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Group field theories are a generalization of matrix models which provide both a second quantized
reformulation of loop quantum gravity as well as generating functions for spin foam models.
While states in canonical loop quantum gravity, in the traditional continuum setting, are based
on graphs with vertices of arbitrary valence, group field theories have been defined so far in a
simplicial setting such that states have support only on graphs of fixed valency. This has led to
the question whether group field theory can indeed cover the whole state space of loop quantum
gravity. In this contribution based on [1] I present two new classes of group field theories which
satisfy this objective: i) a straightforward, but rather formal generalization to multiple fields, one
for each valency and ii) a simplicial group field theory which effectively covers the larger state
space through a dual weighting, a technique common in matrix and tensor models. To this end
I will further discuss in some detail the combinatorial structure of the complexes generated by
the group field theory partition function. The new group field theories do not only strengthen
the links between the mentioned quantum gravity approaches but, broadening the theory space of
group field theories, they might also prove useful in the investigation of renormalizability.
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Motivation

Loop quantum gravity (LQG) [2, 3] , spin foam (SF) models [4] and group field theory
(GFT) [5–7] are three closely related approaches to a quantum theory of gravity. They share
that the degrees of freedom are algebraic data based on certain combinatorial structures and SF
models and GFT can be understood as providing dynamics for LQG. A major difference between
the approaches consists in the role and structure of these combinatorics. The quantum states of
traditional LQG are arbitrary closed graphs embedded in a smooth (D− 1)-dimensional spatial
manifold and related by cylindrical consistency. Spin foam models are originally based on triangu-
lations of a given topological D-manifold such that boundary states are based on D-regular graphs,
i.e. all vertices are D-valent. But SF models can also be defined on other cellular decompositions
and the amplitudes usually depend only on their 2-skeleton which has lead to extensions to more
general 2-complexes with arbitrary boundary graphs [8]. GFTs can be understood as a completion
of complex-dependent SF models, providing a sum of SF amplitudes over a class of combinatorial
complexes of various topologies, generated from D-simplicial building blocks. Boundary states are
thus based on D-regular graphs.

Here I would like to address this difference in the combinatorial structure and show that there
are also classes of GFTs combinatorially fully compatible with LQG and SF models. The challenge
is to find GFTs which generate complexes that allow for boundary graphs of arbitrary valencies.

Explicating in detail the combinatorial structure of standard GFT in section 1 will lay the
ground to present two strategies for such an extension: i) In section 2, I will extend the field space
to a set of fields with various numbers of group arguments, thus creating boundary vertices of
various valency. Though rather formal, such multi-field GFTs are the direct counterpart to the KKL
extension of spin foams [8]. ii) In section 3, I will therefore present a more efficient generalization
in terms of a dual-weighting mechanism. An extra label on a standard simplicial GFT field allows
to distinguish real from virtual cells and the dual weighting implements dynamically a contraction
of the virtual structures resulting in effective amplitudes which are exactly the same as in the multi-
field GFT.

1. The combinatorial structure of group field theory

The common notion of GFT is that of a quantum field theory on group manifolds with a
particular kind of non-local interaction vertices [5–7]. More precisely, a group field is a function
φ : G×k→ R of k ∈ N copies of a Lie group G and the GFT is defined by a partition function

ZGFT =
∫

Dφ e−S[φ ] , (1.1)

where Dφ denotes a (formal) measure on the space of group fields and the action is of the form

S[φ ] =
1
2

∫
[dg] φ(g1) K(g1,g2) φ(g2)+∑

i∈I
λi

∫
[dg] Vi

(
{g j}Ji

)
∏
j∈Ji

φ(g j) . (1.2)

Therein, the kinetic kernel K(g1,g2) = K(g11,g21; . . . ;g1k,g2k) is a function on G2k pairing the
arguments; the vertex (interaction) kernels Vi with couplings λi are functions on Gk|Ji| for finite sets
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Figure 1: A bisected k-regular graph, its corresponding spin foam atom, and a k-dimensional extension
which, in this example, is the dual of the tetrahedron.

Ji and have a combinatorially non-local structure. This means that the kernels Vi do not impose
coincidence of points in the group space G×k but that the totality of the k · |Ji| field arguments is
partitioned into pairs convoluted by the kernel,

V
(
{g j}J

)
= V

(
{g jag−1

kb }
)

(1.3)

where j,k ∈ J and a,b ∈ {1, ...,k}. Observables O[φ ] commonly have kernels of the same type.
For the evaluation of expectation values of such quantum observables O[φ ], a perturbative ex-

pansion with respect to the coupling constants {λi}I leads to a series of Gaussian integrals evaluated
through Wick contraction which are catalogued by Feynman diagrams Γ,

〈O〉GFT =
1

ZGFT

∫
Dφ O[φ ] ∑

{ci}I

∏
i∈I

1
ci!

[
λi

∫
[dg] Vi

(
{g j}Ji

)
∏
j∈Ji

φ(g j)

]ci

e−
1
2
∫
[dg] φ(g1) K(g1,g2) φ(g2)

= ∑
Γ

1
sym(Γ)

A(Γ;{λi}I) , (1.4)

where sym(Γ) are the combinatorial factors related to the automorphism group of the Feynman
diagram Γ and A(Γ;{λi}I) is the weight of Γ in the series. These weights are constructed by
convolving (in group space) propagators P = K−1 and interaction kernels Vi.

The essential point for further clarification of the structure of these diagrams is to notice that
the specific non-locality of each vertex is captured by a boundary graph. In the interaction term in
(1.2), each group field term φ(g j) = φ(g j1, . . . ,g jk) can be represented by a graph consisting of a
k-valent vertex v̄ j connected to k univalent vertices v̂ j1, . . . , v̂ jk, coined a patch and denoted pv̄ j . A
bisected graph b represents then the convolutions in (1.3) by identifying for each argument g jag−1

kb
the univalent vertices v̂ ja, v̂kb into a bivalent vertex v̂i j. One may further understand the graph as
the boundary b = ∂a of a two-dimensional complex a with a single internal vertex v in a unique
way, i.e. connecting v to all vertices in b and adding a face (vv̄v̂) for every edge (v̄v̂) in b (see fig. 1
for illustration). Such a one-vertex two-complex a is called a (spin foam) atom.

In this way, the GFT Feynman diagrams in the perturbative sum (1.4) have the structure of two-
complexes because Wick contractions effect bondings of such atoms along patches. In the graph
picture, the pairing of group arguments in the kinetic kernel K induces a bijection γ : pv̄1 → pv̄2
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γ

]γ

Figure 2: The bonding ]γ of two atoms along an identification of patches γ .

between the patches representing the two group field terms φ(g1) and φ(g2). The combinatorial
structure of a term in the perturbative sum (1.4) is then a collection of spin foam atoms, one for
each vertex kernel, quotiented by a set of bonding maps, one for each Wick contraction (fig. 2).
Because of this construction such a two-complex will be called a (spin foam) molecule.

Standard GFTs, as described by the action (1.2), generate a peculiar kind of complexes de-
termined by the regular-graph structure of the interaction vertices. In the set of closed bisected
multigraphs B, only graphs in the subset Bk,L of k-regular, loopless graphs are possible for the
interaction kernels in (1.2) since these have to be constructed from the single patch corresponding
to the group field with k arguments. Accordingly, the class of molecules which can be obtained
from atoms based on Bk,L is denoted Mk,L.

A special case is simplicial GFT defined by the single interaction vertex based on the combina-
torics of the k-simplex. The corresponding vertex graph bk,S is the bisected version of the complete
graph with k+1 vertices (fig. 1) and the resulting molecules are a subset Mk,S ⊂Mk,L. Since ev-
ery atom in such a simplicial molecule has a canonical extension to the k-simplex, it is natural to
set k = D and understand MD,S as D-dimensional discrete spacetimes. But note that in general
simplicial molecules are not abstract simplicial complexes due to various kinds of loops [9, 10].
Well-behaved simplicial complexes preventing such degeneracies can be obtained in a modified
version of simplicial GFT, distinguished by a colouring [9, 11]. Integrating out all but one colour
one even arrives at a GFT of the general action type (1.2) whose vertex atoms have all an extension
to D-polytopes due to their effective construction as triangulations [12].

Even though the GFTs described provide already a broad class of theories, in any case the
combinatorial boundary structure is still simplicial. In particular, only observables and states based
on k-regular loopless boundary graphs Bk,L ⊂B are possible since they are defined in terms of the
field φ with k group arguments. To match the larger space of states of LQG based on the whole of
graphs B, new classes of theories have to be introduced. This is the topic of the next two sections.

2. Multi-field group field theory

The most straightforward way to generalize GFT to include observables and states on arbitrary
graphs is to extend the field space [13]. Though from a QFT point of view a rather unattractive
strategy, I present it here to point out the possibility of such a theory and discuss its combinatorics.

Since a patch corresponds to a group field in the GFT, one has to extend the field space to a
group field for each kind of patch needed to construct all boundary graphs B. Let the set of all
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such patches be P. A multi-field (MF) group field theory is then determined by a set of group fields
ΦMF = {φp}PMF

, PMF ⊂P, which are functions of group elements gv̄v̂, one for each edge (v̄v̂) ∈ p.
Denoting BMF ⊂B the set of all graphs constructed from PMF and V the set of all but the bisecting
vertices in a boundary graph b ∈B, the action is then

S[ΦMF] = ∑
p∈PMF

1
2

∫
[dg] φp(gv̄1) Kp(gv̄1 ,gv̄2) φp(gv̄2)+ ∑

b∈BMF

λb

∫
[dg] Vb({gv̄}V ) ∏

v̄∈V
φp(gv̄) .

(2.1)
Like in corresponding spin foam models [8], there is no direct spacetime interpretation for the
molecules generated in the perturbative sum for this action. One might choose a subset of BMF

for interactions and observables in which each atom can be extended to the dual of a D-polytope.
In this way one obtains a D-complex for each molecule in the expansion, though in analogy to the
simplicial case these complexes are abstract polyhedral complexes only in a generalized sense [10].

To cover the whole LQG state space, the infinite number of fields ΦMF = {φp}P is necessary.
Such a theory will likely remain on a formal level. In particular, infinitely many interactions are
needed for non-trivial dynamics for each field. Still, this is the theory generating all possible spin
foam molecules M, and, with appropriate kinetic kernels Kp, it generates the amplitudes of the
KKL extension [8] of the EPRL [14] and similar spin foam models [15, 16] (see [1] for details).

For a construction based on those GFTs which are currently analytically tractable it is nec-
essary to rearrange the molecules discussed in this section in terms of the simplicial molecules
of the preceding section. In the following section I show how this can be done and implemented
dynamically using a dual weighting in the GFT action.

3. Dually-weighted group field theory

The crucial idea to create arbitrary boundary graphs in a more efficient way is to distinguish
between virtual and real edges and obtain arbitrary graphs from regular ones by contraction of the
virtual edges. Boundary graphs B̃ with such an edge labelling are obtained from labelled patches
P̃ by restricting the allowed identifications of univalent vertices v̂ ja, v̂kb to the case where both are
adjacent to an edge with the same label. Then one can easily check [1] that any graph b ∈B is in
the image of the projection πk,L : B̃k,L→B defined as contraction of all virtual edges in a labelled
k-regular, loopless graph for k odd (while for k even the image consists of all graphs with vertices
of even valency). An example is illustrated in fig. 3.

π3

Figure 3: A vertex in an arbitrary graph obtained from a labelled 3-valent graph via contraction.

In terms of these contractions, any spin foam molecule can be obtained from a molecule con-
structed from labelled regular graphs. The contraction map πk,L has a natural extension to a map
Πk,L on the labelled molecules M̃k,L resulting from bonding atoms induced by B̃k,L (fig. 4). To
avoid branching one further restricts to M̃k,L-NB ⊂ M̃k,L, the molecules where bisecting vertices v̂
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Πl

Figure 4: Contraction move with respect to a vertex v̂ incident to two virtual edges in a molecule.

are bivalent also after bonding. From the surjectivity of πk,L follows then that Πk,L(M̃k,L-NB) =M.
One can show further that even a restriction to labelled simplicial molecules m̃∈ M̃k,S-NB is enough
to obtain a molecule m= Πk,S(m̃) ∈M with boundary ∂m= b for any graph b ∈B [1].

Based on these combinatorics facts it is possible to define a labelled simplicial GFT which
effectively covers observables and states on arbitrary graphs, using a dual-weighting mechanism to
implement the contractions dynamically. To this end, the k arguments of the field φ(gv̄;mv̄) are a
combination of a group element gv̄v̂ and an integer mv̄v̂ ∈{0,1, . . . ,M}. If mv̄v̂ = 0 the corresponding
edge (v̄v̂) is real, otherwise virtual. A kinetic kernel with a family of dual-weighting matrices {AM}

K(g1,g2;m1,m2) = K(g1,g2;m1,m2)
k

∏
j=1

(
1 0
0 A−1

M

)
m1 jm2 j

where lim
M→∞

tr
(
(AM)k

)
= δk,2 (3.1)

guarantees then that in the large-M limit the perturbative expansion (1.4) of the theory is a sum
only over molecules M̃k,S-NB. With an appropriate kernel K which distinguishes exactly whether
an edge is real or virtual, the effective large-M amplitudes only depend on the contracted molecules
Πk,S(M̃k,S-NB) and match exactly the ones of the multi-field GFT [1], and thus the amplitudes of
the KKL extension [8] of spin foam models [14–16].

Conclusions

In this contribution I have addressed the goal of a generalization of GFT to be compatible with
LQG in three steps. First, I have clarified the combinatorial structure underlying the amplitudes of
perturbative GFT using the notion of spin foam atoms and molecules and discussed their possible
spacetime interpretation. Then I have laid out the details of the straightforward generalization to a
multi-field theory which can cover on a formal level arbitrary such molecules. Finally I have shown
how to obtain the same dynamics using a dual-weighting mechanism on a simplicial GFT.

Improving the relations between GFT, SF models and LQG and broadening the GFT theory
space, these results introduce two obvious research questions. i) While all gravitational models
are based on a simplicial version of simplicity constraints and the resulting edge amplitudes can
be implemented in the presented GFTs either on the molecules M, or maybe more meaningful on
the simplicial molecules M̃k,S-NB, one would expect a genuine polyhedral version of the constraints
to be more appropriate on these molecules, which has not been addressed so far. ii) From the
GFT perspective, it will be most interesting to investigate the field-theoretic properties of the new
classes of theories, in particular their large-N limit [11,12,17] renormalizability properties [18,19]
and phase structure [17, 20].
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