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Abstract

As a canonical and generally covariant gauge theory, loop quantum gravity re-
quires special techniques to derive effective actions or equations. If the proper con-
structions are taken into account, the theory, in spite of considerable ambiguities
at the dynamical level, allows for a meaningful phenomenology to be developed, by
which it becomes falsifiable. The tradiational problems plaguing canonical quantum-
gravity theories, such as the anomaly issue or the problem of time, can be overcome
or are irrelevant at the effective level, resulting in consistent means of physical evalua-
tions. This contribution presents aspects of canonical equations and related notions of
(deformed) space-time structures and discusses implications in loop quantum gravity,
such as signature change at high density from holonomy corrections, and falsifiability
thanks to inverse-triad corrections.

1 Introduction

Loop quantum gravity [1, 2, 3] is a proposal for a canonical quantization of general relativ-
ity. By a careful use of basic variables suitable for a quantum representation independent
of auxiliary metric or causal structures, it has shed light on several aspects of the quan-
tum geometry of space. The dynamics of the theory, however, remains poorly controlled,
and therefore it is not clear what structure of quantum space-time it implies. Dynamical
operators are subject to quantum ambiguities, and their evaluation is still plagued by long-
standing conceptual problems of canonical quantum gravity, most famously the problem
of time [4, 5, 6].

That much-needed progress especially on the last-mentioned problem is lacking is il-
lustrated for instance by the proliferating use of “deparameterized” quantum theories, in
which the time variable is fixed once and for all (as a matter degree of freedom rather
than a coordinate). The space-time gauge is partially fixed, even though one set out to
derive properties of quantum space-time. Such time-fixed systems have been seriously pro-
posed not just as toy models but even as complete quantum theories of gravity (see e.g.
[7]). With these attempts, one no longer aims at gaining control over quantum space-time
and its physical effects, for which one would have to show that quantum observables are
independent of the choice of time, be it an internal matter clock or a coordinate; no such
results of independence have been provided in deparameterized models.
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With problems like these still outstanding, it remains questionable whether the theory
can be considered as fundamental. (Of course, this is not to say that the theory could not
achieve fundamental status with further, significant progress.) Nevertheless, the theory’s
results regarding the quantum geometry of space and background independence may still
be of physical interest, provided they can manifest themselves in sufficiently characteristic
ways on the typical scales of gravitational phenomena, far removed from the microscopic
Planck scale. This is the realm of effective theory, a powerful viewpoint in many examples
(not only) of high-energy phenomena, so also in loop quantum gravity as laid out in this
contribution.

The dynamical problems of loop quantum gravity are not specific to this particular
approach but have a general origin in relativistic properties of space-time. Generally co-
variant theories, such as general relativity, have complicated gauge structures (coordinate
transformations, or hypersurface deformations) that can best be addressed with canonical
techniques. (For canonical methods in gravity, see [8].) In such settings they show their
troubling face most directly, but they also sneak through other approaches, for instance
those using path integrals or spin foams where finding the correct integration measure is a
related problem. These issues require special care, new methods of quantum field theory
and semiclassical or effective descriptions. Here we present an overview of the following
techniques, suitable for physical evaluations of the theory: (i) A canonical derivation of
effective equations for quantum dynamics, and (ii) a discussion of general covariance in
quantum gravity and deformed space-time structures. By bringing these parts together,
an effective theory of loop quantum gravity is obtained.

2 Effective theories

In quantum theory, every local classical degree of freedom, (q, p) in canonical form, amounts
to infinitely many quantum degrees of freedom — expectation values 〈q̂〉, 〈p̂〉, fluctuations
(squared) 〈q̂2〉 − 〈q̂〉2, and so on with higher powers. An effective theory, in general terms,
aims to describe some properties of quantum theory by interactions of finitely many local
degrees of freedom. For instance, if we keep only the expectation values, we have the
classical limit. Expectation values together with fluctuations, taking values near satura-
tion of the uncertainty relation, provide the first-order approximation in h̄. The higher
the h̄-order, the more degrees of freedom must be considered (related but not identical to
higher time derivatives). In a formal limit including the order h̄∞, we are back at quantum
theory, but in perturbative guise. Some subtle effects may be missed, for instance different
inequivalent self-adjoint extensions of Hamiltonians. But many dynamical properties inde-
pendent of subtleties can be derived conveniently using effective theory. One may therefore
hope that some of the technical and conceptual problems of quantum gravity or quantum
cosmology can be simplified as well, and this hope is indeed borne out.
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2.1 Quantum phase space

Like most other questions, the idea of effective theories can easily be illustrated by the
harmonic oscillator, with a quadratic Hamiltonian Ĥ = 1

2m
p̂2 + 1

2
mω2q̂2 for canonical

commutation relations [q̂, p̂] = ih̄. (However, harmonic-oscillator results should be taken
with a grain of salt when it comes to general behavior, as we will see in the present context
as well.) For an effective theory in terms of expectation values, we compute equations of
motion

d

dt
〈q̂〉 = 1

ih̄
〈[q̂, Ĥ ]〉 = 1

m
〈p̂〉 ,

d

dt
〈p̂〉 = 1

ih̄
〈[p̂, Ĥ ]〉 = −mω2〈q̂〉

which can be solved directly. Although they amount to just the classical equations for q
and p, their solutions determine exact quantum properties.

To go beyond the classical order free of h̄-dependent terms, we can use the same type
of equations of motion to derive dynamical laws for fluctuations (∆O)2 = 〈Ô2〉 − 〈Ô〉2 of
q and p and, as it turns out to be necessary, the covariance. Cqp = 1

2
〈q̂p̂ + p̂q̂〉 − 〈q̂〉〈p̂〉.

These variables provide all degrees of freedom to second order, with expectation values of
quadratic functions of the basic operators. In a semiclassical state, the values are of the
order h̄, as one can verify explicitly for a Gaussian.

Dynamically, we have the equations

d

dt
(∆q)2 =

〈[q̂2, Ĥ ]〉
ih̄

− 2〈q̂〉d〈q̂〉
dt

=
2

m
Cqp (1)

d

dt
Cqp = −mω2(∆q)2 +

1

m
(∆p)2 (2)

d

dt
(∆p)2 = −2mω2Cqp (3)

and we should also restrict the variables for them to correspond to a true state: they are
subject to the (generalized) uncertainty relation

(∆q)2(∆p)2 − C2
qp ≥

h̄2

4
. (4)

Just like expectation-value equations, these second-order equations are linear and can
easily be solved, providing non-classical information about quantum states. Stationary
states, for instance, require Cqp = 0 for the variables to remain constant in time, together

with ∆p = mω∆q from (2). They satisfy the uncertainty relation if ∆q ≥
√
h̄/2mω.

The uncertainty relation is saturated for ∆q =
√
h̄/2mω, in which we find the correct

fluctuations of the harmonic-oscillator ground state. More general squeezed coherent states
with Cqp 6= 0, still saturating the generalized uncertainty relation, have time-dependent
fluctuations, such as a spread oscillating oscillating with frequency 2ω; see Fig. 1. One can
explicitly solve (1)–(3) for the position fluctuation

(∆q)2(t) =
C0

mω
sin(2ωt) +

1

2
(Q0 − P0/m

2ω2) cos(2ωt) +
1

2
(Q0 + P0/m

2ω2) (5)
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Figure 1: Dynamical coherent states of the harmonic oscillator, uncorrelated with constant
fluctuations (solid) or correlated with oscillating fluctuations (dashed). All states spread
around the same time-dependent expectation value q(t) (central line) but differ in the
dynamics of their position fluctuations (lines around the mean).

with C0, Q0 and P0 the initial values of Cqp, (∆q)
2 and (∆p)2, respectively. With similar

solutions for (∆p)2(t) and Cqp(t), one sees that (∆q)2(∆p)2 − C2
qp is constant: the states

are dynamical coherent states.
In this system, exact quantum properties follow from finitely many variables. A more

complicated but still tractable model is the “relativistic” harmonic oscillator, in which the
energy Ê2 = 1

2m
p̂2+ 1

2
mω2q̂2, compared to the standard harmonic oscillator, enters quadrat-

ically [9]. As Fig. 2 shows, simple properties of an initial coherent state become much more
complicated as time goes on, and deviations from classical trajectories occur. This form
of quantum back-reaction — the influence of the shape of a state on the trajectory —
happens generically in quantum systems, while the strict decoupling of quantum variables
and expectation values is special to the harmonic oscillator and a few other systems.

For controlled deviations from harmonicity, we look at an anharmonic oscillator with
non-quadratic Hamiltonian

Ĥ =
1

2m
p̂2 + V (q̂) =

1

2m
p̂2 +

1

2
mω2q̂2 +

1

3
λq̂3 .

The cubic term could be seen as a perturbation for λ sufficiently small, provided q does
not grow too large. Now, equations of motion read

d

dt
〈q̂〉 = 1

m
〈p̂〉 ,

d

dt
〈p̂〉 = −mω2〈q̂〉 − λ〈q̂〉2 − (∆q)2 = −V ′(〈q̂〉)− λ(∆q)2 ,

coupling expectation values to the position fluctuation. (Similar equations for h̄→ 0 have
been used in [10] to prove that quantum mechanics has the correct classical limit.) The
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Figure 2: A wave function subject to the dynamics of a “relativistic” harmonic oscillator,
with quantum back-reaction. Starting as a Gaussian (front), the state for some time follows
the classical oscillating trajectory but spreads out and eventually shows no clear trajectory
[9].
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position fluctuation, in turn, obeys

d

dt
(∆q)2 =

2

m
Cqp ,

d

dt
Cqp =

1

m
(∆p)2 −mω2(∆q)2 + 6λ〈q̂〉(∆q)2 + 3λG0,3

and depends, via the evolution equation of Cqp, on a third-order moment G0,3 = 〈(q̂−〈q̂〉)3〉
(called skewness). Proceeding in this way, computing an equation of motion for G0,3 and
so on, shows that infinitely many variables are coupled to one another and to expectation
values.

For a systematic formulation, we use, following [11, 12], the quantum phase space of
classical variables q = 〈q̂〉 and p = 〈p̂〉 together with the moments

Ga,n := 〈(q̂ − 〈q̂〉)n−a(p̂− 〈p̂〉)a〉Weyl (6)

for n ≥ 2, a = 0, . . . , n. (The subscript “Weyl” indicates that all operator products are
Weyl ordered before taking the expectation value, averaging over all possible orderings.)
For these variables we have Poisson brackets

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉
ih̄

(7)

extended by imposing the Leibniz rule to products of expectation values, as they appear
in moments. This general definition implies {q, p} = 1, {q, Ga,n} = 0 = {p,Ga,n} and a
rather complicated (but explicitly known) relation for {Ga,n, Gb,m} [11, 13].

2.2 Effective dynamics

Evolution on the quantum phase space is determined by the quantum HamiltonianHQ(〈·〉, G·,·) =

〈Ĥ〉〈·〉,G·,· , defined as a function of expectation values and moments characterizing a state
used to compute the expectation value. The dynamical flow of the quantum Hamiltonian
couples expectation values and moments: the law

d〈Ô〉
dt

=
〈[Ô, Ĥ ]〉

ih̄
= {〈Ô〉, 〈Ĥ〉} (8)

in general contains product terms multiplying expectation values and moments. In this
systematic way, quantum back-reaction is implemented.

A well-studied example illustrating all important features is the general anharmonic
oscillator, with classical Hamiltonian H = 1

2m
p2 + 1

2
mω2q2 + U(q). If we first introduce

dimensionless variables G̃a,n = h̄−n/2(mω)n/2−aGa,n, we can compute the quantum Hamil-
tonianHQ := 〈Ĥ〉 that enters the Poisson bracket in (8), exhibiting all quantum corrections
with explicit factors of h̄. By Taylor expansion, we have

HQ = 〈H(q̂, p̂)〉 = 〈H(〈q̂〉+ (q̂ − 〈q̂〉), 〈p̂〉+ (p̂− 〈p̂〉))〉 (9)

=
1

2m
〈p̂〉2 + 1

2
mω2〈q̂〉2 + U(〈q̂〉) + h̄ω

2
(G̃0,2 + G̃2,2) +

∑

n>2

1

n!

(
h̄

mω

)n/2

U (n)(〈q̂〉)G̃0,n
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with the zero-point energy 1
2
h̄ω(G̃0,2 + G̃2,2) and a whole series of coupling terms. The

series, in general, is asymptotic, as usual for semiclassical expansions. If it is truncated to
a finite sum up to nmax, we obtain the semiclassical approximation of order nmax.

The quantum Hamiltonian HQ generates Hamiltonian equations of motion ḟ = {f,HQ}
on quantum phase space according to (8): from [11],

˙〈ˆ〉q =
〈p̂〉
m

(10)

˙〈ˆ〉p = −mω2〈q̂〉 − U ′(〈q̂〉)−
∑

n

1

n!

(
h̄

mω

)n/2

U (n+1)(〈q̂〉)G̃0,n (11)

˙̃Ga,n = −aωG̃a−1,n + (n− a)ωG̃a+1,n − a
U ′′(〈q̂〉)
mω

G̃a−1,n (12)

+

√
h̄aU ′′′(〈q̂〉)
2(mω)3/2

G̃a−1,n−1G̃0,2 +
h̄aU

′′′′

(〈q̂〉)
3!(mω)2

G̃a−1,n−1G̃0,3

−a
2

(√
h̄U ′′′(〈q̂〉)
(mω)3/2

G̃a−1,n+1 +
h̄U

′′′′

(〈q̂〉)
3(mω)2

G̃a−1,n+2

)
+ · · ·

with infinitely many coupled equations for infinitely many variables, clearly a system that
in this generality is difficult to manage. Nevertheless, we can see some general properties:

• Quantum corrections arise from back-reaction of fluctuations and higher moments
(loop corrections in the language of quantum field theory) unless the system is har-
monic with U(q) = 0 (or “free”).

• State properties such as fluctuations are computed if we solve our equations, starting
from initial conditions (the interacting vacuum). There is no need to assume prop-
erties of dynamical semiclassical states, which in other schemes are often based on
ad-hoc choices such as Gaussians as the simplest peaked states.

• The procedure is manageable if a free system is available as perturbative basis. The
most general form of such a system is one with a linear dynamical algebra [Ĵi, Ĵj] =∑

k Cij
kĴk for a complete set of basic operators Ĵi that includes the Hamiltonian Ĥ .

With canonical basic variables, Ĥ must be quadratic for this condition to be realized.
More general, non-canonical examples are known in quantum cosmology [14].

Truncated to finite semiclassical order, the equations for expectation values and mo-
ments are amenable to detailed numerical analysis; see Figs. 3–7 for examples. In many
cases they can also be solved analytically, at least if additional approximations are used to
decouple equations. An interesting expansion is obtained when the semiclassical approxi-
mation is combined with an adiabatic one for the moments, in which case one implements
a derivative expansion.

We perform the adiabatic approximation by introducing a new (unphysical) parameter
λ, rescaling d/dt to λd/dt in moment equations (13) and expanding Ga,n =

∑
eG

a,n
e λe [11].
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Figure 3: Position and momentum expectation values for the system shown in Fig. 2.
Quantum back-reaction is captured to leading order in a semiclassical expansion as shown
by the dashed curve [9]. Unlike the classical orbit (dotted), the effective one follows the
quantum corrections seen in the expectation value of the state starting semiclassically as in
Fig. 2. (Initial values for the effective orbit are chosen so that they agree with expectation
values and moments of the initial Gaussian profile of the semiclassical wave function.)
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Figure 4: The uncertainty product 4h̄−2
(
(∆q)2(∆p)2 − C2

qp

)
, bounded from below by one

according to (4), increases, showing that the state used in Figs. 2 and 3 evolves away from
semiclassicality [9].

8



1.0 2.0 3.0 4.0
t

-0.01

0.01
0.02
0.03
0.04
0.05

IDqM2
rel

1.0 2.0 3.0 4.0
t

-0.01

0.01
0.02
0.03
0.04
0.05

IDpM2
rel

1.0 2.0 3.0 4.0
t

-0.01

0.01
0.02
0.03
0.04
0.05

DIqpM
rel

Figure 5: Relative second-order moments ∆(qapb)rel = ∆(qapb)/〈q̂〉a〈p̂〉b of the state shown
in Figs. 2 and 3, computed by effective equations (dashed) and from an evolving wave
function (solid). When moments grow too large, surpassing the threshold indicated by the
horizontal line, the semiclassical approximation to the order used breaks down [9].
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Figure 6: Long-term plot of the relative skewness ∆(q3)rel = ∆(q3)/〈q̂〉3 for a wave function
shown in Fig. 2. The state rapidly evolves away from a Gaussian, which would have
zero skewness. Even though small values may again be attained later, the full state,
characterized by infinitely many moments, may be far from being Gaussian [9].
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Figure 7: Moments up to order 10, even at left and odd at right, for a cosmological
model with a positive cosmological constant [13]. (Moments are rescaled by powers of h̄
depending on their order.) The state remains semiclassical for some time, as indicated
by the hierarchy shown by the moments of different orders. However, although the initial
state is Gaussian, with vanishing odd-order moments, the evolving state has a different,
more complicated shape as shown by the non-zero odd-order moments on the right. Still,
a dynamical hierarchy of the moments builds up as the non-Gaussian state is evolved.

We then solve equations order by order in λ, thereby implementing the assumption of slow
motion of the moments. In the end, after the system has been solved, we set λ = 1 as
required to recover the original equations. There is no guarantee that λ = 1 lies within the
radius of convergence of the expansion. Nevertheless, this form of the adiabatic expansion
provides a systematic way to arrive at a derivative expansion: higher orders in λ introduce
higher time derivatives [15].

To first order in h̄ and zeroth in λ we already obtain interesting corrections. From (13),
we then have the equation

0 = ω

(
(n− a)Ga+1,n

0 − a

(
1 +

U ′′(〈q̂〉)
mω2

)
Ga−1,n

0

)

for moments, which is algebraic instead of differential and has the general solution

Ga,n
0 =

(
n/2

a/2

)(
n

a

)−1(
1 +

U ′′(〈q̂〉)
mω2

)a/2

G0,n
0 (13)

for even a and n. To this order, G0,n
0 remains free.

To first order in λ, we must solve

(n− a)Ga+1,n
1 − a

(
1 +

U ′′(〈q̂〉)
mω2

)
Ga−1,n

1 =
1

ω
Ġa,n

0
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for Ga,n
1 , but the equation also implies

∑

a even

(
n/2

a/2

)(
1 +

U ′′(〈q̂〉)
mω2

)(n−a)/2

Ġa,n
0 = 0

as a condition on moments (13) of zeroth order in λ. They must then be of the form
G0,n

0 = Cn(1 + U ′′(〈q̂〉)/mω2)−n/4 with constants Cn. At this stage, all equations relevant
to this order have been implemented. The remaining freedom, the Cn, parameterize the
choice of specific states used. We have solved equations of motion (13) for moments,
corresponding to an evolving state starting with some initial wave function. The initial
state so far has not been restricted, and therefore there must be free parameters left in
our solutions of moments, exactly the constants Cn. In the anharmonic case, we may
fix the constants by stating that the harmonic limit, U(q) = 0, should bring us to the
known moments of some state of the harmonic oscillator, such as the ground state with
Cn = 2−nn!/(n/2)!. Using these values and inserting all solutions in our equations of
motion for expectation values, we obtain the zeroth adiabatic-order correction [11]

ṗ = −mω2q − U ′(q)− h̄

2mω
U ′′′(q)G0,2 + · · ·

= −mω2q − U ′(q)− h̄

4mω

U ′′′(q)√
1 + U ′′(q)/mω2

+ · · · . (14)

For comparison, we also mention the second adiabatic order whose derivation is more
lengthy [11]. As a second-order equation of motion, the canonical effective description

(
m+

h̄U ′′′(q)2

32m2ω5 (1 + U ′′(q)/mω2)5/2

)
q̈

+
h̄q̇2 (4mω2U ′′′(q)U ′′′′(q) (1 + U ′′(q)/mω2)− 5U ′′′(q)3)

128m3ω7 (1 + U ′′(q)/mω2)7/2

+mω2q + U ′(q) +
h̄U ′′′(q)

4mω (1 + U ′′(q)/mω2)1/2
= 0 .

agress with results from the low-energy effective action [16]

Γeff [q(t)] =

∫
dt

(
1

2

(
m+

h̄U ′′′(q)2

32m2ω5 (1 + U ′′(q)/mω2)5/2

)
q̇2

−1

2
mω2q2 − U(q)− h̄ω

2

(
1 +

U ′′(q)

mω2

)1/2
)
.

To higher orders in the adiabatic approximation, higher-derivative corrections appear as
well [15].
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2.3 Constrained systems

With the methods described thus far, quantum corrections to canonical Hamiltonian dy-
namics can be computed systematically, showing all instances of state dependence. This
approach is therefore useful for quantum gravity and cosmology. But gravity is a gauge
theory and therefore requires the implementation of constraints to remove spurious degrees
of freedom. A the same time, constraints generate gauge transformations corresponding,
in this case, to coordinate changes.

When quantized, following Dirac, classical constraints C(q, p) = 0 on phase space are
turned into operator equations C(q̂, p̂)|ψ〉 = 0 for physical states. Alternatively, one may
try to solve the classical constraints and quantize the reduced phase space. Unfortunately,
the resulting phase spaces are often so complicated that known quantization techniques
cannot handle them. Moreover, important off-shell effects in quantum physics may be
overlooked: constraints arise as part of the system of equations of motion, which should
not be solved before quantum corrections have been implemented. Quantization in general
modifies the solution space.

Effective descriptions of constrained systems start with a construction similar to ef-
fective Hamiltonian dynamics: We have a quantum constraint 0 = CQ = 〈Ĉ〉〈·〉,G·,· =

Cclass(q, p) + · · · , expanded by moments, for every constraint operator Ĉ. However, this
set of equations is not enough. A single constraint in a first-class system on quantum
phase space removes only two parameters such as two expectation values, but not the cor-
responding moments. Just as a classical pair of degrees of freedom becomes a whole tower
of infinitely many quantum degrees of freedom, we must have infinitely many constraints
to constrain them all. They can be obtained from the general expression [17, 18]

0 = Cf(q,p) := 〈f(q̂, p̂)Ĉ〉〈·〉,G·,· (15)

with arbitrary phase-space functions f(q, p). Practically, polynomials f(q, p) suffice. To a
given order in the moments, only finitely many Cf then have to be considered.

Even at the effective level, quantum constraints and their solutions are sensitive to issues
normally dealt with as subtleties of Hilbert-space constructions. After all, when we solve
the quantum constraint equations, we determine dynamical properties of expectation values
and moments in physical states. These variables are subject to requirements of unitarity,
which often is not automatic but must be implemented carefully. Effective constraints
make these procedures more manageable and systematic, compared to constructions of
physical Hilbert spaces for which only a few general construction ideas but hardly any
specific means exist. (Most examples use deparameterization without providing a way to
test for independence of the choice of time.) We summarize some of the salient features:

• The system of constraints, if there are more than one, is consistent and first class,
provided the ordering 〈f(q̂, p̂)Ĉ〉 is chosen. (All constraint equations are then left
invariant under the flow generated by other constraints, when the constraints hold.)
This ordering is not symmetric.

12



• As a consequence, the quantum constraint equations are not guaranteed to be real,
and neither are their solutions. Indeed, we do not require reality of kinematical
moments Ga,b before the constraints are solved. Instead, we impose reality only after
solving the quantum constraints to ensure physical normalization of states. The
transition from complex-valued kinematical moments to real-valued physical ones,
solving the constraints, corresponds to the transition from the kinematical Hilbert
space ignoring the constraints to the physical Hilbert space free of gauge degrees of
freedom. In this transition, the inner product, and therefore physical normalization,
usually changes, especially when zero is contained in the continuous part of the
spectrum of (some of) the constraints.

• Different gauge fixings of the system of quantum constraints are related to different
kinematical Hilbert-space structures. Again, the effective level provides more man-
ageable techniques to describe different choices, with gauge transformations within
one quantum phase space instead of unitary transformations between different Hilbert
spaces. Such gauge transformations have, for instance, been made use of to help solve
the problem of time in quantum gravity at least in semiclassical regimes [19, 20, 21].
These examples are the only ones in which it was possible to show that physical
results in the quantum theory do not depend on one’s choice of time.

Linear constraints provide the simplest examples, and even show, in spite of their
poor physical content, some interesting insights [17]. Let us look at Ĉ = p̂, implying the
quantum constraint CQ = 〈p̂〉 = 0. The momentum expectation value is constrained to
vanish, while 〈q̂〉 is pure gauge. For second-order moments, Cp − C2

Q = Gpp = (∆p)2 = 0
constrains the momentum fluctuation, and Cq = 〈q̂p̂〉 = 0 the covariance. The position
fluctuation is pure gauge. To this order, therefore, all variables — expectation values and
moments — are eliminated, a pattern that extends to all orders.

Another consequence is that the constraint Cq = 〈q̂p̂〉 = 0 implies a complex-valued
kinematical covariance

Gqp =
1

2
〈q̂p̂+ p̂q̂〉 − 〈q̂〉〈p̂〉 = −1

2
ih̄ . (16)

With this solution, the uncertainty relation (4) is respected (and saturated) even though
one of the fluctuations vanishes. In this way, the complex-valuedness of kinematical mo-
ments leads to overall consistency. In the present example, no degree of freedom is left
after all constraints have been solved, and no reality conditions need be imposed. If there
are additional, unconstrained degrees of freedom, they can be restricted to be real, as
observables corresponding to expectation values and moments computed in the physical
Hilbert space.

3 Application to canonical quantum gravity

The techniques of the previous section provide the basis for an effective theory of loop
quantum gravity or, more generally, canonical quantum gravity. In theories of gravity, we
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have several non-linear constraints with a complicated algebra. Moreover, the constraints
include the dynamics by a Hamiltonian constraint and are therefore the most important
part of those theories. Unfortunately, no fully consistent quantization is known. Effective
techniques again come in handy because they allow more manageable calculations per-
turbative in h̄ (or other expansions). This is sufficient for the derivation of potentially
observable phenomena. Moreover, by analyzing quantum corrections to the constraints
and their algebra (which classically exhibits the gauge structure of coordinate transforma-
tions) one can shed light on modified space-time structures and even address fundamental
questions.

In the context of quantum gravity, the role of higher time derivatives, alluded to be-
fore, becomes important. To recall, at adiabatic orders higher than second, solutions for
moments depend on higher time derivatives of 〈q̂〉. Higher-derivative effective actions then
result. Such terms are exactly what we expect in quantum gravity and cosmology, where
higher derivatives are part of higher-curvature terms. Non-effective calculations directly in
Hilbert spaces, on the other hand, have difficulties making a connection with higher time
derivatives.

Even in an effective setting, the correspondence is not entirely obvious, an issue that
once again is related to the question of general covariance. Effective equations depend on
the quantum state used, via initial values for moment equations dG·,·/dt = · · · . There is
no gravitational Hamiltonian bounded from below, and therefore no obvious ground state
one might choose for an effective description as in the example of anharmonic oscillators.
And even if there were a ground state, it is not clear at all if it would be a good choice.
From the point of view of non-perturbative quantum gravity, space-time in observationally
accessible regimes is in a highly excited state with huge expectation values of geometrical
operators such as the volume.

If a state |0〉 used to compute expectation values for an effective description is Poincaré
invariant (such as the Minkowski vacuum) and the quantization in one’s approach to quan-
tum gravity is covariant, effective constraints 〈0|Ĉ|0〉 (or the effective action) are covari-
ant. However, we may not have a Poincaré invariant state in quantum gravity; certainly a
Minkowski vacuum as used in perturbative approaches would not be fundamental. In such
a situation, Poincaré transformations would not be realized within one effective theory,
even if the underlying quantum-gravity theory is covariant. One would still be able to deal
with effective equations and obtain covariant results, somewhat analogous to background-
field methods. But more care would be required. Moreover, the usual arguments for
effective gravitational actions with nothing but higher-curvature terms no longer hold: the
setting is more general, allowing for different quantum corrections, potentially stronger
than higher-curvature ones.

3.1 Space-time

To arrive at classifications of modified space-time structures, as they could result from
non-invariant quantum states, a geometrical representation of space-time transformations
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Figure 8: Space-time diagram with spatial slices related by a Lorentz boost. The result
may be interpreted geometrically as a linear deformation of spatial slices by a function
N(x) along the normals. (Normals are drawn with right angles according to Minkowski
geometry, looking non-perpendicular as drawn on a plane.)

is useful. We begin with a Lorentz boost of velocity v,

x′ =
x− vt√
1− v2/c2

, ct′ =
ct− vx/c√
1− v2/c2

which implies a transformation of spatial slices ct = const to ct′ = const in space-time.
As shown in Fig. 8, we may interpret this transformation, as well as all other Poincaré
transformations, as a linear deformation of the spatial slice, by distances

N(x) = c∆t+ (v/c) · x , w(x) = ∆x+R · x

along the normal and within the slice, respectively. Also commutator relations can be
recovered geometrically by performing linear deformations in different orderings; see Fig. 9.
Similar geometrical relations are obtained for all generators Pµ and Mµν of the Poincaré
algebra

[Pµ, Pν ] = 0 , [Mµν , Pρ] = ηµρPν − ηνρPµ (17)

[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ (18)

General relativity allows arbitrary coordinate changes, and thus non-linear deformations
of spatial slices. Again we obtain an algebra by performing deformations in different
orderings, as shown in Fig. 10 for two normal deformations. We obtain the hypersurface-
deformation algebra with infinitely many generators D[Na] (tangential deformations along
Na(x), the spatial shift vector fields) and H [N ] (normal deformations by N(x), the lapse
functions):

[D[Na], D[Ma]] = D[LMaNa] (19)

[H [N ], D[Ma]] = H [LMaN ] (20)

[H [N1], H [N2]] = D[qab(N1∂bN2 −N2∂bN1)] (21)

with the induced metric qab on any spatial slice (and Lie derivatives in commutators in-
volving spatial deformations).
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t∆c

v/c

Figure 9: Normal deformations by N1(x) = vx/c (Lorentz boost) and N2(x) = c∆t− vx/c
(reverse Lorentz boost and waiting ∆t), performed in the two possible orderings (top
and bottom). Geometry in the triangle shown implies that the two orderings lead to the
same final slice, but with points displaced according to ∆x = v∆t, in agreement with the
commutator of a boost and a time translation.

N1

w

N2

N2

N1

Figure 10: General relativity allows arbitrary coordinate transformations, geometrically
implemented by non-linear deformations of spatial slices. Two normal deformations com-
mute up to a spatial diffeomorphism by a vector field ~w according to (21).

The hypersurface-deformation algebra is a natural extension of the Poincaré algebra,
which latter can be recovered by inserting linear functions N = P0 + xaM̃a0 and Na =
Pa+x

bM̃ba for lapse and shift, with coordinates xa referring to Minkowski space-time or at
least a local Minkowski patch. In addition to being infinite-dimensional, the hypersurface-
deformation algebra is much more unwieldy than the Poincaré algebra. Both algebras
depend on a metric, the Minkowski metric ηµν in (17) and (18), and the spatial metric qab
in (21). However, while components of the Minkowski metric are just constants, the spatial
metric in the case of general relativity depends on the position in space. Its appearance in
(21) means that the algebra has not the usual structure constants, but structure functions
depending on an external coordinate which itself is not part of the algebra. (Strictly
speaking, the hypersurface-deformation algebra is not a Lie algebra but a Lie algebroid,
in rough terms a fiber bundle with a Lie-algebra structure on its sections; see e.g. [22].)
This feature of the hypersurface-deformation algebra is responsible for many problems
associated with quantum gravity.
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3.2 Generally covariant gauge theory

A generally covariant theory independent of the choice of coordinates on space-time must
be invariant under the hypersurface-deformation algebra, as a more general, local version of
the Poincaré algebra. Since the induced metric qab changes under deformations of a spatial
slice and appears in structure functions, it is natural to take it as one of the canonical fields,
together with a momentum pab. On the resulting phase space, a gauge theory is invariant
under hypersurface deformations if there are constraints D[Na] = 0 and H [N ] = 0 such
that

{D[Na], D[Ma]} = D[LMaNa] (22)

{H [N ], D[Ma]} = H [LMaN ] (23)

{H [N1], H [N2]} = D[qab(N1∂bN2 −N2∂bN1)] (24)

is realized as an algebra under Poisson brackets.
Any such theory is a generally covariant canonical theory of gravity [23]. Space-time

coordinate changes of phase-space functions along vector fields ξµ = (ξ0, ξa) are realized
by the Hamiltonian flow

Lξf(q, p) = {f(q, p), H [Nξ0] +D[ξa +Naξ0]} . (25)

(The additional coefficients of N and Na result from a different identification of directions
in space-time and canonical formulations, the former referring to coordinate directions, the
latter to directions tangential or normal to spatial slices; see [24, 8].)

Local invariance under hypersurface deformations is then equivalent to general co-
variance, and an invariant theory in which hypersurface deformations are consistently
implemented as gauge transformations is the canonical analog of a space-time scalar ac-
tion. Moreover, the symmetry is so strong that it determines much of the dynamics:
Hypersurface-deformation covariant second-order equations of motion for qab equal Ein-
stein’s equation [25, 26]. All classical gravity actions, including higher-curvature ones,
have the same gauge-algebra (unless they break covariance).

These important results leave only a few options for quantum corrections. First, one
may decide to break covariance. Since covariance is implemented by gauge transformations,
the theory is anomalous if the gauge is broken. Inconsistent dynamics results: the con-
straints D[Na] = 0 and H [N ] = 0 are not preserved by evolution equations. Inconsistency
can formally be avoided by fixing the gauge or frame before quantization, but this way out
does not produce reliable cosmological perturbation equations (see the explicit example in
[27]): Different choices of gauge fixing within the same theory lead to different physical
results after quantization. If the gauge is broken, the resulting quantum “corrected” theory
is not consistent (unless there is a classically distinguished frame). Breaking the gauge is
widely recognized as a bad act to be avoided, but still it often enters implicitly even in
well-meaning approaches, most often when deparameterization is used in quantum gravity.

The second option of quantum corrections is realized by approaches that preserve the
hypersurface-deformation algebra but allow equations of motion to be of higher than second
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order, circumventing Hojman–Kuchar̂–Teitelboim uniqueness of [25, 26]. We arrive at
higher-curvature effective actions. Possible quantum corrections in cosmology are then
tiny, given by ratios of the quantum-gravity to the Hubble scale, or ρ/ρP with the immense
Planck density ρP.

As the third option, we may allow for non-trivial consistent deformations of the hypersurface-
deformation algebra (and by implication the Poincaré algebra). Full consistency is then
realized because no gauge generator disappears; only their algebraic relations change. Phys-
ically, we would obtain quantum corrections in the space-time structure, not just in the
dynamics, and potentially new, not extremely suppressed corrections may result. This
option is not often considered, but it is realized in loop quantum gravity, where

{H(β)[N1], H(β)[N2]} = D[βqab(N1∂bN2 −N2∂bN1)] (26)

with a phase-space function β implementing quantum corrections [28].
Loop quantum gravity implies consistent deformations of the hypersurface-deformation

algebra. No gauge transformations are broken, preserving consistency. As a consequence
of the deformation, geometrical notions may become non-standard. For instance, there is
no effective line element with a standard manifold because coordinate differentials in

ds2eff = g̃abdx
adxb (27)

do not transform by deformed gauge transformations {·, H(β)[Nξ
0] + D[ξa + Naξ0]} that

change the quantum-corrected spatial metric q̃ab, usually completed canonically to a space-
time line element −N2dt2 + q̃ab(dx

a + Nadt)(dxb + N bdt). Instead, one could try to use
non-commutative [29] or fractional calculus [30] to modify transformations of dxa, making
ds2eff invariant, but no such version has been found yet. Instead, once a consistent algebra
is known, one can evaluate the theory using observables according to the deformed gauge
algebra, for instance in cosmology [31, 32, 33, 34] or for black-hole space-times [35, 36,
37]. At this stage, after quantization, one may use gauge fixing of the deformed gauge
transformations or deparameterization because the consistency of the gauge system with
all its quantum corrections has been ensured.

3.3 Loop quantum gravity

To see how deformed constraint algebras and space-time structures arise in loop quantum
gravity, we should have a closer look at its technical details. The basic canonical variables in
this approach are the densitized triad Ea

i such that Ea
i E

b
i = det(qcd)q

ab, and the Ashtekar–
Barbero connection Ai

a = Γi
a + γKi

a with the spin connection Γi
a, extrinsic curvature Ki

a

and the Barbero–Immirzi parameter γ [38, 39]. The canonical structure is determined by

{Ai
a(x), E

b
j (y)} = 8πγGδbaδ

i
jδ(x, y) .

In preparation for quantization, one smears the basic fields by integrating them to
holonomies and fluxes,

he(A) = P exp(∫
e
Ai

aτiė
adλ) , FS(E) =

∫

S

naE
a
i τ

id2y . (28)
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The Poisson brackets of Ai
a and Ea

i imply a closed and linear holonomy-flux algebra for
he(A) and FS(E), which is quantized by representing it on a Hilbert space. As a result, the
Hilbert space is spanned by graph states ψe1,...,en(A) = f(he1(A), . . . , hen(A)) with curves
ei in space, which are eigenstates of flux operators:

F̂Sψe1,...,en ∼ ℓ2PInt(S, e1, . . . , en)ψe1,...,en . (29)

Holonomies he act as multiplication operators, creating spatial geometry in two ways: (i) we
may use operators for the same loop e several times, raising the excitation level per curve, or
(ii) use different loops to generate a mesh which, when fine enough, can resemble ordinary
continuum space. Strong excitations are necessary for such a macroscopic geometry: loop
quantum gravity must deal with “many-particle” states.

Properties of the basic algebra of operators illustrate the discreteness of spatial quantum
geometry, and imply characteristic effects in composite ones, such as the Hamiltonian
constraint relevant for the dynamics. Classically, the constraints are polynomial in Ai

a. The
quantized holonomy-flux algebra provides operators ĥe, but none for “Âi

a.” This feature
requires regularizations or modifications of the classical theory by adding powers of Ai

a,
completing the classical expression to a series of an expanded exponential. Although there
is a formal resemblance, these higher orders are not identical to higher-curvature terms:
they lack higher time derivatives. As a second effect implied by flux operators F̂S with
their discrete spectra, the theory has a state-dependent quantum-gravity scale given by flux
eigenvalues (which one may view as elementary areas). Depending on the state, this scale
may differ from the Planck scale if quantum geometry is excited. Dealing with a discrete
version of quantum geometry, one must be careful with potential violations of Poincaré
symmetries [40]. The unbroken, deformed nature of quantum space-time symmetries (26)
here provides consistency.

These general statements show that we should expect three types of corrections in
loop quantum gravity, irrespective of the detailed form of the theory. First, as in all
interacting theories, we have quantum back-reaction. In gravitational theories, this is
the key ingredient that provides higher-derivative terms for curvature corrections [41, 42].
(For a related calculation in quantum cosmology, see [43].) The quantum structure of
space then implies additional corrections, not so much from the specific dynamics but
from the underlying quantum geometry. We have holonomy corrections, another form of
higher-order corrections with different powers of the connection. In cosmological regimes,
these corrections are sensitive to the energy density, just like higher-curvature corrections
but in a different form. (Therefore, these corrections should not play much of a role
for potential observations.) Finally, there are inverse-triad corrections that result from
quantizing inverse triads using the identity [44, 45]

{
Ai

a,

∫ √
| detE|d3x

}
= 2πγGǫijkǫabc

Eb
jE

c
k√

| detE|
. (30)

The right-hand side is needed for the Hamiltonian constraint of gravity, but flux operators
are not invertible: they have discrete spectra containing zero. The left-hand side, on
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the other hand, does not require an inverse triad, and can be quantized using holonomy
and volume operators, and turning the Poisson bracket into a commutator divided by ih̄.
While the equation is a classical identity, quantizing the left-hand side does not agree with
inserting triad (or flux) eigenvalues in the right-hand side: the third source of quantum
corrections [46].

3.3.1 Holonomy corrections: Signature change

Holonomy corrections can easily be illustrated in isotropic models. With this symmetry,
connection variables are Ai

a = cδia and Eb
j = pδbj with c = γȧ and |p| = a2 depending only

on time. The Friedmann equation then reads

− c2

γ2|p| +
8πG

3
ρ = 0 . (31)

The use of holonomies in the quantum representation implies that there is no operator
for c or c2, but only one for any linear combination of exp(iµc) with real µ. To represent
the Hamiltonian constraint underlying the Friedmann equation, one therefore chooses a
modification such as

c2

|p| 7→
sin(ℓc/

√
|p|)2

ℓ2
∼ c2

|p|

(
1− 1

3
ℓ2
c2

|p| + · · ·
)

(32)

in terms of periodic functions, with some parameter ℓ related to the precise quantization
of the constraint. If ℓ ∼ ℓP is Planckian, as often assumed, holonomy corrections are of
the tiny order ℓ2Pc

2/|p| ∼ ρ/ρP upon using the Friedmann equation.
In isolation, holonomy corrections imply a “bounce” of isotropic cosmological models,

the main reason for interest in them. Writing the constraint as a modified Friedmann
equation,

sin(ℓc/
√
|p|)2

γ2ℓ2
=

8πG

3
ρ (33)

with a bounded left-hand side leads to an upper bound on the energy density. Unlike
classically, the density cannot grow beyond all bounds. At this stage, however, the upper
bound is introduced by hand, modifying the classical dynamics (see also [47, 48]). Although
the modification is motivated by quantum geometry via properties of holonomy operators, a
robust implementation of singularity resolution in this effective picture requires a consistent
implementation of quantum back-reaction and perturbative inhomogeneity. Only if this
complicated task can be completed can one claim that a reliable quantum effect is realized,
one that holds in the presence of quantum interactions and takes into account correct
quantum space-time structures. In loop quantum cosmology [49, 50], this effective picture
has not yet been made robust, but there are more general no-singularity statements based
on properties of dynamical states [51, 52] and effective actions for them [53]. As we will see
below, the traditional bounce picture must be modified considerably when inhomogeneity
is taken into account.
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Quantum back-reaction has been analyzed in bounce models by general effective expan-
sions [54, 55, 56] and numerically [57]. While the equations remain complicated and not
much is known about solutions, it is clear that density bounds hold at least for matter dom-
inated by its kinetic energy term. The reason is that a free, massless scalar, whose energy
is purely kinetic, provides a harmonic model in which basic operators and the Hamiltonian
form a closed linear algebra (in a suitable factor ordering) [14]. No quantum back-reaction
then exists, and the model can be solved exactly. For kinetic-dominated matter, one can
use perturbation theory to show that bounds and bounces are still realized, but without
kinetic domination, for instance if there is a slow-roll phase at high density, the presence
of bounces remains questionable.

One should also note that even the presence of a bounce of expectation values does
not guarantee that evolution is fully deterministic. Especially in harmonic cosmology, the
evolution of fluctuations and some higher moments is so sensitive to initial values that it is
practically impossible to recover the complete pre-bounce state from potentially observable
information afterwards [58, 59]. (Claims to the contrary are based on restricted classes of
states.) This form of cosmic forgetfulness indicates that the bounce regime does have
unexpected features of strong quantum effects, even when it is realized in a harmonic
model free of quantum back-reaction.

Quantum space-time structure in the presence of holonomy corrections implies addi-
tional caveats, and finally removes deterministic trans-bounce evolution. Quantum space-
time structure follows from the hypersurface-deformation algebra realized with holonomy
corrections in the presence of (at least) perturbative inhomogeneity. No complete version
is known, and it is not even clear if holonomy corrections can be fully consistent. But
some examples exist, in spherically symmetric models [60, 61], in 2+1-dimensional models
[62] (with operator rather than effective calculations) and for cosmological perturbations
ignoring higher-order terms in a derivative expansion of holonomies [33]. In these cases,
the hypersurface-deformation algebra is not destroyed, implying consistency, but deformed:
Instead of (21) we have (26).

In cosmological settings, the correction function for holonomies has the form β(c) =
cos(2ℓc/

√
|p|) [33]. Assuming maximum density in (33) implies that β = −1 is negative.

(In the linear limit of Fig. 9, we have the counter-intuitive relation ∆x = −v∆t for motion.)
This sign change in the hypersurface-deformation algebra implies that the space-time sig-
nature turns Euclidean [63, 64] (to see this, one may draw Fig. 9 with Euclidean right
angles for the normals), and indeed evolution equations are elliptic rather than hyperbolic
partial differential equations [33]. (This is a concrete realization of the suggestions in [65],
but by a different mechanism. It is also reminiscent of the no-boundary proposal [66].)
There is no evolution through a “bounce”, but rather a signature-change scenario of early-
universe cosmology. We obtain a non-singular beginning of Lorentzian expansion when β
moves through zero depending on the energy density, a natural place to pose initial values
for instance for an inflaton state.

However, with uncertainties in quantum back-reaction and the precise form of holonomy
corrections, the deep quantum regime remains poorly controlled. There is a significant
amount of quantization ambiguities, and it remains unclear if holonomy corrections can be
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fully consistent. Higher-curvature and holonomy corrections are both relevant at Planckian
density, when ρ ∼ ρP, but they remain incompletely known. Good perturbative behavior
is realized at observationally accessible densities far below the Planck density, but the
corrections are then so tiny that quantum gravity cannot be tested and falsified based on
them. Holonomy corrections, therefore, are not relevant for potential observations.

3.3.2 Inverse-triad corrections: Falsifiability

Fortunately, loop quantum gravity offers a third option, inverse-triad corrections, by which
it becomes falsifiable. To illustrate their derivation, we assume a lattice state with U(1)-
holonomies ĥe and fluxes F̂e. (Normally, fluxes are associated with surfaces. But on a
regular lattice we can uniquely assign plaquettes to edges, so that an edge label for fluxes
is sufficient.) With one ambiguity parameter 0 < r < 1, we then use Poisson-bracket
identities such as (30) to quantize an inverse flux as

̂(|F |r−1sgnF )e =
ĥ†e|F̂e|rĥe − ĥe|F̂e|rĥ†e

8πGrγℓ2P
=: Îe . (34)

The relations [ĥe, F̂e] = −4πγℓ2Pĥe and ĥeĥ
†
e = 1, such that

ĥ†e|F̂e|rĥe = |F̂e + 4πγℓ2P|r , ĥe|F̂e|rĥ†e = |F̂e − 4πγℓ2P|r ,

allow us to compute the expectation value [67]

〈Îe〉 =
|〈F̂e〉+ 4πγℓ2P|r − |〈F̂e〉 − 4πγℓ2P|r

8πGrγℓ2P
+moment terms (35)

where we have already indicated a moment expansion as in effective equations.
We quantify these corrections, depending on a quantum-gravity scale 〈F̂ 〉 =: L2 related

to flux expectation values, by a correction function

α(L) :=
〈Î〉
Iclass

=
|L2 + 4πγℓ2P|r − |L2 − 4πγℓ2P|r

8πγrℓ2P
L2(1−r) (36)

whose r-dependent form is shown in Fig. 11.
There are characteristic properties in spite of quantization ambiguities such as the one

parameterized by r [69, 70]. For instance, for large fluxes, the classical value α = 1 is always
approached from above. Inverse-triad corrections are large if the discreteness scale L is
nearly Planckian, and small for larger vaues. The somewhat counter-intuitive feature that
inverse-triad corrections are large for small discreteness scale L can be understood from
the fact that the corresponding operators eliminate classical divergences at degenerate Ea

i ,
near L = 0 [46]. In this regime, for small fluxes, the corrections must therefore be strong.
The behavior then has a welcome consequence: Two-sided bounds on quantum corrections.
Inverse-triad corrections are large for small L, and other discretization effects for instance
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Figure 11: Inverse-triad correction function, depending on the ratio µ = L2/(8πγℓ2P) of the
discreteness scale L and the Planck length. The parameter r labels a form of quantization
ambiguity, but does not change characteristic features [68].

in the gradient terms of matter Hamiltonians are large for large L. There is not just an
upper bound, which one could always evade by tuning parameters. The theory becomes
falsifiable. A theoretical estimate based on the relation to discretization and holonomy
effects shows that δ = α− 1 > 10−8 [32].

A less welcome consequence of the dependence on L (the state-dependent lattice spac-
ing) is that the size of corrections cannot easily be estimated. But keeping L as a parameter
of the theory, its two-sided bounds still allow the effects to be tested. Such a state depen-
dence is to be expected because effective equations depend on the state, for which there is
no natural choice, such as a vacuum, in quantum gravity. Also holonomy corrections are
subject to this ambiguity, even though it is often claimed that they are completely deter-
mined by the energy density, a classical parameter. However, this is the case only if the
parameter ℓ in holonomy modifications (33) is fixed, for instance by the popular but ad-hoc
choice ℓ ∼ ℓP, making holonomy corrections tiny and irrelevant for potential observations.
Since holonomy corrections and inverse-triad corrections enter one and the same operator,
the Hamiltonian constraint, and must refer to the same state, there is only the parameter
L that determines their size. Holonomy corrections therefore are not uniquely fixed, and if
one were to declare that L = ℓP, inverse-triad corrections would be large and the theory be
ruled out. The freedom of parameters cannot be avoided based on theoretical arguments
alone.

As with holonomy corrections, the question of anomaly freedom and quantum space-
time structure must be addressed before corrections and their effects can be taken seriously.
Inverse-triad corrections are in a better position than holonomy corrections, with a more-
complete status of consistent deformations. The Hamiltonian constraint is modified by
the correction function α from (36) multiplying each term that contains the inverse triad
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classically:

H(α)[N ] =
1

16πγG

∫

Σ

d3xNα

(
ǫijkF

i
ab

Ea
jE

b
k√

| detE|
+HL

)

+H
(α)
matter[N ] + “counterterms” (37)

where F i
ab is the curvature of the Ashtekar–Barbero connection, HL is an extra piece

depending on extrinsic curvature, and “counterterms” are determined by the condition of
anomaly freedom [28]. Together with the uncorrected diffeomorphism constraint D[Na] =∫
Σ
d3xDaN

a =
∫
Σ
d3xF i

abE
b
iN

a, the algebra then reads

{D[Na], D[Ma]} = D[LMaNa] (38)

{H(α)[N ], D[Ma]} = H(α)[LMaN ] (39)

{H(α)[N ], H(α)[M ]} = D[α2qab(N∂bM −M∂bN)] (40)

(assuming constraints second order in inhomogeneity and δ = α − 1 small). The same
algebra has been found in spherical symmetry [61, 60, 36] and in 2+1-dimensional models
using operator calculations [71]. As with holonomy corrections, the form of the deformation
appears robust and universal. In the linear limit as in Fig. 9, we have ∆x = α2v∆t and
therefore expect quantum corrections to propagation. Unlike for holonomy corrections, the
algebra is always modified by a positive factor, and signature change does not happen.

Corrections to propagation are realized more explicitly in Mukhanov-type equations for
gauge-invariant scalar and tensor perturbations [32],

− u′′ + s2∆u+ (z̃′′/z̃)u = 0 , −w′′ + α2∆w + (ã′′/ã)w = 0 (41)

with s 6= α (a known but lengthy function) and corrected z̃(a), ã(a). The propagation
speed differs from the speed of light, and yet, as seen by the consistent constraint al-
gebra, general covariance is not broken but deformed. A promising and rare feature is
the fact that different corrections are found for scalar and tensor modes: corrections to
the tensor-to-scalar ratio should be present, an interesting aspect regarding potential ob-
servations. Like the corrections themselves, effects are sensitive to the ratio 〈F̂ 〉/ℓ2P, not
directly to the density. In contrast to ρ/ρP, this parameter can be significant during in-
flation. Observational evaluations [67, 72] indeed provide an upper bound on inverse-triad
corrections, which together with the theoretical lower bound allows only a finite window
10−8 < δ = α− 1 < 10−4 open by a reasonably small number of orders of magnitude.

4 Outlook

It is not certain whether loop quantum gravity can be fundamental, and the deep quantum
regime (around the big bang) remains ambiguous and uncontrolled. Nevertheless, the
theory can be tested thanks to inverse-triad corrections, with the following properties:
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• Quantum effects are sensitive to the microscopic quantum-gravity scale in relation
to the Planck length, not to the classical energy density as expected from higher-
curvature corrections. Therefore, they can be significant in observationally accessible
regimes.

• They provide a consistent deformation of the classical hypersurface-deformation al-
gebra, and thereby a well-defined notion of quantum space-time.

• There is a viable phenomenology thanks to a small number of low-curvature param-
eters.

All this is possible in the effective view of loop quantum gravity, in which the main achieve-
ment of the theory is to provide new terms for effective actions of quantum gravity. Long-
standing conceptual issues, such as the problem of time, can partially be solved at least in
semiclassical regimes and do not preclude progress in physical evaluations of the theory.
A systematic perturbation expansion is available in which space-time structure and the
dynamics of observables are consistently treated in the same setting.
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