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This contribution is devoted to summarize the recent results obtained in the construction
of an “analytic continuation” of Loop Quantum Gravity (LQG). By this, we mean that we
construct analytic continuation of physical quantities in LQG from real values of the Barbero-
Immirzi parameter γ to the purely imaginary value γ = ±i. This should allow us to define
a quantization of gravity with self-dual Ashtekar variables. We first realized in [1] that this
procedure, when applied to compute the entropy of a spherical black hole in LQG for γ = ±i,
allows to reproduce exactly the Bekenstein-Hawking area law at the semi-classical limit. The
rigorous construction of the analytic continuation of spherical black hole entropy has been
done in [2]. Here, we start with a review of the main steps of this construction: we recall that
our prescription turns out to be unique (under natural assumptions) and leads to the right
semi-classical limit with its logarithmic quantum corrections. Furthermore, the discrete and
γ-dependent area spectrum of the black hole horizon becomes continuous and obviously γ-
independent. Then, we review how this analytic continuation could be interpreted in terms
of an analytic continuation from the compact gauge group SU(2) to the non-compact gauge
group SU(1, 1) relying on an analysis of three dimensional quantum gravity.

I. MOTIVATION: GETTING RID OF γ

The Barbero-Immirzi parameter γ seems to play apparently a paradoxical role in LQG. Whereas
it is totally irrelevant in the classical theory, it enters into the expressions of “physical” quantities
like eigenvalues of geometric operators in the kinematical sector, the maximal density of the Uni-
verse in quantum cosmology or the black hole entropy. Nonetheless, many observations (from black
holes physics [1, 2] and three dimensional quantum gravity [17, 18]) indicate that γ should somehow
“disappear” from the quantum theory in the sense that it should take the natural complex value
γ = ±i and not a real value. We review here some of these observations focussing mainly on the
case of the black hole entropy. We finish with a discussion where we quickly review the state of
the art in three dimensions.

II. ANALYTIC CONTINUATION OF BLACK HOLE ENTROPY

A. Real γ Black Holes

In the framework of LQG, a black hole is defined as a boundary in space-time which satisfies
the constraints of an isolated horizon [3]. Those constraints impose that the black hole degrees of
freedom are encoded into the phase space of an SU(2) Chern Simons theory defined on a punctured
two-sphere S2 as a canonical surface. The presence of the gauge group SU(2) derived from the
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phase space of gravity in the bulk expressed in terms of Ashtekar-Barbero variables. The Chern-
Simons level k is proportional to the horizon area aH and depends on γ according to (2.1)1. The
punctures originate from the spin networks (the quantum states of the gravitional field) defined in
the bulk which pierce the horizon. They are viewed as the fundamental excitations of the black
hole and each puncture carries a quantum of area al which contributes to the macroscopic area aH
in the usual “real γ” picture according to (n labels the number of punctures)

aH =
2πγ

(1− γ2)
k =

n∑
l=1

al with al = 8πl2Pγ
√
jl(jl + 1). (2.1)

As usual in LQG, the spin jl ∈ N/2 labels an SU(2) unitary irreducible representation (irrep).
For a fixed n, a microscopic state of the black hole is defined by an ordered2 family of spins
P = (j1, ...., jn).

The degeneracy of a configuration P is given by the dimension of the Chern-Simons Hilbert space
Hk(S2; j1, · · · , jn) which is well-known to be defined by the space of Uq(su(2)) invariant tensors3 in
the tensor product ⊗lVl. Here Vl are Uq(su(2)) modules labelled by the spins jl whose dimension is
denoted dl = 2jl+1. The quantum parameter is a root of unity defined by q = exp(iπ/(k+2)) where
the level k is necessarily integer. The dimension gk(dl) of this Hilbert space is easily computed [4]
and can be expressed as the following sum over the integer d

gk(dl) =
2

2 + k

k+1∑
d=1

sin2(
πd

k + 2
)
n∏
l=1

sin( π
k+2ddl)

sin( π
k+2d)

. (2.2)

This Verlinde formula allows to recover at the semi-classical limit (aH large in Planck units) the
Bekenstein-Hawking law for the black hole entropy provided that γ is fixed to a peculiar value
[5, 6]. This is easily seen in the simplest model where dl = d for any l is fixed and n becomes
large at the semi-classical limit. Even if this result is certainly an important success of LQG, it
has risen important questions concerning the role of γ and the validity of the computation we have
just sketched. Since then, different interpretations of γ have been discussed but none are totally
convincing (see [7] and references therein).

B. Complex γ = ±i Black Holes

The last couple of years, a new road towards the understanding of the role of γ has emerged. In
that new picture, the Barbero-Immirzi parameter is viewed as a “regulator” which should be sent
back to its “original” imaginary value γ = ±i. To clarify this point of view, let us recall that γ has
been first introduced to overcome the problem of working with complex variables, to circumvent
the resolution of the reality conditions and then to start the loop quantization of gravity. It is
important to notice that such a strategy has been successful because it has led to a very beautiful
picture of the quantum (kinematical) geometry at the Planck scale. However, for solving the
quantum dynamics, the real Ashtekar-Barbero connection doesn’t seem to be well suited anymore.
Already at the classical level, it is well known that this connection doesn’t transform properly under

1 Variant expressions exist but the precise dependence on γ is not important for our purpose. The main point is
that k is large when the area aH is macroscopic.

2 In the usual real picture, the punctures are distinguishable. For this reason, we consider a priori an ordered family
of spins. In the complex picture, we relax the distinguishability.

3 The space of invariant tensors is endowed with the quantum Haar measure when viewed as the space of linear
forms on SUq(2), the polynomials of the quantum deformation of SU(2).
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FIG. 1: The contour C = C+ + C− in the complex plane encloses the imaginary axis between [0, i π].

timelike diffeomorphisms, and this might be the reason why γ remains in the theory at least at
the kinematical level. This fact is enhanced by a series of recent works which all point towards the
need to come back to the (anti) self-dual variables [1, 8–11]. One of the most striking result [1, 2]
in that respect has been obtained in the context of black hole physics: the analytic continuation
of the formula (2.2) for the Chern-Simons Hilbert space dimension to the imaginary value γ = ±i
allows to reproduce the expected semi-classical Bekenstein-Hawking law for the black hole entropy.
We are going to briefly recall how this works following the construction of [2]. Details can be found
in the original paper [2].

First of all, we immediately notice that taking γ = ±i leads to a complex value of the Chern-
Simons level which becomes k = iλ with λ ∈ R. From the LQG point of view, this is an immediate
consequence of (2.1). From the Chern-Simons theory point of view, this shift from k ∈ N to k ∈ iR
can be interpreted by the fact that one works now with a complex SL(2,C) connection rather
than a compact real SU(2) connection [12]. Unfortunately, Chern-Simons theory with complex
gauge group and complex level is poorly understood at the quantum level and the only one serious
candidates for its quantization deeply relies on analytic continuation techniques [12]. However, the
process of analytic continuation is rather subtle even in the construction of the analytic continuation
of the Hilbert space dimension (2.2). Indeed, since k enters in the upper bound of the sum, the
expression (2.2) is not really convenient for analytic continuation purposes even if we used it
formally in the first proposal [1]. It is much more convenient to view (2.2) as a sum of residues of
an analytic function in order to write it as an integral in the complex plane along a contour C (see
figure 1) which encompass the imaginary axis between [0, iπ]:

gk(dl) =
i

π

∮
C
dz sinh2(z)

n∏
l=1

sinh(dlz)

sinh(z)
coth((k + 2)z). (2.3)

To simplify the discussion below, we introduce the notation G(z) = coth((k + 2)z) while the
remaining part of the integrand will be denoted F (z). When k and dl are integers, the poles of
the integrand are the poles of G(z) which are located on the imaginary axis: zp = iπp

k+2 for p ∈ N∗.
This justifies the choice of the contour C.

Now, it makes sense to consider k = iλ as G is an analytic function of k. Let us discuss what
happens to the integral (2.3) when one performs such an analytic continuation.
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• If the dimensions dl remain integer, the poles of the integrand are located on the real axis:
the poles of G(z) are zp = −πp

λ with p ∈ N∗ whereas F (z) still has no pole. In this case,
a contour C close enough to the complex axis doesn’t enclose any poles and the integral
vanishes. As a consequence, analytic continuing only the Chern Simons level from k ∈ N∗
to k ∈ iR keeping dl unchanged leads to inconsistent physical results.

• If dl = isl ∈ iR, the analytic continuation is much more interesting. The location of the poles
of G(z) is unchanged compared to the previous case but the novelty is that F (z) admits new
poles on the imaginary axis at zm = iπm with m ∈ N∗. Among all these new poles, we are
more interested in the one located at iπ which must be enclosed by the contour C in order
for the integral (2.3) to be non-trivial. Therefore, such a continuation leads to a non-trivial
result for the black hole Hilbert space that we define to be the dimension4 of the black hole
Hilbert space when γ = ±i.

To summarize, the dimension of the black hole Hilbert space for γ = ±i is defined from the analytic
continuation of (2.3) when C encloses the point iπ and

k = iλ , dl = isl ⇔ jl =
1

2
(−1 + isl) with λ, sl ∈ R+ . (2.4)

The fact that λ and sl are non negative is not restrictive. At this point, it is important to explain
the choice dl ∈ iR. From a physical point of view, this is the only consistent choice which leaves
the area spectrum real when γ = ±i as seen from

A(jl) = 8πl2pγ
√
jl(jl + 1)

γ=±i−→ A(sl) = 4πl2p

√
s2l + 1 (2.5)

where we choose the square root of −1 such that the area is non negative. From a mathematical
point of view, changing jl to 1

2(−1 + isl) amounts to considering SU(1, 1) irreps instead of SU(2)
irreps for coloring the punctures.

C. Semi-classical limit: area law and logarithmic corrections

To simplify the study of the semi-classical limit, we consider the model where all the punctures
carry the same color sl = s. This corresponds to the one color model in the following. We first
impose that k is large in (2.3) and we obtain the following expression for the candidate to the
dimension of the one-color black hole Hilbert space

g∞(s, n) =
i

π

∮
C
dz sinh2(z) enS(z) with S(z) = log

(sinh(sz)

sinh(z)

)
. (2.6)

In the semi-classical limit, the black hole area aH = 4πl2pns is large, which means that the product
ns becomes large. It has been argued in [13] that the semi-classical regime corresponds to both n
and s large. Then, the form (2.6) of the integral is well suited for the study of the thermodynamical
limit. When n is large, this integral can be estimated using the stationary phase method. The

4 To be interpreted as a dimension, gk must necessary be a non-negative real number. This is asymptotically the
case, i.e. when the horizon area becomes large in Planck units and under some conditions satisfied by the number
n of punctures. For non large area, gk is in general complex but we can argue that we have to consider |gk| or
R(gk) as the dimension even if this aspect deserves to be studied deeper. In [2], we considered the modulus of gk.
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study of the critical points reveals that there are two critical points, zc = 0 and zc = i(π+ 1
s )+o(1s )

for s large. Only the later contributes to the saddle point approximation which finally leads to

Sm = log(g∞(s, n)) =
aH
4l2p

+ Scor (2.7)

for the black hole microcanonical entropy Sm. The leading term reproduces the expected Bekenstein
Hawking area law without any fine tuning and Scor are quantum corrections. At this point, the
quantum corrections scale in general as

√
aH in Planck units, and then are much larger than

logarithmic corrections.
In the grand canonical ensemble, the situation concerning the quantum corrections is more

satisfying. Using the local framework developed in [14, 15], we have a notion of energy (measured
by an observer located at a “small” distance L of the horizon compared to the black role radius)
which allows to compute the canonical and grand canonical partition functions. In this approach,
the black hole is viewed as a gas of indistinguishable punctures which has been studied first in
[13]. If we assume in addition that the punctures admit a non-vanishing chemical potential µ and
satisfy the Maxwell-Botzmann statistics, we can show that, at the semi-classical limit, the black
hole temperature approaches the Unruh temperature TU = 1/βU for the local observer and the
black hole mean area āH , the mean number of punctures n̄ and the mean color s̄ scale as follows

āH = 4πl2p
z

2x2

(
1− 3

2z
x

)
with x =

2L

l2p
(β − βU ) and n̄ ∝

√
aH , s̄ ∝

√
aH (2.8)

where z = exp(βµ) is the fugacity. As a consistency check, we recover that n and s are large in
the semi-classical regime. It is easy to compute from this analysis the semi-classical expansion of
the grand canonical entropy and we deduce the expression

Sgc =
āH
4l2p
− 3

2
log

(
āH
l2p

)
+
zU
2

(2− µβU )

(
āH
l2p

)1/2

+ o

(
log

(
āH
l2p

))
. (2.9)

We recover therefore the expected logarithmic quantum corrections supplemented with larger quan-
tum corrections ∝ √aH which vanish when the chemical potential is fixed to µ = 2TU . A physical
interpretation of such a result is still missing. Note however that the same value of the chemical
potential is also found to cancel the too large quantum correction for the real black hole (γ ∈ R)
with the Maxwell Boltzman statistic [16]. Therefore, this behaviour of the quantum correction
Scor ∝

√
aH is not specific to the complex model.

The calculation can be generalized in different ways. First, we can extend the model to a
black hole with p colors [2]. In that case, the entropy has the same form as (2.9) with a modified
logarithmic correction which depends on p. Interestingly we notice that only the case p = 1, i.e.
the one color model, which can be interpreted as a kind of spherical symmetric quantum condition,
allows to recover the prefactor −3/2 for the logarithmic corrections. We could also generalize to
the cases where the punctures satisfy a quantum statistic. This has been done in [13, 16] when the
area spectrum is discrete. In that context, we showed that assuming the punctures are boson, there
exists a semi-classical regime where the gas condensates to spin 1/2 punctures and also where the
quantum corrections are logarithmic5. It would be interesting to see whether a similar phenomenon
occurs when the spectrum is continuous.

5 This contrasts with the case of a classical Maxwell-Boltzmann statistics where large spins dominate at the semi-
classical limit.
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III. DISCUSSION: 2+1 DIMENSIONAL GRAVITY AS A GUIDE

We have quickly reviewed the analytic continuation procedure applied to black hole entropy
first proposed in [1] and then more rigorously developed in [2]. This procedure turns out to give an
unique candidate for the dimension of the complex γ = ±i black hole Hilbert space. Asymptotically,
this candidate allows to reproduce the Bekenstein-Hawking law for the black hole entropy.

A. Open issues

However, even if the result is really striking, many aspects remains to be clarified. First, the
complex dimension is only “asymptotically” positive and is in general complex for non-large area.
Then we have to argue that one should consider its modulus or its (positive) real part as a good
definition of the complex dimension. Furthermore, our analysis is somehow only an observation
and it is now important to understand the deep meaning of this analytic continuation. We are
currently working in that direction. It seems that the gauge group SU(1, 1) plays a crucial role
and replaces SU(2) when we get rid of the Barbero-Immirzi parameter. Indeed, we recognize that
the new area spectrum (at least for a black hole horizon) is given by the Casimir of SU(1, 1) in the
continuous series. Should SU(1, 1) play also an important role in the full theory? If this is the case,
how the kinematical SU(2)-spin networks are modified once one applies the analytic continuation
prescription ? Those questions remain largely open and really important to study.

B. Guided by three-dimensional gravity

Nonetheless, we can be guided by an interesting result derived in the context of three dimensional
gravity [17, 18]. Indeed, we have shown that it is possible to construct a three dimensional analog
of the Holst action which consists in an action for (Lorentzian or Euclidean) three-dimensional
gravity supplemented with a γ-dependent term exactly as in four dimensions. We will concentrate
only on the Lorentzian action in this brief review. In fact, such an action can be obtained from a
symmetry reduction of the four-dimensional Holst action to three dimensions and can be written
explicitly as follows:

S3D[e, ω] =

∫
d3x εµνσ

(
εIJKL x

IeJµF
KL
νσ +

1

γ
xIeJµF

KL
νσ

)
with xI = eI3 . (3.1)

Here the action admits an SL(2,C) gauge symmetry. It is straightforward to show that this action
is equivalent to first order three-dimensional gravity. Therefore, γ disappears from the classical
equations of motion exactly as it does disappear in the Holst action. As three-dimensional gravity
defines an exactly (quantum and classical) solvable system, we can exploit this model to understand
deeper the meaning of γ. This is exactly what has been done in [17, 18].

We proceeded to the Hamiltonian analysis in two different gauges. One choice selects an SU(1, 1)
non-compact subgroup of SL(2,C), the other one selects a compact subgroup SU(2). The later
choice corresponds to the usual time gauge in the Ashtekar-Barbero formulation of gravity. It turns
out that the SU(1, 1) phase space is manifestly γ-independent (nor the Poisson bracket nor the
Hamiltonian constraint depend on γ) while we recover the usual γ-dependency for the SU(2) phase
space with the non-polynomial Lorentzian part of the Hamitlonian constraint. From this result, it
seems that the Immirzi parameter keeps trace of the non compactness of the initial gauge group.

Quantizing the two-gauged action is very instructive. In the time gauge, the theory has been
quantized using the same strategy as in four dimensions. At the kinematical level, quantum
geometry states are SU(2) spin-networks: geometric operators are diagonalized by spin-networks
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states with a discrete and γ-dependent spectrum. As a consequence, everything works as in four
dimensions. The novelty is that the theory is now exactly solvable and one can construct the
physical states. This is rather immediate and leads to the fact that γ disappears from physical
predictions when one solves the Hamiltonian constraint. Furthermore, the spectrum of geometric
operators becomes continuous. Concerning the quantization of the SU(1, 1) gauge-fixed theory, it
leads immediately at the kinematical level to the right γ-independent continuous spectrum.

From those results, we see that the presence of γ at the kinematical level seems to be a gauge
artifact, and the parameter disappears once the hamiltonian constraint is taken into account. It is
interesting to note that our analytic continuation prescription (1.4) which was successfully tested
in the context of black hole is also the one which maps the two kinematical area spectrums of three
dimensional gravity in the two different gauge fixing. In that respect, everything happens as if γ
has to be fixed to ±i. At this stage, one could wonder if the same phenomenon occurs in the 3 + 1
theory. Only an explicit hamiltonian analysis of the 3 + 1 Holst action in a (yet-to-be-defined) non
compact gauge, which would reduce SL(2,C) to SU(1, 1), could allow us to answer the question.
Although this work was done in the context of three dimensional gravity, it reveals a deep link
between the presence of the Immirzi parameter in the kinematical predictions of Loop Quantum
gravity and the compactness of the group we are working with.

Finally, this analytic continuation prescription has been recently implemented in Loop Quantum
Cosmology for a flat universe with vanishing cosmological constant [19]. It turns out that after
applying our prescription, the curvature of the space-time and the energy density remain both
bounded which is a non trivial result. It seems therefore that our prescription preserves also the
bouncing scenario of Loop Quantum Cosmology. For more details on this new model, see [19].

This analytic continuation constitutes a proposal for defining a theory of self-dual quantum
gravity in terms of the complex Ashtekar connection and for solving the so-called reality conditions.
We expect that the systematic investigation of this analytic continuation in various setups will
eventually lead to new insights on the status of the quantum states of complex Ashtekar gravity.
The first attempt to define a Wick rotation in the context of Ashtekar gravity was proposed in
[20]. Establishing a clear link between the two approaches would inevitably shed some light on the
one described in this contribution.
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