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LQG predicts the Unruh Effect
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A recent paper claims that loop quantum gravity predicts the absence of the Unruh effect. I show
that this is not the case, and take advantage of this opportunity to shed some light on some related
issues.

The Unruh effect is the fact that a standard
thermometer moving at constant acceleration
a in the vacuum state of a quantum field on
flat space measures a temperature T = a~/2π,
in units where c = kBoltzaman = 1. The paper
[1] claims that Loop Quantum Gravity (LQG)
predicts the absence of this effect as a conse-
quence of the fact that LQG modifies a quan-
tum field theory at high-energy (short dis-
tance). The claim is wrong, because the Un-
ruh effect is a low-energy (large distance) phe-
nomenon, not a high-energy (short distance)
one. An accelerated local detector interacting
with a quantum field field tests the proper-
ties of the field only at length scales of order
L ∼ 1/a. The phenomenon is not sensible to
the behaviour of the field at shorter scales.

In fact, there are a number of derivations
of the Unruh effect, and some of these in-
volve only the low-energy sector of the theory.
Other derivations, like Unruh’s original one, go
though the high-energy sector in a convoluted
manner, and require an infinite renormaliza-
tion. The need for an infinite subtraction is a
weakness of the derivation method, not a fea-
ture of the phenomenon itself, which can be
derived in a straightforward manner. Below,
for completeness, I recall one manner to derive
the Unruh effect which is explicitly insensible
to the short-scale behavior of the field.

In the paper [1], the authors recognise
that LQG modifies only the short-distance be-
haviour of the field, not its large-distance be-
haviour. This implies that the prediction of
the Unruh effect cannot be modified, at least
until the accelerations reaches the scale where

quantum gravitational effects become relevant,
namely the Planck acceleration a ∼ 1/

√
~G, a

scale where, as argued in [2], it is acceleration
itself to be bound by LQG effects. So, I take
a ≪ 1/

√
~G below.

I give here a brief derivation of the Unruh
Effect from LQG (in part following [3], see also
[4]). A thermometer can be modelled by a
two-state system with an energy gap ǫ between
its two energy eigenstates (|0〉, |1〉), interacting
with a generic self-adjoint observable A of a
system via a simple interaction term such as

V (t) = g (|0〉〈1|+ |1〉〈0|) A(t). (1)

where g is a small coupling constant. The am-
plitude for the thermometer to have moven up
at time t, with the system going from an initial
time independent state |i〉 to a final state |f〉
is given to first order in g by Fermi’s golden
rule:

W+(t) =
i

~
g

∫ t

∞

dt′ 〈1, f |A(t)|0, i〉 (2)

=
i

~
g

∫ t

∞

dt′ ei(t−t′)ǫ 〈f |e−iHtA(t′)|i〉.

The probability is the square of the amplitude
summed over the final states, which gives

P+(t)=
g2

~2

∫ t

∞

dt′
∫ t

−∞

dt′′ ei(t
′
−t′′)ǫ 〈i|A(t′)A(t′′)|i〉.

Assuming time independence, the integrand
depends only on the difference s = t′′ − t′

P+(t) = g2
∫ t

∞

dT

∫ T

−∞

ds eisǫ 〈i|A(s)A(0)|i〉.
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and the probability to move up per unit time
is therefore, in the large-time limit,

p+ =
P+(t)

dt
= g2

∫

∞

−∞

dt eisǫ 〈i|A(s)A(0)|i〉,

namely the value in ǫ of the Fourier transform
f̃AA of

fAA(t) ≡ 〈i|A(t)A(0)|i〉. (3)

Repeating the same calculation for the proba-
bility to go down, we obtain the value of f̃AA

in −ǫ. Now, if the interaction does not dis-
turb the system much and if the ratio of the
two happens to be

p+
p−

= e−βǫ, (4)

then the equilibrium distribution for the detec-
tor will be Boltzmannian, at inverse tempera-
ture β. Therefore we find that the condition
for the thermometer to measure the inverse
temperature β is that

f̃AA(−ǫ) = e−βǫ f̃AA(ǫ). (5)

In Fourier transform, this reads

fAA(−t) = fAA(t− iβ). (6)

which can be recognised as a form of the cel-
ebrated KMS condition, which characterises
equilibrium [5].
Armed with this general tool, it is now easy

to derive the Unruh effect. If the detector
moves in a quantum field in the vacuum state,
following a trajectory x(s), where s is the
proper time along the trajectory, and A is the
field operator, then

fAA(s) = 〈i|A(s)A(0)|i〉
= 〈0|φ(x(s))φ(x(0))|0〉 (7)

is simply the two-point function of the field
theory, along the trajectory. The trajectory of
a detector moving at constant acceleration in
Minkowski space is

x(s) =

(

1

a
sinh(as),

1

a
cosh(as), 0, 0

)

. (8)

Therefore it follows from the previous general
discussion that a constantly accelerated detec-
tor sees a temperature β if the two-point func-
tion of the quantum field along the trajectory

f(s) = 〈0|φ(x(s))φ(x(0))|0〉 (9)

satisfies the KMS condition

f(s) = f(−s+ iβ). (10)

or equivalently, in Fourier transform,

f̃(−ǫ) = e−βǫ f̃(ǫ). (11)

Observe that this is a condition on the Fourier
components of the two point function at the
energy scale at which the thermometer works.
Short distance physics plays no role here.
For a free massless field, the two point func-

tion is proportional to the square of the inverse
of the 4-distance.

〈0|φ(x)φ(0))|0〉 ∼ 1

|x|2 (12)

Along the trajectory:

f(s) = 〈0|φ(x(s))φ(x(0)))|0〉 ∼ 1

|x(s)− x(0)|2
(13)

This can be easily computed from (8), giving

f(s) =
2

a2
(cosh(as)− 1) , (14)

which satisfies the KMS condition (10) with
the Unruh temperature a/2π. This proves
that an accelerated detector in the vacuum of a
free massless theory measures the Unruh tem-
perature.
In LQC the two-point function at the scale

of the acceleration is not affected by quantum
gravitational corrections, since these become
relevant only at the Planck scale. In particu-
lar, the two-point function for the perturbative
excitations of the gravitational field has been
computed in covariant quantum gravity for the
Lorentzian theory in [6–8]. The result of these
works is that at the lowest order the two-point
function converges to the free one, in the large
distance limit. Here “large” means large with
respect to the Planck scale. Therefore it is
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clear that LQG has no effect whatsoever on
the prediction of the Unruh effect.
What therefore went wrong in [1]? The an-

swer is interesting. As observed by Sabine
Hossenfelder [9], trying to compute a quantity
in a finite theory like LQG by means of an
infinite renormalisation is, besides being per-
verse, also a doubtful procedure. One risks to
subtract “one infinity too much” [9]. By com-

plicating a simple low-energy effect, expressing
it in terms of the difference between divergent
sums, one gets things wrong.
This is probably a general lesson in quan-

tum gravity. The theory is finite, because
of the Planck scale cut off provided by the
physical discreteness of the geometry. Infinite
renormalisation calculation, in this context,
obscure, rather than clarifying, the physics.
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