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Chapter 1
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We present an overall picture of the advances in the description of black hole
physics from the perspective of loop quantum gravity. After an introduction that
discusses the main conceptual issues we present some details about the classi-
cal and quantum geometry of isolated horizons and their quantum geometry and
then use this scheme to give a natural definition of the entropy of black holes.
The entropy computations can be neatly expressed in the form of combinatorial
problems solvable with the help of methods based on number theory and the
use of generating functions. The recovery of the Bekenstein-Hawking law and
corrections to it is explained in some detail. After this, due attention is paid
to the discussion of semiclassical issues. An important point in this respect is
the proper interpretation of the horizon area as the energy that should appear
in the statistical-mechanical treatment of the black hole model presented here.
The chapter ends with a comparison between the microscopic and semiclassical
approaches to the computation of the entropy and discusses a number of issues
regarding the relation between entanglement and statistical entropy and the pos-
sibility of comparing the subdominant (logarithmic) corrections to the entropy
obtained with the help of the Euclidean path integral with the ones obtained in
the present framework.
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Detrás de cada espejo

hay una estrella muerta

y un arco iris niño

que duerme.

Detrás de cada espejo

hay una calma eterna

y un nido de silencios

que no han volado.

F.G. Lorca

1. Discussion of the conceptual issues

Black holes are remarkable solutions of classical general relativity describing

important aspects of the physics of gravitational collapse. Their existence in our

nearby universe is supported by a great amount of observational evidence.1 When

isolated, these systems are expected to be simple for late and distant observers. Once

the initial very dynamical phase of collapse has passed, the system should settle

down to a stationary situation completely described by the Kerr-Newman solutiona

labelled by three macroscopic parameters: the mass M , the angular momentum J ,

and the electromagnetic charge Q.

The fact that the final state of gravitational collapse is described by only three

macroscopic parameters, independently of the details of the initial conditions leading

to the collapse, could be taken as a first indication of the thermodynamical nature

of black holes (which as we will see below is really of quantum origin). In fact

the statement in the first paragraph contains the usual coarse graining perspective

of thermodynamical physics in the assertion that for sufficiently long times after

collapse the system should settle down to a stationary situation... described by three

parameters. The details about how this settling down takes place depend indeed on

the initial conditions leading to the collapse (the microstates of the system). The

coarse graining consists of neglecting these details in favour of the idealisation of

stationarity.

Another classical indication is Hawking area theorem2 stating that for mild

energy conditions (satisfied by classical matter fields) the area of a black hole horizon

can only increase in any physical process. Namely, the so-called second law of black

hole mechanics holds:

δA ≥ 0. (1.1)

This brings in the irreversibility characteristic of thermodynamical systems to the

context of black hole physics and motivated Bekenstein3 to associate with BHs a

notion of entropy proportional so their area. Classically, one can also prove the so-

called first law of BH mechanics4 relating different nearby stationary BH spacetimes

of Einstein-Maxwell theory

δM =
κ

8π
δA+ΩδJ +ΦδQ, (1.2)

aSuch scenario is based on physical grounds, some concrete indications from perturbation theory,
and the validity of the so called no-hair theorem.
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where Ω is the angular velocity of the horizon, Φ is horizon electric potential, and

κ is the surface gravity.

The realization that black holes can indeed be considered (in the semiclassical

regime) as thermodynamical systems came with the discovery of black hole radia-

tion.5 In the mid 70’s Hawking considered the scattering of a quantum test field on

a space time background geometry representing gravitational collapse of a compact

source. Assuming that very early observers far away from the source prepare the

field in the vacuum state he showed that, after the very dynamical phase of collapse

is replaced by a stationary quasi equilibrium situation, late observers in the future

measure an afterglow of particles of the test field coming from the horizon with a

temperature

TH =
κ

2π
. (1.3)

As black holes radiate, the immediate conclusion is that they must evaporate th-

rough the (quantum phenomenon of) emission of Hawking radiation. The calculation

of Hawking neglects such back reaction but provides a good approximation for the

description of black holes that are sufficiently large, for which the radiated power is

small relative to the scale defined by the mass of the black hole. These black holes

are referred to as semiclassical in this chapter.

This result, together with the validity of the first and second laws, suggest that

semiclassical black holes should have an associated entropy (here referred to as the

Bekenstein-Hawking entropy) given by

SH =
A

4ℓ2Pl

+ S0 (1.4)

where S0 is an integration constant that cannot be fixed by the sole use of the first

law. In fact, as in any thermodynamical system, entropy cannot be determined only

by the use of the first law. Entropy can either be measured in an experimental setup

(this was the initial way in which the concept was introduced) or calculated from

the basic degrees of freedom by using statistical mechanical methods once a model

for the fundamental building blocks of the system is available.

More precisely, even though the thermodynamical nature of semiclassical black

holes is a robust prediction of the combination of general relativity and quantum

field theory as a first approximation to quantum gravity, the precise expression

for the entropy of black holes is a question that can only be answered within the

framework of quantum gravity in its semiclassical regime. This is a central question

for any proposal of quantum gravity theory.

This chapter will mainly deal with the issue of computing black hole entropy for

semiclassical black holes which, as we will argue here, already presents an important

challenge to quantum gravity but seems realistically within reach at the present

stage of development of the approach. The formalism applies to physical black holes

of the kind that can be formed in the early primordial universe or other astrophysical

situations (no assumption of extremality or supersymmetry is needed).
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Questions related to the information loss paradox, or the the fate of unitarity

are all issues that necessitate full control of the quantum dynamics in regimes far

away from the semiclassical one. For that reason we designate this set of questions

as the hard problem. These involve in particular the understanding of the dynamics

near and across (what one would classically identify with) the interior singularity.

There are studies of the quantum dynamics through models near the (classically

apparent) singularities of general relativity indicating that not only the quantum

geometry is well defined at the classically pathological regions, but also the quantum

dynamics is perfectly determined across them. For the variety of results concerning

cosmological singularities we refer the reader to Chapter LOOP QUANTUM

COSMOLOGY. Similar results have been found in the context of black holes.6

These works indicate that singularities are generically avoided due to quantum

effects at the deep Planckian regime. Based on these results new paradigms have

been put forward concerning the hard problem.7 The key point is that the possibility

of having physical dynamics beyond the apparent classical singularities allows for

information to be lost into causally disconnected worlds (classical singularities as

sinks of information) or to be recovered in subtle ways during and after evaporation

as suggested by results in 2d black hole systems.8–10 All these scenarios would be

compatible with a local notion of unitarity.11 The information paradox could also

be solved12,13 if quantum correlations with the (discrete) UV Planckian degrees of

freedom remain hidden to low energy (semiclassical) observers. This possibility is

appealing in an approach such as LQG where continuum space-time is obtained by

coarse graining.14–16 Space limitations prevent us from discussing the hard problem

further in this chapter.

To date, investigations within the LQG framework, can be divided into the follo-

wing categories: isolated horizons and their quantum geometry (Sections 2 and 3);

rigorous counting of micro-states (Section 4); semiclassical quasi-local formulation

(Section 5); spin foam dynamical accounts and low energy dynamical counterparts

(Section 6.3); and the Hawking effect phenomenology and insights from symmetry

reduced models (Section 6.5). The different sections are largely self-contained so

they can be read independently.

2. Isolated horizons

The model employed to describe black holes in loop quantum gravity is based on

the use of isolated horizons (IH), a concept introduced around the year 2000 by Ash-

tekar and collaborators17–20 and developed by a number of other researchers.21,22b

The main goal of this line of work was to find a quasilocal notion of horizon that

could be used in contexts were the teleological nature of event horizons (i.e. the

need to know the whole spacetime in order to determine if they are present) is

problematic.

bThe mathematical foundations of the subject were developed by Kupeli in.23
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The most important features of isolated horizons are: their quasilocal nature,

the availability of a Hamiltonian formulation for the sector of general relativity

containing IH’s, the possibility of having physically reasonable versions of some of

the laws of black hole thermodynamics and the existence of quasilocal definitions

for the energy and angular momentum. It is important to remark, already at this

point, the striking interplay between the second and the third issues.

The quasilocality of isolated horizons reflects itself in the fact that they can

be described by introducing an inner spacetime boundary and imposing boundary

conditions on the gravitational field defined on it (either in a metric or a connection

formulation). As we want to describe black holes in equilibrium, it is natural to look

for particular boundary conditions compatible with a static horizon but allowing the

geometry outside to be dynamical (admitting, for example, gravitational radiation).

This will lead us to consider a sector of general relativity significantly larger than

the one consisting of standard black hole solutions.

The sector of the gravitational phase space that we will be dealing with admits

a Hamiltonian, hence, it is conceivable to quantize it to gain an understanding

of quantum black holes. This is one of the advantages of working with isolated

horizons and a very non-trivial fact because such a Hamiltonian formalism is not

available for other sectors of general relativity. The approach that we will follow

is somehow reminiscent of the study of symmetry reductions of general relativity

(mini and midisuperspaces). As the sector of the phase space of the reduced system

is large enough—actually infinite dimensional—it seems reasonable to expect that

the quantum model that we consider will provide a good physical approximation for

the equilibrium phenomena that we want to discussc, in particular the microscopic

description of black hole entropy and the Bekenstein-Hawking area law.

We review next the construction of isolated horizons justifying, along the way,

the conditions that have to be incorporated during the process. The main results

regarding the geometry of isolated horizons can be found in.25 We will be defining

different types of null hypersurfaces until we arrive at the concept of isolated horizon.

In the process we will introduce the notation that will be used in the following.

Null hypersurfaces: Let M be a 4-dim manifold and gµν a Lorentzian metric

on M. A 3-dimensional embedded submanifold ∆ ⊂ M will be called a null hy-

persurface if the pull-back g∆ab of gµν onto ∆ is degenerate. This condition implies

the existence of a null normal ℓa tangent to ∆. Notice that there is not a unique

projection of tangent vectors Xµ sitting on p ∈ ∆ onto the tangent space Tp∆ and,

hence, it is impossible to define an induced connection on ∆.

Non-expanding null hypersurfaces: The degeneracy of the metric g∆ab implies that

there is not a unique inverse metric, however it is always possible to find gab∆ such

that g∆ab = g∆aa′ga
′b′

∆ g∆b′b. If ℓ
a is a field tangent to ∆ consisting of null normals, we

define its expansion θℓ associated with a particular choice of gab∆ as θℓ := gab∆ Lℓg
∆
ab.

cThe quasilocal description of dynamical black hole behaviors can be achieved by using the so
called dynamical horizons.24
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The invariance under rescalings implies that this expansion cannot be associated

in an intrinsic way to the null hypersurface ∆ unless it is zero. Null hypersurfaces

with zero expansion in the previous sense will be referred to as non-expanding.

Non-expanding horizons (NEH): As we want to model black holes in four di-

mensions –for which the horizons have a simple geometry– we will require that: i)

∆ is diffeomorphic to S2 × (0, 1) where S2 is a 2-sphere. ii) For each x ∈ S2 this

diffeo maps {x} × (0, 1) to null geodesics on ∆. iii) For each t ∈ (0, 1), S2 × {t} is

mapped onto a spacelike 2-surface in ∆. We impose now a key physical condition by

requiring that the metric gµν be a solution to the Einstein field equations and de-

manding that the pull back of the stress-energy-momentum tensor Tµν on ∆ satisfies

the condition T∆
abℓ

aℓb ≥ 0. This is equivalent to the condition R∆
abℓ

aℓb ≥ 0 on the

pull-back of the Ricci tensor to ∆. The preceding conditions on non-expanding null

surfaces define non-expanding horizons. An important feature of them is that, as a

consequence of the non-expansion condition, cross sections are marginally trapped

surfaces and have constant area. Also, the Raychaudhuri equation together with the

non-expanding condition implies that R∆
abℓ

aℓb = T∆
abℓ

aℓb = 0 and Lℓg
∆
ab = 0. This

can be interpreted as the fact that non-expanding horizons are in equilibrium.

Weakly isolated horizons (WIH): In order to incorporate the laws of black hole

mechanics to the present quasilocal framework we need to add additional structure

to the preceding constructions. For example, the notion of temperature for ordinary

black holes relies on the concept of surface gravity κ (see, for example,26). We

can introduce now a rather similar concept by imposing additional requirements

to NEH’s. Given a non-expanding horizon, it can be shown [see19,20,23,25] that the

spacetime connection∇ induces a unique connection D compatible with the induced

metric g∆ab. We also declare as equivalent all the normal null fields related by constant

rescalings (we denote these equivalence classes as [ℓ]). A weakly isolated horizon is

now a pair (∆, [ℓ]) consisting of a non-expanding horizon ∆ and class of null normals

[ℓ] such that

(LℓDa −DaLℓ)ℓ
b = 0 . (2.1)

Geometrically this requirement is equivalent to the condition that some components

of the connection defined by D are left invariant by the diffeos defined by ℓ on ∆

(or roughly speaking are “time independent”). This means that ∇ℓℓ = κℓ with κ

constant for each ℓ ∈ [ℓ]. It is important to mention here that different choices of [ℓ]

lead to inequivalent weakly isolated structures on the same non-expanding horizon.

Isolated horizons (IH): Isolated horizons are weakly isolated horizons (∆, [ℓ]) for

which

(LℓDa −DaLℓ)τ
b = 0 , (2.2)

for every tangent field τa on ∆. This condition can be read as [L,D]|∆ = 0. An im-

portant difference between WIH’s and IH’s is that, whereas a given non expanding

horizon admits infinitely many weakly isolated horizon structures, for an isolated
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horizon the only freedom in the choice of null normals consists of constant resca-

lings.25

Non-trivial examples of all these types of horizons can be found in the extensive

literature available on the subject (see25 and references therein); in any case it is

important to keep in mind that any Killing horizon diffeomorphic to S
2 × R is

an isolated horizon so the concept is a genuine –and useful– generalization that

encompasses all the globally stationary black holes.

Multipole moments can be used to define spherically symmetric isolated hori-

zons in an intrinsic way.27,28 They are useful because, for stationary spacetimes in

vacuum, they determine the near horizon geometry. Concrete expressions for these

objects can be written in terms of the Ψ2 Newmann-Penrose component of the Weyl

tensor. In the spherically symmetric case ImΨ2 = 0 and ReΨ2 is constant which

implies that the only non-zero multipole moment is M0. This condition provides

the intrinsic characterization mentioned above.

The zeroth and first laws of black hole mechanics have interesting generalizations

for weakly isolated and isolated horizons. In the case of the zero law the geometric

features of weakly isolated horizons guarantee that a suitable concept of surface

gravity can be introduced. This is done as follows.25 For a non expanding horizon

∆ the null normal ℓa has vanishing expansion, shear and twist. It is then straigth-

forward to show that there must exist a 1-form ωa on ∆ such that ∇aℓ
b = ωaℓ

b and

(Lℓω)a = 0 (the last condition as a consequence of the definition of weakly isolated

horizon). Defining now the surface gravity associated with the null normal ℓa as

κℓ := ℓaωa we have dκℓ = d(ωaℓ
a) = (Lℓω)a = 0 and hence κℓ is constant on the

horizon. This is analogous to the behavior of the surface gravity for Killing horizons

and provides us with the sought for generalized zeroth law.

The generalization of first law of black hole dynamics requires the definition

of a suitable energy associated with the isolated horizon. A way to proceed is to

look for a Hamiltonian description for the sector of general relativity containing

IHs. The availability of such a formulation is a very non-trivial and remarkable

fact, and it is a necessary first step towards quantization. In generally covariant

theories the Hamiltonian generating time translations is given by a surface integral

(once the constraints are taken into account). In the present case there will be,

hence, an energy associated with the isolated horizon (and an extra ADM term

corresponding to the boundary at infinity).d In practice, associating a Hamiltonian

to the boundary ∆ requires the choice of an appropriate concept of time evolution

defined by vector field ta with appropriate values ta∆ at the horizon. In simple

examples (for instance, non rotating isolated horizons) it is natural to take ta∆
proportional to the null normal ℓa, however, there is some freedom left in the choice

of ℓa by the IH boundary conditions. By choosing ta∆ in such a way that the surface

gravity is a specific function of the area (and other charges) and demanding that

the evolution generated by ta∆ is Hamiltonian25 one gets the first law as a necessary

dSimilar arguments apply to the angular momentum
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and sufficient condition. In this way, there is a family of mathematically consistent

first laws parametrised by these choices.

The textbook approach to obtain the Hamiltonian would consist in starting

from a suitable action principle for general relativity in a spacetime manifold with

an inner boundary where the isolated horizon boundary conditions are enforced.

This action can be written in principle both in terms of connection or metric va-

riables. The standard Dirac approach to deal with constrained systems (or more

sophisticated formalisms such as the one given in29) can then be used to get the

phase space of the model, the symplectic structure, the constraints and the Hamil-

tonian.30 Notice that owing to the presence of boundaries one should expect, in

principle, a non zero Hamiltonian consisting both in horizon contributions (defining

the horizon energy E∆ in terms of which the first law is spelled) and the standard

ADM energy associated with the boundary at infinity. A different approach that

has some computational advantages relies on the covariant methods proposed and

developed in.31,32 Their essence is to directly work in the space of solutions to the

Einstein field equations with fields subject to the appropriate boundary conditions

(in particular the isolated horizon ones). Despite the fact that the solutions to the

field equations in most field theories are not known it is possible to obtain useful

information about the space of solutions and, in particular, the symplectic form

defined in it.

As this is a crucial ingredient to understand the quantization of the model and

the quantum geometry of isolated horizons we sketch now the derivation of the

symplectic structure based on covariant phase space methods. Let us suppose that

we have a local coframe eIµ , I = 1, . . . , 4 in the spacetimee (M, gµν) and the frame

connection ΓI
J defined by deI+ΓI

J∧eJν = 0 with ΓIJ+ΓJI = 0. If we denote tangent

vectors (at a certain solution eI) as δeI it is straightforward to show that the 3-form

defined on M by

ω(δ1, δ2) :=
1

2
εIJKLδ[1(e

I ∧ eJ) ∧ δ2]ΓKL − 1

γ
δ[1(e

I ∧ eJ) ∧ δ2]ΓIJ (2.3)

is closed if eI is a solution to the Einstein field equations (in the previous expression

γ is the Immirzi parameter). This means that if we have two 3-surfaces Σ1 and Σ2

defining the boundary of a 4-dim submanifold of M then

Ω(δ1, δ2) =

∫

Σ

ω(δ1, δ2) (2.4)

is independent of Σ. If an inner boundary, such as an isolated horizon, is present

then a similar argument leads to the obtention of the symplectic form. Indeed, let

us take a region of M with an inner boundary ∆ (a causal 3-surface) and a family

of spatial 3-surfaces Σ such that every pair Σ1 and Σ2, defines a 4-dim spacetime

region bounded by Σ1, Σ2 and the segment of the surface ∆ contained between the

eηIJ denotes the Minkowski metric. In the following we will suppress spacetime indices when
working with differential forms
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2-surfaces Σ1 ∩∆ and Σ2 ∩∆. Let us suppose also that, for every pair of tangent

vectors δ1, δ2, there is a 2-form α(δ1, δ2) on ∆ such that the pullback of ω onto ∆

is exact [ω∆(δ1, δ2) = dα(δ1, δ2)]. When these conditions are satisfied it is possible

to generalize (2.4) in such a way that, in addition to the bulk term obtained above,

it also has a surface term and the resulting expression is still independent of the

choice of Σ

Ω(δ1, δ2) =

∫

Σ

ω(δ1, δ2) +

∫

Σ∩∆

α(δ1, δ2) . (2.5)

These types of surface terms are defined both for weakly isolated horizons or sphe-

rical isolated horizons as inner boundaries. In the case of weakly isolated horizons

of fixed area A it is possible to perform a gauge fixing such that the only symmetry

left is a U(1) symmetry. In such a situation it is possible to see that the surface

contribution to (2.5) has the form

A

πγ

∫

S

δ[1V ∧ δ2]V (2.6)

where V is a U(1) connection on the spheres S that foliate the horizon. It is impor-

tant to notice that this is a U(1) Chern-Simons symplectic form. It is convenient

now to rewrite the bulk term by using Ashtekar variables as

2

∫

Σ

δ[1E
a
i ∧ δ2]Ai

a . (2.7)

It is necessary to mention at this point33 that the values of the U(1) connection

and the pullbacks of the connection/triad variables are not independent but are

connected through a horizon constraint of the formf

(dV )ab +
2πγ

A
ǫabc(E

c
i r

i)

∣∣∣∣
∆

= 0 . (2.8)

The quantum version of this condition plays a central role in the quantization of

this model.

For spherical isolated horizons it is possible to define the Hamiltonian framework

without gauge fixing on the horizon.34–36 In such formulation the symplectic form

in the field space has an SU(2) Chern-Simons surface term of the form

A

8π2(1− γ2)γ

∫

S

δ1Ai ∧ δ2Ai , (2.9)

where Ai denotes the pullback of the SU(2) connection to the horizon. Now the

horizon constraint is not a single condition but the three conditions

1

2
ǫabcE

ci +
A

8π2(1− γ2)γ
F i
ab

∣∣∣∣
∆

= 0 , (2.10)

fHere ri denotes a fixed internal vector and we have used units such that 8πG = 1.
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written in terms of the curvature F i
ab. The difference between the U(1) and the

SU(2) approaches stems, mainly, from this fact but it is important to mention that

the physical assumptions used to define both models are slightly different.

A remark is in order when comparing equations (2.8) and (2.10). At first sight

there seems to be a mismatch in the number of conditions. In fact, as a consequence

of the gauge fixing that reduces the SU(2) triad rotation in the bulk to U(1) on the

boundary, one has two extra conditions on the fluxes corresponding to

Ec
i y

i = 0 = Ec
i x

i (2.11)

where xi and yi are internal directions orthogonal to each other and to ri. We see

that the three conditions in (2.10) are recovered. Due to the non commutativity

of the Ec
i the previous conditions cannot be satisfied in the quantum theory: only

(2.8) is imposed in the U(1) framework. As a result the U(1) framework slightly

over counts states, a fact which (under qualifications that are discussed at the end of

Section 3) is reflected in the form of logarithmic corrections to the micro canonical

entropy (see table in Section 4).

3. Quantum geometry of Weakly Isolated Horizons

The formulation put forward in the preceding section can be used to identify

the degrees of freedom that account for the black hole entropy and understand their

quantum origin. It is precisely the quantum geometry associated with weakly isola-

ted horizons that will let us understand the origin of black hole entropy in the LQG

framework. As we will discuss in this section a special role will be played by the

quantum horizon boundary conditions. For simplicity of exposition we will restrict

ourselves to the setting provided by Type I WIH’s and suppose that we do not have

matter nor extra charges. The starting point of the following construction is a WIH

of fixed areag a. As we mentioned in the preceding section the sector of general

relativity consisting of solutions to the Einstein field equations on regions bounded

by weakly isolated horizons admits a Hamiltonian formulation so that its quanti-

zation can be considered in principle. It is important to point out, however, that

the following construction must be based on the use of connection-triad variables

of the Ashtekar type (see Chapter LOOP QUANTUM GRAVITY). To our

knowledge such a construction is not available in the geometrodynamical framework
h. One of the reasons for this is the central role that Chern-Simons theories play in

the following arguments.

We have chosen to describe with some degree of detail the U(1) gauge fixed for-

mulation of quantum IHs. The SU(2) invariant framework34,35 can be constructed
gAnd fixed charges, in general.
hAs mentioned in Section 2 there is a boundary contribution to the gravity symplectic form
that can be written as an SU(2) Chern-Simons symplectic form in connection variables. In triad
variables eia this is35 γ−1κ−1

∫
δ1ei ∧ δ2e

i. If we define smeared fluxes in the usual way E(S,α) =∫
S
ǫinkα

iej ∧ ek then it follows that {E(S, α), E(S′, β)} = γκE(S ∩ S′, [α, β]). The previous non
commutativity of fluxes is characteristic of the bulk holonomy flux algebra.37
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along similar lines. In addition to the point discussed at the end of the previous

section, the main advantage of the latter is that both boundary and bulk fields

possess the same gauge symmetry. This allows the IH quantum constraints to be

interpreted as first class constraints generating the common symmetry.35 Results

of the SU(2) invariant formulation will be presented without details at end of the

section.

A very striking feature of the construction that we have discussed at the end

of the preceding section is the presence of a surface term in the symplectic struc-

ture. Such surface terms are usually absent for field theories with boundaries (at

least in simple models, see38). They are a very distinctive feature of the present

approach. From the point of view of the quantization of the model this surface term

strongly suggests the necessity to introduce a Hilbert space associated with the

boundary. The fact that it corresponds to a Chern-Simons model directly leads to

the consideration of a Chern-Simons quantization.

In statistical mechanics, the classical and quantum degrees of freedom that ac-

count for the entropy of a thermodynamical system are usually the same. For exam-

ple the atoms in a gas, interpreted as point particles in a box, are in one to one

correspondence with the quantum degrees of freedom used to model the gas as an

ensemble of particles in an infinite potential well. In the present case the logical

interpretation of the results about the specification of spacetimes with isolated ho-

rizons21 implies that there are no classical degrees of freedom associated with them.

What is then the origin of the entropy of black holes in this setting? The answer lies

in the nature of equations (2.8) and (2.10). More precisely, the intersections of the

edges of the spin network (excitations of the field Ea
i ) used to represent a suitable

quantum bulk state are treated as point particle defects at the horizon—effectively

excising them. The degrees of freedom of the horizon Chern-Simons theory created

in this way are responsible for the entropy.

The construction of the LQG Hilbert spaces has been reported in Chapter

LOOP QUANTUM GRAVITY. In the present context we will import results

from these constructions –for the bulk degrees of freedom– and also from the quanti-

zation of Chern-Simons theories to deal with the horizon39. As mentioned before it

is natural to introduce a Hilbert space H = HS⊗HV where the Hilbert spaces HHor

and HBulk are associated with the horizon and the bulk spacetime respectively.

The volume or bulk Hilbert space HBulk is a subspace of the usual LQG Hilbert

space L2(Ā, µAL) defined in a suitable space of generalized connections with the

help of the uniquely defined Ashtekar-Lewandowski measure (see Chapter LOOP

QUANTUM GRAVITY). A useful orthonormal basis for this type of Hilbert

space is provided by spin networks with edges that (may) transversally pierce the

inner spacetime boundary that models the black hole. These points will be referred

to as punctures ; they are endowed with the quantum numbers that label the edges

defining them. By using these punctures it is possible to represent the bulk Hilbert
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space as an orthogonal sum40

HBulk =
⊕

(P,j,m)

HP,j,m
Bulk (3.1)

extended to all the possible finite sets P = {P1, . . . , Pn} consisting of points at the

spherical sections of the horizon. The (j,m) labels correspond to edges piercing the

horizon transversally and the empty set corresponds to spin networks that do not

pierce the horizon.

In order to construct the surface Hilbert space it is necessary to excise the

punctures from the sphere S at the horizon and study the quantization of a Chern-

Simons model in the resulting punctured surface. From a classical point of view

this modification of the horizon topology has the effect of introducing topological

degrees of freedom in the model (that can be thought of as the holonomies around

closed loops surrounding the punctures of the, otherwise, flat connection), however

one has to keep in mind that these punctures are induced by spin network states

defined in the bulk, hence, they have a quantum origin.

The Chern-Simons quantization requires us to impose a prequantization condi-

tion on the classical horizon area. In the present situation it reads39 Aκ = 4πγℓ2Plκ

with κ ∈ N. In analogy with the bulk Hilbert space HV the surface Hilbert space

can be conveniently written as an orthogonal sum in the form

HHor =
⊕

(~P ,b)

H~P ,b
Hor (3.2)

where now ~P stands for an ordered n-tuple of points on the “horizon” S labeled by

integers mod κ (bi ∈ Zκ, i = 1, . . . , n) satisfying the condition b1 + · · · + bn = 0.

Here H∅ = {~0}.
At this stage in the process both spaces are completely independent. The key

element that establishes a relationship between them is the quantized version of

the horizon boundary conditions that we have discussed at the end of the pre-

ceding section (2.8,2.10). It is very important to highlight here the fact that the

operators that appear in these quantized boundary conditions are defined in com-

pletely unrelated Hilbert spaces; hence, the fact that there exist solutions to these

quantum boundary conditions is highly non-trivial. Of course, one has also to ta-

ke into account the quantized constraints in the bulk Hilbert space by using the

standard LQG methods (Dirac quantization, group averaging, etc., see Chapter

LOOP QUANTUM GRAVITY). The implementation of the quantum boun-

dary conditions leads to a subspace consisting of orthogonal sums of elements of

the form

HP,j,m
Bulk ⊗H~P ,b (3.3)

such that the points in the set P coincide with those in the vector ~P and the bi
labels associated with the punctures satisfy the condition bi = −2mi(mod, κ) for

i = 1, . . . , n.
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Up to this point the construction has given us some kind of kinematical Hilbert

space adapted to the present situation where we have inner spacetime boundariesi

We still have to take into account the rest of the constraints in the model. This is

done by following the standard procedure (see Chapter LOOP QUANTUM

GRAVITY) and making some assumptions –presumed mild– regarding solutions

to the Hamiltonian constraint.39

One of the key insights in the development of the present framework was the

introduction by Krasnov41–43 of the area ensemble. In the absence of a suitable

notion of energy such definition seemed natural: the area is an extensive quantity

with a well understood discrete spectrum. This state of affairs has evolved due to

results44 that provide an interpretation of the horizon area as a quasilocal notion of

energy. This will be discussed in the last two sections of this chapter. It is important

to highlight, at this point, that area and angular momentum play a fundamental

role already at the classical level in the IH framework whereas mass is a derived

physical magnitude.

The customary way to define the entropy starts by considering the prequantized

value of the area Aκ and introducing an area interval [Aκ − δ, Aκ + δ] of width δ

of the order of the Planck lengthj. Once this is done the entropy can be computed

by tracing out the bulk degrees of freedom to define a density matrix describing

a maximal mixture of states on the horizon surface S with area eigenvalues in the

previous interval. In order to count the number of states in [Aκ − δ, Aκ + δ] we

have to find out how many lists of non-zero elements of Zκ satisfy the condition∑n
i=1 bκ = 0 with bi = −2mi(modκ) for a permissible list of labels m1, . . . By

permissible we mean that there must exist a list of non-vanishing spin labels ji such

that eachmi is a spin component of ji (mi ∈ {−ji,−ji+1 . . . , ji}) and the following

inequality holds

Aκ − δ ≤ 8πγℓ2Pl

n∑

i=1

√
ji(ji + 1) ≤ Aκ + δ . (3.4)

In principle the preceding discussion gives a concrete prescription that defines the

counting (combinatorial) problem that has to be solved in order to compute the

entropy for a given value of the prequantized areaAκ. This is generalized to arbitrary

values of the area by allowing Aκ to be replaced by any arbitrary value A.

The preceding combinatorial problem can be considered as is (and, in fact, when

the flux operator is used it can be solved in a relatively straightforward way).

However, there is a neat way to simplify it know as the Domagala-Lewandowski

(DL) approach.40 By carefully considering the details of the problem it is possible

iNotice, however, that the quantum boundary conditions, arising from consistency requirements
for the Hamiltonian formulation of the sector of general relativity that we are considering here,
can also be thought of as constraints and, from this perspective, what we have really done is to
implement them à la Dirac.
jA different construction is possible if one uses the so called flux operator45 to define the entropy.
In this case there is no need to introduce an area interval to solve the quantum matching conditions
though, on physical grounds, it is useful to introduce it afterwards.
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to pose it in such a way that only one type of labels appear (instead of the three

labels in the original formulation, viz. ji,mi, bi). In the new rephrasing the entropy

is computed as logn(A) where n(A) is 1 plus the number of finite sequences of

non-zero integers or half-integers satisfying the following two conditions

n∑

i=1

√
|mi|(|mi|+ 1) ≤ A

8πγℓ2Pl

, (3.5)

and the so called projection constraint

n∑

i=1

mi = 0 . (3.6)

A different approach corresponds to the models described by Ghosh and Mitra

(GM)46,47 leading to the definition the entropy as log n(A) where n(A) is 1 plus the

number of all finite, arbitrarily long sequences ((j1,m1), . . . , (jN ,mN )) of ordered

pairs of non-zero, positive half integers ji and spin components mi ∈ {−ji,−ji +
1, . . . , ji} satisfying

n∑

i=1

√
ji(ji + 1) ≤ A

8πγℓ2Pl

,

n∑

i=1

mi = 0 . (3.7)

The difference between the DL and the GM definition of the counting problem

resides in the following technical point. As two punctures with different spins j 6= j′

but with the same magnetic number m are, from the boundary U(1) Chern-Simons

theory, indistinguishable, they are considered as physically equivalent in the DL

prescription. In the GM prescription the previous two configurations are conside-

red as different and counted individually. This apparent ambiguity of prescriptions

disappears in the SU(2) invariant formulation where, roughly speaking, the states

of the Chern-Simons boundary connection depend both j and m. To leading order

the counting in the SU(2) invariant formulation agrees with the GM prescription

(see table in Section 4).

Up to this point we have described the U(1) framework, which among other

things, involves the quantisation of condition (2.8) and its variants. Let us now

briefly present the SU(2) framework following from the quantisation of the system

containing (2.10). The first models using SU(2) Chern-Simons theory were proposed

by Kaul and Majumdar.48 The complete SU(2) framework, including the classical

description of the theory, was proposed by Engle, Noui and Perez in.34–36 The

entropy in this case is computed as log n(A) where n(A) is 1 plus the number of

all finite, arbitrarily long sequences (j1, . . . , jN ) of non-zero, positive half integers

ji satisfying the inequality

n∑

i=1

√
ji(ji + 1) ≤ A

8πγℓ2Pl

, (3.8)
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and counted with multiplicity given by the dimension of the invariant subspace

Inv⊗i [ji].

The next section will be devoted to introducing efficient methods to solve the

different types of combinatorial problems involved in the computation of the entropy

in the different proposals. These methods are based in number-theoretic ideas and

provide a powerful setup to deal with the broad class of problems arising in the

study of black holes in LQG.

4. Counting and number theory

The different models for semiclassical black holes described in the preceding

section provide concrete examples of the kind of counting problems that have to

be solved in order to compute the black hole entropy as a function of the area

(and other physical features such as angular momentum). They are remarkable for

several reasons. First, they are relatively easy to state and, in fact, reduce to the

counting of specific types of finite sequences of integers or half integers subject to

simple conditions. Furthermore their resolution can be tackled by using methods

that combine known types of Diophantine equations, the use of generating functions

and Laplace transforms.

As we will show in the following all the black hole models that have been discus-

sed so far in the LQG framework lead to the Bekenstein-Hawking law. Some of them,

in particular the older ones,48–50 require the fine tuning of the Immirzi parameter to

get the correct proportionality factor between area and entropy; others give results

consistent with the first law and equation (1.4) without any fine tuning51,52 (see

Section 5). It is important to point out at this point that the fact that the entropy

grows linearly in the asymptotic limit of large areas is not a generic behavior. At

first sight the situation seems to be quite similar to that of a sufficiently regular

real function f(A) satisfying f(0) = 0 and f ′(0) 6= 0 for which Taylor’s theorem

implies that in the A → 0 asymptotic limit f(A) ∝ A. However the limit that we

are considering is A→ ∞ and the function of interest (the entropy) is not analytic

but, actually, has a staircase form (though it can be written in terms of non-trivial

integral expressions). In such circumstances the linear asymptotic behavior for lar-

ge areas is certainly significant and becomes a genuine nontrivial prediction of the

model.

We want to make some additional comments regarding the counting entropy

before describing in some detail the mathematical methods necessary to efficiently

solve the combinatorial problems involved in its computation. The first has to do

with its behavior for small areas that was considered in detail by Corichi, Diaz Polo

and Fernandez Borja.53,54 Quite unexpectedly one finds a regular step structure

that persists for a reasonably wide interval—microscopic in any case—of areas (a

detailed account of the mathematical reasons for this phenomenon can be found

in55). This is mildly reminiscent of the predictions by Bekenstein, Mukhanov and



14 de enero de 2015 1:20 World Scientific Review Volume - 9.75in x 6.5in Fernando-Alejandro-Master

16 J. Fernando Barbero G. and Alejandro Perez

others56,57 regarding a “quantized” area spectrum. In the face of it this does not

seem to be utterly unexpected because the area operator, with its discrete spectrum,

plays a central role in the formalism. However, the eigenvalues of the area are not

equally spaced and their density (as a function of the area) grows very fast whereas

the width of the steps seen in the entropy is both exact and persistent (although

they eventually disappear).

A second relevant comment has to do with the rigorous notion of thermodynamic

limit.58 This has important implications for the mathematical properties of the

entropy as a function of its natural variables (the energy in the case of statistical

mechanics). In this limit (that can be computed by working with the counting

entropy that we are considering here) the entropy is smooth almost everywhere –

which implies that standard thermodynamical formulae can be used– and is concave

(downwards). A consequence of this last fact is that the step structure for small

areas should not be directly observable (although it can possibly have some kind of

impact on its properties). Another important consequence of this is the change in

the predictions for the subdominant corrections to the entropy for large areas (that

actually disappear for some models34–36).

The general structure of the combinatorial problems that have to be solved is

the following. In all the cases one must count the number of finite, arbitrarily long,

sequences of non-zero half integers satisfying an inequality condition involving the

horizon area. These numbers are associated with spin network edges that pierce

the horizon and quantum numbers coming from the Chern-Simons sector at the

horizon. In the case of the original U(1) proposal of Ashtekar, Baez, Corichi and

Krasnov49 the associated combinatorial problem was rephrased in a convenient sim-

plified way40,59 that did not involve directly the spin labels ji associated with the

punctures at the horizon but, rather, the magnetic quantum numbers mi (satisfying

the condition −ji ≤ mi ≤ ji). For a given value of the horizon area these numbers

have to satisfy the inequality

N∑

i=1

√
|mi|(|mi|+ 1) ≤ A

8πγℓ2Pl

, (4.1)

and the projection constraint

N∑

i=1

mi = 0 , (4.2)

In other proposals, such as the GM prescription50, the combinatorial problem is

expressed in terms of both the spin labels ji of the edges that pierce the horizon

and the mi labels. There is an inequality (similar to 4.1) and a projection constraint

with the same form as before

N∑

i=1

√
ji(ji + 1) ≤ Ak

8πγℓ2Pl

,

N∑

i=1

mi = 0 . (4.3)
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Notice how these two counting problems are different: in the first one both con-

ditions involve the mi labels whereas in the second the ji and mi labels are quite

independent (though they must satisfy the restriction −ji ≤ mi ≤ ji). In the SU(2)

models34–36 the projection constraint is replaced by a condition involving the di-

mension of the invariant subspace. Lack of space precludes us from delving into

the details of all the different cases and proposals so we will describe only the DL

approach in some detail and refer the reader to the literature for the rest. In the

rest of this section we will use units such that 4πγℓ2Pl = 1.

In order to count the number of sequences as required by the previous prescrip-

tion it is convenient to adopt a stepwise approach. This has been explained in detail

elsewhere60,61 so we give here a summary of the procedure. The main steps are:

1. For each fixed value of the area a obtain all the possible choices for the positive

half integers |mi| compatible with it in the sense that they satisfy

N∑

i=1

√
|mi|(|mi|+ 1) =

A

2
. (4.4)

At this stage the numbers |mi| can repeat themselves and are not ordered. In

other words, in this first step we just want to find out how many times each spin

component appears (how many 1/2’s, how many 1’s, and so on).

2. Count the different ways in which the multiset just described can be reordered.

3. Count all the different ways of introducing signs in the sequences of the previous

step in such a way that the condition
∑N

i=1mi = 0 is satisfied.

4. Repeat this procedure for all the eigenvalues of the area operator smaller than

A and add up the number of sequences thus obtained.

The first step is a characterization of the part of the spectrum of the area operator

relevant to the computation of black hole entropy, in particular the degeneracy of

the area eigenvalues. The condition (4.4) can be rewritten as

kmax∑

k=1

Nk

√
(k + 1)2 − 1 = A (4.5)

where we have introduced integer labels ki := 2|mi|. The non-negative integers

Nk (that will be allowed to be zero) in the last sum tell us the number of times

that the label k/2 ∈ N/2 appears in the sequence. We also denote as kmax =

kmax(A) the maximum value of the positive integer k compatible with the givem

area A. The problem that we need to solve at this step can be rephrased as that

of finding all the sets of pairs {(k,Nk) : k ∈ N, Nk ∈ N ∪ {0}} satisfying (4.5).

It is important to notice now that (4.5) implies that the area eigenvalue a must

be an integer linear combination of square roots of squarefree numbers of the form
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A =
∑imax

i=1 qi
√
pi, qi ∈ N ∪ {0} , so that we have the condition

kmax∑

k=1

Nk

√
(k + 1)2 − 1 =

imax∑

i=1

qi
√
pi . (4.6)

where the right hand side is fixed from the initial choice of area eigenvalue A.

The resolution of the previous equation is quite direct although the procedure,

that involves the solution of the quadratic Diophantine equation known as the Pell

equation and an auxiliary set of linear Diophantine equations, is somewhat lengthy.

The interested reader is referred to60,61 for details. The final result of the analysis

sketched at this step is a characterization of the number of times that a each spin

label corresponding to a puncture can appear for a given area eigenvalue.

The second step simply requires us to count the number of ordered sequences

containing the number of each label obtained in the previous step and is completely

straightforward. Once we have found all the possible sequences of positive half-

integers |mi| satisfying condition 4.4, the third step asks for the computation of

the number of ways to introduce signs in each mi in such a way that the condition∑N
i=1mi = 0 is satisfied. There are several ways to solve this problem as described

in.61 The simplest one makes use of generating functions and is actually the preferred

one as generating functions play a fundamental role in this framework (as first

explored and explained by Hanno Sahlmann62,63). The other methods are interesting

because they suggest deep connections between the ideas presented here with other

physical problems, in particular those involving conformal field theories.64

The last step requires us to add up the number of configurations correspon-

ding to all the area eigenvalues smaller or equal than A. The best way to do this

makes again use of generating functions60,62,63 and Laplace transforms (see refe-

rences59,60). Generating functions are a very powerful tool in combinatorics because

they can encode a lot of useful information about a particular problem and can be

manipulated with very simple analytical tools. In the present case the step by step

procedure described above leads to concrete forms for the generating functions for

all the problems described before and others considered in the literature.34–36 In

the specific example of the DL counting the generating function is65

GDL(z, x1, x2, . . . ) =

(
1−

∞∑

i=1

∞∑

α=1

(
zk

i
α + z−ki

α

)
x
yi
α

i

)−1

. (4.7)

Here the pairs (kiα, y
i
α) are solutions to the Pell equation defined by the i-th square

free integer. The coefficients [z0][xq11 x
q2
2 · · · ]GDL(z, x1, x2, . . . ) contain the informa-

tion on the number of configurations compatible with a certain value of the area∑
qi
√
pi . Once the generating function is at hand it is possible to use it to get

a very useful integral representation59,66 that takes the form of an double inverse

Laplace-Fourier transform.

The usefulness of Laplace transforms to deal with counting problems in this

setting was pointed out by Meissner in reference.59 In addition to providing a way
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to effectively deal with step 4 in our scheme it is important also from the point of

view of statistical mechanics and has been used to gain some understanding about

the thermodynamic limit for black holes.67 The underlying reason is the fact that

the passage from the microcanonical to the canonical ensembles can be understood

precisely in terms of Laplace transforms. This way we get the following expression

for the entropy

expS(A) = (4.8)

1

(2π)2i

∫ 2π

0

∫ x0+i∞

x0−i∞

s−1
(
1− 2

∞∑

k=1

e−s
√

k(k+2) cosωk
)−1

eAs ds dω ,

where x0 is a real number larger than the real part of all the singularities of the

integrand.k The treatment of other models such as the ones proposed by Ghosh,

Mitra (GM), and Engle, Noui, Perez (ENP) basically differ only on the treatment

of the projection constraint. Relevant details can be found in reference.61

In addition to the cases mentioned above it is sometimes useful to consider

the simplified model in which the projection constraint is ignored. Physically this

corresponds to a situation in which the entropy satisfies the Bekenstein-Hawking law

with no logarithmic corrections. In this simplified example the generating function

is just

GDL(0)(x1, x2, . . . ) =

(
1− 2

∞∑

i=1

∞∑

α=1

x
yi
α

i

)−1

. (4.9)

leading to the following expression for the entropy

expS(A) =
1

2πi

∫ x0+i∞

x0−i∞

s−1
(
1− 2

∞∑

k=1

e−s
√

k(k+2)
)−1

eAs ds . (4.10)

Let us now briefly explain how the asymptotic behavior of the entropy is obtai-

ned. To this end one should remember that whenever a function is represented as an

inverse Laplace transform (a so called Bromwich integral such as (4.10)) its asym-

ptotic behavior as a function of the independent variable (the area A in this case)

is determined by the analytic structure of the integrand, specifically the position of

the singularity s0 with the largest real part. In the present case, after reintroducing

units for the sake of the argument, we get

S(A) = S0 +
Re(s0)

πγ

A

4ℓ2Pl

. (4.11)

where S0 is a constant independent of the area A. The preceding expression tells us

that we exactly recover the Bekenstein-Hawking law by choosing γ such that

γ =
Re(s0)

π
. (4.12)

kThis expression is actually valid only for those values of the area a ≥ 0 that do not belong to

the spectrum of area operator whereas for an in the spectrum of the area operator it gives the
arithmetic mean of the left and right limits when a → a±n . In practice the integral representation
contains all the information about the entropy in a useful form.
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The analytic structure of the integrand in (4.10) has some very interesting features

such as the accumulation of the real parts of its singularities66 that reflect themselves

in the behavior of the entropy. The expression (4.10) is very useful to explore these

issues as only the complex variable s is relevant (the discussion when the projection

constraint is also taken into account is slightly more involved).

In the present example the entropy S(A) displays a simple linear growth for

large values of the area (without any logarithmic corrections) with a slope that

depends on the Immirzi parameter γ. An interesting fact is that the value of the

parameter γ is the same for a number of different types of black holes although

different proposals such as34–36,46,49 lead to different values for it. The larger ones

correspond to those cases where the number of microstates is larger as can be easily

deduced from (4.11). At variance with this behavior it is interesting to mention that

the subdominant logarithmic corrections are independent of γ.

The values of the Immirzi parameter leading to the Bekenstein-Hawking law and

the logarithmic corrections for the different models and proposals are the following

Approach γ Log correction Log corr. therm. limit

DL(0) γDL = 0,237 · · · 0 log(A/ℓ2Pl)

DL γDL = 0,237 · · · − 1
2 log(A/ℓ

2
Pl)

1
2 log(A/ℓ

2
Pl)

GM γGM = 0,274 · · · − 1
2 log(A/ℓ

2
Pl) exercise

ENP γENP = γGM − 3
2 log(A/ℓ

2
Pl) 0

The first column refers to the four different models considered (the one provided by

the DL prescription without and with the projection constraint, the GM approach

and the ENP model). The difference between the results for the DL prescription

with and without the projection constraint is the presence of a negative logarith-

mic correction for the latter. This is to be expected as the incorporation of the

projection constraints eliminates some microstates that are taken into account in

the DL(0) model. A similar argument applies to the GM and ENP cases; the −3/2

coefficient for the logarithmic correction in the latter case means that the number

of microstates allowed is smaller than for the GM proposal. See the discussion at

the end of Section 3.

5. Semiclassical advances

The indeterminacy, mentioned in Section 2, of the quantities appearing in the

first law for IHs disappears if one changes the point of view and assumes that

the near horizon geometry corresponds to that of a stationary black hole solution

and shifts the perspective to that of a suitable family of stationary nearby local

observers. As explained in Section 2 the whole idea behind isolated horizons is

to describe a sector of the phase space of gravity containing a boundary with the

geometric properties of a BH horizon in equilibrium and infinitely many bulk degrees



14 de enero de 2015 1:20 World Scientific Review Volume - 9.75in x 6.5in Fernando-Alejandro-Master

Quantum Geometry and Black Holes 21

of freedom. In such context no condition in the definition requires the near-horizon

geometry to be that of a stationary black hole. A key point is that the systems

that behave thermodynamically are those solutions in the phase space of IH whose

near horizon geometry (NHG) is that of a stationary black hole solution.44,51,52,68

In the quantum theory this would amount to selecting a bulk quantum state that is

semiclassical and peaked on the stationary black hole configuration near the isolated

horizon.

At present there is not enough control on the nature of the physical Hilbert

space to be able to describe such states in detail (progress is reported in Chapter

Quantum Hamiltonian). Nevertheless, one can assume that such states exist and

bring in their semiclassical properties into the analysis. This semiclassical input has

led to interesting new insights into the black hole entropy calculation that we will

briefly review here. This perspective opens a variety of new questions and tensions

waiting to be resolved. We shall discuss them in the following Section.

Assume that the NHG to be isometric to that of a Kerr-Newman BHsl. A family

of stationary observersO located right outside the horizon at a small proper distance

ℓ≪
√
A is defined by those following the integral curves of the Killing vector field

χ = ξ +Ωψ = ∂t +Ω ∂φ, (5.1)

where ξ and ψ are the Killing fields associated with the stationarity and axisym-

metry of Kerr-Newman spacetime respectively, while Ω is the horizon angular velo-

city. The four-velocity of O is given by

ua =
χa

‖χ‖ . (5.2)

It follows from this that O are uniformly accelerated with an acceleration a =

ℓ−1 + o(ℓ) in the normal direction. These observers are the unique stationary ones

that coincide with the locally non-rotating observers69 or ZAMOs70 as ℓ → 0. As

a result, their angular momentum is not exactly zero, but o(ℓ). Thus O are at rest

with respect to the horizon which makes them the preferred observers for studying

thermodynamical issues from a local perspective.

It is possible to show that the usual first law (1.2) translates into a much simpler

relation among quasilocal physical quantities associated with O.44 As long as the

spacetime geometry is well approximated by the Kerr Newman BH geometry in the

local outer region between the BH horizon and the world-sheet of local observers

at proper distance ℓ, and, in the leading order approximation for ℓ/
√
A ≪ 1, the

following local first law holds

δE =
κ

8π
δA, (5.3)

where δE =
∫
W
Tµνu

µdW ν = ‖χ‖−1
∫
W
Tµνχ

µdW ν represents the flow of energy

across the world-sheet W defined by the local observers, and κ ≡ κ/(‖χ‖). The
lSuch assumption is physically reasonable due to the implications of the no-hair theorem.
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above result follows from the conservation law ∇a(Tabχ
b) = 0 that allows one to

write δE as the flux of Tabχ
b across the horizon. This, in turn, can be related to

changes in its area using the optical Raychaudhuri equations.44

Two important remarks are in order: First, there is no need to normalize the

Killing generator χ in any particular way. The calculation leading to (5.3) is in-

variant under the rescaling χ → αχ for α a non vanishing constant. This means

that the argument is truly local and should be valid for more general black holes

with a Killing horizon that are not necessarily asymptotically flat. This rescaling

invariance of the Killing generator corresponds precisely to the similar arbitrariness

of the generators of IHs as described in Section (2). The fact that equation (5.3)

does not depend on this ambiguity implies that the local first law makes sense in

the context of the IH phase space as long as one applies it to those solutions that

are isometric to stationary black hole solutions in the thin layer of width ℓ outside

the horizon. The semiclassical input is fully compatible with the notion of IHs.

Second, the local surface gravity κ̄ is universal κ̄ = ℓ−1 in its leading order

behaviour for ℓ/
√
A≪ 1. This is not surprising and simply reflects the fact that in

the limit
√
A→ ∞ with ℓ held fixed the NHG in the thin layer outside the horizon

becomes isometric to the corresponding thin slab of Minkowski spacetime outside

a Rindler horizon: the quantity κ̄ is the acceleration of the stationary observers in

this regime. Therefore, the local surface gravity loses all memory of the macrosco-

pic parameters that define the stationary black hole (see Section 5.2.1 for further

discussion). This implies that, up to a constant which one sets to zero, equation

(5.3) can be integrated, thus providing an effective notion of horizon energy

E =
A

8πGN ℓ
, (5.4)

where GN is Newton’s constant. Such energy notion is precisely the one to be used

in statistical mechanical considerations by local observers. Similar energy formu-

lae have been obtained in the Hamiltonian formulation of general relativity with

boundary conditions imposing the presence of a stationary bifurcate horizon.71 The

area as the macroscopic variable defining the ensemble has been always used in the

context of BH models in loop quantum gravity. The new aspect revealed by the

previous equation is its physical interpretation as energy for the local observers.

The thermodynamical properties of quantum IHs satisfying the NHG condition

can be described using standard statistical mechanical methods with the effective

Hamiltonian that follows from equation (5.4) and the LQG area spectrum (see

Chapter LOOP QUANTUM GRAVITY), namely

Ĥ |j1, j2 · · · 〉 =
(
γ
ℓ2Pl

2GN ℓ

∑

p

√
jp(jp + 1)

)
|j1, j2 · · · 〉 (5.5)

where jp are positive half-integer spins of the p-th puncture and ℓPl =
√
G~ is the

fundamental Planck length associated with the gravitational coupling G in the deep
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Planckian regime. The analysis that follows can be performed in both the microca-

nonical ensemble or in the canonical ensemble; ensemble equivalence is granted in

this case because the system is simply given by a set of non interacting units with

discrete energy levels.

5.1. Pure quantum geometry calculation

In this section we compute black hole entropy first in the microcanonical en-

semble following a simplified (physicist) version72 of the rigorous detailed counting

of the previous section. As the canonical ensemble becomes available with the no-

tion of Hamiltonian (5.5), we will also derive the results in the canonical ensemble

framework. The treatment in terms of the grand canonical ensemble as well as the

equivalence of the three ensembles has been shown.51

Denote by sj the number of punctures of the horizon labelled by the spin j.

Ignoring the closure constraint, and in the SU(2) Chern-Simons formulation of

quantum IHs, the number of states associated with a distribution of distinguishable

punctures {sj}∞j= 1

2

is

n({sj}) =
∞∏

j= 1

2

N !

sj !
(2j + 1)sj , (5.6)

where N ≡ ∑
j sj is the total number of punctures. The leading term of the mi-

crocanonical entropy can be associated with S = log(n({s̄j})), where s̄j are the

solutions of the variational condition

δ log(n({s̄j})) + 2πγ0δC1({s̄j}) + σC2({s̄j}) = 0 (5.7)

where 2πγ0 (the 2π factor is introduced for later convenience) and σ are Lagrange

multipliers for the constraints

C1({s̄j}) =
∑

j

√
j(j + 1)sj −

A

8πγℓ2Pl

= 0,

C2({s̄j}) =
∑

j

sj −N = 0. (5.8)

In words, s̄j is the configuration maximazing log(n({sj})) for fixed macroscopic area

A and number of punctures N . Notice that C1 was not imposed in the treatment

of Section 4m. Ignoring C1 amounts to setting the punctures chemical potential

µ̄ = 0. However, as we will show here, allowing for non vanishing chemical potential

provides a whole new look at the question of the dependence of entropy on the

Immirzi parameter.

mThe physicist method of this section can be made precise using the counting techniques of
Section 4. The counting with fixed N is proposed as an exercise to the reader who is referred to73

for relevant equations.
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A simple calculation shows that the solution to the variational problem (5.7) is

s̄j
N

= (2j + 1) exp(−2πγ0
√
j(j + 1)− σ), (5.9)

from which it follows, by summing over j, that the Lagrange multipliers are not

independent

expσ(γ0) =
∑

j

(2j + 1) exp(−2πγ0
√
j(j + 1)). (5.10)

It also follows from (5.9), and the evaluation of S = log(n({s̄j})), that

S =
γ0
γ

A

4ℓ2Pl

+ σ(γ0)N. (5.11)

What is the value of the Lagrange multiplier γ0? As in standard thermal systems

the value of γ0 is related to the temperature of the system. Its value is fixed by the

requirement that

∂S

∂E

∣∣∣∣
−1

N

= T =
~

2πℓ
, (5.12)

where E is the energy measured by quasilocal observers (5.4) and the last equality

on the right is the condition that the temperature be the Unruh temperature (as

measured by the same semiclassical observers). The previous condition allows one

to express the Lagrange multiplier γ0 in terms of the (otherwise arbitrary) Immirzi

parameter γ, G, and GN , namely

γ0 = γ
G

GN

, (5.13)

and thus

S =
A

4~GN

+ σ(γ)N. (5.14)

where

σ(γ) = log[
∑

j

(2j + 1)e
−2πγ G

GN

√
j(j+1)

] (5.15)

Notice that the first term in the entropy formula is given by the Bekenstein-Hawking

area law with the low energy value of Newton constant GN ; in other words it does

not depend explicitly on the fundamental Planck length ℓPl appearing in the area

spectrum. Even though this is to be expected as the Bekenstein-Hawking term

is a semiclassical quantity, the above result sheds new light on a long standing

discussion in the community as to which is the value of Newton’s constant that

should go into the area spectrum. Due to quantum effects Newton’s constant is

expected to flow from the IR regime to the deep Planckian one. The Planckian

value of the gravitational coupling should be defined in terms of the fundamental

quantum of area predicted by LQG yet the low energy value should appear in the



14 de enero de 2015 1:20 World Scientific Review Volume - 9.75in x 6.5in Fernando-Alejandro-Master

Quantum Geometry and Black Holes 25

entropy formula. The semiclassical input that enters the derivation of the entropy

through the assumption of (5.4) is the ingredient that bridges the two regimes.

Finally, punctures are associated with a chemical potential which is given by

µ̄ = −T ∂S

∂N

∣∣∣∣
E

= − ℓ2Pl

2πℓ
σ(γ) (5.16)

which depends on the fiducial length scale ℓ and the Immirzi parameter, and where

one is again evaluating the equation at the Unruh temperature T = ~/(2πℓ).

The above derivation can be done in the framework of the canonical and grand-

canonical ensembles. From the technical perspective it would have been simpler to

do it using one of those ensembles. In particular basic formulae allow for the cal-

culation of the energy fluctuations which at the Unruh temperature are such that

(∆E)2/〈E〉2 = O(1/N). The specific heat at TU is C = Nγ20d
2σ/dγ2 which is po-

sitive. This implies that as a thermodynamic system the IH is locally stable. The

specific heat tends to zero in the large γ limit for fixed N and diverges as ~ → 0.

The three ensembles give equivalent results.51

5.1.1. The thermodynamical vs. the geometric first law

By simply computing the total differential of the entropy (5.14) one finds the

thermodynamical first law

δE =
κ̄~

2π
δS + µ̄δN (5.17)

In order to find a relationship with the geometric first law (1.2), one needs to

assume that the spacetime geometry corresponds to that of a stationary black hole

(for which (1.2) applies). If one does so then one can show (by simply reverting the

argument that took one from (1.2) to (5.3)44) that (5.17) is equivalent to

δM =
κ~

2π
δS +ΩδJ +ΦδQ+ µδN, (5.18)

where µ = −ℓ2Plκσ(γ)/(2π) (the redshifted version of µ̄). At first sight the previous

equation does not look like (1.2). However, it is immediate to check that the exotic

chemical potential term in (5.18) cancels the term proportional to the number of

punctures in the entropy formula (5.14). For (5.17) this is due to the equation of

state (5.16); for (5.18) this is due to the form of µ. Therefore, the above balance

equation is just exactly the same as (1.2). The different versions of the first law are

presented in Table 1. Notice that only those on the left column are to be interpre-

ted thermodynamically. Assuming the validity of semiclassical consistency discussed

here for general accelerated observers in arbitrary local neighbourhoods,74 the emer-

gence of general relativity directly from the statistical mechanics of the polymer like

structures of LQG has been argued.75
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Table 1. Different versions of balance equations. On the left column one has the results coming
from quantum geometry involving a chemical potential term. The semiclassical input of the area
effective Hamiltonian in the quantum geometry statistical mechanics calculation leads to results
that are consistent with the geometry first laws shown on the right column.

Quantum Statistical Mechanics Classical Einstein gravity

Local δE = κ̄~
2π δS + µ̄δN ⇐⇒ δE = κ̄

8π δA

m m

Global δM = κ~
2π δS +ΩδJ +ΦδQ+ µδN ⇐⇒ δM = κ~

2π δA+ ΩδJ +ΦδQ

aMoving along horizontally in this table is a trivial identity; moving vertically requires the
background geometry to be a stationary black hole solution.

5.1.2. Recovering the results of Section 3

As we mentioned above the key difference with the counting of Section 3 is the

imposition of the constraint C2 in (5.8). One can therefore recover the results by

simply setting the Lagrange multiplier σ = 0 from the onset of the calculation in

Subsection 5.1. What happens then is that equation (5.10) completely fixes γ0 to the

numerical value: in the present case γ0 = 0,274.... Equation (5.13)—which continues

to hold—introduces a strong constraint between fundamental constants; namely

γ
G

GN

= γ0 = 0,274..., (5.19)

which corresponds to equation (4.12) with the identification γ0 = Re(s0)/π. The

previous equation implies that S = A/(4GN~). Therefore, by declaring that the che-

mical potential of punctures vanishes µ̄ = 0 (equivalently σ = 0) the semiclassical

consistency, equation (5.12), is satisfied at the price of restricting the fundamental

constants as above. It has been proposed that the previous equation, relating low

energy GN with the fundamental couplings G and γ, could be interpreted in the

context of the renormalisation group flow.76 However, due to the completely com-

binatorial way in which γ0 arises (which does not make reference to any dynamical

notion) it is so far unclear how such scenario could be realized. The contribution

of matter degrees of freedom (‘vacuum fluctuations’) to the degeneracy of the area

spectrum has been neglected in the derivation leading to (5.19).

5.2. Matter and holography

In the treatments mentioned so far punctures are distinguishable. Let us see

here what indistinguishability would change. Instead of the microcanonical ensem-

ble, we use now the grand canonical ensemble as this will considerably shorten the

derivations (keep in mind that all ensembles are equivalent). Thus we start from

the canonical partition function which for a system of non interactive punctures is
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Q(β,N) = q(β)N/N ! where the N ! in the denominator is the Gibbs factor that ef-

fectively enforces indistinguishability, and the one-puncture partition function q(β)

is given by

q(β) =

∞∑

j= 1

2

dj exp(−
~βγ0
ℓ

√
j(j + 1)), (5.20)

where dj is the degeneracy of the spin j state (for instance dj = (2j + 1) as in the

SU(2) Chern-Simons treatment). The grand canonical partition function is

Z (β, z) =
∞∑

N=1

zNq(β)N

N !
= exp(zq(β)). (5.21)

From the equations of state E = −∂β log(Z ), and N = z∂z log(Z ) one gets

A

8πGN ℓ
= −z∂βq(β)

N = zq(β) = log(Z ). (5.22)

In thermal equilibrium at the Unruh temperature one has β = 2πℓ~−1 and the ℓ

dependence disappears from the previous equations. However, for dj that grow at

most polynomially in j, the BH area predicted by the equation is just Planckian

and the number of punctures N of order one. Therefore, indistinguishability with

degeneracies dj of the kind we find in the pure geometry models is ruled out because

it cannot predict semiclassical BH’s.

An interesting perspective52 arises in the framework of quasilocal observers. If

one only restricts to quantum geometry degrees of freedom then dj = 2j + 1 in

the SU(2) ENP treatment or dj = 1 in the GM and DL models. Now, from the

local observers perspective, the quantum state of the system close to the horizon

appears as a highly excited state at inverse temperature β = 2πℓ/ℓ2Pl. Of course

this state looks like the vacuum state for freely falling observers (at scales smaller

than the size of the BH). These two dual versions of the same physics tell us that

the quantum state describing the near-horizon physics contains more than just pure

quantum geometric excitations. Very general results from quantum field theory on

curved spacetimes imply that the quasilocal observers close to the horizon would

find that the number of degrees of freedom grows exponentially with the horizon

area according to (see for instance77)

D ∝ exp(λA/(~GN )), (5.23)

where λ is an unspecified dimensionless constant that cannot be determined due

to two related issues: On the one hand UV divergences of standard QFT introduce

regularization ambiguities affecting the value of λ; on the other hand, the value of λ

depends on the number of species of fields considered. For that reason, here we only

assume the qualitative exponential growth and will prove below that the ambiguity

in λ is completely removed by non perturbative quantum gravity considerations.
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From (5.23) D[{sj}] =
∏

j dj with dj = exp(λ8πγ0
√
j(j + 1)). For simplicity

lets take
√
j(j + 1) ≈ j + 1/2. We also introduce two dimensionless variables δβ

and δh and write β = βU(1+ δβ)—where βU = 2πℓ/~—and λ = (1− δh)/4. A direct

calculation of the geometric series that follows from (5.20) yields

q(β) =
exp(−πγ0δ(β))
exp(πγ0δ(β)) − 1

, (5.24)

where δ(β) = δh + δβ . The equations of state now predict large semiclassical BHs:

for large A/(~GN ) equation (5.22) can be used to determine δ as a function of A

and z. The result is δ = 2
√
GN~z/(πγ0A) ≪ 1. For semiclassical BHs δβ ≪ 1

since the temperature measured by quasilocal observers must be close to the Unruh

temperature. This, together with the previous equation for δ, implies δh ≪ 1. In

other words semiclassical consistency implies that the additional degrees of freedom

producing the degeneracy (5.23) must saturate the holographic bound,52 i.e. λ = 1/4

up to quantum corrections.

The entropy is given by the formula S = βE − log(z)N + log(Z ) which upon

evaluation yields

S =
A

4GN~
− 1

2
(log(z)− 1)

(
zA

πγℓ2Pl

) 1

2

(5.25)

This gives the Bekenstein-Hawking entropy to leading order plus quantum correc-

tions. If one sets the chemical potential of the punctures to zero (as for photons or

gravitons) then these corrections remain. One can get rid of the corrections by set-

ting the chemical potential µ = TU . Such possibility is intriguing, yet the physical

meaning of such a choice is not clear at this stage. The thermal state of the system

is dominated by large spins as the mean spin 〈j〉 = A/(Nℓ2Pl) grows like
√
A/ℓ2Pl.

The conclusions of this subsection hold for arbitrary puncture statistics. This is to

be expected because the system behaves as if it were at a very high effective tempe-

rature (the Unruh temperature is the precise analog of the Hagedorn temperature

of particle physics).52 Because it will be important for further discussion we write

the partition function corresponding to the choice of Bosonic statistics of punctures

explicitly and for z = 1, namely

Z (β) =

∞∏

j= 1

2

∑

sj

exp(2πℓ− β)
aj

8πℓGN

, (5.26)

where aj = 8πγℓ2Pl

√
j(j + 1) are the area eigenvalues, and we have assumed for sim-

plicity λ = 1/4 in (5.23), namely dj = exp(aj/(4GN~)). Interestingly, such exact

holographic behaviour of the degeneracy of the area spectrum can be obtained from

an analytic continuation of the dimension of the boundary Chern-Simons theory

by sending the spins ji → is − 1/2 with s ∈ R+.78–81 The new continuous labels

correspond to SU(1, 1) unitary representations that solve the SL(2,C) self(antiself)-

duality constraints Li±Ki = 0 (see Chapter SPIN FOAMS), which in addition
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comply with the necessary reality condition E ·E ≥ 0 for the fields Ea
i (seeChapter

LOOP QUANTUM GRAVITY). All this suggests that the holographic beha-

viour postulated in (5.23) with λ = 1/4 would naturally follow from the definition

of LQG in terms of self(antiself)-dual variables, i.e. γ = ±i. The same holographic

behaviour of the number of degrees of freedom available at the horizon surface is

found from a conformal field theoretical perspective for γ = ±i.82 A relationship

between the termal nature of BH horizons and self dual variables seems also valid

according to similar analytic continuation arguments.83 The analytic continuation

technique has also been applied in the context of lower dimensional BHs.84

5.2.1. What is the ensemble in the quasilocal treatment

The quasi local perspective provides a description complementary to the isolated

horizon definition of the horizon Hilbert space. It allows one to perform manipu-

lations in the canonical ensemble language. At the basic level the ensemble is still

defined by the details of the isolated horizon boundary conditions which tell us

whether we are dealing with a spherical, distorted, rotating or static BH horizon.

Even when charge and angular momentum do not appear in the expression of the

quasi local first law these parameters (and all multipole moments in the case of

distorted isolated horizons27,28) are encoded implicitly in the form of the boundary

condition used to define the quantum theory of the horizon. Notice also that the

usual canonical ensemble is ill defined85 because the number of states grows too

fast as a function of the ADM energy. This problem disappears in the quasi local

treatment where the area ensemble plays the central role.

6. Synergy as well as tension between the microscopic and semi-

classical descriptions

6.1. Spinfoams

In the covariant path integral representation of loop quantum gravity the state

of a puncture (open spin network link) |j,m〉 is embedded in the unitary represen-

tations of SL(2,C) (whose basis vectors can be written as |p, k; j,m〉 for p ∈ R+ and

k ∈ N) according to |j,m〉 → |γ(j + 1), j; j,m〉. The maximum weight states m = j

define a puncture state which is in turn a coherent state peaked along the z-axis

which is assumed (through an implicit gauge fixing) to correspond to the normal to

the horizon. We denote such states as follows

|j〉 ≡ |γ(j + 1), j; j, j〉. (6.1)

These states satisfy the simplicity constraints Li = γKi in a weak sense (see Chap-

ter SPIN FOAMS). One postulates86 that quantum horizon states (in the infinite

area limit, i.e. Rindler states) evolve in the time of stationary observers (5.2)—
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uniformly accelerated with a = ℓ−1—according to

|jt〉 = exp(iHt)|j〉, (6.2)

with H = aKz = ℓ−1Kz the Rindler Hamiltonian. This time evolution is con-

sistent with the semiclassical condition (5.4). More precisely from the simplicity

constraints one has that 〈j|H |j〉 = ~γjℓ−1 which coincides with the eigenvalue of

E = A/(8πGN ℓ) for a single plaquette in the large j limit. By coupling the system

with an idealized detector modelled by a two level system87 with energy separation

TU = ~/(2πℓ) ≪ ∆ǫ it is shown that the population of the excited state in the

stationary state is86

p1 ≈ exp(−2πℓ

~
∆ǫ), (6.3)

which is the Wien distribution at temperature TU = ~/(2πℓ). A key property88

leading to this result is the fact that

|〈λ|j〉|2 ≈ λ2j exp(−πλ) (6.4)

where |λ〉 = |γ(j + 1), j;λ, j〉 is an eigenstate of Kz and Lz with eigenvalues λ and

j respectively. In relation to this it has been postulated89 that the one puncture

reduced density matrix measuring the inside-outside correlations in spin foams is

given by

ρp =
exp(−2πKz)

Z
, (6.5)

where Zp = Tr[exp 2πKz]. The single puncture entropy Sp = −Tr(ρp log(ρp)) =

ap/(4G~) + log(Zp); by adding this result for all punctures one gets a result of

the form (5.14) with Zp playing the role of σ (notice that both are the single

puncture partition function). In this way the results of the covariant and canonical

approach are consistent. Notice that the fundamental input in the derivation of the

temperature is that quantum horizon physical states are of the form (6.2).

6.2. Entanglement entropy perturbations and black hole entropy

Starting from a pure state |0〉〈0| (“vacuum state”) one can define a reduced

density matrix ρ = Trin(|0〉〈0|) by taking the trace over the degrees of freedom inside

the BH horizon. The entanglement entropy is defined as Sent[ρ] = −Tr(ρ log(ρ)). In

four dimensions90 the leading order term of entanglement entropy in standard QFT

goes like

Sent = λ
A

ǫ2
+ corrections (6.6)

where ǫ is an UV cut-off, and λ is left undetermined in the standard QFT calcula-

tion due to UV divergences and associated ambiguities. An important one is that

λ is proportional to the number of fields considered; this is known as the species

problem. These ambiguities disappear if one studies perturbations of (6.6) when
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gravitational effects are taken into account.91,92 The analysis is done in the context

of perturbations of the vacuum state in Minkowski spacetime as seen by accele-

rated Rindler observers. Entanglement entropy is defined by tracing out degrees

of freedom outside the Rindler wedge. Such system reflects some of the physics of

stationary black holes in the infinite area limit. A key property93 is that, formally,

ρ =
exp(−2π

∫
Σ T̂µνχ

µdΣν)

Tr[exp(−2π
∫
Σ
T̂µνχµdΣν)]

, (6.7)

where Σ is any Cauchy surface of the Rindler wedge. If one considers a pertur-

bation of the vaccum state δρ then the first interesting fact is that the (relative

entropy) δSent = Sent[ρ+ δρ]− Sent[ρ] is UV finite and hence free of regularization

ambiguities.94 The second fact is that due to (6.7) one has

δSent = 2πTr(

∫

Σ

δ〈Tµν〉χµdΣν). (6.8)

Now from semiclassical Eintein’s equations ∇µδ〈Tµν〉 = 0, this (together with the

global properties of the Rindler wedge) implies that one can replace the Cauchy

surface Σ by the Rindler horizon H in the previous equation. As in the calculation

leading to (5.3) one can use the Raychaudhuri equation (i.e. semiclassical Eintein’s

equations) to relate the flux of δ〈Tµν〉 across the Rindler horizon to changes in its

area. The result is that δSent =
δA

4GN~
independently of the number of species. The

argument can be generalized to static black holes12 where a preferred vacuum state

exists (the Hartle-Hawking state). However, due to the fact that the BH horizon is

no longer a good initial value surface the resulting balance equation is

δSent =
δA

4GN~
+ δS∞, (6.9)

where δS∞ = δE/TH , and δE is the energy flow at I + ∪ i+. Changes of entangle-
ment entropy match changes of Hawking entropy plus an entropy flow to infinity.

These results shed light on the way the species problem could be resolved in quan-

tum gravity. However, as the concept of relative entropy used here is insensitive

to the UV degrees of freedom, the key question12 is whether the present idea can

be extrapolated to the Planck scale. The results described in Section 5.2 go in this

direction.

6.3. Entanglement entropy vs. statistical mechanical entropy

One can argue that the perspective that BH entropy should be accounted for in

terms of entanglement entropy90 and the statistical mechanical derivation presented

in this chapter are indeed equivalent in a suitable sense.12 The basic reason for

such equivalence resides in the microscopic structure predicted by LQG.89,95,96 In

our context, the appearance of the UV divergence in (6.6) tells us that the leading

contribution to Sent must come from the UV structure of LQG close to the boundary

separating the two regions. Consider a basis of the subspace of the horizon Hilbert
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space characterised by condition (3.4), and assume the discrete index a labels the

elements of its basis. Consider the state

|Ψ〉 =
∑

a

αa |ψa
int〉 |ψa

ext〉, (6.10)

where |ψa
int〉 and |ψa

ext〉 denote physical states compatible with the IH boundary da-

ta a, and describing the interior and the exterior state of matter and geometry of the

BH respectively. The assumption that such states exist is a basic input of Section

3. In the form of the equation above we are assuming that correlations between the

outside and the inside at Planckian scales are mediated by the spin-network links

puncturing the separating boundary. This encodes the idea that vacuum correla-

tions are ultra-local at the Planck scale. This assumption is implicit in the recent

treatments95 based on the analysis of a single quantum of area correlation and it

is related to the (Planckian) Hadamard condition as defined in.89 We also assume

states to be normalized as follows: 〈ψa
ext|ψa

ext〉 = 1, 〈ψa
int|ψa

int〉 = 1, and 〈Ψ|Ψ〉 = 1.

The reduced density matrix obtain from the pure state by tracing over the interior

observables is

ρext =
∑

a

pa|ψa
ext〉〈ψa

ext|, (6.11)

with pa = |αa|2. It follows from this that the entropy Sext ≡ −Tr[ρext log(ρext)] is

bounded by micro-canonical entropy of the ensemble (3.4) as discussed in Section

3. If instead one starts from a mixed state encoding an homogeneous statistical

mixture of quantum states compatible with (3.4), then the reduced density matrix

leads to an entropy that matches the microcanonical one.12

6.4. Euclidean path integral (the quasi local treatment) and loga-

rithmic corrections.

Here we review some basic features of the Euclidean path integral approach to

the computation of BH entropy. Although the method is formal, as far as the con-

tribution of geometric degrees of freedom is concerned, it allows one to study the

contributions of matter degrees of freedom in the vicinity of the horizon. The forma-

lism is relevant for discussing two important points. On the one hand it allows one

to compare the partition function obtained in Section 5.2 with the field theoretical

formal expression (providing in this way another test for semiclassical consistency).

On the other hand it provides one with the tools that are necessary for compa-

rison and discussion of the issue of logarithmic corrections in LQG and in other

approaches.

There is a well known relationship between the statistical mechanical partition

function and the Euclidean path integral on a flat background. One has that

Zsc(β) =

∫
Dφ exp{−S[φ]} (6.12)
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where field configurations are taken to be periodic in Euclidean time with period

β. Such expression can be formally extended to the gravitational context at least

in the treatment of stationary black holes. One starts from the formal analog of the

previous expression and immediately uses the stationary phase approximation to

make sense of it on the background of a stationary black hole. Namely

Zsc(β) =

∫
DgDφ exp{−S[g, φ]}

≈ exp{−S[gcl, 0]}
∫
Dη exp

[
−
∫
dxdyη(x)

(
δ2L

δη(x)δη(y)

)
η(y)

]
(6.13)

where the first term depends entirely on the classical BH solution gcl while the

second term represents the path integral over fluctuation fields, both of the metric

as well as the matter, that we here schematically denote by η. For local field theories

δη(x)δη(y)L = δ(x, y)�gc where �gc is a the Laplace like operator (possible gauge

symmetries, in particular diffeomorphisms must be gauge fixed to make sense of

such formula).

Let us first concentrate on the evaluation of the classical action. In the quasi

local treatment, the Euclidean space time region, where the fields η are supported,

is given by a D × S2 where D is a disk in a plane orthogonal to and centred at

the horizon radius and having a proper radius ℓ (recall that in the Euclidean case

the BH horizon shrinks to a point, represented here by the center of D). Using the

Gibbons-Hawking prescription for the boundary term,97 the action S[gcl, 0] is

S[gcl, 0] =
1

8πGN




∫

D×S2

√
g R+

∫

∂D×S2

(K −K0) dΣ


 (6.14)

On shell the bulk term in the previous integral would vanish. However, unless βH =

2πκ−1, the geometry has a conical singularity at the centre of the disk and the

first term will contribute. The boundary term is the usual one with K the extrinsic

curvature of the boundary, dΣ its volume form, and K0 = −1/ℓ is the value of the

extrinsic curvature at the boundary in the A→ ∞ limit (Rindler space-time). The

subtraction of the counter termK0 has the same effect as replacing the inner conical

singularity by an inner boundary with a boundary term of the form βHA/(8π).
71

A direct calculation gives the semi-classical free energy

− S[gcl, 0] = log(Zcl) = (2πℓ− β)
A

8πGN ℓ
, (6.15)

where β = βH‖χ‖ is the local energy. The equation of state E = −∂β log(Zcl)

reproduces the quasilocal energy (5.4)—this is a consequence of the substraction of

K0.
98 The entropy is S = βE + log(Z) = A/(4ℓ2Pl) when evaluated at the inverse

Unruh temperature βU = 2πℓ. Notice that in the quasi-local framework used here,

entropy grows linearly with energy (instead of quadratically as in the usual Hawking

treatment). This means that the usual ill behaviour of the canonical ensemble of

the standard global formulation85 is cured by the quasilocal treatment.
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Notice that equation (6.15) matches in form the partition function (5.26). In

other words, the inclusion of the holographic degeneracy (5.23) plus the assumption

of Bosonic statistics for punctures makes the results of section 5.2 compatible with

the continuous formal treatment of the Euclidean path integral. In essence (5.26) is

a regularization of (6.13).

Quantum corrections to the entropy come from the fluctuation factor which can

formally be expressed in terms of the determinant of a second order local (elliptic)

differential operator �gcl

F =

∫
Dη exp

[
−
∫
dxη(x)�gclη(x)

]
= [det(�gcl)]

− 1

2 . (6.16)

The determinant can be computed from the identity (the heat kernel expansion)

log [det(�gcl)] =

∫ ∞

ǫ2

ds

s
Tr [exp(−s�gcl)] , (6.17)

where ǫ is a UV cut-off needed to regularize the integral. We will assume here that

it is proportional to ℓPl. In the last equality we have used the heat kernel expansion

in d dimensions

Tr [exp(−s�gcl)] = (4πs)−
d
2

∞∑

n=0

ans
n
2 , (6.18)

where the coefficients an are given by integrals in D × S2 of local quantities.

At first sight the terms an with n ≤ 2 produce potential important corrections

to BH entropy. All of these suffer from regularisation ambiguities with the exception

of the term a2 which leads to logarithmic corrections. Moreover, contributions co-

ming from a0 and a1 can be shown to contribute to the renormalization of various

couplings in the underlying Lagrangian;99 for instance a0 contributes to the cos-

mological constant renormalization. True loop corrections are then encoded in the

logarithmic term a2 and for that reason it has received great attention in the litera-

ture (see99 and references therein). Another reason is that its form is regularisation

independent. According to67 there are no logarithmic corrections in the SU(2) pu-

re geometric model once the appropriate smoothing is used (canonical ensemble).

From this we conclude that the only possible source of logarithmic corrections in

the SU(2) case must come from the non-geometric degrees of freedom that produce

the so called matter degeneracy that plays a central role in Section 5.2. A possible

way to compute these corrections is to compute the heat kernel coefficient a2 for

a given matter model. This is the approach taken in reference.99 One can argue52

that logarithmic corrections in the one-loop effective action are directly reflected

as logarithmic corrections in the LQG BH entropy. The preceding considerations

partially dissipate the perceived tensions between the LQG approach and others.

This is an important question that deserves further attention.
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6.5. Hawking radiation

The derivation of Hawking radiation from first principles in LQG remains an

open problem, this is partly due to the difficulty associated with the definition

of semiclassical states approximating space-time backgrounds. Without a detailed

account of the emission process it is still possible to obtain information from a

spectroscopical approach that uses as an input the details of the area spectrum

in addition to some semiclassical assumptions.100 The status of the question has

improved with the definition and quantisation of spherical symmetric models.101–104

The approach resembles the hybrid quantisation techniques used in loop quantum

cosmology (Chapter LOOP QUANTUM COSMOLOGY). More precisely, the

quantum spherical background space-time is defined using LQG techniques, whereas

perturbations, accounting for Hawking radiation, are described by a quantum test

field (defined by means of a Fock Hilbert space).
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