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Quantum gravity has long been thought to be completely decoupled from exper-
iments or observations. Although it is true that smoking guns are still missing,
there are now serious hopes that quantum gravity phenomena might be tested.
We review here some possible ways to observe loop quantum gravity effects in
cosmology and astroparticle physics.

Invited review article for the World Scientific book ”Loop Quantum Gravity”
edited by A. Ashtekar and J. Pullin.

1. Introduction

Building a quantum theory of space-time might be the most outstanding problem of

contemporary fundamental theoretical physics. Probably this is not mainly because

unification is necessary and unavoidable. Unification is unquestionably a useful

guide that has indeed helped a lot in the past but that might very well not be the

final word on what physics should look like. After all, it could be that different

sub fields of physics are described by different theories. The key issue has more to

do with consistency. In some circumstances quantum mechanics and string gravity

are simultaneously acting. In addition, the quantum world has interactions with

the gravitational field, which automatically requires gravity to be understood in a

quantum language, as can be demonstrated by appropriate thought experiments.

Furthermore, the nonlinearity of gravity frustrates all attempts to ignore quantum

gravity: as soon as a strong gravitational field is involved, the coupling to gravitons

should also be strong. The very existence of singularities in general relativity (GR)
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also requires a quantum extension. Finally, even if the signal measured by the

BICEP2 experiment [1] was not from cosmological origin, there is a reasonable

hope that primordial gravitational waves will be soon seen through B-modes in

the cosmological microwave background: this would be the first observation of a

quantum gravity phenomenon, at a linear level though, in the history of science.

Several non-perturbative and background-independent approaches have been de-

veloped in the last decades. Among them, loop quantum gravity (LQG) might be

the most advanced one (see [2] for introductions). One of the main achievements

of LQG is to be able to lead to experimental predictions. At this stage, none of

them has yet been tested and some of them are still controversial. There are even

tensions between different approximation schemes within LGQ. Still, it is a remark-

able achievement that a quantum theory of gravity is now able to produce a set of

predictions that might be tested in a quite near future.

In this brief review, we will first focus on cosmology, considering different probes,

both direct and indirect. We will then consider possible consequences of a possible

Lorentz invariance violation. Evaporating black holes will be studied and, finally,

we will mention new ideas about Planck stars.

2. Cosmology: indirect probes

When assumed to be isotropic and homogeneous, the Universe is symmetric enough

to be a quite easy system to quantize. As explained in the chapter of this book

written by Agullo and Singh, and as reviewed in [3], LQG ideas have been success-

fully applied to this specific situation: this is what loop quantum cosmology (LQC)

describes. Although a rigorous derivation of LQC from LQG is still missing, it is

now fairly believed to capture effectively most quantum effects from the mother

theory. Recent progresses were, e.g., reported in [4]. The most important result is

probably the singularity resolution: the Big Bang is replaced by a Big Bounce and

the LQC dynamics is different from the Wheeler–de Witt one.

It is difficult but possible to make predictions for perturbations in LQC. Two

main paths are followed at this stage. On the one hand a “dressed metric ap-

proach” [5] was developed. It tries to deal deeply with quantum fields on a quantum

background geometry. On the other hand, an ”effective approach” [6] was investi-

gated. It tries to avoid fixing or assuming any background structure but instead

derives it from effective equations. Both deserve to be seriously considered.

In this section we therefore first focus on more ”reliable” predictions related to

the background evolution. Holonomy corrections appear in the theory because there

is no operator associated with the Ashtekar connexion but only with its holonomy.

Although the way those corrections are implemented, leading to the bounce, can of

course be questioned, the main picture is now consistent and well established.
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2.1. Isotropic case

2.1.1. Initial conditions at the bounce

A first approach, developed in [7], assumes that the bounce is the appropriate time

to set initial conditions. This is reasonable as the bounce is the only specific point

in time. The Universe is also, as usually done in inflation, assumed to be filled with

a massive scalar field.

The idea is to solve, thanks to the bounce, the ambiguity that usually appears in

the construction of a measure on the space of initial data. The space of solutions is

isomorphic to a gauge fixed surface, i.e., a 2-surface Γ̂ which is intersected by each

dynamical trajectory only once. Since b, the conjugate momentum to the volume

of the fixed fiducial cell used in the quantization, is monotonic in each solution, the

strategy is to choose for Γ̂ an appropriate 2-surface b = bo. Symplectic geometry

considerations unambiguously equip Γ̂ with an induced Liouville measure dµ̂L. A

natural choice is to set bo = π/2λ so that Γ̂ is naturally coordinatized by (ϕ̄B , vB),

the scalar field and the volume at the bounce. The induced measure is given by

dµ̂L =
√

3π
λ

[
1 − x2

B

] 1
2 dϕ̄B dvB , where x2

B is the value of x2 at the bounce (with

x2 = m2ϕ̄2/(2ρc)), that is the fraction of total energy density in form of potential

energy at the bounce. After factoring out the gauge orbits the fractional volumes

of physically relevant sub-regions of Γ̂ can be calculated. The main results of the

study performed in [7], depending on 3 different possible regimes, are:

• for x2
B < 10−4, the number of e-folds during slow roll is given approximately by

N ≈ 2π
(
1 − ϕ̄2

o

ϕ̄2
max

)
ϕ̄2
o ln ϕ̄o, where ϕ̄o is the value of the scalar field at the onset

of inflation and ϕ̄max = 1.5× 106. For ϕ̄B = 0.99, one has ϕ̄o = 3.24 and N = 68.

Thus, there is a slow roll inflation with over 68 e-foldings for all ϕ̄B > 1, i.e., if

x2
B > 4.4× 10−13.

• for 10−4 < x2
B < 0.5, the LQC departures from GR are now significant. The

Hubble parameter is essentially frozen at a very high value. Throughout this range

of x2
B there are more than 68 e-foldings.

• for 0.5 < x2
B < 1, the LQC effects strongly dominate. Again, because ˙̄ϕ > 0,

the inflaton climbs up the potential but the turn around ( ˙̄ϕ = 0) occurs during

super-inflation. The Hubble parameter freezes at the onset of inflation and the

slow roll conditions are easily met as Ḣ/H2 is less than 1 × 10−11 when ¨̄ϕ = 0.

There are many more than 68 e-foldings already in the super-inflation phase. The

friction term is large and the inflation enters a long (more than 68 e-folds) slow roll

inflationary phase.

Basically all LQC dynamical trajectories are funneled to conditions which vir-

tually guarantee slow-roll inflation with more than 68 e-foldings, without any input

from the pre-big bang regime. This work was developed further, using analytical

and numerical methods, to calculate the a priori probability of realizing a slow-

roll phase compatible with CMB. It was found that the probability is greater than

0.999997 in LQC. This can be considered as a good indirect – although not definitive
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– test of LQC.

2.1.2. Initial conditions in the remote past

In [7], the probability distribution is assumed to be flat and defined at the bounce

(the first attempts in this direction were performed in [8]). It is however possible

to make a very different assumption: the phase of the oscillations of the field in

the remote past can also be considered as a very natural random variable [9]. The

choice of what is a natural measure depends heavily on when one decides to set

initial conditions [10]. It is important to consider seriously the meaning of an

“initial” condition in a Universe that has a contracting branch before the bounce.

In this approach one does not the focus on the initial data at the bounce as in [7],

but rather derives a probability distribution for them as a prediction of the model.

The approach consists in calculating the probability distribution for xB , the

square root of the fraction of potential energy at the bounce, and N , the number

of e-folds of slow-roll inflation. The most natural and consistent assumption is to

set the initial probability distribution in the pre-bounce oscillatory phase where the

Universe is in addition classical and therefore well under control. The evolution

in this phase is described by: ρ = ρ0

(
1− 1

2

√
3κρ0

(
t+ 1

2m sin(2mt+ 2δ)
))−2

, with

x =
√

ρ
ρc

sin(mt + δ) , y =
√

ρ
ρc

cos(mt + δ). In fact, due to hidden symmetries, δ

can be shown to be the only parameter.

In addition of being the obviously expected distribution for any oscillatory pro-

cess of this kind, a flat probability for δ will be preserved over time during the

pre-bounce oscillations, making it a very natural choice. This is not a trivial point

as any other probability distribution would be distorted over time, meaning that the

final result in the full numerical analysis would depend on the choice of ρ0. Starting

with a flat probability distribution for δ, the probability for different values of xB
can be calculated numerically. In [7], xB is considered as unknown whereas, in

this second approach [9], it is shown to be sharply peaked around 3.55× 10−6 (this

value scales with m as m log
(

1
m

)
, where we assumed that m � 1 in Plank units).

The most likely solutions are exactly those that have no slow-roll deflation. The

probability density for N can also be computed and is given in Fig. 1, showing

that the model leads to a slow-roll inflation of about 140 e-folds. This becomes,

as shown in [9], a prediction of effective LQC: inflation and its duration are not

arbitrary anymore.

2.2. Anisotropic case

In bouncing cosmologies, either from the loop approach or any other, the question

of anisotropies is very important for a clear reason: the shear term varies as 1/a6

where a is the ”mean” scale factor of the Universe. When the Universe is contract-

ing, the shear term becomes more and more important and eventually drives the

dynamics. The reason for which the shear can be neglected in standard cosmology
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Fig. 1. Probability distribution function of the number of e-folds of slow-roll inflation (from [9]).

is precisely the reason why it becomes important in bouncing models. The question

of predicting the duration of inflation in LQC was studied in the Bianchi-I case.

The metric is given by ds2 := −N2dτ2 + a2
1dx

2 + a2
2dy

2 + a2
3dz

2, where

ai denotes the directional scale factors. The classical gravitational hamilto-

nian is HG = N
κγ2

(√
p1p2
p3

c1c2 +
√

p2p3
p1

c2c2 +
√

p3p1
p2

c2c3

)
, with Poisson brackets

{ci, pj} = κγδij . The classical directional scale factors can be written as a1 =
√

p2p3
p1

and cyclic expressions. The holonomy correction is implemented to account for spe-

cific LQG effects with the usual prescription (the framework was introduced in [11])

ci → sin(µ̄ici)
µ̄i

. The µ̄i are given by µ̄1 = λ
√

p1
p2p3

and cyclic expressions, where λ is

the square root of the minimum area eigenvalue of the LQG area operator (λ =
√

∆).

The quantum corrected gravitational Hamiltonian is:

HG = −N
√
p1p2p3

κ γ2λ2

[
sin(µ̄1c1) sin(µ̄2c2) + sin(µ̄2c2) sin(µ̄3c3) + sin(µ̄3c3) sin(µ̄1c1)

]
.

(1)

In the gravitational sector, all the information is contained in the hi: h1 = µ̄1c1 =

λ
√

p1
p2p3

c1 and cyclic expressions. By defining the quantum shear by

σ2
Q :=

1

3γ2λ2

(
1− 1

3

[
cos(h1 − h2) + cos(h2 − h3) + cos(h3 − h1)

])
, (2)

one can show [12] that LQC-modified generalized Friedman equation is: H2 =

σ2
Q + κ

3ρ− λ2γ2
(

3
2σ

2
Q + κ

3ρ
)2
.

In [13], exhaustive numerical simulations to investigate the duration of infla-

tion as a function of the different variables entering the dynamics in Bianchi-
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I LQC were carried out. As the shear is initially small compared to every-

thing else, the initial conditions for the matter content are chosen [9] as ρ(0) =

ρ0

(
1− 1

2

√
3κρ0

1
2m sin(2δ)

)−2
, mφ(0) =

√
2ρ(0) sin(δ), and φ̇(0) =

√
2ρ(0) cos(δ),

where ρ0 is the initial energy density up to a small correction, and δ is the phase of

the oscillations between the kinetic and the potential energy. The phase and shear

are the initial variables to set.
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Fig. 2. Results of the simulations carried out in [13]. From top to bottom : σQ(0) = 10−2 κ
3
ρ0

and σQ(0) = 10−6 κ
3
ρ0. The first column is φ at the start of slow-roll inflation and the second

column corresponds to the numerically calculated probability distribution function of the number
of e-folds of inflation.

Some results of the simulations are showed in Fig. 2. The main conclusion is

that, in general, the number of e-folds decreases when the shear increases. But a

greater shear will also lead to a larger spread in the number of e-folds, depending on

the initial angle δ. The number of e-folds of slow-roll inflation depends strongly on

ρmax which is fixed only when the shear vanishes. At the bounce, the dynamics is

completely driven by the kinetic energy and the shear. The kinetic energy grows a

lot in a very short time, which gives the scalar field a boost, and lifts it up to create

the initial conditions for slow-roll inflation. If the shear is important, the bounce

will happen at a lower value of the kinetic energy, and the scalar field potential will

not be ”climbed” as high as in the isotropic case.

Anisotropies lead to fewer e-folds of slow-roll inflation. It is however interesting

that for a wide range of parameters, the probability distribution for the number of

e-folds is peaked at values compatible with data, between 70 and 130 e-folds. It
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is worth noticing that whereas any value between 0 and Nmax = 2π
√

2ρcm
−2 =

3.9× 1012 is a priori possible for N , the favored value is very close to the minimum

required value. This makes the bounce/inflation scenario particularly appealing for

phenomenology: all the quantum information from the bounce might not have been

washed out by inflation. Having N close to 70 is exactly what is required to lead

to measurable effects in the CMB spectrum. An important issue however remains:

what would be a ”natural” initial value for the shear?

3. Cosmology : direct probes

Directly probing LQC modeling of the universe from astronomical observations

follows the standard procedure used in classical cosmology to probe e.g. the physics

of inflation. Any observer is confined within the Universe and one relies on cosmic

inhomogeneities (whose evolution across cosmic times depends on the dynamics of

the Universe) as internal tracers. They are revealed by the observed galaxies and

large scale structures, and by the anisotropies of the cosmic microwave background

(CMB). This however tells us that our Universe is statistically homogenous and

isotropic, being filled with inhomogeneities, and can be modeled by a perturbed

FLRW metric, for those inhomogeneities are small in the primordial Universe.

In classical cosmology, inhomogeneities are produced during inflation from the

gravitational amplification of the fluctuations of the quantum vacuum. In the con-

text of single field inflation, the perturbations are of two types: scalar modes corre-

sponding to perturbations of the scalar 3-dimensional curvature, denoted R, and,

tensor modes hia corresponding to primordial gravitational waves. They are com-

monly described by the Mukhanov-Sasaki, gauge-invariant variables, vS = zR and

vT = ah with z = (aϕ̄′)/H and H = a′/a is the Hubble parameter in confor-

mal time, i.e. ds2 = a2(η)
(
dη2 − dxadxa

)
. The quantum fluctuations of these

two fields are dynamically amplified during the accelerated expanding inflationary

phase. Since they originate from the quantum vacuum which is Gaussian (and as-

suming linear evolution for simplicity), the perturbations at the end of inflation,

ηe, are fully described by their 2-points correlation function or, in Fourier space, by

their primordial power spectrum:

PS =
k3

2π
〈R(k) R?(k)〉ηe , and PT = (16Gk3)

2∑
s=1

〈
hia,(s)(k) hai,(s)(k)

〉
ηe
, (3)

where the average is a quantum expectation value over the vacuum state. For

tensor modes, the sum is over the two helicity degrees of freedom. At the end of

inflation, our Universe is then filled with inhomogeneities of quantum origin: scalar

perturbations serves as the primordial seeds for structures formation, and, both

scalar and tensor perturbations leave their footprint in the CMB in the form of

anisotropies of temperature and linear polarization. The latter is decomposed into

two modes dubbed E and B modes. The statistics of these anisotropies follows
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the statistics of the cosmological perturbations and is gaussian (primordial non-

gaussianities are observationally constrained to be extremely small). The observed

information contained in the CMB is then compressed into six angular power spectra

measuring the power of the T, E and B auto- and cross-correlations. These are

estimated from the CMB observations and are theoretically related to the primordial

power spectra via the line-of-sight solution of the Boltzmann equations [14]:

CXY` =

∫ ∞
0

dk

∫ η0

ηe

dη
[
∆X,S
` (k, η)∆Y,S

` (k, η)PS(k) + ∆X,T
` (k, η)∆Y,T

` (k, η)PT(k)
]
,

(4)

withX, Y running over T, E andB. The time integration is performed from the end

of inflation to today, η0. The functions ∆
X,S(T)
` are the transfer functions encoding

the evolution of scalar(tensor) perturbations and the primordial power spectra are

source terms. Fitting the predicted angular power spectra on the estimated ones

allows for setting contraints on both cosmological parameters driving the dynamics

of the homogeneous Universe via the transfer functions and cosmological parameters

driving the shape of the primordial power spectra. Since the later are classically

derived from the inflationary dynamics, any constraints on PS(T) from the CMB

measurements can be translated into constraints on inflationary models.

In the context of LQC, the cosmological perturbations evolve through the con-

tracting phase and the bounce prior to inflation. Because of that, one can expect

some distortions in the predicted PS(T) as compared to the standard prediction of

pure inflation. The shape of primordial power spectra now contains informations

about the contracting phase and the quantum bounce in addition to informations

about inflation, and this will inevitably translate into distortions of the angular

power spectra of the CMB anisotropies, leading to possible direct probes of this

quantum gravity modeling of the Universe. The main prediction is therefore the

primordial power spectra from which CMB angular power spectra are derived. Pre-

liminary results were obtained by solely considering the change in the background

evolution, the Universe passing through a contraction phase and bounce prior to

inflation [15]. The distortions on the polarized CMB anisotropies could be observed

from a clear inspection of those anisotropies and used to constrain e.g. the fraction

of potential energy in the scalar field at the time of the bounce [16]. However, the

very fact that cosmological perturbations are to be constructed from a quantum

theory of gravity was not properly taken into account, though the change of the

Universe history was. Indeed, cosmological perturbations are perturbations of the

gravitational field itself (as well as perturbations of the matter content). This means

that the classical theory of cosmological perturbations (consisting in linearizing the

Einstein’s field equations around the FLRW solution) should be amended first for

accounting that perturbations live in a quantum background.
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3.1. Cosmological perturbations in LQC

Different approaches to treat cosmological perturbations in a LQC-derived cosmo-

logical background have been developed recently. The dressed metric approach,

discussed in the chapter by Agulloa and Singh, adopts a minisuperspace strategy

in which the homogeneous and isotropic degrees of freedom and the inhomogo-

neous degrees of freedom (considered as perturbations) are quantized [5]. The

former is obtained by the loop quantization and the latter is obtained from a

Fock quantization on a quantum background. The physical inhomogeneous de-

grees of freedom are given by the Mukhanov-Sasaki variables derived from the

linearized classical constraints. The second order Hamiltonian (restricted to the

square of the first order perturbations) is promoted to be an operator and the

quantization is performed using techniques suitable for the quantization of a test

field evolving in a quantum background [17]. The Hilbert space is a tensor prod-

uct Ψ(ν, vS(T), ϕ) = ΨFLRW(ν, ϕ̄) ⊗ Ψpert(vS, vT, ϕ̄) with ν the homogeneous and

isotropic degrees of freedom and vS(T) the degrees of freedom for perturbations. In

the interaction picture, so long as the backreaction of the perturbations on ΨFLRW

remains negligible, the Schrödinger equation for the perturbations is shown to be

identical to the Schrödinger equation for the quantized perturbations evolving in

a classical background but using a dressed metric encoding the quantum nature of

the background (for tensor modes):

i~∂ϕ̄Ψpert =
1

2

∫
d3k

(2π)3

{
32πG

p̃ϕ

∣∣∣π̂T,~k

∣∣∣2 Ψpert +
k2

32πG

ã4(ϕ̄)

p̃ϕ

∣∣∣v̂T,~k

∣∣∣2 Ψpert

}
, (5)

with

(p̃ϕ)−1 =
〈
Ĥ−1

FLRW

〉
and ã4 =

〈
Ĥ
−1/2
FLRWâ

4(ϕ̄)Ĥ
−1/2
FLRW

〉
〈
Ĥ−1

FLRW

〉 . (6)

In the above, (v̂T,~k, π̂T,~k) are the configuration and momentum operators of the

perturbations while ĤFLRW is the Hamiltonian operator of the isotropic and ho-

mogeneous background. The dressed metric is in principle neither equal to the

classical metric nor equal to the metric traced by the peak of the sharply peaked

background state. This is finally translated into a Fock quantization for which the

mode functions (providing the evolution of scalar and tensor perturbations in a

quantum background, here expressed in the spatial Fourier space) are solutions of

Q′′k + 2

(
ã′

ã

)
Q′k +

(
k2 + Ũ

)
Qk = 0, (7)

h′′k + 2

(
ã′

ã

)
h′k + k2hk = 0. (8)
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The gauge-invariant variable Qk is related to the Mukhanov-Sasaki variables for

scalar modes via Qk = vS,k/a, and, Ũ is a dressed potential-like term given by

Ũ(ϕ̄) =

〈
Ĥ
−1/2
FLRWâ

2(ϕ̄)Û(ϕ̄)â2(ϕ̄)Ĥ
−1/2
FLRW

〉
〈
Ĥ
−1/2
FLRWâ

4(ϕ̄)Ĥ
−1/2
FLRW

〉 , (9)

the quantum counterpart of

U(ϕ̄) = a2
(
fV (ϕ̄)− 2

√
f∂ϕ̄V + ∂2

ϕ̄V
)
, (10)

with f = 24πG( ˙̄ϕ2/ρ), the fraction of kinetic energy in the scalar field.

A second approach developed in Refs. [18] consists in perturbing the semi-

classical, effective space-time whose dynamics is given by the modified Friedmann

equations. The idea is to start from the classical perturbed Hamiltonian and to

introduce corrections taking into account at the effective level the quantum nature

of the background. For the zeroth-order Hamiltonian, providing the dynamics of

the background, such a modification is easily obtained from the fact that the quan-

tization being based on holonomies, the connection k̄ is replaced by
(
sin(γµ̄k̄)/γµ̄

)
,

yielding the modified Friedmann equations. Similar effective modifications are in-

troduced to the first and second order perturbation Hamiltonians. Though there is

a priori much more freedom for those modifications, there expressions are univocally

derived by requiring that first, the classical Hamiltonian is recovered in the limit of

large volumes (i.e. µ̄ → 0), and, second, that the algebra of the truncated scalar,

diffeomorphism and Gauss constraints is still closed, as is the case for truncated

contraints in the classical theory of cosmological perturbations. This second re-

quirement fixes all the ambiguities of the introduced quantum corrections (at least

for the case of holonomy corrections). Moreover, the set of effective contraints is

first class and can be used to generate the gauge transformations to derive the effec-

tive gauge-invariant variables for the cosmological perturbations. There dynamics

is generated by the second-order, effective Hamiltonian. Those perturbations are

finally quantized à la Fock using the techniques developed for quantum fields in

curved spaces. In that process, it appears that the anomaly-free algebra of effective

constrained is deformed compared to the classical algebra of constraints by [19]:

{D[Ma], D[Na]} = D[M b∂bN
a −N b∂bM

a], (11){
D[Ma], SQ[N ]

}
= SQ[Ma∂aN −N∂aMa], (12){

SQ[M ], SQ[N ]
}

= D
[
Ωqab(M∂bN −N∂bM)

]
, (13)

with D the diffeomorphism constraint and SQ the scalar constraint. The defor-

mation is encoded in Ω which depends on the background phase-space variables,

Ω = cos(2γµ̄k̄) = 1 − 2ρ/ρc. In this deformed algebra approach, the mode func-

tions describing the dynamics of the scalar and tensor modes (in terms of effective
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Mukhanov-Sasaki variables) are solutions of

v′′S(T),k +

[
Ωk2 −

z′′S(T)

zS(T)

]
vS(T),k = 0, (14)

with zS = (aϕ̄′)/H and zT = a/
√

Ω. Those functions encodes the impact of the

effective background on the perturbations.

3.2. Primordial power spectrum in loop quantum cosmology

The primordial power spectra are the sources of the CMB anisotropies and are the

key quantities to compute. Assuming some initial conditions for the mode functions,

thus fixing the choice of the initial quantum states for perturbations, the primordial

power spectra are determined by the knowledge of the mode functions at the end

of inflation. A first choice of initial conditions for perturbations is a fourth order

WKB vacuum at the time of the bounce. Such a choice is however only possible in

the dressed metric approach. For the deformed algebra, Ω is negatively valued at

the time of the bounce which prevents the existence of standard oscillatory solutions

for the mode functions. An example of the resulting primordial power spectra for

scalar and tensor perturbations in the dressed metric approach and setting the

initial conditions for perturbations at the time of the bounce is displayed on Fig.

3. This shows that the bounce leaves a characteristic length scale (k?)
−1 as a

typical footprint. For shorter length scales, k > k?, the predicted primordial power

spectrum cöıncides with the prediction of standard inflationary cosmology since

the slightly red-tilted power law is recovered. However for larger length scales,

LQC predicts a different power spectrum (which can be viewed as a running of the

spectral index in the language of inflation). This typical scale can be intuitively

understood for tensor modes by a clear inspection of (ã′′/ã), tracing the effective

”curvature” of the background. For sharply peaked states, the dressed scale factor ã

is very well approximated by the scale factor traced by the peak of the background

quantum states, a, which is solution of the modified Friedmann equations. At

the time of the bounce, a′′/a = 8πGρc and rapidly decreases in the beginning

of the expansion. Then, this quantity rapidly increases once the Universe enters

its inflationary phase. The shape of the primordial power spectrum is driven by

(k2 − a′′/a): if k2 > a′′/a, the modes are oscillatory whereas in the opposite case,

the mode functions are a linear combination of growing and decreasing modes.

As a consequence, modes at very short scales, k � k? with k? =
√

8πGρc, are

affected by the background ”curvature” during inflation only, explaining why the

standard power law is recovered for the primordial power spectrum at these scales.

However, the dynamics of modes such that k ∼ k? is also affected by the background

”curvature” at the time of the bounce and one should expect for those modes a

discrepancy as compared to the standard prediction of inflation.

Such a length scale translates into a characteristic angular scale in the CMB

angular power spectra. By denoting kH(t0) = 2.3 × 10−4Mpc−1 the wavenumber
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Fig. 3. Primordial power spectra for scalar (left) and tensor (right) modes in the dressed-metric

approach. Initial conditions are set at the time of the bounce (from [5]).

corresponding to the Hubble distance today, the characteristic angular scales is

given, in terms of multipole ` ∼ 1/θ, by `? ≈ k?(t0)/kH(t0). This angular scale

lies in the range of scales observed in the CMB anisotropies if k?(t0) > kH(t0).

The characteristic length scale k? is set at the time of the bounce and is inevitably

stretched by the following cosmic expansion leading to k?(t0) =
√

8πGρc × e−N

with N the number of e-folds from the bounce to today. From the fact that k? is of

the order of the inverse of the Planck length at the time of the bounce and from the

knowledge of the number of e-folds from the end of inflation to today, this scale set

by the bounce enters in the observable range if the number of e-folds during inflation

is smaller than ∼ 90. If such a characteristic length scale is indeed in the range

observed with the CMB, the slight boost of power for k . k? will translate into a

slight boost of the angular power spectrum of the CMB anisotropies (as compared

to the inflationary prediction) for angular scales ` . `?.

Another possibility is to set the initial conditions for perturbations deep in

the contracting phase. Then, for both the deformed algebra and dressed metric

approaches, one can choose a Minkowski vacuum state for all the wavenumbers,

vS(T),k(η → −∞) = exp(ikη)/
√

2k. In the dressed metric, the standard power

law spectrum is recovered for k � k? from the very same reason as described

above: the modes are not affected by the background ”curvature” during both

the classical contraction and the quantum bounce. In the infrared limit, k → 0,

the modes are mainly affected by the background during contraction leading to a

scale invariant power spectrum. In between, there is a range of modes which are

not affected by contraction but by the bounce. In that range of wavenumbers, the

primordial power spectrum exhibits oscillations with an envelope exhibiting a boost

of the power. As shown in Fig. 4, the prediction differs in the deformed algebra

approach [21]. For modes such that k > k?, the shape of the primordial spectrum

is mainly driven by Ωk2. Since Ω is negative around the bounce, this leads to an

exponential increase of the primordial power spectrum at short scales roughly given

by PT(k � k?) ∝ exp
(
k
∫ η+
η−

√
|Ω|dη1

)
with η± defining the time laps around the
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bounce during which Ω is negative. For larger length scales, k < k?, the term

Ωk2 becomes subdominant in the differential equation satisfied by the Mukhanov-

Sasaki variable. This regime is therefore very similar to the dressed metric approach

previously discussed and the scale invariant behavior in the infrared limit as well

as the oscillations for intermediate scales are recovered. A detailed comparisons of

both approches was made in [20].

0.01 0.1 1 10 100 k
0.001

10

105

109

1013

!T

Fig. 4. Primordial power spectrum for tensor modes in the deformed-algebra approach (from [21]).
The exponential increase is not necessarily a problem as (i) the observational window might fall out

of this region, (ii) the spectrum has anyway a natural cutoff in the UV as the small-scale physics

is not described by the primordial spectrum, (iii) backreaction should be taken into account when
the amplitude becomes high. The spectrum for scalar modes was derived in [22].

Similar studies have been performed for the case of inverse volume (IV) correc-

tions. This includes the derivation of an anomaly-free perturbation theory with

IV corrections alone, and, with both holonomy and IV corrections [23]. How-

ever, the impact of the IV corrections on the bounce itself is not well understood

and the primordial power spectra with such corrections has been computed dur-

ing inflation only. Fortunately, an imprint appears on the largest scales for scalar

and tensor modes in the form of a polynomial boost below the pivot scale k0,

PIV(k) = PSTD(k)× (1+Γδ0(k/k0)−|σ|) [24]. Starting from such a predicted power

spectrum, the IV parameters have been constrained using WMAP data on the

CMB anisotropies showing that e.g. for σ = 2, the parameter δ0 is constrained to

be smaller than 6.5× 10−5 at 95% of confidence level [25].

3.3. Measuring the Barbero-Immirzi parameter

The above results are based on loop quantum cosmology with a real-valued Barbero-

Immirzi parameter, inherited from the standard formulation of loop quantum grav-

ity. Originally, the Ashtekar formulation of gravity as a gauge theory was however

built with a complex-valued Barbero-Immirzi parameter, γ = ±i, thus simplify-

ing the constraints into being polynomials in the phase-space variables. Though γ
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plays no role at the classical level, it is of primary importance at the quantum level:

γ = ±i makes the gauge group to be complex, rendering the quantization difficult.

Quantization is usually performed with γ ∈ R for the gauge group is SU(2), which

is directly related to the discreteness of the spectra of geometric operators. The

role of γ is then crucial in LQC since the discreteness of geometric operators plays

an important role in the bounce scenario via the minimal area gap. Phenomeno-

logically speaking, the value of γ fixes the value of ρc which could be measured by

searching for the characteristic scale k? =
√

8πGρc in the CMB anisotropies. It was

however argued that in the context of three-dimensional gravity, a natural choice

would be γ = ±i which still leads to a consistent quantum theory [26]. This still

has to be fully extended to four-dimensional gravity, but this shows that trying to

experimentally probe the nature of the Barbero-Immirzi parameter is important.

The two (independent) helicity states of primordial gravitational waves are clas-

sically derived from a linearization of Einstein’s equations around the inflationary

background and subsequently quantized using a Fock scheme on curved spaces. The

resulting primordial power spectra for the right-handed and left-handed gravitons

are equal, Pr/l ∝ (H/MPl)
2 with H the Hubble parameter during inflation (”gravi-

ton” is used to denote a Fock quantization of tensor modes). The CMB angular

power spectrum of the BB correlation is sourced by the sum of the two helicity states

(PT in Eq. (4) is the sum Pr + Pl). The cross-correlations between temperature

and B-modes (called TB), and between E- and B-modes (called EB) are however

sourced by the difference of the two helicity states, Pr − Pl. Because Pr = Pl by

linearizing Einstein’s equations and quantizing à la Fock, C
TB(EB)
` are vanishing.

However, it was argued that primordial gravitons may have a helicity-dependent be-

havior if linearization is performed in the Ashtekar formalism [27]. More precisely,

it is argued that if the Barbero-Immirzi parameter is imaginary, the reality condi-

tion imposes that at the quantum level, left-handed and right-handed gravitons do

not propagate similarly in an inflationary background, suggesting that linearized

gravity may violate parity at the quantum level. (This helicity-dependant behavior

only arises if γ has an imaginary part and at the quantum level. At the classical

level or for a real-valued γ, there is no such parity breaking in linearized gravity.)

If this is indeed the case, the TB and EB angular power spectra are non-zero if γ

has a non-vanishing imaginary part while these spectra are zero if γ is real-valued.

Some CTB` and CEB` (with the CBB` autocorrelation) are depicted in Fig. 5,

including lensing of CMB photons by large scale structures [28]. Dotted parts

stand for negative values of TB and EB correlations which is an important piece of

information since e.g. a negative CTB` at ` ≤ 15 corresponds to more power in the

right-handed gravitons. The amplitude of the BB autocorrelation is set by the value

of the tensor-to-scalar ratio, r (equal to 0.05 in Fig. 5). Introducing δ = Pr−Pl

Pr+Pl

which amounts the level of parity violation in the linearized gravitational sector, the

amplitude of the TB and EB correlations is set by (r × δ). A reconstruction of r

and δ is then possible from a measurement of CBB` , CTB` and CEB` . The parameter
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δ is a direct measure of the level of parity breaking, and subsequently a direct test

of a possible non-vanishing imaginary part of γ, as |γ| =
(
1±
√

1− δ2
)
/ |δ| for the

simplified case of a purely imaginary Barbero-Immirzi parameter.

Fig. 5. CMB angular power spectra for the BB, TB and EB cross-correlations (r = 0.05) if γ is

purely imaginary (from [28]).

For a future, highly-sensitive satellite mission dedicated to the CMB polariza-

tion, the measurements of polarized B-modes would be accurate enough for de-

tecting at least 50% of parity violation at e.g. 95% of Confidence Level (C.L.) for

r = 0.2 (the uncertainties are dominated by the sampling variance). Similarly, mea-

suring C
TB(EB)
` consistent with zero would lead to an upper bound on δ, directly

translated into an exclusion range for |γ|. For r = 0.05, the exclusion range at 95%

C.L. is 0.66 ≤ |γ| ≤ 1.5, and it is enlarged to 0.2 ≤ |γ| ≤ 4.9 for r = 0.2 [28].

4. Lorentz invariance violation

Testing for quantum gravity usually assumes an access to gravitational phenomena

for which the curvature becomes close to the Planck scale. In Ref. [29], it was

first argued that one can also search for quantum gravity imprints by studying the

propagation of particles whose energy is comparable to the quantum gravity energy

scale (or even much below if the propagation distance is high enough). The basic

idea is that discreteness is a genuine property of the quantum space-time. In the

context of LQG, this can be understood from the discreteness of geometric opera-

tors as volume and area operators. This granularity fixes an invariant length scale

in apparent contradiction with special relativity (as a boost can contract any length

scale). Even though arguments showing that the discreteness of geometric opera-

tors can be in agreement with Lorentz invariance have been put forward (see [30],

which argues that the discrete spectrum is observer invariant but the expectation
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values are not), this granularity idea has opened a wide area of quantum gravity

phenomenology aiming at searching for Lorentz invariance violation or deformation

as a tracer of quantum gravity. This rich phenomenology is encoded in the fact that

the energy-momentum dispersion relation is modified E ' p+m2/2p±ξ(E2/MQG)n,

with MQG the energy scale of quantum gravity, ξ > 0, and n usually chosen as an

integer. Because of that, the group velocity for e.g. photons becomes momentum

dependent. This means that two photons emitted at the same time but at different

momenta would be received at two different times by a distant observer, as, (for

n = 1), ∆v ' ξ∆kD/MQG with ∆k the momentum difference and D the distance

from the emitter to the receiver. One should therefore look for energetic phenomena

(thus ∆k is close enough to the quantum gravity scale) and cosmological distances

(for having a cumulative impact) for such an effect to be detectable.

If Lorentz invariance is indeed broken or deformed by quantum gravity, this

could be described at an effective level. There are many different ways of im-

plementing this idea, ranging from non-commutative space-time to effective field

theories and non-linear Poincaré symmetries. Here, we only mention a few which

are closely related to LQG and refer the interested reader to [31] and references

therein for a detailed presentation. In all the implementations discussed here, one

arrives at a modified dispersion similar to the one mentioned above, with a po-

tentially additional helicity dependance. One approach consists in analyzing the

Hamitonian of the electromagnetic field in a semi-classical state being an discrete

approximation of the flat geometry, dubbed a weave [32]. Because the densitized

triad operator enters the Hamiltonian for electromagnetism, its expectation value

on the weave state is expected to receive loop quantum gravity corrections. The

resulting modified dispersion relation for photons acquires a helicity-dependant cor-

rection ω2
± = k2∓ 4χk3/MPl with χ ∼ 1. In such a case, photons would experience

birefringence in vacuum modifying their polarization state. This effect has been

investigated (in the framework of effective field theory though) in [33] and [34].

Another approach was put forward in [35]. The idea is that, classically, the

action functional S[A] =
∫

Σ
S[A] can be used to define a slicing of the classical

space-time. If one now considers a quantum setting, this slicing fluctuates around

the classical neighborhood corresponding to space-time variations. The explicit

calculation performed in [35] considers a Born-Oppenheimer state Ψ0[A]χ[A, φ] with

Ψ0 a semiclassical state peaking at the classical solution and φ a matter field. The

expectation value of the densitized triad on such a semiclassical state, evaluated

around the classical trajectory, is deformed to E
(0) a
i (x, t, ω) = E

(0) a
i (x, t)(1 −

αLPlω) with E
(0) a
i (x, t) the classical solution and ω to be interpreted as the energy

of the matter field (in the sense that χ[t, φ] ∝ e−iωtχω[φ]). The time parameter

t is defined from the action functional S[A]. Since the triad is now ω-dependent,

this defines an ω-dependent metric and thus a modified dispersion relation: m2 =

ω2−k2/(1−αLPlω). A potential interpretation is that quantum gravity fluctuations

lead to an effective frame in which momenta are measured [37]. Classically, the
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physical momenta pa is measured in a local inertial frame fixed by the space-time

manifold, pa = eµaπµ with πµ interpreted as the generator of translations. Quantum

fluctuations of the space-time itself would then lead to an effective frame ẽµa which is

non-linearly related to eµa with a πµ dependance, ẽµa = F (eµa , πµ). Since the physical

momenta are now measured by p̃a = ẽµaπµ, the transformation law for momenta

would not be given anymore by the Lorentz matrices. In that case, one is therefore

considering a deformation of the Poincaré symmetry since the relativity principle is

preserved but the transformation rules are now non-linear [36].

5. Black holes

Black holes have been extensively studied in loop quantum gravity (see the chapter

by Barbero and Perez in this book). As their macroscopic structure hopefully co-

incides (up to very small corrections) with the one predicted by general relativity,

it is very hard to test LQG with the observation of black holes. Recovering the

correct value of the entropy is a very powerful consistency test but can hardly be

considered as an experimental confirmation. The only way to observationally inves-

tigate LQG with black holes would probably be through their Hawking evaporation.

As no evaporating black hole has been seen up to now, this is a prospective work.

However, a wide variety of phenomena, reviewed in [38], can in principle lead to

primordial black holes.

The idea proposed in [39] is to search for possible LQG signatures in the spec-

trum of evaporating black holes. The state counting for black holes in LQG relies on

the isolated horizon framework (that is a boundary of the underlying manifold con-

sidered before quantization). For a given area A of a black hole horizon, the states

arise from a punctured sphere whose punctures carry quantum labels (see, e.g., [40]).

Two labels (j,m) are assigned to each puncture, j being a spin half-integer with in-

formation on the area and m being its associated projection with information on the

curvature. They satisfy the condition A−∆ ≤ 8πγ`2P
∑N
p=1

√
jp(jp + 1) ≤ A+ ∆,

where γ is the Barbero-Immirzi parameter of LQG, ∆ is a “smearing” parameter

and p labels the different punctures. One may also add the closure constraint:∑
pmp = 0, which corresponds to a horizon with spherical topology.

In the past, it was postulated that due to quantum gravitational effects, the

change in the area of a black hole should be proportional to a fundamental area

of the order of the Planck area one. It was then hoped that associated lines in

the evaporation spectrum should appear and might reveal quantum gravity effects.

However it was understood in [41, 42] that the situation is different in LQG because

the spacing of the energy levels decreases exponentially with the energy. In [39],

this issue was readdressed and it was shown that several different signatures can in

fact be expected.

To investigate the evaporation in the deep quantum regime, a dedicated and

optimized algorithm was developed. It is based on [43] and improved by a breadth-
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Fig. 6. Spectrum of emitted particles in LQG, in the pure Hawking case, and with an area

proportional to the Planck area (Mukhanov), from top to bottom.

first search. To see if there is a measurable difference, the evaporation has been

considered both according to the pure Hawking law and according to LQG. In

each case, it was modeled by expressing the probability of transition between states

as the exponential of the entropy difference modulated by the greybody factor.

Those factors were computed beyond the optical limit by solving the quantum

wave equations in the curved background of the black hole. Fig. 6 shows that

some specific lines associated with transitions occurring during the last stages of

the evaporation can be identified in the LQG spectrum whereas the pure Hawking

spectrum is naturally featureless.

Monte-Carlo simulations were performed to estimate the energy resolution and

the number of black holes required for distinguishing between the different scenar-

ios. At each step of the evaporation process, the energy of the emitted quantum was

randomly chosen according to the relevant statistics and to the (spin-dependent)
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greybody factor. A Kolmogorov-Smirnov (K-S) test was performed to quantify the

distance between the cumulative distribution functions and used for a systematic

study of possible discriminations between models. Figure 7 shows the number of

black holes that would have to be observed for different confidence level in distin-

guishing between models, as a function of the relative error of the energy reconstruc-

tion. With either enough black holes or a relatively small error, a discrimination is

possible, therefore showing to a clear LQG footprint in the evaporation spectrum.

In this study, only emitted leptons were considered to avoid taking into account

complicated fragmentation effects. For a detector located close to the black hole,

and due to the huge Lorentz factors, the electrons, muons and taus can be consid-

ered as stable.
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Fig. 7. Number of evaporating black holes that should be observed as a function of the error on the

energy reconstruction of the emitted leptons for different confidence levels (the scale corresponds

to the number of standard deviations). Up : discrimination between LQG and the Hawking
hypothesis. Down : discrimination between LQG and the ”area proportional to the Planck area”

hypothesis.

There is another specific feature of the end-point of the evaporation process

which can also be considered. In LQG, the last transitions take place at definite

discrete energies associated with the final peaks in the mass spectrum whereas in the

usual Hawking picture, the simplest way to implement a minimal mass is to perform

a truncation of the standard spectrum to ensure energy conservation. This leads
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to the consequence that in the standard picture, the energy of the emitted quanta

will progressively decrease and asymptotically approach to zero. This “low-energy”

emission associated with the end-point can be distinguished from the “low-energy”

particles emitted earlier in the evaporation process thanks to the dynamics. The

time interval between consecutive emissions will increase with decreasing energies

as E−3. At 100 TeV, the mean interval is around 1 s. This specific feature of

the “standard” spectrum is very different from the absence of low-energy particles

expected in the LQG case.

A final possible test is associated with the pseudo-periodic “large scale” struc-

ture of the area spectrum (see [43] and references therein). Most recent arguments

suggest that this periodicity is damped for high masses. If, however, it was to

remain, this would lead to interesting features. The area gap dA between peaks

can be shown to be independent of the scale. As, for a Schwarzschild black hole,

dA = 32πMdM and T = 1/(8πM), this straightforwardly leads to dM/T = const

where dM refers to the mass gap between peaks. This is the important point for

detection: in units of temperature, the mass gap does not decrease for increasing

masses. Any observable feature associated with this pseudoperiodicity can there-

fore be searched for through larger black holes. If primordial black holes are formed

with a definite mass (as expected for example from phase transitions) and not with

a continuous spectrum, their resulting emission can be shown [39] to exhibit poten-

tially detectable features associated with this pseudo-periodicity.

A new proposal about statistics, holography, and black hole entropy in loop

quantum gravity was suggested in [44]. The main change is that the degeneracy of

area eigenvalues of LQG is now modified in a simple way by taking into account vac-

uum fluctuations in the near horizon region. The area spectrum will not be modified

but instead of having basically a degeneracy of 2j + 1 for each puncture state, we

would now have eaj/4 (where aj is the area eigenvalue, that is 8πγ`2p
√
j(j + 1)). Im-

portantly, punctures should in this case be considered as indistinguishable bosons.

The very same Monte Carlo simulation approach is being performed to account also

for this new model.

6. Planck stars

Recently another idea about black holes and possible observational consequences

was pushed in [45]. The key insight comes first from lessons from quantum cos-

mology. In loop cosmology, the Friedmann equation is modified by quantum grav-

itational effects by a term determined by the ratio of ρ to a Planck scale density

ρPl. The quantum gravity regime seems to be reached when the energy density

of matter reaches the Planck scale, ρ ∼ ρPl. The point is that this may happen

well before relevant lengths l become planckian. The bounce is due to a quantum-

gravitational repulsion which originates from the Heisenberg uncertainty and does
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not happen when the universe is of planckian size but instead happens when the

energy density reaches the Planck density. Quantum gravity could become relevant

when the volume of the universe is some 75 orders of magnitude larger than the

Planck volume [46].

The analogy between quantum gravitational effects on cosmological and black-

hole singularities has been successfully used to make a proposal as to how quantum

gravity could also resolve the singularity at the center of a collapsed star. It is

assumed that the energy of a collapsing star and any energy falling into the hole

could condense into a highly compressed core with density of the order of the Planck

density. If this is the case, the gravitational collapse of a star does not lead to a

singularity but to an additional phase in the life of a star: a quantum gravitational

phase where the gravitational attraction is balanced by a quantum pressure. A star

in this phase is called a “Planck star”. The key observation is that a Planck star can

have a size r ∼
(

m
mPl

)n
lPl where m is now the mass of the star and n is positive.

For instance, if n = 1/3 (as can be naively computed), a stellar-mass black hole

would collapse to a Planck star with a size of the order of 10−10 cm, that is 30 orders

of magnitude larger than the Planck length. The main hypothesis is that a star so

compressed would not satisfy the classical Einstein equations anymore, even if huge

compared to the Planck scale, because its energy density is already planckian.

The event horizon is replaced by a “trapping” horizon [47] which looks like the

standard horizon locally, but from which matter can eventually bounce out. The

core, that is the “Planck star”, retains memory of the initial collapsed mass mi. In

particular, primordial black holes exploding today may produce a distinctive signal

for this scenario. Let mf = ami be the final mass reached by the black hole before

the dissipation of the horizon. It was shown in [45], using arguments based on in-

formation conservation avoiding the firewall hypothesis, that the preferred value is

a ∼ 1√
2
. The whole observational scenario relies on the assumption that when the

black hole reaches this mass it releases all its energy.

During the evaporation phase, the mass loss rate is given by dm
dt = − f(m)

m2 , where

f(m) is given above each threshold by f(m) ≈ (7.8αs=1/2 + 3.1αs=1)× 1024 g3s−1,

where αs=1/2 and αs=1 are the number of degrees of freedom (including spin, charge

and color) of the emitted particles. If f(m) is assumed to be constant, this leads

to:

mi =

(
3tHf(mi)

1− a3

) 1
3

. (15)

To account for the smooth evolution of f(m) a numerical integration can be carried

out and leads to mi ≈ 6.1× 1014 g, and mf ≈ 4.3× 1014 g. The value of mi is very

close to the usual value m∗ corresponding to black holes needing a Hubble time

to fully evaporate. This was expected as the process is explosive. The size of the

black hole when it reaches mf is the only scale in the problem and therefore fixes

the energy of the emitted particles in this last stage. All quanta are assumed to be
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emitted with the same energy taken at Eburst = hc/(2rf ) ≈ 3.9 GeV.

Most of the emitted gammas are not emitted with the energy Eburst but, instead,

come from the decay of hadrons produced in the jets of quarks. If one assumes that

the branching ratios are controlled by the internal degrees of freedom, the direct

emission represents only a small fraction (1/34 of the emitted particles). To simulate

this process, the ”Lund Monte Carlo” PYTHIA code was used to generate the mean

spectrum expected for secondary gamma-rays emitted by a Planck star reaching the

end of its life. The main point worth noticing is that the mean energy is of the order

of 0.03 × Eburst, that is in the tens of MeV range rather than in the GeV range,

with a high multiplicity of 10 photons per qq̄ jet.

It is straightforward to estimate the number of photons < Nburst > emitted

during the burst. As for a black hole radiating by the Hawking mechanism, the

particles emitted during the bursts (that is those with m < Eburst) are emitted

proportionally to their number of internal degrees of freedom: gravity is democratic.

The spectrum resulting from the emitted u, d, c, s quarks (t and b are too heavy),

gluons and photons is shown on Fig. 8. The little peak on the right corresponds to

directly emitted photons that are clearly sub-dominant. By also taking into account

the emission of neutrinos and leptons of all three families (leading to virtually no

gamma-rays and therefore being here a pure missing energy), one obtains a total

number of photons emitted of < Nburst >≈ 4.7× 1038.

If one assumes a 1 m2 detector, this leads to a maximum distance of detectability

of R ≈ 205 light-years. The “single event” detection of exploding Planck stars is

therefore local and only a tiny galactic patch around us can be probed. The signal

is therefore expected to be isotropic.

If Planck stars reaching mf were to saturate the dark matter bound their number

within this detectable horizon would be

Nmax
det =

4πρDM∗
3mf

(
S < Nburst >

4πNmes

) 3
2

≈ 3.8× 1022. (16)

However the usual constraint on primordial black holes ΩPBH < 10−8 for initial

masses around 1015 g basically holds and this leads to Ndet < 3.8 × 1014, which is

still a high number showing that the individual detection is not impossible.

It is possible to estimate the number of events observable in a time ∆t corre-

sponding to Planck stars that have masses between mf and m(∆t) at the beginning

of the observation time, within the volume R < Rdet. In this case, m(∆t) is simply:

m(∆t) =
(
m3
f + 3f(m)∆t

) 1
3

. The number of expected ”events” during ∆t is given

by

N(∆t) =

∫m(∆t)

mf

dn
dmdm∫mmax

mf

dn
dmdm

ΩPBHNmax
det Ωsr, (17)
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Fig. 8. Full spectrum of gamma-rays emitted by a decaying Planck star (log scales).

where mmax is the maximum mass up to which we assume the mass spectrum

dn/dm to be ”filled” by black holes and Ωsr is the solid angle acceptance of the

considered detector. An upper limit on the value of ΩPBH can be taken conser-

vatively at 10−8. If one sets mmax = m∗ and a density of a few percents of the

maximum allowed density, that is ΩPBH ∼ 10−10, this leads to one event per day.

Could such events be associated with some gamma-ray bursts (GRBs) already

detected? The long GRBs are well understood and have no link with Planck stars.

Were Planck star explosions to be associated with some of the known GRBs, this

would be with short gamma-ray bursts (SGRBs). Interestingly, SGRBs are the

less well understood; the redshifts are not measured for a large fraction of them;

they are known to have a harder spectrum and some of them do indeed reach the

energies estimated here; and a sub-class of SGRB, the very short gamma ray bursts

(VSGRBs), do exhibit an even harder spectrum and can be assumed to originate

from a different mechanism as the SGRB time distribution seems to be bimodal.

This does not mean that exploding Planck stars have been detected but this raises

an interesting question.

Recently, the model has been developed in [48] and the resulting phenomenology

was investigated in [49] and [50].
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