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Jonathan Engle

Ever since special relativity, space and time have become seamlessly merged into a single
entity, and space-time symmetries, such as Lorentz invariance, have played a key role in our
fundamental understanding of nature. Quantum mechanics, however, did not originally conform
to this new way of thinking. The original formulation of quantum mechanics, called ‘canonical’,
involves wavefunctions, operators, Hamiltonians, and time evolution in a way that treats time
very differently from space. This situation was improved by Feynman, who formulated quantum
mechanics in terms of probabilities calculated by summing over amplitudes associated to classical
histories — the path integral formulation of quantum mechanics. As histories are naturally
space-time objects in which space and time can be viewed ‘on equal footing’, the path integral
formulation allowed, for the first time, space-time symmetries to be manifest in a general quantum
theory.

The key insight of Einstein’s theory of gravity, general relativity, is that gravity is space-
time geometry. Space-time geometry, the one ‘background structure’ — i.e., non-dynamical
space-time structure — remaining after special relativity, was discovered to be dynamical and to
describe the gravitational field, revealing nature to be ‘background independent.’ Background
independence can equivalently be expressed in terms of a profound enlargement of the basic space-
time symmetry group of physics: invariance under Lorentz transformations and translations is
replaced by invariance under the much larger group of space-time diffeomorphisms.

We have already seen in the chapter by Sahlmann on gravity, geometry and the quantum, a
canonical quantization of Einstein’s gravity, and hence of geometry, in which geometric operators
are derived with discrete eigenvalues [1, 2, 3]. Instead of space being a smooth continuum, we see
that it comes in discrete quanta — minimal ‘chunks of space.’ Furthermore, as discussed in the
chapter by Agullo and Corichi, when applied to cosmology, this quantum theory of gravity leads
to a new understanding of the Big Bang in which usually problematic infinities are resolved, and
one can actually ask what happened before the Big Bang. In spite of these successes, because it
is a canonical theory, it has as a drawback that space-time symmetries, in particular space-time
diffeomorphism symmetry, are not manifest. Equivalently, the preferred separation between space
and time prevents full background independence from being manifest.

One can ask: Is there a way to construct a path-integral formulation of quantum gravity,
in which the most radical discovery of general relativity, background independence, or equiva-
lently, space-time diffeomorphism invariance, can be fully manifest, which nevertheless retains
the successes of the canonical theory? This is the question leading to the spin foam program.
In answering it one must understand more carefully the relationship between the canonical and
path integral formulations of quantum mechanics, and in particular how these apply to general
relativity, with its special subtleties such as the ‘problem of time’ discussed in chapters by Claus
Kiefer and Carlo Rovelli. The end result is a path integral in which, instead of summing over
classical space-time histories, one sums over histories of quantum states of space. These histories
have a natural space-time interpretation and thus may be thought of as ‘quantum space-times’.

∗To appear as a chapter of “The Springer Handbook of Spacetime,” edited by A. Ashtekar and V. Petkov
(Springer-Verlag, at Press)
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The resulting sum over histories then provides a framework for defining the dynamics of loop
quantum gravity in which space and time are unified, in the spirit of special and general relativ-
ity. Due to their structure and the way they are labeled, these ‘quantum space-times’ have been
named ‘spin foams’ by John Baez [4], a name which thenceforth has been used to refer to the
entire program.

In this chapter we hope to give the reader a broad view of the conceptual ideas behind spin
foams, the ideas that have led to the spin foam model currently most often used in the community,
as well as provide a view of current avenues of investigation. For a more detailed, complete review
of spin foams, the recent reference [5] is recommended to the interested reader.

1 Background ideas

1.1 The path integral as a sum over histories of quantum states

The first formulation of quantum mechanics that was discovered, and that one learns, is the
canonical formulation. We review here briefly the basic structure of a canonical quantum theory.
The possible states of a canonical quantum system form a vector space, that is, they are such
that states can be rescaled by real numbers and added to each other. Additionally, one has an
‘inner product’, which assigns to every two states φ and ψ a complex number 〈ψ, φ〉, which may
be roughly thought of as the ‘overlap’ between states φ and ψ. A vector space equipped with such
an inner product is called a Hilbert space; one often uses the phrase “the Hilbert space of quantum
states.” For each possible measurable quantity, such as position, momentum, angular momentum,
or energy — or in the case of general relativity, areas of surfaces and volumes of regions — there
is a corresponding operator Ô mapping states to states. A number λ is a possible outcome of
a measurement of Ô only if there exists a state ψ, such that Ôψ = λψ. When the state of the
system is ψ, then a measurement of Ô yields λ with certainty. Such a λ and corresponding ψ are
called an eigenvalue and eigenstate of Ô. The set of all possible eigenvalues — and hence possible
results of a measurement — of Ô is called the spectrum of Ô. Depending on the operator, its
spectrum may include all real numbers, or it may only include a discrete set of possible numbers.
This is the source of the name ‘quantum’: that some quantities, when measured, can only come
in discrete increments, called quanta.

Time evolution in canonical quantum theory is determined by Schrödinger’s equation,

i~
dψ

dt
= Ĥψ, (1)

where ~ is Planck’s constant divided by 2π, and Ĥ is the Hamiltonian operator, which corresponds
to the total energy of the system. If the system starts in an initial state ψ(ti), Schödinger’s
equation will uniquely determine its state ψ(tf ) at any later time tf = ti + T , thus providing
a map U(T ) from possible initial states ψ(ti) to final states ψ(tf ), called a time evolution map.
Using the time evolution map, and given two states ψi, ψf , and two times ti, tf , one can define a
quantity

A(ψf , tf ;ψi, ti) := 〈ψf , U(tf − ti)ψi〉

called a ‘transition amplitude’. The transition amplitude is of direct use for making predictions:
If the system is prepared in an initial state ψi at time ti, the transition amplitude tells us the
probability of measuring the system to be in a final state ψf at time tf . (Specifically, this
probability is given by the formula |A(ψf , tf ;ψi, ti)|2/|〈ψf , ψf 〉〈ψi, ψi〉|.)

The transition amplitude contains all information about the dynamics of the quantum sys-
tem. At the heart of the path integral formulation of quantum mechanics is Feynman’s insight
that the transition amplitude can be rewritten in terms of purely classical, space-time quantities.
Consider, for example, a single free particle, and consider the case in which ψi and ψf are ‘eigen-
states of position’, i.e., states in which the position of the particle is exactly defined, being equal
to some xi and xf , respectively. We write ψi = |xi〉 and ψf = |xf 〉. In this case, one usually
uses a simpler notation for the transition amplitude: A(xf , tf ;xi, ti) := A

(
|xf 〉, ti; |xi〉, ti

)
. The
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expression for the transition amplitude can be rewritten as

A(xf , tf ;xi, ti) = 〈xf , U
(
T
N

)
· · ·U

(
T
N

)
U
(
T
N

)
U
(
T
N

)
xi〉 (2)

where T := tf − ti and one has used the fact that the time evolution U(T ) is equivalent to
performing N evolutions over the smaller time T/N . The eigenstates of position |x〉 satisfy the
following identity: For all ψ, φ ∈ H,

〈ψ, φ〉 =

∫ ∞
−∞
〈ψ, x〉〈x, φ〉dx. (3)

This is known as a ‘completeness relation’ or ‘resolution of the identity’. Note that the range of
integration on the right hand side includes all possible values which can result from a measurement
of the position x̂ — that is, the integral is over the spectrum of x̂. If x̂ were ‘quantized’, that is, if
its spectrum were discrete, this integral would be replaced by a sum over the discrete spectrum.
We will remark on this later. Applying the identity (3) to (2) N − 1 times, in sequence, one
obtains

A(xf , tf ;xi, ti) =

∫
〈xf , U

(
T
N

)
· · ·U

(
T
N

)
U
(
T
N

)
x1〉〈x1, U

(
T
N

)
xi〉dx1

=

∫ ∫
〈xf , U

(
T
N

)
· · ·U

(
T
N

)
x2〉〈x2, U

(
T
N

)
x1〉〈x1, U

(
T
N

)
xi〉dx1dx2

...

=

∫ ∫
· · ·
∫
〈xf , U

(
T
N

)
xN−1〉 · · · 〈x2, U

(
T
N

)
x1〉〈x1, U

(
T
N

)
xi〉dx1dx2 · · · dxN−1.

In this expression one has introduced N − 1 intermediate position eigenstates, and one integrates
over all possible such intermediate states. This sequence of intermediate states forms a discrete
history of quantum states. Note that the above expression is exact for any N . If one takes
the limit at N approaches infinity, the discrete histories are replaced by continuum histories of
quantum states, and one obtains the path integral ;

A(xf , tf ;xi, ti) =

∫
x(ti)=xi
x(tf )=xf

exp

(
i

~
S[x(·)]

)
Dx(·) (4)

where, heuristically, Dx(·) denotes ‘
∏
t dx(t)’, and S[x(·)] is the action for the theory. The action

is a purely classical quantity, which specifies a number for each possible classical history x(t). It
is maximized or minimized when x(t) is a solution to the classical equations of motion. Because
of the close relation between integrals and sums (one is just a limit of the other), the integral in
equation (4) is also loosely referred to as a sum over paths, or a sum over histories. If the position
operator x̂ had had a discrete spectrum, so that only a discrete set of values were allowed for x, as
already mentioned, the resolution of the identity (3) would have actually been replaced by a sum,
and the final path integral (4) would have actually become a sum rather than an integral. There
are also cases where the final expression for the propagator (4) involves a combination of sums
and integrals. In this chapter, as in much of the literature on path integrals, we will be loose with
the distinction between sums over paths and integrals over paths, and will use the terms “path
integral”, “sum over paths”, and “sum over histories” interchangeably. Nevertheless, because, in
the case of quantum gravity, the primary interest of this chapter, one will turn out to have mostly
sums, we will generally prefer to use the term sum.

Equation (4) provides an expression for the transition amplitude from a position xi at time
ti to a position xf at time tf , an expression that involves only a sum over classical paths x(t) that
start at xi and end at xf , and the classical action S[x(t)] depending on this path. The canonical
theory enters into the expression in one way only : It determines the spectrum of x̂ and hence
the allowed values that the history of eigenvalues x(t) can take at each moment in time. Other
than this, classical physics is the only input for this expression. Because of this, Feynman made
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the radical proposal that this formula, which encodes all physical predictions for the system in
question, be a new starting point for the very definition of the quantum theory.

However, care is necessary. As noted, one piece of information from the canonical quantum
theory does remain: It is the canonical theory which tells us the spectrum of the position operator
x̂, and hence the possible positions which one sums over in the path integral. In the case of the
free particle, the spectrum of the position includes all real numbers, so that, in fact, the sum is
equivalent to a sum over all classical histories. However, in other theories this is not necessarily
the case. In particular, in the case of gravity, one must sum over histories of geometry. But, one
of the seminal results of loop quantum gravity is that geometry is quantized. Areas of surfaces and
volumes of regions can only take on discrete sets of possible values. Thus, one should not sum over
all histories of classical geometries, but rather over histories of the allowable quantum geometries
predicted by loop quantum gravity. This is the insight leading to the spin foam program.

Before closing this section, let us remark that the integrand in equation (4) can be interpreted
as giving the probability amplitude for a single history x(t):

A[x(·)] = exp

(
i

~
S[x(·)]

)
. (5)

The total transition amplitude (4) is then obtained by integrating (or adding) the amplitudes (5)
associated to all histories compatible with with the relevant ‘boundary conditions’, x(ti) = xi,
x(tf ) = xf .

The precise form (5) for the amplitude of each history not only arises from the canonical
quantum theory in the manner presented above, but it is also important for the correct classical
limit of the quantum theory. When constructing a quantum theory, usually the corresponding
classical theory is already well-tested experimentally. In order to be consistent with known
experiments, it is therefore crucial that the predictions of the quantum theory agree with those of
the classical theory in situations where the effects of quantum mechanics can be neglected. One
way of stating this requirement is that if appropriate combinations of the physical scales in the
situation are large compared to Planck’s constant (so that Planck’s constant can effectively be
scaled to zero) then the quantum theory should yield the same predictions as the corresponding
classical theory. The limit here described — that of either large physical scales or Planck’s
constant being scaled to zero — is what is called the ‘classical limit’ of a quantum theory, and the
requirement that this yield predictions equivalent to the classical theory is called the requirement
of having the correct classical limit. Let us consider the classical limit of the path integral. For the
present argument, it is easiest to cast this as the limit in which Planck’s constant is scaled to zero.
In this limit, the phase 1

~S of the amplitude (5) becomes very large compared to 2π. If one divides
up the domain of integration — the space of histories compatible with the boundary conditions
— into many small neighborhoods, one finds that, in the vast majority of these neighborhoods,
the phase of the integrand will oscillate very fast. As a consequence, in such neighborhoods, there
tend to be an equal number of opposite phase contributions from the path integral which cancel
each other, so that the total contribution from such neighborhoods tends to be zero. (See figure
1.) The only neighborhoods where the phase is not oscillating fast are those where S[x(·)] does
not change very much when x(·) changes. These are precisely the neighborhoods where S[x(·)] is
maximum or minimum, that is, precisely the neighborhoods containing a solution to the classical
equations of motion. Thus, one sees that, in the classical limit, only histories near solutions to
the classical equations of motion contribute to the path integral. This is key to obtaining the
correct classical limit of the quantum theory. The Feynman prescription (5) for the probability
amplitude of a single history is thus directly related to ensuring the correct classical limit.

1.2 Field theory and the general boundary formulation of quantum
mechanics

Before going on to the specific case of gravity, we take the opportunity to first discuss field theory,
and introduce what is known as the general boundary formulation of quantum mechanics [6, 7, 2].
In the case of field theory, instead of integrating over possible paths x(t) of a particle from time
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x1(t) x2(t) . . .
0 Rez

Imz

eiS[x1(·)]/~ + eiS[x2(·)]/~ + · · · ∼ 0

Figure 1: In the classical limit, at histories x(·) where 1
~S[x(·)] changes, it changes very fast,

so that the phases from the sum over histories near x(·) tend to cancel (illustrated in figure).
When S[x(·)] does not change with x(·), the phases do not cancel, but reinforce each other. This
happens when x(·) is a local minimum or maximum of S[x(·)] — that is, when x(·) is a solution
to the classical equations of motion. In this way the classical solutions dominate the sum over
histories in the classical limit.
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Σtf , ϕf(x)

R, φ(x)

Σti, ϕi(x)

Figure 2: In the path integral for the scalar field, one sums over all fields φ(x) on some space-time
region R compatible with given initial values ϕi(x) on the initial hypersuface Σti and final values
ϕf (x) on the final hypersurface Σtf , where Σti and Σtf bound R.

t = ti to t = tf as in (4), one integrates over possible fields φ(x) on the four dimensional space-
time region bounded by the instants t = ti and t = tf . In the general boundary formulation,
this region is allowed to be replaced by any space-time region. The biggest advantage of this
formulation of quantum mechanics is that, by choosing this region to be finite, it permits purely
local calculations in a quantum field theory in which one need not worry about the asymptotic
behavior of states at infinity. Not only are such calculations more consistent with the locality of
the measuring apparatus one would actually use, but they are technically simpler, and have been
central to most work in spin foams up until now.

The free scalar field

As an example, let us look at the case of a scalar field in Minkowksi space. In this case, one
has as basic canonical variables ϕ(x) and its conjugate momentum field π(x), and corresponding
operators ϕ̂(x), π̂(x). We here use bold to denote spatial points. One has a complete set of
simultaneous eigenstates |ϕ(x)〉 of the operators ϕ̂(x), each now labeled by a field ϕ(x) on space.
A history of such fields, φ(t,x) = φ(x) is a field on the four dimensional space-time region R
bounded by the three dimensional “instant time” hypersurfaces t = ti and t = tf , which shall be
denoted Σti and Σtf , respectively (see figure 2). Note that space-time points such as x will not
be bolded. Equation (4) becomes, in this case,

Ascalar(ϕf , tf ;ϕi, ti) := Ascalar(|ϕf 〉, tf ; |ϕi〉, ti) =

∫
φ|ti=ϕi
φ|tf=ϕf

eiS[φ]Dφ (6)

where S[φ] is the classical action (the exact form is not important for the present discussion).
Next, note that the field ϕi is a field on the hypersurface Σti , and ϕf is a field on the hypersurface
Σtf . These two hypersurfaces together form the boundary of the four-dimensional space-time
region R, the region on which the field φ is defined. Let ϕ denote the combination of the fields
ϕi, ϕf on the full boundary of R, denoted ∂R, which in this case is equal to Σf ∪ Σi. The state
|ϕi〉 can be thought of as living in a copy HΣti

of the Hilbert space associated to the surface Σti ,
and |ϕf 〉 as living in a copy HΣtf

of the Hilbert space of quantum states associated to the surface

Σtf . The full field ϕ on all of ∂R can then be thought of as labelling a state |ϕ〉 in a certain
combined Hilbert space H∂R for the full boundary of R.

Let us define the Hilbert space H∂R. Consider a given Hilbert space of quantum states
H. Often one thinks of quantum states |Ψ〉 ∈ H as ‘column vectors’ (‘kets’). Their Hermitian
conjugates, denoted |Ψ〉† =: 〈Ψ| are then ‘row vectors’ (‘bras’). The inner product between two
states Ψ,Φ can then be written as the matrix product of the row vector 〈Ψ| with the column
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R, φ(x) ∂R, ϕ(x)

Figure 3: The general boundary formulation of the path integral applies even when the space-
time region R is compact.

vector |Φ〉, yielding a complex number:

〈Ψ|Φ〉 = 〈Ψ,Φ〉

(whence the motivation for the notation 〈Ψ| and |Φ〉). The space of ‘row vectors’ is the called the
space dual to H, and is written H∗. The Hilbert space H∂R for the full boundary ∂R = Σtf ∪Σti ,
in terms of HΣti

and HΣtf
, is then defined to consist in formal sums of products of states in

the dual H∗Σtf and in HΣti
(the product is denoted using the symbol ‘⊗’). Mathematically,

this is expressed by saying that H∂R is the tensor product of H∗Σtf with HΣti
, and one writes

H∂R := H∗Σtf ⊗HΣti
. In terms of the initial and final field eigenstates |ϕi〉 ∈ HΣti

, |ϕf 〉 ∈ HΣtf
,

the corresponding field eigenstate on the full boundary of R is given by |ϕ〉 := |ϕf 〉† ⊗ |ϕi〉 =
〈ϕf | ⊗ |ϕi〉 ∈ H∂R. The Hilbert space H∂R on the full boundary of R is called the boundary
Hilbert space, and |ϕ〉 is called a boundary state.

In terms of the label ϕ and boundary states, equation (6) becomes

Ascalar(ϕ,R) ≡ Ascalar(|ϕ〉, R) =

∫
φ|∂R=ϕ

eiS[φ]Dφ. (7)

This expression has the benefit that it makes sense also when R is any space-time region, leading
to a natural generalization of the path integral formalism. This generalization is called the
general boundary formulation of quantum mechanics, and is equivalent to the more standard
formulations of quantum mechanics [6, 7, 2]. The interpretation of the path integral (7) is
the direct generalization of the interpretation of the original path integral (6): It provides the
probability amplitude of measuring the field φ to have the values ϕ on the boundary of the region
R. The expression (7) applies when the boundary state is an eigenstate |ϕ〉 of the scalar field
operator ϕ̂(x); from this one can deduce the amplitude Ascalar(Ψ, R) for any quantum boundary
state Ψ in H∂R. The general boundary formalism applies even, and in our case most importantly,
when R is compact. (See figure 3.) One advantage of this generalized formalism when R is chosen
to be compact, is that one can completely side step the issue of how the quantum state behaves as
one approaches spatial infinity, an issue which shouldn’t matter for concrete applications anyway,
because one never measures fields at infinity in actual experiments. Furthermore, the lack of an
a priori fixed notion of which space-time regions may be used is more consistent with the spirit
of background independence which will be central in the case of quantum gravity.

1.3 The case of gravity: The ‘problem of time’ and the path integral
as projector.

Applying the above ideas to gravity involves unique subtleties. Specifically, in general relativity,
when initial data surfaces are compact and without boundary (so that there are no boundary
terms), the Hamiltonian H is constrained to be zero. In fact, the Hamiltonian can be expressed
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in terms of a Hamiltonian density H =
∫
H(x)d3x, and this Hamiltonian density H(x) is con-

strained to be zero at each point x. Because H(x) is constrained to be zero, it is called the
Hamiltonian constraint. In the quantum theory, the Hamiltonian constraint dictates that states
be eigenstates of the Hamiltonian constraint operator Ĥ(x) with eigenvalue zero — that is, one
requires that states be annihilated by the Hamiltonian constraint, Ĥ(x)Ψ = 0, and hence, also
by the Hamiltonian, ĤΨ = 0. By Schrödinger’s equation (1), this implies the curious property

dΨ

dt
=

(
−i
~

)
ĤΨ = 0, (8)

i.e., that the quantum state should not evolve in time. This fact is directly related to the back-
ground independence of general relativity: that there is no background time variable. Whereas
in classical general relativity one can introduce an arbitrary time variable for convenience, in
quantum general relativity, even introducing such a time for convenience is forbidden, or at least
useless.

It is clear, therefore, that in quantum gravity one cannot interpret the Feynman path integral
in terms of time evolution, as was done in (4). In fact, the interpretation is different. Instead,
in the interpretation of the path integral, the time evolution map is replaced by a projector P
onto solutions of Ĥ(x)Ψ = 0, the quantum Hamiltonian constraint [8, 9, 10]. Let us be concrete.
In the case of gravity, the space-time field is the four dimensional metric, denoted g(x), which
determines the lengths of, and angles between, vectors at each point x, which in turn determines
geometrical lengths of curves, areas of surfaces, volumes of regions etc. — that is, g(x) determines
the geometry of space-time. The canonical variables on a given instant-time hypersurface Σt are
the three dimensional metric h(x) determining the three dimensional geometry of Σt, and its
conjugate momentum Π(x), which determines the way Σt curves in the larger four dimensional
space-time and can be related to the time derivative of h(x). Hence, in the quantum theory one

has operators ĥ(x) and Π̂(x), and simultaneous eigenstates |h〉 of the operators ĥ(x). The states
|h〉 and the projector P are then related to the Feynman path integral by

〈hf , P hi〉 =

∫
g|Σti=hi

g|Σtf =hf

eiS[g]Dg (9)

where g|Σ = h means that the geometry induced by g on Σ is equal to h.
Another way of stating this phenomenon is that equation (8) is simply a statement of gauge

invariance of the wavefunction — time translations are coordinate transformations, and hence
do not change the physical state, and so are gauge. At the same time, it is also a statement of
the quantum version of the component H =

∫
H(x)d3x = 0 of the Hamiltonian constraint. In

fact, in general, for every gauge symmetry in a system, there is a corresponding constraint, and,
as happens here, in the quantum theory, invariance under the gauge symmetry and satisfaction
of the corresponding quantum constraint become one and the same thing. Constraints related
to gauge in this way are called first class [11]. Not only is H a first class constraint, but so
are the infinity of individual Hamiltonian constraints H(x) = 0 for each point x. In fact, all
other fields which mediate forces in nature (electroweak and strong forces) also have first class
constraints and corresponding gauge symmetries. Quite generally, whenever a system has first
class constraints, the path integral projects onto solutions of the first class constraints, so that
the projection property seen in (9) is not unique to general relativity [8].

Exactly as in the case of the scalar field theory in the last subsection, the expression (9)
generalizes to an arbitrary space-time region. If Agrav(Ψ, R) denotes the probability amplitude
for a given quantum gravity state Ψ on the boundary of a given region R, and h denotes a given
three-dimensional metric on the boundary ∂R of R, and |h〉 the corresponding eigenstate in the
boundary state space, we have

Agrav(h,R) := Agrav(|h〉, R) =

∫
g|∂R=h

eiS[g]Dg. (10)
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Figure 4: Each spin network state is labeled by a choice of graph, with spins labelling the links,
and other quantum numbers labeling the nodes.

We close this section with a remark. In the case of a scalar field, there is a background
space-time geometry, g̊, present and the action S[φ] depends on it: S[φ] = S[φ, g̊]. Because of
this, Ascalar(Ψ, R) in fact depends on the size and shape of the chosen region R, as determined by
this background geometry. By contrast, in the case of quantum gravity, there is no background
geometry, and so R has no non-dynamically defined ‘shape’ or ‘size’. In this case the boundary
quantum state Ψ codes the information about geometry, which is now dynamical. If Ψ is suffi-
ciently peaked on a classical geometry, then R again has a shape, but this shape is determined
by Ψ, and not by any background geometry.

2 Spin foam models of quantum gravity

2.1 Review of spin network states and their meaning

It is now time to incorporate into the discussion what has been learned from the canonical
quantization of gravity known as (canonical) loop quantum gravity (LQG). The Hilbert space
of states in LQG is spanned by what are called spin networks (as discussed in the chapter by
Sahlmann). In this chapter, because it will be most useful later on, we review a form of spin
network introduced by Livine and Speziale [12], which we will refer to as Livine-Speziale spin
networks. (In the literature they are more commonly referred to as “Livine-Speziale coherent
states”.) Each such spin network state is ‘peaked’ on a particular three-dimensional, discrete,
spatial geometry. We first review how each spin network is labeled, and then how these labels
determine the corresponding geometry.

Each spin network state is first labeled by a collection of curves in space which intersect
each other at most at their end points. Such a collection of curves is called a graph and will be
typically denoted γ. (See figure 4.) Following the terminology of Rovelli [2], we call each curve
in the graph a link, and each endpoint of a curve a node. Each link ` is labeled by a half integer
spin j` = 0, 1

2 , 1,
3
2 , . . . . At each node ν, and for each link ` ending or beginning at ν, there is

furthermore a unit, three-dimensional vector nν`. (See figure 5.) We write |γ, {j`, nν`}〉 to denote
such a spin network.

The labels γ, {j`, nν`} determine the spatial geometry by determining areas of surfaces and
volumes of regions. In determining these areas and volumes, an important role is played by
the so-called Planck length, the unique combination, with dimensions of length, of Newton’s
gravitational constant (G), Planck’s constant divided by 2π (~), and the speed of light (c). It is

given by `Pl :=
√

G~
c3 , which is approximately 1.616× 10−35m, or roughly ten sextillionths of (or

10−20 times) the diameter of a proton. Given a surface S, in terms of the Planck length, its area
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j`

nν`

nν`1
nν`2

nν`3

nν′`

nν′`′1
nν′`′2

nν′`′3

Figure 5: Each link ` is labeled by a spin j`.
For each node n, and each link ` incident at n,
one has also a unit three dimensional vector nν`.

j1

j2

j3

Figure 6: Each spin network link, with spin
j`, intersecting a surface S contributes to the
surface an area of 8π`2Plβ

√
j`(j` + 1), where `Pl

is the Planck length.

R

γ

ν

Figure 7: A three-dimensional region R = ν? is
said to be dual to a node ν of γ if it contains ν
but no other node of γ.

ν?

`?

˜̀?

θ

Figure 8: The interior angle θ between the two
faces `? and ˜̀? of the 3-cell ν?, as determined by
the LQG spin-network labels, is given by equa-
tion (14).

as determined by a spin network state with the labels γ, {j`, nν`} is

A(S) =
∑

` intersecting S

8π`2Plβ
√
j`(j` + 1). (11)

where β is a certain positive real number referred to as the Barbero-Immirzi parameter [13, 14,
15, 16]. (See figure 6.) Given a three-dimensional region R in space, its volume is

V (R) =
(8πβ)3/2`3Pl

4
√

3

∑
ν nodes of γ

in R

√√√√√
∣∣∣∣∣ ∑
`,`′,`′′

at ν

j`j`′j`′′ nν` · (nν`′ × nν`′′)

∣∣∣∣∣ (12)

where the sum over `, `′, `′ is over all triples of links in γ starting or ending at the node ν.

2.2 Interpretation of spin networks in terms of the dual complex

The extraction of information about geometry from the quantum labels j`, nν` can be system-
atized using what is called a dual cell complex. For each link `, a surface (a two dimensional
region) S = `? is said to be dual to ` if it intersects ` at one point, but intersects no other link of
γ. For each node ν, a three-dimensional region R = ν? is said to be dual to ν if it contains ν but
no other node of γ (see figure 7). If one chooses such a dual for each link and node in the graph
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Figure 9: Example of dual cell complexes in two dimensions. The solid line complex and the
dotted line complex are dual to each other.

γ, and if these are chosen such that they all “fit together” — that is, such that the boundary
of each chosen three-dimensional region ν? consists entirely of chosen two-dimensional region `?,
then the set of all the chosen regions ν?, `? form a cell-complex which is said to be dual to γ,
and which we denote by γ?. In this case, we refer to ν? and `? as cells of γ?; more specifically
one uses the terms 3-cell and 2-cell, respectively, according to the dimension of the region. From
(11) the spin j` on a link ` determines the area of the surface `? dual to it by the formula

A(`?) = 8π`2Plβ
√
j`(j` + 1). (13)

From (12) the quantum labels nν` at a given node ν determine the volume of the region ν? dual
to it via the formula

V (ν?) =
(8πβ)3/2`3Pl

4
√

3

√√√√√
∣∣∣∣∣ ∑
`,`′,`′′

at ν

j`j`′j`′′ nν` · (nν`′ × nν`′′)

∣∣∣∣∣.
In addition to this, given a node ν and two links `, ˜̀ incident at it, one can ask what is the angle
θ = θ[ν?, `?, ˜̀?] between the dual surfaces `?, `′? within the dual region ν?. In fact, it is given by
the formula

cos
(
θ[ν?, `?, ˜̀?]

)
= −nν` · nν ˜̀. (14)

(See figure 8.) These areas, volumes, and interior angles form the basic quantities from which the
quantum geometry is constructed. We will go into more detail about this in section 3.6.

There is of course a great deal of choice in the complex γ? dual to γ. However, given γ, the
connectivity of the parts of γ? is uniquely determined — that is, which lower dimensional cells are
on the boundary of each higher dimensional cell is uniquely determined. If ν is on the boundary
of ` (meaning, in this case, an endpoint of `), then `? is on the boundary of ν?. Another way of
saying this, in mathematical terms, is that the topology of γ? is unique, and it is in this sense
that we can speak unambiguously of “the complex γ? dual to γ.”

We have here discussed dual cells and dual cell complexes in three dimensions. However,
these ideas can be formulated in any dimension. If one is working in an N -dimensional space,
and one has an M -dimensional surface S, a surface S? is said to be dual to S if it has dimension
N −M and intersects S at exactly one point. See table 2 later on in the chapter for examples of
dual surfaces in 2 and 4 dimensions. In the case of 2 dimensions, one can visualize the idea of a
dual cell complex with more completeness and ease. For the purpose of illustration, we include
in figure 9 an example of a dual complex in two dimensions.
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v 6
t

Figure 10: A single node splits into three nodes, creating a spin foam vertex.

f1
e1 f2 e2

v1

f3
f4

e4

e5

e3
f5

f6
v2

e6

Figure 11: A spin foam is a history of a spin network. It forms a two-complex, with the links
of the spin network sweeping out faces, and the nodes of the spin network sweeping out edges.
Each face f in the spin foam inherits the spin on the corresponding link, and each edge e in the
spin foam inherits the set of unit three dimensional vectors labeling the corresponding node. The
face spins are now denoted jf , and the three dimensional vectors are now denoted nef

2.3 Histories of spin networks: Spin foams

Histories of three-dimensional spin networks |γ, {j`, nν`}〉, become four dimensional objects. The
one-dimensional links of the graphs γ become two-dimensional ‘faces’ f , and the zero dimensional
nodes of the graphs become one-dimensional ‘edges’ e. Places in the history where a node splits
into multiple nodes, or multiple nodes combine are called vertices. (See figure 10.) The set of
all such faces, edges, and vertices of a given history together form the spin foam two-complex of
the history, which we usually denote F . (See figure 11.) Each face f inherits the half integer
spin jf labeling the link of which it is the history, and each edge e inherits the set of unit vectors
associated to the node of which it is a history, one unit vector nef for each edge e and face f
incident at e. The spin foam two-complex F , together with these labels, is referred to as a spin
foam. Specifically, with this choice of labels, we will call it a loop quantum gravity spin foam. Each
such spin foam represents, in a precise sense to be reviewed in section 3.6, a quantum space-time
geometry.
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2.4 Spin foam amplitudes

In order to specify the quantum dynamics, a probability amplitude must be specified for each
spin foam — that is, a probability amplitude for each history of quantum gravity states, each
‘quantum space-time’. This amplitude should be, in an appropriate semiclassical limit, equal to
(a possible real coefficient times) the usual Feynman prescription of the exponential of i times
the classical action, as reviewed in section 1.1.

It turns out, from experience with simple theories in four space-time dimensions and gravity
in three space-time dimensions [17, 18], one expects this amplitude to be of the form

A(F , {jf , nef}) =

∏
f∈F

Af

(∏
e∈F
Ae

)(∏
v∈F
Av

)
(15)

where for each face f , edge e, and vertex v, Af , Ae, and Av are referred to as the face, edge,
and vertex amplitudes, respectively. This form of the probability amplitude is called the spin
foam Ansatz. Here, Af is a function of the spin jf alone, Ae is a function of the quantum labels
associated to the edge e as well as to the faces incident at e, and Av is a function of the quantum
labels associated to the edges and faces incident at the vertex v. From experience with the
above mentioned simple models, Af and Ae are expected to be real, and Av complex. Thus, one
expects the exponential of i times the action to arise almost entirely from the vertex amplitudes
alone. It is for this reason that the vertex amplitude is usually considered the most important
one. Furthermore, the vertices are where the spin network ‘changes’ in the history, and hence
where ‘interesting dynamics’ is taking place. Thus, in a sense, it is not surprising that the vertex
amplitude usually turns out to be the most important factor in the probability amplitude.

3 Deriving the amplitude via a simpler theory

How should one determine the different factors Af , Ae, and Av appearing in the probability
amplitude (15)? The strategy used by the spin foam community is a bit indirect: We first
construct the spin foam amplitude for a very simple toy theory, called BF theory. The spin foam
dynamics of BF theory is very well understood. One then uses the fact that general relativity can
be obtained from BF theory by imposing extra constraints, called simplicity constraints, an idea
which traces back to the work of Plebanski [19]. The non-trivial task in constructing a spin foam
model is then reduced to the question of how these simplicity constraints should be imposed in
the quantum theory.

We begin this section by reviewing a minimum necessary to understand what is BF theory,
what are the simplicity constraints, and how Einstein’s theory of gravity can be recovered from
these. We then review the quantum mechanics of BF theory, and then discuss the version of
the quantum simplicity constraints now predominant in the literature. (For the first method of
imposing quantum simplicity which was previously predominant, and which layed the foundations
for the modern method, see [20, 21].)

3.1 BF theory and gravity

BF theory is a theory with a maximal number of gauge symmetries. Recall that a gauge symmetry
is a transformation that does not change the physical state of the system, but only changes the
variables used to describe it. That is, the presence of gauge symmetries in a theory indicates a
redundancy in the variables used to describe the system. The simplest example of a gauge sym-
metry is a transformation of the vector potential of the magnetic field: Given a vector potential
~A and a function χ on space, the new vector potential ~̃A := ~A+∇χ determines exactly the same
magnetic field, and hence the same physical state of the system. In the case of general relativity,
the gauge transformations are space-time coordinate transformations, reflecting the physical fact
that space-time coordinates have no intrinsic meaning in the theory: Space-time coordinates are
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only tools of convenience, used to aide in describing physical fields. The more gauge symmetries
one has in a system, the less the variables of the theory contain real, physical information. BF
theory has so many gauge symmetries that in fact the variables of the theory contain no local
information. This is why BF theory is so simple and why the corresponding spin foam quantum
theory is so well understood. Such simple theories like BF theory which have no local physical
degrees of freedom are referred to as topological field theories.

To introduce the basic variables of BF theory, we first recall a notation usually used for
matrices: Given a matrix M , one denotes its element in the ith row and jth column by Mij .
When one allows more than just two indices, one obtains a generalization of matrices which we
shall call arrays. The basic variables of BF theory are two fields of arrays on space-time, denoted
ΣIJµν(x) and ωIJµ (x), where the indices µ, ν, I, J take the values 0, 1, 2, 3. (There are more specific
terms for these types of fields of arrays, which indicate certain transformation properties, but
we have chosen to avoid these terms, because we wish to avoid talking about transformation
properties which are not necessary for the discussion in this chapter.) In terms of these variables,
the action for BF theory is given by

SBF =
1

32πG

∫
εµνσρ

(
1

2
εIJKLΣKLµν +

1

β
ηIKηJLΣKLµν

)
F IJσρ d

4x (16)

=:
1

2

∫
εµνσρBµνIJF

IJ
σρ d

4x

where εIJKL, εµνσρ both denote the ‘Levi-Civita array’, defined uniquely by the properties
ε0123 = 1 and that when any two indices of IJKL (respectively µνσρ) are interchanged, εIJKL
(respectively εµνσρ) changes by minus sign — for example, εIJKL = −εJIKL. Furthermore, here
and throughout the rest of this section we use the Einstein summation convention: when a given
index appears twice in an expression, once up and once down, summation shall be implied over
all possible values of the given index. In the final expression above, we have defined BIJµν to be

the quantity in parentheses, and F IJσρ denotes the field strength (or curvature) of ωIJµ , defined by

F IJσρ :=
∂ωIJρ
∂xσ

− ∂ωIJσ
∂xρ

+ ηKL
(
ωIKσ ωLJρ − ωIKρ ωLJσ

)
.

(Note that in the spin foam literature, sometimes BIJµν is defined to be only the first term of the
expression in parentheses in (16).)

The simplicity constraint, in its simplest and most important sense, is just the requirement
that there exist a matrix field eIµ(x) such that

ΣIJµν(x) = ±
(
eIµ(x)eJν (x)− eJµ(x)eIν(x)

)
(17)

at each space-time point x. The simplicity constraint is thus a constraint on the field ΣIJµν(x);

when ΣIJµν(x) satisfies this constraint, one says ΣIJµν(x) is ‘simple’. When ΣIJµν(x) is simple, the

fields describing the system are just eIµ and ωIJµ . What is important to know is that these fields
in fact just describe a geometry for space-time. In terms of the metric tensor gµν used in much
of this handbook, this geometry is just gµν = ηIJe

I
µe
J
ν where ηIJ is the diagonal matrix with

η11 = η22 = η33 = 1, and η00 = ±1 depending on whether one is considering Euclidean (+1) or
Lorentzian (−1) gravity. eIµ is referred to as a co-tetrad. The terms “Euclidean” and “Lorentzian”
gravity are a bit misleading. In fact, there is only one Einstein theory of gravity describing the
real world, and that is what we are calling here “Lorentzian” gravity. “Euclidean gravity” is a
simplified model very closely related to, but in certain ways simpler than, Lorentzian gravity. It
is often used for “practice” when investigating quantum gravity. Essentially, in Euclidean gravity
one treats time as though it were just a fourth dimension of space. In this chapter, we consider
spin foam quantizations of both of these models of gravity.

3.2 Spin foams of BF theory

We have already described the spin foams arising from loop quantum gravity. We next describe
spin foams for BF theory. These again arise as histories of labels of corresponding canonical
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for each face f for each edge e ∈ ∂f
Euclidean j+

f , j
−
f jef , nef

Lorentzian pf , kf jef , nef

Table 1: Labels on each face and on each edge bounding each face, for the BF spin foam model
used in the case of Euclidean and Lorentzian gravity, respectively.

quantum states, just as the loop quantum gravity spin foams of section 2.3 arose as histories of
labels of the canonical Livine-Speziale spin network states of loop quantum gravity. As mentioned,
there are two basic variables of BF theory, ΣIJµν and ωIJµ . The restrictions of these fields to a given
instant-time hypersurface are canonically conjugate, so that, to have a complete set of canonical
states, it is sufficient to consider states peaked on ΣIJµν or ωIJµ , but not both. The particular

choice of canonical states we use for defining BF spin foams are peaked on the variable ΣIJµν and
are closely related to the Livine-Speziale spin networks [22, 23, 24]. This choice will facilitate
imposing the simplicity constraint, as well as be important for taking the semiclassical limit of
the theory.

Exactly as in the case of the loop quantum gravity spin foams, each BF spin foam is first
labeled by a spin foam two-complex, with faces, edges, and vertices (as in figure 11). However,
now the labels on the faces and edges are different. As mentioned at the end of the last section,
in quantum gravity, often one considers first the simplified theory of Euclidean gravity for prac-
tice, before considering the actual Lorentzian gravity corresponding to reality. Spin foams is no
exception. The spin foam quantum labels for BF theory are different depending on whether one
considers Euclidean or Lorentzian gravity. In the Euclidean case, each face f is labeled by two
half-integers j+

f , j
−
f = 0, 1

2 , 1,
3
2 , . . . , and for each edge e in the boundary of f , one has a further

half integer jef and a unit three dimensional vector nef . In the Lorentzian case, each face f is
labeled by a real number pf and a half-integer kf , and for each edge e in the boundary of f one
again has a half integer jef and a unit three dimensional vector nef . See table 1. For convenience
we let L denote the appropriate set of possible labels on the BF spin foam: {j+

f , j
−
f , jef , nef} in

the Euclidean case, and {pf , kf , jef , nef} in the Lorentzian case.
In terms of these labels, the amplitude for a single BF spin foam decomposes as in the

spin foam Ansatz (15), with certain expressions for the corresponding face, edge, and vertex
amplitudes ABFf , ABFe , ABFv . What is important for this chapter is that the vertex amplitude
can be expressed in terms of integrals over certain groups. Let G denote the space of all 4 × 4
matrices GIJ such that

GKIG
L
JηKL = ηIJ .

where ηIJ is again the diagonal four by four matrix with diagonal components η11 = η22 = η33 = 1
and η00 = +1 or −1 depending on whether one is considering Euclidean or Lorentzian gravity.
For the case of Lorentzian gravity, a matrix G satisfies the above equation if and only if its
action on a given set of four space-time coordinates is a Lorentz transformations; in this case G
is called the Lorentz group. In the case of Euclidean gravity, G is the group of four dimensional
Euclidean rotations. (In fact, the group G is directly related to the labels on the faces of the BF
spin-foam: Each pair (pf , kf ) labels a unitary irreducible representation of the Lorentz group,
and each pair (j+

f , j
−
f ) labels a unitary irreducible representation of the group of four dimensional

Euclidean rotations. This is similar to the way the angular momentum quantum number j in
basic quantum mechanics labels irreducible representations of the spatial rotation group.) There
is a way to define integrals over the group of matrices G. The vertex amplitude ABFv of BF theory
can be expressed in terms of nested integrals over such matrices, one such integral for each edge
e incident at the given vertex v:

ABFv (L) =

( ∏
e incident at v

∫
G
dGve

)
ÃBFv (L, {Gve}). (18)

One can think of the spin foam two-complex F , together with the labels L and the group matrices
{Gve} as labelling a sort of ‘augmented’ history, and ÃBFv (L, {Gve}) is the probability amplitude
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2-D 3-D 4-D

↔

0+2=2 0+3=3 0+4 = 4

↔

1+1=2 2+1=3 1+3=4

↔

2+0 = 2 2+2 = 4

Table 2: Examples of dual cells in two, three, and four dimensions. For each pair of dual cells, the
dimensionality of the cells add up to the total dimensionality of the ambient space, and intersect
in one point. In the four dimensional case, the fact that dual cells intersect in one point cannot
be depicted.

associated to this history. It is these augmented histories that will have a complete interpretation
in terms of the classical variables of BF theory, as we will see in the next subsection. Beyond the
above general form (18), the details of the vertex amplitude will not be needed in this chapter.

3.3 Dual cell complex

To interpret the quantum labels for the BF spin foams in terms of classical BF theory, we use the
same strategy as that used in section 2.2 to interpret spin-network labels: We again use of the
notion of a dual cell complex, except now in one dimension higher. In this subsection we explicitly
spell out this duality in the four dimensional case, lifting the duality presented in section 2.2 from
space to space-time.

Recall that each spin foam is first of all labeled by a spin foam two-complex F , consisting
in vertices, edges, and faces, which fit together. For each vertex v in F , a four dimensional
region v? is said to be dual to v if it contains v and no other vertices of F . For each edge e in
F , a three-dimensional hypersurface e? is said to be dual to e if it intersects e in exactly one
point, and intersects no other edges in F . For each face f in F , a two-dimensional surface f?

is said to be dual to f if it intersects f at one point, and intersects no other faces in F . (For
comparison with examples of dual cells when working in lower dimensions, see table 2.) If one
choses such a dual for each vertex, edge, and face in F , and if these are chosen such that they
all “fit together” — that is, such that the boundary of each chosen four-dimensional region v?

consists entirely of chosen three-dimensional hypersurfaces e?, and the boundary of each three
dimensional hypersurface e? consists entirely of chosen two-dimensional surfaces f?, then the set
of all the chosen regions v?, e?, f? form a cell complex which is said to be dual to F , and which
we denote by F?. In this case we refer to v?, e?, and f? as cells of F?; more specifically one uses
the terms 4-cell, 3-cell, and 2-cell, respectively, according to the dimension of the region. Once
again, though there is a great deal of choice in such a complex F? dual to F , the connectivity of
the parts of F? is uniquely determined — that is, the topology of F? is unique.
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3.4 Interpretation of the labels

To interpret these labels, we arbitrarily fix a coordinate system xµ in each 4-cell v? such that, in
this coordinate system, each 3-cell e? and 2-cell f? bounding v? is planar. No physical quantities
arising from the constructions that follow depend on this choice of coordinates in each v?. The
classical field ΣIJµν corresponding to a given ‘augmented’ BF spin foam (F ,L, Gve) is then constant

in each 4-cell v? (in the coordinates xµ fixed in each v?). Let (Σv)
IJ
µν denote the constant value

taken by ΣIJµν(x) in the cell v?. The labels {jef , nef , Gve} are then related to (Σv)
IJ
µν by

8π`2Pljefn
i
ef =

(
(Gve)

0
L(Gve)

i
M +

s

β
(Gve)

j
L(Gve)

k
M

)∫
f

ΣLMv (19)

for (i, j, k) = (1, 2, 3), (3, 1, 2), (2, 3, 1), where s = +1 for Euclidean gravity and −1 for Lorentzian
gravity, and where, recall, `Pl denotes the Planck length. The remaining labels, {j+

f , j
−
f } in the

Euclidean case and {pf , kf} in the Lorentzian case, are related to the classical field ΣIJµν(x) by

ηIKηJL

(∫
f

ΣIJ
)(∫

f

ΣKL
)

=

 CE

(
(j+f )2

(β+1)2 +
(j−f )2

(β−1)2

)
in Eucl. case

CL

(
k2
f − p2

f + 4β
1−β2 kp

)
in Lor. case

(20)

εIJKL

(∫
f

ΣIJ
)(∫

f

ΣKL
)

=

 C̃E

(
(j+f )2

(β+1)2 −
(j−f )2

(β−1)2

)
in Eucl. case

C̃L

(
kf + 1

β pf

)
(kf − βpf ) in Lor. case

(21)

where CE , CL, C̃E , C̃L are each a certain combination of the Planck length `Pl, β and numerical
factors. The integral

∫
S

ΣIJ of ΣIJµν(x) over a surface S appearing in the above equations is the
standard “differential form” integral, defined by∫

S

ΣIJ :=

∫
ΣIJµν

∂τµ

∂u

∂τν

∂v
dudv (22)

where (u, v) are any choice of coordinates on S, and xµ = τµ(u, v) is the four dimensional position
of the point on S with surface coordinates (u, v). (The result of the integral (22) is independent
of the choice of (u, v) and hence of τµ(u, v)).

3.5 Simplicity and the LQG spin foam model

Recall the general strategy we are taking: One starts from the probability amplitude ABF (F ,L)
for BF theory, and then restricts consideration to the case in which the BF spin foam (F ,L)
satisfies some quantum version of the simplicity constraint (17). Just as the classical simplic-
ity constraint is sufficient to recover classical gravity from BF theory, so too one expects an
appropriate quantum simplicity constraint to recover quantum gravity from quantum BF theory.

Different ways of imposing simplicity quantum mechanically then lead to different spin foam
models of gravity. We will present here only the most recent, commonly used way of imposing
quantum simplicity, which leads to the so-called ‘LQG spin foam model.’ This model is also
variously referred to as the ‘EPRL’, ‘EPRL-FK’, or ‘EPRL-KKL’ model, after different authors
who contributed to its development [25, 26, 27]. At the center of this strategy of imposing
simplicity is the so-called ‘linear simplicity constraint’: The condition that

(Gve)
0
I

∫
f

ΣIJ = 0 (23)

for all f , e, and v incident on one another. It is called ‘linear’ because it is linear in the field
ΣIJµν(x). One can show that it implies ΣIJµν takes one of the following three forms: [28, 29]

(±) ΣIJµν(x) = ±
(
eIµ(x)eJν (x)− eJµ(x)eIν(x)

)
for some eIµ(x) (24)

(deg) ΣIJµν(x) is degenerate, that is, εIJKLε
µνρσΣIJµνΣKLρσ = 0 (25)
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Each of these constitutes a different sector of solutions to the equation (23); we have chosen the
symbols (+), (−), (deg) to denote these sectors. Notice that only sectors (+), (−)yield a field
Σ of the form (17) required to obtain gravity. In fact, as we will see later in the section on the
semiclassical limit, the existence of the last, degenerate, sector, will cause problems, and we will
mention one way to solve this problem. (However, it should be noted that the above three sectors
of linear simplicity is already an improvement over the prior version of the simplicity constraint
used in the literature [20, 21, 30, 22], which had five sectors.)

We just have discussed the classical implications of the linear simplicity constraint (23);
however, it is the quantum implications for the BF spin foams that will yield us our quantum
theory of gravity. From equations (19), (20), and (21) one can deduce the consequences of linear
simplicity (23) for the quantum numbers labeling the BF spin foams. In the Euclidean case, these
are precisely

j±f =
1

2
|1± β|jef

and in the Lorentzian case,

pf = βjef and kf = jef ,

both remarkably simple forms. These are the quantum simplicity constraints at the heart of the
LQG spin foam model of gravity. After one imposes these constraints, one can ask: What free
spin foam labels are left? In the Euclidean case, one starts out with the BF spin foam labels
{j+
f , j

−
f , jef , nef}; the above quantum simplicity constraint uniquely determines the labels j±f in

terms of jef , and furthermore forces that, for each f , all the spins jef are equal, whence we can
write simply jf . Thus, the remaining free labels are {jf , nef}. The same is true in the Lorentzian
case: There one starts with the labels {pf , kf , jef , nef}, simplicity determines pf and kf in terms
of jef , and all the spins jef for a given face f are equal, whence we may write jf , and again
the remaining free labels are {jf , nef}. The key thing to note here is that in both cases, the
remaining free labels are exactly the same as the labels on the LQG spin foams introduced earlier.
Thus, just as classically the simplicity constraint reduces BF theory to gravity, so the quantum
simplicity constraint reduces BF spin foams to LQG spin foams. That this key classical property
is reproduced quantum mechanically is one of the principal successes of the linear simplicity
constraint as imposed in the LQG spin foam model, and is what allows the LQG spin foam model
to provide a dynamics for LQG, making it the first, and thus far only, spin foam model to do so.
For other, more subtle, but no less interesting, arguments for this model, we refer the reader to
the original papers [31, 25, 26, 27].

3.6 Interpretation of LQG Spin foam quantum numbers: Quantum
space-time geometry

LQG Spin foams describe the gravitational field, and hence the geometry of space-time. We here
take the time to explain how the labels of a LQG spin foam determine a discrete space-time
geometry. This is important not only for understanding the meaning of the LQG spin foam
labels, but will be central in looking at the semiclassical limit of the resulting spin foam quantum
theory — that is, the limit in which quantum mechanics is ‘turned off’, and in which one should
recover classical general relativity.

This section builds on sections 2.1-2.2 on the discrete spatial geometry determined by spin
networks. Just as in classical general relativity, where spatial geometry fits into the larger space-
time geometry, so too the quantum spatial geometry of spin networks fits consistently into the
larger quantum space-time geometry of spin foams.

Interpretation of quantum numbers and uniqueness of the space-time geometry

The quantum numbers {jf , nef} determine a discrete space-time geometry by determining uniquely
the geometry of each 3-cell e? in the dual complex F?. Specifically, for each 3-cell e?, the area
of each face f? of e? is equal to 8π`2Plβ

√
jf (jf + 1), and the interior angle θ[e?, f?, f̃?] between
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Figure 12: Illustration in two dimensions: Even though each 2-cell is flat, when many are glued
together, the resulting two dimensional cell complex need not be flat, and in fact can approximate
any curved geometry.

each pair of faces f?, f̃? within e? is given by the equation

cos
(
θ[e?, f?, f̃?]

)
= −nef · nef̃ .

These areas and angles are precisely the same areas and angles used to interpret the LQG spin-
network labels in section 2.2, except now in a four dimensional context. Using a theorem by
Minkowski [32], one can show [33] that these areas and angles are sufficient to uniquely determine
a flat geometry within each three-cell e?. Because one is now working in four dimensions, each
3-cell is now part of the boundary of two 4-cells. The geometry of all the 3-cells e? bounding each
4-cell v? is sufficient to determine a flat geometry within each 4-cell [23, 34]. By determining the
geometry within each 4-cell, one determines a geometry of the entire space-time. This geometry is
piece-wise flat : Within each 4-cell it is flat, but the resulting overall geometry of the larger space-
time certainly need not be flat, and indeed can approximate any desired space-time geometry
arbitrarily well. (See figure 12 for a depiction of this phenomenon in two dimensions.) This is
the discrete, quantum space-time geometry determined by a loop quantum gravity spin foam
(F , {jf , nef}).

Existence

The above discussion explains how the quantum numbers {jf , nef} of a LQG spin foam are
sufficient to uniquely determine a piecewise flat space-time geometry, assuming there exists a
space-time geometry compatible with the given spin foam data. This will not always be the case:
there are constraints on the spin-foam data. Specifically, in order for a compatible space-time
geometry to exist, two constraints must be satisfied [23, 24]: the closure and gluing constraints
[35, 36]. The closure constraint requires that, in each dual 3-cell e?, one has∑

f incident at e

jfn
i
ef = 0.

By the same theorem of Minkowski cited earlier [32, 33], this constraint is sufficient to ensure that
a consistent geometry for the 3-cell e? can be reconstructed. The second constraint, the gluing
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constriant, is the requirement that all of these 3-cell geometries fit together consistently — that
is, when two 3-cells share a face, they should have the same area and shape. When this is true,
then the 4-cell geometries will also exist and fit together, yielding a full piecewise flat space-time
geometry consistent with the given spin foam data.

3.7 The loop-quantum-gravity spin foam amplitude

We are now ready to implement the last step of the strategy to define a spin foam model of
quantum gravity. We have already described BF theory and its quantum histories in subsections
3.1-3.2, and have introduced a way of imposing the simplicity constraint quantum mechanically
in subsection 3.5. Just as the set of classical BF fields satisfying classical simplicity coincides
with the fields describing classical gravity, so too, we have seen that the set of BF spin foams
satisfying quantum simplicity as presented above is in 1-1 correspondence with loop quantum
gravity spin foams. Let I denote the 1-1 map from LQG spin foam labels on a given F to BF
spin foam labels satisfying simplicity on the same F . The last step of the strategy is to restrict
the spin foam amplitude ABF (F ,L) of BF theory to spin-foams satisfying simplicity. This leads
one to assign the following probability amplitude to each LQG spin foam (F , {jf , nef}):

ALQG(F , {jf , nef}) := ABF (F , I({jf , nef})) (26)

This is the LQG spin foam amplitude, defining the LQG spin foam model of quantum gravity. It
exists in both Euclidean and Lorentzian versions, depending on which BF theory one starts with.
ALQG(F , {jf , nef}) gives the probability amplitude for the single quantum space-time history
(F , {jf , nef}), the geometrical meaning of which has been explained in the previous section. This
is the principal spin foam amplitude that will be used in the rest of this chapter.

Note that while the BF spin foam amplitude is a well-established result of an exactly soluble
theory, the LQG spin foam amplitude (26) must be considered a proposal due to the non-trivial
decision involved in the way the simplicity constraint is imposed. Nevertheless, the particular
way of imposing the simplicity constraint presented above has compelling properties [26, 37],
especially the exact reduction of BF spin foam labels to those of LQG, which no other strategy
thus far has.

4 Regge action and the semiclassical limit

We turn attention now to the classical limit of the LQG spin foam model. Recall from section
1.1 that the classical limit is defined as the limit in which appropriate combinations of physical
quantities become large compared with Planck’s constant. In the case of gravity, the relevant
physical quantities are geometrical and have dimensions of some power of length. As mentioned
earlier in this chapter, there is a unique combination of Newton’s gravitational constant, Planck’s
constant divided by 2π, and the speed of light, with dimensions of length: the Planck length,

`Pl =
√

G~
c3 . The classical limit of a quantum theory of gravity arises when geometrical quantities

become large compared to the corresponding power of the Planck length. In this limit, quantum
theory can be neglected, and, in order for the theory to remain compatible with the many suc-
cessful experimental and observational tests of general relativity, it is necessary for the theory, in
this limit, to become general relativity.

Recall from section 1.1 that, when a quantum theory is formulated in terms of a path integral,
the form eiS of the amplitude for individual histories is important not only to have equivalence
with the canonical quantum dynamics, but also important for ensuring the correct classical limit
of the theory.

This leads us to ask: Is the LQG spin foam amplitude, derived above, equal to eiS , with
S an appropriate action for gravity? Except for one subtle point to be discussed further at the
end of this subsection, this question has been answered in the affirmative in the limit in which
geometrical quantities are large compared to the Planck scale, and in the special case in which
the dual cell complex F? consists in cells of the simplest type, called simplices. The limit in
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Figure 13: 0-simplex, 1-simplex, 2-simplex, 3-simplex, and a 4-simplex, projected into a three-
dimensional plane for visualization.

which geometrical quantities are large compared to the Planck scale is of course just the classical
limit. However, because the probability amplitude for individual histories is a fundamentally
quantum mechanical object with no classical analogue, one usually instead refers to this as the
semiclassical limit of the amplitude. When all cells of F? are simplices, F? is called a simplicial
complex. The possible piece-wise flat geometries on such a complex are called Regge geometries.
Before stating the semiclassical limit of the LQG spin foam amplitude, we explain in more detail
simplicial complexes and Regge geometries.

4.1 Regge geometries

Until this point we have spoken of general cells in the dual cell complex F?. In each dimension
n, there is a certain type of simplest possible cell called a simplex, plural simplices. When one
wishes to specify the dimension n of a simplex, one uses the term n-simplex. 0-simplices are
points, 1-simplices are line segments, 2-simplices are triangles, and 3-simplices are tetrahedra. In
four dimensions, there is no common term for the simplest possible cell; it is therefore simply
called a 4-simplex. (See figure 13.)

Recall from section 3.6 how each LQG spin foam (F , {jf , nef}) determines a space-time
geometry which is flat in each dual 4-cell v? — that is, a piece-wise flat space-time geometry.
When we furthermore require that all of the dual 4-cells be simplicial, the resulting geometry
is called a Regge geometry. Regge geometries were first introduced by Tullio Regge [38] and are
well studied in the literature. Usually Regge geometries are specified by giving the lengths of all
1-simplices, as this information is equivalent to specifying a piecewise flat geometry, as noted in
Regge’s original paper. We furthermore note that the Regge geometries determined by spin-foams
are slightly more restricted than what is usual for Regge calculus, in that the areas of triangles
are restricted to belong to the canonical area spectrum given in equation (13).

When one takes the standard action for general relativity, the Einstein-Hilbert action, and
evaluates it on Regge geometries, one obtains the Regge action [39]. Thus, in order to ensure
that our spin foam model of gravity has the correct classical limit (namely, general relativity),
one would like the amplitude for such a spin foam to be

A(F , {jf , nef}) = (positive real number) exp (iSR)

where SR is the Regge action.

4.2 Semiclassical limit

With the above background, we are ready to state the result on the semiclassical limit of the
LQG spin foam amplitude. The LQG spin foam amplitude follows the spin foam Ansatz (15), so
that it decomposes into face, edge, and vertex amplitudes:

ALQG(F , {jf , nef}) =

∏
f∈F

ALQG
f

(∏
e∈F
ALQG
e

)(∏
v∈F
ALQG
v

)
. (27)

Recall every complex number A can be decomposed as A = |A|eiθ where θ is the phase. Following
the argument of section 1.1, in order to obtain the correct classical limit of the quantum theory,
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it is sufficient for the phase of the amplitude to become the classical action. The face and edge
amplitudes are real. Hence they can contribute at most an integer multiple of π to the phase
of the full amplitude. The interesting contribution to the phase of the amplitude will thus be
from the vertex amplitudes, and so one focuses on the semiclassical limit of primarily the vertex
amplitudes.

Each vertex amplitude ALQG
v can literally be understood as the spin foam amplitude for a

single 4-cell, v?. As mentioned above, the semiclassical limit has thus far only been carried out for
the case in which each 4-cell is a 4-simplex, and thus we restrict consideration to the case in which
v? is a 4-simplex. In this case, the vertex amplitude ALQG

v depends on the 10 spins jf on the 10
faces incident at v, and on the 20 vectors nef labeling the 5 edges e incident at v and the 4 faces
f incident at each of these 5 edges. To emphasize this dependence, we write ALQG

v ({jf , nef}),
where it is understood that there is only dependence on these spins and vectors.

Recall that the semiclassical is the limit in which geometric quantities become large compared
to the Planck scale. All geometric quantities determined by the labels {jf , nef} scale directly
with the spins jf , so that an easy way to take the semiclassical limit is to rescale all of these
spins by some common parameter λ, and then take the limit in which λ becomes large. Thus,
concretely, to look at the semiclassical limit of the vertex amplitude, one looks at the limit of
ALQG
v ({λjf , nef}) as λ becomes large.

The form of the semiclassical limit of ALQG
v ({λjf , nef}) is different depending on the type of

geometry, or lack thereof, determined by the labels {jf , nef}. The form of the semiclassical limit
of the Euclidean version of the vertex amplitude falls into 3 different cases, whereas that of the
Lorentzian version is more subtle and falls into 4 different cases. Because the Euclidean case is
sufficient to demonstrate the important issues, and is simpler, we restrict the following presenta-
tion to the Euclidean case. In section 3.6 we reviewed how, if the spin foam labels {jf , nef} satisfy
what are called the closure and the gluing constraints, then they uniquely determine a (possibly
degenerate) flat geometry for the 4-cell v? (which in this case is a 4-simplex). If the tetrahedra
on the boundary of v?, as determined by this geometry, all have non-zero volume, we say that the
labels determine a non-degenerate boundary geometry of v?. If any of the tetrahedra have zero
volume, we say that the labels {jf , nef} determine a degenerate boundary geometry. If the the
labels do not satisfy the closure and gluing constraints, we say that they are non-geometric. We
give below the semiclassical limit, which we denote by the symbol ‘∼’, of the Euclidean version
of ALQG

v in each these three different cases.

1. For labels determining a non-degenerate boundary geometry,

ALQG
v ({λjf , nef}) ∼ λ−12

(
C1e

iSR + C2e
−iSR + C3e

i
βSR + C4e

− i
βSR

)
. (28)

2. For labels determining a degenerate boundary geometry,

ALQG
v ({λjf , nef}) ∼ λ−12C. (29)

3. For non-geometric labels, the probability amplitude ALQG
v ({λjf , nef}) decays exponentially

with λ, that is, as fast as e−λ, so that such labels are ‘suppressed’ by the vertex amplitude.

In the above formulae, C1, C2, C3, C4, and C are independent of λ. Note that the only labels not
suppressed are the ones that actually correspond to piece-wise flat (possibly degenerate) space-
time geometries. In addition to this, the fact that the exponential of i times various multiples of
the action appears in the semiclassical limit of the vertex amplitude is encouraging. However, this
is not yet sufficient to ensure the correct classical limit: Not only are some unphysical, degenerate
geometries not suppressed, but even for the non-degenerate geometries, the asymptotic amplitude
(28) is not yet the Feynman amplitude. The Feynman amplitude would consist in only the first
term in (28). There is a reason for the non-suppression of the degenerate configurations in (29) as
well as the extra terms in (28); in a moment, we will remark on this reason, as well as mention a
solution to the problem. That these extra terms spoil the classical limit of the theory can be seen
by looking at spin foams on triangulations with more than one 4-simplex. In this case, even if we
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assume that the geometries of all 4-simplices are non-degenerate, one still has the four terms in
(28) for each 4-simplex. When these four terms are substituted into the expression (27) for the
full amplitude, one obtains cross-terms. Each of these cross-terms is equal to the exponential of a
sum of terms, one for each 4-simplex, equal to the Regge action for that 4-simplex times differing
coefficients, yielding what can be called a ‘generalized Regge action’ [29, 40, 41]. The extrema
of this ‘generalized Regge action’ are not the Regge equations of motion and hence not those of
general relativity, so that general relativity fails to be recovered in the classical limit.

As shown in the recent work [22], the extra terms causing this problem are due precisely to
the presence of the multiple sectors of solutions to the simplicity constraint presented in section
3.1, as well as the presence of different “orientations” as dynamically determined by the co-tetrad
field eIµ. Once these sectors and orientations are properly handled [28, 29], one arrives at what is
called the proper loop quantum gravity vertex amplitude. Its semiclassical limit includes only the
single term consisting in the exponential of i times the classical action,

A(+)
v ({λjf , nef}) ∼ λ−12C1e

iSR ,

thereby solving the above problem and giving reason to believe that the resulting spin-foam model
will yield a correct classical limit.

5 Two-point correlation function from spin foams

In this section we review a calculation in spin foams which has played an important role in the
development of the field: The calculation of the two point correlation function of quantum gravity.
The two point correlation function of a quantum field theory is the simplest quantity one can
calculate which directly probes the “non-classical-ness” of the theory and thus provides one with
a genuinely quantum mechanical prediction. In order to set the stage for this calculation, we
begin with a technical discussion of how one sums over spin foams.

5.1 The complete sum over spin foams

Let us first recall how the spin foam amplitude discussed in the last few sections fits into the overall
calculation scheme. As discussed in section 1, the amplitude for a given gravitational history is
used to calculate the probability amplitude for a canonical quantum state on the boundary of a
given space-time region. In the case where this canonical quantum state is an eigenstate |h〉 of
spatial geometry on the boundary of some space-time region R, the probability amplitude takes
the form (10)

Agrav(|h〉, R) =

∫
g|∂R=h

eiS[g]Dg. (30)

Spin foams provides a way to make the above formal prescription concrete, by using the lessons
of loop quantum gravity. Loop quantum gravity tells us that the correct eigenstates of spatial
geometry on ∂R are the spin network states |γ, {j`, nν`}〉, labeled by a graph γ on the boundary
of R, spins j` and unit 3-vectors nν` as in section 2.1. The integral over continuum geometries
is then replaces by the sum over discrete space-time geometries represented by spin foams. The
formal expression (30) is then replaced by the concrete spin foam expression

ALQG(|γ, {j`, nν`}〉, R) :=
∑

F such that
F∩∂R=γ

∑
{jf ,nef} such that
{jf ,nef}|∂R={j`,nν`}

ALQG(F , {jf , nef})

Before using this expression, there is still one more issue that must be addressed. Two different
types of apparently infinite sums appear in the above expression: (1.) the sum over possible
two-complexes F and (2.) the sum over possible labels {jf , nef} on the two complex. There is an
infinite number of two-complexes, giving rise to the first potential source of infinity, and, for each
two-complex, there are an infinite number of possible ways to label it, giving rise to the second
potential source of infinity.
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To aide in addressing the first of these potential infinities, it is useful to separate the sum over
two-complexes into first a sum over numbers of vertices N , and then a sum over two-complexes
with N vertices:

ALQG(|γ, {j`, nν`}〉, R) :=

∞∑
N=0

∑
F with N vertices,

such that
F∩∂R=γ

∑
{jf ,nef} such that
{jf ,nef}|∂R={j`,nν`}

ALQG(F , {jf , nef}).

For each N there are only a finite number of two-complexes, so the the potential infinity resides
only in the sum over N . To handle this, one usually introduces a small, positive real number λ,
raised to the power N :

ALQG(|γ, {j`, nν`}〉, R) :=

∞∑
N=0

λN
∑

F with N vertices,
such that
F∩∂R=γ

∑
{jf ,nef} such that
{jf ,nef}|∂R={j`,nν`}

ALQG(F , {jf , nef}). (31)

This has the effect of making each consecutive term in the sum over N smaller, and so ensuring
convergence. The insertion of the power of λ not only brings this potential infinity under control,
it also allows the resulting spin foam theory to be recast in terms of something called a group
field theory [42, 43, 44], thereby enabling a wide array of developed tools to be used in the study
of the theory.

The second potential infinity comes from the sum over labels on each two-complex. There
are indications [45] that the proper vertex [28, 29] introduced in section 4.2 may solve this second
problem, though, at the moment, these are only indications. Other promising research directions
related to this question include [46, 47, 48]. However, in the following application, we look only
at the terms in the sum (31) with the lowest power of λ. One can show that the sum over labels
for the lowest power of λ is finite, so that, at least for the calculations considered below, this
second infinity is not an issue.

5.2 The calculation

To define the two-point correlation function, we first introduce the idea of the expectation value
of an operator Ô in a given boundary state Ψ, as computed using the path integral formalism for
some region R of space-time. The expectation value is the average result one would obtain by
measuring the quantity Ô when the system is in the state Ψ. It is denoted 〈Ô〉Ψ and is given by
the expression

〈Ô〉Ψ :=
A(ÔΨ, R)

A(Ψ, R)
.

For illustrative purposes, let us first consider the case of a scalar field theory. In this case,
as an aside for those more familiar with standard quantum field theory, when Ψ is an eigenstate
|ϕ(x)〉 of the field operator ϕ̂(x) and Ô is a function O(ϕ̂(x)) of the field operator, the above
expression for the expectation value takes the more familiar form

〈Ô〉Ψ :=

∫
φ|∂R=ϕ

O(φ)eiS[φ]Dφ∫
φ|∂R=ϕ

eiS[φ]Dφ
.

Given a canonical quantum state Ψ, and any two points x and y on ∂R, the two-point correlation
function is defined as

DΨ(x,y) := 〈ϕ̂(x)ϕ̂(y)〉Ψ − 〈ϕ̂(x)〉Ψ〈ϕ̂(y)〉Ψ.

In the classical theory, the state of the system is, and therefore uniquely determines, the value
of the field ϕ(x) and its conjugate momentum. Thus, classically, given the state of the system,
the outcome of a measurement of ϕ(x) is certain, so that the expectation value of ϕ(x) is just
ϕ(x), and the expectation value of ϕ(x)ϕ(y) is just ϕ(x)ϕ(y), so that the classical two-point
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Figure 14: The connectivity of the graph γ used for the boundary state.

correlation function is just zero. Its deviation from zero can therefore be thought of as a measure
of the ‘non-classical-ness’ of the theory, providing us with an essentially quantum mechanical
prediction of the theory.

The two-point correlation function for loop quantum gravity, as determined by the loop
quantum gravity spin foam model, has been calculated in the works [49, 50, 51, 52, 53], for both
the Euclidean and the Lorentzian versions of the model. The field operator in this case (that is,
the operator playing the role of ϕ̂(x) above), is the metric tensor field operator, which takes a
discrete form in the case of loop quantum gravity. The boundary state Ψ that is considered is a
linear combination of spin networks based on a fixed graph γ on the boundary of R having the
structure indicated in figure 14.

In order to describe precisely the metric tensor operator and the way it is discretized when
acting on the state Ψ, we use again the notion of the complex γ? dual to γ within the three
dimensional boundary of R. The graph γ within ∂R consists in nodes and links. The dual to
each node ν in γ is a three-dimensional region (a 3-cell) ν?, and the dual to each link ` incident
at ν is a two-dimensional surface (a 2-cell) `? in the boundary of ν?. For the specific case of
the graph γ given in figure 14, each 3-cell ν? is a tetrahedron and each 2-cell `? is a triangle,
so that the dual cell complex γ? is a simplicial complex in the same sense as section 4.1, but
one dimension lower, and so provides a triangulation of the boundary of R. In fact, γ? is the
boundary of a single four-simplex (see section 4.1); this will be important in a moment.

In terms of the dual cell complex γ?, the metric tensor operator acting on Ψ is defined as
follows. Classically, the metric tensor determines areas and angles. In LQG one has operators
corresponding to the areas of the triangles `? and the interior angles of the tetrahedra ν? in γ?.
One can assemble these operators into a single ‘metric tensor-like matrix’ as

ĥ``
′
(ν) := Â`?Â`′? cos(θ̂[ν?; `?, `′?]) (32)

Where Â`? is the area operator for the triangle `?, and θ̂[ν?; `?, `′?] is the interior angle between
the triangles `?, `′? within the tetrahedron ν?. These area and angles are precisely the same areas
and angles used to interpret LQG spin networks in section 2.1-2.2 and LQG spin foam labels in
section 3.6, except now cast as operators.

We have mentioned that we chose the boundary state Ψ to be based on the graph γ in ∂R.
We furthermore choose it to be a coherent state, that is, a quantum state which approximates as
well as possible a particular classical state — one says it is ‘peaked’ on a particular classical state.
A classical state in this case consists in an intrinsic geometry of the boundary, described by a
matrix h̊ of areas and angles as in (32), together with a specification Π̊ of its conjugate momentum,
which, as mentioned in section 1.3, describes how ∂R bends in the larger, four-dimensional space
R. That is, Π̊ describes the extrinsic geometry of ∂R. The state Ψ which is used in the calculation
is peaked on a particular h̊ and Π̊ which are chosen to be as simple as possible, namely they are
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chosen to describe the intrinsic and extrinsic geometry of the boundary of a regular 4-simplex —
that is, a 4-simplex where all of the edges are of equal length.

Now that the nature of the metric tensor field operator and the boundary state have been
clarified, we return to the expression for the two-point correlation function. Again, one first
defines the notion of the expectation value of a given operator Ô in the boundary state Ψ:

〈Ô〉Ψ :=
ALQG(ÔΨ, R)

ALQG(Ψ, R)

and the two-point correlation function of the metric tensor operator (32) is then

G`1`
′
1`2`

′
2(ν1, ν2) := 〈ĥ`1`

′
1(ν1)ĥ`2`

′
2(ν2)〉Ψ − 〈ĥ`1`

′
1(ν1)〉Ψ〈ĥ`2`

′
2(ν2)〉Ψ. (33)

One can expand this quantity in a power series in the coupling constant λ introduced in section
5.1, and what has been so far calculated is the lowest order term in this series, which corresponds
to summing over spin foams which include only a single vertex, and which, on the boundary of
R, coincide with the graph γ. For the given graph γ in figure 14, there is only one such spin
foam, and its one vertex is dual (in four dimensions) to a single 4-simplex, of which γ? forms the
boundary.

The quantity (33) has been calculated in [52, 53] (to leading order in λ). It has been found
to match, at least in part, the same result one would calculate in a more classic, but incomplete
quantum gravity framework — linearized quantum gravity [54, 55, 51] — the beginnings of which
date back to the work of Rosenfeld, Fierz and Pauli in the 1930’s[2]. Linearized gravity is a
simplified version of gravity obtained by assuming that space-time geometry is close to flat, so
that the metric tensor gµν is equal to a flat background metric ηµν plus some small change εhµν
where the components of hµν are of order one, while ε is much less than one. If one substitutes
g = η + εh in to the standard action of gravity Sgrav[η + εh], one can then expand the action
in powers of ε. The term with the lowest power of ε, in this case 2, is then the action for
linearized gravity. Because the linearized action involves only first and second powers of the basic
variable of the theory (usually taken to be h), the theory can be exactly quantized. The two-point
correlation function (33) calculated using the LQG spin foam model differs from the two-point
correlation function of linearized quantum gravity by addition of a term which goes to zero as
the Barbero-Immirzi parmeter β goes to zero. This extra term thus yields a new signature of the
loop quantum gravity spin foam dynamics; its significance has yet to be fully understood.

6 Discussion

In the spin foam approach to quantum gravity, one uses what has been learned from canonical loop
quantum gravity about quantum space to construct a path integral approach to quantum gravity
in which one sums over quantum space-times. The resulting framework allows for simpler concrete
calculations of the consequences of dynamics than was possible using the canonical methods of
loop quantum gravity alone — we have seen this already above in the calculation of the two point
correlation function, and one can also see it in the first steps of the application of the full spin
foam theory to cosmology [56, 57, 58, 59], a topic which we have not been able to discuss in this
chapter.

Beyond these basic developments, the spin foam approach to quantum gravity has raised
other interesting questions and led to further lines of research which are ongoing. These include
among others work on how the theory appears on different length scales (so-called renormalization
of spin foams) [60, 61, 62, 63, 64], systematic issues in the derivation of spin foams [37, 65, 66, 67,
68], mathematical tools and equivalent reformulations of spin foam theory [69, 70, 71], inclusion of
matter [72, 73, 74], the relation between the dynamics defined by spin foam sums and the dynamics
defined by the Hamiltonian constraint in loop quantum gravity [75, 76], and the surprising relation
of spin foams to other approaches to quantum gravity, specifically noncommutative geometry
[77, 78] and group field theory [42, 43, 44]. These are only a few representative works of the
various research directions inspired by spin foams.
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If one is to distill a single lesson from the spin foam program, it is perhaps this: In construct-
ing a path integral formulation of a quantum theory, it is important to remember the role played
by canonical quantization in determining the potentially discrete nature of the histories one sums
over. A proper path integral approach to quantum gravity, strictly speaking, should not define
transition amplitudes between classical geometries, but rather between canonical quantum states
of quantum gravity, and one should not sum over classical space-time geometries, but rather his-
tories of quantum states. This is what leads directly to the spin foam program. In addition to
having this firm theoretical basis, the final framework provides a way to combine the advantages
of canonical quantum gravity, with its predictions of discrete geometry, black hole entropy, and
quantum cosmology, with the manifest unity of space and time made possible by the path integral
approach, a unity of space and time at the heart of both special and general relativity. Lastly, in
addition to these theoretical and aesthetic advantages, as we have already touched upon above,
the resulting framework allows for simple, concrete calculations involving dynamics by offering
an alternative to the task of finding general solutions to the quantum Hamiltonian constraint.
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