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Abstract.

The holonomy-flux algebra A of loop quantum gravity is known to admit a natural

representation that is uniquely singled out by the requirement of covariance under

spatial diffeomorphisms. In the cosmological context, the requirement of spatial

homogeneity naturally reduces A to a much smaller algebra, ARed, used in loop

quantum cosmology. In Bianchi I models, it is shown that the requirement of covariance

under residual diffeomorphism symmetries again uniquely selects the representation of

ARed that has been commonly used. We discuss the close parallel between the two

uniqueness results and also point out a difference.
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1. Setting the Stage

In loop quantum gravity (LQG) one begins with a Hamiltonian framework in which

the basic canonical pair consists of an SU(2) connection Ai
a and its momentum, a Lie

algebra-valued vector density Ea
i of weight one, both defined on a 3-dimensional manifold

M . To construct quantum kinematics, as usual, one has to select a class of elementary

functions which are to have unambiguous quantum analogs. In LQG these are given by

matrix elements of holonomies hα(A) of connections A along suitable curves α in M and

fluxes ES,f of E across suitable 2-surfaces S, smeared with Lie algebra valued fields fi.

The kinematical algebra A —called the holonomy flux algebra— is then generated by

the operators ĥα and ÊS,f [1]. The algebra A is ‘background independent’ in the sense

that it uses only the manifold structure of M . To complete the construction of quantum

kinematics, then, it remains to find a suitable Hilbert space Hkin and represent elements

of A by concrete operators on it. Motivated by background independence, Hkin was taken

to be the space L2(Ā, dµo) of square-integrable functions on the space Ā of (suitably

generalized) connections on M with respect to a natural diffeomorphism invariant

measure µo [2, 3]. The configuration operators ĥγ were represented by multiplication

and the momentum operators ÊS,f by Lie derivatives w.r.t. certain ‘vector fields’ on

Ā. This representation of A admits a cyclic vector Ψo which is is invariant under the

action of Diff , the group of suitable diffeomorphisms of M [2]. This kinematics was

constructed in the mid nineties and led to a specific quantum Riemannian geometry

that underlies LQG [4].

However, a natural question arose: Is this representation of A uniquely selected by

some physical requirements? This was answered in the affirmative some 10 years later

through a powerful theorem [5]: The physical requirement is precisely the existence of a

cyclic state invariant under Diff , which in turn implies that the groupDiff of symmetries

is unitarily implemented on Hkin. (See also [6]). This unitary implementation plays a

crucial role in the subsequent imposition of the diffeomorphism constraint [4].

Let us now turn to cosmology. In the Bianchi I models we will focus on, spatial

homogeneity causes a drastic reduction in the number of degrees of freedom. To obtain

a simple description of those that survive, one commonly introduces and fixes some

fiducial structures: a flat metric q̊ab, an associated set of Cartesian coordinates xi on

M , the associated orthonormal co-frames ω̊i := dxi and the dual frames e̊ai . One then

restricts oneself to pairs (Ai
a, E

a
j ) of the form:‡

Ai
a = ci ω̊i

a, Ea
i = pi

√

q̊ e̊ai (1)

where q̊ is the determinant of the fiducial metric q̊ab. Thus, because of spatial

homogeneity, there are only three, global configuration degrees of freedom ci, and three

momenta pi. However, if one naively evaluates the symplectic structure of the full

‡ Throughout this communication, there is no summation over repeated contravariant or covariant

indices. Contracted covariant and contravariant indices by contrast are summed over. Our c
i
, pj have

been generally denoted by c̃
i
, p̃j in the LQC literature.
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theory for these homogeneous Ai
a, E

a
i , it diverges. Therefore, to obtain a well-defined

phase space formulation and subsequent quantum kinematics, one must introduce an

infra-red cutoff (to be removed at the end to obtain physical results). This is done by

introducing a cell C whose edges are parallel to the fiducial e̊ai . Then, the non-vanishing

Poisson brackets are given by {ci, pj} = (8πγG/V̊ ) δij , where V̊ is the volume of the

cell C with respect to the fiducial metric q̊ab.

To construct quantum kinematics, one begins by noting that it is natural to restrict

the holonomy and flux phase space functions using spatial homogeneity. For fluxes, it

suffices to choose the surfaces to be the three faces of the cell (and smearing fields fi to

be fi = nae̊
a
i where na is the unit normal to the face with respect to q̊ab). Then, the three

flux functions ES,f turn out to be (multiples of the) pi. For holonomies hα, it suffices to

choose the curves α to be aligned with the three edges of the cell and label them with

numbers µi, the lengths of the (oriented) edges in units of the edge lengths of the cell.

Then, if α is along the jth edge, hα = (cos(µjcj)/2)I + 2(sin(µjcj)/2)τ j where τ j are

the Pauli matrices and I the unit matrix. Note that the dependence on cj is completely

captured by the functions eiµ
jcj , with µj ∈ R. To summarize, then, spatial homogeneity

naturally reduces the holonomy flux algebra A to the much smaller, reduced algebra

ARed, generated by the phase space functions eiµ
jcj and pi [9, 10].

While the reduction from A to ARed is systematic, the construction of the

representation of ARed used in LQC has not descended so directly from LQG. For,

while in full LQG the representation was uniquely selected by asking for a cyclic state

which is invariant under Diff , it was generally believed that the ansatz (1) freezes all

diffeomorphisms. Thus the key requirement that selected the unique representation in

LQG seemed to have disappeared in LQC whence it seemed impossible to prove an

uniqueness theorem along the lines of [5, 6]. Instead, one ‘mimicked’ the form of the

unique cyclic state of LQG in a precise sense to obtain a cyclic state on ARed and

used it to construct the representation [7]. In particular, the LQC Hilbert space Hkin

is again the space L2(R3
Bohr, dµo) of square integrable functions on the space R3

Bohr of

(generalized) homogeneous Bianchi I connections with respect to a natural measure dµo

thereon, the holonomy operators ̂exp iµjcj act by multiplications and the flux operators

p̂i by derivation [9, 10].

But the question has remained: Can we systematically arrive at this representation

in LQC as was done in LQG in [5, 6]? The goal of this communication is to answer it

in the affirmative. The key new observation is that the ansatz (1) does not eliminate

the diffeomorphism freedom completely and the residual diffeomorphism freedom can be

used to select a cyclic state on ARed uniquely. Not surprisingly this is precisely the state

that was arrived at by ‘mimicking’ full LQG.

2. Residual diffeomorphism symmetries

We have fixed the fiducial fields q̊ab, e̊
a
i , ω̊

i
a on M and the Bianchi type I phase space

variables are the connections Ai
a and conjugate momenta Ea

i of the form (1). The
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question is: Are there diffeomorphisms on M which preserve this form and have non-

trivial action on the coefficients ci, pj? To preserve the form (1), the diffeomorphisms

must map each of the three ω̊i
a to a constant multiple of itself. Since ω̊i = dxi, it

follows that the most general vector field ξa generating such a diffeomorphism is a

linear combination of anisotropic dilations and translations:

ξa = λ1x1e̊
a
1 + λ2x2e̊

a
2 + λ3x3e̊

a
3 + kie̊ai (2)

where λi, k
i are real constants. The action of translations kie̊ai leaves each of the ci, pj

invariant. Therefore it is just the 3-dimensional Abelian group G generated by the three

anisotropic dilations, x1 7→ eλ1x1, etc, that has a nontrivial action on ci, pj :

c1 7→ eλ1c1, p1 7→ eλ2+λ3p1 and cyclic permutations. (3)

Are these phase space symmetries? A trivial calculation shows that while the vanishing

Poisson brackets between the three ci and those among the three pi are preserved, the

non-vanishing ones are preserved if an only if λ1 + λ2 + λ3 = 0. This is precisely the

2-dimensional group Go of volume preserving anisotropic dilations. In the main part of

this communication we will focus just on Go.

3. The Weyl Algebra

The holonomy flux algebra is generated by U(~µ) := ̂exp iµjcj and p̂i. As usual, since it

is mathematically more convenient to deal with (the bounded) unitary operators rather

than (the unbounded) self-adjoint ones, let us exponentiate pi and set V (~η) := exp iηj p̂j
with ~µ ∈ R3 and work with the pairs U(~µ), V (~η). However, in the final picture we need

p̂j to be well defined self adjoint operators. This is easily achieved by demanding that

in the final representation the operators V (~η) should be continuous in the parameters

~η. There is no such a priori requirement on U(~µ) because in full LQG there is no

operator corresponding to the connections; only holonomies are well defined operators.

The classical Poisson brackets dictate the algebraic structure of these operators:

U(~µ1)U(~µ2) = U(~µ1 + ~µ2); V (~η1)V (~η2) = V (~η1 + ~η2);

U(~µ)V (~η) = e−ik~µ·~η V (~η)U(~µ), where k = 8πγℓ2Pl/V̊ . (4)

It is often convenient to work with a combination

W (~µ, ~η) := e
ik
2
~µ·~η U(~µ)V (~η) (5)

called the Weyl operators satisfying the following star relations and product rule:

[W (~µ, ~η)]⋆ = W (−~µ,−~η),

W (~µ1, ~η1)W (~µ2, ~η2) = e−
ik
2
(~µ1·~η2−~µ2·~η1) W (~µ1 + ~µ2, ~η1 + ~η2) . (6)

Note that the vector space W generated by finite linear combinations of Weyl operators

is closed under both operations and is a ⋆-algebra. This is the Weyl algebra for the

Bianchi I model, the symmetry reduced version of the algebra used in [6] for LQG.

As in the full theory, it is convenient to use the Gel’fand, Naimark, Segal (GNS)

construction [8] to find its representation. This requires us to choose a normalized
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positive linear functional (PLF) F on W, i.e., a linear map, F : W → C, from the Weyl

algebra to the set of complex numbers, such that: i) F(a⋆a) ≥ 0 for all a ∈ W; and ii)

F (I) = 1, where I is the identity element of W. The choice made in LQC [7, 9, 10],

F(W (~µ, ~η)) = δ~µ,~0, and extends to W by linearity, (7)

mimics the PLF used in full LQG [5, 6]. Since F is continuous in ~η, in the resulting

GNS Hilbert space H the unitary operators representing V (~η) are continuous in the

parameters ~η, and are therefore generated by self-adjoint operators p̂i. Thus, we have a

representation of the reduced holonomy-flux algebra ARed. The Hilbert space H is often

described in terms of the orthonormal basis |~µ〉 of eigenvectors of p̂j . The action of the

basic operators is given by:

U(~µ)|~µo〉 = |~µ+ ~µo〉, and V (~η)|~µo〉 = eik~η·~µo |~µo〉 . (8)

We will now show that this representation is uniquely selected by the requirement that

the PLF be invariant under the action of the group Go of volume preserving anisotropic

dilations.

4. Uniqueness of the representation: Direct method

Since the induced action of Go on the phase space preserves the symplectic structure, it

provides a 2 parameter family Λ(~λ) of automorphisms on the Weyl algebra:

Λ(~λ)[W (~µ, ~η)] = W (eλ1µ1, e
λ2µ2, e

λ3µ3; eλ2λ3η1, e
λ3λ1η2, e

λ1λ2η3) (9)

where λ1 + λ2 + λ3 = 0. As in the uniqueness theorems of LQG kinematics [5, 6],

we now seek a PLF F on W which is invariant under these automorphisms. The

cyclic state in the resulting GNS representation would then be invariant under these

residual diffeomorphism symmetries, whence they would be represented by unitary

transformations on the GNS Hilbert space [8]. In addition we require that F(W (~µ, ~η))

be continuous in ~η so that operators p̂i will be well-defined and the GNS Hilbert space

will also carry a representation of the holonomy-flux algebra ARed.

For notational simplicity, let us set F (~µ; ~η) := F(W (~µ, ~η)). Then the two conditions

imply in particular that F must satisfy: i) F (~0; ~η) = F (~0; e−λ1η1, e
−λ2η2, e

−λ3η3) for

any λi ∈ R satisfying λ1 + λ2 + λ3 = 0; and, ii) F (~0; ~η) is continuous in ~η. In addition,

the normalization condition on F implies F (~0;~0) = 1. It follows immediately that:

F (~0; η1, 0, 0) = 1; F (~0; 0, η2, 0) = 1; F (~0; 0, 0, η3) = 1. (10)

We are now equipped to prove the main result.

Theorem: Let F be a normalized positive linear functional on the Weyl algebra

W satisfying (10). Then F(W (~µ, ~η)) = δ~µ,~0.

Proof: Being a PLF, F satisfies:

|F(a⋆b)|2 ≤ F(a⋆a)F(b⋆b) for all a, b ∈ W . (11)

The key idea is to use this property with two different choices of a and b. Let ~ηo be

any ~η which lies along one of the three axes so that F (~0; ~ηo) = 1. Set b = V (~ηo) − I.
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Then it is trivial to check that F(b⋆b) = 0. Therefore F(a⋆b) = 0 for all a ∈ W. Now

let a = V (~η) for an arbitrary ~η. Then we have 0 = F(a⋆b) = F (~0; ~ηo − ~η)− F (~0; −~η).

Since F (~0; ~ηo) = 1, it follows that F (~0; ~η) = 1 for all ~η.

Now let b = V (~η)− I for any ~η ∈ R3. Since we have established that F (~0; ~η) = 1,

we again have F(b⋆b) = 0, whence F(a⋆b) = 0 = F(b⋆a) for all a ∈ W. Therefore

F(a(V (η)− I)) = 0 and F((V (η)− I)a) = 0 for all a ∈ W. This implies

F(a) = F(aV (~η)) = F(V (~η)a) ∀a ∈ W and ~η ∈ R
3. (12)

Let us now set a = U(~µ) for any ~µ ∈ R3. Then, using W (~µ, ~η) = e
i
2
k~µ·~η U(~µ)V (~η), we

obtain

F (~µ; ~η) = e
i
2
k~µ·~η F (~µ; ~0) = e−

i
2
k~µ·~η F (~µ; ~0) (13)

for all ~µ, ~η. This implies F (~µ; ~η) = 0 if µ 6= 0. But we have already established that

F (~0; η) = 1. Therefore we conclude F (~µ; ~η) = δ~µ,~0. �

Thus, the requirement that the PLF be invariant under the automorphisms on

W implementing the residual diffeomorphism symmetries Go led us to a unique cyclic

representation of W. Moreover, this is precisely the representation that has been used

in LQC. Note, incidently, that Go invariance was used only to arrive at the conclusion

that F (~0; ~ηo) = 1 for all ~η on the three axes in the 3-dimensional η-space. So, if another

physical requirement were to lead us to this condition, uniqueness will follow. We will

return to this point in section 6 in the discussion of more general Bianchi models.

5. Uniqueness of the representation: Conceptual underpinning

It is instructive to see an alternate proof of the second half of the uniqueness theorem

because it makes the conceptual underpinning of the result and the parallel between

the LQC and LQG representations transparent, and because it could extend to more

general situations. We begin by assuming that, thanks to the symmetry condition, the

PFL we are seeking must satisfy F(W (~0, ~η)) = 1. Let us suppose that such a PLF exists

and let K denote the kernel of the PLF, i.e., the subspace of W defined by F(a⋆a) = 0

for all a ∈ K. The GNS construction then yields a Hilbert space H which is the Cauchy

completion of the quotient W/K.

The cyclic state |Ψo〉 ∈ H is the equivalence class to which the identity operator

I belongs. Since F(I) = 1, we have 〈Ψo|Ψo〉 = 1. Set |Ψ~η〉 = V (~η)|Ψo〉. Then,

〈Ψ~η|Ψ~η〉 = 1 and furthermore 〈Ψo|Ψ~η〉 = 〈Ψo|V (~η)Ψo〉 = F (~0; ~η) = 1. Thus, |Ψo〉

and |Ψ~η〉 are unit vectors and their scalar product is 1. Therefore they must coincide.

Thus, V (~η)|Ψo〉 = |Ψo〉 for all ~η.

Next, set |Ψ~µ〉 := U(~µ)|Ψo〉. Then

V (~η)|Ψ~µ〉 = V (~η)U(~µ)|Ψo〉 = eik~µ·~η U(~µ)V (~η)|Ψo〉 = eik~µ·~η |Ψ~µ〉 . (14)

Thus, for all ~µ, ~η, |Ψ~µ〉 is an eigenvector of V (~η) with eigenvalue eik~µ·~η. Therefore it

follows that: i) If ~µ 6= ~µ′, |Ψ~µ〉 − |Ψ~µ′〉 6∈ K so for each ~µ ∈ R3 there is a distinct

ket |Ψ~µ〉; and, ii) 〈Ψ~µ|Ψ~µ′〉 = δ~µ,~µ′ . Consider the vector space V := {
∑N

n=1 Kn|Ψ~µn
〉}
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spanned by finite but otherwise arbitrary linear combinations of |Ψ~µ〉. It contains the

cyclic state |Ψo〉 and is left invariant by the Weyl algebra W. Therefore V = W/K, and

its Cauchy completion is the GNS Hilbert space H. Thus we have explicitly constructed

the GNS representation. By inspection, F(W (~µ, ~η)) = 〈Ψo|e
ik
2
~µ·~ηU(~µ)V (~η)|Ψo〉 = δ~µ,~0.

Furthermore by identifying kets |Ψ~µ〉 with the kets |~µ〉 of section 3, we obtain an explicit

isomorphism between this GNS representation and the one that has been used in LQC.

6. Discussion

We began by noting that the ansatz (1) used in the Bianchi I models does not completely

fix the diffeomorphism freedom. There is a three parameter group G of anisotropic

dilations that respects the ansatz but has non-trivial action on the symmetry reduced

phase space. However it is only the 2 parameter subgroup Go of volume preserving

diffeomorphisms of G that preserve the symplectic structure. Therefore we focused on

Go. This Go is faithfully represented by a group of automorphisms on the Weyl algebra

W. As is usual in quantum mechanics and quantum field theory, we then seek cyclic

representations of W. If we demand, as in full LQG [5, 6], that the required PLF on W

be invariant under the automorphisms induced by the diffeomorphism symmetries, we

are led to a unique representation of W. Moreover this is precisely the representation

that has been used in the LQC literature [7, 9]. Thus the situation in LQC has turned

out to be completely parallel to that in LQG: the representation is uniquely selected

by the residual diffeomorphism symmetries. In both cases the representation was first

found and used extensively and the uniqueness was established much later.

We conclude with a few remarks:

i) While there is a conceptual parallel between LQG and LQC, there is also a difference.

If the topology is R3, the group Go of diffeomorphism we considered is included in the

group Diff used in LQG [5]. However, the LQG uniqueness result would have held even

if one had restricted oneself to diffeomorphisms which are asymptotically identity. The

uniqueness theorem would have still picked the standard PLF and one could have just

checked at the end that the PLF is also invariant under the action of Go. This difference

is directly related to the fact that we are now working with homogeneous fields which

do not have local degrees of freedom.

ii) In more general Bianchi models with different spatial topologies, the analog of Go

may not exist. But the induced automorphisms continue to exist and can be interpreted

as changes of the fiducial ω̊i
a, e̊

a
i . Demanding that the PLF be invariant under them

would again lead to a unique cyclic representation of the Weyl algebra.

iii) What is the situation with elements of G with λ1 + λ2 + λ3 6= 0 which are

not in Go? Because the induced action of these elements of G does not preserve the

symplectic structure, they do not yield automorphisms on all of W. But they do induce

automorphisms on the two Abelian sub-algebras of W generated separately by U(~µ) and

V (~η). Our PLF is invariant under them.

iv) The spatially flat, isotropic Hilbert space of LQC states is naturally embedded
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in our Bianchi I Hilbert space H. In this sense, the uniqueness result naturally descends

from the Bianchi I to the k=0 Friedmann model. However, what if one chose to work

directly with the Friedmann model? Then, λ1 = λ2 = λ3 and G reduces just to the 1-

parameter group of dilations. The action of this diffeomorphism induces automorphisms

only on the two Abelian sub-algebras as discussed above. However, the requirement that

the PLF be invariant under this action suffices to select the PLF uniquely [11] and this

is precisely the PLF that has been used in the Friedmann model of LQC [7]. By contrast

in the Schrödinger representation, discussed below, this 1-parameter group of dilations

is not unitarily implemented and, furthermore, the Friedmann Hilbert space is not a

subspace of the Bianchi I Hilbert space.

v) What happens in the Schrödinger representation of the Weyl algebra W, where

the Hilbert space is L2(R3, d3c)? Since c1 7→ eλ1 c1, etc, with λ1 + λ2 + λ3 = 0, it

follows that the Lesbegue measure is preserved, whence Go is again unitarily represented.

Furthermore, this representation is again cyclic but it does not admit any cyclic state

that is invariant under the induced action of Go! This raises an interesting question: Are

there perhaps cyclic representations of the holonomy-flux algebra A of LQG in which

Diff is unitarily represented but none of the cyclic vectors is invariant under Diff ? If

they do, they could represent different phases of LQG kinematics, complementing the

standard representation [2, 4] which captures the LQG quantum geometry at the Planck

scale.
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