraint that one inputs in expressions like
|Ψ〉phys = δ(H) |Ψ〉kin. In particular, factors of {φ,H} will rescale the physical states due to the properties of the
Dirac-δ. These rescalings are however accounted for in a proper definition of the corresponding Dirac observables,
e.g. the volume of the universe at a given scalar field time, agreeing with the Schrödinger picture, see [109].

4Loop quantum cosmology can also be formulated in these variables, and in fact was originally due to their
resemblance to full LQG.
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2.8 Exercises

1. Warm up:
Convince yourself that other choices of time, e.g. N = a3, do not affect the equations of
motion upon using H = 0 after evaluating Poisson brackets.

2. Maximum energy density:
The volume at the bounce point can be chosen arbitrarily. Show however that the energy
density at the bounce point is bounded from above by a critical energy density ρcrit. Show
that the effective Friedmann equation (1.2) captures this effect and reproduces (2.31).

3. Barbero-Immirzi parameter:
Instead of using b and v as canonical variable, we could also use βb and v/β for β ∈ R\{0}.
Since these new variables are still canonically conjugate, we can base the same quantisation
also on them. What is the consequence for the spectrum of the volume operator and the
maximal energy density of the universe?
The direct analog of β in full general relativity is known as the Barbero-Immirzi parameter
and we will encounter it in the next lectures.

4. Inverse triad corrections:
The substitution b → sin b is known as a holonomy correction in loop quantum cosmol-
ogy. More complicated models also consider so called inverse triad corrections, which for
example arise for the choice N = 1 in the quantum theory. Then, one has to define an
operator corresponding to 1/v. Since zero is in the spectrum of v, this cannot simply be
done via the spectral theorem.
Consider the v-representation with wave functions χ(v) and scalar product (2.35). Show
that classically ∓2i{

√
|v|, e±ib}e∓ib = Sign(v)/

√
|v|. This expression can be directly pro-

moted to a quantum operator via the quantisation map {·, ·} → −i[̂·, ·̂]. Show that it
results in a self-adjoint operator for both choices ± and consider the ordering suggested
by −i{

√
|v|, e+ib}e−ib + i{

√
|v|, e−ib}e+ib. Compute the action of this operator on a wave

function χ(v) and show that it acts as (
√
|v + 1| −

√
|v − 1|)χ(v). Taylor expand for large

v and show that the leading term is Sign(v)/
√
|v|. Show that the so defined operator has

an upper bound. Square it to obtain an operator corresponding to 1/|v|. Modify this pre-
scription to construct an operator corresponding to |v|ε with ε ∈ (−1, 0). Manipulations
of this kind are known as Thiemann’s tricks, going back to [99], where they are essential
in regularising the Hamiltonian constraint.

3 General relativity in the connection formulation and quantum
kinematics

In this section, we will derive the classical foundations of loop quantum gravity and perform
a kinematical quantisation. We will gloss over many technical details and focus on the core
ideas and concepts. For an advanced in depth discussion, we refer the reader to [42]. For an
introductory textbook, see [43], as well as [41] for an intermediate level. Other introductory
papers with varying degree of details include [108, 123–127]. Original literature includes [128–
134]. We set 8πG = c = 1.

3.1 Canonical general relativity

A more in depth introduction to loop quantum gravity would start at this point by introducing
the Arnowitt-Deser-Misner (ADM) formulation [28] of general relativity, along with the Dirac
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procedure to treat constrained systems [116]. While a thorough knowledge of both subjects is
certainly important once doing research in the subject, most details are not really relevant in a
first introduction. We will thus take a different approach here and simply state how the ADM
formulation looks like and how exactly it works.

As a first step, the four-dimensional spacetime manifold M is foliated into three-dimensional
“equal time” spatial slices Σt, which is equivalent to imposing global hyperbolicity (well-definedness
of initial value problems) on the class of spacetimes we consider. For simplicity, we will consider
Σ to be compact, so that boundary terms can be neglected. The split also induces a split in the
spacetime metric tensor gµν as

gµν =

(
−N2 +NaNa Na

Na qab

)
gµν =

(
−1/N2 Na/N2

Na/N2 qab −NaN b/N2

)
, (3.1)

where qab is the Euclidean three-metric induced on Σ, N is called the lapse function, and Na

is called the shift vector. a, b, . . . denote spatial tensor indices on Σ. N and Na result form a
decomposition of the time evolution vector field Tµ = Nnµ +Nµ, with nµN

µ = 0 and nµ being
the unit normal on Σ, i.e. nµnµ = −1, see figure 3.1.

t1

t2

t3

t4

N nμδ t

N μδ t

M

T μδ t

Figure 3.1: An infinitesimal time evolution step between two neighbouring Cauchy surfaces is
shown. The evolution is along the vector field Tµ and splits into a lapse component orthogonal
to Σ and a shift component tangential to Σ.

In addition, we need a conjugate variable to the spatial metric qab. For this, we define the
extrinsic curvature

Kµν =
1

2
Lngµν , (3.2)

where Ln denotes the Lie derivative w.r.t. the vector field nµ (see the exercises). It turns out
that nµKµν = nνKµν = 0, so we can write the extrinsic curvature as Kab, i.e. an object on Σ.
From Kab, we construct

P ab =

√
det q

2

(
Kab − qabK

)
, (3.3)

which fully captures the information in Kab. The non-vanishing Poisson brackets turn out to be

{
qab(x), P cd(y)

}
= δc(aδ

d
b)δ

(3)(x, y). (3.4)

The Hamiltonian of the ADM formulation is given by

H = H[N ] +Ha[Na] (3.5)
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with

H[N ] =

∫

Σ
d3xN

(
2√
q

(
P abPab −

1

2
P 2

)
−
√
q

2

(3)

R

)
(3.6)

Ha[Na] = −2

∫

Σ
d3xNa∇bP ba. (3.7)

H and Ha are denoted as the Hamiltonian constraint and spatial diffeomorphism constraint.
Consistency of the dynamics forces both of them to vanish, we write

H ≈ 0, Ha ≈ 0. (3.8)

Here, ≈ denotes a so called weak equality, i.e. an equality that can be used only after Poisson
brackets have been computed. This means that the Hamiltonian H is weakly zero, however
Poisson brackets involving it are generically non-zero. H and Ha form an algebra, the so called
hypersurface deformation, or Dirac algebra

{H[M ],H[N ]} = Ha
[
qab (M∂bN −N∂bM)

]
(3.9)

{H[M ],Ha[Na]} = −H [LNM ] (3.10)

{Ha[Ma],Ha[Na]} = −Ha [LNMa] . (3.11)

It is important to note that this algebra features structure functions, so that it is not a Lie
algebra. In particular, this leads to problems when trying to find operators which satisfy this
algebra (see exercises in section 5).
H and Ha should be regarded as generators of gauge symmetries. In particular, only those

phase space functions which Poisson-commute with both H and Ha have some invariant physical
meaning, e.g., are independent of the choice of coordinates. We will call such functions Dirac
observables O.

To understand the symmetries generated by Ha, we compute

{qab,Ha[Na]} = L ~Nqab,
{
P ab,Ha[Na]

}
= L ~NP

ab. (3.12)

We see that Ha[Na] generates infinitesimal spatial diffeomorphisms along the vector field ~N .
The action of H is more involved and it is harder to interpret it properly, as it also encodes the
dynamics of the theory. It can be shown that if the Einstein equations are satisfied, then H
generates diffeomorphisms orthogonal to Σ, see for example [42]. On the other hand, without
the equations of motion holding, the symmetry group of canonical general relativity is distinct
from the group of four-diffeomorphisms, see section 1.4 in [42] for a discussion.

The lapse and shift functions appear in the ADM formulation only as arbitrary Lagrange
multipliers in the Hamiltonian. They correspond to a choice of gauge and become relevant when
we want to reconstruct the complete spacetime from the canonical data on a single Cauchy
surface Σ. The choice of N and Na determines the relative positions of neighbouring Cauchy
surfaces as shown in figure 3.1. In other words, it tells us where in the spacetime we end up
after an infinitesimal time evolution generated by the Hamiltonian H.

In total, the constraints thus delete 4+4 phase space degrees of freedom, four by the equations
H ≈ 0 and Ha ≈ 0, and four additional degrees of freedom by selecting observables for which
{O,H} = 0 = {O,Ha}. We are thus left with 2+2 phase space degrees of freedom per point.

3.2 Connection variables

In a next step, we will need to change our variables. First, we introduce an additional local
SU(2) gauge symmetry5 in our framework by coordinatising our phase space by Eai and Ki

a,

5In principle, any internal gauge group could be used, as long as an equivalence to general relativity is ensured,
e.g. by imposing additional constraints. In 3+1 dimensions, this can also be done by using the groups SO(1, 3)
[83, 84, 135, 136] and SO(4) [85]. For non-compact gauge groups however, many of the techniques used to construct
the Hilbert space are not available [129–134].
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i = 1, 2, 3, which are related to the ADM variables as

qqab = EaiEbi ,
√
qKa

b = KaiE
bi. (3.13)

We can thus interpret Eai as a densitised tetrad
√
qeai , with qab = eai e

bi, and write the extrinsic
curvature as Kab = Kaie

i
b, using the co-tetrad eib (we restrict to positive orientation here to avoid

additional sign factors). Internal indices i, j are trivially raised and lowered by the Kronecker
δij . The new non-vanishing Poisson brackets are

{
Ki
a(x), Ebj (y)

}
= δ(3)(x, y)δbaδ

i
j . (3.14)

Since we now have 3+3 more phase space degrees of freedom, we need to introduce an additional
constraint, the Gauß law

Gij [Λ
ij ] =

∫

Σ
d3xΛijKa[iE

a
j] ≈ 0. (3.15)

It generates internal SU(2) gauge transformations

{
Ki
a, Gkl[Λ

kl]
}

= ΛijK
j
a,

{
Eai , Gkl[Λ

kl]
}

= Λi
jEaj (3.16)

under which observables have to be invariant. In particular, this applies to the combinations
(3.13), and thus the ADM variables. In order to link this new formulation to the ADM formu-
lation, we now have to show that the ADM Poisson brackets (3.4) are reproduced by (3.14), i.e.
we need to show that

{
qab[E,K](x), P cd[E,K](y)

}
{K,E}

= δc(aδ
d
b)δ

(3)(x, y) +Gij [...]. (3.17)

i.e. up to terms proportional to the Gauß law. This can be done, although it involves a little
algebra. We can now simply express the Hamiltonian and spatial diffeomorphism constraints in
terms of our new variables (see exercises). Due to (3.17), they will generate the same dynamics
up to SU(2) gauge transformations. Since observables are by definition also invariant under
SU(2) gauge transformations, the dynamics generated by our extended formulation is in fact
identical to that of the ADM formulation.

Although we now have an internal SU(2) gauge freedom, (3.16) tells us that none of our
variables transform as a connection. There is however a natural connection that one can build,
the spin connection Γia, defined as ∇aeib := ∂ae

i
b − Γcabe

i
c + εijkΓjaekb = 0. We can thus choose the

new canonical variables

Aia = Γia + βKi
a, Ẽai =

1

β
Eai , (3.18)

where β is a free real parameter known as the Barbero-Immirzi parameter. It constitutes a
1-parameter ambiguity in the construction of our connection variables and will obtain a physical
meaning only later at the quantum level. First, let us check that Aia transforms indeed as a
connection. For this, it can be shown (see exercises), that

Gij [−εijkΛK ] =

∫

Σ
d3xΛKDaẼ

a
i :=

∫

Σ
d3xΛK

(
∂aẼ

a
i + εijkAjaẼ

a
k

)
:= Gk[Λ

k], (3.19)

where Da acts only on internal indices, and consequently

{
Aia, Gk[Λ

k]
}

= −DaΛ
k = −∂aΛk − εijkAjaΛk,

{
Ẽai , Gk[Λ

k]
}

= εijkΛjẼak . (3.20)

Aia now transforms as a connection, so we need to compute now the new Poisson brackets. It
turns out that the transformation we just performed is canonical, i.e. that

{
Aia(x), Ẽbj (y)

}
= δ(3)(x, y)δbaδ

i
j (3.21)
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are the only non-vanishing Poisson brackets (see exercises). For notational simplicity, we will
drop in the following the twiddle over Ẽai and comment on this in case of possible confusion.
We can thus again express the ADM constraints in terms of our new variables (up to terms
proportional to Gij) and arrive at

H[N ] =

∫

Σ
d3xN

(
β2E

aiEbj

2
√
q
εijkF kab −

(
1 + β2

)
√
q

Ki
[aK

j
b]E

aiEbj

)
(3.22)

fHa[Na] =

∫

Σ
d3xEaiL ~NAai, (3.23)

where F iab = 2∂[aA
i
b] + εijkAjaAkb and Ki

a = (Aia − Γia)/β as well as
√
q =

√
Eai E

b
jE

c
kεabcε

ijk/6.

In particular, we see that a great simplification is achieved when β = ±i. Unfortunately, it is
not known how to formulate the quantum theory in the case of non-real β due to complicated
reality conditions.

3.3 Holonomies and fluxes

Due to the usual obstructions, we cannot quantise all functions on phase space, but we need to
pick a certain subset. This subset should be point-separating, i.e. to allow us to reconstruct
other phase space functions with arbitrary precision. The choice of such a preferred subset in
loop quantum gravity is closely related to the choice of variables in lattice gauge theory: we
choose holonomies, i.e. parallel transports of our connection, and fluxes, i.e. smearings of the
conjugate variable Eai over surfaces. The main difference to lattice gauge theory is however that
we do not consider only a given set of holonomies and fluxes specified by a choice of lattice, but
all possible holonomies and fluxes obtained by choosing arbitrary curves and surfaces.

More precisely, we define holonomies hjc(A) along a curve c : [0, 1] → Σ in a certain repre-
sentation j of SU(2) as the solution to the equation

d

dt
hjc(t) = hjc(t)A(c(t)) (3.24)

evaluated at t = 1, where A(c(t)) = Aia(c(t))ċ
a(t)τ

(j)
i and τ

(j)
i are the 3 (i = 1, 2, 3) generators

of SU(2) in the representation j (chosen such that τ † = −τ). The solution can be written as a
path ordered exponential as (see exercises)

hc(A) = P exp

(∫

c
A

)
= 1 +

∞∑

n=1

∫ 1

0
dt1

∫ 1

t1

dt2 . . .

∫ 1

tn−1

dtnA(c(t1)) . . . A(c(tn)). (3.25)

Clearly, by taking the limit of an infinitesimally short path, we can reconstruct the connection.
Next, we construct fluxes by integrating Eai , contracted with a smearing function ni, over a

surface S as

En(S) :=

∫

S
Eai n

idSa =

∫

S
Eai n

iεabcdx
b ∧ dxc. (3.26)

Again, by taking the limit of infinitesimally small surfaces and suitable ni, we can reconstruct
Eai .

In order to construct the quantum theory, we need to know the Poisson brackets of holonomies
and fluxes. Computing these requires a regularisation procedure and a discussion of the inter-
section properties of the involved surfaces and curves. We will not do this in detail here, but
only restrict to the most important Poisson bracket in the simplest non-trivial intersection. A
complete discussion can be found in [42].

We consider the Poisson bracket of a holonomy with a flux and choose our surface S such
that it intersects the curve c exactly once in the point c(s) and from below w.r.t. the orientation
of S. In this case, we obtain

{
hjc(A), En(S)

}
= hjc1(A)

(
τ

(j)
i ni

)
hjc2(A) (3.27)
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where c1 = c|t∈[0,s] and c2 = c|t∈[s,1]. In other cases of interest, one considers curves which
terminate on the surface as well as all possible choices of orientations. An interesting subtlety
arises when one considers the Poisson bracket of two fluxes, however we will not detail this in
these lectures. For a pedagogical treatment, see e.g. [124, 126].

3.4 Quantisation

3.4.1 Hilbert space and elementary operators

We are now in a position to quantise our theory. For this, we need to find a Hilbert space
on which we can define operators corresponding to holonomies and fluxes. As elements in our
Hilbert space, we choose complex valued wave functions Ψ which depend on a finite number
of holonomies. Such functions are called cylindrical functions in loop quantum gravity and we
write them as

Ψ(A) = Ψ(hj1c1(A), . . . , hjncn(A)), n ∈ N0. (3.28)

We will also use the bra-ket-notation |Ψ〉 to underline that Ψ(A) is a Hilbert space element.
Operators corresponding to holonomies simply act by multiplication in this Hilbert space:

ĥjc |Ψ〉 = hjc(A)Ψ(hj1c1(A), . . . , hjncn(A)) (3.29)

The collection of curves ci on which a cylindrical function depends constitutes a graph γ, which
we can also consider as a coloured graph, where each edge (curve) ci is labelled by a spin ji.
Since we are free to choose j = 0, we can in particular have trivial dependencies if we want.
Such possible trivial dependencies lead to the notion of cylindrical consistency, which roughly
says that the theory should be invariant under adding trivial (j = 0) edges, as well as orientation
flips. We will not spell out the details here, but only remark for later that given two graphs γ1

and γ2, we can always find a graph γ3 which is finer than both γ1 and γ2, i.e. all edges in γ1

or γ2 are included in γ3. In particular, we can express two cylindrical functions Ψ1 and Ψ2 as
functions on γ3 by adding trivial dependencies.

Fluxes act as derivative operators according to the classical relations such as (3.27). Again,
in the simplest single-intersection case leading to (3.27), where we take Ψ = Ψ(hjc(A)), we have

Ên(S) |Ψ〉 = −i~
∫

S
ni

δ

δAia
dSa |Ψ〉 = −i~ ∂Ψ(hjc)

∂(hjc)αβ

(
hjc1

(
τ

(j)
i ni

)
hjc2

)
α

β. (3.30)

Clearly, the operators we just defined satisfy the commutation relation (3.27). It can be checked
that also the other commutation relations not detailed here are satisfied, but this goes beyond
the scope of these introductory lectures.

We still need to equip our Hilbert space with a scalar product. Since the holonomies on
which our wave functions depend are elements of SU(2), the Haar measure is a natural choice
for constructing a scalar product. We define the kinematical scalar product

〈Ψ | Φ〉kin =

∫
dµALΨ(A)Φ(A) (3.31)

=

∫
dµALΨ(hj1c1(A), . . . , hjncn(A))Φ(hj1c1(A), . . . , hjncn(A)) (3.32)

:=

∫

SU(2)n
dg1 . . . dgn Ψ(g1, . . . , gn)Φ(g1, . . . , gn), (3.33)

where AL labels to the Ashtekar-Lewandowski measure µAL. It is immediate to verify that the
two cylindrical functions are orthogonal if they depend non-trivially on holonomies defined on
different edges. Also, it can be checked that the classical reality conditions hjc ∈ SU(2) and
Eai = Ēai are implemented.
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In a last step, we can complete the Hilbert space spanned by the cylindrical functions w.r.t.
the scalar product. This leads to the so called space of distributional connections, which we
take as the quantum configuration space. The details of this completion do are not relevant
for this introductory course, and we refer to [42] for details. Interestingly, it turns out that
the representation of the holonomy-flux algebra that we just constructed is unique under mild
technical assumptions such as spatial diffeomorphism invariance and irreducibility, known as the
LOST theorem [137].

3.4.2 Gauß law and spin networks

The quantisation that we performed so far is called kinematical, since the dynamics of the theory,
encoded in the constraints, in particular the Hamiltonian constraint, have not been taken into
account so far. Let us start by imposing the Gauß law. For this, we would need to promote
(3.19) to an operator on our Hilbert space and compute its kernel. This can be done in full
generality [42]. In order to avoid any technical overhead, we will choose a shortcut in this paper
and simply compute the action of the classical Gauß law on cylindrical functions seen as phase
space functions and demand invariance. This procedure will lead to the same result as quantising
(3.19).

Holonomies have the useful property that they are transforming under gauge transformations
only at their endpoints,

hjc(A)→ U (c(0))hjc(A)U−1 (c(1)) (3.34)

or written infinitesimally (see exercises)

{
hjc(A), Gk[Λ

k]
}

= −hjc(A)Λk (c(1)) τ
(j)
k + Λk (c(0)) τ

(j)
k hjc(A). (3.35)

In order to construct a gauge invariant state, we therefore have to choose the cylindrical
functions such that the transformations at the endpoints of holonomies cancel each other. This
means that we need to look for tensors which are invariant w.r.t. the action of SU(2) and
contract all holonomies ending or starting at a given vertex with such a tensor, in a way that
no free indices remain.

The simplest example is known as a Wilson loop: we take a single curve with c(0) = c(1),
a loop, and simply trance over the holonomy. This corresponds to contracting its group indices
with the Kronecker delta δαβ, which is an invariant tensor of SU(2). Next, for a three-valent
vertex, the invariant tensors turn out to be the Clebsch-Gordan coefficients familiar from the
quantum mechanics of angular momentum, or the related Wigner 3J-symbols, which enjoy a
higher symmetry. All higher invariant tensors can be build from contracting 3J-symbols in a
suitable way.

The gauge invariant (w.r.t. the Gauß law) part of the Hilbert space is thus spanned by the
above type of a cylindrical function, called spin network. Briefly, we state that a spin network is
defined by a graph γ whose edges ci are coloured with SU(2) spins ji, and whose vertices vk are
coloured with invariant tensors ιk in the tensor product of the edge representations incident at
vk. For a spin network, we introduce the notation Tγ,~j,~ι, which contains all relevant information.
We limit the invariant tensors ~ι within this notation to an orthonormal subset so that

〈
Tγ,~j,~ι

∣∣∣ Tγ,~j′,~ι′
〉

kin
= δ~j,~j′δ~ι,~ι′ . (3.36)

The spin networks Tγ,~j,~ι then form an orthonormal basis of the kinematical Hilbert space re-
stricted to the graph γ.

3.4.3 Spatial diffeomorphisms

Spatial diffeomorphisms are imposed in loop quantum gravity as finite transformations, since
their generator does not exist as an operator on the Hilbert space (see exercises). The process
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of imposing finite diffeomorphisms is however relatively straight forward. In particular, the
kinematical scalar product (3.33) turns out to be invariant under spatial diffeomorphisms.

On a holonomy, a finite spatial diffeomorphism φ acts as

φ
(
hjc(A)

)
= hjc (φ∗A) = hjφ(c) (A) . (3.37)

We remark that for a 1-parameter family φ
~N
t diffeomorphism along a vector field ~N with φ

~N
0 = 1,

we have φ
~N
t
∗A = A + tL ~NA + O(t2), so that the Lie derivatives in (3.23) correspond to the

infinitesimal transformations of (3.37). Finite spatial diffeomorphisms thus simply act by moving
the graphs γ on which spin networks are defined.

Solving the spatial diffeomorphism constraint then amounts to demanding invariance under
finite spatial diffeomorphisms. For this, one can employ a group averaging procedure [51], which
roughly states that one should start with a given spin network and average it over the action
of the spatial diffeomorphism group. Due to the special properties of the scalar product (3.33),
such a procedure works even despite the infinite volume of the diffeomorphism group. However,
solutions to the spatial diffeomorphism constraint are not elements of the kinematical Hilbert
space, but have to be defined in its dual.

Given a spin network Tγ,~j,~ι, we define the dual state

〈
η[Tγ,~j,~ι]

∣∣∣ :=
1

dγ,~j,~ι

∑

φ∈Diff(Σ)/Diffγ

〈
Tφ(γ),φ(~j),φ(~ι)

∣∣∣ , (3.38)

where Diffγ is the set of diffeomorphisms preserving γ and dγ,~j,~ι are symmetry factors depending
on the spin network. η[Tγ,~j,~ι] has the property that

〈
η[Tγ,~j,~ι]

∣∣∣ Tγ′,~j′,~ι′
〉

kin
=
〈
η[Tγ,~j,~ι]

∣∣∣ Tφ(γ′),φ(~j′),φ(~ι′)

〉
kin

(3.39)

for any diffeomorphism φ. In particular,

〈
η[Tγ,~j,~ι]

∣∣∣ Tγ′,~j′,~ι′
〉

kin
= δ~j,~j′δ~ι,~ι′ (3.40)

if γ and γ′ are related by a diffeomorphism (this equation has to be understood in the sense
of a common refinement as discussed above). If we would not have divided by γ-preserving
diffeomorphisms, we would have an uncountably infinite number of terms corresponding to the
same spin network on the right hand side. Likewise, the symmetry factor dγ,~j,~ι corrects for graph
symmetries which map the coloured graph onto itself.

It is possible now to define a new scalar product 〈 · | ·〉diff between diffeomorphism invariant
states, however we will not discuss this further here. Details about this construction can be
found in [42, 134].

3.5 Outlook

We are now done with defining the Hilbert space and implementing the “kinematical” con-
straints, i.e. those which do not contain the dynamics of our theory. In the next section, we will
discuss the physical properties of (diffeomorphism invariant) spin network states by constructing
geometric operators which act on them. A discussion of the dynamics, obtained by quantising
the Hamiltonian constraint as well as other means, will take place in section 5.

3.6 Exercises

1. Lie derivative
The following is independent of the number of dimensions, we choose a, b to label tensor
indices, e.g. on a spatial slice. The Lie derivative L with respect to a vector field Na ≡ ~N ,
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an infinitesimal version of a diffeomorphism along ~N , is defined as follows: On geometric
scalars s, it acts as nµ∂µs. On vector fields va, it acts as L ~Nva = N b∂bv

a − vb∂bNa. The
action on other tensor fields follows by the Leibnitz rule, e.g., by defining wab = vavb, and
demanding that, e.g., vav

a transforms as a scalar. Show that

(a) L ~Nva = N b∂bva + vb∂aN
b

(b) L ~Nqab = N c∂cqab + qac∂bN
c + qbc∂aN

c = N c∂cqab + 2qc(a∂b)N
c = 2∇(aNb)

where ∇aNb = ∂aNb−ΓcabNc and Γcab := 1
2q
cd (∂aqbd + ∂bqad − ∂dqab) are the Christof-

fel symbols and T(ab) := (Tab + Tba)/2 denotes symmetrisation with weight 1.

(c) L ~N
√
qn = N c∂c

√
qn + n

√
qn∂cN

c, with q = det qab

(d) L ~N
√
q = ∂a

(√
qNa

)
. This means that in geometrically well-defined integrals (where

the integrand has density weight n = 1), we can partially integrate the Lie derivative.

2. Spatial diffeomorphism constraint
Show that up to a boundary term, Ha[Na] =

∫
Σ d

3xP abL ~Nqab. Using the results of the
previous exercise, compute the action of Ha[Na] on qab and P ab. Proof equation (3.10)
and (3.11) by using the Leibnitz rule of the Lie derivative. Convince yourself that the total
volume of compact Σ Poisson commutes with the spatial diffeomorphism constraint. Find
other observables with the same property.
Show that the spatial diffeomorphism constraint in E,K variables, again up to a boundary
term, reads Ha[Na] =

∫
Σ d

3xEaiL ~NKai, where the Lie derivative does not act on SU(2)
indices i, j.

3. ADM Poisson brackets from {K,E} = δ
Proof (3.17). For this, express the ADM variables qab, P

ab in terms of Ki
a, E

a
i , and evaluate

their Poisson brackets using (3.14).

4. Gauß law
Show that the Gauß law forms a closed subalgebra. Proof (3.19). For this, show that the
additional terms needed to make Da act also on tensor indices via the Christoffel symbols
cancel.

5. Canonical transformation (hard!)
Show that (3.21) is the only non-vanishing Poisson bracket. For this, it is useful to first
show that Γia has a generating potential, i.e. that Γia = δF/δEai with F =

∫
Σ d

3xEai Γia.

The explicit expression for Γia can be derived from ∂ae
i
b − Γcabe

i
c + εijkΓjaekb = 0.

6. Hamiltonian constraint
Show that the Hamiltonian constraint can be written as (3.22) up to terms proportional
to the Gauß law. For this, it is useful to define Γaij = −εijkΓka, for which the defining
equation reads ∂ae

i
b − Γcabe

i
c + Γa

i
ke
k
b = 0. Then, we define the field strengths R(Γ)abij =

2∂[aΓb]ij + [Γa,Γb]ij and Rabi = 2∂[aΓ
i
b] + εijkΓjaΓkb . What is the relation between Rabi and

Rabij? Show that Rabije
i
ce
j
d = Rabcd, where Rabcd is the Riemann tensor defined with the

convention [∇a,∇b]uc = Rabc
dud. Show that in components Rab

c
d = 2∂[aΓ

c
b]d + 2Γfd[cΓ

c
a]f .

7. Holonomies and fluxes
Show that (3.25) is a solution of (3.24). Convince yourself that with this definition, a par-
allel transport happens “from left to right”, i.e. vα(c(0)) 7→ vα(c(0))hjc(A)α

β. Show that
hjc1◦c2(A) = hjc1(A)hjc2(A) and hj

c−1(A) = hjc(A)−1 by using † = −1 for SU(2). Convince
yourself about (3.27).

8. Scalar product
Show that the scalar product is discontinuous in the following sense. Take two copies of an
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arbitrary cylindrical function. Add another non-trivial holonomy defined on a curve c to
one of the cylindrical functions. Compute the scalar product. What happens in the limit
when c is shrunk to a point? Similarly, consider a definition of an operator corresponding
to Aia as a derivative w.r.t. the curve length of a holonomy, evaluated at zero curve length.
By Stone’s theorem, it follows that there cannot exist an operator corresponding to Aia (in
unexponentiated form) in the quantum theory.

9. Solving the Gauß law
Show (3.35) by computing the Poisson bracket. Show that this is the infinitesimal genera-
tor of (3.34). Verify explicitly that a Wilson loop is gauge invariant. Show by considering
infinitesimal gauge transformations that in the tensor product of three spin 1 representa-
tions, the totally anti-symmetric Levi-Civita symbol εijk is an invariant tensor.

10. Ashtekar-Lewandowski vacuum
Consider the constant cylindrical function Ψ = 1. This state is known at the Ashtekar-
Lewandowski vacuum. Show that it corresponds to a maximally degenerate spatial geom-
etry by evaluating the vacuum expectation value of flux operators.

11. The virtue of β = ±i
Set β = ±i. Compute the Poisson bracket of two Hamiltonian constraints as given in
(3.23). For this, first show that δF iab = 2D[aδA

i
b]. Attempt the same computation for

β 6= ±i or in metric variables and compare the level of difficulty.
However, note that the reality conditions in this case become Aia + Āia = 2Γia(E), so that
the non-polynomiality is hidden, but not overcome.

4 Geometric operators, matter, and quantum geometry

In this section, we will discuss the construction of geometric operators and compute their action
on spin network states. The strategy to derive those operators is to regularise them in terms of
holonomies and fluxes and to compute their action in the limit of infinitely small holonomies and
fluxes, where the exact classical expression is approached. We will again skip many technical
details and only consider the most instructive cases. For a rigorous treatment, see [42]. For
original literature, see [131, 138–141].

Next, we are going to discuss how to couple matter to this theory. The emerging picture is
very similar to lattice gauge theory, with the additional twist that the lattices themselves are
now dynamical objects describing the gravitational sector of the theory. For original literature,
see [52, 142, 143], as well as [143–146] for a comparison to standard Fock representations. A
textbook treatment is given in [42].

4.1 Area operator

The seminal paper on the area operator in [138], whereas the construction was made rigorous
in [139]. In order to construct an operator corresponding to the area A(S) of a given surface S
embedded in Σ, we need to write the classical quantity A(S) in terms of holonomies and fluxes.
Since A(S) is only a function of the spatial metric, fluxes are already enough to define this
operator, which drastically simplifies its action on spin network states as we will see.

Classically, we have

A(S) =

∫

U
d2u

√
det(X∗q)(u) (4.1)

where X : U → S is an embedding of the coordinate chart U into S, and X∗q is the induced
metric on S. We partition U into disjoint subsets Ui as U = ∪iUi, so that

A(S) =
∑

i

∫

Ui

d2u
√

det(X∗q)(u). (4.2)
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In the limit of small Ui, we have, noting the β-dependence of Eai ,
∫

Ui

d2u
√

det(X∗q)(u) =

∫

X(Ui)

√
qqabdsadsb ≈ β

√
Ek(Ui)Ek(Ui) (4.3)

where Ek(Ui) =
∫
Ui
EakdUa (see exercises). Therefore,

A(S) = lim
Ui→0

β
∑

i

√
Ek(Ui)Ek(Ui). (4.4)

We can promote (4.4) to on operator by substituting (3.30) for the classical flux. In order
to deal with the square root, we first compute the action of Êk(Ui)Êk(Ui) on a Wilson loop

Ψ = Tr
(
hjc(A)

)
in the case where the curve c intersects Ui exactly once, see figure 4.1. We

obtain

Êk(Ui)Êk(Ui)
∣∣Tr
(
hjc(A)

)〉
= −i~Êk(Ui)

∣∣∣Tr
(
hjc1

(
τ

(j)
k

)
hjc2

)〉
(4.5)

= −~2
∣∣∣Tr
(
hjc1

(
τ

(j)
k (τ (j))k

)
hjc2

)〉
(4.6)

= ~2j(j + 1)
∣∣Tr
(
hjc(A)

)〉
. (4.7)

S

Ui

Tr
�
hj

c(A)
�

Wednesday 27 April 16

Figure 4.1: The setup for the simplest non-trivial action of the area operator Â(S) is depicted.
The surface S is partitioned into small subsurfaces Ui. The operator acts on a single Wilson
loop which interests S exactly once.

Due to the diagonal action, we can define the square root of this operator via the spectral
theorem (Êk(Ui) can also be shown to be self-adjoint), so that

√
Êk(Ui)Êk(Ui)

∣∣Tr
(
hjc(A)

)〉
= ~

√
j(j + 1)

∣∣Tr
(
hjc(A)

)〉
(4.8)

We are now in a position to construct the area operator. Again, we stick to the simplest

possible case, where the area S intersects a Wilson loop Tr
(
hjc(A)

)
exactly once, and not in

a vertex (where the formulas become more complicated). Since contributions to (4.4) vanish
whereever Ui does not intersect the holonomy, we simply get

Â(S)
∣∣Tr
(
hjc(A)

)〉
= ~β

√
j(j + 1)

∣∣Tr
(
hjc(A)

)〉
. (4.9)

It is now straight forward to generalise this result to more complicated (non-vertex) inter-
sections: for every (non-vertex) intersection with an edge of a spin network coloured with a spin
j, the eigenvalue of the area operator increases by ~β

√
j(j + 1). In case of an intersection at a

vertex, the resulting formula is more complicated and given in [42].
Due to our suppression the gravitational constant (8πG = 1), we actually have ~ = 8π~G =

8πl2p, so that the smallest eigenvalue of the area operator, called area gap, is obtained for a single

j = 1/2 intersection as 4
√

3π β l2p. We see that β sets the scale of the quantum geometry w.r.t.
the Planck scale.
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4.2 Volume operator

The volume operator V̂ (R) of a region R [138, 140, 141] is constructed in a similar way than
the area operator by regularising the classical expression

V (R) =

∫

R
d3x
√

det qab. (4.10)

The process of regularisation turns out to be more involved than for the area operator and in
particular the final expression is a lot more complicated. Here, we will only derive an important
property of the volume operator which will be key for the interpretation of spin networks as
providing states corresponding to quantum geometries.

In terms of densitised triads, the classical volume reads

V (R) = β3/2

∫

R
d3x
√
|Eai EbjEckεabcεijk/6|. (4.11)

To promote this expression to an operator, we would again partition R into small regions Ri, so
that in the limit of infinitesimally small regions, we can replace Eai E

b
jE

c
kεabcε

ijk by the product
of three fluxes:

∫

Ri

d3x
√
|Eai EbjEckεabcεijk/6| ≈

√
|Ei(S1)Ej(S2)Ek(S3)εijk| (4.12)

Then, we again evaluate the action of the term under the square root when acting on a spin
network. Let us first consider the case of a (part of a) holonomy contained in Ri depicted in
figure 4.2. Let us evaluate the action of two rightmost fluxes. We get

Êi(S1)Êk(S2)
∣∣hjc(A)

〉
= −~2 1

2

∣∣∣hjc1
(
τ

(j)
i τ

(j)
k + τ

(j)
k τ

(j)
i

)
hjc2

〉
. (4.13)

The symmetrisation on the right hand side comes from the precise regularisation of the Poisson
bracket such as (3.27), on which we did not comment on here. Roughly speaking, one needs to
extend surfaces to thin 3-dimensional regions and curves to 3-dimensional tubes. As this has
should be done symmetrically, one obtains symmetrised expressions such as in (4.13).

Due to the contraction of (4.13) with εijk in the volume, the action of the volume operator
vanishes on a holonomy. It follows that a non-vanishing action of the volume operator requires
that the spin network that we act upon contains at least one three-valent6 vertex in the region
R. Then, the three fluxes can act on three different holonomies, and thus result in the generators

τ
(j)
i being contracted with three different indices of the invariant map. Such constructions do

not vanish in general, but yield another invariant map.
We will not display here the complete expression for the volume operator, which is in fact

quite lengthy and not very illuminating, see e.g. [42]. It is however clear from the previous
discussion that the volume operator preserves spin network states and only acts on their invariant
maps. It is in principle possible to choose a basis in the set of invariant maps such that the volume
operator is diagonal, however not analytically, as this would require to diagonalise matrices of
arbitrary dimension. This is in particular problematic since the volume operator enters the
dynamics of loop quantum gravity in the construction of the Hamiltonian constraint. So far, it
is only known that the spectrum of the volume operator is discrete.

4.3 Quantum geometry

We are now in a position to give an interpretation to spin network states as quantum geometries.
For this, we recall that a spin network function was defined as a coloured graph embedded in the

6It turns out that the volume operator also vanishes on gauge (Gauß) invariant three-valent vertices, but not
necessarily on gauge-variant ones.
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Figure 4.2: The construction underlying the volume operator V̂ (R) acting on a single holonomy
is sketched. The region R is partitioned into small cubes, of which only Ri is shown. The three
fluxes in the volume operator restricted to Ri are evaluated on the surfaces S1, S2, and S3,
whose intersection is the only intersection of the curve c with any of the surfaces.

spatial slice Σ. From the discussion of the geometric operators, we recall that the area operator
was non-vanishing only if it intersects a holonomy. The volume operator on the other hand was
non-vanishing only when acting on a vertex. A spin network thus corresponds to a quantum
state where the geometry is excited in such a way that there are quanta of volume at the vertices
of the graph, as well as quanta of area on surfaces intersected by it. The edges of the graph
thus define a certain notion of connectedness for two neighbouring quanta of volume, associated
with the magnitude of a surface separating them. The situation is depicted in figure 4.3.

It is important to note that the picture of quantum geometry drawn here is very qualitative,
but already enough to understand how to couple matter to the theory. More detailed investiga-
tions of the quantum geometry underlying loop quantum gravity can be found in [147, 148].

The geometric operators are a priori defined only on the kinematical Hilbert space, where
spatial diffeomorphism invariance has not been implemented yet. In order to construct spatially
diffeomorphism invariant geometric operators, we need to localise the surfaces and regions which
we want to measure w.r.t. other entities in the theory, such as additional matter fields. This
can for example be done at the classical level using deparametrisation, see for example [149].
Another possibility is to consider spatially diffeomorphism invariant quantities such as the total
volume of the universe V (Σ) or the area of a boundary of Σ, such as a spatial section of a black
hole horizon.

Another issue of spin networks states is that they are sharply peaked on the intrinsic geometry
characterised by the fluxes, whereas holonomies are maximally uncertain. To overcome this, one
can consider superpositions of spin networks defined on the same graph to construct coherent
states peaked on both fluxes and holonomies with minimal uncertainty. This task was achieved
in [150–152] and applied to compute the expectation value of the Master constraint (a sum of the
squared constraints) in [62, 63], showing consistency with lattice regularised general relativity.

4.4 Matter

So far, we only considered pure general relativity without any matter couplings. In order to
couple matter, we add suitable matter contributions already at the classical level and include
them in the quantisation procedure. The details of doing this can be motivated by looking at
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Figure 4.3: A spin network is embedded into the spatial slice Σ. At vertices of the graph
underlying the spin network, the volume operator can have a non-vanishing action determined
by the invariant map ι. The area operator is non-trivial when the underlying area is intersected
by edges of the graph labelled with j 6= 0. The emerging picture is that of a discrete geometry
where quanta of volume are connected by the graph edges, which, at the same time, determine
the area quanta separating two volume quanta.

lattice gauge theory, where one needs to express continuum actions on a discretised spacetime.
A spatial slice of the underlying lattice then corresponds to the quantum geometry encoded by
a spin network state. We will again be brief in this section and discuss only the most important
conceptual steps in coupling matter.

The incorporation of other gauge fields with compact gauge group is straight forward. We
coordinatise the their phase spaces again by holonomies and fluxes. The cylindrical functions
that we considered in the gravitational case now are also allowed to depend on a finite number of
holonomies of other gauge fields. The additional gauge constraints lead us to consider generalised
spin networks, where the label set includes representation labels and invariant maps for all gauge
groups. The scalar product is generalised by adding integrations w.r.t. the Haar measure of the
other gauge groups.

Next, we consider fermions. We recall that fermions carry spinor indices which transform
under the Lorentz group, as well as colour indices (e.g. gluons), which transform under the
internal gauge groups. The spinor indices corresponding to the Lorentz group turn out to
transform under the gravitational gauge group SU(2) once a properly gauge fixed Hamiltonian
formulation of general relativity coupled to fermions is established [52, 153, 154]. In order to
construct gauge invariant states, one should therefore consider fermions at vertices of the spin
networks. There, the free indices of the fermions can be contracted with invariant maps, whose
other free indices are contracted with holonomies. The details of the precise derivation of these
statements are somewhat technical, especially at the classical level. In particular, it turns out
that the proper density weight of a fermion should be 1/2 in order to have simple Poisson
brackets [52].

Let us now consider scalar fields. Due to its geometric properties, a scalar field φ should be
evaluated at a point with no further smearing. In order to construct a background independent
representation for the classical Poisson algebra of the scalar field and its momentum, we will
consider so called point holonomies hλx(φ) = eiλφ(x) of the scalar field. (We will specify the range
of λ later.) Cylindrical functions Ψ are again defined as complex valued functions depending on a
finite number of point holonomies. The momentum πφ conjugate to a scalar field is geometrically
a density, so we integrate it over a 3-dimensional region R. πφ(R) then corresponds to a flux
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since we have

{
hλx(φ), πφ(R)

}
= ε(x,R) i λ hλx(φ), ε(x,R) =





1 if x ∈ R\∂R
1
2 if x ∈ ∂R
0 if x /∈ R ∪ ∂R,

(4.14)

and it acts on a cylindrical function as

π̂φ(R)
∣∣∣Ψ
(
hλ1x1 , . . . , h

λn
xn

)〉
=

n∑

i=1

ε(xi, R)λi

∣∣∣Ψ
(
hλ1x1 , . . . , h

λn
xn

)〉
. (4.15)

The scalar product between two cylindrical functions is again defined by expressing them
on a common refinement and integrating against the Haar measure. Here, we need to make a
distinction between λ ∈ Z, which corresponds to using U(1), and λ ∈ R, which corresponds to
using the Bohr compactification RBohr of the real line7. For concreteness, let us write in the
U(1) case

〈Ψ | Φ〉 =

∫

U(1)n
dgn Ψ (g1, . . . , gn)Φ (g1, . . . , gn) . (4.16)

While we can in principle have a non-trivial dependency on the scalar field at arbitrary points
in Σ, it makes most sense to put scalar field excitations at spin network vertices. Otherwise,
the contribution of this excitation to the Hamiltonian constraint vanishes due to the coupling
to geometry, as we will see in more detail in the next section.

The intuitive picture of matter coupling is thus the same as in lattice gauge theory. Scalar
fields and fermions are sitting at vertices, where quanta of volume are located, whereas (1-form)
gauge fields have support on edges connecting vertices. The main difference is that our theory
is in addition subject to the spatial diffeomorphism and Hamiltonian constraints, which act on
both the gravitational and matter sector. The spatial diffeomorphism constraint enforces that
the location of vertices and edges on Σ is washed out, while only their relations among each
other, e.g. their connectedness, remain. The physics of the quantised Hamiltonian constraint,
encoding the dynamics, is so far not well understood. We will consider various approaches to
defining the dynamics in the next section. More exotic and so far not observed particles such as
higher form fields or spin 3/2 particles appearing in (higher-dimensional) supergravity theories
can also be treated with similar methods [155–159], but we will not detail this here, save for one
exercise below.

4.5 Exercises

1. Induced metric density
Show (4.3). Use dsa = εabcdx

b ∧ dxc = 1
2εabcε

bcd2x, where εbc is the totally antisymmetric
tensor in 2 dimensions with ε12 = 1.

2. State counting and black hole entropy
Consider a surface S of total area A, e.g. a spatial slice of the horizon of a black hole. The
goal of this exercise is to determine the number of microscopic quantum states correspond-
ing to a total area A of S. We make the assumption that S is intersected by holonomies
only transversally and that there are no spin network vertices on S, such that we can use
the simple form (4.9) for the area operator, and that two intersections with the same j
can be distinguished. The dimension of a representation space of SU(2) of spin j, i.e. the
dimension of the Hilbert space associated to a single holonomy, is 2j + 1. Parts of the

7The Bohr compactification RBohr of the real line is a compact Abelian group with representations labelled by
λ ∈ R. In particular, a normalised Haar measure exists, which allows us to use this group in the context of loop
quantum gravity. RBohr is used mainly in the context of loop quantum cosmology, where a Hilbert space based on
this group [114] is necessary to define viable dynamics [115] for choices of variables different than in section 2.4.
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spin networks which are not holonomies intersecting A are traced over, i.e. not taken into
account in the counting. We thus only consider “surface states”, i.e. do not imply a strong
notion of holography that would count also the states inside the black hole.
Show that the number of states corresponding to a configuration sj , where sj denotes the
number of intersections with spin j is given by

N =

(∑
j sj

)
!

∏
j (sj !)

∏

j

(2j + 1)sj (4.17)

Approximate logN by using Stirling’s formula. Extremise logN w.r.t. sj under the total
area constraint 8πl2pβ

∑
j sj
√
j(j + 1) = A by using the Lagrange multiplier method, i.e.

solve δ(logN + λ(8πl2pβ
∑

j sj
√
j(j + 1) − A)) = 0, where δ varies only sj . Derive an

implicit equation for λ as a function of β. Derive an explicit expression for the function
sj . What is the value of logN?
An approach to computing black hole entropy is to identify the logarithm logN of the
number of states N leading to a total area A as the black hole entropy. One would expect
that this quantity is maximised as in this computation. What is the value of β so that
the Bekenstein-Hawking entropy 2πA in units 8πG = 1 = ~ is obtained? Is this a sound
method to derive black hole entropy? This computation underlying this exercise has been
given in [160].

3. Charge quantisation in electrodynamics

Following [161], consider Maxwell theory in a Hamiltonian formulation, that is with the
Poisson bracket {Aa(x), Eb(y)} = δbaδ

(3)(x, y) and the Gauß law ∂aE
a ≈ 0. Eb here de-

notes the electric field, which is geometrically a densitised vector field, as Eai in the main
text. Aa is the vector potential of the magnetic field.
Quantise this theory using the methods developed for the gravitational field by using the
group U(1) instead of SU(2). Show that the electric charge is quantised by analysing the
operator corresponding to the electric flux through a closed surface.
What happens if you substitute U(1) by RBohr, where the integers labelling the represen-
tations of U(1) are substituted by arbitrary real numbers?

4. Higher p-form fields

Consider an Abelian 2-form field, that is a density 0, rank 2 covariant tensor field Aab =
−Aba, with Poisson bracket {Aab(x), Ecd(y)} = δc[aδ

d
b]δ

(3)(x, y), subject to the Gauß law

∂aE
ab ≈ 0. Generalise the quantisation techniques from the main text to this case. What is

the gauge invariant field strength? How does the holonomy-flux algebra look like? What is
the Hilbert space? How do we solve the Gauß law? What is the generalisation to p-forms,
p ∈ N, in arbitrary spatial dimensions? These questions were discussed in [155, 159].

5. Alternative connection variables and non-degenerate vacua
Show that Eai → Eai + θεabcF ibc(A), θ ∈ R is a canonical transformation (up to a boundary
term to be neglected here). Use the same quantisation techniques as for standard Ashtekar-
Barbero variables. What are the implications for the quantum geometry in the vacuum
Ψ(A) = 1? The answer and further references can be found in [162].

5 Quantum dynamics and outlook

5.1 Dynamics

5.1.1 Canonical definitions

Interpretation
In the Hamiltonian formulation, the dynamics of the theory is implemented by the Hamil-
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tonian constraint H. At the classical level, physical observables O are defined as functions
Poisson commuting with the Hamiltonian constraint and evaluated on the constraint surface
where H = 0. An example of such an observable was given in section 2 in the context of a homo-
geneous and isotropic spacetime. The key idea was that the change in the physical system has
to be seen w.r.t. a clock inherent in the system, e.g. the value of a scalar field. Evolution w.r.t.
coordinate time is not physically meaningful by itself due to the diffeomorphism symmetry.

At the quantum level, observables have the same interpretation, as already mentioned in
section 2, but are defined as operators Ô which commute with the Hamiltonian constraint
operator Ĥ. Physical states of the system are annihilated by the Hamiltonian constraint. In
order to define the quantum dynamics, it is therefore left to properly define an operator Ĥ
and study its properties, in particular its kernel. This form of solving the constraints (at the
quantum level) is referred to as Dirac quantisation. There exists however also an alternative
approach:

It is also possible to solve the constraint already at the classical level, proceed to the reduced
(“physical”) phase space, and quantise a complete set of observables. While this is often believed
to be too complicated to achieve, several examples are known where this is in fact possible. The
key point here is to choose suitable clock and rod fields at the classical level, which serve as
physical coordinates. Depending on the choice of such fields, the resulting true Hamiltonian can
be very complicated and non-local. However, for certain choices of matter fields, it turns out
to be simple enough. For original literature, see for example [163], as well as [30] for a recent
review. Let us just mention two examples here:

The most straight forward example is to consider a massless scalar field as done in [164, 165],
and also in section 2. The Hamiltonian constraint in this case reads

H[N ] =

∫
d3xN

(
2√
q

(
P abPab −

1

2
P 2

)
−
√
q

2

(3)

R +
P 2
φ

2
√
q

)
(5.1)

Deparametrisation (i.e. solving the constraints) amounts to rewriting8 H[N ] = 0 as

Pφ = ±
√
q

(3)

R −4

(
P abPab −

1

2
P 2

)
=: Htrue (5.2)

Then, we can quantise (5.2) and treat it as a Schrödinger equation in the physical time φ.
Quantum states then only depend on the metric variables and their time evolution is generated
by the “true” (physical) Hamiltonian Htrue. Since we choose the scalar field to be massless (in
fact we choose the whole potential to vanish), the resulting Hamiltonian is time-independent.
This is however not true in general, in particular for non-vanishing potential.

An inconvenient feature of (5.2) is that it involves a square root, which makes its definition
at the quantum level cumbersome. The square root can be avoided if one uses a suitable choice
of dust as a means of clocks and rods [30, 163, 166, 167]. The respective clock field is given
by the proper time passing for an irrotational dust field. In this case, the true Hamiltonian is
simply given by the gravitational part of the Hamiltonian constraint (plus additional matter
fields that are coupled). From the point of view of recovering quantum field theory on curved
spacetimes, this seems to be an optimal choice of clock fields, as it is algebraically as simple as
possible. On the other hand, the fundamental physical status of dust fields may be questioned.

In all cases, we have to regularise the Hamiltonian (constraint) in terms of holonomies and
fluxes. This regularisation procedure is graph-adapted, i.e. defined separately for every possible
graph underlying a quantum state separately. Cylindrical consistency is demanded in the case
of trivial refinements of the graph. Such a procedure can be either graph-preserving or graph-
changing, as we will discuss below.

8See [165] for a discussion of the different choices of signs.
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Holonomies and fluxes
As a first step, we have to regularise the Hamiltonian constraint (3.22) in terms of holonomies

and fluxes. Let us first consider the so called “Euclidean part” of (3.22)

HE [N ] =

∫

Σ
d3xNβ2E

aiEbj

2
√
q
εijkF kab. (5.3)

The first problem we see is the inverse power of
√
q. While an operator corresponding to a

positive power of
√
q can be defined via the spectral theorem based on the volume operator,

this is not possible for inverse powers as the volume operator has zero in its spectrum. In [99],
Thiemann has proposed a set of classical Poisson bracket identities which can circumvent this
problem. We first note that

β2E
aiEbj

2
√
q
εijk(x) =

1

2
εabcekc (x) =

1

β
εabc

δV (R)

δEck(x)
=

1

β
εabc

{
Akc (x), V (R)

}
, (5.4)

where R is a three-dimensional region containing x in its interior. The resulting expression
contains the volume of a region R, which exists as a well defined operator, as well as a connection,
which we can approximate by a holonomy using

hjs(A) = 1 + η ṡa(0)Aia(s(0)) τ
(j)
i +O(η2), (5.5)

where s is a (short) segment of an edge with s(0) = x and η is a measure of the coordinate
length of s. Therefore, an expression such as (5.4) can be quantised by substituting the Poisson
bracket by a commutator after all connections have been expressed via holonomies.

In order to approximate the field strength via holonomies, we use the classical identity

h
(j)
α12(∆)(A) = 1 +

η2

2
ṡa1ṡ

b
2 F

i
ab(v(∆)) τ

(j)
i +O(η3), (5.6)

where the involved quantities are explained in figure 5.1. We note that if we would have regu-
larised the curvature along a rectangle, we would have gotten an additional factor of 2 in the η2

term.
The regularisation of the remaining terms in the Hamiltonian constraint works similarly,

although the resulting expression is more cumbersome. We will not detail this here and refer to
the exercises for further useful Poisson bracket identities.

What remains to be defined is which holonomies and volumes we actually mean in our
regularisation when we act on a given spin network state. As discussed up to now, a rewriting in
terms of holonomies and fluxes always involves a certain approximation, labelled by a regulator
given by the length of holonomies and areas over which the fluxes are defined. Ideally, one
would like to remove this regulator after the regularised action of the operator has been defined.
This then corresponds to taking a continuum limit9 in the sense that the lattice on which
the Hamiltonian constraint was defined is shrunk to zero edge length. Precisely this has been
achieved by Thiemann in his original definition [99] of the Hamiltonian constraint. The resulting
operator turns out to change the underlying graph by adding a certain class of “extraordinary”
loops. Another possibility is to consider a regularisation which preserves the underlying graph.
In this approach, the regulator cannot be completely removed and the holonomies and fluxes
are chosen as in a lattice approximation of H based on the graph underlying the spin network
acted upon. We will now give some further details on the two possibilities. Earlier work in the
same direction includes [168–172].

9However, this has to be contrasted with the continuum limit discussed in section (1.6), which is a continuum
limit for the states on which the constraint acts.
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Graph-changing
Thiemann’s original construction of the Hamiltonian was graph-changing [99]. This is more

satisfactory from a fundamental point of view as otherwise an infinite number of conserved
quantities (the graph) emerges at the quantum level. We will only give a rough overview of the
construction here.

In order to prescribe the edges on which the holonomies in the operator are defined, one
first constructs a triangulation of Σ adapted to the graph γ underlying the spin network acted
upon. The triangulation has to satisfy that all edges of γ can be build as unions of edges of the
triangulation. The ordering in the Hamiltonian is chosen in such a way that the final operator
acts only on spin network vertices (by ordering the commutator [ĥ, V̂ ] to the right). Then,
around a vertex, the triangulation is used to prescribe a segment s of an edge as well as a loop
α, as shown in figure 5.1. One averages over all possible such prescriptions. The size (fineness)
of the triangulation functions so far as a finite regulator in this definition. However, when one
evaluates the result on a diffeomorphism-invariant state, this regulator can be removed, i.e. the
triangulation infinitely refined, since two arcs of different size are related by a diffeomorphism.
The action of the constraint is visualised in figure 5.2. Various modifications of Thiemann’s
original prescription have been proposed in [173–176].

The precise choices made in the regularisation [99] lead to a certain notion of on-shell
anomaly-freedom. The precise statement is that the commutator of two Hamiltonian con-
straints acting on a state in the kinematical (non-diff-invariant) Hilbert space is non-vanishing,
but vanishes when evaluated on a diffeomorphism invariant state. The reason is that it con-
tains differences of spin networks whose graphs are related by a diffeomorphism. This notion
of anomaly-freedom has been criticised for example in [100]. Progress in deriving an off-shell
notion of anomaly freedom properly implementing the classical Dirac algebra has been recently
made in simplified models [101–104].

e1

e2

e3

e4

a12s1

s2

s3
�

v

↵12

Friday 6 May 16

Figure 5.1: The construction of a triangulation used in the regularisation of the Hamiltonian
constraint acting on a vertex v is depicted. Three edges e1, e2, and e3 are chosen. The edges
are oriented to be outgoing at v. Their starting segments are denotes by s1, s2, and s3. The
endpoints of these segments are connected as in the figure, giving rise to the arcs a12, a23, and
a31. Segments and arcs are connected to loops αij = si ◦ aij ◦ s−1

j . The loop to regularise
the field strength in the Hamiltonian constraint can now for example be taken as α12, whereas
the remaining holonomy is taken along s3. The three segments and three arcs together form a
tetrahedron ∆, which is included in the triangulation of Σ. In the construction, one averages
over all such choices, as well as over all triplets of edges incident at v.

38



v

v v v
+ +

=

+ . . .

ĤE
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Figure 5.2: The action of the Euclidean part of the Hamiltonian constraint at a vertex v is
visualised. The spins labelling the edges overlapping with the loop α are determined by SU(2)
recouping theory. In addition to the terms shown, one obtains further terms coming from an
averaging over all possible triplets of edges used for the regularisation shown in figure 5.1.

Non-graph-changing
An alternative approach to defining a Hamiltonian constraint is to prescribe a graph-preserving

regularisation [62, 63, 149, 177]. In doing this, one fixes once and for all an underlying graph
on which quantum states can have support. The regularisation then strongly resembles that of
lattice gauge theory, with the difference that the underlying metric is an operator. A strong
reason to consider a fixed graph is the current lack of good coherent states for graph-changing
operators [150–152], which only approximate a certain subset of degrees of freedom supported
on the graph on which they are defined. Technically, such a fixed graph would be considered as
an algebraic graph, which does not retain any embedding information such as knotting [177].

Taking this approach, it has been verified that the expectation value of the Master constraint
(a sum of squares of the constraints, see below) takes its classical (discretised) value [62, 63].
Non-graph-changing definitions of Hamiltonians are currently also used in the context of deriving
symmetry reduced sectors of loop quantum gravity from the full theory [57–59, 178, 179] as
well as via a midisuperspace quantisation [180–182], as they are more tractable in practical
calculations due to their restriction of the degrees of freedom to those of the underlying graph.

From a fundamental point of view however, one would prefer a graph-changing operator that
creates new generic10 vertices, in particular to be able to describe an expanding universe only in
terms of low spin. Currently, it seems that the group field theory formalism (see below) comes
closest to achieve this goal [69].

Master constraint
The master constraint approach [183–185] to defining the dynamics has been developed

as an alternative to Dirac quantisation where the constraint algebra is trivialised. Instead of
quantising (some of) the constraints Cα(x) of the theory individually, one quantises a single
master constraint

M =

∫

Σ
d3xCα(x)Kαβ(x)Cβ(x) (5.7)

10The vertices created using Thiemann’s prescription [99] are called “extraordinary” and have a vanishing
volume as well as vanishing action of the Hamiltonian constraint on them. This property is essential in the
current proof of anomaly freedom [99].
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where Kαβ(x) is an invertible phase space function. Hence, imposing M = 0 is classically
equivalent to imposing the vanishing of all the constraints. The selection of observables proceeds
somewhat differently as

{O, {O,M}} ≈ 0, (5.8)

but is equivalent to the standard method on the constraint surface. The operator corresponding
to M is quantised using the same methods that were developed for the Hamiltonian constraint.
The main motivation for the master constraint is of technical nature, e.g. the simplifications
arising due to a trivialised constraint algebra and a rigorous proof of the existence of the physical
Hilbert space. The expectation value of the master has been computed using coherent states
and shown to coincide with a suitable discretisation of the classical theory [62].

The master constraint approach has been tested in a number of systems [186–190] and has
been employed for imposing the simplicity constraints in the spinfoam models [81] as well as in
imposing a symmetry reduction [178].

5.1.2 Spin foams

Spinfoam models (see [191] for a textbook and [192–194] for reviews) are a covariant path integral
approach to defining the dynamics of loop quantum gravity. They grew out of state sum models
[81, 195] and their development [196] was influenced by the dynamics defined by the Hamiltonian
constraint as well as the quantum kinematics. The first important model was the Barrett-Crane
model [197], followed by the improved ERPL / FK model [198], which cured problems with the
graviton propagator [199–201].

There are two basic strategies to arrive at the currently known spinfoam models. First, one
formally tries to define a projector on the physical Hilbert space by giving sense to the expression

|Ψphys〉 := δ(Ĥ) |Ψ〉 :=

∫
[DN ] exp

(
i

∫

Σ
d3xN(x)Ĥ(x)

)
|Ψ〉 . (5.9)

In practise, one then computes a path integral between two kinematical (or diff-invariant) bound-
ary states whose value defines the physical scalar product as

〈
Ψphys

∣∣ Ψ′phys

〉
:=
〈

Ψdiff

∣∣∣ δ(Ĥ)
∣∣∣ Ψ′diff

〉
diff

:=

∞∑

n=0

in

n!

∫
[DN ]

〈
Ψdiff

∣∣∣ Ĥ[N ]n
∣∣∣ Ψ′diff

〉
diff

. (5.10)

Different terms in this sum than can be interpreted as Feynman graphs, with the simplest
example shown in figure 5.3.

Second, one can start with the formulation of general relativity as a constrained BF-theory
going back to Plebanski [202]. A BF-theory [203] is a topological theory with the action

SBF =

∫

M
d4xTr [B ∧ F (A)] , (5.11)

where F is the curvature of a connection A and B is a Lie-algebra valued two-form. The
equations of motion of this action tell us that F (A) = 0, so that the theory is topological.
Moreover, D(A)B = 0 corresponds to the Gauß law. Using the gauge group SO(1, 3), the
condition BIJ = εIJKLe

K ∧ eL ensures equivalence to general relativity, where eI = eIµdx
µ

is the co-vierbein. The reason is that D(A)B = 0 turns into the torsion-freeness condition
w.r.t. the vierbein, and the action reduces to the Einstein-Hilbert action (see exercises). The
condition BIJ = εIJKLe

K ∧ eL can be conveniently expressed in terms of a quadratic expression
εIJKLB

IJ
µνB

KL
ρσ ∝ εµνρσ (up to a topological sector), known as simplicity constraints. The main

idea is now to quantise (5.11) as a topological quantum field theory, which is a well established
subject, and to impose the simplicity constraints at the quantum level. Much care has to be
taken here since the simplicity constraints turn out to be non-commuting and imposing all of
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Figure 5.3: A a spin network containing a three-valent vertex evolves under the path integral into
a new spin network, containing an additional arc, reminiscent of the action of the Hamiltonian
constraint in figure 5.2. The spinfoam depicted here is the simplest contribution to the depicted
process between two equal time hypersurfaces Σt and Σt+δt, originating from a single action of
the Hamiltonian constraint, i.e. the linear term in equation (5.10).

them strongly seems to restrict the physical degrees of freedom too much, as observed in the
Barrett-Crane model [199].

The situation concerning the current understanding of the dynamics of spinfoam models is
comparable to that in the canonical theory. Much is known in the context of large spins, where a
relation to discretised general relativity has been established [64, 65] (see however [204]). On the
other hand, as in the canonical theory, little is known in the context of many small spins. While
the spinfoam approach is clearly motivated by the canonical framework and with a (roughly)
identical kinematics, it is now known whether the dynamics are the same, see. e.g. [205–208].
More recent work focusses mainly on the issue of renormalisation in spin foam models, see for
example [67, 209–212].

5.1.3 Group field theory

Group field theories (GFTs) [49, 213, 214] are a class of quantum field theories that have grown
out of tensor models [215], enriched with additional group theoretic data. They can be inter-
preted as a second quantised version of loop quantum gravity [216] and in particular provide an
organisational principle to systematically derive spinfoam amplitudes, see [214] for a review.

GFTs are defined as quantum field theories on group manifolds and should be interpreted as
quantum field theories of spacetime, instead of quantum field theories on spacetime. Spacetime
itself only obtains a meaning once it is constructed from its atoms, which are quanta that can
be excited over the “no-space” Fock vacuum of GFT. These quanta of space correspond to the
quanta that we already saw in the context of loop quantum gravity for an appropriate choice of
dimension, gauge group, and constraints in the GFT.

The classical starting point for defining a (single field) GFT (in d spacetime dimensions) is
the action principle (e.g., [214])

S =

∫
[dgI ] [dg′J ] φ̄(gI)K(gI , gJ)φ(g′J) (5.12)

+
∑

i

λi
Di!

∫
[dg1I ] . . . [dgDiI ]φ

∗(g1I) . . .Vi(g1I , . . . , gDiI) . . . φ(gDiI) (5.13)

where φ : Gd → C is a complex field on d copies of a group G, K is an interaction kernel for the
kinetic term, and Vi are interaction kernels for the potential, and I, J = 1, . . . , d . This action
is quantised by standard quantum field theory techniques and its Fock vacuum corresponds to
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a state without any space. A single quantum of the field φ corresponds to an atom of space.
Its four arguments correspond to the holonomies orthogonal to the four sides of a tetrahedron.
An additional gauge invariance φ(g1, . . . , gd) = φ(hg1, . . . , hgd), ∀h ∈ G restricts us to contract
the holonomies with invariant tensors, as for spin networks. The interaction term appropriate
for an interaction corresponding to a gluing of five tetrahedra to a four-simplex is visualised in
figure 5.4. The dynamics of the theory is then defined in the standard way as an expansion into

g1

g2

g3

g4

Tuesday 10 May 16

Figure 5.4: A quantum state of a tetrahedron is specified by a wave function of four group
elements g1, g2, g3, g4. The group field theory potential can be chosen such that it glues five
tetrahedra into a four-simplex. The kinetic term in the action glues two tetrahedra of neigh-
bouring four-simplexes. The non-locality (on the group manifold) in the interaction vertex is
restricted within a single four-simplex.

Feynman amplitudes.
The basic philosophy of defining dynamics in group field theory is opposite11 of that in

canonical loop quantum gravity. Instead of starting with general relativity at the classical
level and quantising its dynamics, one starts with a fundamental dynamics that is determined
by symmetries and simplicity. The dynamics of general relativity only have to emerge in the
continuum limit after a suitable coarse graining procedure. Still, the kinematics underlying
group field theory is strongly influence by the quantisation of diffeomorphism-invariant12 field
theories via loop quantum gravity methods.

The main current trends in group field theory research is the extraction of cosmological
dynamics, including corrections to the classical FRW scenario [219–222], as well as the study of
renormalisation, see e.g. [223–225]. Especially in the context of cosmology, much progress could
be made using condensate states and the loop quantum cosmology dynamics could be extracted
up to a further quantum correction [221, 222]. Also, a low spin phase seems to be favoured by
the dynamics in this context [69], which is very interesting from the point of view of the large
spin limit, as such configurations (with no coarse graining implied) seem to be dynamically
unstable.

11In principle, one can also try to implement the dynamics of a specific quantisation of the Hamiltonian con-
straint in a group field theory, however this approach has not been followed so far [214].

12The kinematical structures used for loop quantum gravity type quantisations of more general diffeomorphism-
invariant theories turns out to agree with those used in standard general relativity, see e.g. [217, 218].
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5.2 Open questions and future directions

5.2.1 Quantising classically symmetry reduced models

Two of the main areas of interest of quantum gravity theories, cosmology and black holes, are
symmetric sectors of the classical theory. Progress in understanding quantum gravity in these
situations can thus be made by quantising a symmetry reduced phase space, known as mini-
or midisuperspace quantisation. Most progress along this route has been made in loop quan-
tum cosmology, as outlined in section 2. The main open question here is how to go beyond
a homogeneous and isotropic spacetime, in particular to properly understand how perturba-
tions propagate on the quantum spacetime. This is of paramount importance for extracting
cosmological predictions from the theory and no consensus has been reached so far [47].

The quantisation of spherically symmetric spacetimes has also advanced recently [181, 182],
but it is by far not as advanced as the homogeneous and isotropic sector of the theory, which
can be solved exactly in a suitable ordering and for which a complete set of Dirac observables
are known. Also, dynamical issues have mostly been ignored so far (see however [226]), in
particular spherical collapse and a dynamical resolution thereof along the lines of the big bounce
found in loop quantum cosmology. Understanding this properly in a quantum gravity scenario
is especially important for the resolution of the black hole information paradox, which might
simply be absent once the central singularity is resolved and substituted by a regular evolution
of a suitable quantum state, as e.g. sketched in [227].

5.2.2 Deriving loop quantum cosmology from full loop quantum gravity

In recent years, progress has been made in deriving loop quantum cosmology from full loop
quantum gravity on different fronts. Since the issue of the continuum limit and proper continuum
states, as well as the issue of coarse grained large spin descriptions have not been settled so far,
it is currently not possible to judge any one approach to be fully satisfactory. In particular, one
should distinguish between two a priori different questions:

1. What is the cosmological sector of loop quantum gravity?

2. Is there a theory of quantum gravity that reduces to loop quantum cosmology in a suitable
truncation?

The second question turns out to be easier, since one can taylor the full theory in such a way
that the relevant cosmological observables are, in a suitable sense, orthogonal on the remaining
inhomogeneous degrees of freedom [57, 59]. Moreover, one can use the same gauge fixings that
are employed in loop quantum cosmology already at the classical level, resulting in Abelian gauge
theories rather than non-Abelian ones. In this context, it turns out that a truncation of the full
theory to maximally coarse graphs matches the dynamics of loop quantum cosmology for similar
choices of factor ordering. Since the involved gauge theories have RBohr as a (gauge) group,
Thiemann’s original regularisation prescription for the Hamiltonian constraint can be refined
to incorporate the improved loop quantum cosmology dynamics (such a refined regularisation
prescription is the natural one for graph-preserving Hamiltonians [57, 59]).

Different approaches have been taken to answer the first question. On the one hand, a
gauge fixing and truncation has employed at the quantum level in [178, 179] to simplify the
Hamiltonian constraint. The resulting quantum states still capture sufficient information, as
one can show that the expectation value of the Hamiltonian constraint agrees with the loop
quantum cosmology effective Hamiltonian [179, 228]. A suitable sum over graphs then also leads
to the improved LQC dynamics [229], however still only in the context of expectation values of
the Hamiltonian constraint operator. On the other hand, a condition for a homogeneous and
isotropic spacetime was derived [230], with the aim of suppressing inhomogeneous fluctuations
in both the connection and its conjugate momentum. This approach is different from the one in
[178] in that one quantises a homogeneity condition instead of trying to construct homogeneous
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spin networks, i.e. with homogeneously distributed spins, at the quantum level. Other, more
mathematically minded studies have focussed on the embeddability of the LQC state space into
that of standard loop quantum gravity, see e.g. [231–235].

Within group field theory, condensate states have been considered as suitable candidates for
continuum states encoding sufficient information to extract cosmology [219, 220]. Here, the full
quantum dynamics are computed in a hydrodynamic limit using the Gross-Pitaevskii equation.
It can be shown that one obtains the improved loop quantum cosmology dynamics for a suitable
choice of parameters in the GFT action, including a new quantum correction [221, 222]. In
particular, the dynamics exponentially suppress large spins and thus probe a genuine low spin
regime [69].

Concerning observations, it is of great importance to study how cosmological perturbations
propagate on the homogeneous and isotropic quantum spacetimes described in any of these
approaches, and to compare it to the standard loop quantum cosmology picture [8], see for
example [236] for some seminal work. Also, some work has been done on defining a notion of
spherical symmetry at the quantum level [56, 58, 59, 237, 238].

Irrespective of their final relevance for the cosmological sector of LQG, all of these works
are valuable in that they shed some light on the hard issue of the continuum limit and effective
dynamics. In any case, they provide simplified models in which coarse graining can be studied
and new techniques useful for full LQG can be developed.

5.2.3 Black hole entropy

The first computations of black hole entropy within loop quantum gravity [239–241] were based
on counting the number of ways in which a total area can be subdivided into the quanta of area
suggested by the LQG area operator. The result is that the entropy

S = const(β)×A (5.14)

is proportional to the area A, with the proportionality constant depending on the Barbero-
Immirzi parameter β. Based on the seminal work [239], these computations were later incorpo-
rated into the framework of isolated horizons [242], where the black hole horizon is modelled as
a boundary of spacetime [96, 243–246], see [247] for a review. While isolated horizons provide
a satisfactory local notion of a horizon at the classical level, the conditions which are actually
imposed in the quantum theory turn out to be insufficient to characterise a quantum horizon
[162, 218]. In fact, it turns out that all the ingredients necessary to perform the computations
according to [96] are available for general boundaries [55] and one computes the entanglement
entropy of the gravitational field in a maximally mixed state [53–55]. This in particular agrees
with recent results from other approaches to quantum gravity [248]. The two main open ques-
tions are thus the following:

1. Are (black hole) horizons somehow special in the quantum theory?

2. How should the prefactor in front of the area be interpreted?

First, as noted in [53], it would be appropriate to quantise the marginally outer trapped surface
condition

(qab − sasb)(Kab +∇asb) = 0 (5.15)

where sa is an outward pointing normal of the surface under question, and to investigate its
kernel. While this seems rather cumbersome without any gauge fixing, the condition greatly
simplifies is one considers it in the radial gauge [61, 249] (with Λ2 = qrr = qrr(r) [58]), where it
simply reads

PΛΛ + ∂r
√

det qAB = 0 (5.16)

for a surface embedded in a sphere of constant geodesic distance from the origin. At first
sight, nothing noteworthy seems to happen, as the solution to this equation simply restricts the
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quantum numbers in a certain way. This seems also consistent with the analysis of [250], where
the apparent horizon condition introduces some correlations across the horizon, but it is unclear
that only those correlations would lead to an area-proportional entropy. More generally, it would
be interesting to quantise a sufficient set of conditions to characterise a spacetime boundary as
an isolated horizon. From the point of view of the value that the entropy takes, the answer to
the first question crucially depends on the following:

Second, the computation of black hole entropy following [96] takes place in the (continuum)
limit of many low spins, where we have little knowledge of the dynamics. In particular, the pref-
actor in (5.14) contains the bare Newton constant, whereas the Bekenstein-Hawking entropy
should contain the renormalised one. Ideally, one would like to understand a possible renor-
malisation group flow of the Newton constant and check whether (5.14) expressed in terms of
renormalised quantities gives the Bekenstein-Hawking formula. If one were able to do this, one
should also check how the prefactor behaves if the area of which one computes the entropy is
not a slice of a horizon, hopefully providing insights to the first question.

Some interesting progress on these questions has been made recently in the context of the
large spin regime. Here, it was first noted that one can analytically continue13 the formula for
the dimension of the horizon Hilbert space from real to complex β. In particular, one obtains
the Bekenstein-Hawking formula for β = ±i [97]. At the same time, consistency of the large
spin four-simplex amplitude with the classical on-shell action including the boundary term also
demands β = ±i, so that a match between the effective action and the entropy computation is
achieved [98]. However, these computations have been in the realm of (fundamental) large spins
and do not apply to the continuum, at least naively. It is noteworthy that these computations
do not require the boundary to be a horizon slice, supporting [248]. If one furthermore assumes
an energy-area relation appropriate for black holes [251], additional results specific to horizons
can be derived [252, 253].

5.2.4 Gauge / gravity

The gauge / gravity duality is a very interesting recent development in theoretical physics, which
relates quantum gravity theories defined on a suitable class of spacetimes to gauge theories on
the boundary of these spacetimes. Since Maldacena’s original proposal [38] for a duality between
type IIB string theory and N = 4 super Yang-Mills theory, the field has evolved considerably
and many new dualities have emerged, see e.g. [37, 254].

The practical importance of the gauge / gravity duality is that it allows to study strongly
coupled gauge theories, where perturbative methods are not applicable, by doing computations
in gravitational theories. In particular, the most commonly used technique is to approximate the
string theory side by a classical gravitational theory, which translates into an infinite ’t Hooft
coupling and infinite number of colours in the Yang-Mills theory. If one wants to go beyond this
limit, string theory corrections to the classical gravitational action have to be taken into account.
The two relevant parameters on the string theory side are α′ (higher-curvature corrections) as
well as gs (quantum corrections).

Concerning loop quantum gravity, two questions now have to be asked:

1. Is there a limit of the existing dualities in which loop quantum gravity techniques can be
helpful to compute corrections to the classical gravity approximation?

2. Are there other dualities which apply specifically to loop quantum gravity?

The first point was briefly discussed in [255], where it was argued that the large spin expan-
sion could be related to the 1/N expansion in a dual gauge theory while neglecting α′ corrections.
Here, one has to be careful about the limits that can be taken on the loop quantum gravity side:

13While the classical theory simplifies from β = ±i, no quantum theory for complex β is known due to the
complicated reality conditions. The only way to derive results for complex β so far is thus to compute with real
β and analytically continue the result.
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the large spin limit refers to a limit on a fixed underlying graph, so that there is an associated
notion of discreteness. One would therefore expect the dual gauge theory to be a lattice gauge
theory, where the lattice is specified by the intersection of the graph with the boundary. Such
fixed graph dualities would thus be discretised versions of a gauge / gravity duality that would
only recover the usual dualities upon taking a continuum limit. A recent calculation proving the
potential usefulness of loop quantum gravity techniques for gauge / gravity dualities has been
given in [256].

For the second point, one could in principle start from scratch and try to prove or motivate
a new duality. However, one should keep in mind that it is so far unclear whether quantum
gravity à la loop quantum gravity should even possess a holographic dual like string theory
is conjectured to have14. A recent success along this road has been to proof a duality of the
Ponzano-Regge model, which can be considered as Euclidean 3d LQG, to the 2d Ising model
[257], see also [258]. Here, the lattice sides for the Ising spins are vertices of the boundary spin
network state, giving an example of the discrete duality mentioned above. Of course, 3d gravity
is very special, i.e. topological, and it is therefore unclear if higher-dimensional generalisations
can be rigorously established. Still, [257] should provide us with valuable hints on how potential
dualities can be formulated (see also [259]).

5.2.5 Anomaly freedom

If one is interested in defining the quantum dynamics from a purely canonical point of view,
anomaly freedom of the constraint algebra is the key topic that needs to be solved in a satisfactory
way. Properly implementing a quantum version of the Dirac algebra so far seems to greatly
restrict the possible regularisation choices even before any semi-classical consistency with general
relativity is demanded. Thiemann’s original proposal [99] discussed above already implements
a certain on-shell notion of anomaly freedom, however it would be more satisfactory to see
a (suitably defined) generator of spatial diffeomorphisms emerge from the commutator of two
Hamiltonian constraints.

Based on insights coming from parametrised field theory [260], recent progress was made in
simplified toy models, where one for example works in 2 + 1 dimensions, the Euclidean setting,
or using the gauge group U(1)3 [102–104, 261, 262]. Of these works, [104] (four-dimensional,
gauge group SU(2), but Euclidean) is most similar to full LQG. However, in order to achieve a
non-trivial representation of the constraint algebra, self-dual variables were used (corresponding
to β = ±i in the Lorentzian case), in which the action of the Hamiltonian constraint can be
written in terms of certain Lie derivatives. These allow for a geometric interpretation of the
flow generated by the Hamiltonian constraint and thus greatly simplify the task of finding an
anomaly free representation. Within full loop quantum gravity, a new regularisation of the
spatial diffeomorphism constraint using similar methods than for the Hamiltonian constraint
seems especially satisfying [101]. It should be mentioned however that the constraint operators
defined in the works cited here are not defined on the usual kinematical Hilbert space discussed
in section 3.4, but on a suitable generalisation of the so-called Lewandowski-Marolf habitat [173].
In particular, the constraints feature non-unit density weights.

The restrictions imposed by finding a quantum representation of the Dirac algebra can be
further strengthened if one consider supergravity quantised via the methods of loop quantum
gravity [156–159]. The constraint algebra then obtains additional relations involving the super-
symmetry generator S which have to be satisfied, among them

{S[. . .], S[. . .]} = H[. . .] +Ha[. . .] + . . . (5.17)

This is in particular interesting to constrain different ways to couple matter fields present in the
supersymmetry multiplets.

14So far, there does not seem to be any LQG-specific evidence to support the existence of a holographic dual.
In particular, the black hole entropy computations in LQG refer to the number of states accessible at the horizon,
instead of the number of states contained within the horizon.
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Furthermore, the issue of anomaly freedom is currently being investigated in the context
of effective constraints for cosmological and spherically symmetric scenarios, see [86–90], where
interesting physical effects such as signature change at high energy density are found.

5.2.6 Coarse graining

Coarse graining here refers to an effective description of a quantum geometry on large scales
by a reduced number of degrees of freedom. A prototypical example would be to consider the
Ising model and ingrate out a certain subset of spins, leading to an effective Hamiltonian for the
remaining ones. In practise, integrating out some degrees of freedom turns out to be very com-
plicated already in simple systems, in particular the qualitative form of the effective dynamics
might be different from the fundamental one. For example, already in the 2-dimensional Ising
model, new interaction terms arise after integrating out some of the spins.

The complexity of the full loop quantum gravity dynamics as encoded in different proposals
for the dynamics has so far prohibited to study coarse graining in detail. Still, some results
are available in the context of simplified models, see e.g. [212, 263–265]. For a more general
discussion, see [66]. In studying coarse graining, a particularly interesting question is whether
there exists a good coarse grained description in terms of large spins, and how different the
effective coarse grained dynamics is from the fundamental dynamics acting on states with large
spins. This is especially relevant to determine the range of validity of existing semiclassical
techniques in the context of large spins while using the fundamental dynamics.

5.3 Exercises

1. Further Poisson bracket identities
For the remaining “Lorentzian” part of the Hamiltonian constraint, we need to construct
an operator corresponding to components of the extrinsic curvature. Show that

√
qK =

√
qKabq

ab(x) = βKaiE
ai(x) =

1

β2
{HE(x)|N=1, V (Σ)} . (5.18)

Next, show that βKi
a(x) =

{
Aia(x),

∫
R d

3x
√
qK
}

. To simplify the calculation, it is helpful
to view

∫
R d

3x
√
qK as the generator of global conformal transformations on the Ki

a,
Ebj variables. How does Γia transform under such transformations? Using your results,

write down an expression for the full Hamiltonian constraint in terms of connections Aia,
curvatures F iab, as well as volume operators.

2. An obstruction for self-adjoint constraint operators?
Show that there is an obstruction to quantise the Hamiltonian and spatial diffeomorphism
constraints as self-adjoint operators such that the constraints appearing in their commu-
tators are ordered to the right. Is there a logical necessity for constraints to be quantised
as self-adjoint operators? Can this obstruction be avoided in a Dirac quantisation (such
that Ĉi |Ψphys〉 = 0 for all constraints Ĉi) while insisting on self-adjointness?

3. General relativity form BF-theory
Upon imposing the simplicity constraints, we get BIJ

µν = εIJKLeµKeνL (see [266] for a

proof). Show that the equation D[µ(A)BIJ
νρ] = 0 translate to the no-torsion condition

D[µ(A)eIν] = 0. Solve this equation for A. Hint: contract the tensor indices µ, ν with

vierbeins eµKe
ν
L to obtain an expression with free indices IKL, then take suitable linear

combinations of cyclic permutations in these indices. The resulting connection is known
as the (spacetime) spin connection ΓIJµ . Show that FµνIJ(Γ)eIρe

J
σ coincides with the four-

dimensional Riemann tensor Rµνρσ. Insert back into the action and show that we obtain
the Einstein-Hilbert action.
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4. Quantum polyhedra [148]
A theorem due to Minkowski states that given F (pairwise non-parallel) unit normals ~nα
and F areas Ai satisfying

∑F
α=1 ~nαAα = 0 determine a unique (up to translations) convex

polyhedron with face areas Aα and outward pointing face normals ~nα. In 3 dimensions,
the space of polyhedra up to translations and rotations can be turned into the Kapovich-
Millson phase space by considering the F (non-unit) vectors ~Aα and equipping them with
the Poisson bracket {Aiα, Ajβ} = εijkAkαδαβ and the first class constraint ~C =

∑F
α=1

~Aα = 0.

Show that ~C generates rotations of the polyhedra. Quantise this phase space and impose
~C = 0 at the quantum level. Derive a quantisation condition on the allowed face areas.
How many degrees of freedom (independent quantum numbers) does a quantum tetra-
hedron have? Compare to the classical case. What about polyhedra with more than
four faces? What is the relation to the LQG Hilbert space? Hint: all invariant tensors
in SU(2) can be constructed by contracting 3-valent ones, which are unique for 3 given
representations to be intertwined.

5. Group field theory
Visualise the gluing of tetrahedra to a four-simplex shown in figure 5.4 in lower dimensions.
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[176] M. Assanioussi, J. Lewandowski, and I. Mäkinen, “New scalar constraint operator for loop
quantum gravity,” Physical Review D 92 (2015) 044042, arXiv:1506.00299 [gr-qc].

[177] K. Giesel and T. Thiemann, “Algebraic quantum gravity (AQG): I. Conceptual setup,”
Classical and Quantum Gravity 24 (2007) 2465–2497, arXiv:gr-qc/0607099.

[178] E. Alesci and F. Cianfrani, “A new perspective on cosmology in Loop Quantum Gravity,”
Europhysics Letters 104 (2013) 10001, arXiv:1210.4504 [gr-qc].

[179] E. Alesci and F. Cianfrani, “Loop quantum cosmology from quantum reduced loop grav-
ity,” Europhysics Letters 111 (2015) 40002, arXiv:1410.4788 [gr-qc].

[180] M. Bojowald and R. Swiderski, “Spherically symmetric quantum geometry: Hamiltonian
constraint,” Classical and Quantum Gravity 23 (2006) 2129–2154, arXiv:gr-qc/0511108.

[181] N. Alvarez, R. Gambini, and J. Pullin, “Local Hamiltonian for Spherically Symmet-
ric Gravity Coupled to a Scalar Field,” Physical Review Letters 108 (2012) 051301,
arXiv:1111.4962 [gr-qc].

[182] R. Gambini and J. Pullin, “Loop Quantization of the Schwarzschild Black Hole,” Physical
Review Letters 110 (2013) 211301, arXiv:1302.5265 [gr-qc].

[183] T. Thiemann, “The Phoenix Project: master constraint programme for loop quantum
gravity,” Classical and Quantum Gravity 23 (2006) 2211–2247, arXiv:gr-qc/0305080.

[184] T. Thiemann, “Quantum spin dynamics: VIII. The master constraint,” Classical and
Quantum Gravity 23 (2006) 2249–2265, arXiv:gr-qc/0510011.

[185] M. Han and Y. Ma, “Master constraint operators in loop quantum gravity,” Physics Letters
B 635 (2006) 225–231, arXiv:gr-qc/0510014.

[186] B. Dittrich and T. Thiemann, “Testing the master constraint programme for loop quantum
gravity: I. General framework,” Classical and Quantum Gravity 23 (2006) 1025–1065,
arXiv:gr-qc/0411138.

[187] B. Dittrich and T. Thiemann, “Testing the master constraint programme for loop quantum
gravity: II. Finite-dimensional systems,” Classical and Quantum Gravity 23 (2006) 1067–
1088, arXiv:gr-qc/0411139.

[188] B. Dittrich and T. Thiemann, “Testing the master constraint programme for loop
quantum gravity: III. models,” Classical and Quantum Gravity 23 (2006) 1089–1120,
arXiv:gr-qc/0411140.

[189] B. Dittrich and T. Thiemann, “Testing the master constraint programme for loop quantum
gravity: IV. Free field theories,” Classical and Quantum Gravity 23 (2006) 1121–1142,
arXiv:gr-qc/0411141.

[190] B. Dittrich and T. Thiemann, “Testing the master constraint programme for loop quantum
gravity: V. Interacting field theories,” Classical and Quantum Gravity 23 (2006) 1143–
1162, arXiv:gr-qc/0411142.

[191] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction
to Quantum Gravity and Spinfoam Theory. Cambridge University Press, 2014.

[192] J. C. Baez, “An Introduction to Spin Foam Models of Quantum Gravity and BF Theory,”
Lecture Notes in Physics 543 (2000) 25–94, arXiv:gr-qc/9905087.

[193] C. Rovelli, “Zakopane lectures on loop gravity,” arXiv:1102.3660 [gr-qc].

58

http://arxiv.org/abs/1504.02068
http://arxiv.org/abs/1506.00299
http://arxiv.org/abs/gr-qc/0607099
http://arxiv.org/abs/1210.4504
http://arxiv.org/abs/1410.4788
http://arxiv.org/abs/gr-qc/0511108
http://arxiv.org/abs/1111.4962
http://arxiv.org/abs/1302.5265
http://arxiv.org/abs/gr-qc/0305080
http://arxiv.org/abs/gr-qc/0510011
http://arxiv.org/abs/gr-qc/0510014
http://arxiv.org/abs/gr-qc/0411138
http://arxiv.org/abs/gr-qc/0411139
http://arxiv.org/abs/gr-qc/0411140
http://arxiv.org/abs/gr-qc/0411141
http://arxiv.org/abs/gr-qc/0411142
http://arxiv.org/abs/gr-qc/9905087
http://arxiv.org/abs/1102.3660


[194] A. Perez, “Spin foam models for quantum gravity,” Classical and Quantum Gravity 20
(2003) R43–R104, arXiv:gr-qc/0301113.

[195] J. W. Barrett, “State sum models for quantum gravity,” arXiv:gr-qc/0010050.

[196] M. P. Reisenberger and C. Rovelli, “’Sum over surfaces’ form of loop quantum gravity,”
Physical Review D 56 (1997) 3490–3508, arXiv:gr-qc/9612035.

[197] J. W. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” Journal
of Mathematical Physics 39 (1998) 3296–3302, arXiv:gr-qc/9709028.

[198] L. Freidel and K. Krasnov, “A new spin foam model for 4D gravity,” Classical and Quan-
tum Gravity 25 (2008) 125018, arXiv:0708.1595 [gr-qc].

[199] E. Alesci and C. Rovelli, “Complete LQG propagator: Difficulties with the Barrett-Crane
vertex,” Physical Review D 76 (2007) 104012, arXiv:0708.0883 [gr-qc].

[200] E. Alesci and C. Rovelli, “Complete LQG propagator. II. Asymptotic behavior of the
vertex,” Physical Review D 77 (2008) 044024, arXiv:0711.1284 [gr-qc].

[201] E. Bianchi and Y. Ding, “Lorentzian spinfoam propagator,” Physical Review D 86 (2012)
104040, arXiv:1109.6538 [gr-qc].

[202] J. F. Plebanski, “On the separation of Einsteinian substructures,” Journal of Mathematical
Physics 18 (1977) 2511–2520.

[203] G. T. Horowitz, “Exactly soluble diffeomorphism invariant theories,” Communications in
Mathematical Physics 125 (1989) 417–437.

[204] F. Hellmann and W. Kaminski, “Geometric asymptotics for spin foam lattice gauge gravity
on arbitrary triangulations,” arXiv:1210.5276 [gr-qc].

[205] S. Alexandrov, M. Geiller, and K. Noui, “Spin Foams and Canonical Quantiza-
tion,” Symmetry, Integrability and Geometry: Methods and Applications 8 (2012) 55,
arXiv:1112.1961 [gr-qc].

[206] M. Han and T. Thiemann, “Commuting simplicity and closure constraints for 4D spin-foam
models,” Classical and Quantum Gravity 30 (2013) 235024, arXiv:1010.5444 [gr-qc].

[207] E. Alesci, T. Thiemann, and A. Zipfel, “Linking covariant and canonical loop quantum
gravity: New solutions to the Euclidean scalar constraint,” Physical Review D 86 (2012)
024017, arXiv:1109.1290 [gr-qc].

[208] T. Thiemann and A. Zipfel, “Linking covariant and canonical LQG II: spin foam projec-
tor,” Classical and Quantum Gravity 31 (2014) 125008, arXiv:1307.5885 [gr-qc].

[209] E. R. Livine and D. Oriti, “Coupling of spacetime atoms in 4D spin foam mod-
els from group field theory,” Journal of High Energy Physics 2007 (2007) 092–092,
arXiv:gr-qc/0512002.

[210] A. Riello, “Self-energy of the Lorentzian Engle-Pereira-Rovelli-Livine and Freidel-Krasnov
model of quantum gravity,” Physical Review D 88 (2013) 024011, arXiv:1302.1781

[gr-qc].

[211] V. Bonzom and B. Dittrich, “Bubble divergences and gauge symmetries in spin foams,”
Physical Review D 88 (2013) 124021, arXiv:1304.6632 [gr-qc].

[212] B. Dittrich, M. Mart́ın-Benito, and E. Schnetter, “Coarse graining of spin net models:
dynamics of intertwiners,” New Journal of Physics 15 (2013) 103004, arXiv:1306.2987
[gr-qc].

59

http://arxiv.org/abs/gr-qc/0301113
http://arxiv.org/abs/gr-qc/0010050
http://arxiv.org/abs/gr-qc/9612035
http://arxiv.org/abs/gr-qc/9709028
http://arxiv.org/abs/0708.1595
http://arxiv.org/abs/0708.0883
http://arxiv.org/abs/0711.1284
http://arxiv.org/abs/1109.6538
http://arxiv.org/abs/1210.5276
http://arxiv.org/abs/1112.1961
http://arxiv.org/abs/1010.5444
http://arxiv.org/abs/1109.1290
http://arxiv.org/abs/1307.5885
http://arxiv.org/abs/gr-qc/0512002
http://arxiv.org/abs/1302.1781
http://arxiv.org/abs/1304.6632
http://arxiv.org/abs/1306.2987


[213] D. Oriti, “The Group field theory approach to quantum gravity,” in Approaches to Quan-
tum Gravity - toward a new understanding of space, time, and matter (D. Oriti, ed.).
Cambridge University Press, 2006. arXiv:gr-qc/0607032.

[214] D. Oriti, “Group Field Theory and Loop Quantum Gravity,” arXiv:1408.7112 [gr-qc].

[215] R. Gurau, “Colored Tensor Models - a Review,” Symmetry, Integrability and Geometry:
Methods and Applications (2012) arXiv:1109.4812 [hep-th].

[216] D. Oriti, “Group field theory as the second quantization of loop quantum gravity,” Clas-
sical and Quantum Gravity 33 (2016) 085005, arXiv:1310.7786 [gr-qc].

[217] Y. Ma, “Extension of Loop Quantum Gravity to Metric Theories beyond General Rel-
ativity,” Journal of Physics: Conference Series 360 (2012) 012006, arXiv:1112.2085

[gr-qc].

[218] N. Bodendorfer and Y. Neiman, “Wald entropy formula and loop quantum gravity,” Phys-
ical Review D 90 (2014) 084054, arXiv:1304.3025 [gr-qc].

[219] S. Gielen, D. Oriti, and L. Sindoni, “Cosmology from Group Field Theory Formalism
for Quantum Gravity,” Physical Review Letters 111 (2013) 031301, arXiv:1303.3576

[gr-qc].

[220] S. Gielen, D. Oriti, and L. Sindoni, “Homogeneous cosmologies as group field theory con-
densates,” Journal of High Energy Physics 2014 (2014) 13, arXiv:1311.1238 [gr-qc].

[221] D. Oriti, L. Sindoni, and E. Wilson-Ewing, “Bouncing cosmologies from quantum gravity
condensates,” arXiv:1602.08271 [gr-qc].

[222] D. Oriti, L. Sindoni, and E. Wilson-Ewing, “Emergent Friedmann dynamics with a quan-
tum bounce from quantum gravity condensates,” arXiv:1602.05881 [gr-qc].

[223] S. Carrozza, D. Oriti, and V. Rivasseau, “Renormalization of a SU(2) Tensorial Group
Field Theory in Three Dimensions,” Communications in Mathematical Physics 330 (2014)
581–637, arXiv:1303.6772 [hep-th].

[224] V. Lahoche, D. Oriti, and V. Rivasseau, “Renormalization of an Abelian tensor group
field theory: solution at leading order,” Journal of High Energy Physics 2015 (2015) 95,
arXiv:1501.02086 [hep-th].

[225] S. Carrozza, Tensorial Methods and Renormalization in Group Field Theories. PhD thesis,
2014. arXiv:1310.3736 [hep-th].

[226] M. Bojowald, T. Harada, and R. Tibrewala, “Lemaitre-Tolman-Bondi collapse from
the perspective of loop quantum gravity,” Physical Review D 78 (2008) 064057,
arXiv:0806.2593 [gr-qc].

[227] A. Ashtekar and M. Bojowald, “Black hole evaporation: a paradigm,” Classical and Quan-
tum Gravity 22 (2005) 3349–3362, arXiv:gr-qc/0504029.

[228] E. Alesci and F. Cianfrani, “Quantum reduced loop gravity: Semiclassical limit,” Physical
Review D 90 (2014) 024006, arXiv:1402.3155 [gr-qc].

[229] E. Alesci and F. Cianfrani, “Improved regularization from Quantum Reduced Loop Grav-
ity,” arXiv:1604.02375 [gr-qc].

[230] C. Beetle, J. S. Engle, M. E. Hogan, and P. Mendonca, “Diffeomorphism invariant cosmo-
logical symmetry in full quantum gravity,” arXiv:1603.01128 [gr-qc].

[231] J. Engle, “Relating loop quantum cosmology to loop quantum gravity: symmet-

60

http://arxiv.org/abs/gr-qc/0607032
http://arxiv.org/abs/1408.7112
http://arxiv.org/abs/1109.4812
http://arxiv.org/abs/1310.7786
http://arxiv.org/abs/1112.2085
http://arxiv.org/abs/1304.3025
http://arxiv.org/abs/1303.3576
http://arxiv.org/abs/1311.1238
http://arxiv.org/abs/1602.08271
http://arxiv.org/abs/1602.05881
http://arxiv.org/abs/1303.6772
http://arxiv.org/abs/1501.02086
http://arxiv.org/abs/1310.3736
http://arxiv.org/abs/0806.2593
http://arxiv.org/abs/gr-qc/0504029
http://arxiv.org/abs/1402.3155
http://arxiv.org/abs/1604.02375
http://arxiv.org/abs/1603.01128


ric sectors and embeddings,” Classical and Quantum Gravity 24 (2007) 5777–5802,
arXiv:gr-qc/0701132.

[232] J. Engle, “Embedding loop quantum cosmology without piecewise linearity,” Classical and
Quantum Gravity 30 (2013) 085001, arXiv:1301.6210 [gr-qc].

[233] J. Brunnemann and T. A. Koslowski, “Symmetry reduction of loop quantum gravity,”
Classical and Quantum Gravity 28 (2011) 245014, arXiv:1012.0053 [gr-qc].

[234] M. Hanusch, “Invariant Connections in Loop Quantum Gravity,” Communications in
Mathematical Physics 343 (2016) 1–38, arXiv:1307.5303 [math-ph].

[235] C. Fleischhack, “Kinematical Foundations of Loop Quantum Cosmology,”
arXiv:1505.04400 [math-ph].

[236] S. Gielen, “Identifying cosmological perturbations in group field theory condensates,”
Journal of High Energy Physics 2015 (2015) 10, arXiv:1505.07479 [gr-qc].

[237] M. Bojowald, “Spherically symmetric quantum geometry: states and basic operators,”
Classical and Quantum Gravity 21 (2004) 3733–3753, arXiv:gr-qc/0407017.

[238] D. Oriti, D. Pranzetti, J. P. Ryan, and L. Sindoni, “Generalized quantum gravity con-
densates for homogeneous geometries and cosmology,” Classical and Quantum Gravity 32
(2015) 235016, arXiv:1501.00936 [gr-qc].

[239] L. Smolin, “Linking Topological Quantum Field Theory and Nonperturbative Quantum
Gravity,” Journal of Mathematical Physics 36 (1995) 6417–6455, arXiv:gr-qc/9505028.

[240] K. Krasnov, “Geometrical entropy from loop quantum gravity,” Physical Review D 55
(1997) 3505 – 3513, arXiv:gr-qc/9603025.

[241] C. Rovelli, “Black Hole Entropy from Loop Quantum Gravity,” Physical Review Letters
77 (1996) 3288–3291, arXiv:gr-qc/9603063.

[242] A. Ashtekar and B. Krishnan, “Isolated and Dynamical Horizons and Their Applications,”
Living Reviews in Relativity 7 (2004) arXiv:gr-qc/0407042.

[243] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum Geometry and Black Hole
Entropy,” Physical Review Letters 80 (1998) 904–907, arXiv:gr-qc/9710007.

[244] A. Ashtekar, A. Corichi, and K. Krasnov, “Isolated Horizons: the Classical
Phase Space,” Advances in Theoretical and Mathematical Physics 3 (1999) 419–478,
arXiv:gr-qc/9905089.

[245] J. Engle, K. Noui, A. Perez, and D. Pranzetti, “Black hole entropy from an SU(2)-
invariant formulation of Type I isolated horizons,” Physical Review D 82 (2010) 044050,
arXiv:1006.0634 [gr-qc].

[246] N. Bodendorfer, T. Thiemann, and A. Thurn, “New variables for classical and quantum
gravity in all dimensions: V. Isolated horizon boundary degrees of freedom,” Classical and
Quantum Gravity 31 (2014) 055002, arXiv:1304.2679 [gr-qc].

[247] J. Diaz-Polo and D. Pranzetti, “Isolated Horizons and Black Hole Entropy in Loop Quan-
tum Gravity,” SIGMA 8 (2012) 048, arXiv:1112.0291 [gr-qc].

[248] E. Bianchi and R. C. Myers, “On the architecture of spacetime geometry,” Classical and
Quantum Gravity 31 (2014) 214002, arXiv:1212.5183 [hep-th].

[249] P. Duch, W. Kaminski, J. Lewandowski, and J. Swiezewski, “Observables for gen-
eral relativity related to geometry,” Journal of High Energy Physics 2014 (2014) 77,

61

http://arxiv.org/abs/gr-qc/0701132
http://arxiv.org/abs/1301.6210
http://arxiv.org/abs/1012.0053
http://arxiv.org/abs/1307.5303
http://arxiv.org/abs/1505.04400
http://arxiv.org/abs/1505.07479
http://arxiv.org/abs/gr-qc/0407017
http://arxiv.org/abs/1501.00936
http://arxiv.org/abs/gr-qc/9505028
http://arxiv.org/abs/gr-qc/9603025
http://arxiv.org/abs/gr-qc/9603063
http://arxiv.org/abs/gr-qc/0407042
http://arxiv.org/abs/gr-qc/9710007
http://arxiv.org/abs/gr-qc/9905089
http://arxiv.org/abs/1006.0634
http://arxiv.org/abs/1304.2679
http://arxiv.org/abs/1112.0291
http://arxiv.org/abs/1212.5183


arXiv:1403.8062 [gr-qc].

[250] A. Dasgupta, “Semi-classical quantization of spacetimes with apparent horizons,” Classical
and Quantum Gravity 23 (2006) 635–671, arXiv:gr-qc/0505017.

[251] A. Ghosh and A. Perez, “Black Hole Entropy and Isolated Horizons Thermodynamics,”
Physical Review Letters 107 (2011) 241301, arXiv:1107.1320 [gr-qc].

[252] D. Pranzetti, “Geometric temperature and entropy of quantum isolated horizons,” Physical
Review D 89 (2014) 104046, arXiv:1305.6714 [gr-qc].

[253] M. Geiller and K. Noui, “Near-horizon radiation and self-dual loop quantum gravity,”
Europhysics Letters 105 (2014) 60001, arXiv:1402.4138 [gr-qc].

[254] M. Natsuume, “AdS/CFT Duality User Guide,” Lecture Notes in Physics 903 (2015)
arXiv:1409.3575 [hep-th].

[255] N. Bodendorfer, “A note on quantum supergravity and AdS/CFT,” arXiv:1509.02036

[hep-th].

[256] V. Bonzom and B. Dittrich, “3D holography: from discretum to continuum,” Journal of
High Energy Physics 2016 (2016) 208, arXiv:1511.05441 [hep-th].

[257] V. Bonzom, F. Costantino, and E. R. Livine, “Duality Between Spin Networks and the
2D Ising Model,” Communications in Mathematical Physics (2016) arXiv:1504.02822

[math-ph].

[258] B. Dittrich and J. Hnybida, “Ising Model from Intertwiners,” arXiv:1312.5646 [gr-qc].

[259] L. Freidel, “Reconstructing AdS/CFT,” arXiv:0804.0632v1 [hep-th].

[260] A. Laddha and M. Varadarajan, “Hamiltonian constraint in polymer parametrized field
theory,” Physical Review D 83 (2011) 025019, arXiv:1011.2463 [gr-qc].

[261] M. Varadarajan, “Towards an anomaly-free quantum dynamics for a weak coupling limit
of Euclidean gravity: Diffeomorphism covariance,” Physical Review D 87 (2013) 044040,
arXiv:1210.6877 [gr-qc].

[262] A. Henderson, A. Laddha, and C. Tomlin, “Constraint algebra in loop quantum gravity
reloaded. II. Toy model of an Abelian gauge theory: Spatial diffeomorphisms,” Physical
Review D 88 (2013) 044029, arXiv:1210.3960 [gr-qc].

[263] B. Dittrich, S. Mizera, and S. Steinhaus, “Decorated tensor network renormalization for
lattice gauge theories and spin foam models,” New Journal of Physics 18 (2016) 053009,
arXiv:1409.2407 [gr-qc].

[264] B. Dittrich, M. Martin-Benito, and S. Steinhaus, “Quantum group spin nets: Refinement
limit and relation to spin foams,” Physical Review D 90 (2014) 024058, arXiv:1312.0905
[gr-qc].

[265] B. Dittrich and S. Steinhaus, “Time evolution as refining, coarse graining and entangling,”
New Journal of Physics 16 (2014) 123041, arXiv:1311.7565 [gr-qc].

[266] L. Freidel, K. Krasnov, and R. Puzio, “BF description of higher-dimensional grav-
ity theories,” Advances in Theoretical and Mathematical Physics 3 (1999) 1289–1324,
arXiv:hep-th/9901069.

62

http://arxiv.org/abs/1403.8062
http://arxiv.org/abs/gr-qc/0505017
http://arxiv.org/abs/1107.1320
http://arxiv.org/abs/1305.6714
http://arxiv.org/abs/1402.4138
http://arxiv.org/abs/1409.3575
http://arxiv.org/abs/1509.02036
http://arxiv.org/abs/1511.05441
http://arxiv.org/abs/1504.02822
http://arxiv.org/abs/1312.5646
http://arxiv.org/abs/0804.0632
http://arxiv.org/abs/1011.2463
http://arxiv.org/abs/1210.6877
http://arxiv.org/abs/1210.3960
http://arxiv.org/abs/1409.2407
http://arxiv.org/abs/1312.0905
http://arxiv.org/abs/1311.7565
http://arxiv.org/abs/hep-th/9901069

	1 Why (loop) quantum gravity
	1.1 Motivations for studying quantum gravity
	1.2 Possible scenarios for observations
	1.3 Approaches to quantum gravity
	1.4 General comments on the canonical quantisation programme
	1.5 Arguments for canonical loop quantum gravity
	1.6 Criticism of canonical loop quantum gravity
	1.7 Exercises

	2 Elements of loop quantum gravity through cosmology
	2.1 Preliminaries
	2.2 Classical dynamics
	2.3 Wheeler-de Witt quantisation
	2.4 Loop quantum cosmology
	2.5 Kinematical scalar products and ordering
	2.6 Superselection and superpositions
	2.7 Outlook on full theory
	2.8 Exercises

	3 General relativity in the connection formulation and quantum kinematics
	3.1 Canonical general relativity
	3.2 Connection variables
	3.3 Holonomies and fluxes
	3.4 Quantisation
	3.4.1 Hilbert space and elementary operators
	3.4.2 Gauß law and spin networks
	3.4.3 Spatial diffeomorphisms

	3.5 Outlook
	3.6 Exercises

	4 Geometric operators, matter, and quantum geometry
	4.1 Area operator
	4.2 Volume operator
	4.3 Quantum geometry
	4.4 Matter
	4.5 Exercises

	5 Quantum dynamics and outlook
	5.1 Dynamics
	5.1.1 Canonical definitions
	5.1.2 Spin foams
	5.1.3 Group field theory

	5.2 Open questions and future directions
	5.2.1 Quantising classically symmetry reduced models
	5.2.2 Deriving loop quantum cosmology from full loop quantum gravity
	5.2.3 Black hole entropy
	5.2.4 Gauge / gravity
	5.2.5 Anomaly freedom
	5.2.6 Coarse graining

	5.3 Exercises


