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Chapter 1
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This article presents an “in-a-nutshell” yet self-contained introductory review on
loop quantum gravity (LQG)—a background-independent, nonperturbative ap-
proach to a consistent quantum theory of gravity. Instead of rigorous and system-
atic derivations, it aims to provide a general picture of LQG, placing emphasis on
the fundamental ideas and their significance. The canonical formulation of LQG,
as the central topic of the article, is presented in a logically orderly fashion with
moderate details, while the spin foam theory, black hole thermodynamics, and
loop quantum cosmology are covered briefly. Current directions and open issues
are also summarized.
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1. Introduction

Quantum gravity (QG) is the research in theoretical physics that seeks a consis-

tent quantum theory of gravity. It is considered by many as the open problem of

paramount importance in fundamental physics, as its task is to unify quantum me-

chanics (more specifically, quantum field theory, QFT) and general relativity (GR),

which are the two greatest theories discovered in the twentieth century and have

become the cornerstones of modern physics.

Ever since it was recognized that the gravitational field needs to be quantized,

the quest for a satisfactory quantum description of spacetime has never stopped,

and gradually QG has grown into a vast area of research along many different

paths with various doctrines. The two most developed approaches are string theory

(see Chap. D and references therein) and loop quantum gravity (LQG). Other

directions include causal sets, dynamical triangulation, emergent gravity, H space

theory, noncommutative geometry, supergravity, thermogravity, twistor theory, and

many more. (See Refs. [1–4] for surveys and more references on different theories

of QG.)

Among other approaches, the strength of LQG is that it provides a compelling

description of quantum spacetime in a nonperturbative, background-independent

fashion. (On the other hand, see Chaps. E and F for the perturbative approach of

QG.) The beauty lies in its faithful attempt to establish a conceptual framework that

consolidates the apparently conflicting tenets of QFT and GR. LQG deliberately

adopts the “minimalist” approach in the sense that it focuses solely on the search

for a consistent quantum theory of gravity without requiring any extraordinary

ingredients such as extra dimensions, supersymmetry, and so on (although many of

these can be incorporated compatibly). Unlike string theory, the aim of which is

much more ambitious, LQG does not intend to address the unification problem of

finding a “theory of everything” in which all forces, including gravity, are unified.

The central problem confronted by LQG simply is: What is the consistent quantum

field theory of which the low-energy limit is classical GR, if it exists after all?

Having been developed about 25 years (see Ref. [5] for its history and current

status), LQG has faced many challenges and achieved encouraging progress. Many

long-standing open problems within the approach have been solved, and LQG now

provides a rigorous mathematical foundation for QG. One of the main results is

the discovery that the spectra of area and volume are discrete and the correspond-

ing quantum states, called spin networks, reveal the microscopic structure of space

that is granular in Planck scale. The discreteness of space is not postulated ad

hoc but a direct consequence of quantization in the same nature as the discrete

levels of energy in an atom. Because of the discreteness, LQG enables one to de-

rive the Bekenstein-Hawking entropy of black holes from first principles, offering

a microscopic explanation of its proportionality to the area of the horizon. (Also

see Chap. G for other aspects of black hole thermodynamics.) Furthermore, the

construction of LQG relies heavily on diffeomorphism invariance. Once the gauge



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 5

Loop Quantum Gravity 5

degrees of diffeomorphism are factored away, the resulting quantum states, called

s-knots, are not to be interpreted as quantum excitations on a space but, rather,

of the space itself, because any external reference to localization of quantum states

becomes irrelevant and only their contiguous relation remains significant. In terms

of this relational structure, LQG profoundly manifests background independence—

the key principle of classical GR—in the context of QFT. With many successes

achieved, the major weakness of LQG is in our limited understanding about its

quantum dynamics and low-energy physics, but these two aspects have been inten-

sively investigated and some promising solutions have emerged.

LQG is closely related to the spin foam theory, an alternative approach of QG.

While LQG is based on the canonical (Hamiltonian) formalism, the spin foam theory

can be viewed as the covariant (sun-over-histories) approach of LQG. The history

of a spin network (more precisely, an s-knot) evolving over time is called a spin

foam, which represents a quantized spacetime in the same sense that a spin network

represents a quantized space. The transition amplitude is given by a discrete version

of path integral, which is the sum, with proper weight factors, over all possible spin

foams sending the initial spin network to the final one. Extensive research on the

spin foam theory has made rapid advances, suggesting that a specific class of spin

foam models might provide a covariant definition of the LQG dynamics.

Applying principles of LQG to cosmological settings, one obtains loop quantum

cosmology (LQC). LQC is a symmetry-reduced model of LQG with only a finite

number of degrees of freedom. The simplification of symmetry reduction makes

possible a detailed investigation on the ramifications of loop quantum effects, many

of which remain obscure in the full theory of LQG. One of the striking results of

LQC is that the big bang singularity is resolved by the loop quantum effects and

replaced by a quantum bounce, which bridges the present universe with a preexistent

one. The bouncing scenario opens up a new paradigm of cosmology. Research of

LQC has led to many successes and represents a very active research field in recent

years.

There are many books and review articles available on LQG [6–13], the spin

foam theory [14–17], and LQC [18–21]. This article serves as an “in-a-nutshell”

yet self-contained introductory review on LQG. It is centered on the canonical

formulation of LQG with moderate details but covers the spin foam theory, black

hole thermodynamics, and LQC only very briefly.

The article is organized as follows. After a quick review on the problems of QG

in Sec. 2, the main topic of canonical approach of LQG is presented from Sec. 3 to

Sec. 8 in a logically orderly fashion. Additionally, the spin foam theory, black hole

thermodynamics, and LQC are briefly described in Secs. 9, 10, and 11, respectively.

Finally, Sec. 12 outlines the current directions and open issues.

A large part of this article is heavily based on Refs. [8, 9] without delving into

all technicalities. Conventions are given as follows. The signature of the spacetime

metric gαβ is given by (−,+,+,+). The Greek letters in lower case are used for the
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coordinates of the 4-dimensional spacetime manifold, while the Latin letters in lower

case starting a, b, . . . are for the coordinates of the 3-dimensional space manifold.

The Latin letters in upper case starting I, J,K, · · · = 0, 1, 2, 3 are used for the 4-

dimensional “internal space” (the vector space on which the Lorentz group SO(3, 1)

is represented), while the Latin letters in lower case starting i, j, k, · · · = 1, 2, 3 are

for the 3-dimensional internal space (the vector space on which SU(2), the covering

group of SO(3), is represented). In case the Euclidean GR, in place of the Lorentzain

GR, the metric signature is given by (+,+,+,+) and the Lorentz group SO(3, 1)

is replaced by the Euclidean rotational group SO(4). The speed of light is set to

c = 1, but we keep the (reduced) Planck constant ~ and the gravitational constant

G explicit.

2. Motivations

Despite the fact that enormous efforts in various approaches have been devoted for

QG, it remains the Holy Grail of theocratical physics. In the section, we briefly

discuss the conceptual problems in QG. (See Ref. [3, 4, 22] for full elaboration.)

2.1. Why quantum gravity?

The very first question about QG is: Why do we even bother to quantize gravity at

all? Apart from many aesthetic considerations for an elegant unification of known

fundamental physics, the logical necessity of a quantum description of gravity follows

from the conflicts between the two fundamental theories of GR and QFT. The

fundamental theories collide in the classical Einstein field equation

Rµν −
1

2
Rgµν = 8πGTµν , (1)

which relates the dynamics of nongravitational matter (in terms of Tµν) described

by the theory of QFT to the dynamics of geometry (in terms of gµν) described

by the theory of GR. Note that the metric gµν enters the definition of the energy-

momentum tensor via Tµν ≡ Tµν(g) = δS/δgµν (S is the action) and that QFT is

defined only on a given (flat or curved) background.

As matter fields are quantized in QFT, the only way to make sense of Eq. (1)

without quantizing gµν is to start with a given background g0 and replace the right-

hand side with the expectation value 〈 T̂µν(g0)〉. Once we solve the classical field gµν
by this prescription, we treat the solution as the new background and iterate the

procedure. However, the iteration is not guaranteed to yield convergent solutions

and thus leads to inconsistency. In fact, one cannot consistently couple a classical

system to a quantum one [3, 23], even though QFT in curved spacetime provides

an adequate effective theory in low-energy regime.

The conflicts force one to quantize both geometry and matter fields simultane-

ously or to invoke other more radical modifications.
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2.2. Difficulties of quantum gravity

What after all are the difficulties that prevent one from quantizing both geometry

and matter easily at the same time? It turns out the difficulties lie at the very

contradictory difference between the fundamental principles of GR and QFT.

In GR, spacetime is dynamical as well as matter fields. Matter and geometry are

essentially on the equal footing in this regard. In QFT, by contrast, all dynamical

variables are quantized except spacetime. Spacetime is treated as a given fixed

background, which parameterizes all dynamical fields and provides the a priori

causal structure needed for field quantization. Therefore, one encounters the stark

paradox when joining GR and QFT together.

There are various approaches trying to circumvent the paradox, differing on

which features of GR and QFT are viewed as fundamental and unchangeable and

which features as inessential and modifiable, as surveyed in Refs. [1–4].

2.3. Background-independent approach

In conventional QFT, dynamics of dynamical fields takes place on the “stage” of a

fixed spacetime with given metric. By analogy, dynamical fields are animals that

roam around and chase one another upon the stage of an island of spacetime.

GR, on the other hand, has taught us a very different paradigm of background in-

dependence, according to which spacetime is itself a dynamical entity (gravitational

field) in many respects the same as other nongravitational entities. That said, phys-

ical entities, both gravitational and nongravitational, are not residing and moving

in spacetime but, rather, they reside and move on top of one another. In the words

of Rovelli’s metaphor [9]: “It is as if we had observed in the ocean many animals

living on an island: animals on the island. Then we discover that the island itself

is in fact a great whale. So the animals are no longer on the island, just animals on

animals.”

Among various theories of QG, LQG is special in the sense that it reveres the

paradigm of background independence earnestly and aims to formulate a noncon-

ventional QFT of GR in genuine conformity with the paradigm, essentially in a

nonperturbative fashion, so as to reconcile the aforementioned paradox. This of

course is a very challenging task and the first step is to begin with the “proper”

mathematical framework, which turns out to be the canonical description of con-

nection dynamics of GR in terms of Ashtekar connection. The shift from metric to

Ashtekar connection opens the possibility of employing nonperturbative techniques

in gauge theories (especially, lattice gauge theories) to QG.

3. Connection theories of general relativity

Classical GR is usually presented as geometrodynamics, i.e., a dynamical theory of

metrics, but it can also be recast as connection dynamics, i.e., a dynamical theory

of connections. The merit of this reformulation is to cast GR in a language closer to
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that of gauge theories, for which quantization is better understood. In this section,

we present a brief introduction to connection theories of GR, largely excerpted from

Sec. 2 of Ref. [8], and address some remarks in Sec. 3.3. For introductory purpose,

we will focus only on the gravitational part of the action and phase space. For

inclusion of matter and the cosmological constant, see e.g. Ref. [24] (also see Sec. 7);

for extension to supergravity and other spacetime dimensions, see e.g. Refs. [25–27]

(also see Sec. 12.14).

3.1. Connection dynamics

The most widely known formulation of classical GR is the dynamical theory of met-

ric gµν , which is based on the Riemannian geometry and governed by the Einstein-

Hilbert action

S[g] =
1

16πG

∫
d4x
√
|g|R, (2)

where R is the Ricci scalar and g is the determinant of gµν . Classical GR also

admits many other formulations, which are equivalent to one another to various

extent.

In the Palatini formulation [28, 29] based on the Riemann-Cartan geometry,

instead of gµν , the basic gravitational variables are taken to be the coframe field

eµ
I , which gives the orthonormal cotetrad (or vierbein), and the so(1, 3)-valued

connection 1-form field ωµ
I
J , which corresponds to the gauge group SO(3, 1) of

local Lorentz transformation. The Palatini action is given by

S[e, ω] =
1

32πG

∫
ǫIJKLe

I ∧ eJ ∧ ΩKL, (3)

where

Ω := dω + ω ∧ ω (4)

is the curvature of the connection ωµ
I
J . The coframe eµ

I determines the spacetime

metric via

gµν = ηIJeµ
Ieν

J . (5)

Meanwhile, the connection ωµ
I
J is completely determined by the coframe via

de + ω ∧ e = 0, (6)

which is the equation of motion obtained by varying the Palatini action with respect

to ωµ. As far as equations of motion are concerned, the Palatini action Eq. (3),

imposed by Eq. (6), reduces to the familiar Einstein-Hilbert action Eq. (2). Thus,

these two actions lead to the same theory at least at the classical level.

It is tedious yet straightforward to perform the Legendre transform on the Pala-

tini action to obtain the Hamiltonian theory [30], but the resulting theory has

certain second-class constraints. When the second-class constraints are solved, one

is led to the standard Hamiltonian description of geometrodynamics (in terms of
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cotriads) and thus loses all reference to connection dynamics; meanwhile, the form

of geometrodynamics is rather complicated and seems insurmountable for quantum

theory. This problem can be avoided by modifying the Palatini action with Holst’s

augmentation [31] as

S[e, ω] =
1

32πG

∫
ǫIJKLe

I ∧ eJ ∧ΩKL − 1

16πGγ

∫
eI ∧ eJ ∧ΩIJ , (7)

where γ is an arbitrary but fixed number, called the Barbero-Immirzi parameter.

The celebrated feature is that this augmentation does not change the equations

of motion of Eq. (3). Inclusion of Holst’s modification renders it more elegant to

perform the Legendre transform in the sense that all constraints are first class (as

we will see shortly) and consequently makes the quantum theory founded on the

Hamiltonian description more manageable as significance of connection dynamics

is retained. (While different numerical values of γ yield equivalent theories at the

classical level, it should be noted that, in the quantum theory, they give rise to

different sectors that are not unitarily equivalent to one another as will be shown

in Sec. 5.)

In the non-abelian gauge theory, the Yang-Mills action can also be augmented

with a topological term called the θ-term as

S =
1

2α2

∫
Tr ⋆F ∧ F +

θ

8π2

∫
TrF ∧ F, (8)

where F is the field strength (curvature) of the Yang-Maills connection, ⋆ is the

Hodge dual, and α and θ are known as the coupling constant and the θ-angle

respectively.a It is noticeable that Eq. (7) bears close resemblance to Eq. (8).

Whether this intriguing resemblance carries any profound meaning arouses a lot of

curiosity. LQG, in particular, exploits the resemblance to the extent that we can

adopt the nonperturbative techniques (such as the quantization scheme in terms of

Wilson loops) well developed in the context of gauge theories.

3.2. Canonical (Hamiltonian) formulation

We have reformulated the classical theory of GR in a fashion very close to non-

abelian gauge theories. Prior to quantizing the theory, we have to take a further step

to translate the covariant description into the canonical (or Hamiltonian) description

in order to apply the standard scheme of equal-time quantization used in QFT.

First, we apply the ADM foliation, which foliates the 4-dimensional spacetime

manifold M into a family of spacelike surfaces (called “leaves”) Σt, labelled by a

time coordinate t and with spatial coordinates on each slice given by xi. Under the

ADM foliation, variables on the spacetime manifold are split into 3+1 decomposi-

tion. The coframe (cotetrad) eµ
I is split into the cotriad eia plus the lapse function

N and the shift vector field Na. The lapse and shift describe how each of the leaves
aAnalogous to the Barbero-Immirze parameter γ, different numerical values of θ yield equivalent
theories at the classical level but give rise to inequivalent θ-sectors in the quantum theory.



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 10

10 Dah-Wei Chiou

Σt are welded together in the foliation.b Correspondingly, the 4-dimensional metric

gµν of M is split into the 3-dimensional metric qab of Σ plus N and Na. Similarly,

apart from (ωi · t) := − 1
2ǫ
ijkωjk · t, the so(3, 1)-valued connection 1-form ωIJµ on

M is naturally decomposed into two su(2)-valued 1-forms on Σ: Γ = Γiaτidx
a and

K = Ki
aτidx

a, where τi = τ i = σi/(2i) are the generators of SU(2) with σi be-

ing the Pauli matrices. As a consequence of Eq. (6), Γia is the su(2) ∼= so(3) spin

connection on Σt associated with the cotriad eia, i.e.,

dei + ǫijkΓ
i ∧ ek = 0, (9)

and Ki
a is the extrinsic curvature of Σt imbedded in M. The 3+1 splitting is

summarized in Table 1.

Table 1. Decomposition under the ADM foliation.

M → Σt

µ, ν, . . . → a, b, . . .
I, J, · · · = (0, 1, 2, 3) → i, j, · · · = (1, 2, 3)

so(3, 1) → so(3) ∼= su(2)

eµI → eia, N, Na

gµν → qab, N, Na

ωµ
I
J → Γi

a, Ki
a, (ωi · t)

deI + ωI
J ∧ eJ = 0 → dei + ǫijkΓ

i ∧ ek = 0

Performing the Legendre transformation on the Palatini-Holst action Eq. (7),

we obtain

S =
1

8πGγ

∫
dt

∫

Σt

d3x
(
Ẽ
a

iLtAia − h(Ẽ
a

i , A
i
a, N,N

a, (ωi · t))
)
, (10)

where L is the Lie derivative, and the Hamiltonian density h is given by

h = (ωi · t)Gi +NaCa +NC. (11)

The canonical pair (Aia, Ẽ
b

j) is given by the Ashtekar connection (1-form)

Aia(x) := Γia(x) + γKi
a(x) (12)

and the densitized inverse triad (vector density of weight 1)

Ẽ
a

i :=
1

2
ejbe

k
c ǫ
abcǫijk, (13)

which gives the 3-metric qab via

q qab = Ẽ
a

i Ẽ
b

jδ
ij (14)

with

q ≡ |det qab| = det Ẽ
a

i . (15)

bMore precisely, let nα be the unit vector normal to the slice Σt, we have tα = Nnα + Nα with
Nαnα = 0.
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The Hamiltonian density h is given by three (local) constraints Gi = 0 (Gauss

constraint), Ca = 0 (diffeomorphism constraint), and C = 0 (scalar constraint)

associated with the Lagrange multipliers (ωi · t), Na, and N , respectively. The

three constraints are given by

Gi = DaẼ
a

i := ∂aẼ
a

i + ǫij
kAjaẼ

a

k, (16a)

Ca = Ẽ
b

iF
i
ab −

σ − γ2

σγ
Ki
aGi, (16b)

C =
γ

2
√
|q|
Ẽ
a

i Ẽ
b

j

[
ǫijkF

k
ab + (σ − γ2)2Ki

[aK
j
b]

]

+ 8πG(γ2 − σ)∂a

(
Ẽ
a

i√
|q|

)
Gi, (16c)

where F kab is the curvature of the connection Aia and σ = −1.c

The fundamental variables are Aia and Ẽ
a

i , which satisfy the canonical relation

{Aia(x), Ẽ
b

j(y)} = 8πGγ δijδ
b
aδ

3(x− y), (17)

and all three constraints can be expressed in terms of Aia and Ẽ
a

i .
d For any smooth

su(2)-valued field λ = λiτi on Σ, the functional

CG[λ] :=
1

8πGγ

∫

Σ

d3xλiGi (18)

generates precisely the infinitesimal internal SU(2) gauge rotations by λ:

{
Aia, CG[λ]

}
= −Daλi and

{
Ẽ
a

i , CG[λ]
}
= ǫij

kλjẼ
a

k. (19)

Consequently, the Gauss constraint Gi = 0 is the “Gauss law” that ensures the

gauge invariance under the internal SU(2) rotations. Furthermore, removing from

Ca and C a suitable multiple of the Gauss constraint, for any smooth vector field

Na and scalar field N , we can show that the functional

CDiff [ ~N ] :=
1

8πGγ

∫

Σ

d3x
(
NaẼ

i

bF
i
ab − (NaAia)Gi

)
(20)

generates the infinitesimal 3d diffeomorphism (Diff) on Σ along the direction ~N :
{
Aia, CDiff [ ~N ]

}
= L ~NA

i
a and

{
Ẽ
a

i , CDiff [ ~N ]
}
= L ~N Ẽ

a

i , (21)

and the functional

C[N ] :=
1

16πG

∫

Σ

d3xN
Ẽ
a

i Ẽ
b

j√
|q|
[
ǫijkF

k
ab + (σ − γ2)2Ki

[aK
j
b]

]
(22)

cHad we considered the Euclidean GR instead of the Lorentzain GR, the Lorentz group SO(3, 1)
would have been replaced by the Euclidean rotational group SO(4). Correspondingly, σ = +1 and
Ai

a := Γi
a − σγKi

a = Γi
a − γKi

a for the Euclidean case.
dNote that Ki

a = (Γi
a −Ai

a)/(σγ) and Γi
a is a non-polynomial function of Ẽ

a
i .
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generates the infinitesimal translation in time along the direct Nnα:

{
Aia, C[N ]

}
= LNnαAia and

{
Ẽ
a

i , C[N ]
}
= LNnαẼ

a

i , (23)

where L is the Lie derivative.e Altogether, the three constraints ensure invariance

under the SU(2) gauge rotation, the diffeomorphism on Σ, and the translation in

time.

The three constraints are first class in Dirac’s terminology; that is, the Poisson

bracket of any two of the constraints vanishes in the restricted phase space imposed

by the three constraints. Explicitly, the Poisson brackets between the constraints,

which give the so-called “constraint algebra”, read asf

{CG[λ], CG[λ′]} = CG[[λ, λ′]], (24a){
CG[λ], CDiff [ ~N ]

}
= −CG[L ~Nλ], (24b)

{CG[λ], C[N ]} = 0, (24c){
CDiff [ ~N ], CDiff [ ~N

′]
}
= CDiff [[ ~N, ~N

′]] ≡ C[L ~N
~N ′] ≡ −C[L ~N ′

~N ], (24d)
{
CDiff [ ~N ], C[M ]

}
= C[L ~NM ], (24e)

{C[N ], C[M ]} = σ
(
CDiff [~S] + CG[SaAa]

)

+
σ − γ2

(8πGγ)2
CG
[
|q|−1

[Ẽ
a
∂aN, Ẽ

b
∂bM ]

]
, (24f)

where in the last equation the vector field Sa is given by

Sa = (N∂bM −M∂bN)
δijẼ

b

i Ẽ
a

j

|q| ≡ σ qab (N∂bM −M∂bN) . (25)

While the three constraints have to be satisfied, the evolution of the canonical

pair is dictated by the Hamilton’s equations

∂Aia
∂t

=
{
Aia, H

}
and

∂Ẽ
a

i

∂t
=
{
Ẽ
a

i , H
}
, (26)

where the (total) Hamiltonian is H := (8πGγ)−1
∫
Σ
d3xh.g Because all three con-

straints are first class, once all of them are satisfied for an initial state of (Aia, Ẽ
b

j),

they will continue to be satisfied under the evolution of Eq. (26). The two equations

of motion in Eq. (26) together with the three constraints Gi = 0, Ca = 0, C = 0

are completely equivalent to the Einstein field equation.

eIt should be noted that Eqs. (21) and (23) are valid only if Ai
a and Ẽ

a
i already satisfy the Gauss

constraint, because we have removed a multiple of the Gaussian constraint from Ca and C.
fNote that the constraint algebra Eq. (24) is not closed in the usual sense, as the arguments of
CDiff and CG on the right-hand side of Eq. (24f) involve the phase space variables Aa and Ẽ

a
.

gThis Hamiltonian is peculiar and sometimes referred to as “super-Hamiltonian” in the sense that
it vanishes identically when the three constraints are imposed. The fact that the Hamiltonian
vanishes is a characteristic of reparametrization-invariant theories.
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3.3. Remarks on connection theories

Historically, the Ashtekar connection was not obtained by starting from the Palatini-

Holst action. Rather, the original idea [32] is to replace the Lorentz connection ωµ
IJ

in the Palatini theory with the complex Lorentz connection Aµ
IJ defined as

Aµ
IJ :=

1

2

(
ωµ

IJ − i

2
ǫIJKLωµ

KL

)
, (27)

which satisfies the self-dual condition: 1
2ǫ
IJ
KLAµ

IJ = iAµ
IJ . Correspondingly,

ΩKL in Eq. (3) is replaced by F IJ , which is the curvature of the connection AIJ and

can also be viewed as the self-dual part of ΩIJ , i.e., F IJ := 1
2Ω

IJ − 1
4ǫ
IJ
KLΩ

KL.

It turns out, in terms of the complex connection, all equations in the classical

theory are simplified dramatically [33], as the new variable manifests the fact that

so(3, 1)C is isomorphic to su(2)C⊕ su(2)C (where gC denotes complexification of g).

The essence of using the new variable is closely related to the constructions of the

twistor theory [34] and the H space theory [35].

However, the complex connection takes values in the Lie algebra of a noncompact

group, posing an obstacle to constructing the corresponding quantum theory. It is

Holst [31] who first realized that the imaginary number i in Eq. (27) can be replaced

by any (real or complex) parameter γ and this prescription corresponds to adding

the second term in Eq. (7). Since then, most progress towards the quantum theory

has been made with real γ. Taking γ = ±i in the Lorentzian GR (σ = −1) and

γ = ±1 in the Euclidean GR (σ = +1), one encounters the special cases, in which

the (classical) theory has a richer geometrical structure—particularly, the three

constraints in Eq. (16) are drastically simplified (note σ − γ2 = 0) and the Poisson

brackets in Eq. (24) form a closed Lie algebra.

Rigorously speaking, the formulation we adopted is not a theory of “connection”

dynamics but of “coframe-connection” dynamics, as we also include the coframe eµ
I

in addition to the connection ωµ
IJ as the fundamental variables. Connection and

coframe are the gauge variables in the Poincaré gauge theory of gravity (see Ref. [36]

for a review). If one postulates a Lagrangian quadratic in the gauge variables for

the Poincaré gauge theory, the most general Lagrangian is given in Eq. (5.13) of

Ref. [36]:

S =
1

16πG

∫
(a0R+ b0X − 2Λ) η

+ 12 more terms quadratic in curvature, torsion, and X, (28)

where R := Rαβ
βα is the Ricci scalar, X := 1

4!ηαβγδR
αβγδ, Λ is the cosmological

constant, and η is the volume 4-form. The Palatini-Holst action Eq. (7) only takes

the first line of Eq. (28) with a0 = 1, b0 = γ−1 (and usually Λ = 0).h From the

hThe Lagrangian with the first two terms ∼ a0R+ b0X was first discussed by Hojman et al. [37],
but the second term ∼ b0X is referred to as Holst’s modification in the literature of LQG, mainly
because Holst was the first to relate it to the Ashtekar variable. Likewise, the coframe-connection
formulation of the first term ∼ a0R is known as the Einstein-Cartan or the Einstein-Cartan-
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standpoint of the Poincaré gauge theory, it seems rather ad hoc to include Holst’s

term but neglect the second line completely, since Holst’s term is equivalent to a

certain torsion square term via Nieh-Yan identity. Indeed, it would be theoretically

more compelling if one could construct the quantum theory based on the generic

Lagrangian Eq. (28), but inclusion of any terms in the second line unfortunately

makes the constraints in the canonical description very complicated and no longer

first class, rendering the Hamiltonian formulation inadequate for quantization. The

fact that the Palatini-Holst action per se is privileged seems to suggest that, even

with real γ, the su(2)C⊕su(2)C structure of the complex Lorentz algebra still plays

a profound role in QG (as advocated by the twistor theory and the H space theory),

although its direct relevance remains obscure.i

Finally, it should be noted that in the case of vacuum the Barbero-Immirzi

parameter γ does not appear in the equations of motion and thus have no physical

effect at the classical level, but this is not true in general. In the presence of

minimally coupled fermions, the parameter appears in the equations of motion,

giving rise to a four-fermion interaction [38]. LQG nevertheless takes the Palatini-

Holst action (with or without matter) as the starting point, adopting the attitude

that the four-fermion interaction is very likely to be real on account of the fact that

the effect of gravity on fermions is very difficult to measure.

4. Quantum kinematics

Departing from the canonical description of GR described in Sec. 3, it is time to

construct the quantum theory.

4.1. Quantization scheme

Following the standard strategy for quantization in gauge theories, as A = Aiaτidx
a

is considered as the connection potential and Ẽ = Ẽ
a

i τ
i∂a is analogous to the

SU(2) electric field (note τ i = δijτj = τi), one would take functionals of A as the

kinematical quantum states to start with. However, this straight approach does not

lead us far enough. In LQG, instead of the connection field A(x), we consider the

holonomy (i.e. Wilson line) hγ defined as the path-ordered integral

hγ := P exp

∫

γ

Aiaτidx
a (29)

Sciama-Kibble theory in the literature of connection theories (see Ref. [36] for a historical account)
but often referred to as the Palatini formulation in LQG, partly because Palatini’s particular idea
was underscored in Ashtekar’s seminal paper Ref. [32]. Although the eponyms adopted in LQG
are not historically faithful, we adhere to them in conformity with the LQG convention.
iAccordingly, LQG is most naturally constructed for 4-dimensional spacetime. Nevertheless, gen-
eralization to other dimensions is still possible, depending on what principles of LQG are to be
upheld. (See Sec. 12.14.)
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over an oriented 1-dimensional curve γ in Σ. Correspondingly, instead of the electric

field Ẽ, we consider the surface integral

ES,f :=

∫

S
ǫabcẼ

c

i f
idxa ∧ dxb (30)

over a 2-dimensional surface S in Σ and with a smooth smearing su(2)-valued

function f(x) = f(x)iτi. The Poisson bracket {hγ , ES,f} can be straightforwardly

computed by Eq. (17). The bracket vanishes if γ and S do not intersect or γ lies

within S. Furthermore, {hγ} and {ES,f} are closed under the Poisson bracket and

form the loop algebra.

The reason why we should take hγ instead of A(x) as the fundamental variable

is essentially because hγ transforms more “nicely” than A does under both the

SU(2) and the 3d diffeomorphism transformations, and consequently it is much

more manageable to remove the gauge overcounting in the quantum theory.

Under the SU(2) gauge transformation, A(x) is transformed via

A(x) → A′(x) = Λ(x)A(x)Λ†(x) + Λ(x)dΛ(x)†, (31)

while hγ is transformed via

hγ → h′γ = Λ(xγf )hγ Λ(x
γ
i )

†, (32)

where xγi and xγf are the initial and final endpoints of γ. While Eq. (31) involves

every point x for A, Eq. (32) involves only the endpoints of γ for hγ .

On the other hand, consider a 3d diffeomorphism map ϕ : Σ → Σ that is smooth

and invertible everywhere. Under ϕ, the connection A transforms as a 1-form:

A→ A′ = ϕ∗A, (33)

where ϕ∗ is the pullback of ϕ. It follows that

hγ(A) → hγ(A
′) = hγ(ϕ

∗A) ≡ hϕγ(A), (34)

where ϕγ ≡ ϕ(γ) is the image of γ by ϕ. Compared with Eq. (33) for A, the

transformation Eq. (34) for hγ is more manageable.

We will first construct the kinematical Hilbert space H using the functions of

holonomies, and then implement the three constraints, one after another, to obtain

the SU(2)-invariant Hilbert space HG, the SU(2)- and Diff-invariant Hilbert space

Hinv, and finally the physical Hilbert space Hphys. The scheme can be summarized

as

H −→
SU(2)

HG −→
Diff

Hinv −→
C

Hphys. (35)

The states of H will be called cylindrical functions ; the states of HG called spin

networks ; and the states of Hinv called s-knots. Finally, the physical Hilbert space

Hphys is supposed to reveal the quantum dynamics.
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4.2. Cylindrical functions

Let Γ be an oriented graph, which is defined as a collection of a finite number of

oriented and (piecewise) smooth edges γl with l = 1, . . . , L embedded in Σ. Consider

a smooth function f of L SU(2) elements. The couple (Γ, f) defines a functional of

A as

ΨΓ,f [A] ≡ 〈A|ΨΓ,f 〉 := f(hγ1(A), . . . , hγL(A)). (36)

These functionals (of A) are called cylindrical functions (of holonomies). Let Cyl

denote the linear space of cylindrical functions for all Γ and f . With a suitable

topology (the detail is not important here), Cyl is dense in the space of all contin-

uous functionals of A; in this sense, cylindrical functions grasp all information of

continuous functionals of A.

If two cylindrical functions are defined for the same graph Γ, we can define the

inner product between them as

〈ΨΓ,f |ΨΓ,g〉 :=
∫

SU(2)L
dµ1 . . . dµL f(hγ1 , . . . , hγL)

∗
g(hγ1 , . . . , hγL), (37)

where dµl is the Haar measure on SU(2). If two cylindrical functions are de-

fined by two different couples (Γ′, f ′) and (Γ′′, g′′), let Γ = {γ1, . . . , γL} =

{γ′1, . . . , γ′L′} ∪ {γ′′1 , . . . , γ′′L′′} be the union of the two graphs Γ′ = {γ′1, . . . , γ′L′}
and Γ′′ = {γ′′1 , . . . , γ′′L′′}. We can extend the functions f ′ and g′′ to be defined in

Γ in the obvious way as f(hγ1 , . . . , hγL) := f ′(hγ′
1
, . . . , hγ′

L′ ) and g(hγ1 , . . . , hγL) :=

g′′(hγ′′
1
, . . . , hγ′′

L′′ ). The inner product Eq. (37) can then be extended to any two

given cylindrical functions as

〈ΨΓ′, f ′ |ΨΓ′′, g′′ 〉 := 〈ΨΓ,f |ΨΓ,g〉. (38)

This implements the inner product measure to the space Cyl. We can then define

the kinematical Hilbert space H as the Cauchy completion of Cyl with respect to

the norm of the inner product Eq. (38), and the dual space Cyl∗ as the completion

of Cyl with respect to the weak topology defined by Eq. (38).j This complete the

Gelfand triple Cyl ⊂ H ⊂ Cyl∗. (See Refs. [39–41] for the rigorous construction.)

The cylindrical functions with support on a given graph Γ form a finite-

dimensional subspace H̃Γ of H. Obviously, H̃Γ = L2(SU(2)L, dµL) with L being

the number of edges in Γ. If Γ ⊂ Γ′, the Hilbert space H̃Γ is a subspace of the

Hilbert space H̃Γ′ . This nested structure is called a projective family of Hilbert

spaces and H is (and can be defined as) the projective limit of this family [40, 41].

It turns out H can be viewed as the space of square integrable functionals in the

Ashtekar-Lewandowski measure; i.e., H = L2[A, dµAL], where A is an extension of

the space of smooth connections [39].

The Peter-Weyl theorem states that a basis for the Hilbert space of L2 functions

on SU(2) is given by the matrix elements of the irreducible representations of the

jMore precisely, H is the space of the Cauchy sequences |Ψn〉 in Cyl (i.e., ‖Ψm −Ψn‖ converges
to zero); Cyl∗ is the space of the sequences |Ψn〉 such that 〈Ψn|Ψ〉 converges for all |Ψ〉 ∈ Cyl.
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group. The irreducible representation of SU(2) is labelled by an half-integer number

j and the matrix elements of the j representationR(j) are denoted as R(j)α
β(U) ∈ C

for U ∈ SU(2). Then a basis of H̃Γ is composed of the states

|Γ, jl, αl, βl〉 ≡ |Γ, j1, . . . , jL, αl, . . . , αL, βl, . . . , βL〉, (39)

which are defined via

〈A|Γ, jl, αl, βl〉 = R(j1)α1
β1(hγ1(A)) · · ·R(jL)αL

βL
(hγL(A)). (40)

For each graph Γ, the proper subspace HΓ associated with Γ is the subspace of H̃Γ

spanned by |Γ, jl, αl, βl〉 with jl 6= 0. The proper subspaces HΓ are orthogonal to

one another and span the whole H; i.e.,

H ∼=
⊕

Γ

HΓ. (41)

The “null’ graph Γ = ∅ is included in the sum; it corresponds to the 1-dimensional

Hilbert space spanned by the trivial state |∅〉 defined as 〈A|∅〉 = 1. An orthonormal

basis of H is simply composed of the states |Γ, jl, αl, βl〉 with all graphs Γ (including

∅) and all spin labels jl = 1/2, 1, 3/2, 2, . . . (but jl 6= 0).

Among the basis states, an important special case is that the graph is given

by a closed curve (or a “loop”) α. As α has only one edge and no endpoints, the

corresponding state |Γ, jl, αl, βl〉 becomes |α, j〉, which is defined as

〈A|α, j〉 = TrR(j)

(
P exp

∮

α

A

)
. (42)

These states |α, j〉 are called loop states. For j = 1/2 particularly, 〈A|α, j〉 =

Trhα(A) is the Wilson loop. Similarly, for a “multiloop” [αl] = (α1, . . . , αn) given

by a collection of a finite number of loops (without intersection), a multiloop state

|[αl], jl〉 is defined as

〈A|[αl], jl〉 =
n∏

l=1

TrR(jl)

(
P exp

∮

αl

A

)
. (43)

The kinematical Hilbert space H carries a natural representation for both SU(2)

and Diff groups. Under the SU(2) gauge transformation, the holonomy hγ trans-

forms by Eq. (32) and it follows that the basis states |Γ, jl, αj , βl〉 transform by

|Γ, jl, αj , βl〉 → ÛΛ|Γ, jl, αj , βl〉 (44)

=
∑

α′
l
,β′

l

(
L∏

l=1

R(jl)αl
α′

l
(Λ(xγlf )†)R(jl)β

′
l
βl
(Λ(xγli ))

)
|Γ, jl, α′

l, β
′
l〉.

On the other hand, under the Diff transformation, Eq. (34) leads to

|ΨΓ,f 〉 → Ûϕ|ΨΓ,f〉 = |ΨϕΓ,f〉. (45)



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 18

18 Dah-Wei Chiou

That is, a cylindrical function ΨΓ,f [A] with support on Γ is sent to a new cylindrical

function ΨϕΓ,f [A] with support on the relocated graph ϕΓ. A moment of reflection

tells that the inner product is Diff-invariant:

〈ÛϕΨΓ,f |ÛϕΦΓ′,g〉 = 〈ΨϕΓ,f |ΦϕΓ′,g〉 = 〈ΨΓ,f |ΦΓ′,g〉. (46)

In fact, the uniqueness theorem tells that the Ashtekar-Lewandowski measure is

the only unique measure that gives rise to the (∗-algebra) representation of the

kinematical algebra invariant under spatial diffeomorphisms [42].

4.3. Spin networks

We are now ready to implement the Gauss constraint upon H to obtain the SU(2)-

invariant space HG.

In the space of functionals Ψ[A], we promoteAia(x) to Â
i
a(x) as the multiplicative

operator:

(Âia(x)Ψ)[A] := Aia(x)Ψ[A], (47)

and Ẽ
a

i as the differential operator:

( ˆ̃Eai Ψ)[A] := −i8πG~γ δΨ[A]

δAia(x)
, (48)

in accordance with Eq. (17). The Gauss constraint CG[λ] = 0 in Eq. (18) is then

promoted to the operator ĈG[λ]:

(ĈG[λ]Ψ)[A] = Ψ[A−Dλ], (49)

according to Eq. (19). The SU(2)-invariant states are those lying in the kernel of

ĈG[λ] for arbitrary λ.
In the quantum theory based on cylindrical functions of connections, in place of

functionals of connections, it is the finite gauge transformation that is of primary

importance. Accordingly, the space HG as the kernel of ĈG[λ] is obtained as the

invariant subspace of H under finite transformations ÛΛ, which act on |Ψ〉 as

(ÛΛΨ)[A] = Ψ[ΛAΛ† + ΛdΛ†] (50)

in accordance with Eq. (31).

For a given graph Γ, call the endpoints of the edges “nodes” and assume that,

without loss of generality, the edges overlap, if they do at all, only at nodes. The ori-

ented edges are then also referred to as “links”. Under a finite SU(2) transformation

ÛΛ, the basis states transform according to Eq. (44), which is invariant in the sub-

spaceHΓ and acts only on the nodes of Γ. At each node vn, assume there are nin “in-

going” links and nout “outgoing” links. The task is to find the SU(2)-invariant (i.e.,

j = 0) spin states within the tensor product j1⊗· · · jnin⊗ j̄′1⊗· · · j̄′nout
= 0⊕0⊕· · ·



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 19

Loop Quantum Gravity 19

at each node vn. This can be achieved by finding appropriate linear superpositions:

|J = 0,M = 0〉
=
∑

mi,m′
j

in
m′

1...m
′
noutm1...mnin

(
|j1,m1〉 ⊗ · · · ⊗ |jnin ,mnin〉

)
(51)

⊗
(
|j′1,−m′

1〉 ⊗ · · · ⊗ |j′nin
,−m′

nout
〉
)
,

where in
···

··· are called intertwiners and regarded as generalized Clebsch-Gordan

coefficients, which can be obtained by the standard method of the recoupling theory

[43] (also see Appendix A of Ref. [9]).

With every node specified with an intertwiner denoted as in, an SU(2)-invariant

state |Γ, jl, in〉 is given by

|Γ, jl, in〉 =
∑

αl,βl

(
N∏

n=1

in
β
(n)
1 ...β(n)

nout
α

(n)
1 ...α

(n)
nin

)
|Γ, jl, αl, βl〉, (52)

where N is the number of nodes, α
(n)
i (i = 1, . . . , nout) is one of αl that is “ingoing”

to the node vn, and β
(n)
i (i = 1, . . . , nin) is one of βl that is “outgoing” from the node

vn. See Fig. 1 for a simple example. The states |Γ, jl, in〉 are called spin networks,

and choice of jl and in is called the “coloring” of the links and the nodes. Note that

the loop states |α, j〉 and multiloop states |[αl], jl〉 are trivial spin networks without

nodes.

j1

j2

j3

β1
β2
α3

α1
α2
β3

j1

j2

j3

i1 i2⇒
∑

αl,βl
· · ·

Fig. 1. The left diagram represents the state |Γ, jl, αl, βl〉 while the right one represents the spin
networks |Γ, jl, in〉, both for the same simple graph Γ composed of three oriented links and two
nodes. The state on the right is a linear superposition of states on the left via the intertwiners.

It is clear that the SU(2)-invariant states of HΓ form a proper subspace of HΓ,

which inherits the same inner product structure of HΓ. Consequently, we have the

SU(2)-invariant Hilbert space HG as the SU(2)-invariant subspace of H and the

corresponding Gelfand triple CylG ⊂ HG ⊂ Cyl∗G in the obvious manner.

See Ref. [44] for the original idea of spin networks and Refs. [45, 46] for the

systematic implementation.
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4.4. S-knots

The next step to implement the second constraint CDiff( ~N) = 0 for the far more

crucial invariance: the 3d diffeomorphism invariance. (We will follow the lines of

Sec. 6.2 in [8].) To solve the constraint, we adopt the “group averaging procedure”:

the invariant states are obtained by averaging over the elements of Cyl that are

transitive to one another by the invariance group [47, 48]. It turns out the Diff-

invariant states are not in H but in the extended space Cyl∗.
Given a graph Γ, denote by DiffΓ the subgroup of Diff that maps Γ to itself, and

by TDiffΓ the subgroup of DiffΓ that preserves every edge of Γ and its orientation.

It is easy to see that the induced action of TDiffΓ on CylΓ is trivial. The quotient

GSΓ = DiffΓ/TDiffΓ (53)

is the group of graph symmetries of Γ, which permutates the ordering and/or flips

the orientations of the edges of Γ. GSΓ is a finite and discrete group and it induces

a nontrivial action ĜSΓ on CylΓ in the obvious way.

We construct the general solutions to the diffeomorphism constraint in two steps.

First, given a state |ΨΓ〉 ∈ HΓ, we average it over the group of GS and obtain a

projection map P̂Diff,Γ from HΓ to its subspace that is invariant under ĜSΓ:

P̂Diff,Γ|ΨΓ〉 :=
1

NΓ

∑

ϕ∈GSΓ

Ûϕ|ΨΓ〉, (54)

where NΓ is the number of GSΓ and Ûϕ is defined in Eq. (45). The state P̂Diff,Γ|ΨΓ〉
is GSΓ-invariant, as for any ϕ

′ ∈ GSΓ we have

Ûϕ′P̂Diff,Γ|ΨΓ〉 =
1

NΓ

∑

ϕ∈GSΓ

ÛϕÛϕ|ΨΓ〉 =
∑

ϕ∈GSΓ

Ûϕ′◦ϕ|ΨΓ〉

=
∑

ϕ′−1◦ϕ′′∈GSΓ

Ûϕ′′ |ΨΓ〉 = P̂Diff,Γ|ΨΓ〉. (55)

The map P̂Diff,Γ naturally extends to the projection P̂Diff , which projects H to its

subspace that is invariant under ĜSΓ for all Γ.

Next, we average over the remaining diffeomorphisms that move the graph Γ.

This is a very huge group and the resulting group-averaged states are genuinely

“distributions” and belong to Cyl∗ instead of H. For any given state |ΨΓ〉 ∈ HΓ, we

can define the group-averaged state (η(ΨΓ)| ∈ Cyl∗ by its linear action on arbitrary

cylindrical functions |ΦΓ′〉 ∈ Cyl as

(η(ΨΓ)|ΦΓ′〉 :=
∑

ϕ∈Diff/DiffΓ

〈ÛϕP̂Diff,ΓΨΓ|ΦΓ′〉, (56)

where 〈·|·〉 is the inner product of H. This action is well defined because only a

finite number of terms in the sum are nonzero when Γ′ = ϕΓ for some ϕ. It follows

from Eq. (46) that the state (η(Ψγ)| is invariant under the action of Diff:

(η(ΨΓ)|ÛϕΦΓ′〉 = (η(ΨΓ)|ΦΓ′〉 (57)
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for all ϕ ∈ Diff. The space of these solutions to the diffeomorphism constraint is

denoted by Cyl∗Diff , and we have constructed a map

η : Cyl → Cyl∗Diff , (58)

which sends every element of Cyl, upon group averaging, to a Diff-invariant state

of Cyl∗Diff .

It should be noted that η is not a projection as it maps Cyl onto a different space

Cyl∗Diff . Nevertheless, the group averaging procedure naturally endows Cyl∗Diff with

the inner product

(η(Ψ)|η(Φ)) := (η(Ψ)|Φ〉, (59)

which is well defined as the right-hand side is independent of the specific choice

of Ψ and Φ for the same states (η(Ψ)| and (η(Φ)|. With respect to this inner

product, the Hilbert space HDiff of Diff-invariant states is the Cauchy completion

of Cyl∗Diff . Finally, we can obtain the general solutions to both the Gauss and the

diffeomorphism constraints by simply restricting the starting state |Ψ〉 ∈ Cyl to be

SU(2) invariant; i.e., we start with |Ψ〉 ∈ Cyl ∩ HG. The space Cyl∗inv of solutions

to both the Gauss and diffeomorphism constraints is then given by

Cyl∗inv = η (Cyl ∩HG) , (60)

and the Hilbert space Hinv of SU(2)- and Diff-invariant states is the Cauchy com-

pletion of Cyl∗inv.
What happens to operators? For a given (SU(2) and) diffeomorphism invari-

ant operator Ô acting on H (i.e., Ô commutes with Ûϕ; we will see examples of

diffeomorphism invariant operators in Sec. 5.4), one can define the corresponding

operator Ô∗ acting on Cyl∗Diff as

(Ô∗η(Ψ)|Φ〉 := (η(Ψ)|Ô†Φ〉, (61)

which is well defined in the sense that Ô∗ maps from Cyl∗Diff into Cyl∗Diff , since

one can show that, by Eq. (57), (Ô∗η(Ψ)|ÛϕΦ〉 = (Ô∗η(Ψ)|Φ〉 provided that Ô†

commutes with Ûϕ. Furthermore, the operator Ô∗ is hermitian in HDiff with respect

to the inner product Eq. (59) if and only if Ô is hermitian in H.

The fact that the (SU(2) and) diffeomorphism invariant Hilbert space can be

rigorously constructed is very significant, in contrast to the quantization program

of geometrodynamics using metrics as fundamental variables, in which the precise

construction remains elusive.

To understand the structure of Hinv, we consider the action of η on the basis

states of spin networks |S〉 ≡ |Γ, jl, in〉 of HG. By Eq. (56), we have

(η(S′)|η(S)) ≡ (η(S′)|S〉

=

{
0 if ϕΓ 6= Γ′ for all ϕ ∈ Diff,∑

gk∈GSΓ
〈S′|Ûgk |S〉 if ϕΓ = Γ′ for some ϕ ∈ Diff ,

(62)



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 22

22 Dah-Wei Chiou

where Ûgk ∈ ĜSΓ, and the state Ûgk |S〉 is obtained from |S〉 by changing the order-

ing and/or the orientations of the edges of Γ. As equivalence classes of unoriented

graphs under diffeomorphisms are called “knots” and classified by their knotting

structures of edges, the first line of Eq. (62) tells that two spin networks |S〉 and

|S′〉 in HG give rise to two orthogonal states (η(S)| and (η(S′)| in Hinv, unless Γ

and Γ′ are knotted in the same way. The states in Hinv are then distinguished by

the knots, denoted as K, as well the colorings of links and nodes of K. The states

with the same K but different colorings, however, are not necessarily orthonormal

to one another, due to the nontrivial action of the discrete symmetry group GSΓ
in the second line of Eq. (62). To obtain an orthonormal basis of Hinv, we have

to further diagonalize the quadratic form defined by the second line of Eq. (62).

Denote (K, c| the resulting states, where the discrete label c corresponds to the col-

oring of links and nodes of Γ up to the complications caused by the discrete graph

symmetry group GSΓ. We call the states (K, c| s-knots and c the coloring of the

knot K. It should be noted that diagonalizing the quadratic form in Eq. (62) may

yield degenerate eigenstates, as the projection map P̂Diff,Γ defined in Eq. (54) might

have a nontrivial kernel. As a result, the coloring c for s-knots (K, c| in general has

less choice than the coloring jl, in for spin networks |Γ, jl, in〉.
Knots without nodes have been widely studied in the knot theory, while knots

with nodes have also been studied but to a lesser extent [49, 50]. One peculiarity

of knots with nodes is that there are graphs with 4-valent or higher valent nodes

that cannot be mapped to one another by smooth diffeomorphisms.k Consequently,

the knot classes are labelled by continuous parameters (moduli) and therefore the

space Hinv remains nonseparable as the kinematical Hilbert space H [44, 51]. This

problem can be resolved by extending the group Diff of smooth diffeomorphisms

to the group Diff∗ of extended diffeomorphisms [52]. Extended diffeomorphisms

are maps from Σ to Σ that are smooth and invertible everywhere in Σ except at

a finite number of isolated points. With Diff replaced by Diff∗, the knot classes

are discretely classified and consequently the Hilbert space Hinv is separable. The

“excessive size” ofH in terms of nonseparability turns out to be just a gauge artifact.

It is argued in Ref. [52] (also see Sec. 6.7 of Ref. [9]) that Diff∗ in place of Diff is

in fact more natural as the quantum theory is concerned, for diffeomorphisms in

Diff are too “rigid” in the sense that they leave invariant the linear structures of

tangent spaces at nodes, which however have no direct physical significance.

The physical interpretation of the s-knots states will be clear after we define the

operators.

kAny 3d diffeomorphism ϕ induces a linear map Jp (pushforward) from the tangent space of a
given point p to the tangent space of ϕ(p). In order for ϕ to send two nodes into each other,
we must have Jp~vi = ~v′i, where ~vi, i = 1, . . . , n, are the n tangent vectors of the links at p and
~v′i, i = 1, . . . , n, are the n tangent vectors of the links at ϕ(p). In general, however, there is no
pushforward map sending n given vectors into n other given directions when n ≥ 4, as the rank
of Jp is only 3.
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5. Operators and quantum geometry

The two fundamental variables in the canonical theory is the connection Aia and

its conjugate momentum Ẽ
a

i . In the space of functionals of A, the corresponding

operators Âia and ˆ̃Eai are given by Eqs. (47) and (48), respectively. These two

operators are however not good operators in the space Cyl of cylindrical functions.

We will follow the lines of Sec. 6.6 of Ref. [9] to construct the appropriate quantum

operators.

5.1. Holonomy operator

In Cyl, the operators of connections have to be replaced by the operators of

holonomies defined in Eq. (29). Let (hγ)
A
B be the matrix elements of the holon-

omy hγ . Then the corresponding operator (ĥγ)
A
B acting on |Ψ〉 ∈ Cyl is simply

the multiplicative operator defined as
(
(ĥγ)

A
BΨ
)
[A] := (hγ)

A
B(A)Ψ[A]. (63)

The right-hand side is clearly in Cyl. In fact, any cylindrical function is immedi-

ately well defined as a multiplicative operator in Cyl. For example, the operator Ŝ

associated with the spin network |S〉 acts on another spin network |S′〉 as

Ŝ|S′〉 = |S ∪ S′〉, (64)

where |S ∪ S′〉 is the spin network formed by gluing S and S′ together in the obvious

way:

〈A|Ŝ|S′〉 = 〈A|S〉〈A|S′〉. (65)

Furthermore, it is clear that Ŝ is SU(2) invariant (i.e., Ŝ commutes with ÛΛ) and

leaves the Hilbert space HG invariant. Spin networks |S〉 can be constructed as

the action of Ŝ acting on the trivial state |∅〉; i.e., Ŝ|∅〉 = |S〉. In this sense, |∅〉 is
analogous to the Fock vacuum.

5.2. Area operator

On the other hand, when acting on cylindrical functions, the operator defined in

Eq. (48) leads to

i

8πG~γ
ˆ̃Eai (x)hγ =

δ

δAia(x)
hγ =

∫

γ

ds γ̇a(s) δ3(γ(s), x) (hγ1τi hγ2) , (66)

where s is an arbitrary parametrization of the curve γ, γ̇a(s) ≡ dγa(s)/ds is the

tangent to the curve at the point γ(s), and γ1 and γ2 are the two segments into

which γ is separated by the point γ(s). The right-hand side is a 2-dimensional Dirac

distribution (δ3(· · · ) is integrated over one dimension) and thus does not belong to

Cyl. As ˆ̃Eai is not a well-defined operator in H, we instead seek the desired operator
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by smearing Ẽ over a 2-dimensional surface S. In accordance with Eq. (30) (with

f = 1), we define the operator

Êi(S) := −8πiG~γ

∫

S
dσ1dσ2na(σ)

δ

δAia(x(σ))
, (67)

where σ = (σ1, σ2) are the parametrizations of the surface S, and

na(σ) = ǫabc
∂xb(σ)

∂σ1

∂xc(σ)

∂σa
(68)

is the 1-form normal to the surface S at the point x(σ). When acting on holonomies,

by Eq. (66), Êi(S) yields

Êi(S)hγ = −8πiG~γ
∑

p∈S∩γ
±hγp

1
τi hγp

2
, (69)

where p are intersection points (one, many, or none) between the curve γ and the

surface S, γp1 and γp2 are the two segments of γ separated by the point p, and the

sign ± is given by + if the curve γ pierces S at p “upwards” to the orientation of S
and − if “downwards” to the orientation of S. The generalization to an arbitrary

representation of the holonomy is obvious:

Êi(S)R(j)(hγ) = −8πiG~γ
∑

p∈S∩γ
±hγp

1
R(j)(τi)hγp

2
. (70)

Therefore, Êi(S) is a well-defined operator on H.

The operator Êi(S) is not SU(2) invariant, and we cannot obtain an SU(2)-

invariant operator by simply contracting the index i as

Ê2(S) := δijÊi(S)Êj(S), (71)

because the SU(2) transformation of Êi(S) is complicated by the integral over S.
Instead, we first partition S into N small surfaces SI , which become smaller and

smaller as N → ∞ (for each N ,
⋃N
I=1 SI = S), and then define the area operator

associated with S as

Â(S) := lim
N→∞

∑

I

√
Ê2(SI), (72)

which corresponds to the classical area of S,

A(S) =
∫

S

√
naẼ

a

i nbẼ
b

jδ
ij d2σ. (73)

Let us study the action of Â(S) on a spin network |Γ, jl, in〉, assuming that no

spin network nodes lies on S. For sufficiently large N , none of SI will contain more

than one intersection point with Γ and the sum over I becomes a sum over the

intersection points p between S and Γ. Consequently, by Eq. (70), we have

Â(S)|Γ, jl, in〉 = 8πG~γ
∑

p∈S∩Γ

√
jp(jp + 1) |Γ, jl, in〉, (74)
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where p are the intersection points between S and Γ, and jp is the color of the link

that pierces S at p. Since the operator Â(S) is diagonal on spin network states and

its eigenvalues are real, the operator Â(S) for an arbitrary S is well defined in HG

and is hermitian. For a complete and rigourous construction of the area operator,

see Refs. [10, 53, 54]. The general result (with the possibility that the spin network

nodes lie on S) is given by

Â(S)|Γ, · · ·〉
= 4πG~γ

∑

p∈S∩Γ

√
2jup (j

u
p + 1) + 2jdp (j

d
p + 1)− jtp(j

t
p + 1) |Γ, · · ·〉, (75)

where jup , j
d
p , and j

t
p are the colors of the links that emerge upwards (u), downwards

(d), and tangentially (t) to the surface S, respectively. It is the key result of LQG

that the spectrum of area is discrete. The smallest nonzero area eigenvalue is given

by (with j = 1/2)

∆ = 2
√
3πG~γ ≡ 2

√
3πγℓ2Pl, (76)

which is of the order of the Planck area ℓ2Pl ≡ G~ (assuming γ is of the order of

unity). Intrinsic discreteness of space at the Planck scale has long been expected in

QG. In the context of LQG, this discreteness is not postulated or imposed by hand

but rather arises as a direct consequence of the quantization in the same sense that

the energy spectrum of an harmonic oscillator or of an atom is quantized. Also note

that different choices of the numerical value of γ give rise to nonequivalent quantum

theories as the difference is reflected in the spectrum of the area operator.

5.3. Volume operator

The two operators Ŝ in Eq. (64) and Â(S) in Eq. (72) are in principle sufficient to

define the quantum theory. To better understand quantum states, we also define the

volume operator, which plays a key role in the physical interpretation of quantum

states.

Consider a 3-dimensional region R. The classical volume of R is given by

V (R) =

∫

R
d3x

√
1

3!
ǫabcǫijk

∣∣∣Ẽai Ẽ
b

jẼ
c

k

∣∣∣ , (77)

To construct the quantum counterpart, we first have to regularize the quantity
1
3! ǫ

ijkẼ
a

i (x)Ẽ
b

j(x)Ẽ
c

k(x) by the “3-hand holonomy” defined as

T abc(x; s, t, r) :=
1

3!
ǫijkR

(1)(hγxr
)ilẼ

a

l (r)

×R(1)(hγxs
)jmẼ

b

m(s)R(1)(hγxt
)knẼ

c

n(t), (78)

where s, t, and r are three points (close to but different from the point x), and

γxx′ are paths from x to x′. When s, t, and r are very close to x, T abc(x; s, t, r)
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approximates 1
3!ǫ

ijkẼ
a

i (x)Ẽ
b

j(x)Ẽ
c

k(x). As the “3-hand generalization” of Ê2(S),
for a given closed surface, we define

Ê3(S) :=
∫

S
d2σ

∫

S
d2σ′

∫

S
d2σ′′na(σ)nb(σ

′)nc(σ
′′)T abc(x;σ, σ′, σ′′), (79)

where x is a point in the interior of S (the exact position of x is irrelevant as we

will always consider the limit of small S).
Partition the region R into small cubes RI (for each N ,

⋃N
n=I RI = R) such

that the coordinate volume of each cube is smaller than ǫ3 as N → ∞. In the same

spirit of Eq. (72), we can now define the volume operator associated with R as

V̂ (R) :=
1√
3!

lim
ǫ→0

(N→∞)

∑

I

√∣∣∣Ê3(∂RI)
∣∣∣ , (80)

where ∂RI is the boundary surface of the cube RI .

When the operator V̂ (R) acts on a spin network state |Γ, . . .〉, the three surface

integrals over ∂RI in Eq. (79) give three intersection points, as in the case of the

area operator. For ǫ small enough, the only cubes whose surfaces have at least three

intersections with the spin network are those containing a node of the spin network.

Therefore, the sum over cubes I reduces to the sum over the nodes n ∈ Γ∩R, and

we have

V̂ (R)|Γ, . . .〉 = 1√
3!

lim
ǫ→0

(N→∞)

∑

n∈Γ∩R

√∣∣∣ŴIn

∣∣∣ |Γ, . . .〉, (81)

where

ŴIn |Γ, . . .〉 ≡ Ê3(∂RIn)|Γ, . . .〉 =
∑

r,s,t∈Γ∩∂RIn
r 6=s 6=t6=r

T (r, s, t)|Γ, . . .〉 (82)

is the action of Ê3(∂RIn) on |Γ, . . .〉, which is the sum over the triplets (r, s, t) of

distinct intersections between the spin network and the boundary of the cube RIn

containing the node n. For each triplet (r, s, t), the result of the action is denoted

as T (s, t, r)|Γ, . . .〉. The key point is that, in the limit ǫ→ 0, the operator ŴIn does

not change the graph of the spin network, nor the coloring of the links. Its only

possible action is on the intertwiners. Consequently, we have

V̂ (R)|Γ, jl, i1· · ·N 〉 = (16πG~γ)3/2
∑

n∈Γ∩R
Vin i

′
n |Γ, jl, i1 . . . i′n· · ·N 〉, (83)

where the coefficients Vin i
′
n can be calculated by the recoupling theory.

A complete and rigorous construction of the volume operator can be found in

Refs. [55, 56]. The detailed calculation of Vin i
′
n is presented in Refs. [57, 58], where

a list of eigenvalues is also given. It turns out that the node must be at least 4-valent

in order to have a nonvanishing volume [59].

The volume operator is well defined and hermitian with a discrete spectrum of

nonnegative eigenvalues. Furthermore, we can choose a basis of intertwiners in that
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diagonalize the matrices Vin i
′
n in Eq. (83) so that the resulting spin networks are

eigenstates of the area and the volume operators simultaneously. We denote Vin
the corresponding eigenvalues.

In addition to area and volume operators, the length operator can also be defined

and also yields a discrete spectrum [60], but it is far more complicated and less

understood than the area and volume operators.

5.4. Quantum geometry

The volume operator essentially has contributions only from the nodes of a spin

network, while the area operator has contributions from the links. Therefore, each

node represents a quantum of volume and each link represents a quantum of area.

That it, a spin network |Γ, j1 . . . jL, i1 . . . , iN〉 can be interpreted as an ensemble ofN

quanta of volume, or N “chunks” of space, which are separated from one another by

the adjacent surfaces of L quanta of area. Each chunk of space is located “around”

the note n with a quantized volume Vin . Two chunks are regarded as adjacent

to each other if the two corresponding notes are connected by a link jl, which

corresponds to the adjacent surface with a quantized area 8πG~γ
√
jl(jl + 1). The

graph Γ dictates the adjacency relation among the chunks of space.

The physical picture is compelling that a spin network state determines a quan-

tized 3d metric. However, it should be noted that both the area operator Â(S)
and the volume operator V̂ (R) are not diffeomorphism invariant (i.e., they do

not commute with Ûϕ), as the specification of S or R relies on spatial coordi-

nates.l Nevertheless, we can specify the surface and region intrinsically on the

knot of the spin network itself: A “region” is simply as a collection of nodes

{n1, n2, . . . }K := {n1, . . . |ni ∈ notes of K} of the knot K associated with a graph

Γ; a “surface”, as the boundary of a region, is a collection of knot links each of

which connects to only one of {n1, n2, . . . }K . In this way, the volume operator

V̂ ({n1, . . . }K) defined as

V̂ ({n1, . . . }K)|Γ, . . .〉 =
{
0 if [Γ] 6= K,∑

{n1,... } Vinj
if [Γ] = K,

(84)

where [Γ] denotes the knot class represented by Γ, and the area operator

Â(∂{n1, . . . }K) defined as

Â(∂{n1, . . . }K)|Γ, . . .〉 =
{
0 if [Γ] 6= K,∑

jl∈∂{n1,... }K
8πG~γ

√
jl(jl + 1) if [Γ] = K,

(85)

are both diffeomorphism invariant. Thanks to diffeomorphism invariance, we can

define the corresponding operators V̂ ∗({n1, . . . }K) and Â∗(∂{n1, . . . }K) acting on

Cyl∗Diff via Eq. (61). The resulting operators are well defined on s-knot states.m

lThe only exception is the total volume operator V̂ ≡ V̂ (Σ), which is diffeomorphism invariant.
mHere, we have disregard the technicalities due to the discrete group GSΓ of graph symmetries.
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Furthermore, in principle, the eigenvalues of the area and the volume operators

represent possible outcomes of the corresponding physical measurements [61].

The situation is precisely the same as that in the classical theory. In classical

GR, we distinguish between a 3-metric qab and a 3-geometry [q]; the latter is an

equivalence class of the former modulo diffeomorphisms. The notion of geometry

is diffeomorphism invariant while the notion of metric is not. Given a metric qab
with coordinates xa, we can compute the area of S or the volume of R, if we define

S by a map (σ1, σ2) → xa(σ) and R by a map (σ1, σ2, σ3) → xa(σ). However, it

makes no sense to ask what the area of S or the volume of R is in a given geometry

[q], because the coordinates have no significance in the geometry. Instead, given

a geometry [q], we should specify surfaces or regions intrinsically on the geometry

itself. For example, given the 3-geometry of the solar system, the region and the

surface of the earth are well defined, without any reference to coordinate localization,

and it is meaningful to ask what the volume and area of the earth are. In this sense,

a spin network can be regarded as a quantum (discretized) 3d metric, and an s-knot

as a quantum 3d geometry.

The physical interpretation of the s-knots is extremely appealing: They repre-

sent different quantized 3d geometries, each of which is an abstract aggregate of

chunks of discrete space separated by discrete adjacent surfaces. S-knots are not

quantum excitations in space; rather, they are excitations on top of one another,

as any reference to localization of the chunks and surfaces is dismissed. Also note

that the “empty” s-knot (∅| associated with the trivial spin network |∅〉 describes

a space with no volume and no area at all. We therefore have brought off the

paradigm of background independence as advocated in Sec. 2.3. The manifestation

of background independence will become even more prominent if we also include

nongravitational matter fields as will be seen in Sec. 7.

6. Scalar constraint and quantum dynamics

We have constructed the SU(2) and diffeomorphism invariant kinematical Hilbert

space Hinv by imposing the Gauss and diffeomorphism constraints. While the quan-

tum kinematics is well understood, the crux of the problem in LQG lies in the scalar

constraint, implementation of which is supposed to reveal the quantum dynamics.

One might attempt to repeat the group averaging procedure for the scalar con-

straint as we did for the diffeomorphism constraint, but this strategy turns out

very difficult because the finite transformations generated by the scalar constraint

are poorly understood even at the classical level. Instead, we adopt the strategy:

First, we regularize the classical expression of the scalar constraint; and second, we

promote the regulated classical constraint to a quantum operator and then remove

the regulator. (We will follow closely the lines of Sec. 6.3 in [8].) Since the scalar

constraint is very intricate, its implementation is far less clean and complete than

that of the other two constraints. Consequently, the quantum dynamics remains a

challenging open problem in LQG. Readers are referred to Refs. [62–65] for more
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details.

6.1. Regulated classical scalar constraint

The classical scalar constraint is given by Eq. (22). Had we considered the Euclidean

GR and chosen γ = 1, we would have γ2 = σ = 1 and the second term in Eq. (22)

would vanish. Therefore, the first term has the interpretation of the scalar constraint

for the Euclidean GR with γ = 1. Accordingly, we rewrite the full Lorentzian

constraint, i.e. Eq. (22) with σ = −1, as

C[N ] =
√
γ CEucl[N ]− 2(1 + γ2)T [N ], (86)

where

CEucl[N ] :=

√
γ

16πGγ

∫

Σ

d3x
Ẽ
a

i Ẽ
b

j√
det Ẽ

ǫijkF
k
ab, (87)

and

T [N ] :=
1

16πG

∫

Σ

d3x
Ẽ
a

i Ẽ
b

j√
det Ẽ

Ki
[aK

j
b]. (88)

One of the difficulties to deal with C[N ] is that it involves non-polynomial func-

tions of Ẽ
a

i through
√
det Ẽ and Ki

a. Fortunately, the non-polynomiality can be

circumvented by Thiemann’s trick [62, 63]. First, by the canonical relation Eq. (17),

we can rewrite the combination for the cotriad eia

eia =
1

2
ǫabc ǫ

ijk
Ẽ
b

jẼ
c

k√
det Ẽ

(89)

as a manageable Poisson bracket:

eia(x) =
1

4πGγ

{
Aia(x), V

}
, (90)

where V = V (Σ) is the total volume of Σ given by Eq. (77) with R = Σ. This

allows us to express CEucl[N ] as

CEucl[N ] = − 1

32π2G2γ3/2

∫

Σ

d3xN(x) ǫabc Tr
(
Fab(x) {Ac(x), V }

)
(91)

in a form more suitable for loop quantization.

Second, we have

Ki
a =

1

8πγ

{
Ac(x), K̄

}
(92)

where K̄ is defined as

K̄ :=

∫

Σ

d3xKi
aẼ

a

i , (93)
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which can also be expressed as a Poisson bracket:

K̄ =
1

γ3/2
{
CEucl[1], V

}
. (94)

Therefore, T [N ] can be recast as

T [N ] (95)

= − 2

(8πG)4γ3

∫

Σ

d3xN(x) ǫabc Tr
({
Aa(x), K̄

}{
Ab(x), K̄

}
{Ac(x), V }

)
.

We have expressed CEucl[N ] and T [N ] in terms of A, F , and V . The next step

to replace A and F with holonomies, which are the “right” variables to be used for

loop quantization. For a small path γx,u of coordinate length ǫ starting at x and

tangent to u, the holonomy hγx,u
takes the expansion

hγx,u
= 1 + ǫ uaAa(x) +O(ǫ2), (96a)

h−1
γx,u

≡ hγ−1
x,u

= 1− ǫ uaAa(x) +O(ǫ2). (96b)

Similarly, for a rectangular loop αx,uv with one vertex at x and two sides tangent

to u and v, each of coordinate length ǫ, the holonomy hαx,uv
takes the expansion

hαx,uv
= 1 + ǫ2uavbFab(x) +O(ǫ3), (97a)

h−1
αx,uv

≡ hα−1
x,uv

= 1− ǫ2uavbFab(x) +O(ǫ3). (97b)

Now, partition Σ into small cubic cells, edges of which are of coordinate length ǫ.

Denote by s1, s2, and s3 the edges of an elementary cell @ based at a vertex v@,

and by β1, β2, and β3 the three oriented loops that are are the boundaries of the

three rectangular faces based at v@ and orthogonal to s1, s2, and s3, respectively (see

Fig. 2 in [8]). By Eqs. (96) and (97), we can then regulate Eq. (91) as
∑

@
CEucl

@
(N),

where the contribution form each cell is

CEucl
@

(N) =
N(v@)

32π2G2γ3/2

∑

I

Tr
((
hβI

− hβ−1
I

)
hs−1

I
{hsI , V }

)
, (98)

and similarly regulate Eq. (95) as
∑

@
T@(N), where

T@(N) (99)

=
2N(v@)

(8πG)4γ3

∑

IJK

ǫIJKTr
(
hs−1

I

{
hsI , K̄

}
hs−1

J

{
hsJ , K̄

}
hs−1

K
{hsK , V }

)
.

Note that we regulate {A, V } by h−1
γ {hγ , V } ≡ V − h−1

γ V hγ instead of simply

{hγ , V } and
{
A, K̄

}
by h−1

γ

{
hγ , K̄

}
≡ K̄ − h−1

γ K̄hγ instead of simply
{
hγ , K̄

}
,

because we want to keep the scalar constraint to be SU(2) invariant after the

regularization.

The regularization can be more generic than the above prescription. Instead

of the simple cubic partition, we can partition Σ into cells @ of arbitrary shape

(particularly, the partition can be chosen to be a triangulation of Σ), and in every

cell @ we define edges sJ , J = 1, . . . , ns and loops βi, i = 1, . . . , nβ all based at
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a vertex v@ inside @, where ns, nβ may be different for different cells (see Fig. 3

in [8]); furthermore, we can choose an arbitrary representation R(j) of the SU(2)

group other than R(1/2). The entire prescription is denoted by Rǫ and called a

permissible classical regulator if both the following conditions hold:

lim
ǫ→0

CEucl
Rǫ

= CEucl[N ], (100a)

lim
ǫ→0

TRǫ
= T [N ], (100b)

where

CEucl
Rǫ

[N ] =
∑

@

CEucl
Rǫ@

(N), (101a)

CEucl
Rǫ@

(N) =
N(v@)

32π2G2γ3/2

∑

i,J

CiJTr
((
R(j)(hβi

)−R(j)(hβ−1
i

)
)

×R(j)(hs−1
J
)
{
R(j)(hsJ ), V

})
, (101b)

TRǫ
[N ] =

∑

@

TRǫ@(N), (102a)

TRǫ@(N) =
2N(v@)

(8πG)4γ3

∑

IJK

T IJKTr
(
R(j)(hs−1

I
)
{
R(j)(hsI ), K̄

}
(102b)

×R(j)(hs−1
J
)
{
R(j)(hsJ ), K̄

}
R(j)(hs−1

K
)
{
R(j)(hsK ), V

})
,

and CiJ and T IJK are fixed constants, independent of the scale parameter ǫ. There

exists a great variety of permissible classical regulators, and this non-uniqueness is

the source of quantization ambiguities.

6.2. Quantum scalar constraint

It is fairly straightforward to promote CEucl
Rǫ

into a quantum operator acting on the

space H of cylindrical functions. Recall that the total volume operator V̂ ≡ V̂ (Σ)

and the holonomy operator ĥγ are both well defined in H. Therefore, simply by

replacing V with V̂ , hγ with ĥγ , and Poisson brackets with commutators, we obtain

the operator ĈEucl
Rǫ

on H:

ĈEucl
Rǫ

[N ] =
∑

@

ĈEucl
Rǫ@

(N), (103a)

ĈEucl
Rǫ@

(N) = − iN(v@)

32π2G2γ3/2~

∑

i,J

CiJTr
((
R(j)(ĥβi

)−R(j)(ĥβ−1
i

)
)

×R(j)(ĥs−1
J
)
[
R(j)(ĥsJ ), V̂

])
. (103b)

Furthermore, because CEucl
Rǫ

is regularized in a way preserving SU(2) invariance,

ĈEucl
Rǫ

is SU(2) invariant and leaves the space HG of spin networks invariant. When
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acting on a given spin network state |Γ, . . .〉, the part
[
R(j)(ĥsJ ), V̂

]
will yield zero

unless the segment sJ intersects a node of Γ, because the volume operator has

contributions only from nodes of the spin network. Also note that while nodes

must be at least 4-valent to have nonvanishing volume, the operator ĈEucl
Rǫ

can have

contributions from trivalent nodes, as ĥsJ adds one more edge to the intersection

node.

As ĈEucl
Rǫ

is well defined in H, here comes the critical issue: We have to ensure

that the resulting quantum operator is covariant under diffeomorphisms. For this

purpose, we have to restrict our regularization scheme to a diffeomorphism covariant

quantum regulator, which is a family of permissible classical regulators that are not

fixed but transform covariantly as a graph Γ is moved under diffeomorphisms. The

precise definition of a diffeomorphism covariant quantum regulator is not important

here, but the essential point is that such regulators exist and lead to the regulated

operator ĈEucl
Rǫ

that is densely defined in the full Hilbert space H with domain Cyl

and diffeomorphism covariant [63, 65]. The simplest and most convenient case of

such regulators can be summarized as follows. For a given graph Γ, make the

partition refined enough such that each cell @ contains at most one node of Γ. For

a cell @ containing a node n, the edges sI are assigned to the proper segments of

the links of Γ incident at n; orientations of sI are all assigned to be outgoing at n.

The loops βi ≡ β[IJ] ≡ βIJ are chosen to be the triangular loops spanned by sI and

sJ ; the loop βIJ contains no other points of Γ except for the edges sI , sJ , and its

orientation is defined as the same as the plane by the ordered pair of sI and sJ . See

Fig. 2 for the illustration. Finally, the constants CiK ≡ CIJK are given by ±κ1, 0,
and the constants T IJK given by ±κ2, 0, depending on the orientation of a triple

of vectors tangent to sI , sJ , sK relative to the background orientation of Σ, where

κ1, κ2 are fixed constants. With this regulator, the sum
∑

@
in Eq. (103a) effectively

becomes the sum
∑
n∈Γ over the nodes of Γ, and the lapse function N(v@) and the

volume operator V̂ in Eq. (103b) become Nn and V̂ ({n}), respectively, for each

node.

sJ

sIsK
n

~eJ

~eI~eK

CIJK = ±κ1, 0,

T IJK = ±κ2, 0,
if (~eI × ~eJ ) · ~eK

> 0, < 0,= 0

Fig. 2. The edges sI , sJ , sK and the triangular loop βIJ at a trivalent node n. The pattern is
similar at other multivalent nodes. CIJK and T IJK are given by constants in accordance with
the orientation of ~eI , ~eJ , ~eK tangent to sI , sJ , sK .

As ĈEucl
Rǫ

is well defined in H, we can define the corresponding operator acting
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on Cyl∗ via its action on the states of Cyl by

(ĈEucl
Rǫ

Ψ|Φ〉 := (Ψ|ĈEucl
Rǫ

Φ〉 (104)

for every (Ψ| ∈ Cyl∗ and |Φ〉 ∈ Cyl.n The final step is to remove the regulator and

obtain the operator ĈEucl acting on Cyl∗. It does not work if one attempts to take

the limit directly

(ĈEuclΨ|Φ〉 ?
= (Ψ|lim

ǫ→0
ĈEucl
Rǫ

Φ〉, (105)

since ĈEucl
Rǫ

becomes ill-defined in Cyl in the limit ǫ→ 0. Instead, we should define

the operator ĈEucl acting on Cyl∗ by

(ĈEuclΨ|Φ〉 := lim
ǫ→0

(Ψ| ĈEucl
Rǫ

Φ〉, (106)

where the limit is now a limit of a sequence of numbers, instead a sequence of

operators. The limit exists if (Ψ| is a diffeomorphism invariant state, namely (Ψ| ∈
Cyl∗Diff , as we can see in the following crucial observation. Given |Φ〉 a spin network

|Γ, . . .〉, the operator ĈEucl
Rǫ

on the right-hand side of Eq. (106) modifies |Γ, . . .〉 in

two ways by changing its graph Γ and its coloring. The graph Γ is changed by

the two classes of operators: ĥsK and ĥβIJ
. The former superimposes an edge

of coordinate length ǫ to a link of Γ, and the latter adds the triangular loop as

depicted in Fig. 2. When ǫ is sufficiently small, changing ǫ in the operator changes

the resulting state, but the resulting state remains in the same diffeomorphism

equivalence class. Consequently, the value of (Ψ| ĈEucl
Rǫ

Φ〉 for (Ψ| ∈ Cyl∗Diff becomes

independent of ǫ once ǫ is sufficiently small, and thus the ǫ → 0 limit in Eq. (106)

is finite. Therefore, we can well define the quantum operator ĈEucl acting on the

domain Cyl∗Diff , as the regulator is removed trivially.

The Hamiltonian constraint operator, albeit defined upon spin networks with

reference to coordinates in the first place, turns out to be well defined and indepen-

dent of the regularization scale ǫ on the domain of diffeomorphism invariant states,

i.e. s-knots. To sum up, the small ǫ of coordinate length loses its physical signif-

icance at the diffeomorphism invariant level and the ǫ → 0 limit becomes finite

because making the regulator smaller cannot modify anything below the Planck

scale as there is really nothing below the the short-scale discreteness [66]. This

striking feature as a consequence of the intimate interplay between diffeomorphism

invariance and short-scale discreteness profoundly cures the ultraviolet pathology

that has long plagued quantum field theory of gravity.

The term T [N ] in the scalar constraint can be dealt with in a completely parallel

nTo be precise, we should call the operator on the left-hand side ĈEucl∗†
Rǫ

in the same spirit of
Eq. (61), but we neglect ∗ and † to keep the notation simple.
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manner. Specifically, we promote Eq. (102) to the operator

T̂Rǫ
[N ] =

∑

@

T̂Rǫ@(N), (107a)

T̂Rǫ@(N) =
2iN(v@)

(8πG)4γ3~3

∑

IJK

T IJKTr
(
R(j)(ĥs−1

I
)
[
R(j)(ĥsI ),

ˆ̄KRǫ

]
(107b)

×R(j)(ĥs−1
J
)
[
R(j)(ĥsJ ),

ˆ̄KRǫ

]
R(j)(ĥs−1

K
)
[
R(j)(ĥsK ), V̂

])
,

where ˆ̄KRǫ
is defined as

ˆ̄KRǫ
:=

i

~ γ3/2

[
V̂ , ĈEucl

Rǫ

]
, (108)

and in the end define the operator T̂ on the domain Cyl∗Diff by

(T̂ Ψ|Φ〉 := lim
ǫ→0

(Ψ|T̂Rǫ
Φ〉. (109)

The total quantum scalar operator

Ĉ[N ] =
√
γ ĈEucl[N ]− 2(1 + γ2)T̂ [N ] (110)

is well defined on the domain Cyl∗Diff , namely

Ĉ[N ] : Cyl∗Diff → Cyl∗. (111)

Up to diffeomorphisms, the operator ĈRǫ
[N ] with the diffeomorphism covariant

quantum regulator is independent of ǫ; that is, for any sufficiently small ǫ and ǫ′,
given any |Φ〉 ∈ Cyl, there is a diffeomorphism ϕ such that

ĈRǫ′ [ϕ
∗N ]|Φ〉 = Ûϕ ĈRǫ

[N ] Û †
ϕ|Φ〉. (112)

It should be noted, however, that the operator Ĉ[N ] does not leave Cyl∗Diff

invariant, because C[N ] does not commute with CDiff [ ~N ] even at the classical

level. (Also note that C[N ] depends on coordinates via N(x).) More precisely,

let (η(ΨΓ)| ∈ Cyl∗Diff be a group-averaged state as defined in Eq. (56). As defined

in Eq. (106), the action of Ĉ[N ] on the diffeomorphism invariant state (η(ΨΓ)| is
given by

(Ĉ[N ]η(ΨΓ)|Φ〉 := lim
ǫ→0

(η(ΨΓ)|ĈRǫ
[N ]Φ〉 ≡ lim

ǫ→0

∑

ϕ∈Diff/DiffΓ

〈ÛϕP̂Diff,ΓΨΓ| ĈRǫ
[N ]Φ〉

= lim
ǫ→0

∑

ϕ∈Diff/DiffΓ

〈P̂Diff,ΓΨΓ| Û †
ϕ ĈRǫ

[N ] Φ〉

= lim
ǫ→0

∑

ϕ∈Diff/DiffΓ

〈P̂Diff,ΓΨΓ| ĈRǫ′ [ϕ
−1∗N ] Û †

ϕΦ〉

= lim
ǫ→0

∑

ϕ∈Diff/DiffΓ

〈Ûϕ ĈRǫ′ [ϕ
−1∗N ]†P̂Diff,ΓΨΓ|Φ〉, (113)
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where we have used Eqs. (56) and (112), and the regulator Rǫ′ = Rǫ′(ǫ, ϕ) nontriv-

ially depends on ǫ and ϕ. It follows from Eq. (113) that

(Ĉ[N ]η(ΨΓ)| ∼ lim
ǫ→0

∑

ϕ∈Diff/DiffΓ

〈Ûϕ ĈRǫ′(ǫ,ϕ)
[ϕ−1∗N ]†P̂Diff,ΓΨΓ|. (114)

The resulting state on the right-hand side is a distribution belonging to Cyl∗ as the

sum is over the huge group Diff/DiffΓ, but it is not in Cyl∗Diff as the summands are

not arranged in the style of group averaging. The quantum theory defined by the

quantum scalar constraint (Ĉ[N ]Ψ| = 0 nevertheless is diffeomorphism invariant,

because what matters is the kernel of Ĉ[N ], which is a proper subspace of Cyl∗Diff

and independent of N(x).

On the other hand, Ĉ[N ] is manifestly SU(2) invariant, as the regularization

in Sec. 6.1 has been adopted to be SU(2) invariant. Taking into account both the

Gauss constraint and the diffeomorphism constraint, we have the quantum operator

Ĉ[N ] well defined on the domain Cyl∗inv, namely

Ĉ[N ] : Cyl∗inv → Cyl∗G. (115)

The Cauchy completion of the kernel of Ĉ[N ], which is a proper subspace of Cyl∗inv,
is the sought-after physical Hilbert space Hphys in Eq. (35).

6.3. Solutions to the scalar constraint

The scalar constraint operator Ĉ[N ] has been rigorously defined on the domain

Cyl∗inv. The next step is to construct the physical Hilbert space Hphys by solving

the solutions to the scalar constraint (Ĉ[N ]Ψ| = 0.

The actions of the resulting operators ĈEucl and T̂ on a given SU(2) and diffeo-

morphism invariant state (η(ΨΓ,j,i)| are rather simple. As indicated in Eq. (114)

with Eqs. (103) and (107), it turns out that, if |ΨΓ,j,i〉 ≡ |Γ, jl, in〉 contains any

extraordinary loops (labelled by R(j)), ĈEucl will remove one such loop and T̂ will

remove two in (η(ΨΓ,j,i)|, in addition to possible changes in the intertwiner at the

node [63]. The extraordinary loop is of the type introduced by the regulator at any

of the nodes as depicted in Fig. 2. The details of the actions of ĈEucl and T̂ are dis-

cussed in [67]. (Also see Ref. [68] for the general structure of the scalar constraint.)

The action of adding or removing an extraordinary loop at a node is schematically

illustrated in Fig. 3.

An s-knot state (η(ΨΓ0,j0)| is said to be simple if any spin networks belonging to

the same diffeomorphism class of (η(ΨΓ0,j0)| do not contain an extraordinary loop

labelled by R(j). Obviously, simple s-knots are annihilated by both ĈEucl and T̂
and thus are solutions to both the Euclidean constraint and the full (Lorentzian)

scalar constraint. In a sense, these simple solutions are analogues of time-symmetric

solutions to the classical Hamiltonian constraint. Particularly, s-knot states of loops

or multiloops are trivial examples of simple solutions.

More solutions can be obtained by starting from the simple solutions. Let

(η(Ψ
(n)
Γ0,j0

)| be an s-knot obtained from (η(Ψ
(0)
Γ0,j0

)| ≡ (η(ΨΓ0,j0)| by attachment
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j′′

j′j

j′′

j′j
j′+1/2

1/2j′′−1/2

j′′

j′j

1/2
⇋

∼=

Fig. 3. When an extraordinary loop is added or removed at a node, the change is between the
left diagram and the middle one, which can be understood as the right diagram. Here, we show
the case that the extraordinary loop is labelled by R(j=1/2) .

of n extraordinary loops labelled by R(j) (note that there are many ways of the

attachment), and denote by D(n)
Γ0,j0

the subspace of Cyl∗Diff spanned by those s-knot

states with n extraordinary loops. The resulting spaces D(n)
Γ0,j0

are finite-dimensional

and have trivial intersection with one another, i.e.,

D(n)
Γ0,j0

∩ D(n′)
Γ′
0,j

′
0
= ∅, if (Γ0, j0), n 6= (Γ′

0, j
′
0), n

′. (116)

Every (Ψ| ∈ Cyl∗Diff can be uniquely decomposed as

(Ψ| =
∑

(Γ,j),n

(η(Ψ
(n)
Γ,j)|, where (η(Ψ

(n)
Γ,j)| ∈ D(n)

Γ,j . (117)

This unique decomposition enables us to find the solutions to the scalar constraint

in a systematic way.

First, for the solutions to the Euclidean constraint, we have

(Ψ|ĈEucl[N ] = 0 ⇔ (η(Ψ
(n)
Γ,j)|ĈEucl[N ] = 0, for every (Γ, j) and n. (118)

That is, (Ψ| is a solution to the Euclidean constraint if and only if its components

with respect to the decomposition Eq. (117) are all solutions. This property reduces

the problem of finding the solutions to the Euclidean scalar constraint to that of

finding solutions in finite-dimensional subspaces, which is equivalent to the tractable

task (by a computer) to find the kernel of finite matrices.

Now, consider the full (Lorentzian) scalar constraint. In the scheme with respect

to the decomposition Eq. (117), the problem of finding solutions to the full scalar

constraint is reduced to a hierarchy of steps. That is, the scalar constraint equation

(Ψ|Ĉ[N ] =
√
γ (Ψ|ĈEucl[N ]− 2(1 + γ2)(Ψ|T̂ [N ] = 0 (119)

is equivalent to the hierarchy of equations

(η(Ψ
(1)
Γ,j)|T̂ [N ] = 0,

2(1 + γ2)(η(Ψ
(2)
Γ,j)|T̂ [N ] =

√
γ (η(Ψ

(1)
Γ,j)|ĈEucl[N ],

...

2(1 + γ2)(η(Ψ
(n+1)
Γ,j )|T̂ [N ] =

√
γ (η(Ψ

(n)
Γ,j)|ĈEucl[N ],

... (120)
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since ĈEucl removes one extraordinary loop and T̂ removes two. This hierarchical

procedure gives a good control on the solutions and suggests a sound postulation

that the series should terminate at a finite number of steps.

Even though we have a good understanding of solutions to the scalar constraint,

our knowledge about them is far less clear and complete than that about s-knot

states. Additionally, we encounter various quantization ambiguities, notably the

choice of R(j) for the SU(2) representation, which further complicate the solutions.

It should also be remarked that the scalar constraint operator Ĉ[N ] is evidently not

hermitian in the space HDiff , as it removes extraordinary loops but does not add

them. One can simply obtain the hermitian scalar constraint operator by replacing

it with (Ĉ + Ĉ†)/2, and the hermitian operator is expected to be better behaved for

some technical issues as well as for some aspects of the classical limit. However, as

a nonhermitian scalar constraint operator does not lead to any inconsistency, there

is no logical necessity of being hermitian. Meanwhile, a great number of variant

approaches of the quantum scalar constraint have been considered in the literature

(see Sec. 7.4.1 of Ref. [9]).

6.4. Quantum dynamics

The space of solutions to the quantum scalar constraint is the kernel of Ĉ[N ], which

is a proper subspace of Cyl∗inv. Consequently, the physical inner product between

any two solutions are naturally inherited from the inner product of the space Cyl∗inv;
i.e., for (Ψ|, (Φ| ∈ Kernel of Ĉ, the physical inner product is given by

(Ψ|Φ)phys := (Ψ|Φ), (121)

where the right-hand side is defined in Eq. (59). With respect to the physical inner

product (·|·)phys, the Cauchy completion of the kernel of Ĉ is the physical Hilbert

space Hphys.

Even though Hphys can been rigorously constructed (at least formally), the

quantum dynamics in terms of evolution remains very obscure. Given physical state

(Ψ| ∈ Hphys, to read out the “evolution” (with respect to the arbitrary coordinate

time t used in the ADM foliation), one might attempt to designate the quantum

counterpart of the classical Hamilton’s equation Eq. (26) as

d

dt
(Ψ| Ô(t)|Ψ)phys =

~

i
(Ψ|
[
Ô(t), Ĥ ]

]
|Ψ)phys, (122)

where the quantum Hamiltonian Ĥ := (8πGγ)−1
(
ĈG[(ω · t)]+ ĈDiff[ ~N ]+ Ĉ[N ]

)
, and

Ô(t) is the operator of an observable O corresponding to a measurement performed

at coordinate time t. However, this strategy does not work, because the right-hand

side simply vanishes as physical states are annihilated by all three constraints. In

a sense, the evolution, in the conventional notion, is completely “frozen”. This dif-

ficulty is closely related to the renowned “problem of time” in QG [69, 70] and has

entailed the timeless description of quantum mechanics (see Chap. 5 of Ref. [9] for
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an in-depth elaboration). In the literature, there are mainly two strategies to unveil

the quantum dynamics: the “complete observable approach” vs. the “partial observ-

able approach”.o Complete observables, also referred to as “Dirac observables” or

“physical observables”, are those that commute with all three constraints; by con-

trast, partial observables are those that do not commute with all three constraints

(the scalar constraint in particular). In other words, complete observables are free

of any gauge ambiguities, while partial observables still have a remnant of gauge

dependence in the strict sense. (For more on the distinction, see Refs. [71, 72].)

In the complete observable approach, instead of Ô(t), we construct a family

of Dirac operators Ô|Φ parameterized by Φ. The operator Ô|Φ is nontrivially

constructed so that it is well defined in Hphys and commutes with all constraint

operators for any value of Φ. We interpret the operator Ô|Φ0 as representing a

measurement O performed at the instance when the observable Φ takes the value

Φ0.
p For a given physical state (Ψ| ∈ Hphys, the quantum dynamics is portrayed in

terms of the expectation values

(Ψ| Ô|Φ|Ψ)phys, (123)

which do not describe the evolution of observables with respect to a preferred time

variable but, instead, the correlation between observables (O and Φ). In this regard,

the variable Φ is said to serve as the “internal time” (also known as “internal

clock”). Unfortunately, it is extremely difficult to construct Dirac operators that are

nontrivial and physically sound. Usually, one also has to include nongravitational

matter into the system in order to provide a privileged dynamical reference as

the internal time.q In some symmetry-reduced theories, such as LQC, the Dirac

operators can be explicitly formulated and consequently the quantum dynamics can

be clearly deciphered, as will be shown in Sec. 11.

The partial observable approach, on the other hand, adopts a very different phi-

losophy. While it is asserted in the complete observable approach that only complete

observables are physical, the partial observable approach contends that it would be

too restrictive to dismiss all partial observables, because one can never grasp “to-

tality” of the whole system and therefore some gauge degrees of freedom, especially

those for the reparametrization invariance in time, nevertheless bear physical signif-

icance as far as one concerns real measurements, which are conducted without the

knowledge of totality. Unattainability of totality is even more crucial in quantum

mechanics, as one can never disregard the observer, who is not viewed as a part of

oIt should be remarked that there are many various approaches in the literature that are more or
less in one form or the other of the two main strategies but different in finer detail. The aim here
is neither to give decisive definitions of these two strategies nor to exhaust all possible approaches
but to give general ideas about how the problem of quantum dynamics could be tackled.
pIn the timeless language, a measurement is said to be conducted at some “instance”, rather than
at some “instant”.
qThe strategy of the complete observable approach is closely related to the idea of the reduced

phase space quantization, in which one finds a one-parameter family of complete observables O|Φ
at the classical level before quantization. See Sec. 12.3.
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the system to be observed. By the standard Copenhagen interpretation of quantum

mechanics, it is impossible to know and even invalid to ask what the physical state

(Ψ| ∈ Hphys is for the whole world. In this sense, the quantum dynamics described

in the style of Eq. (123) seems inadequate and heuristic at best.

In accord with the Copenhagen interpretation, the partial observable approach

describes the quantum dynamics in terms of the “if-then-what” prediction. Provided

that a measurement OA performed at some instance yields the outcome a, the

quantum dynamics is to predict what the probability is for the measurement OB
performed at another instance to yield the outcome b. The only difference from

the conventional quantum mechanics is that we do not need to specify the time

separation between the two measurements, because any notion of time separation

is in principle encoded in the measurement outcomes a and b themselves in the

timeless description. (In fact, we do not even need to specify the time-ordering of

the two measurements. See Sec. 3.5 of Ref. [73] for more discussions.)

For LQG, to make sense of the quantum dynamics of spacetime, we naturally

choose the relevant measurements to be those for the intrinsic areas and volumes as

studied in Sec. 5.4. Note that the corresponding operators defined in Eqs. (84) and

(85) correspond to partial observables as opposed to complete observables, as they

do not commute with the scalar constraint Ĉ[N ]. Consequently, after a complete

measurement of the quantum geometry, the kinematical state is collapsed into an

eigenstate of the quantum geometry, which is an s-knot state (K, c| ∈ Hinv. The

quantum dynamics of spacetime is then posed as a predictive question: What then

is the probability for another complete measurement of the quantum geometry to

yield the outcome associated with the s-knot (K ′, c′|? It is natural to postulate

that the probability is given by the |W (K, c;K ′, c′)|2, where W (K, c;K ′, c′) is the

transition amplitude

W (K, c;K ′, c′) := (K, c|P̂C |K ′, c′) (124)

and P̂C is the “projector” that projects an s-knot state in Hinv into the subspace

Hphys. More precisely, the projector P̂C : Hinv → Hphys ⊂ Hinv is formally given by

P̂C :=
∑

(Ψ|∈Hphys

|Ψ)(Ψ|, (125)

where {(Ψ| ∈ Hphys} forms an orthonormal basis of Hphys. Therefore, the quantum

dynamics in principle can be inferred from the complete knowledge about the phys-

ical Hilbert space Hphys. The transition amplitude given by Eq. (124) bears close

similarity to that in the spin foam formalism as will be discussed in Sec. 9.

Both the complete observable approach and the partial observable approach are

far from fully developed and remain tentative, and our understanding about the

quantum dynamics of spacetime is still very limited. The obstacles not only lie in

the mathematical difficulties but are also deeply rooted from the conceptual (and

even philosophical) riddles of interpreting the fundamental notions of space, time,

quantum measurements, etc.
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7. Inclusion of matter fields

So far, to bring out the main ideas of LQG, we have ignored nongravitational matter

fields. Inclusion of matter fields does not require a major revamp of the underlying

framework. The quantum states of space plus matter naturally extend the notion

of s-knots with additional degrees of freedom. We will follow the lines of Sec. 7.2

of Ref. [9]. For more details, see Chap. 12 of Ref. [10] and references therein (and

also see Chap. 9 of Ref. [6] for the corresponding classical theories).

7.1. Yang-Mills fields

The easiest extension is to incorporate Yang-Mills fields. LetGYM be the Yang-Mills

group. The two 3d connections, Ashtekar connection A and Yang-Mills connection

AYM, can be considered together as a single connection A = (A,AYM) associated

with the group SU(2)×GYM. As the holonomies of AYM and surface integrals of

the Yang-Mills electric field can be defined exactly in the same ways as those of A

and Ẽ, the construction of H, HG, and Hinv extends straightforwardly to the total

connection A without much difficulty.

The gauge (G) and diffeomorphism (Diff) invariant quantum states of space

plus Yang-Mills fields are given by the s-knot states that are classified by knotted

graphs and carry irreducible representations of the group G on the links and the

corresponding intertwiners at the nodes. Because G is the direct product of SU(2)

and GYM, its irreducible representations are simply the products of those of SU(2)

and GYM. Consequently, the coloring for each link is extended as (jl, kl) and the

coloring for each nodes is extended as (in, wn), where kl is the irreducible represen-

tation of GYM representing the Yang-Mills electric flux passing through the surface

l, and wn is the intertwiner of GYM representing the Yang-Mills field strength at

the node n.

7.2. Fermions

The next is to include fermions. Let η(x) be a Grassmann-valued fermionic field.

It transforms as an irreducible representation k under the gauge transformation of

the Yang-Mills group GYM and as a fundamental (j = 1/2) representation under

the SU(2) transformation. It is more convenient in LQG to take the densitized field

ψ(x) :=
√
det Ẽ η(x) as the fundamental field variable [74].

As an extension of Eq. (36), the cylindrical function of the connection A and

the fermion field ψ is a smooth (Grassmann-valued) function of L group elements

of G = SU(2) × GYM and 2N |k| Grassmann variables (|k| is the dimension of k)

defined as

ΨΓ,f [A, ψ, ψ̄] = f
(
hγ1(A), . . . , hγL(A),

. . . , ψmi(xn), . . . , ψ̄
m̄i(xn), . . .

)
, (126)
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where Γ is the graph comprised of L edges γl and N nodes located at xn=1,...,N ,

mi=1,....|k| ∈ w(k) are indices (i.e. weights) of the representation k, and m̄i=1,...,|k| ∈
w(k̄) are indices of the conjugate representation k̄. Since Grassmann variables

anticommute with one another, cylindrical functions are at most linear in ψmn ≡
ψm(xn) and ψ̄m̄n ≡ ψ̄m̄(xn) for each pair (n,m). If two cylindrical functions are

defined for the same graph Γ, as an extension of Eq. (37), the inner product between

them is defined as

〈ΨΓ,f |ΨΓ,g〉

:=

∫

GL

L∏

l=1

dµl
∏

m∈w(k)

N∏

n=1

(
Iψm

n ,ψ
m∗
n

+

∫
dψmn dψ

m∗
n

)(
Iψ̄m̄

n ,ψ̄
m̄∗
n

+

∫
dψ̄m̄n dψ̄

m̄∗
n

)

× f(hγ1 , . . . , hγL , ψ
m1
1 , . . . , ψ

m|k|
N , ψ̄m̄1

1 , . . . , ψ̄
m̄|k|
N )

∗

× g(hγ1 , . . . , hγL , ψ
m1
1 , . . . , ψ

m|k|
N , ψ̄m̄1

1 , . . . , ψ̄
m̄|k|
N ), (127)

where dµ is the Haar measure on G, Iψ,ψ∗ is a linear transformation that maps the

integrand into a new (Grassmann-valued) function by assigning ψ = 0 and ψ∗ = 0,∫
dψdψ∗ is the Grassmann integral over the superspace spanned by ψ and ψ∗, and

ψmn , ψ̄
m̄
n are treated as independent Grassmann variables. The extension of this

inner product to any two cylindrical functions is completely analogous to that in

the case of pure gravity. The construction of H, HG, and Hinv can then be readily

repeated.

The gauge and diffeomorphism invariant quantum states are again given by the

s-knots with extended colorings. For each node n, in addition to the intertwiner

(in, wn), we also have to specify an integer Fn as the degree of the monomial in

ψm(xn), which determines the fermion number in the region of the node, and an in-

teger F̄n as the degree of the monomial in ψ̄m̄(xn), which determines the antifermion

number in the region of the node.

In the presence of fermions, at each node n, the intertwiner (in, wn) is not only

intertwined with the coloring (jl, kl) of the links attached to n but also with the

(anti)fermion numbers Fn, F̄n. This is because fermions carry the j = 1/2 represen-

tation indices of SU(2) and the k representation indices of GYM, which have to be

properly contracted with the matrix elements of R(jl) (hγl(A)) and R
(kl) (hγl(AYM))

in a way such that the generalized Clebsh-Gordon conditions are satisfied for both

SU(2) and GYM. In other words, fermions are quanta of “charged” particles, with

both SU(2) and GYM charges, and the quanta of electric flux labelled by jl for

SU(2) and kl for GYM can emerge from and end at the charged particles. (The

fact that fermions are SU(2) charged implies that they contribute to the spectrum

of the area operator. See Ref. [75] for more discussions.) In the same regard, both

the gravitational and Yang-Mills fields are self-sourcing, as they yield colorings for

both links and nodes.
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7.3. Scalar fields

Scalar fields can also be included in LQG, but in a less natural manner than those

for Yang-Mills fields and fermions.

Let φ(x) be a scalar field, which transforms as a trivial (j = 0) representation

under the SU(2) transformation and as an irreducible representation k′ under the
gauge transformation of the Yang-Mills group GYM. Thus, φ takes the value in the

vector space of the k′ representation. The problem is that the k′ representation
vector space is noncompact with respect to natural GYM-invariant measures, thus

rendering the definition of the inner product between cylindrical functions difficult.

(Fermions do not suffer from this problem, since the Grassmann integral naturally

gives the appropriate measure.) One way to get around this problem is to assume

k′ to be the adjoint representation of GYM and replace φ(x) with the associated

“point holonomy” U(x) := exp (φ(x)), which takes the value of GYM and admits

the natural Haar measure.

The cylindrical function ofA, ψ, and φ is a smooth (Grassmann-valued) function

of L group elements of G = SU(2)×GYM, 2N |k| Grassmann variables, and N group

elements of GYM defined as

ΨΓ,f [A, ψ, ψ̄, φ] = f
(
hγ1(A), . . . , hγL(A), ψm1 (x1), . . . , ψ

m|k|(xN ),

ψ̄m̄1(x1), . . . ψ̄
m̄|k|(xN ), U(x1), . . . , U(xN )

)
. (128)

The inner product between two cylindrical functions of the same graph is then

naturally defined as

〈ΨΓ,f |ΨΓ,g〉 :=
∫

GL

L∏

l=1

dµl

∫

GN
YM

N∏

n=1

dµn (129)

∏

m∈w(k)

N∏

n=1

(
Iψm

n ,ψ
m∗
n

+

∫
dψmn dψ

m∗
n

)(
Iψ̄m̄

n ,ψ̄
m̄∗
n

+

∫
dψ̄m̄n dψ̄

m̄∗
n

)

× f(hγ1 , . . . , hγL , ψ
m1
1 , . . . , ψ

m|k|
N , ψ̄m̄1

1 , . . . ψ̄
m̄|k|
N , U1, . . . , UN )

∗

× g(hγ1 , . . . , hγL , ψ
m1
1 , . . . , ψ

m|k|
N , ψ̄m̄1

1 , . . . ψ̄
m̄|k|
N , U1, . . . , UN ),

where dµl is the Haar measure on G, and dµn the Haar measure on GYM. Extension

to any two cylindrical functions is straightforward as before.

In the presence of scalar fields, of the resulting s-knot state, the coloring for

each node n is augmented with an additional integer number Sn, which represents

the total adjoint charge, or equivalently the total number, of the scalar particles

in the region of the node. Like fermions, scalar fields carry GYM (adjoint) charge

and accordingly Sn is coupled with wn, kl, Fn in the generalized Clebsh-Gordon

condition for GYM; unlike fermions, on the other hand, scalar fields are trivial for

SU(2) and Sn is decoupled from in, jl in the generalized Clebsh-Gordon condition

for SU(2).
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7.4. S-knots of geometry and matter

In summary, with inclusion of all kinds of matter (Yang-Mills fields, fermions,

scalar fields), the gauge and diffeomorphism quantum states are s-knots (K, c| ≡
(Γ, jl, in, kl, wn, Fn, F̄n, Sn| labelled by the following quantum numbers:

• Γ: an abstract knotted graph with oriented links l and nodes n.

• jl: an irreducible j representation of SU(2) associated with each link l.

• in: an SU(2) intertwiner associated with each node n.

• kl: an irreducible k representation of GYM associated with each link l.

• wn: a GYM intertwiner associated with each node n.

• Fn, F̄n: two integers associated with each node n.

• Sn: an integer associated with each node n.

These quantum numbers correspond to physical quantities as listed in Table 2.

Table 2. Physical quantities for the quantum numbers of s-knots.

Quantum number Physical quantity

Γ adjacency relation of regions n and surfaces l
jl area of the surface l
in volume of the region n
kl Yang-Mills electric flux through the surface l
wn Yang-Mills field strength at the region n

Fn, F̄n numbers of fermions and antifermions at the region n
Sn number (total adjoint charge) of scalars at the region n

The physical interpretation of s-knots as discussed in Sec. 5.4 can be directly

generalized to the s-knots of both geometry and matter in the obvious way. The

paradigm of background independence is even more remarkable with inclusion of

matter fields, as geometry and matter fields are truly on the equal footing and live

on top of one another via their contiguous relations without any reference to a given

background.

Furthermore, in the presence of nongravitational matter fields, there is no diffi-

culty to perform the ADM foliation and obtain the three constraints. Particularly,

the scalar constraint of the classical theory can be regulated in the same fashion as

that in Sec. 6.1 and then promoted to the quantum operator as in Sec. 6.2. There-

fore, the quantum theory of dynamics of spacetime plus matter in principle can be

constructed in the same manner as in Secs. 6.3 and 6.4.

8. Low-energy physics

The essential premise of LQG is that quantum states are background-independent

excitations out of nothingness—a concept in direct conflict with the foundation

of conventional QFTs. This poses the big challenge to LQG to show how the low-
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energy description of conventional QFTs arises from the underlying Planckian world

in an appropriate sense (of coarse graining). The final resolution is still far out of

reach, but the research is being undertaken step by step. The low-energy physics

remains one of the most wanted missing pieces in LQG—Not until we figure out

the low-energy physics of LQG and show its agreement with Einstein’s theory of

classical GR and compatibility with the QFT of the Standard Model can we declare

LQG to be an adequate quantum theory of GR, because both classical GR and

the Standard Model have been intensively tested in the low-energy regime. In this

section, we present the basic ideas of recovering low-energy physics and refer readers

to Chap. 11 of Ref. [10] for more systematic treatments and more details.

8.1. Weave states

It is impressive that LQG yields discrete spectra of geometry as a natural conse-

quence of quantization. The eigenstates of geometry, i.e. s-knots, however do not

look akin at all to the smooth macroscopic spaces (curved or flat) we are familiar

with. What then is the connection between the discrete quantum geometry and the

smooth classical geometry?

Consider a very huge spin network with a very large number of nodes and links,

each of which is of area or volume in the Planck scale. This is a big lattice of

Planck-scale lattice size, but it appears as a smooth 3d geometry when probed at

a macroscopic scale much larger than the Planck scale. This is analogous to the

fabric of a piece of cloth, which is composed of thousands of granular threads but

appear smooth at a distance.

More precisely, given a fixed classical 3d metric qab(x) = δije
i
a(x)e

j
b(x), it is

possible to construct a spin network state |S〉 that approximates the metric at scale

l ≫ ℓPl,, much larger than the Planck length ℓPl. That is, for any region R and

surface S, we have

Â(S)|S〉 = (A(S)|e +O(ℓPl/l)) |S〉, (130a)

V̂ (R)|S〉 = (V (R)|e +O(ℓPl/l)) |S〉, (130b)

where A(S)|e is the classical area of S defined in Eq. (73) and V (R)|e is the classical
volume of R defined in Eq. (77) with the given cotriad eia, and O(ℓPl/l) denotes

small corrections in ℓPl/l. Such a spin network |S〉 is called a weave state of the

metric qab. This definition is given for spin networks but can be easily carried over

to the diffeomorphism invariant level for s-knots.

Several weave states have been constructed for flat space, Schwarzschild space,

space with gravitational waves, and more [76]. It should be noted that Eq. (130)

does not determine a unique weave state; when all macroscopic physics is taken

into account, it seems more likely that the proper quantum state for a macroscopic

geometry is a coherent superposition of the weave state solutions.
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8.2. Loop states vs. Fock states

The basic variables of LQG are holonomies (Wilson loops) of the connection A

along 1-dimensional curves and the fluxs of the conjugate momentum Ẽ across 2-

dimensional surfaces. These variables however fail to be well defined in the Fock

space of excitations of A in the perturbative QFTs. A further inquiry into the

low-energy physics of LQG then is to understand how the perturbative description

of quantum excitations in terms of Fock states in conventional QFTs arise as a

low-energy limit of the nonperturbative theory in terms of loop states.

These issues have been studied for simple examples. The main effort so far is

to construct mathematical and conceptual tools that will facilitate a systematic

analysis of quantum fields on semiclassical states of quantum geometry [77, 78].

Particularly, the connection between loop states and Fock states has been studied

in detail for the Maxwell field [79–82] and linearized gravity [83] in Minkowski

spacetime.

8.3. Holomorphic coherent states

The relation between quantum states and the classical theory is most likely to be

understood by the techniques of coherent states. Various constructions of coherent

states have been suggested. Here we briefly describe the formulation of holomorphic

coherent states [84–89] by following the lines of Ref. [89] for the Euclidean theory.

Consider the heat kernel Kt(h, h0) on SU(2), which is given by the Peter-Weyl

expansion:

Kt(h, h0) =
∑

j

(2j + 1) e−j(j+1)t TrR(j)(hh−1
0 ), (131)

where the positive real number t is the “heat kernel time”. For a given graph

Γ of N nodes, a holomorphic coherent state associated with Γ is defined as the

SU(2)-invariant projection of a product over links of heat kernels:

ΨΓ,Hab,tab
(hab) =

∫

SU(2)N

∏
dga

∏

ab

Ktab
(hab, gaHabg

−1
b ), (132)

where, to simplify the notation, we use a, b, · · · = 1, . . . , N to denote the nodes of Γ

and the (ordered) couples ab to denote the (oriented) links.r The label Hab for each

link ab is an element of SL(2,C), which is diffeomorphic to the SU(2) cotangent

bundle T ∗SU(2) ∼= SU(2)× su(2)∗ ∼= SU(2)× su(2).

The state given in Eq. (132) is analogous to the standard wave packet of non-

relativistic quantum theory

ψx0,p0,σ =
1

(2πσ2)1/4
e−

(x−x0)2

4σ2 e
i
~
p0(x−x0), (133)

rThis notation scheme is well-suited for complete graphs, but generalization to arbitrary (non-
complete) graphs is obvious.



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 46

46 Dah-Wei Chiou

which is peaked in the position x0 as well as in the momentum p0 and can be written

(up to a constant phase) as a Gaussian function

ψX0,σ =
1

(2πσ2)1/4
e−

(x−X0)2

4σ2 (134)

peaked on a complex position X0 := x0 + 2iσ2~−1p0. As Kt(h,H0) is the analytic

continuation to SL(2,C) of the heat kernel Kt(h, h0) on SU(2) and t = 0 reduces

Kt(h, h0) to a delta function, Hab is analogous to X0 (while hab analogous to x0)

and tab is analogous to σ.

As SL(2,C) is diffeomorphic to SU(2)×su(2), we can decompose each SL(2,C)

element as

Hab = hab e
2itLab , (135)

where hab ∈ SU(2) and Lab ∈ su(2). Alternatively, Hab can be written in the form

Hab = nab e
−i(ξab+iηab)

σ3
2 n−1

ba , (136)

where nab, nba ∈ SU(2) are two unrelated group elements of SU(2), ξ ∈ [0, 2π) is

an angle, and ηab ∈ R+ is a positive real numbers. Any element n of SU(2) can be

associated with a unit vector ~n ∈ R3 via

~n := R(j=1)(n) · ~z, (137)

where ~z = (0, 0, 1) ∈ R3 and R(j=1)(n) acts as a rotation matrix. Consequently,

for each link l ≡ ab, we have four labels of two unit vectors, one angle, and one

real number: (~ni(l), ~nf(l), ξl, ηl) ≡ (~nab, ~nba, ξab, ηab), where i(l) and f(l) denote the

initial and final endpoints (nodes) of the link l.

Therefore, apart from the labels tab (its meaning will be clarified shortly), the

state given in Eq. (132) associated with a spin network graph Γ is labelled by a

number ηl and an angle ξl for each link l, and for each node a set of unit vectors

~n, one for each link at that node. These variables together admit a geometric

interpretation of a simplicial 3-complex as follows. The graph Γ is assumed to be

dual to a simplicial decomposition of the spatial manifold, as each node is dual to a

3-simplex (chunk of space) and each link is dual to a face of two adjacent simplices.

The vectors ~n’s at a node are outgoing unit vectors normal to the faces of the simplex

dual to the node,s and the positive parameter ηl for a link l is related to a spin j0l ,

which is the average of the area of the face dual to the link l. Furthermore, the

simplicial extrinsic curvature is specified by an angle for each face of two adjacent

simplices and is identified by ξl. To sum up, the state in Eq. (132) is specified

by both an intrinsic geometry (labelled by ~n and j0l ) and an extrinsic geometry

(labelled by ξl) for a simplicial 3-complex due to Γ.

To see that the holomorphic coherent states represent semiclassical states at

some appropriate large-scale limit, we study their asymptotics for large ηl. Using
sNote that in general ~nab 6= −~nba. The difference between ~nab and −~nba encodes connections of
the intrinsic geometry.
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the asymptotic formula

R(jab)(e−i(ξab+iηab)σ3/2) ≈ e−iξabjabeηabjab |jab,+jab〉〈jab,+jab| (138)

for ηab → ∞, it was shown in Ref. [89] that the holomorphic coherent state in

Eq. (132) is given by the superposition:

ΨΓ,Hab,tab
(hab) ≈

∑

jab

(∏

ab

(2jab + 1) cj0
ab
,ξab,σ0

ab
(jab)

)

×ΨΓ,jab,Φa(~nab)(hab), (139)

where cj0,ξ,σ0(j) is a Gaussian function multiplied by a phase:

cj0,ξ,σ0(j) := exp

(
− (j − j0)2

2σ0

)
e−iξj (140)

with

(2j0ab + 1) :=
ηab
tab

, and σ0
ab :=

1

2tab
. (141)

Here, Φa(~nab) is the coherent intertwiner introduced in Ref. [90], which is a linear

superposition of an orthonormal intertwiner basis {ia}, given by

Φa(~nab)
m′

1···
m1··· =

∑

ia

Φia(~nab)v
m′

1···
ia m1···

(142)

with

Φia(~nab) = via ·
(⊗

b

|jab, ~nab〉
)
, (143)

where |jab, ~nab〉 := R(jab)(nab)|jab,+jab〉. The states ΨΓ,jab,Φa(~nab) are spin networks

with coherent intertwiners:

ΨΓ,jab,Φa(~nab)(hab) :=
∑

ia

(∏

a

Φia(~nab)

)
ΨΓ,jab,ia(hab). (144)

The asymptotic states given by Eq. (139) are exactly the boundary semiclassical

states used in Ref. [91] and the coefficients cj0,ξ,σ0(j) in Eq. (140) are the same as

proposed in Ref. [92], which demand that the states are peaked both on the area

(j0) and on the extrinsic angle (ξ) with appropriate spread widths (specified by

σ0 ≡ 1/(2t) ≈ (j0)k with k < 2). These states represent the boundaries of Euclidean

4-geometries and are used to compute transition amplitudes for given boundary

states in the Euclidean theory (see Sec. 12.6). The analysis of graviton propagators

provides a methodology for studying the low-energy physics, and particularly the

comparison to the classical theory of Euclidean GR confirms that the value ξ is

fixed by ξ = γ cos−1(−1/4). The construction of holomorphic coherent states for

the Lorentzian theory however is much less established and demands more works of

further research.
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9. Spin foam theory

Conventional QFTs admit two different formulations: the canonical (Hamiltonian)

formalism and the sum-over-histories (path integral) formalism. So far we have

concentrated on the canonical formulation of LQG. It is time to discuss the “spin

foam” theory, which can be viewed as the covariant approach of LQG, alternative to

the canonical approach. While the general structure of spin foam models matches

nicely with the canonical theory of LQG, the precise relation between these two

formalisms however is still not entirely clear and remains a key topic in current

research (see Sec. 12.5). Up to now, the canonical theory of LQG and the theory of

spin foams should be regarded as two closely related but independent approaches

of QG. In this section, we present the basic ideas of the spin foam theory and refer

readers to Refs. [13–17] for detailed construction of spin foam models. Also see

Chap. 9 of Ref. [9] and Chap. 14 of Ref. [10] for shorter accounts.

9.1. From s-knots to spin foams

Spin foams can be regarded as the “worldsurfaces” swept out by s-knots traveling

and transmuting in time. A spin foam represents a quantized spacetime, in the

same sense that an s-knot represents a quantized space.

Consider the transition amplitude from one s-knot (k′| to another (k|
W (k, k′) := (k|P̂C |k′) (145)

as given in Eq. (124). The operator P̂C projects s-knots into the kernel of Ĉ[N ].

Heuristically, we can write the projector as

P̂C = lim
t→∞

e−Ĉ[N ]t = lim
t→∞

∑

E≥0

|E) e−Et(E| =
∑

E=0

|E)(E| (146)

assuming the operator Ĉ[N ] has a nonnegative spectrum of E.t Consequently,

W (k, k′) = lim
t→∞

(k|e−Ĉ[N ]t|k′). (147)

In the same fashion of the path integral in quantum mechanics, inserting resolutions

of the identity 1 =
∑

k |k)(k|, we can expand the above expression as a product of

small time-step evolutions:

W (k, k′) = lim
t→∞

lim
M→∞

∑

k1,...,kM

(k|e−Ĉ[N ]∆t|kM )(kM |e−Ĉ[N ]∆t|kM−1)

· · · (k2|e−Ĉ[N ]∆t|k1)(k1|e−Ĉ[N ]∆t|k′), (148)

tAs commented in Sec. 6.2, the projector P̂C is independent of the choice of N(x), but we have
to assume hermiticity and positive definiteness of Ĉ[N ] in Eq. (146). Hermiticity can be easily
prescribed as discussed in the last paragraph in Sec. 6.3. Positive definiteness, however, is not
guaranteed, but heuristically we can replace the local scalar constraint C(x) with

√

C(x)2 be-
fore regularization and quantization to yield positive definiteness. This heuristic tweak in fact
makes good sense from the standpoint of the Master constraint program, which will be outlined
in Sec. 12.1.
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where ∆t ≡ t/M . For a fixed t, we can always make M big enough such that ∆t

smaller than any given number. When ∆t is sufficiently small, we have

(kn+1|e−Ĉ[N ]∆t|kn) ≈ δkn+1,kn −∆tN(v)(kn+1| Ĉ[1]|kn), (149)

where (kn+1| Ĉ[N ]|kn) ≡ N(v)(kn+1| Ĉ[1]|kn) is nonvanishing only between two s-

knots kn, kn+1 that differ by the action of Ĉ at a node v. As discussed in Sec. 6.3,

the action of Ĉ is to add or remove one or two extraordinary loops and also modify

the colorings. Therefore, while δkn+1,kn keeps kn+1 to be the same as kn, the action

of (kn+1| Ĉ[N ]|kn) is on the nodes of s-knots as schematically illustrated in Fig. 3.

Consequently, for k 6= k′, Eq. (148) leads to

W (k, k′) = lim
∆t→0

∞∑

N=0

(−∆t)N+1
∑

k1,...,kN
kn+1 6=kn

(k|Ĉ[1]|kN )(kN |Ĉ[1]|kN−1)

· · · (k2|Ĉ[1]|k1)(k1|Ĉ[1]|k′), (150)

where we have absorbed the factor N(v) into ∆t and also identify k′ ≡ k0 and

k ≡ kN+1 for shorthand.

Now, recall that in Sec. 6.2, as a consequence of the intimate interplay be-

tween 3d diffeomorphism invariance and 3d short-scale discreteness, the value of

(Ψ| ĈEucl
Rǫ

Φ〉 in Eq. (106) turns out to be independent of ǫ once ǫ is sufficiently small

and consequently the regulator for ǫ→ 0 can be removed. The regulator ∆t on the

right-hand side of Eq. (150) is analogous to ǫ in the sense that reparametrization

invariance in time now plays the role of 3d diffeomorphism invariance. That is, as

long as ∆t is small enough, making it smaller will not change anything further. In

addition to discreteness of space at the Planck length scale, let us postulate also

discreteness of time at the Planck time scale. It is then suggested, somehow by the

interplay between reparametrization invariance and short-scale discreteness in time,

that the dependence on ∆t in Eq. (150) should go away as ∆t becomes sufficiently

small and consequently the regulator for ∆t → 0 should be removed.u

By removing the regulator ∆t, Eq. (150) then leads to

W (k, k′) =
∞∑

N=0

w(N)
∑

σ(N)

A(σ(N)) ≡
∑

σ=(k,...,k′)
kn+1 6=kn

w (N(σ)) A(σ), (151)

where w(N) is a weight factor for different N arising from (−∆t)N+1, and

σ(N) := (k ≡ kN+1, kN , kN−1, . . . , k1, k
′ ≡ k0) with kn+1 6= kn is a discrete se-

quence of s-knots, which represents a “history” from k′ to k with N + 1 times

of intermediate state change. The amplitude associated with a particular history

uThe short-scale discreteness in time is only postulated. Whether the canonical theory of LQG
gives rise to temporal discreteness is unknown. The suggestion is only heuristic. Rigourously, to
make sense of it, we might have to reformulate the regulator Rǫ in Sec. 6.2 such that it is intricately
matched with the lapse function N in a 4d diffeomorphism covariant manner.
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σ = (k, · · · , kv+1, kv, · · · , k′) is given by

A(σ) =
∏

v

Av(σ) (152)

where v labels the steps of the history, and Av(σ) is determined by

Av(σ) ∼ (kv+1| Ĉ[1]|kv) (153)

up to a constant proportional factor that can be absorbed into rescaling of ∆t.

In Eq. (151), the transition amplitude is cast in a sum-over-histories formulation,

which is not a functional integral over continuous histories of fields but a sum over

discrete histories of s-knots.

A history σ = (k, · · · , kv+1, kv, · · · , k′), kn+1 6= kn, is called a spin foam. More

precisely, imagine that a graph of an s-knot in an abstract 4d space moves upward

along the “time” direction and the graph is changed by branching of its edges at each

step under the action of Ĉ; the worldsheet swept out by the moving and changing

graph is the spin foam. Call “faces” and denote by f the worldsurfaces of the links

of the graph; call “edges” and denote by e the worldlines of the nodes of the graph;

and call “vertices” and denote by v the points at which the edges branch. Figure 4

depicts a vertex of a spin foam corresponding to the action in Fig. 3, and Fig. 5

shows a simple examples of spin foams.

time

Fig. 4. Left : A typical spin foam vertex (colorings of adjacent edges and faces are not indicated).
Right : Time-slicing (foliation) of the left diagram gives the evolution of s-knots (time is chosen to
to be vertically upward). The trivalent node on the bottom is branched into three trivalent nodes
on the top.

The combinatorial object defined by the collection and the adjacency relation of

faces f , edges e, and vertices v is called a “two-complex” and denoted by Γ. As an s-

knot is identified not only by its graph but also the colorings of its links (irreducible

representations) and nodes (intertwiners), accordingly a spin form denoted by

σ = (Γ, jf , ie) (154)

is determined by a two-complex Γ, the coloring of irreducible representations jf
associated with faces f , and the coloring of intertwiners ie associated with edges e.
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(k|

(k′|

Fig. 5. Left : A simple spin foam composed of 2 vertices, 6 edges, and 6 faces (3 faces inside
the cylinder are shaded; the other 3 on the surface of the cylinder are not). Its top and bottom
boundaries, (k| and (k′|, are given by two θ-shaped s-knots. Middle: Time-slicing of the left spin
foam shows the evolution from (k′| to (k| through an intermediate s-knot state. Right : The left
and right diagrams overlapped for better visualization.

9.2. Spin foam formalism

The discussion in the previous subsection motivates a sum-over-histories formulation

of QG. For a given spin foam σ = (Γ, jf , ie), it is natural to implement Av(σ) in

Eq. (153) as a function Av(jf , ie), called the vertex amplitude associated with the

vertex v, where jf and ie are the colorings for the faces and edges adjacent to v.

Consequently, Eqs. (151) and (152) lead to the formal spin foam expression of the

amplitude transition:

W (k, k′) =
∑

∂σ=k∪k′
w (Γ(σ))

∑

jf ,ie

∏

v

Av(jf , ie), (155)

where ∂σ = k ∪ k′ indicates that the boundary (i.e., initial and final s-knots) of σ

is given by the union of k′ and k, and w(Γ) is a weight factor that depends only

on the two-complex. The weight factor w(Γ) is a generalized form of w(N), where

N = N(Γ) is the number of vertices of Γ.

It is often more convenient to recast Eq. (155) in the extended form

W (k, k′) =
∑

∂σ=k∪k′
w (Γ(σ))

∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie), (156)

where Af and Ae are the amplitudes associated with faces and edges, which in prin-

ciple can be absorbed into a redefinition of Av. For most models in the literature,

Af (jf ) is simply given by the dimension dim(jf ) of the irreducible representation

jf . Consequently the transition amplitude is given in the form

W (k, k′) =
∑

∂σ=k∪k′
w (Γ(σ))

∑

jf ,ie

∏

f

dim(jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie), (157)
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and accordingly the partition function is given by

Z =
∑

σ

w (Γ(σ))
∑

jf ,ie

∏

f

dim(jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie). (158)

A spin foam model is then formally defined by the specification of

(1) a category of two-complexes Γ and the weight factor w(Γ).

(2) a Lie (or deformed Lie) group and associated irreducible representations jf
and intertwiners ie.

(3) functions of the vertex amplitude Av(jf , ie) and the edge amplitude

Ae(je, ie).

There are various spin foam models that have been elaborated [14–17]. They

provide tentative quantum theories of 3d GR, 4d BF theories, 4d Euclidean GR,

etc. A remarkable feature is that many very different models all coincide with

the form of Eq. (158), suggesting that this expression can be viewed as a general

background-independent formalism of covariant QFTs (also see Sec. 12.6).

10. Black hole thermodynamics

From theorems proved by Hawking et al. [93, 94], which reveal a remarkable re-

semblance between a set of laws obeyed by black holes and the principles of ther-

modynamics, Bekenstein suggested that a Schwarzschild black hole should carries

an entropy proportional to the area of its event horizon divided by the Planck

area [95–97]:

SBH = a kB
A

G~
(159)

where kB is Boltzmann’s constant, a is a proportional constant, and A = 4π(2GM)2

is the area of the event horizon with M being the mass of the black hole. By the

standard thermodynamical relation T−1 = dS/dE ≡ dS/dM , this implies that the

black hole has a finite temperature

T =
~

a32πkBGM
. (160)

Shortly after Bekenstein’s conjecture, by studying QFT in a gravitational back-

ground, Hawking showed that black holes emit thermal Hawking radiation [98, 99]

corresponding to the Hawking temperature

T =
~

8πkBGM
, (161)

which tightly confirms Bekenstein’s conjecture and fixes the constant a = 1/4.

Equation (159) with a = 1/4 is often referred to as the Bekenstein-Hawking formula:

SBH = kB
A

4G~
, (162)
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(where the subscript “BH” coincidentally stands for both “black hole” and

“Bekenstein-Hawking”).

In the modern interpretation of entropy in statistical mechanics, entropy (di-

vided by kB) is defined as the logarithm of the number of admissible microstates for

a given macroscopic state. What then are the microscopic degrees of freedom re-

sponsible for the black hole entropy? Can we derive Eq. (162) from first principles?

As ~ enters in Eq. (162), answers to these questions require a quantum theory of

gravity. In LQG, a detailed description of black hole thermodynamics has become

an active direction of research. One of the major achievements of LQG is to derive

the Bekenstein-Hawking formula from the first principles for the Schwarzschild and

other black holes [100–108].

In Secs. 10.1 and 10.2, we present the basic ideas, following Refs. [109, 110] (also

see Sec. 8.2 of Ref. [9]). Readers are referred to Chap. 15 of Ref. [10] for a rigourous

treatment and Sec. 8 of Ref. [8] for a shorter account. More recent advances in the

black hole entropy can be found in the excellent review paper Ref. [111]; we mention

some of the important results in Sec. 10.3. Also see Chap. G for other aspects of

black hole thermodynamics.

10.1. Statistical ensemble

The microscopic degrees of freedom responsible for the black hole entropy SBH are

those that can participate in the energy exchanges with the exterior. Because, by

definition of black holes, the states of gravity and matter inside a black hole have no

effect on the exterior, the microstates of the interior of the black hole are irrelevant

for SBH measured from the exterior.v Observed from the exterior, therefore, the

entropy of the black hole (for its thermal interaction with the surrounding exterior)

is completely determined by the geometry of the event horizon.

More precisely, the microcanonical ensemble is composed of the microstates of

the horizon geometry that give rise to an exactly specified total area. Denote by

N(A) the number of the microcanonical ensemble of area A, the quantity S(A) =

kB lnN(A) is then the entropy for the black hole as far as its thermal interaction

with the exterior is concerned.

Given any arbitrary surface (say, not a horizon of any kind), we can of course

ask how many microstates of the surface correspond to a specific area, but the

number of the microstates usually has no thermodynamical significance. As heat or

information can flow across a surface without changing its geometry, the geometry of

a surface and thus the number of its microstates in general have nothing to do with

the heat exchange or the notion of entropy. As originally argued by Jacobson [112],

it is for any causal horizon that the heat flow always accompanies a stress-energy

tensor that distorts the horizon geometry and consequently the entropy measured

by the observer who is separated from the system by the causal barrier is given by

vFor instance, in the Kruskal extension of a Schwarzschild black hole, the region III may contains
billions of galaxies, but these do not bear any detectable consequences for us in the region I.
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the geometry of the causal horizon (see also Refs. [113, 114] and see Ref. [115] in

the context of LQG). The black hole entropy given by the geometry of the event

horizon is a special case of Jacobson’s argument.

10.2. Bekenstein-Hawking entropy

Let us now compute the number N(A) from the quantum geometry of LQG. First,

consider that the quantum state of the geometry of a 3d ADM leaf Σt is given by

an spin network state |s〉. The horizon is a 2d surface S imbedded in Σt and its

geometry is determined by its intersections with the spin network |s〉. As we are

interested in the geometry as probed from the exterior, the surface S we consider

is, more rigorously, the one that is outside but infinitesimally close to the horizon.

Therefore, we exclude the possibility that the spin network nodes lie on S and,

instead of Eq. (75), the area of S is simply given by Eq. (74)

A(S) = 8πG~γ
∑

i

√
ji(ji + 1) , (163)

where j1, . . . , jn are the colorings of the links intersecting the surface S.
For a given A, how many admissible microstates of the horizon are there then?

From the perspective of an external observer, an admissible microstate corresponds

to a possible choice of the sequence j1, . . . , jn that gives rise to A via Eq. (163) and

a possible way of “ending” the links to the exterior. A possible “end” of a link with

coloring j is simply a vector in the vector space of the j representation, which has

a (2j + 1)-fold multiplicity. To sum up, the admissible microstates are obtained

by considering all sequences j1, . . . , jn that give the area A, and for each sequence

there is a multiplicity of
∏
i(2ji + 1) possible states.

For a large A much greater than the Planck area ℓ2Pl ≡ G~, we assume that

the number of admissible microstates is dominated by the case of ji = 1/2 for all

intersecting links (we will come back to this assumption shortly). In this case, the

area of a single link is given by

Aj=1/2 = 4π
√
3G~γ (164)

and thus the number of intersections is

n =
A

Aj=1/2
=

A

4π
√
3G~γ

. (165)

Each j = 1/2 link has a multiplicity of (2j+1) = 2, so the total number of admissible

microstates for a given large A is given by

N(A) = 2n = 2
A

4π
√

3G~γ . (166)

Consequently, we obtain the entropy of the black hole

SBH = kB lnN(A) =
1

γ

ln 2

4π
√
3
kB

A

G~
, (167)
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which agrees perfectly with the Bekenstein-Hawking entropy Eq. (162) provided

that the Barbero-Immirzi parameter is fixed at the value

γ =
ln 2

π
√
3
= 0.127384 . . . (168)

The Bekenstein-Hawking entropy can be calculated for different kinds of black holes

by LQG. The striking feature is that they all lead to the same value of γ and thus

ensure the consistency of the black hole thermodynamics under the framework of

LQG.

We have made the assumption that the leading contribution to the entropy

comes entirely from the lowest states (ji = 1/2), as had been suggested in Ref. [102]

and considered true for several years. The detailed computation of Refs. [116, 117]

based on a practical rephrasing of the combinatorial problem pointed out that in

fact all quantum states (not only the lowest ones) must be taken into account. This

leads to a revision from Eq. (168) for the value of γ, which can be numerically

calculated at arbitrary accuracy [117] as

γ = γM ≡ 0.23753295796592 . . . (169)

The simple calculation presented above on the flawed assumption nevertheless

grasps the conceptual essence of relating the number of microstates to the black

hole entropy.

10.3. More on black hole entropy

Section 10.2 gives a simple account for the black hole entropy from first principles

of LQG. A more rigorous approach is the modeling of black holes in LQG by us-

ing isolated horizons as inner boundaries [100–102]. Quantization of the degrees of

freedom for the isolated horizon can be understood as a Chern-Simons theory. Ob-

tained by tensoring the Chern-Simons boundary Hilbert space and the LQG bulk

Hilbert space, the Hilbert space of the resulting model provides the groundwork to

address the statistical problems of black holes.

The combinatorial problem associated with the computation of the black hole

entropy can be rephrased in a more manageable way [116, 117], allowing one to

compute the asymptotic behavior of the black hole entropy in the limit of large

horizon area. ForA≫ ℓ2Pl, the computation gives an exact formula to the subleading

order as

k−1
B S = lnN(A) =

γM
4γ

A

G~
− 1

2
ln

A

G~
+O

(
(A/ℓ2Pl)

0
)
, (170)

where γM is a constant, whose numerical value is given by Eq. (169). This for-

mula agrees with Eq. (159) on the proportionality to A in the leading order and

also obtains the precise subleading order correction as a logarithmic function of

A. Comparison to the Bekenstein-Hawking formula in Eq. (162) fixes the Barbero-

Immirzi parameter γ to be γ = γM.
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For small areas, the precise number counting was first suggested in Refs. [118,

119] and later has been thoroughly investigated by employing number-theoretical

and combinatorial methods (see Ref. [120] for a detailed account and Ref. [111] for

a review). The key discovery is that, for microscopic black holes, the so-called black

hole degeneracy spectrum when plotted as a function of the area exhibits a persis-

tent “periodicity” (more precisely, a modulation with a regular period of growing

magnitude). This produces an effectively evenly-spaced area spectrum, despite the

fact that the area spectrum in LQG is not evenly spaced, and makes contact in a

nontrivial way with the evenly-spaced black hole horizon area spectrum predicted

by Bekenstein and Mukhanov under general conditions [121]. The periodicity in

the degeneracy spectrum leads to a striking “staircase” structure with regular steps

when the black hole entropy is plotted as a function of the area. The staircase

behavior eventually disappears in the large area limit.

The framework of precise number counting also predicts the subleading correc-

tion to the Bekenstein-Hawking law. For various model settings, the subleading

correction generically takes the form a1kB lnA/ℓ2Pl, where the coefficient a1 is inde-

pendent of the value of γ but differs for different models. The logarithmic correction

is qualitatively in agreement with those obtained by different approaches (includ-

ing those based on asymptotic symmetries, horizon symmetries, and certain string

theories), despite very different physical assumptions; there are some indications

that even the coefficient a1 might be universal, up to differences on the treatment

of angular momentum and conserved charges [122].

Recently, an explicit SU(2) formulation for the black hole entropy has been

developed based on covariant Hamiltonian methods [123–125]. This formulation

avoids the partial gauge fixing of the standard approach and gives rigorous support

for the earlier proposal that the quantum black hole degrees of freedom could be

described by an SU(2) Chern-Simons theory.

11. Loop quantum cosmology

Loop quantum cosmology (LQC) is a finite, symmetry-reduced model of LQG that

applies principles of the full theory to cosmological settings. Thanks to the math-

ematical simplifications, many obscure aspects (e.g. quantum dynamics and semi-

classical physics) in the full theory become transparent in LQC. The framework of

LQC provides a “bottom-up” approach to the full theory, in which many ideas of

LQG can be explicitly implemented and tested.

The distinguishing feature of LQC is that the quantum geometry of LQG gives

rise to a brand new quantum force that is inappreciable at low spacetime curvature

but rises very rapidly and opposes the classical gravitational force in the Planck

regime. As a consequence, for a variety of models of LQC, the cosmological singu-

larity (big bang, big crunch, big rip, etc.) is avoided by the opposing force, therefore

affirming the long-held conviction that singularities in GR signal a breakdown of
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the classical theory and should be resolved by the quantum effects of gravity. Par-

ticularly, the big bang singularity is replaced by a quantum bounce, which bridges

the present expanding universe with a preexistent contracting universe. The new

cosmological scenario suggests a change of the paradigm in the standard big-bang

cosmology.

In what follows, to illustrate the basic ideas of LQC, we consider the simplest

setting—LQC in the k = 0 Friedmann-Lemâıtre-Robertson-Walker (FLRW) model

and particularly follow the lines of Ref. [126]. See Refs. [18–21] for more detailed

construction and more models of LQC.

11.1. Symmetry reduction

The first step is to impose symmetries of cosmology—spatial homogeneity and of-

tentimes also isotropy—on the phase space variables before quantization. Symmetry

reduction deliberately ignores infinitely many degrees of freedom and thus brings

up the question whether the results from the full theory of LQG, if can be obtained

after all, should resemble any predictions by by LQC. The arguments in Sec. 1.2

of Ref. [19] suggest that the answer is likely to be affirmative, provided that the

framework of LQC captures the essential features of the full theory.

In the k = 0 FLRW model, both homogeneity and isotropy are assumed and the

spacetime metric in the comoving coordinates is given by

dτ2 ≡ gµνx
µdxν = −N(t)dt2 + a(t)2dx2. (171)

With the imposition of homogeneity and isotropy, the fundamental fields Aia(x) and

Ẽ
a

i (x) are reduced to two variables c and p:

Aia(x) → c, Ẽ
a

i (x) → p, (172)

which are independent of x because of homogeneity and satisfy the canonical relation

{c, p} =
8

3
πGγ, (173)

which is the symmetry-reduced counterpart of Eq. (17). As Ẽ
a

i is related to “area”

in the sense of Eq. (73), the symmetry-reduced variable p represents the area of the

surfaces of a finite-sized cubic cell V (which is chosen to make sense of the spatial

integral
∫
Σ d

3x→
∫
V d

3x); more precisely,

p = a2L2, (174)

where a is the scalar factor in Eq. (171) and L is the coordinate length of the edges

of V .
Under the symmetry reduction, the Gauss constraint is trivially satisfied, and

the diffeomorphism constraint is no longer an issue as the diffeomorphism invariance

is gauge fixed in accord with the homogeneity. Only the scalar constraint remains

significant. In the k = 0 FLRW setting, we have F = dA + A ∧ A = A ∧ A and
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K = (A − Γ)/γ = A/γ, which lead to F = A ∧ A = γ2K ∧ K, or equivalently

ǫijkF
k
ab = 2Ai[aA

j
b] = 2γ2Ki

[aK
j
b]. Correspondingly, Eq. (22) becomes

C[N ] = − N

8πGγ2

∫

V
d3x

Ẽ
a

i Ẽ
b

j√
|q|

ǫijkF
k
ab,≡ − N

8πGγ2

∫

V
d3x

Ẽ
a

i Ẽ
b

j√
|q|

2Ai[aA
j
b], (175)

where N = N(t) is independent of x, and the spatial integral
∫
Σ d

3x is restricted to∫
V d

3x ≡
∫ L
0 dx1

∫ L
0 dx2

∫ L
0 dx3 to make C[N ] finite. By Eq. (172), it follows from

Eq. (175) that the gravitational part of the scalar constraint in terms of c and p is

given by

Cgrav(N) = − 6N

8πGγ2
p2√
p3
c2, (176)

where the lapse function N(x, t) = N(t) is chosen to be homogeneous.

In the full theory, instead of A(x) and Ẽ(x), the holonomy hγ and the electric

flux over a surface ES,f are used as the fundamental variables for loop quantization.

In the symmetry-reduced theory, analogous to Eq. (29), the variable c is replaced

by the “holonomy” of c, defined as

Nµ := eiµc/2 (177)

for an arbitrary µ ∈ R. On the other hand, corresponding to Eq. (30), p remains

the good variable, as it is redundant to specify S and f(x) in the homogeneous and

isotropic setting. The variables Nµ and p form the closed “loop algebra”:

{Nµ, p} = i
4πGγ

3
µNµ and {Nµ,Nν} = 0. (178)

The symmetry reduction into the k = 0 FLRW model is summarised in Table 3.

Table 3. Symmetry reduction in the k = 0 FLRW model.

in the full theory in the k = 0 FLRW model

Ai
a(x) c

Ẽ
a
i (x) p

{Ai
a(x), Ẽ

b
j(y)} = 8πGγ δijδ

b
aδ

3(x− y) {c, p} = 8
3
πGγ

CG[λ] —

CDiff [ ~N ] —
C[N ] in Eq. (22) Cgrav(N) in Eq. (176)

holonomy: hγ in Eq. (29) Nµ := eiµc/2, µ ∈ R

electric flux: ES,f in Eq. (30) p

loop algebra: {hγ , ES,f} = . . . {Nµ, p} = i 4πGγ
3

µNµ
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11.2. Quantum kinematics

Analogous to the linear space Cyl of cylindrical functions of A, i.e. ΨΓ,f [A], defined

in Eq. (36) in the full theory, we begin with the linear space CylS of almost periodic

functions of c defined as

Ψ(c) =
∑

k

ξkNµk
(c) ≡

∑

k

ξke
iµkc/2, (179)

where k runs over a finite number of integers, µk ∈ R, and ξk ∈ C. Analogous to

the inner product of Cyl defined in Eqs. (37) and (38), the inner product of CylS is

defined via

〈Nµ1 |Nµ2〉 ≡ 〈µ1|µ2〉 = δµ1µ2 , (180)

where the right-hand side is the Kronecker delta, but µ1, µ2 ∈ R take continuous

values. This inner product is very different from that defined via 〈µ1|µ2〉 = δ(µ1 −
µ2) with the Dirac delta function. To highlight this nuance, CylS is said to be in

the “polymer representation” of µ.

The (gravitational part) of the kinematical Hilbert space HS
kin is the Cauchy

completion of CylS with respect to the inner product Eq. (180). That is, HS
kin =

L2(RBohr, dµBohr), where RBohr is the Bohr compactification of R and dµBohr is the

corresponding measure. An orthonormal basis of HS
kin is given by {Nµ|µ ∈ R}. By

Dirac’s bra-ket notation, the map c 7→ eiµc/2 is denoted by |µ〉 with
ei

µc
2 = 〈c|µ〉, (181)

and consequently we have

|Ψ〉 =
∑

µ

|µ〉〈µ|Ψ〉 ≡
∑

µ

Ψ(µ)|µ〉. (182)

Analogous to the holonomy, area, and volume operators defined in Sec. 5, we

have corresponding operators acting on HS
kin:

N̂µΨ(c) ≡ êi
µc
2 Ψ(c) := ei

µc
2 Ψ(c), (183)

p̂Ψ(c) := −i8πγ
3

ℓ2Pl

∂Ψ(c)

∂c
, (184)

V̂Ψ(c) := |p̂|3/2Ψ(c), (185)

where ℓPl ≡
√
G~ is the Planck length. When acting on the basis state |µ〉, these

operator behave as

N̂µ′ |µ〉 ≡ êi
µc
2 |µ〉 = |µ+ µ′〉, (186)

p̂ |µ〉 = 8πγ

6
ℓ2Pl µ|µ〉, (187)

V̂ |µ〉 = Vµ|µ〉 ≡
(
8πγ

6
|µ|
)3/2

ℓ3Pl|µ〉. (188)

The correspondence for quantum kinematics between the full theory and the

symmetry-reduced theory is listed in Table 4.
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Table 4. Quantum kinematics of LQG and LQC in the k = 0 FLRW model.

LQG LQC in the k = 0 FLRW model

Cyl CylS

cylindrical functions: almost periodic functions:

ΨΓ,f [A] in Eq. (36) Ψ(c) =
∑

k ξkNµk
≡

∑

k ξke
iµkc/2

inner product: inner product:
〈ΨΓ,f |ΨΓ′,g′ 〉 in Eqs. (37), (38) 〈Nµ1 |Nµ2〉 ≡ 〈µ1|µ2〉 = δµ1µ2

H = L2[A, dµAL] HS
kin = L2(RBohr, dµBohr)

|Γ, jl, αl, βl〉 in Eqs. (39), (40) |µ〉
spin networks |Γ, jl, in〉 |µ〉 (Gauss constraint trivial)
s-knots (K, c| |µ〉 (no diffeomorphism constraint)

holonomy operator: ĥγ in Eqs. (63), (64) N̂µ′ |µ〉 ≡ êiµ
′c/2|µ〉 = |µ+ µ′〉

area operator: Ê(S) in Eq. (75) p̂ |µ〉 = 8πγ
6

ℓ2Pl µ|µ〉

volume operator: V̂ (R) in Eq. (83) V̂ |µ〉 =
(

8πγ
6

|µ|
)3/2

ℓ3Pl|µ〉 ≡ Vµ|µ〉

11.3. Quantum constraint operator

Just as in the full theory, we have to regularize the scalar constraint before quan-

tization. In Eq. (175), the nonpolynomial factor 1/
√
|q| is dealt with Thiemann’s

trick and Fab is replaced by a holonomy long a square loop @. Corresponding to

Eqs. (100) and (101) (with R(j) = R(1/2), CiJ = 1), it turns out Cgrav with N = 1

can be can be written as

Cgrav = lim
λ→0

C(λ)
grav, (189a)

C(λ)
grav = − 4 sgn(p)

8πγ3λ3G

∑

ijk

ǫijkTr
(
h
(λ)
i h

(λ)
j

(
h
(λ)
i

)−1(
h
(λ)
j

)−1
h
(λ)
k

{(
h
(λ)
k

)−1
, V
})

= sinλc

[
− 4 sgn(p)

8πγ3λ3G

∑

k

Tr τk h
(λ)
k

{(
h
(λ)
k

)−1
, V
}]

sinλc, (189b)

where

h
(λ)
i = cos

λc

2
+ 2τi sin

λc

2
(190)

is the holonomy along the edge of @, which is in the xi direction and of coordinate

length λL, and λ plays the role of ǫ in Eq. (100) (more precisely, λL = ǫ).

It is straightforward to obtain the quantum operator Ĉ
(λ)
grav associated with C

(λ)
grav,

but the limit λ → 0 is ill-defined. Unlike the full theory of LQG, the dependence

of Ĉ
(λ)
grav on the regulator λ does not go away because the diffeomorphism has been

gauge fixed. In order to inherit the spatial discreteness from LQG appropriately,

we take the prescription by hand to shrink the square loop @ to a finite area equal

to the area gap ∆, i.e. the smallest nonzero eigenvalue of area, given by Eq. (76).w

wAs this is only a phenomenological prescription, different numerical values for ∆ of the same
order of magnitude are also used in the literature.
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Consequently, we are led to choose for λ a specific function λ = µ̄(p) given by

Area of @ = a2(λL)2 = µ̄2|p| = ∆, (191)

or equivalently

µ̄ =

√
∆

|p| =
√
3
√
3√

2

1√
|µ|
. (192)

Equation (186) suggests that, in a heuristical sense,

êi
µ̄c
2 Ψ(µ) = eµ̄

d
dµΨ(µ), (193)

even though the differential operator d
dµ is ill-defined in L2(RBohr, dµBohr). Let us

define the affine parameter

v := K sgn(µ)|µ|3/2, with K =
2
√
2

3
√
3
√
3
, (194)

such that formally

µ̄
d

dµ
=

d

dv
. (195)

In the v-representation, the action of êi
µ̄c
2 can then be defined as

êi
µ̄c
2 Ψ(v) = Ψ(v + 1), (196)

and correspondingly Eq. (188) leads to

V̂ |v〉 =
(
4πγ

3

)3/2 |v|
K
ℓ3Pl |v〉. (197)

As êi
µ̄c
2 and V̂ are now well defined, C

(λ)
grav in Eq. (189b) can be promoted to the

quantum operator

Ĉgrav = sin(µ̄c)

[
3i sgn(µ)

πγ3µ̄3ℓ2Pl

(
sin

µ̄c

2
V̂ cos

µ̄c

2
− cos

µ̄c

2
V̂ sin

µ̄c

2

)]
sin(µ̄c), (198)

where we have chosen the symmetric ordering to make Ĉgrav hermitian. Its action

on Ψ(v) is given by

ĈgravΨ(v) = f+(v)Ψ(v + 4) + f0(v)Ψ(v) + f−(v)Ψ(v − 4), (199)

where

f+(v) =
27

16

√
4π

3

KℓPl

γ3/2
|v + 2|

∣∣|v + 1| − |v + 3|
∣∣, (200a)

f−(v) = f+(v − 4), (200b)

f0(v) = −f+(v)− f−(v). (200c)
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Meanwhile, to make the quantum dynamics more transparent, we add a free

massless scalar φ(x, t) = φ(t) to serve as the internal time. At the classical level,

the matter part of the scalar constraint is given by

Cmatt = 8πG|p|−3/2
p2φ, (201)

where

pφ = a3L3φ̇ (202)

is the momentum of φ and φ̇ is the derivative with respect to the proper time.

The matter part of the kinematical Hilbert space is given by the ordinary construc-

tion L2(R, dφ) without any “holonomization”. However, the inverse triad factor

|p|−3/2
still has to be regularized by Thiemann’s trick as for 1/

√
|q| in Cgrav. Up

to quantization ambiguities, the quantum operator for |p|−3/2
turns out to be

̂|p|−
3
2Ψ(v) =

(
3

4πγℓ2Pl

)3/2

B(v)Ψ(v), (203)

where

B(v) =

(
3

2

)3

K|v|
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣3. (204)

Consequently, the total quantum constraint equation is given by

ĈΨ(v, φ) =
(
Ĉgrav + Ĉmatt

)
Ψ(v, φ) = 0, (205)

which is explicitly expressed as

∂2φΨ(v, φ) = B(v)−1 (C+(v)Ψ(v + 4, φ) + C0(v)Ψ(v, φ) + C−(v)Ψ(v − 4, φ))

=: −ΘΨ(v, φ), (206)

where

C+(v) =
3πKG

8
|v + 2|

∣∣|v + 1| − |v + 3|
∣∣, (207a)

C−(v) = C+(v − 4), (207b)

C0(v) = −C+(v)− C−(v). (207c)

11.4. Physical Hilbert space

The form of the constraint equation Eq. (206) suggests that it is natural to regard

φ as the internal time, with respect to which Ψ(v) evolves. To implement this idea,

an appropriate kinematical Hilbert space for both geometry and the scalar field

is chosen to be Hkin = L2(RBohr, B(v)dvBohr) ⊗ L2(R, dφ). It is straightforward

to show that both the operators p̂φ = −i~∂φ and Θ are hermitian in Hkin, and

furthermore Θ is positive definite.

The operator Θ is a second-order difference (cf. differential) operator. Conse-

quently, the space of physical states (i.e., the space of solutions to the constraint
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equation) is naturally divided into sectors each of which is preserved by the “evolu-

tion”. Denote by Lǫ the “lattice” of points {|ǫ|+4n;n ∈ Z} ∪ {−|ǫ|+4n;n ∈ Z} in

the v-axis and denote by Hgrav
ǫ the subspace of L2(RBohr, B(v)dvBohr) with states

whose support is restricted to lattice Lǫ. Each of Hgrav
ǫ is mapped to itself by Θ.

Let ek(v) in Hgrav
ǫ be the eigenstate of Θ:

Θek(v) = ω(k)2ek(v), (208)

where ω(k)2 is the corresponding eigenvalue. The general solution to the quantum

constraint Eq. (206) with initial data in Hgrav
ǫ is then given by

Ψ(v, φ) =

∫ ∞

−∞
dk
(
Ψ̃+(k)ek(v)e

iωφ + Ψ̃−(k)ek(v)
∗e−iωφ

)
, (209)

where Ψ̃±(k) are in L2(R, dk). The positive/negative-frequency solutions satisfy a

Schrödinger type first order differential equation in φ:

∓ i
∂Ψ±
∂φ

=
√
ΘΨ±. (210)

Therefore, the positive/negative-frequency solutions with the initial state Ψ(v, φ0)

are given by

Ψ±(v, φ) = e±i
√
Θ(φ−φ0)Ψ(v, φ0). (211)

The positive-frequency and negative-frequency solutions can be discussed sepa-

rately, and we focus on the former ones in what follows.

The sector of the physical Hilbert space Hǫ
phys labelled by ǫ ∈ [0, 2] consists of

positive-frequency solutions Ψ(v, φ) to Eq. (210) with initial data Ψ(v, φ0) in the

symmetric sector of Hgrav
ǫ .x The physical inner product is defined as

〈Ψ1|Ψ2〉ǫphys :=
∑

v∈{±|ǫ|+4n;n∈Z}
B(v)Ψ1(v, φ0)

∗Ψ2(v, φ0). (212)

It is easy to show that this definition is independent of the choice of φ0 as long as

Ψ1,2(v, φ) are solutions to Eq. (210).

Dirac operators acting on Hphys are p̂φ and a family of operators |̂v|φ parame-

terized by φ, defined as

p̂φΨ(v, φ) := −i~∂Ψ(v, φ)

∂φ
, (213)

|̂v|φΨ(v, φ) := ei
√
Θ(φ−φ0)|v|Ψ(v, φ0). (214)

Both p̂φ and |̂v|φ preserve the sector Hǫ
phys and are hermitian with respect to

〈·|·〉ǫphys. The expectation value 〈Ψ| p̂φ|Ψ〉phys gives the momentum of φ, which

is a constant of motion, i.e., independent of φ. On the other hand, the expectation

value 〈Ψ||̂v|φ|Ψ〉phys tells how big the volume of V is when the internal time takes

the value φ, in the style of Eq. (123). It should be noted that the definition of |̂v|φ
in Eq. (214) is independent of the choice of φ0.
xThe sign flip v → −v corresponds to reverse of the triad orientation. Because of no parity
violating processes, we are led to choose the symmetric sector in which Ψ(−v) = Ψ(v).
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11.5. Quantum dynamics

The eigenvalue problem Eq. (208) can be numerically solved (by a computer),

and the eigenfunctions ek(v) can be used to build coherent states. Particularly,

in Eq. (209), a natural choice is to set Ψ̃−(k) = 0 and

Ψ̃+(k) = e−
k−k⋆

2σ2 e−iωφ
⋆

, (215)

with a suitable small spread σ, to obtain a coherent physical state Ψp⋆
φ
,v⋆

φ0
(v, φ).

The resulting state is peaked at 〈Ψp⋆
φ
,v⋆

φ0
| p̂φ|Ψp⋆

φ
,v⋆

φ0
〉phys = p⋆φ ≡ −

√
12πG ~ k⋆ and

at 〈Ψp⋆
φ
,v⋆

φ0
| ̂|v|φ0

|Ψp⋆
φ
,v⋆

φ0
〉phys = v⋆φ0

, where v⋆φ0
is determined by φ⋆.

To give a coherent state that is semiclassical at late times, we have to choose

large values for p⋆φ (i.e., k⋆ ≪ −1) and for v⋆φ0
(i.e., v⋆φ0

≫ 1). Given such a coherent

physical state, the evolution with respect to the internal time φ can be read out

from the expectation value

〈v(φ)〉 :=
〈Ψp⋆

φ
,v⋆

φ0
| |̂v|φ|Ψp⋆φ,v⋆φ0

〉phys
〈Ψp⋆

φ
,v⋆

φ0
|Ψp⋆

φ
,v⋆

φ0
〉
phys

. (216)

The numerical results show that the trajectory of 〈v(φ)〉 follows the classical solu-

tion at large scale but at the Planck regime undergoes the quantum bounce, which

bridges the expanding classical solution with the contracting one (see Fig. 4 in

Ref. [126]). The quantum bounce takes place when the energy density ρφ of the

scalar field approaches the critical density ρcrit ≈ 3/(8πGγ2∆) =
√
3/(16π2γ3G2~)

of the Planck scale. More precisely, the energy density operator is defined as

ρ̂φ|φ :=
p̂2φ

2 |p3|φ
≡ K2

2

(
3

4πG~γ

)3 p̂2φ
|v3|φ

(217)

and its expectation value

〈ρφ(φ)〉 :=
〈Ψp⋆

φ
,v⋆

φ0
| ρ̂φ|φ|Ψp⋆

φ
,v⋆

φ0
〉phys

〈Ψp⋆
φ
,v⋆

φ0
|Ψp⋆

φ
,v⋆

φ0
〉
phys

≈ K2

2

(
3

4πG~γ

)3 (p⋆φ)
2

〈v(φ)〉3 (218)

is bounded above by ρcrit (see Fig. 6 in Ref. [126]).

If the internal time φ is expressed in terms of the proper time t via a3L3dφ =

〈p̂φ〉dt = p⋆φdt in accord with Eq. (202),y the trajectory of 〈v(φ)〉 in relation to

〈ρφ(φ)〉 can be described rather accurately by the effective equation for the scalar

factor a(t):
(
ȧ

a

)2

=
8πG

3
ρφ

(
1− ρφ

ρcrit

)
, (219)

which is the Friedmann equation modified by the opposing quantum force.
yThe change of variables from φ to t makes sense only for sharply peaked coherent states. In the
quantum theory, the internal time is more fundamental than the proper time, which is a derived
notion only meaningful for sharply peaked coherent states.
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11.6. Other models

A slight simplification in the model discussed above leads to the “solvable LQC”

(sLQC) [127]. In sLQC, analytic solutions are available and it is shown that the

quantum bounce is generic not only for coherent states but for any arbitrary physical

states and the matter density has an absolute upper bound given by

ρcrit =
3

8πGγ2∆
. (220)

The construction of LQC has been extended to a variety of models with various

degrees of rigor, including k = +1 [128] and k = −1 [129] FLRW models, possibly

with a nonzero cosmological constant [130–132], Bianchi I [133–137], Bianchi II [138]

and Bianchi IX [139] models, Kantowski-Sachs model [140, 141], unimodular model

[142], higher-order holonomy extension [143, 144], and much more. The bouncing

scenario has been shown to be robust in different models.

Particularly, the formalism of LQC in the Kantowski-Sachs model can be used to

study the loop quantum geometry of the interior of a Schwarzschild black hole [145–

149]. The study suggests that, just like resolution of the cosmological singularity,

the classical black hole singularity is also resolved by the loop quantum effects and

replaced by the quantum bounce, which either bridges the black hole interior to a

white hole interior or gives birth to a baby black hole [149].z

Furthermore, inhomogeneity has also been taken into consideration in the Gowdy

model (the simplest of the inhomogeneous models) [150–155] as well as in the frame-

work of “lattice LQC” [156, 157].

12. Current directions and open issues

In this review article, we gave a self-contained introduction to the canonical for-

mulation of LQG and briefly covered the ideas of the spin foam theory, black hole

thermodynamics, and LQC. The core formalism of LQG provides a coherent frame-

work in which the fundamental principles of GR and QFT consort with each other

in harmony without invoking additional hypotheses. The key result of LQG is a

compelling physical picture of quantum space, which is made up of quantized areas

and volumes of the Planck scale in a profoundly background-independent fashion.

Despite many remarkable achievements, the theory of LQG is still far from com-

plete, especially for the aspects of quantum dynamics and low-energy limit. A wide

range of research has been developed for the open problems. We conclude this re-

view by outlining a non-exhaustive list of recent advances that are not covered in

the main text and also addressing some open issues along the list. One can easily

zValidity of this approach however might be questionable, since the Schwarzschild interior is ex-
tensible beyond its boundary (event horizon) and thus cannot be considered as a self-contained
universe (i.e., it is not a genuine Kantowski-Sachs spacetime). The more rigourous approach is to
consider the black hole interior and exterior as a whole in the framework of spherically symmetric
midisuperspaces (see Sec. 12.10.)
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appreciate that LQG has grown into a vast and active area of research along many

various directions.

12.1. The Master constraint program

The scalar constraint remains the major unsolved problem in LQG as noted in Sec. 6.

The Master constraint program [158] (also see Sec. 10.6 of Ref. [10] for a systematic

account) proposed an elegant solution to the difficulties concerning the algebra of

commutators among smeared scalar constraints in terms of the so-called Master

constraint, which combines the smeared scalar constraints C[N ] :=
∫
Σ
d3xN(x)C(x)

for all smearing functions N(x) into a single constraint

M =

∫

Σ

d3x
C(x)2√

|q|
, (221)

where the factor 1
√
|q| has been incorporated to make the integrand a scalar density

of weight 1 so that M is diffeomorphism invariant, i.e., {CDiff [ ~N ],M} = 0. It is clear

that M = 0 implies the infinitely many constraints C(x) = 0 for ∀x ∈ Σ and vice

versa.

The single constraint M in place of C[N ] greatly reduces the number of con-

straints and drastically simplifies the Poisson bracket structures among constraints:

Eq. (24e) is replaced by {CDiff [ ~N ],M} = 0, and more notably the complicated struc-

ture of Eq. (24f) is now reduced to the trivial algebra {M,M} = 0. As the master

constraint renders the constraint algebra as a genuine Lie algebra, the program

opens a new avenue for understanding the quantum dynamics and establishing the

semiclassical limit.

The Master constraint program has various advantages in an attempt to define

the physical inner product and formulate rigorous path integrals [159, 160], and it

seems to be more directly related to the spin foam formalism than the standard

formulation of LQG.

12.2. Algebraic quantum gravity

The Master constraint program has evolved into a fully combinatorial theory known

as algebraic quantum gravity (AQG) [161–164] (also see Sec. 10.6.5 of Ref. [10]).

AQG is closely related to yet very different from LQG by the fact that no topology

or differential structure of space is assumed a priori. In this sense, background

independence of AQG is even more compelling, and it is possible to talk about

topology change. A viable semiclassical machinery that involves only non-graph-

changing operators has been suggested, and considerable progress has been made

in providing contact with the low-energy physics.
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12.3. Reduced phase space quantization

There are two major approaches to the canonical quantization of a field theory

with gauge symmetries: the so-called “Dirac approach” and the “reduced phase

space approach”. In the Dirac approach, one first construct the Hilbert space that

represents the partial (gauge-variant) observables and then impose the constraints

at the quantum level to select the physical (gauge-invariant) states. In the reduced

phase space approach, one first constructs the physical (gauge-invariant) observables

at the classical level and then directly construct the Hilbert space that represents

the physical observables. (Of course, it is possible to take a “mixed” approach by

implementing different strategies for different gauge symmetries.)

The advantage of the Dirac approach is that the algebra of partial observables

is usually simple enough and thus the (kinematical) Hilbert space is easy to con-

struct, but one has to deal with spurious degrees of freedom, which are the possible

source of quantization ambiguities and quantum anomalies. On the other hand, the

advantage of the reduced phase space approach is that one never has to care about

the kinematical Hilbert space at all, but the induced algebra of physical observ-

ables is typically so complicated that the corresponding (physical) Hilbert space is

extremely difficult to find.

The standard formulation of LQG adopts the Dirac approach, as constructing

the reduced phase space of GR with standard matter is uncontrollably nontrivial.

However, there is a hope of obtaining the reduced phase space with a manageable

induced algebra, if one adds pressure-free dust [165] or a massless scalar field [166]

to the theory. This is essentially because, at the price of introducing additional

matter, the constraints can be deparameterized with respect to the dust or the

scalar field, which serves as a material reference system.

Schematically (consider only the scalar constraint), when the system is depa-

rameterized, one can find a partial variable T serving as an “internal clock” such

that the local scalar constraint (at least locally) reads as C[qa, pa] = P + h[qa, pa],

where P is the momentum conjugate to T and both T and P are independent of

other conjugate pairs (qa(x), pa(x)). One can identify a one-parameter family of

the physical observables OT associated with the partial operator O such that the

map Fτ : O 7→ OT=τ for any τ is a homomorphism between the Poisson bracket of

partial observables and a certain Dirac bracket (uniquely determined by the con-

straints and the choice of T ) of physical observables. This implies that the reduced

phase space approach is achievable, as finding the Hilbert space representation of

OT is as easy as that of O. In the resulting Hilbert space, the physical observable

OT=τ is interpreted as the observable O measured when the internal clock T takes

the value τ , and (as heuristically P acts as −i∂/∂T ) the dynamics is generated by

the evolution equation

d

dτ
Ôτ = −i

[
Ĥ, Ôτ

]
, (222)
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where

Ĥ :=

∫
d3x ĥ[qa(x), pa(x)] (223)

is called the physical Hamiltonian in contrast to the Hamiltonian constraint as

it corresponds to a nonvanishing physical observable that generates the genuine

“physical” evolution.

Based on the model of Ref. [165] with pressure-free dust, the reduced phase

space approach to a quantum theory of GR has been formulated in the styles of

LQG [167, 168] as well as of the Master constraint program and AQG [164]. Based

on the model of Ref. [166] with a massless scalar field, the reduced phase space

approach has also been constructed in the style of LQG [169]. These studies have

led to a new appealing direction of QG alongside the standard LQG.

12.4. Off-shell closure of quantum constraints

In the Dirac approach of canonical quantization, quantizing a constrained system

faithfully, one would expect that the corresponding quantum operators represent

the same structure of the classical constraint algebra. That is, in the case of gravity,

in accordance with the constraint algebra given by Eq. (24), there exits a vector

space V of spin networks upon which, for all |Ψ〉 ∈ V , the quantum operators act as

Ûϕ1Ûϕ2 |Ψ〉 = Ûϕ1◦ϕ2 |Ψ〉, (224a)

Û †
ϕ Ĉ[N ] Ûϕ|Ψ〉 = Ĉ[ϕ∗N ]|Ψ〉, (224b)

[
Ĉ[N ], Ĉ[M ]

]
|Ψ〉 = ĈDiff [ q

ab(N∂bM −M∂bN)]|Ψ〉, (224c)

where we have disregard the Gauss constraint CG = 0, which is trivially satis-

fied via intertwiners. This, however, is not the case in the standard formulation

of LQG. In the diffeomorphism covariant regularization scheme as addressed in

Sec. 6.2, Eq. (224a) is trivially satisfied and Eq. (224b) corresponds to Eq. (112),

but Eq. (224c) on the other hand is replaced by (see Eq. (113))

(
[
Ĉ[N ], Ĉ[M ]

]
η(Ψ)|Φ〉 := lim

ǫ→0
(η(Ψ)|

[
ĈRǫ

[N ], ĈRǫ
[M ]

]
Φ〉 = 0, (225)

for all Φ ∈ V , where η is the linear map in Eq. (58). In this sense, the standard

LQG is said to be anomaly-free only at the on-shell level, but not off-shell.

Although there is no obvious self-inconsistency, the fact that the quantum alge-

bra is not off-shell closed arouses various worries. It was argued in Refs. [170, 171]

that quantum anomaly is hidden on-shell simply because the local scalar constraint

C in Eq. (16c) is specifically of density weight 1. To see this heuristically, consider

the local scalar constraint C(k) ∼ |q|(k−2)/2
FẼẼ+. . . of density weight k associated

with the smearing function N (1−k) of density weight 1 − k. The scalar constraint

in d spatial dimensions (d ≥ 2) is given by C[N ] =
∫
Σ
ddxN (1−k)(x)C(k)(x) and

scaling analysis tells that the regulated classical scalar constraint CRǫ
[N ] scales as

∝ ǫdǫ−2d(k−2)/2ǫ−2ǫ−(d−1)ǫ−(d−1) = ǫd(1−k). In the special case of k = 1, there
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is no explicit dependence on ǫ and consequently the right-hand side of Eq. (225)

is trivialized (as long as ǫ becomes sufficiently small). In a sense, the quantum

operator Ĉ[N ] implemented in the standard approach fails to grasp the geometri-

cal significance dictated by Eq. (224c) and hence the quantum theory might not

faithfully correspond to the starting classical theory (however, see Ref. [172] for a

counterargument).

If one choose to construct the scalar constraint operator by starting with C(k)

of higher density weight, one would has enough scaling factors of ǫ−1 to match

the scaling of CDiff [~S ] on the right-hand side of Eq. (224c) (as CDiff [~S ] involves

spatial derivatives via N∂bM −M∂bN , which gives rises to at least one factor of

ǫ−1) and be able to obtain an off-shell quantum representation for the constraint

algebra. This “off-shell closure” approach indeed can be rigorously formulated for a

generally covariant U(1)3 gauge theory, which can be understood as the G→ 0 limit

of Euclidean gravity [173–175]. For Euclidean LQG, the new study of Ref. [176]

presented some evidence that, working with k = 4/3, there exists such a scalar

constraint operator well defined on a vector space V , which turns out to be a suitable

generalization of the Lewandowski-Marolf habitat [171].

In the off-shell closure approach, the geometrical interpretation of the action

of the scalar constraint operator becomes more transparent, which should help

to elucidate the quantum dynamics and the low-energy physics. Furthermore, as

the requirement of being anomaly-free at the off-shell level is supposed to impose

more restrictions on permissible regulators, the infinite multitude of quantization

ambiguities could be enormously reduced or even uniquely fixed.

12.5. Loop quantum gravity vs. spin foam theory

The canonical (Hamiltonian) formalism of LQG and the covariant (sum-over-

histories) formalism of the spin foam theory are closely related to each other, yet up

to now spin foam models have not been systematically derived from the standard

canonical theory of LQG. Over the past years, the spin foam theory in relation

to the kinematics of LQG have been clearly established [90, 177–181]. For the

dynamics, on the other hand, the two formalisms bear close resemblance to each

other but it remains a challenging open problem to clearly derive the relation in

the 4-dimensional theory. (In the 3-dimensional theory, a clear-cut relation between

the canonical quantization of 3-dimensional gravity and spin foam models has been

nicely established [182].)

12.6. Covariant loop quantum gravity

Even though the precise connection between LQG and the spin foam theory is still

not completely clear, the merger of the canonical and covariant approaches has sug-

gested a rather well-established theory formulated in a covariant formalism known

as “covariant loop quantum gravity”, which provides us a brand new perspective on
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LQG [183–185] (also see Ref. [13] for a comprehensive account). Since various quan-

tization procedures (canonical, spin foam, etc.) all lead to the overlapped results,

perhaps it is the time to “leave the ladder behind” (as advocated in Ref. [183]) and

take the merged theory of covariant LQG seriously as the defining quantum theory

of gravity instead of “deriving” it by quantizing the classical GR. The kinematics

of covariant LQG is well defined and background independent, and the dynamics

of it is given in terms of a simple vertex function, largely determined by locality,

diffeomorphism invariance, and local Lorentz invariance.

In the framework of covariant LQG, transition amplitudes for given boundary

states can be computed explicitly and then compared with the classical theory by

the techniques of holomorphic coherent states (see Sec. 8.3 and references therein).

Particularly, the 2-point function of the Euclidean theory over a flat spacetime has

been computed to the first order in the vertex expansion, and has been shown to

converge to the free graviton propagator of QG in the large distance limit [91]. The

n-point functions of the Lorentzian theory have yet to be computed and compared

with the vertex amplitude of conventional perturbative QG on Minkowski space.

12.7. Spin foam cosmology

In the framework of covariant LQG, by choosing the holomorphic coherent states

of geometry peaked on homogeneous isotropic metrics, it is possible to compute

the transition amplitude in the vertex and graph expansions for the evolution of

a homogenous isotropic universe. The calculation has been performed and the

resulting amplitude in the classical limit appears to be consistent with the FLRW

evolution [186]. Furthermore, if a cosmological constant term is added, the result

matches the de Sitter solution in the classical limit [187].

This approach starting from the full theory of covariant LQG and then taking an

approximation of the vertex and graph expansions is called “spin foam cosmology”.

By comparison, in LQC one studies the exact solutions in a symmetry-reduced

quantum theory, while in spin foam cosmology one studies the approximate solutions

in the full quantum theory. Casting LQC in an spin foam-like expansion has also

been considered [188–191]. Spin foam cosmology and the spin foam-like expansion

of LQC can be regarded as two converging approaches to the sum-over-histories

formalism of quantum cosmology.

12.8. Quantum reduced loop gravity

Quantum reduced loop gravity (QRLG) is a framework introduced for the quan-

tum theory of a symmetry-reduced sector of GR, based on a projection from the

kinematical Hilbert space of the full theory of LQG down to a subspace repre-

senting the proper arena for the symmetry-reduced sector. It was first proposed in

Refs. [192, 193] for an inhomogeneous extension of the Bianchi I cosmological model.

This approach provides a direct link between the full theory and its cosmological
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sector and also sheds light on the relation between LQC and LQG.

It was later shown in Ref. [194] that the QRLG technique can be applied to

broader cases beyond the cosmological context whenever the spatial metric can be

gauge-fixed to a diagonal form. The technique projects the Hilbert space to the

states based on the reduced graphs with Livine-Speziale coherent intertwiners [90].

The framework of QRLG could simplify the analysis of the dynamics in the full

theory and other issues, such as the coupling between quantum geometry and matter

and the relation between canonical and covariant approaches.

12.9. Cosmological perturbations in the Planck era

Cosmological inflation is a popular paradigm in modern cosmology (see Chap. C ).

The theory of inflation has successfully explained how quantum fluctuations sow

the primordial seeds that grow into the large-scale structure at late times of our

universe and made a number of predictions that have been confirmed by a range of

observations (also see Chaps. A and B). In the standard inflationary scenario, cos-

mological perturbations are described by QFT on classical cosmological spacetimes,

and thus the domain of validity excludes the Planck era.

In a series of papers Refs. [195–197] (also see Ref. [198] for a nice summary),

by studying the dynamics of quantum fields representing scalar and tensor per-

turbations on quantum cosmological spacetimes using techniques from LQG, the

inflationary paradigm is extended to a self-consistent theory covering the epoch

from the big bounce in the Planck era to the onset of slow-roll inflation. This pre-

inflationary dynamics could yield deviations from the standard inflationary scenario

and give rise to novel effects, such as a source for non-Gaussianity. These novel ef-

fects might catch a glimpse into the deep Planck regime of the early universe in

future cosmological observations.

12.10. Spherically symmetric loop gravity

LQC is the loop quantum theory of minisuperspaces in the sense that degrees of

freedom are truncated to a finite number by the symmetry of homogeneity (and

possibly also isotropy). The next simplest symmetry-reduced framework is the

spherically symmetric midisuperspace, in which the spherical symmetry is imposed

but inhomogeneity along the radial direction is retained, thus still giving rise to

a field-theoretical system of infinite degrees of freedom. Ashtekar’s formalism for

spherically symmetric midisuperspaces and its loop quantization have been studied

and developed with various degrees of rigor [199–203]. The theory of spherically

symmetric loop gravity provides an arena for testing important issues that are too

difficult in the full theory of LQG and trivialized in minisuperspace (LQC) models.

Particularly, the SU(2) internal gauge is reduced to U(1) and the 3-dimensional

diffeomorphism is reduced to 1-dimensional diffeomorphism (in the radial direc-

tion), making the constraint algebra much simpler yet nontrivial. The framework
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of spherically symmetric loop gravity can be used to study loop quantum geometry

of spherically symmetric black holes (Schwarzschild black hole, spherical gravita-

tional collapse, etc.). It is indicated that in the resulting quantum spacetime the

black hole singularity is avoided [202–206], suggesting that the information loss

problem could be resolved accordingly.

12.11. Planck stars and black hole fireworks

One of the key insights obtained in LQC is that the quantum geometry of LQG

gives rise to opposing quantum gravitational force, which becomes appreciable when

the matter density comes close to the Planck scale density ∼ 1/(G2~). Based on

the insight, recently, a new possible scenario of collapsing black holes has been

suggested [207]: The gravitational collapse of a star does not lead to a singularity

but to the quantum gravitational phase called a “Planck star”, where the very

huge gravitational attraction is counterbalanced by the opposing quantum force.

Accordingly, a black hole hides a core of a Planck star, which is of the Planck scale

density but can be much larger than the Planck scale size (depending on the initial

mass of the collapsing star). As the black hole evaporates, the core remembers the

initial mass and the final explosion can occur at macroscopic scale, thus providing a

possible mechanism for recovery of information loss. More interestingly, the objects

of Planck stars could produce detectable signals of quantum gravitational origin

[207, 208].

Furthermore, the macroscopic remnant can develop into a white hole. As shown

in a recent paper Ref. [209], there is indeed a classical metric that satisfies the

Einstein field equation outside a finite spacetime region where matter collapses into a

black hole and then emerges from a white hole. Therefore, a black hole can quantum-

tunnel into a white hole in the similar fashion that the wave packet representing a

collapsing universe tunnels into a wave packet representing an expanding universe in

LQC. A distant observer thus sees a dimming star, after a very long time, reemerge

and burst out matter—a phenomenon called “black hole fireworks”. Under the

scenario of black hole fireworks, the arguments over the information paradox have

to be drastically revised.

12.12. Information loss problem

It is widely expected that QG, once fully developed, should resolve several important

problems in QG, particularly the singularity problem and the black hole information

paradox. As both the cosmological and black hole singularities are indicated to be

resolved by the LQG effects, it is strongly suggested that the information lost in the

process of black hole evaporation should be recovered in a singularity-free scenario.

In Ref. [210], it was analyzed in detail for 2-dimensional black holes that quantum

geometry effects indeed recover the information loss, primarily because the black

hole singularity is resolved and consequently the quantum spacetime is sufficiently
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larger than the classical counterpart. For 4-dimensional collapsing black holes,

the aforementioned scenarios of Planck stars and black hole fireworks in particular

suggest a similar mechanism for information recovery.

The model of Ref. [210] provides a concrete example of avoiding the information

loss problem under the “remnant scenario”, in which black hole evaporation stops

at some point, leaving a black hole remnant that is correlated with the Hawking

radiation and allowing the combined state to remain pure. The remnant scenario

generally implies the existence of a very long-lived remnant, which, unfortunately,

may cause other problems (e.g. the problem of infinite remnant production [211]).

Meanwhile, a recent paper [212] investigated an example from LQG in which

the singularity problem is solved but the information loss problem is made worse.

It was argued that the aggravated information loss problem is likely to be a generic

feature of LQG, therefore putting considerable conceptual pressure on the theory

of LQG.

The information loss problem has been around for a long time. There is still no

consensus over how the problem is to be resolved and it remains one of the focal

points in the research of QG (see Sec. 10 of Chap. G for more discussions).

12.13. Quantum gravity phenomenology

A legitimate quantum theory of gravity must make unambiguous predictions that

in principle can be empirically tested by experiments or observations. Contrary to

popular opinion, LQG does make definite predictions. For example, any measured

physical area (such as the total cross-section of a scattering process) must be given

by the discrete spectrum of area. (Also see Ref. [213] for the possible effects of angle

quantization on scattering.) The true problem is that these predictions demand

experiments or observations probing the Planck scale, which is believed to be far

out of current reach. The impasse could be overcome soon, as the Planckian physics

may not be completely unreachable after all by present and near-future technology.

As mentioned earlier, loop quantum effects in the pre-inflationary era could give

rise to sufficient deviations from the standard inflationary scenario. Some research

works have attempted to reveal possible observable footprints of these effects on the

Cosmic Microwave Background along the lines of Refs. [214–218].

Also as noted previously, the existence of Planck stars could produce detectable

signals. The possible phenomenological consequences of Planck stars in gamma-ray

bursts were studied in Ref. [208].

Additionally, while the Lorentz invariance can be made manifest both in LQG

and in the spin foam theory (see Ref. [219] and references therein), many other

models suggest violation of Lorentz invariance in the deep Planck regime, which

will modify the Lorentzian energy-momentum dispersion relation at lower-energy

scale. Observations of Ultra-High-Energy Cosmic Rays—the most energetic par-

ticles ever observed—have thus far put strong constraints on deviations from the

Lorentzian dispersion relation. Future investigation with improved precision will
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either impose even stronger constraints or unveil breakdown of the Lorentz invari-

ance, thus enabling theorists to discriminate between different models of LQG and

the spin foam theory. See Refs. [220, 221] for more discussions.

12.14. Supersymmetry and other dimensions

It is a celebrated virtue that LQG does not require any hypothetical ingredients, yet

it has always been desirable to incorporate supersymmetry and extra dimensions at

one’s disposal for the sake of both theoretical interest and comparison with other

QG approaches (string theory in particular). Early attempts can be found e.g. in

Refs. [25–27]. Recently, a series of papers [222–229] have been devoted to rigorous

formulation of the loop quantum theory for supergravity and for all dimensions.

Some progress has been made toward calculating black hole entropy from loop

quantum theory in higher dimensions [230, 231]. It would be very instructive to

compare these results to those obtained by string theory inspired approaches.



December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 75

Loop Quantum Gravity 75

Acknowledgements

The author would like to thank Wei-Tou Ni for warmly inviting and encouraging

him to write this article, and is deeply grateful to Steven Carlip, Friedrich Hehl,

and Chun-Yen Lin for their detailed comments and suggestions on the manuscript,

which have been extremely helpful and have led to many improvements. Deep

gratitude goes to Chih-Wei Chang for having inspiring discussions with the author

on quantum gravity and providing him with a comfortable office at CCMS. This

article was written over the time when the author was supported in part by the

Ministry of Science and Technology of Taiwan under the Grants, No. 101-2112-M-

002-027-MY3 and No. 101-2112-M-003-002-MY3.

References

Section 1. Introduction

Surveys on various approaches of QG

[1] C. Rovelli, Strings, loops and others: A Critical survey of the present approaches
to quantum gravity, In Gravitation and Relativity: At the Turn of the Millenium,
(Inter-University Centre for Astronomy and Astrophysics, Pune, 1998), pp. 281–331
[gr-qc/9803024].

[2] S. Carlip, Quantum gravity: A Progress report, Rept. Prog. Phys. 64, 885, (2001)
[gr-qc/0108040].

[3] R. P. Woodard, How Far Are We from the Quantum Theory of Gravity?, Rept. Prog.
Phys. 72, 126002 (2009) [arXiv:0907.4238 [gr-qc]].

[4] C. Kiefer, Quantum Gravity, (Oxford University Press, Oxford, 2012).

History and current status of LQG

[5] C. Rovelli, Loop quantum gravity: the first twenty five years, Class. Quant. Grav.

28, 153002, (2011) [arXiv:1012.4707 [gr-qc]].

Books and reviews

On LQG

[6] A. Ashtekar, Lectures on nonperturbative canonical gravity, Adv. Ser. Astrophys.

Cosmol. 6, 1, (1991).
[7] T. Thiemann, Lectures on loop quantum gravity, Lect. Notes Phys. 631, 41, (2003)

[gr-qc/0210094].
[8] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A Sta-

tus report, Class. Quant. Grav. 21, R53, (2004) [gr-qc/0404018].
[9] C. Rovelli, Quantum Gravity, (Cambridge University Press, Cambridge, 2004).

[10] T. Thiemann, Modern Canonical Quantum General Relativity, (Cambridge University
Press, Cambridge, 2007) [gr-qc/0110034].

[11] C. Rovelli, Loop quantum gravity, Living Rev. Rel. 11, 5, (2008). http://www.

livingreviews.org/lrr-2008-5.

http://arxiv.org/abs/gr-qc/9803024
http://arxiv.org/abs/gr-qc/0108040
http://arxiv.org/abs/0907.4238
http://arxiv.org/abs/1012.4707
http://arxiv.org/abs/gr-qc/0210094
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/gr-qc/0110034
http://www.livingreviews.org/lrr-2008-5
http://www.livingreviews.org/lrr-2008-5


December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 76

76 Dah-Wei Chiou

[12] R. Gambini and J. Pullin, A First Course in Loop Quantum Gravity, (Oxford Uni-
versity Press, Oxford, 2011).

[13] C. Rovelli and F. Vidotto Covariant Loop Quantum Gravity: An Elementary In-

troduction to Quantum Gravity and Spinfoam Theory, (Cambridge University Press,
Cambridge, 2014.)

On spin foam theory

[14] A. Perez, Spin foam models for quantum gravity, Class. Quant. Grav. 20, R43 (2003)
[gr-qc/0301113].

[15] D. Oriti, Spin foam models of quantum space-time, gr-qc/0311066.
[16] A. Perez, Introduction to loop quantum gravity and spin foams, gr-qc/0409061.
[17] A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev. Rel. 16, 3,

(2013). http://www.livingreviews.org/lrr-2013-3. [arXiv:1205.2019 [gr-qc]].

On LQC

[18] M. Bojowald, Loop Quantum Cosmology, Living Rev. Rel. 11, 4, (2008). http://

www.livingreviews.org/lrr-2008-4.
[19] A. Ashtekar and P. Singh, Loop Quantum Cosmology: A Status Report, Class.

Quant. Grav. 28, 213001, (2011) [arXiv:1108.0893 [gr-qc]].
[20] M. Bojowald, Quantum Cosmology: A Fundamental Description of the Universe,

Lect. Notes Phys. 835, 1, (2011).
[21] M. Bojowald, Canonical Gravity and Applications: Cosmology, Black Holes, and

Quantum Gravity, (Cambridge University Press, Cambridge, 2011).

Section 2. Motivations

[22] C. J. Isham, Conceptual and geometrical problems in quantum gravity, In Recent

aspects of quantum fields, eds. H. Mitter and H. Gausterer, (Springer-Verlag, Berlin,
1991) pp. 123–229.

[23] R. M. Wald, General Relativity, (University of Chicago Press, Chicago, 1984), Sec.
14.1.

Section 3. Connection theories of general ralativity

[24] A. Ashtekar, J. D. Romano and R. S. Tate, New Variables for Gravity: Inclusion of
Matter, Phys. Rev. D 40, 2572 (1989).

[25] T. Jacobson, New Variables for Canonical Supergravity, Class. Quant. Grav. 5, 923
(1988).

[26] H. J. Matschull and H. Nicolai, Canonical quantum supergravity in three-dimensions,
Nucl. Phys. B 411, 609 (1994) [gr-qc/9306018].

[27] L. Freidel, K. Krasnov and R. Puzio, BF description of higher dimensional gravity
theories, Adv. Theor. Math. Phys. 3, 1289 (1999) [hep-th/9901069].

[28] R. Capovilla, T. Jacobson and J. Dell, General Relativity Without the Metric, Phys.
Rev. Lett. 63, 2325, (1989).

[29] R. Capovilla, T. Jacobson, J. Dell and L. J. Mason, Selfdual two forms and gravity,
Class. Quant. Grav. 8, 41, (1991).

[30] A. Ashtekar, A. P. Balachandran and S. Jo, The CP Problem in Quantum Gravity,
Int. J. Mod. Phys. A 4, 1493 (1989).

http://arxiv.org/abs/gr-qc/0301113
http://arxiv.org/abs/gr-qc/0311066
http://arxiv.org/abs/gr-qc/0409061
http://www.livingreviews.org/lrr-2013-3
http://arxiv.org/abs/1205.2019
http://www.livingreviews.org/lrr-2008-4
http://www.livingreviews.org/lrr-2008-4
http://arxiv.org/abs/1108.0893
http://arxiv.org/abs/gr-qc/9306018
http://arxiv.org/abs/hep-th/9901069


December 16, 2014 1:33 World Scientific Review Volume - 9.75in x 6.5in LQG page 77

Loop Quantum Gravity 77

[31] S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,
Phys. Rev. D 53, 5966, (1996) [gr-qc/9511026].

[32] A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57,
2244 (1986).

[33] A. Ashtekar, New Hamiltonian Formulation of General Relativity, Phys. Rev. D 36,
1587 (1987).

[34] R. Penrose, The Central programme of twistor theory, Chaos Solitons Fractals 10,
581 (1999).

[35] M. Ko, M. Ludvigsen, E. T. Newman and K. P. Tod, The Theory of H Space, Phys.
Rep. 71 51 (1981).

[36] M. Blagojevi and F. W. Hehl, Gauge Theories of Gravitation : A Reader with Com-

mentaries, (Imperial College Press, London, 2013).
[37] R. Hojman, C. Mukku and W. A. Sayed, Parity Violation In Metric Torsion Theories

Of Gravitation, Phys. Rev. D 22, 1915 (1980).
[38] A. Perez and C. Rovelli, Physical effects of the Immirzi parameter, Phys. Rev. D 73,

044013 (2006) [gr-qc/0505081].

Section 4. Quantum kinematics

[39] A. Ashtekar and J. Lewandowski, Representation theory of analytic holonomy al-
gebras, In Knots and Quantum Gravity, ed. J. C. Baez (Oxford University Press,
Oxford, 2014) [gr-qc/9311010].

[40] D. Marolf and J. M. Mourao, On the support of the Ashtekar-Lewandowski measure,
Commun. Math. Phys. 170, 583 (1995) [hep-th/9403112].

[41] A. Ashtekar and J. Lewandowski, Projective techniques and functional integration
for gauge theories, J. Math. Phys. 36, 2170 (1995) [gr-qc/9411046].

[42] J. Lewandowski, A. Okolow, H. Sahlmann and T. Thiemann, Uniqueness of diffeo-
morphism invariant states on holonomy-flux algebras, Commun. Math. Phys. 267,
703 (2006) [gr-qc/0504147].

[43] L. H. Kauffman and S. L. Lins, Temperle-Lieb Recoupling Theory and Invariants of

3-Manifolds, (Princeton University Press, Princeton, 1994).
[44] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D 52, 5743

(1995) [gr-qc/9505006].
[45] J. C. Baez, Spin network states in gauge theory, Adv. Math. 117, 253 (1996)

[gr-qc/9411007].
[46] J. C. Baez, Spin networks in nonperturbative quantum gravity, In Interface of knots

and physics, ed. L. Kauffman, (American Mathematical Society, Providence, Rhode
Island, 1996) pp. 167–203 [gr-qc/9504036].

[47] D. Marolf, Refined algebraic quantization: Systems with a single constraint,
gr-qc/9508015.

[48] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, Quantization
of diffeomorphism invariant theories of connections with local degrees of freedom, J.
Math. Phys. 36, 6456 (1995) [gr-qc/9504018].
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