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Abstract

Quantum gravity is often expected to solve both the singularity problem and

the information-loss problem of black holes. This article presents an example from

loop quantum gravity in which the singularity problem is solved in such a way that

the information-loss problem is made worse. Quantum effects in this scenario, in

contrast to previous non-singular models, do not eliminate the event horizon and

introduce a new Cauchy horizon where determinism breaks down. Although infinities

are avoided, for all practical purposes the core of the black hole plays the role of a

naked singularity. Recent developments in loop quantum gravity indicate that this

aggravated information loss problem is likely to be the generic outcome, putting

strong conceptual pressure on the theory.

1 Introduction

There is a widespread expectation that quantum gravity, once it is fully developed and
understood, will resolve several important conceptual problems in our current grasp of the
universe. Among the most popular ones of these problems are the singularity problem
and the problem of information loss. Several proposals have been made to address these
questions within the existing approaches to quantum gravity, but it is difficult to see a
general scenario emerge. Given such a variety of possible but incomplete solution attempts,
commonly celebrated as successes by the followers of the particular theory employed, it
is difficult to use these models in order to discriminate between the approaches. In this
situation it may be more fruitful to discuss properties of a given approach that stand in
the way of resolving one or more of the big conceptual questions. Here, we provide an
example regarding the information loss problem as seen in loop quantum gravity.

Loop quantum gravity [1, 2, 3] is a proposal for a canonical quantization of space-time
geometry. It remains incomplete because it is not clear that it can give rise to a consistent
quantum space-time picture (owing to the so-called anomaly problem of canonical quan-
tum gravity). Nevertheless, the framework is promising because it has several technical
advantages compared to other canonical approaches, in particular in that it provides a well-
defined and tractable mathematical formulation for quantum states of spatial geometry.
The dynamics remains difficult to define and to deal with, but there are indications that
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a consistent version may be possible, one that does not violate (but perhaps deforms) the
important classical symmetry of general covariance. These indications, found in a variety
of models, lead to the most-detailed scenarios by which one can explore large-curvature
regimes in the setting of loop quantum gravity.

The word “loop” in this context refers to the importance attached to closed spatial
curves in the construction of Hilbert spaces for geometry according to loop quantum gravity
[4]. More precisely, one postulates as basic operators not the usual curvature components
on which classical formulations of general relativity are based, but “holonomies” which
describe how curvature distorts the notion of parallel transport in space-time. If we pick
a vector at one point of a closed loop in curved space and move it along the loop so that
each infinitesimal shift keeps it parallel to itself, it will end up rotated compared to the
initial vector once we complete the loop. The initial and final vectors differ from each
other by a rotation with an angle depending on the curvature in the region enclosed by the
loop. Loop quantum gravity extends this construction to space-time and quantizes it: It
turns the rotation matrices into operators on the Hilbert space it provides. An important
consequence is the fact that (unbounded) curvature components are expressed by bounded

matrix elements of rotations. Most of the postulated loop resolutions of the singularity
problem [5, 6, 7, 8, 9, 10, 11] rely on this replacement.

Classical gravity, in canonical terms, can be described by a HamiltonianH that depends
on the curvature. If H is to be turned into an operator for loop quantum gravity, one must
replace the curvature components by matrix elements of holonomies along suitable loops,
because only the latter ones have operator analogs in this framework. One has to modify
the classical Hamiltonian by a new form of quantum corrections. The classical limit can be
preserved because for small curvature, the rotations expressed by holonomies differ from
the identity by a term linear in standard curvature components [12, 13]. At low curvature,
the classical Hamiltonian can therefore be obtained. At high curvature, however, strong
quantum-geometry effects result which, by virtue of using bounded holonomies instead of
unbounded curvature, can be beneficial for resolutions of the singularity problem.

Given the boundedness, it is in fact easy to produce singularity-free models. But one
of the outstanding problems of this framework is to show that the strong modification of
the classical Hamiltonian can be consistent with space-time covariance. This question is
not just one of broken classical symmetries (which might be interesting quantum effects).
Covariance is implemented by a set of gauge transformations which eliminate unphysical
degrees of freedom given by the possibility of choosing arbitrary coordinates on space-time.
When these transformations are broken by quantum effects, the resulting theory is mean-
ingless because its predictions would depend on which coordinates one used to compute
them. Showing that there are no broken gauge transformations (or gauge anomalies) is
therefore a crucial task regarding the consistency of the theory. The problem remains
unresolved in general, but several models exist in which one can see how it is possible
to achieve anomaly-freedom, constructed using operator methods [14, 15, 16, 17] or with
effective methods [18, 19, 20, 21, 22].
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2 A model of deformed canonical symmetries

As a simple, yet representative, example, we consider a model with one field-theoretic
degree of freedom φ(x) and momentum p(x). There is no room for gauge degrees of
freedom in this model, and therefore we use it only to consider the form of symmetries of
gravity, not the way in which spurious degrees of freedom are removed.

2.1 Algebra of transformations

For the example, we postulate a class of Hamiltonians

H [N ] =

∫

dxN

(

f(p)−
1

4
(φ′)2 −

1

2
φφ′′

)

(1)

with a function f to be specified, and with the prime denoting a derivative by the one
spatial coordinate x. As in general relativity, the Hamiltonian depends on a free function
N(x) because there is no absolute time. The freedom of choosingN corresponds to choosing
different time lapses and directions along which H [N ] would generate translations. Also
the dependence of H [N ] on the canonical fields is modeled on gravity, where f(p) would
be a quadratic function (p standing for extrinsic curvature) and the derivative terms of
φ present a simple version of spatial curvature (a function quadratic in first-order and
linear in second-order derivatives of the metric). The main formal features of gravitational
Hamiltonians are therefore captured by this model. One can indeed check that the general
results of [18, 19, 20, 21, 22] follow from the structure of derivatives in (1) in combination
with a function f(p) which modifies the classical momentum dependence.

The Hamiltonian, as a generator of local time translations, is accompanied by a second
generator of local spatial translations, the form of which is more strictly determined: It
is given by D[w] =

∫

dxwφp′ with another free function w(x). It generates canonical
transformations given by

δwφ = {φ,D[w]} = −(wφ)′ and δwp = {p,D[w]} = −wp′ , (2)

as they would result from an infinitesimal spatial shift by −w(x):

p(x− w(x)) ≈ p(x)− w(x)p′(x) = p(x) + δwp(x) .

(The transformation of φ is slightly different owing to a formal density weight.)
Of special importance is the algebra of symmetries, which can be computed by Poisson

brackets (as a classical version of commutators). We obtain

{H [N ], H [M ]} = D[1
2
(d2f/dp2)(N ′M −NM ′)] . (3)

Two local time translations have a commutator given by a spatial shift. (The numerical
coefficients chosen in (1) ensure that the algebra of symmetry generatorsH andD is closed.)
Although our model is simplified, the result (3) matches well with calculations in models
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of loop quantum gravity, constructed for spherical symmetry [19, 22] and for cosmological
perturbations [20, 21]. The same type of algebra has also been obtained for H-operators in
2 + 1-dimensional models [14]. Since our choice (1) extracts the main dynamical features
of loop models, it serves to underline the genericness of deformed symmetry algebras when
f(p) is no longer quadratic.

2.2 Geometry

For the classical case in which f(p) = p2 is a quadratic function of p, half the second
derivative in (3) is a constant equal to one and the spatial shift is simply N ′M − NM ′.
This relation agrees with the result obtained in general relativity (except that in the latter
case one would have to use the spatial metric to turn the 1-form N ′M−NM ′ into a vector).
It has an interesting interpretation if we use linear functions of the form c∆t+(v/c)x for N
and M (with the speed of light c). The constant ∆t amounts to a rigid shift in time. The
linear term can be understood if one thinks of Minkowski diagrams in special relativity: a
Lorentz boost tilts the x-axis into a new position by an angle given by the boost velocity
v. (The new x-axis is the set of points where the new time coordinate

t′ =
t− vx/c2
√

1− v2/c2

is constant.) The commutator of Lorentz boosts and time translations can be derived from
(3) with linear N and M : For N = c∆t + (v/c)x and M = −(v/c)x (undoing the boost
after time ∆t), we have N ′M−NM ′ = v∆t. The commutator simply amounts to a spatial
shift

w = ∆x = v∆t , (4)

as expected.
Holonomy effects of loop quantum gravity can be modeled by using a bounded function

f(p) instead of a quadratic one. (A popular choice in the field is f(p) = p2
0
sin2(p/p0) with

some constant p0, such as Planck-sized curvature.) The number of classical symmetries
remains intact because the relation (3) is still a closed commutator. But the structure
of space-time changes: we can no longer think in terms of local Minkowski geometry
because the spatial shift in (3) with 1

2
d2f/dp2 6= 1 violates the relation ∆x = v∆t found

classically in (4). The deviation from classical space-time is especially dramatic at high
curvature, near any maximum of the holonomy function f(p): Around a maximum, the
second derivative is negative, d2f/dp2 < 0. For the popular choice of f(p) = p2

0
sin2(p/p0),

we have 1

2
d2f/dp2 = cos(2p/p0) which is equal to −1 at the maximum of f(p). The counter-

intuitive relation ∆x = −v∆t can be interpreted in more familiar terms: the change of
sign means that the classical Lorentz boost is replaced by an ordinary rotation. (An
infinitesimal rotation by an angle θ in the (x, y)-plane and a spatial shift by ∆y commute
to ∆x = −θ∆y.) At high curvature, holonomy-modified models of general relativity replace
space-time with pure and timeless higher-dimensional space, a phenomenon called signature
change [23, 24, 25].
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2.3 Field equations

At the level of equations of motion, signature change means that hyperbolic wave equations
become elliptic partial differential equations (in all four dimensions, or two in the model).
Indeed, if one computes equations of motion from the Hamiltonian (1), one obtains

1

N

(

φ̇

N

)

•

−
1

2

d2f(p)

dp2

(

φ′′ +
N ′

N
φ′ +

N ′′

N
φ

)

= 0 , (5)

where d2f(p)/dp2 is a function of φ̇ via φ̇ = Ndf(p)/dp. This partial differential equation,
which is hyperbolic for 1

2
d2f(p)/dp2 > 0, becomes elliptic for 1

2
d2f(p)/dp2 < 0.

In the latter case, the equation requires boundary values for solutions to be specified;
it is not consistent with the familiar evolution picture implemented by an initial-value
problem. Instead of specifying our field and its first time derivative at one instant of
time, once curvature (or φ̇ in the model) becomes large enough to trigger signature change
we must specify the field on a boundary enclosing a 4-dimensional region of interest —
including a “future” boundary in the former time direction. We can no longer determine
the whole universe from initial data given at one time.

Although our specific model is simplified, the main conclusion about signature change
agrees with the more detailed versions cited above, which latter directly come from reduced
models of loop quantum gravity combined with canonical effective techniques. Our model
presented here shows that the main reason for signature change is the modified depen-
dence of gravitational Hamiltonians on curvature components when holonomies are used
to express them, together with the general structure of curvature terms. (Especially the
presence of spatial derivatives seems crucial for derivatives of the modification function to
show up in the symmetry algebra after integrating by parts.) The rest of our discussions
does not rely on the specific model but rather on the general consequence of signature
change.

2.4 General aspects of signature change

As shown in [26], the structure of constraint algebras or gauge transformations, of which
(3) provides a model, is much less sensitive to details of regularization effects or quantum
corrections than the precise dynamics implied. Even if there may be additional quantum
corrections in (5) in a fully quantized model, structure functions of the algebra, such as
1

2
d2f/dp2 in (3), provide reliable effects of a general nature. For details, the reader is re-

ferred to the above citation, but the crucial ingredient in this observation is the definition
of effective constraints CI = 〈ĈI〉 as expectation values of constraint operators, and their
brackets as {CI , CJ} = 〈[ĈI , ĈJ ]〉/i~. A regularization of a constraint operator ĈI leads to
corresponding modifications of the effective constraint 〈ĈI〉. For any consistent operator
algebra, the bracket of effective constraints mimics the commutator of constraint operators.
Even if 〈ĈI〉, computed to some order in quantum corrections, may give a poor approxima-
tion to the quantum dynamics, the possible consistent forms of effective constraint algebras
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restrict the possible versions of quantum commutators. If effective constraints of a certain
form, such as those obtained with holonomy modifications, always lead to a change of sign
of structure functions, the same must be true for operator algebras.

As noted also in [24, 27], equations of the form (5) sometimes appear for matter systems
with instabilities, in cosmology but also in other areas such as transonic flow. An instabil-
ity would normally not be interpreted as signature change as long as a standard Lorentzian
metric structure remains realized, as is the case in all the known matter examples. The
present context, however, is different, because the instability affects the geometry of space-
time itself, and not just matter propagating in space-time. (In models of loop quantum
gravity, φ in (5) stands for metric inhomogeneities.) Such an instability is more severe,
and at the same time more inclusive because it affects all excitations — matter and ge-
ometry — in the same way. Indeed, the most fundamental structure where it appears is
not the equation of motion (5) but the symmetry algebra (3). If matter is present, its
Hamiltonian would be added to the gravitational one, the resulting sum satisfying a closed
algebra of the form (3). (If adding matter terms would break the algebra, there would
be anomalies making the theory inconsistent.) Matter and geometry are then subject to
the same modified symmetries, and correspondingly to a modified evolution picture with
a boundary rather than initial-value problem at high density.

Solutions might exist for elliptic partial differential equations with an initial-value prob-
lem. However, such solutions are unstable and depend sensitively on the initial values;
therefore, initial-value problems for elliptic partial differential equations are not well-posed.
Sometimes, a physical model of this form may just signal a growing mode which is increas-
ing rapidly in actual time. In quantum gravity and cosmology, however, instabilities from
signature change in (3) or (5) are much more debilitating. In this context, one does not
perform controlled laboratory experiments in which one can prepare or directly observe the
initial values. When signature change is relevant, it happens in strong quantum-gravity
regimes where the analogs of f(p) differ much from the classical behavior. Not only ini-
tial values but also the precise dynamical equations (subject to quantization ambiguities)
are so uncertain that an initial-value formulation can give no predictivity. (In cosmological
parlance, instabilities from signature change present severe versions of trans-Planckian and
fine-tuning problems. For more information on the dynamics of affected modes see [28].)
In contrast to some matter systems in which elliptic field equations may appear, quantum-
gravity theories do not allow initial-value formulations in such regimes but rather require
4-dimensional boundary-value problems.

Evolution in these models is no longer fully deterministic. In the remainder of this
article, we apply this conclusion to black holes and show that even low-curvature regions,
where observers have no reason to expect strong quantum-gravity effects, will be affected
by indeterminism. In this context, consequences of signature change are therefore much
more severe than their analogs in cosmological models.
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3 Black holes

Black holes in general relativity have singularities where space-time curvature diverges.
Loop quantum gravity has given rise to models in which curvature is bounded, apparently
resolving the singularity problem [29]. As in some other approaches [30, 31, 32, 33], there
is then no event horizon but only an apparent horizon which encloses large curvature
but eventually shrinks and disappears. If there is no singularity and information can
travel freely through high-curvature regions, there is no information loss, so this important
problem seems to be resolved too. However, previous black-hole models of this type in
loop quantum gravity did not consider the anomaly problem. In an anomaly-free version,
curvature may still be bounded, but when it is large (Planckian, or near the upper bound
provided by the models), there can be signature change, preventing information from
travelling freely through this regime. It is no longer obvious that the information loss
problem can be resolved in singularity-free models of black holes.

If the singularity is resolved, there are two scenarios for Hawking-evaporating black
holes: The black-hole region enclosed by an apparent horizon could reconnect with the
former exterior at the future end of high curvature, or it could split off into a causally
disconnected baby universe. The latter case does not solve the information loss problem
because information that falls into the black hole is sealed off in the baby universe. The
former case resolves the information loss problem only if information can travel through
high curvature. If signature change happens, nothing travels through the high-curvature
region and the fate of information must be reconsidered.

The elliptic nature of field equations in the high-curvature core of black holes requires
one to specify fields at the future boundary, which would evolve into the future space-time
after black-hole evaporation. In Fig. 1, boundary values on the bottom line surrounding the
hashed high-curvature region would be determined by evolving past initial values forward
in time, but boundary data on the top line around the region would have to be specified,
unrestricted by any field equations. Their values are not predicted by the theory, and yet
they are essential for determining the future space-time. Once the high-curvature region is
passed by an outside observer, space-time is no longer predictable. The black-hole’s event
horizonH extends into a Cauchy horizon C: The region above C is affected by undetermined
boundary data. Even if there are no infinities, the classical black-hole singularity is, for
practical purposes, replaced by a naked singularity, a place out of which unpredictable
fields can emerge.

In terms of information loss, whatever infalling matter hits the high-curvature core of
the black hole determines some part of the boundary conditions required for the elliptic
region, and thereby influences part of the solution in the core. But it does not restrict our
choice for the future boundary data, or anything that evolves out of it at lower curvature.
Infalling information is therefore lost even if there is no black-hole singularity. Similar
conclusions apply to the alternative of a baby universe: Infalling information cannot be
retrieved in the old exterior, and it cannot be passed on to the baby universe.
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Figure 1: Acausality: Penrose diagram of a black hole with signature change at high
curvature (hashed region). In contrast to traditional non-singular models, there is an
event horizon (dashed line H, the boundary of the region that is determined by backward
evolution from future infinity) and a Chauchy horizon (dash-dotted line C, the boundary of
the region obtained by forward evolution of the high-curvature region). After an observer
crosses the Cauchy horizon, space-time depends on the data chosen on the top boundary of
the high-curvature region and is no longer determined completely by data at past infinity.
Information that falls through H affects field values in the hashed region, but not on
the top boundary or its future; it is therefore lost for an outside observer. Unrestricted
boundary values at the top part of the hashed region influence the future universe even at
low curvature (zigzag arrow), a violation of deterministic behavior.
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4 Conclusions: A no-heir theorem?

We have presented here a mechanism which appears to be generic in loop quantum gravity
and helps to resolve curvature divergence, but makes the information loss problem of black
holes worse. Black-hole singularities can turn into naked singularities in this framework,
which implies an end to predictivity. In classical general relativity, there is strong evi-
dence that cosmic censorship applies: given generic initial data, singularities may form
but are enclosed by black-hole horizons; no naked singularities appear that would affect
observations made from far away. In loop quantum gravity, a stronger version of cosmic
censorship would be required if signature change is confirmed to be generic. Naked singu-
larities (Cauchy horizons) could be avoided only if black-hole interiors split off into baby
universes. But even then, information could not be passed on to the baby universe. From
the point of view of observers in this new universe, the former black-hole singularity would
appear as a true beginning, just as the big bang appears to us in our universe.

The information loss problem has turned into a more-severe problem of indeterminism.
Two options remain for loop quantum gravity to provide a consistent deterministic theory
without Cauchy horizons. First, one might be able to show that signature change does not
happen under general conditions in the full theory, a question which requires an under-
standing of the off-shell constraint algebra and the thorny anomaly problem. All current
indications, however, point in the opposite direction and suggest that signature change is
generic. With signature change, Cauchy horizons can be avoided only if the high-curvature
regions of black holes always remain causally disconnected from the universe in which they
formed, that is if black holes open up into new baby universes. In this scenario, infor-
mation that falls in a black hole is still lost even for the baby universe, but at least the
more-severe problem of a Cauchy horizon can be avoided. In either case, a detailed analysis
of possible consistent versions of the constraint algebra of loop quantum gravity could lead
to a “no-heir theorem” if deterministic evolution through the high-density regime of black
holes turns out to be impossible under all circumstances. Black holes would have no heirs
since everything possessed by a collapsing star, including the information carried along,
would be lost even if space-time did not end in a curvature singularity.

So far, loop quantum gravity is not understood sufficiently well for a clear model of
black holes to emerge from it, but the mechanism analyzed here shows that, at the very
least, scenarios obtained from generalizations of simple homogeneous models, such as the
one postulated in [29], are likely to be misleading. Inhomogeneity can change the picture
drastically, not just because there may be back-reaction on a homogeneous background
but also, and often more surprisingly, because the non-trivial nature of symmetry algebras
such as (3) is much more restrictive for inhomogeneous models. (The right-hand side would
just be identically zero with homogeneity, hiding the crucial coefficient and its sign which
indicates signature change.) Our considerations of black-hole models provide a concrete
physical setting in which loop quantum gravity and its abstract anomaly problem can be
put to a clear conceptual test.
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