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Abstract

We present an introduction to the canonical quantization of gravity performed in loop
quantum gravity, based on lectures held at the 3rd quantum geometry and quantum
gravity school in Zakopane in 2011. A special feature of this introduction is the inclusion
of new proposals for coupling matter to gravity that can be used to deparametrize the
theory, thus making its dynamics more tractable. The classical and quantum aspects of
these new proposals are explained alongside the standard quantization of vacuum general
relativity in loop quantum gravity.

1 Introduction

Loop quantum gravity aims to formulate a quantum theory for Einstein’s classical theory
of general relativity. As in the case of quantum mechanics one takes a given classical
theory, in our case general relativity, as the starting point and then tries to develop the
corresponding quantum theory. However, when we aim to quantize general relativity, we
face two aspects that are particular to general relativity. At first, in contrast to the gauge
theories that have been quantized in the context of the standard model of particle physics,
in general relativity the metric itself becomes a dynamical object. For this reason we are
no longer in the situation that we can consider matter put on a fixed background geome-
try and then describe how matter evolves and interacts with each other on a given fixed
spacetime. In general relativity matter and geometry interact, and this highly non-linear
interaction is described by Einstein’s equations. Secondly, in general relativity, due to
the requirement of general covariance, spatial and temporal coordinates do not posses
any physical significance. This is also reflected in the fact that general relativity can be
understood as a gauge theory with spacetime diffeomorphisms as the gauge group. Thus,
observables in general relativity, as these are gauge invariant quantities, are usually more
difficult to construct than in other gauge theories due to the complexity of the gauge
group of spacetime diffeomorphisms. In the context of loop quantum gravity (LQG) these
two points are taking as a guiding principle for formulating the quantum theory. The first
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point mentioned above explains why a non-perturbative and thus background indepen-
dent quantization is chosen. A more detailed discussion about this motivation can be also
found in the article of Ashtekar in these proceedings. Although techniques from ordinary
lattice gauge theory are adopted for LQG, the representation we end up with is rather
different from the Fock representation used in ordinary quantum field theories and again
the role of diffeomorphisms enters crucially here. This representation allows to formulate
a quantum analogue of Einstein’s equation, also called Wheeler-deWitt equations, and we
will discuss those quantum Einstein equations and their derivation in this review. The
construction of observables and therefore the description of the physically relevant sector
of loop quantum gravity can be performed in different ways. One possibility is to extract
the gauge invariant sector of the theory at classical level and then quantize. Another is to
follow Dirac’s idea and derive the gauge invariant part of the theory at the quantum level.
Also, we can combine those ideas and only partially reduce the system at the classical
level. In these lectures we will briefly discuss how one proceeds in those cases and what
are the properties of the resulting quantum theories. One particular aspecty of our intro-
duction is the inclusion of new proposals for coupling matter to gravity that can be used
to deparametrize the theory, thus making its dynamics more tractable. We discuss the
classical and quantum aspects of these new proposals alongside the standard quantization
of vacuum general relativity in loop quantyum gravity. We hope that this parallel treat-
ment makes them more acessible and allows a clear comparison to the standard approach.

Of course we will not be able to present a complete introduction to loop quantum gravity
but the idea of the article is to provide a rather brief introduction to the techniques used
in LQG. For instance we will only focus on the canonical part of the theory in this article.
A path integral approach to LQG in the context of spin foams will be explained in an
article by Rovelli in these proceedings. We will only briefly discuss the connection this has
to the canonical approach reviewed here in section 4 on quantum dynamics. Introductions
to LQG that contain a much more detailed description can be found in Rovelli’s [1] and
Thiemann’s book [2]. A book on LQG that is particularly addressed to undergraduate
students has been published by Gambini and Pullin [3]. Furthermore, Bojowald’s book [4]
presents an introduction to LQG with a focus on applications of the theory. Other already
existing lecture notes on loop quantum gravity can for instance be found in [5, 6, 7, 8, 9].

We have structured this article into four main parts. The first part in section 2 in-
troduces the classical framework, that is needed for general relativity in oder to take it
as a starting point for loop quantum gravity. In section 3 we discuss the quantization of
general relativity and explain how the kinematics of loop quantum gravity can be formu-
lated. Afterwards we discuss the quantum dynamics in section 4 and finally summarize
and conclude in section 5.

2 Classical theory

This section deals with the classical setup for loop quantum gravity. We will start with a
derivation of the Ashtekar variables for general relativity, that are the elementary phase
space variables used in the classical theory in section 2.1. Afterwards in section 2.2 we
present a discussion on the dynamics of general relativity with a foucs on those properties
of the classical dynamics that are relevant for the quantization later on. Finally, we
present the classical formulation of two models that have been recently introduced for the
dynamics of loop quantum gravity in section 2.2.1 and 2.2.2.

2.1 Canonical connection variables

In these lectures we describe a canonical quantization of gravity. Therefore we need
to start with a canonical description of the classical theory, that is, a description in
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terms of a phase space, canonical variables, and a Hamiltonian. The canonical variables
are just coordinates in the phase space, so strictly speaking they are irrelevant in the
classical description. Their change is just a canonical transformation, and hence does
not change the physics. But in our context, we have to pay close attention to the choice
of canonical variables, as it affects the quantum description. Canonical transformations
rarely correspond to unitary maps in the quantum theory:

Canonical formulation 1 −−−−→ Quantum theory 1
ycanon. trafo

y≇

Canonical formulation 2 −−−−→ Quantum theory 2

(1)

So the canonical variables have to be chosen with care. How to do this? While any choice
will ultimately have to be justified by the results, one can be guided by other factors. In
our case, this is the following fact [10, 11, 12]:

There is a formulation of general relativity in which the phase space is is
precisely that of SU(2) Yang-Mills theory.

Before we describe this formulation, let us consider the canonical formulation of Maxwell
theory as a warm-up. The action is

S[A] = −1

4

∫

M

FµνF
µν d4x, (2)

with A the 4-potential and F its curvature. Now we chose an equal-time surface Σt relative
to some inertial observer time t. The canonical coordinates are the 4-potential Aµ and and

the conjugate momenta Pµ = δS/δȦµ. We find that the spatial momenta are given by
the electrical field, P a = −Ea. Moreover, P 0 = 0 which implies that A0 is non-dynamical
in our description. We can then rewrite the action as

S =

∫
dt

∫
d3x − EaȦa −

1

2
(E2 +B2) +A0∇ ·E. (3)

From this form, one can conclude the following:

1. Aa, E
b are the canonical coordinates.

2. (E2 +B2)/2 is the Hamiltonian of the system.

3. A0 is a Lagrange multiplier. It enforces the constraint ∇·E = 0, which is just Gauss’
law in the absence of charges.

Now we will go through the exact same steps for general relativity. To be able to do
this, one needs to start from a formulation in terms of a connection and a (co-) frame.
What is a frame? It is simply a basis eI ≡ eµI ∂µ of the tangent space at each point of
space-time. Equivalently, it can be viewed as a point-dependent map R4 → TpM . If there
is an internal metric, that is, a metric η on R4, the frame defines a space-time metric g,
by declaring the components of the frame to be orthogonal:

gµν := eµI e
ν
Jη

IJ . (4)

Vice versa, a space-time metric g defines an orthonormal frame, but only up to SO(3,1)
rotations in the internal space R4. A co-frame is the same as a frame, but with respect to
the co-tangent bundle, eI ≡ eIµdx

µ. A frame defines a co-frame, and vice versa, by sim-
ply pulling indices with the corresponding internal and external metric, or, equivalently,
inverting the matrix of components.

With that said, we can write the action of general relativity in terms of a co-frame eI

and an so(3,1) connection ω:

S[ω, e] = SP[ω, e] + SH[ω, e], (5)
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with [13]

SP[ω, e] =
1

8κ

∫
d4x ǫIJKLe

I ∧ eJ ∧ F (ω)KL (6)

SH[ω, e] = −
1

4κβ

∫
d4x eI ∧ eJ ∧ F (ω)IJ (7)

Here κ = 16πG is the coupling constant of gravity, and β is an additional parameter,
the Barbero-Immirzi parameter to be discussed below. The Palatini action SP was long
known as a viable action for general relativity. The Holst action SH[ω, e] does not change
that: The equations δS/δω are equivalent to D(ω)e = 0 [13], which can be solved for
ω ≡ ω(e). Re-inserting ω(e) into the action gives

SH[ω(e), e] = 0, SP[ω(e), e] = SEH[g(e)], (8)

where SEH is the Einstein-Hilbert action. Thus the above action principle leads to the
equations of motion of general relativity, irrespective of the value of β.1 The values
β = ±i are, however, special in the sense that the resulting canonical formulation has
special properties [10], as we will see shortly.

To go over to the Hamiltonian formulation, we first have to chose a time function
t on the space-time manifold, whose level surfaces Σt give a foliation of the space time
into spatial slices. Additionally we pick a time co-vector field tα with tα∂αt = 1, and
decompose it into tangential and normal components with respect to Σt,

tα = Nnα +Nα, (9)

where nα is the unit normal, and the shift vector Nα is tangential. Next, we partially fix
the gauge freedom in the co-frame by linking it with the normal one-form nα,

e0µ
!
= nµ. (10)

This gauge is called time gauge. Since nµ is time-like, only SO(3) remains as gauge group.
The covariant fields can now be decomposed accordingly, and adapted coordinates be
chosen. The co-frame assumes the structure

(eIµ) =




N N i

0
0 eia
0


 (11)

where we let I run horizontally, and µ vertically. The index i now runs from one to three,
and a is a tangent space index for Σt. Analogously, ω can be decomposed into SO(3)
connections Γi

a := ǫi0KLω
KL
a , Ki

a := ωi0
a and the rest, i.e., the components of ω0. The

action can now be expressed in terms of the decomposed fields, and it organizes precisely
as in the case of the electromagnetic fields [5]:

S =
1

2κβ

∫
dt

∫

Σt

Ea
i Ȧ

i
a −

(
ωi
0Gi +NaC′

a +NC′
)

︸ ︷︷ ︸
=:hcan

(12)

with
Ai

a = Γi
a + βKi

a, Ea
i =

√
det q eai , qab = eiae

j
bδij . (13)

q denotes the metric on Σt and the dot is the time derivative tα∂α. We see that A and E
are conjugate canonical variables,

{
Ai

a(x), E
b
j (y)

}
=
κ

2
βδbaδ

i
jδ(x, y). (14)

1β does acquire physical significance in the case that spinor matter is coupled to gravity, see [14] for details.
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where κ := 16πG with G being Newton’s constant. The Hamiltonian density hcan is a
sum of constraints, and the constraints

Gi = D(A)
a Ea

i , C′
a = Eb

iF
i
ab + (. . .)iaGi,

C′ =
β

2

Ea
i E

b
j

detE

[
ǫijkF

k
ab − 2(1 + β2)Ki

[aK
j
b]

]
+ (. . .)iaGi.

(15)

By subtracting multiples of Gi from G′
a and C′, we obtain a set of independent constraints

Gi, Ga, C. The constraint equations Gi = Ga = C = 0, together with the evolution
equations

{A(x), hcan} = Ȧ(x), {E(x), hcan} = Ė(x) (16)

are completely equivalent to Einsteins equations. But as it is the case for all reparametriza-
tion invariant systems, time evolution is a kind of gauge transformation. Concretely,

{Aa, G(Λ)} = −D(A)
a Λ =

d

dǫ

∣∣∣∣
ǫ=0

gǫAg
−1
ǫ + gǫdg

−1
ǫ ,

{Ea, G(Λ)} = [Λ, Ea] =
d

dǫ

∣∣∣∣
ǫ=0

gǫE
ag−1

ǫ

with gǫ = exp(ǫΛ) and G(Λ) =
∫
GiΛ

i, so G generates gauge transformations. Moreover,

{A, ~C( ~N)} = L ~NA, {E, ~C( ~N)} = L ~NE, (17)

so ~C generates spatial diffeomorphisms. Lastly C is related to LNnα , i.e., to the dif-
feomorphisms in a direction normal to Σ. The constraints form an algebra, the Dirac
algebra,

{G(Λ), G(Λ′)} = G([Λ′,Λ]) {G(Λ), ~C( ~N)} = −G(L ~NΛ) { ~C( ~N), ~C( ~N ′)} = ~C([ ~N, ~N ′]).
(18)

The Hamiltonian constraint C is gauge invariant and transforms under diffeomorphisms
in the expected way,

{C(N), G(λ)} = 0, {C(N), ~C( ~N)} = C(L ~NN). (19)

Up to here, the structure is that of an infinite dimensional Lie algebra. But the bracket
of two Hamiltonian constraints is more complicated,

{C(N), C(M)} = −κ
2β2

4
~C(~S), Sa =

EaEb

det q
(N∂bM −M∂bN). (20)

It contains a function of the phase space point on the right hand side, hence the structure
is not that of a Lie algebra anymore.

Before we finish this section, some remarks are in order:

1. We have just described a canonical formulation of Einstein gravity in D + 1 = 4
dimensions in terms of a phase spaces that is identical to that of SO(D) Yang-Mills
theory. This formalism relies on a coincidence that only happens for D = 3: An
SO(D) connection has D(D − 1)/2 components, whereas a spatial frame has D. If
they are to be canonically conjugate variables, they have to have the same number
of components, which restricts to D = 3. But this does not mean that there are no
other ways to formulate canonical GR in gauge theory variables. For example, it
has long been known that GR in D+1=3 has such a formulation in terms of SO(2,1)
connections and their conjugate momenta, see for example [15] for an introduction.
More recently it has been shown that gravity in D + 1 dimensions can indeed be
formulated in terms of SO(D + 1) Yang-Mills theory variables [16], but there are
additional constraints that have to be implemented in order to bring the number of
degrees of freedom in line with that of GR.
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2. In the following, we will go over from a formulation in terms of SO(3) to one in terms
of its covering group SU(2). This must be done in order to couple fermions to gravity,
but it does not change classical or quantum theory much. The biggest change is that
also representations with half-integer spin will be allowed in the quantum theory.

3. As remarked before, in the presence of fermions, physical predictions do become
dependent on the value of β [14]. Solving δS/δω = 0 and re-inserting into the action
gives an effective 4-fermion interaction with β-dependent strength. The effect is
however suppressed by the gravitational coupling constant, and is thus extremely
small.

4. We have seen that the constraints commute on the constraint surface G = ~C =
C = 0. This means that they form a first class system, and thus the constraints
can be imposed in the quantum theory as operator equations. This is the result of
imposing the time gauge. Without it, the situation is more complicated, but also
very interesting [17, 18, 19, 20, 21, 22, 23, 24, 25].

2.2 Dynamics in the classical theory

We saw in the last section that we need to choose the classical variables in which we
would like to formulate our classical theory with care. Whatever classical choice we make
will also have an influence on the quantum theory that we obtain. In this section we will
briefly discuss some aspects of the classical dynamics of general relativity and see that
also here one needs to think carefully how to formulate the classical dynamics because
each choice will enter crucially in the properties of the quantum dynamics that we obtain
later on and discuss in section 3.

The dynamics of classical general relativity is encoded in the canonical Hamiltonian
introduced in the last section. As we saw the Hamiltonian consists of a linear combi-
nation of constraints only and the smeared version of the constraints satisfy the Dirac
algebra shown in equations (18), (19) and (20). The constraint ~C generates spatial diffeo-
morphisms within the spatial hypersurface, the Gauss constraint generates SU(2) gauge
transformations and the Hamiltonian constraint generates diffeomorphisms orthogonal to
the hypersurfaces. Note that the latter is only true on shell, that is when the equation
of motion are satisfied. From the explicit form of the constraints as well as from the
Dirac algebra we see that the most complicated among them is the Hamiltonian con-
straint. In particular it is only the algebra of the Hamiltonian constraints that involves
structure functions instead of structure constants and thus their algebra is no true Lie
algebra anymore. As a consequence the corresponding quantum operators need to satisfy
a complicated quantum algebra in order to be implemented without anomalies. A fur-
ther complication is that in the representation used in LQG the infinitesimal operators
for the spatial diffeomorphisms cannot be implemented as operators for the reason that
their finite counterparts are not weakly continuous (see also section 3.3.3 for more details).
Hence, strictly speaking one is not even able to check whether the algebra of the quantum
Hamiltonian constraints is correctly implemented. However, in [26] an anomaly-free quan-
tization of the Hamiltonian constraint has been introduced and its anomaly freeness has
been achieved by quantizing the operator in such a way that the commutator annihilates
spatially diffeomorphism invariant states. This is what we would expect from an operator
version of ~C if it exists. In order to obtain the physical sector of the quantum theory
later on using the Dirac quantization procedure we look for solutions of the constraints
in the quantum theory. Also here the complicated algebra of the Hamiltonian constraint
operators makes our life more difficult and although general solutions to the Gauss and
diffeomorphism constraint can be constructed one has not been successful in the case of
the Hamiltonian constraint. However, this is not too surprising since otherwise we would
be able to write down the general solution of quantum gravity and this is not even possible
for classical general relativity. During the last years a couple of new proposals have been
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introduced for describing the (canonical) dynamics of LQG. Their aim is to reformulate
the dynamics in a technically different but physically equivalent way in order to extract
the physical sector out of LQG. One of the first proposals in this direction is the so called
master constraint program [27]. The idea of the master constraint is to reformulate the
dynamics of the Hamiltonian constraints in such a way that the algebra simplifies. For
this purpose one introduces at the classical level a master constraint involving the squares
of the Hamiltonian constraints

M =

∫

Σ

d3x
[C(x)]2√
det q

(21)

Classically due to the square of the HamiltonianM = 0 is equivalent to C(x) = 0 for all x ∈
Σ. The 1/

√
q has been introduced because then M is spatially diffeomorphism invariant

and thus Poisson commutes with ~C and also because then M has density weight one which
will be useful for the quantization of the master constraint. The master constraint satisfies
the trivial algebra {M,M} = 0 and this carries also over to quantum theory where the
corresponding operator is required to satisfy this trivial algebra as well. Therefore as far as
the algebra is concerned the Master constraint simplifies the situation. However, classically
as well as in the quantum theory at the end we are not only interested in solutions to the
constraints but we also would like to have so called weak Dirac observables. These are
quantities that are gauge invariant, meaning that they commute with all constraints of
the theory on the constraint surface. However, on the constraint surface for the master
constraints we have {f,M} = 0 for all phase space functions f . Therefore it seems that
using the master constraint we loose the ability to detect weak Dirac observables with
respect to the Hamiltonian constraint. However, this is not the case because instead
of using the condition that weak Dirac observables need to commute weakly with the
constraint we can also require for a weak observable O

{O, {O,M}}M=0 = 0 (22)

This condition is no longer linear in O as before and hence we get a system of non linear
partial differential equations for the observables. Formally, it seems that the price we
have to pay for a simpler constraint algebra is a more complicated equation for weak
Dirac observables. However, whether the condition in (22) is indeed harder to satisfy
needs to be checked in applications of the master constraint program. As far as the
quantum theory is concerned the master constraint program has advantages with respect
to using the Hamiltonian constraint as discussed in [27]. The master constraint program
has been tested in a variety models in a series of papers [28]. As introduced in [27] we can
also define a so called extended master constraints that involves also the diffeomorphism
and Gauss constraint

M =

∫

Σ

d3x
[C(x)]2 + qabCaCb + δjkGjGk√

det q
(23)

In this case the constraint algebra trivializes completely and condition (22) selects weak
Dirac observables for all constraints at once. The extended master constraint has for in-
stance been used in [29] where the semiclassical properties of the quantum dynamics have
been analyzed in the context of Algebraic Quantum Gravity (AQG).

Apart from solutions to the constraints and observables at the end of the day we also
would like to describe the evolution of those observables in order to be able to describe
dynamics in the physical sector of the theory. Certainly, their evolution cannot be de-
scribed by the canonical Hamiltonian for the reason that observables, by definition, need
to Poisson commute with all constraints. That evolution for observables is frozen when
one considers the canonical Hamiltonian as the generator of their dynamics is known as
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the problem of time in general relativity. Therefore the question arises whether we can
reformulate the classical dynamics of general relativity in a way that we can improve our
situation twofold:

• we would like to get a less complicated algebra for the constraints and

• we would like to work in a formalism where the evolution of Dirac observables is
naturally implemented

The second point can be addressed in the context of the relational formalism introduced
in [30] and mathematically improved in [31]. The idea of this framework is to introduce
reference fields that are used to construct Dirac observables and with respect to which the
dynamics of the remaining degrees of freedom can be described. In the case of GR this
means to introduce reference fields that label points in space and time when we want to
construct observables with respect to the Hamiltonian and diffeomorphism constraint. It
turns out that by a suitable choice of reference fields we can also make progress regarding
the first point and simplify the constraint algebra. In the following of this section we
will discuss the classical theory of two particular models where this philosophy has been
used and the quantization has been performed using LQG techniques. The quantization
of these models will be discussed in section 4.2 and 4.3 respectively.

Before going into the details of those models we will briefly comment on two different
strategies to quantize systems with constraints. Given a classical system with constraints
we have the option to solve the constraints classically and work with the so called reduced
(or physical) phase space or we can follow a procedure introduced by Dirac and quantize
the kinematical phase space and then implement the classical constraints as operators.
Following the latter we obtain as an intermediate step a kinematical Hilbert space Hkin

and require for physical states that they are annihilated by all constraint operators, which
are the quantum Einstein equations in the case of general relativity. Solutions to the quan-
tum Einstein Equations live in the physical Hilbert space Hphys. In the case of reduced
phase space quantization one needs to quantize not the kinematical algebra but the algebra
of observables and obtains directly the physical Hilbert space Hphys. The dynamics, as
we will see in the following two sections, is described by a so called physical Hamiltonian
at the classical level, whose explicit form depends on the chosen model. The Hamiltonian
is called physical here for the reason that in contrast to the canonical Hamiltonian it is
not vanishing on the constraint surface. In the reduced case the quantum dynamics is
encoded in the operator corresponding to the physical Hamiltonian and the quantum Ein-
stein equations are given by the quantum evolution of the quantized observables generated
by the physical Hamiltonian operator. More details and concrete applications will follow
in section 4.2 and section 4.3. Whether one chooses reduced phase space or Dirac quan-
tization is rather model dependent. In general relativity the constraints are complicated
and general solutions to the constraints are difficult to construct. That is why often Dirac
quantization is favored. Furthermore, in general the algebra of observables has a more
complicated structure than the kinematical one and hence to find representations of it can
become a challenging task. On the other hand finding solutions that are annihilated by
all constraints operators and construct the inner product for the physical Hilbert space
can be very difficult as well and without the physical Hilbert space the physical relevance
of the results is rather hard to evaluate. The models discussed in the next sections have
both the properties that the algebra of the observables is isomorphic to the corresponding
kinematical algebra and thus representations can be easily found. They also share the
property that not all constraints are reduced at the classical level but part of them are
solved in the quantum theory. Therefore in both models a combination of Dirac and re-
duced phase space quantization is used which is also a choice one can make for quantizing
systems with constraints.
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2.2.1 Brown-Kuchar model

The idea of the Brown-Kuchar Model [32] is to introduce additional matter dust fields
that can serve as a reference system for general relativity. In the language of the relational
formalism we need one reference field for each constraint that we would like to reduce at
the classical level. The action introduced in [32] has the following form

Sdust = −
1

2

∫

M

d4X
√
| det(g)|ρ(gµνUµUν + 1) (24)

Here M denotes the spacetime manifold, g the spacetime metric, ρ is the dust energy
density and Uµ = −T,µ +WjS

j
,µ denotes the dust four velocity, that is itself expressed in

terms of 7 scalar fields T, Sj,Wj where j runs from 1 to 3. The action is understood as
a functional of the metric g and the eight scalar field ρ, T, Sj,Wj that are considered in
addition to the gravitational and possible other standard model matter degrees of freedom.
Here we will restrict our discussion to gravity and dust only, but the generalisation to
additional standard model matter is straightforward. That the action in (24) is associated
with dust is justified by looking at its physical interpretation. The energy momentum
tensor Tµν is that of pressureless dust. The Euler-Lagrange equations for the scalar fields
yield that Uµ = gµνUν is a geodesic congruence and the fields Wj , S

j are constant along
those geodesics. Furthermore T defines proper time along each geodesic. The canonical
analysis of the action above shows that the system including the dust involves second
class constraints. Introducing the associated Dirac bracket and solving those second class
constraints strongly yields that neither ρ nor Wj are independent variables but can be
expressed in terms of the remaining phase space variables. Moreover, as long as only
functions of T, Sj, A and their conjugate momenta P, Pj , E are considered, the Dirac
bracket reduces to the Poisson bracket, and it is those functions that we are interested in
the following. For the reason that the fields Sj are constant and the field T defines proper
time along each geodesics they are a natural choice as the reference fields for space and
time respectively. The field T will be used to construct observables with respect to the
Hamiltonian constraint C and the three fields Sj will serve as reference fields for the spatial
diffeomorphism constraints Ca. The choice of reference fields in the relational formalism
is completely arbitrary and those fields do not even need to be additional matter fields.
For instance one could also choose gravitational degrees of freedom. However, what will
be influenced by that choice is the form of the algebra of the constructed observables as
well as the form of the physical Hamiltonian. Since we are interested in quantizing the
reduced theory later on we would like to choose those reference fields that lead to a simple
observable algebra as well as to a physical Hamiltonian, which can be implemented as an
operator later on. As we will discuss now the dust fields T, Sj satisfy both requirements
and can be interpreted as a free falling observer that is dynamically coupled to the system.
The particular choice of T and Sj should not be understood as the only convenient clock
and rods for general relativity but a possible choice that has been made in this model
and that allows, as we will see in section 4.2, to complete the quantization program.
Likewise to the situation when one chooses a particular gauge fixing it might be necessary
to consider more than one choice of reference fields in order to consider dynamics in a
large region of spacetime. By considering the phase space whose coordinates are given by
T, Sj, A and their conjugate momenta we work in an extended phase space picture where
time and space are themselves configuration variables. The (first class) constraints of the
system gravity plus dust have the following form:

Ctot = C + Cdust, with Cdust = −
√
P2 + qab(PT,a + PjS

j
,a)(PT,b + PjS

j
,b)

Ctot
a = Ca + Cdust

a with Cdust
a = PT,a + PjS

j
,a (25)

where C,Ca denote the gravitational parts of the Hamiltonian and diffeomorphism con-
straints shown in (15) and the Gauss constraint is unaltered the one in (15). What Brown
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and Kuchar observed in their seminal article was that (i) the fields P, T enter into Ctot

only in the combination that also occurs in Cdust
a , and using Ctot

a = 0 those terms can be
replaced by −Ca and (ii) the constraint Ctot can be solved for the dust momentum P and
Ctot

a for Pj . As a consequence one can write down an equivalent set of constraints given
by

C̃tot = P + h with h(A,E) :=
√
C2 − qabCaCb

C̃tot
j = Pj + hj with hj(T, S

j, A,E) = Sa
j (Ca − hT,a) (26)

where qab is understood as a function of E and we had to assume that the inverse of
Sj
,a denoted by Sa

j exists. In regions of the phase space where det(Sj
,a) = 0 those fields

would not provide a good choice of spatial reference fields. In the case of the Hamiltonian
constraint one obtains a quadratic equation in P and chooses that solution of the possible
two that yields a positive physical Hamiltonian, which has the correct flat spacetime limit.
Note that the function h in contrast to hj in (26) does not depend on the dust degrees of
freedom anymore. If this happens one calls a constraint deparametrized, and given this,
the construction of observables technically simplifies as well as deparametrization for the
Hamiltonian constraint ensures that the final physical Hamiltonian will be time indepen-
dent. The constraints in (26) mutually commute up to SU(2) invariant combinations of
Gauss constraints

{C̃tot(x), C̃tot(y)}Gj=0 = {C̃tot
j (x), C̃tot

k (y)}Gj=0 = {C̃tot(x), C̃tot
j (y)}Gj=0 = 0 (27)

which can be seen by direct computation or by the abstract argument that those con-
straints are linear in the dust momenta. Since their first class property has not changed
by writing them in equivalent form, the Poisson bracket of any two constraints can only be
a linear combination of those. But since they are linear in the momenta and the derivative
in the Poisson brackets cancels the momentum, the only possible coefficients that are al-
lowed on the righthand side are zero for C̃tot and C̃tot

j and non-zero coefficients for SU(2)

invariant combinations of Gauss constraints2. In contrast the constraints in (25) satisfy
the Dirac algebra and thus by solving for the dust momenta we obtain a simplification
of the constraint algebra. The construction of observables is performed in two steps now:
First we reduce with respect to the spatial diffeomorphism constraint by using the fields
Sj as rods and obtain for the remaining degrees of freedom the following expressions [33]:

ÃJ
j (σ

k, t) :=

∫

Σ

d3x
∣∣det(Sj

,a)
∣∣ δ(Sk(x), σk)AJ

aS
a
j (x)

Ẽj
J (σ

k, t) :=

∫

Σ

d3x
∣∣det(Sj

,a)
∣∣ δ(Sk(x), σk)Ea

JS
j
a(x)

T̃ (σk, t) :=

∫

Σ

d3x
∣∣det(Sj

,a)
∣∣ δ(Sk(x), σk)T (x) (28)

where we introduced a capital J for the su(2) index in order to distinguish between the
Lie algebra index and the j − index associated with the dust fields. The interpretation of
the observables in (28) is that they give the value of the fields A,E, T when the dust fields
Sj take the values σj . The abstract points x in the spatial manifold Σ over which the
integration is performed above have therefore been labeled by the dust fields Sj . Analogous
observables for the ADM variables where constructed in [32], however the observabels with

respect to C̃tot where not constructed in [32] but a formal Dirac quantization was used.
This quantization is formal in the sense that similar to the Wheeler-DeWitt equation
no representation for general relativity formulated in terms of ADM variables has been
found so far in which the constraints can be promoted to well defined operators. For the

2When working with ADM instead of Ashtekar variables the Gauss constraint is absent and in this case the
constraints in (26) mutually commute strongly.

10



construction of observables with respect to the Hamiltonian and diffeomorphism constraint
we take the expression for ÃJ

j (σ
k, t) and Ẽj

J (σ
k, t) above and insert them into the standard

formula for observables, that is a power series in powers of the clock field, in our case T
and multiple Poisson brackets between the Hamiltonian constraint and ÃJ

j (σ
k, t) and

Ẽj
J (σ

k, t) respectively. Note that only the function h in C̃tot will contribute in those

Poisson brackets, because P commutes with ÃJ
j (σ

k, t) and Ẽj
J (σ

k, t). Explicitly we obtain
[34]

AJ
j (σ

k, τ) = exp(χhτ
) =

∞∑

n=0

1

n!
{h̃(τ), ÃJ

j (σ
k)}(n)

E
j
J(σ

k, τ) = exp(χhτ
) =

∞∑

n=0

1

n!
{h̃(τ), Ẽj

J (σ
k)}(n) (29)

with

h̃(τ) :=

∫

S

d3σ(τ − T̃ (σ))h̃(σ) (30)

here χhτ
denotes the Hamiltonian vector field of hτ , S denotes the range of σ and is

also called the dust space and the iterative Poisson bracket is defined as {f, g}(0) = g ,
{f, g}(n) := {f, {f, g}(n−1)}}. The interpretation of the quantities in (29) is that they give
the values of A and E respectively when the clock field T takes the values τ and the rod
fields Sj take the values σj . τ and σk can be understood as the physical time and space
parameter. One can check by explicit computation that AJ

j (σ
k, τ) and E

j
J(σ

k, τ) indeed

Poisson commute with C̃tot and C̃tot
j and are thus Dirac observables with respect to the

Hamiltonian and spatial diffeomorphism constraint.
The remaining Gauss constraint will be solved in the quantum theory via Dirac quan-

tization. Once the observables in (29) are constructed we are interested in the generator of

their dynamics. By construction they Poisson commute with C̃tot and C̃tot
j and thus the

canonical Hamiltonian density hcan in (12), that generates only gauge transformations,
cannot be the generator as otherwise the dynamics of the observables would be frozen. It
turns out that the Hamiltonian density of the generator of the physical dynamics is given
by the observables associated with the function h in (26). The observable of a function
of A,E can be easily constructed due to an automorphism property that the observable
maps satisfy and hence we obtain

h(σ) =
√
C2(σ, τ) − qjkCjCk(σ, τ) (31)

where C(σ, τ) and Cj(σ, τ) are the observables associated with the gravitational part of
the Hamiltonian and spatial diffeomorphism constraint that can be obtained by replacing
A,E by their corresponding observables A,E. Note that although Ck(σ, τ) and C(σ, τ)
depend on τ the final expression for h does not because on the Gauss constraint surface
we have

{h(σ),h(σ′)} = 0 (32)

This follows from the fact that C̃tot(x) Poisson commutes with itself and since h does
not include any dust degrees of freedom it immediately follows that {h(x), h(y)}Gj=0 = 0.
The physical Hamiltonian is then given by

Hphys =

∫

S

d3σh(σ) =

∫

S

d3σ
√

C2 − qjkCjCk(σ) (33)

where as before qij is understood as a function of E. The equation of motion for the
observables have the following form

dAJ
j

dτ
= {AJ

j ,Hphys},
dEj

J

dτ
= {Ej

J ,Hphys} (34)
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and can be understood as a, with respect to the Hamiltonian and spatial diffeomorphism
constraint, gauge invariant version of Einstein’s equations for the reason that all terms in
(34) are manifestly gauge invariant. In contrast to Hcan in the ordinary Einstein equations
Hphys is nonvanishing on the constraint surface because only the total constraints including
the dust degrees of freedom are vanishing there. Furthermore Hphys, being itself an
observable, has the following symmetries on the Gauss constraint surface

{Hphys,Cj(σ, τ)}Gj=0 = 0 and {Hphys,h(σ)}Gj=0 = 0 (35)

Those symmetries of Hphys will become important when the quantization of the Brown-
Kuchar model in section 4.2 is discussed.

2.2.2 Scalar field model

In the last section we discussed the classical Brown-Kuchar model and saw that the four
dust fields can be used as reference fields to construct observabels with respect to the
Hamiltonian and diffeomorphism constraint. The scalar field model, originally introduced
by Rovelli and Smolin [35] and studied further by Kuchar and Romano [36], considers
gravity coupled to a massless scalar field whose action is of the form

Sϕ = −1

2

∫

M

d4X
√
ggµνφ,µφ,ν (36)

The reason that one considers a massless scalar field is that otherwise the resulting Hamil-
tonian constraint would not be deparametrizable having the consequence that we end up
with a time dependent physical Hamiltonian. Here we introduce only one additional mat-
ter field coupled to gravity3 and thus we are only able to reduce one of the constraints
at the classical level. That will be the Hamiltonian constraint. The remaining diffeomor-
phism and Gauss constraints will be solved in the quantum theory in this model. One of
the motivations for this model is that in recent models in loop quantum cosmology (LQC)
also a scalar field is chosen [37] as a clock, so this model here could be understood as
the generalization of the APS model in [37] to full LQG. Further motivations will become
clear in section 4.2 and 4.3 when the quantization of the scalar field and the Brown-Kuchar
model is discussed. A 3+1-split of the action above yields the following total first class
constraints

Ctot = C + Cφ, with Cφ =
1

2

(
π2

√
det(q)

+
√
det(q)qabφ,aφ,b

)

Ctot
a = Ca + Cφ

a with Cdust
a = πφ,a (37)

where as before C,Ca denotes the gravitational parts of the Hamiltonian and diffeomor-
phism constraints shown in (15) and π denotes the momentum conjugate to φ. As before,
the Gauss constraints is not affected by the scalar field and thus it is still the one shown in
(15). The Brown-Kuchar mechanism, that is replacing the terms that involve derivatives
of φ by Cφ

a and this then again by −Ca and then solving the Hamiltonian constraint for
the scalar field momentum π can be applied. One obtains a fourth order polynomial in π
and out of the four solutions only two are non trivial. The remaining ± sign ambiguity
defines different regions in phase space and we choose π = +h for the reason that only
this solution includes homogenous and isotropic models. Using this choice one obtains an
equivalent Hamiltonian constraint of the form

C̃tot = π − h with h(A,E) :=

√
−√qC +

√
q
√
C2 − qabCaCb (38)

3Note that also in the scalar field model the generalization to gravity plus arbitrary standard model matter
is straightforward.
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Now we are in an analogous situation to the Brown-Kuchar model in section 2.2.1: We
realized that also the system of gravity coupled to a massless scalar field deparametrizes
and we could proceed as before. This would mean to use the scalar field φ to construct
Dirac observables with respect to the Hamiltonian constraint. What we would obtain are
quantities Aj

a(τ, x) and E
a
j (τ, x) that commute with C̃tot in (38) but not necessarily with

the diffeomorphism or Gauss constraint. The latter two will be solved in the quantum
theory via Dirac quantization. The algebra of Aj

a(τ, x) and E
a
j (τ, x) is isomorphic to the

one of kinematical quantities and their dynamics, that is evolution with respect to the
physical time parameter τ , is generated by a physical Hamiltonian of the form

Hphys =

∫

Σ

d3xh(A,E)(x) (39)

with h(A,E) given in equation (38). Alternatively, we cannot construct those observables
with respect to the Hamiltonian constraint at the classical level but in the quantum theory
and work with so called quantum Dirac observables, whose classical limit corresponds to
those observables mentioned above. This will be explained more in detail in section
4.3. In this case all constraints will be solved by Dirac quantization in the quantum
theory. Likewise to the Brown-Kuchar model, also here the Hamiltonian densities strongly
commute and Hphys is invariant under spatial diffeomorphisms, that is

{Hphys, h(x)}Gj=0 = 0 and {Hphys, Ca(τ, x)}Gj=0 = 0 (40)

In contrast to the Brown-Kuchar model a quantization of this partially reduced system will
not yield the physical Hilbert space. The quantum theory of this model will be discussed
in detail in section 4.3. Finally, let us mention that there exist another model introduced
in [38] where only one instead of four dust fields are considered. This model seems to be
a special case of the Brown-Kuchar model, where the momentum density of the dust has
chosen to be equal to zero.

3 Quantum kinematics

This section includes a introductory discussion on the quantum kinematics of loop quan-
tum gravity corresponding to the sector of the theory where the constraints have not been
solved yet. For the reason that the kinematical representation is rather different from the
usual Fock representation we introduce it in section 3.1 and discuss its properties. Af-
terwards in section 3.2 we discuss geometric operators in the framework of loop quantum
gravity. These are operators that correspond to classical geometrical objects like length,
area and volume. Section 3.3 deals with the question how the classical Gauss and dif-
feomorphism constraints can be quantized and how solutions to the constraint operators
can be constructed. Finally, in section 3.4 we present more details on the kinematical
representation and explain how it can be generalized.

3.1 Ashtekar-Lewandowski representation

We will now quantize gravity according to the algorithm for the quantization of con-
strained systems devised by Dirac (for the original account, see his Lectures on Quantum
Mechanics, for a modern treatment, see [2]). This means we proceed in two steps.

1. Quantization of the canonical variables (”kinematic quantization”)

2. Impose the constraints as operator equations on states, and solve these equations to
obtain physical states.

The first step is what we will discuss in the present section. What we want is a represen-
tation of the canonical commutation relations

[
Ai

a(x), E
b
j (y)

]
=
κ

2
~βδbaδ

i
jδ(x, y) (41)
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on a Hilbert space. Note that κ~ = ℓ2P, the Planck area. Fields evaluated at points
are usually too singular to give good operators in the quantum theory. Thus one has to
form suitably integrated (”smeared”) quantities that correspond to well defined operators
in the quantum theory. Poisson brackets then suggest commutation relations for these
quantities, and one obtains an abstract algebra of operators. We will soon see that details
can matter in this context. Different choices of smearing can lead to different algebras
and hence to different quantum theories. In fact, in LQG we make a different choice
of algebra than is customary in Yang-Mills theory [39, 40, 41]. In the latter case, both
the algebra and its representations used in the quantum theory make use of the metric
as a classical background field in their construction. In general relativity, the metric is
dynamic and hence can not be used as a background field. Moreover, a splitting of metric
into background and dynamical part, while very useful in practical applications, is not very
natural from a fundamental perspective. Hence, the algebra and its representation used
in LQG does not make use of any background metric. This makes LQG a very unusual
quantum field theory. To illustrate this, we first consider the case of electromagnetism.
The usual quantum theory is obtained by declaring

[∫
faAa

√
det q d3x,

∫
f ′
bE

b d3x

]
= i~

∫
faf ′

a

√
det q d3x id, (42)

and by defining the ground state by

a(f)Ω = 0. (43)

Here f, f ′ are arbitrary smearing functions, and the definition of the annihilation operators
a makes use of the metric q in various ways. But one could also define

E(S) :=

∫

S

Eaǫabc dx
b ∧ dxc (44)

where S is an oriented surface and ǫabc is the tensor density that is equal to the totally
anti-symetric symbol in any coordinate system. We note that Ea has density weight +1
whereas ǫabc has weight −1, so the integrand is a two-form and the integral, using the
orientation of S, is hence coordinate independent. Similarly, defining

A(e) =

∫

e

Aa dx
a, (45)

where e is a curve, one finds (by a limiting procedure from the Poisson brackets of the
point fields),

[A(e), E(S)] = i~I(e, S) id, (46)

where I(e, S) is the signed intersection number for S and e. The metric has thus dropped
out of all definitions and relations.

A similar thing can be done for gravity. For a surface S and a Lie algebra valued
smearing field n on S we define

En(S) :=

∫

S

niEa
i ǫabc dx

b ∧ dxc. (47)

For A we use the quantity analogous to exp(iA(e)). We chose a local trivialization and
define the holonomy

he :=P exp

∫

e

A (48)

= I+

∫ 1

0

A(e(t))ėa(t) dt+

∫ 1

0

dt1

∫ 1

t1

dt2Aa(t1)ė
a(t1)Aa(t2)ė

a(t2) + . . . (49)
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which is an element of SU(2), and gives the parallel transport map from the fiber over
the beginning point b(e) of the edge to the fiber over of its final f(e), for the chosen
trivialization. Under gauge transformations, i.e., changes of trivialization, g :M → SU(2)

he 7→ g(b(e))heg(f(e))
−1. (50)

One finds

[En(S), he] =

{
βℓ2P
2 he1τjn

j(p)he2 for a single transversal intersection S ∩ e = {p}
0 if S ∩ e = ∅

,

(51)
where {τj} is a basis of su(2), and ℓ2P = ~κ is (a multiple of) the Plank length. It is
convenient to slightly generalize these variables. Given a graph of paths γ = {e1, e2, . . . en}
and a function f :SU(2)n → C, one obtains the functional

fγ [A] := f(he1 [A], he2 [A], . . . hen [A]) (52)

A functional f is called cylindrical with respect to γ (written f ∈ Cylγ) if it is of the above
form, and simply cylindrical if it is of the above form for some graph γ. We note:

• A given cylindrical functional is cylindrical on many graphs. Consider the example
of a function fγ [A] = f(he[A]), which is cylindrical w.r.t. the graph γ = {e}. Now
consider a second graph γ′ = e1, e2, e3, with e1 ◦ e2 = e, and e3 independent of e.
Then fγ is also cylindrical w.r.t. γ′, as it can be written purely in terms of holonomies
along edges in γ′, fγ [A] = f(he1 [A]he2 [A]).

• For two cylindrical functions which are cylindrical on graphs with smooth edges, one
can not always find a finite graph such that they are both cylindrical w.r.t. to that
graph, because they can intersect infinitely many times. But for more regular edges,
for example analytic or semi-analytic (roughly speaking: piecewise real analytic [42])
ones this can not happen, and so one can always find such a graph. As a consequence,
such cylindrical functions are closed under addition and multiplication and thus form
an algebra, denoted Cyl. In the following, we will always assume edges (and also
surfaces) to be semi-analytic.

We can use these observations to write the commutator between the canonical variables
in a relatively concise form. For this, we assume without loss of generality that a surface
S and a graph γ intersect only in vertices of γ. The commutator then reads:

[fγ , En(S)] ≡ Xn(S)(fγ) =
βℓ2P
4

∑

v∈V (γ)

ni(v)

[ ∑

e at v

κ(S, e, v)Ĵ
(v,e)
i f

]
(he1 , he2 , . . .)) (53)

where V (γ) denotes the set of all vertices of γ

κ(S, e, v) =





0 if e intersects S tangentially in v or does not intersect S at all

1 if e intersects S transversally and is above S

−1 if e intersects S transversally and is below S

(54)

and

Ĵ
(v,e)
k = id⊗ id⊗ . . .⊗

{
Le
k

Re
k

}
⊗ id⊗ . . . , when

{
e ingoing at v
e outgoing at v

}
. (55)

R, L denote the right/left invariant vector field on SU(2) associated with a basis τk of
su(2). The additional factor of 1/2 in (53) as compared to (51) is due to our assumption
that edges must end on the surface. An edge that continues on both sides of the surface as
in (51) will thus count as two separate edges in (53). For general surfaces, the commutator
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above may not be a cylindrical function, again because edges and surfaces can interact each
other infinitely often. Thus we also restrict the surfaces to be in a suitable regularity class.
Then the operation Xn(S) defined above is a derivation on the space Cyl of cylindrical
functions. We note that the commutator has the Jacobi property, so

[f, [En(S), En′(S′)]] = [Xn(S), Xn′(S′)](f) (56)

and the commutator on the right hand side is non-vanishing in general. Thus we find that
the operators corresponding to the spatial geometry do not commute.

The objects En(S), together with the cylindrical functions Cyl subject to the above
commutator relations form the kinematic algebra A. Since it does not make reference to
classical geometry on Σ, diffeomorphisms φ act in a simple way:

αφ(f)[A] := f(φ∗A), αφ(En(S)) = Eφ∗n(φ(S)) (57)

are automorphisms of A. A similar statement holds for gauge transformations.
To implement the constraints we need a representation of A, i.e., a mapping of A into

the operators of a Hilbert space. There are many representations of A, but one of them is
special and therefore most important for LQG, the Ashtekar-Lewandowski representation
of A [43, 44]. It is actually the rigorous implementation of ideas developed earlier by
Rovelli and Smolin [39]. To see how it works, note first that an inner product on Cyl can
be defined by

〈fγ | f ′
γ〉 :=

∫

SU(2)n
dµ(g1) . . . dµ(gn)f(g1, g2, . . . gn)f

′(g1, g2, . . . gn). (58)

The measure dµ used above is the Haar measure on SU(2), and we have assumed without
loss of generality that the two functions are cylindric w.r.t. the same graph, as discussed
below (52). Closure with respect to the corresponding norm gives a Hilbert space H.
It can be shown that this space has a very suggestive structure, H = L2(A, dµAL), the
square integrable functions over a space of distributional connections, with respect to a
certain measure.

The action of the basic operators in this representation is analogous to that found in
the Schrödinger representation of quantum mechanics:

π(f)Ψ[A] = f [A]Ψ[A], π(En(S))Ψ[A] = (Xn(S)Ψ)[A], (59)

where we have assumed that Ψ is smooth enough for Xn(S) to act. For example, Ψ
could be a cylindrical function based on a differentiable function on some power of SU(2).
But the properties of this representation are very different from those of the Schrödinger
representation of quantum mechanics, and of the representations encountered in standard
QFT. For example, eigenstates of the fluxes, i.e., the momentum variables, are normaliz-
able, as we will see in a moment. Also, there is a precise analogue of this representation
in the case of a scalar field, and it is unitarily inequivalent to the standard representation
for a scalar in flat or curved background [45].

The representation has several useful properties. It is irreducible and faithful. No
background geometry was used in the definitions, so it carries a unitary representation of
spatial diffeomorphisms and gauge transformations. It has an invariant and cyclic4 vector
Ω.

The Hilbert space H has a very useful orthonormal basis. To explain, let us first
consider a general compact Lie group G. Then there are two natural representations of G
on HG = L2(G, dµ), the left- and right-regular representations

(ρL(g)f)(g
′) = f(g′g−1), (ρR(g)f)(g

′) = f(gg′). (60)

4Cyclic means that {aΩ|a ∈ A} is dense in H.
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They both decompose into irreducibles, and since the two representations commute, there
is a common basis of eigenvectors of the Casimir operators. Let π be an irreducible
representation of G, then

V (π,m) := span{πmn(·)|n = 1, 2, . . .dimπ} is left invariant by ρL, (61)

V (π, n) := span{πmn(·)|m = 1, 2, . . .dimπ} is left invariant by ρR. (62)

The representation V (π,m) induced by ρL is π itself. The one induced by ρR on V (π, n)
is its dual, π, i.e. π(g) = π(g−1)T . The Peter-Weyl theorem now asserts that each irrep
arises in the decomposition of the regular representations, and even more, that their matrix
elements give a basis of HG. Pick, for each equivalence class of irreps of G a representative
π, then the set of all

√
dimππmn for all equivalence classes form an orthonormal basis of

HG.

Now back to the LQG setting. Let Hγ = Cylγ
‖·‖

. On the one hand, Hγ is a subspace
of H, on the other hand it is isomorphic to L2(SU(2)n). Thus, an orthonormal basis for
Hγ is given by

√
(2j1 + 1) . . . (2jn + 1)

j1
πk1l1(he1 [A]) ·

j2
πk2l2(he2 [A]) · . . .

jn
π knln(hen [A]). (63)

where the j1, j2, . . . jn label irreducible representations of SU(2). We note, however, that
in general Hγ 6⊥ Hγ′ . The problem are ”spurious” vertices. Take for example γ = {e},
γ′ = {e1, e2} with e = e1 ◦ e2. Then

πmn(he[A]) =
∑

m′

πmm′(he1 [A])πm′n(he2 [A]). (64)

Therefore we will introduce a family of slightly modified Hilbert spaces H′
γ , which give a

decomposition of H into orthogonal subspaces. But first we need to discuss the transfor-
mation properties of vectors under gauge transformations.

We start by considering just a single edge e. With respect to gauge transformations g,
the vectors πj

mn(he) transform under the tensor product j ⊗ j, and can be visualized as
the edge with representation j sitting at its endpoint and representation j at its starting
point. When several edges meet at a vertex v, contractions of the matrix indices of the
representation matrices at that vertex can be done and correspond to vectors in the tensor
product

Hv =


 ⊗

e incoming atv

je


 ⊗


 ⊗

e outgoing atv

je


 (65)

To give an orthogonal basis of this space, one can simply decompose it into irreps,

Hv =
⊕

l

cl l, (66)

where cl counts the multiplicity of the spin l-representation. When we apply this to the
situation in LQG we obtain the following decomposition. Given a graph γ,

Hγ =
⊕

~j

Hγ,~j =
⊕

~j,~l

Hγ,~j,~l. (67)

Here we have first decomposed into spaces in which the assignment of irreps to edges
(labeled by ~j) is fixed, giving essentially the tensor products of the spaces (65). Then we
have further decomposed according to (66), labeling the irreducible subspace chosen at

the vertices with ~l.
Now we can go back and remedy the problem that the decomposition into Hγ was

not an orthogonal one (following [5]). Given again a graph γ, we can call a labeling ~j of
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edges and ~l of vertices with irreps admissible if no two-valent vertex has been assigned the
trivial representation l = 0, and none of the irreps assigned to the edges is trivial. Then
we set

H′
γ =

⊕

~j,~l admissible

Hγ,~j,~l, (68)

and obtain the desired orthogonal decomposition

H =
⊕

γ

H′
γ . (69)

3.2 Geometric operators

One of the special properties of the representation in LQG introduced in the last section
is that one can define operators corresponding to geometrical objects such as volume area
and length. Among those the most simple operator is the area operator from the point
of view of the construction of the operator as well as with regards to the spectrum of the
operators. The area operator was first introduced by Smolin [46] and then further ana-
lyzed by Rovelli and Smolin in the loop representation [47]. Ashtekar and Lewandowski
discussed the spectrum of the area operator in the connection representation in [43]. In
this section we want to discuss the implementation of the area operator as well as its
spectrum in detail. At the end of the section we will briefly comment on the volume and
length operator.

The classical area functional associated to a surface S is given by the following expression

Ar(S) =

∫

U

d2u
√
det(X∗q)(u) (70)

The ADM 3 metric is denoted by q, X : U → S is an embedding of the surface, where
U ⊂ R2 and X∗ denotes the pull back of X . The coordinates on the embedded surface
S are given by the embedding functions Xa with a = 1, 2, 3 and let us denote the two
coordinates by which the surface is parametrized by u1 and u2. Given the embedding we
can construct two tangent fields on S

Xa
,u1

:=
∂Xa

∂u1
, Xa

,u2
:=

∂Xa

∂u2
(71)

and also a co-normal vector field na that is determined from the condition

naX
a
u,i = 0 for i = 1, 2 (72)

The determinant in the area functional can be expressed as

det(X∗q) = qu1u1qu2u2 − qu1u2qu2u1 =
(
Xa

,u1
Xb

,u1
Xc

u2
Xd

,u2
−Xa

,u1
Xb

,u2
Xc

,u2
Xd

,u1

)
qabqcd

(73)
In order to quantize the area functional we need to express it in terms of Ashtekar variables.
For this purpose we consider the expression det(q)nanbq

ab and use that we can express
the inverse metric as

qab =
1

2

1

det(q)
ǫacdǫbefqceqdf (74)

Furthermore we see from (72) that na = ǫabcX
c
,u1
Xd

,u2
yielding

det(q)nanbq
ab = det(q)nanb

1

2

1

det(q)
ǫacdǫbefqceqdf

= ǫakℓX
k
,u1
Xℓ

,u2
ǫbmnX

m
,u1
Xn

,u2

1

2
ǫacdǫbefqceqdf

= qu1u1qu2u2 − qu1u2qu2u1 (75)
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The inverse metric has a simple form in Ashtekar variables given by qab = Ea
jE

b
kδ

jk/ det(E)
and depends only on the densitized triad. From Ea

j =
√
qeaj we get det(E) = det(q) yield-

ing
det(q)qab = Ea

jE
b
kδ

jk (76)

from which we can conclude using (75) that

√
det(X∗q) =

√
nanbEa

jE
b
kδ

jk (77)

Note that often one choses the basis τj := −iσj/2 in su(2) with σj being the Pauli matrices
for which the Cartan-Killing metric on su(2) ηjk becomes ηjk := Tr(ad(τj)ad(τk)) = −2δjk
and then one uses the Killing metric in the expression above and adjusts the pre-factors
accordingly. The area functional is completely expressed in terms of Ashtekar variables
now. In order to quantize the area functional we need to choose a regularization of the

classical expression. We choose a partition of U into closed set such that U =
n⋃

i=1

Ui.

Then we can express the area functional as a sum of integrals over the individual sets Ui.
Furthermore, we assume that the area of each Ui is ǫ

2 and we will denote a point centered
in Ui by v.

Ar(S) =

n∑

i=1

∫

Ui

d2u
√
Ea

jE
b
kδ

jknanb(X(u))

≈
n∑

i=1

ǫ2
√
Ea

jE
b
kδ

jknanb(v)

=
n∑

i=1

√
(ǫ2Ea

j na)(ǫ2Eb
knb)δjk(v)

=

n∑

i=1

√
Ej(SUi

)Ek(SUi
)δjk(v) (78)

In the limit n → ∞ the Riemann sum above yields exactly the area functional. As can
be seen in the last line we managed to express Ar(S) as a function of the classical fluxes
Ej(SUi

) ≡ Eτj (SUi
) for which well defined operators exists. For this reason we obtain

the quantum area operator simply by replacing the classical fluxes by their corresponding
operators. Recall that the flux operators can be written in terms of right and left invariant
vector fields Rj

e and Lj
e associated to the edges of a given spin network function.

Êj(S)Tγ,~j,~I =
βℓ2p
4

∑

v∈V (γ)
e at v

κ(S, e, v)Ĵ
(e,v)
j Tγ,~j,~I (79)

The term κ(S, e, v) is as before +1 and −1 respectively for edges that intersect S transver-
sally and are above S and below S respectively at v and zero in all other cases. For the
area operator we obtain

Âr(S)Tγ,~j,~I =
βℓ2p
4

n∑

i=1

√√√√
( ∑

v∈V (γ)
e at v

κ(SUi
, e, v)Ĵ (e,v)

)2
Tγ,~j,~I (80)

If the partition is chosen fine enough so that only one intersection point exists in SUi

instead of summing over all sets Ui in the partition we can sum over all intersections
points of an edge of type up or down. Note that in each intersection point more than
one edge could meet. In this way we will loose all surfaces SUi

, which do not contain
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an intersection point of an edge of type up or down. However, these would anyway not
contribute since for them κ(e, SU ) = 0. Thus we can reexpress the area operator as

Âr(S)Tγ,~j,~I =
βℓ2p
4

∑

v∈P (S)

√(∑

eatv

κ(SU(v), e, v)Ĵ (v,e)
)2
Tγ,~j,~I (81)

where the set P (S) of intersection points of edges up and down is given by

P (S) = {v ∈ e ∩ S|κ(S, e, v) 6= 0, e ∈ E(γ)} (82)

Let us now discuss the spectrum of the area operator. At each intersection point x we
have edges of type up, edges of type down and edges of type in that will not contribute to
the spectrum. In order to write the expression under the square root in (81) in compact
form we introduce the following operators:

Ĵv,u
j :=

∑

e∈E(v,u)

Ĵ
(v,e)
j Ĵv,d

j :=
∑

e∈E(v,d)

Ĵ
(v,e)
j (83)

Here E(v, u), E(v, d) denotes all edges of type up and down respectively that intersect
each other in the point v. Then we have for each intersection point v



∑

e∈E(γ)
e∩v 6=∅

κ(S, e, v)Ĵ
(v,e)
j




2

=
(
Ĵv,u − Ĵv,d

)2

= (Ĵv,u)2 + (Ĵv,d)2 − 2Ĵv,uĴv,d

= 2(Ĵv,u)2 + 2(Ĵv,d)2 − (Ĵv,u + Ĵv,d)2 (84)

We used in the second line that [Ĵv,u
j , Ĵv,d

k ] = 0. Furthermore the operators (Ĵv,u)2,

(Ĵv,d)2 and (Ĵv,u + Ĵv,d)2 mutually commute. Moreover, we choose an explicit basis τj =

−iσj/2 for which the operators Ĵ (e,v) satisfy the usual angular momentum algebra given

by [Ĵ
(e,v)
i , Ĵ

(e,v)
j ] = ǫijkĴ

(e,v)
k . Then we have that the operators (Ĵ (e,v))2 ≡ δjkĴ (e,v)

j Ĵ
(e,v)
k

locally act as

− δijRiRj = −〈R |R〉 ≡ −∆SU(2), or − δijLiLj = −〈L |L〉 ≡ −∆SU(2) (85)

where −∆SU(2) is the positive definite SU(2) Laplacian with spectrum j(j + 1), due to

our choice of basis for su(2). Hence the same holds for the operators (Ĵv,u)2, (Ĵv,d)2,
and (Ĵv,u + Ĵv,d)2, they act as Laplacians in the respective direct sum of representations.
Therefore the spectrum of the operators involved in (84) can be easily computed and we
obtain

Spec(Âr(S)) =
βℓ2p
4

∑

v∈P (S)

√
2ju,v(ju,v + 1) + 2ju,v(ju,v + 1)− ju+d,v(ju+d,v + 1) (86)

Here ju,v, jd,v denote the total angular momentum of the edges of type up (down respec-
tively) at the intersection point v and ju+d,v total coupled angular momentum of the up
and down edges whose values range between |ju,v − jd,v| ≤ ju+d,v ≤ ju,v + jd,v. Let us
consider the eigenvalue at one intersection point v. The smallest possible eigenvalue that
we can get occurs when either ju,v = 0 and jd,v = 1

2 or vice versa. The eigenvalue denoted
by λ0 is non vanishing and given by

λ0 = ℓ2pβ

√
3

8
(87)
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and is known as the area gap in LQG. The area gap plays an important role in the
description of black hole physics within LQG and black hole entropy calculations can be
used the fix the value of the Immirzi parameter β.
Finally let us say a few words about the other two geometrical operators, the volume
and length operator in LQG. The volume operator enters crucially into the construction
of the dynamics of LQG for the reason that the classical co-triad is expressed as the
Poisson bracket between the connection and the classical volume functional using the
Thiemann trick (see section 4.1). The volume operator can be quantized in a similar
manner than the area operator because the classical three dimensional volume of a given
region R is the integral over R of

√
det(q) whose expression in Ashtekar variables is just√

| det(Ea
j )|. Thus it is again a function of the electric fields only and can be after a

suitable regularization again be expressed in terms of flux operators. In the literature
exist two different volume operators one introduced by Rovelli and Smolin (RS) [47] and
one introduced by Ashtekar and Lewandowski (AL) [48], which come out of a priori equally
justified but different regularization techniques. Both volume operators act non-trivially
only on vertices where at least three edges intersect. At a given vertex the operators have
the following form

V̂v,RS = CRS

∑

eI∩eJ∩eK=v

√∣∣Q̂IJK

∣∣

V̂v,AL = CAL

√∣∣∣
∑

eI∩eJ∩eK=v

ǫ(eI , eJ , eK)Q̂IJK

∣∣ (88)

Here Q̂IJK := ǫijkĴ
i
eI Ĵ

j
eJ Ĵ

k
eK is an operator involving only flux operators and thus right

and left invariant vector fields and CRS, CAL are regularization constants. The sum runs
over all ordered triples of edges intersecting at the vertex v. The main differences be-
tween these two operators is that the RS-operator is not sensitive to the orientation of the
triples of edges and therefore also planar triples of edges will contribute. The AL-operator
has likewise to the κ(S, e, v) in the area operator a similar sign factor ǫ(eI , eJ , eK) that
vanishes whenever the triple of edges ei, ej, ek intersecting at a vertex v are linearly depen-
dent. Furthermore the sum over triples of edges involved in both operators, occurs outside
the square root in case of the RS and inside the square root in case of the AL-operator.
The spectral analysis of the volume operator is more complicated than for the area operator
and can in general not be computed analytically. A general formula for the computation
of matrix elements of the AL-volume operator has been derived in [49]. Those techniques
have been used to analyze the spectrum of the volume operator numerically up to a ver-
tex valence of 7 in a series of papers [50]. Their work showed that the spectral properties
of the volume operator depend on the embedding of the vertex that enters via the sign
factors ǫ(ei, ej , ek) into the construction of the AL-operator. Particularly the presence of
a volume gap, that is a smallest non vanishing eigenvalue, depends on the geometry of the
vertex. For a more detailed discussion about the spectrum of the volume operator we refer
the reader to the article of Brunnemann in these proceedings. A consistency check for
both volume operators has been discussed in [51] where the Thiemann trick has been used
to define an alternative flux operator. Those alternative flux operator is then compared
to the usual flux operator and consistency of both operators could for instance fix the un-
determined regularization constant CAL = ℓ3p/

√
48 in the volume operator. Furthermore,

the RS-operator did not pass this consistency check and the reason that it worked for the
AL-operator is exactly the presence of those sign factors ǫ(eI , eJ , eK) in the AL-operator.

A length operator for LQG was introduced in [52]. The length operator is in some sense
the most complicated one among the kinematical geometrical operators. Let us recall the
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the length of a curve c : [0, 1]→ Σ classically is given by

ℓ(c) =

1∫

0

√
qab(c(t))ċa(t)ċb(t)dt =

1∫

0

√
eia(c(t))e

j
b(c(t))ċ

a(t)ċb(t)δijdt (89)

here ċa denotes the components of the tangent vector associated to the curve. When we
express the metric qab in terms of Ashtekar variables we obtain

qab =
1

4
ǫacdǫbef ǫijkǫ

imn
Ec

jE
d
kE

m
e E

n
f

det(E)
(90)

which is a non-polynomial function in terms of the electric fields and therefore a regular-
ization in terms of flux operators similar to the area and volume operator does not exist.
Furthermore the denominator being the square of the volume density cannot be defined
on a dense set in Hkin because it has a huge kernel. One possibility to quantize the length
used in [52] is to use for the co-triads that occur in (89) the Thiemann trick and replace
them by a Poisson bracket between the connection and the volume functional. This yields
a length operator that involves a square root of two commutators between holonomy op-
erators along the curve c and the volume operator. In this way the inverse volume density
can be avoided and the volume occurs only linearly in the commutator. Also, the length
operator does not change the graph or the spin labels of the edges likewise to the area
and volume operator. However, since the length operator becomes even a function of the
volume operator its spectral analysis becomes even more complicated than for the volume
operator itself and very little about the spectrum of the length operator is known except
for low valence vertices.
Another length operator was introduced in [53] where the Thiemann trick was not used
for the quantization. The regularization adapted in [53] is motivated from the dual picture
of quantum geometry and uses that the curve can be expressed as an intersection of two
surfaces. This allows to express the tangent vector of the curve in terms of the normals
of the surfaces. The inverse volume issue discussed above is circumvented by using a
Tikhonov regularization for the inverse RS-volume-operator. For this length operator the
spectral properties have only be analyzed for a vertex of valence 4, which is monochro-
matic, that is all spins are identical. Recently an alternative length operator for LQG has
been discussed in [54] where a different regularization has been chosen such that the final
length operator can be expressed in terms of other geometrical objects the area, volume
and flux operators. In this work the AL-operator is used and the inverse volume operator
is also defined using a Tikhonov regularization similar to the one in [53].

3.3 Solving Gauss and diffeomorphism constraints

In accordance with Dirac’s program for constraint quantization an implementation of the
classical constraints as operators on the kinematical Hilbert space is needed. In section
3.3.1 we will discuss this quantization for the Gauss constraint and explain how solutions
to the constraint can be constructed. The quantization and the construction of solutions
to the spatial diffeomorphism constraint requires a framework called refined algebraic
quantization that will be introduced in section 3.3.2 and applied to the diffeomorphism
constraint in section 3.3.3.

3.3.1 Quantization and solution of the Gauss constraint

The classical expression for the smeared version of the Gauss constraint is given by

G(Λ) =

∫

Σ

d3xΛj(DaE
a
j ) = −

∫

Σ

d3x(DaΛ
j)Ea

j (91)
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This expression involves the densitized triad integrated over a 3-dimensional integral with
smearing function (DaΛ

j). When the holonomy flux algebra is computed by means of
a regularisation of holonomies hǫe(A) and fluxes Eǫ′(S) both the holonomies and fluxes
are regularized by expression that involve three dimensional integrals and ǫ and ǫ′ denote
regulators. For this reason one can follow the same regularization strategy for the compu-
tation of {he(A), G(Λ)} with the difference that we do not need a regulator for G(Λ) since
it involves already a 3 dimensional integral. Computing {hǫe(A), G(Λ)} and removing the
regulator afterwards yields

{he(A), G(Λ)} = −
βκ

2

1∫

0

dt(DaΛ
j)(e(t))ėa(t)he(0, t)(A)τjhe(t, 1)(A) (92)

In the following we will choose an explicit basis for su(2) given by τj := −iσj/2 with
σj being the Pauli matrices. In this case the structure functions fjkℓ are given by the
Levi-Cevita symbol fjkℓ = ǫjkℓ. The expression he(0, t) satisfies the differential equation

dhe(0, t)

dt
= −he(0, t)A(e(t)) with A(e(t)) := Aj

a(e(t))ė
a(t)τj (93)

The holonomy is defined as the unique solution he(A) := he(0, 1) with he(0, 0) = 1SU(2).
The covariant derivative in equation (92) is phase space dependent since it involves the
Ashtekar connection Aj

a. However, as we will show the expression under the integral can
be expressed as a total time derivative of holonomies and Λ := Λjτj . As a first step we
consider

(DaΛ)ė
a(t) =

(
dΛ

dt
+ ǫjkℓA

k
aΛ

ℓτj

)
ėa(t)

=

(
dΛ

dt
+Ak

aΛ
ℓ[τk, τℓ]

)
ėa(t)

=

(
dΛ

dt
+ [A,Λ]

)
(94)

Furthermore we can use the product rule for the term d
dt (he(0, t)Λhe(t, 1)) and for the

individual terms using the differential equation in (93)

d

dt
he(0, t) = he(0, t)A(e(t))

d

dt
he(t, 1) = −A(e(t))he(t, 1) (95)

to obtain
d

dt
(he(0, t)Λhe(t, 1)) = he(0, t)

(
dΛ

dt
+ [A,Λ]

)
he(t, 1) (96)

Consequently, we obtain for the Poisson bracket the following expression

{he(A), G(Λ)} =
βκ

2
(Λ(e(0))he(A)− he(A)Λ(e(1))) (97)

Knowing how G(Λ) acts on holonomies we can generalize the action from holonomies to
cylindrical functions and express it again in terms of right and left invariant vector fields.

{fγ(A), G(Λ)} =
βκ

2

∑

e∈E(γ)

(
Λj(b(e))Re

j − Λj(f(e))Le
j

)
fγ(A)

=
βκ

2

∑

v∈V (γ)

Λj(v)
( ∑

e∈E(γ)

κ(S, e, v)Ĵ
(v,e)
j fγ

)
(A) (98)
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where we rearranged the sum over edges as a sum over vertices and sums of the edges
starting or ending at each vertex yielding κ(S, e, v) = +1 and κ(S, e, v) = +1 respectively.
We realize that action of G(Λ), likewise to the action of the flux, can be expressed as a
vector field on C∞(A). The quantization of G(Λ) can then be obtained as an extension
of G(Λ) to cylindrical functions ∈ C∞(Ā) where Ā is the quantum configuration space of
generalized or also called distributional connections.

Ĝ(Λ) = i~[fγ(A), G(Λ)] =
iβℓ2p
2

∑

v∈V (γ)

Λj(v)
( ∑

e∈E(γ)

κ(S, e, v)Ĵ
(v,e)
j fγ

)
(A)

=
iβℓ2p
2

∑

v∈V (γ)

Λj(v)



∑

e∈E(γ)
v=b(e)

Re
j −

∑

e∈E(γ)
v=f(e)

Le
j


 fγ(A) (99)

where we used in the last line the explicit expression for Ĵ
(v,e)
j and κ(S, e, v). Solutions

to the Gauss constraint Ĝ(Λ)fγ(A) = 0 are those cylindrical functions for which the
ingoing and outdoing edges at each vertex couple to the same resulting angular momentum
Jin = Jout so that the total angular momentum J = Jin ⊗ Jout = 0. In terms of the
decomposition of the kinematical Hilbert space in terms of interwiners the gauge invariant
Hilbert space is just the subspace where one associates to each each vertex an intertwiner
that projects on the trivial representation. That this constructs gauge invariant spin
networks functions follows from the fact that the holonomy transforms under a finite gauge
transformation as he(A

g) = g(b(e))he(A)g
−1(f(e)), where g ∈ SU(2) and b(e) and f(e)

denote the beginning and final point of the edge, and hence the gauge transformations
act at the vertices of the spin network function only. Furthermore, at the vertices the
spin network functions transform in the resulting representation that the individual edges
couple to, thus

HG
kin =

⊕

γ,~j,

Hγ,~j,~l=0 (100)

3.3.2 Refined algebraic quantization

In this section we briefly review refined algebraic quantization that provides a framework
to solve first class constraints in the quantum theory. The application of refined algebraic
quantization in the context of Dirac quantization has been analyzed by Giulini and Marolf
in [55, 56]. A review article about refined algebraic quantization and group averaging can
be found in [57].
In order to formulate the final quantum theory we are looking for solutions to the con-
straints in the quantum theory, hence we want to find states that are annihilated by the
constraint operators, that is ’Ĉψphys = 0’. In general the constraint operators Ĉ are
complicated functions of holonomies and fluxes and we are looking for the value zero in
their spectra. In the simplest case the operators that we need to consider are bounded
and their spectra is discrete. Then the operators are defined on the whole Hilbert space
Hkin and the eigenvectors of the operators are elements of Hkin. As we will see later on
this is the case for the Gauß constraint operator. However, often the physically interesting
operators are unbounded and in this case they are only defined on a dense subspace of
Hkin. Furthermore, in general, the spectrum of the operators will have a continuous part
and the associated (generalized) eigenvectors will no longer belong to Hkin. In our case
this situation occurs whenever zero will not lie in the discrete part of the spectrum of the
constraint operators. A similar situation occurs already in standard quantum mechanics
for the momentum and position operators both being unbounded. The spectrum of the
momentum operator p̂ = −i~ d

dx is the real line and the (generalized) eigenfunctions are
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plane waves ψk(x) = eikx that are not square integrable on (R, dx) and thus no element
of HQM = L2(R, dx). Likewise, the generalized eigenfunctions of the position operator
are delta functions and therefore also no elements of HQM . In those cases one has to look
for solutions in a larger space than HQM and, in the case of LQG, Hkin respectively. The
mathematical framework that can be used here are so called rigged Hilbert spaces (also
called Gelfand triples). They consists of a sequence of spaces

D ⊂ H ⊂ D× (101)

where D is a dense subspace of H endowed with its own intrinsic topology, that is assumed
to be stronger than the one induced from H and D× is the dual space of D containing
all continuous anti-linear functionals on D. The dense subspace is usually chosen by
the requirement that it is the largest dense subspace of H such that it is an invariant
domain for arbitrary powers of the elementary operators. For instance in the case of
quantum mechanics the dense subspace is the S(R), the Schwartz space of smooth rapidly
decreasing functions on R. Associated with a given Gelfand triple there always exist a
second rigged Hilbert space

D ⊂ H ⊂ D′ (102)

which consists of D,H and the dual space D′ of all linear and continuous functionals
on D and it is the second rigged Hilbert space that we will discuss for LQG. In the
case of quantum mechanics when the spectrum has a continuous part the associated
(generalized) eigenvectors expressed as Dirac ket vectors live in D×, whereas the home of
the corresponding Dirac bra vectors is the space D′. For LQG we restrict our discussion
to the latter Gelfand’ triplet in (102). Let us denote with Dkin the dense subspace of Hkin

and as we saw before elements of Dkin are cylindrical functions. Apart from the dense
subspace Dkin itself the rigged Hilbert space framework requires that Dkin is endowed
with an intrinsic topology stronger than the one induced from Hkin and as far as physics
is concerned it does not yield a particular choice of a topology here. In order to avoid such
a choice at this stage in LQG we do not consider the topological dual space D′

kin but the
algebraic dual instead denoted by D∗

kin. Then we look for solutions in the algebraic dual
D∗

kin that is the space of all linear but not necessarily continuous functionals ℓ on Dkin.
D∗

kin is naturally equipped with the weak *-topology of pointwise convergence of nets5.
As before we have the following topological inclusion

Dkin ⊂ Hkin ⊂ D∗
kin (103)

since any functional that converges strongly in the norm of Hkin will also converge point-
wise. In order to formulate a requirement for solutions to the constraints in D∗

kin we need
to extend the action of the operators from Hkin onto D∗

kin. On those linear functionals ℓ
that lie in Hkin we want the action of the dual operator to agree with the usual one on
Hkin. Let us denote the extension of an operator Ô by Ô′ then we define

[
Ô′ℓ
]
(f) := ℓ(Ô†f) (104)

where † denotes the adjoint in Hkin. Now suppose we have an ℓ ∈ Hkin ⊂ D∗
kin then using

Riesz representation theorem we find a unique fℓ ∈ Hkin such that ℓ can be expressed as
ℓ = 〈fℓ, .〉Hkin

where 〈., .〉Hkin
denotes the inner product on Hkin. Then we obtain

[
Ô′ℓ
]
(f) = ℓ(Ô†f) = 〈fℓ, Ô†f〉Hkin

= 〈Ôfℓ, f〉Hkin
, (105)

which explains the use of the adjoint in equation (104). Looking for solutions in D∗
kin

corresponds to finding linear functionals that satisfy the following requirement
[
Ĉ′ℓ
]
(f) = ℓ(Ĉ†f)

!
= 0 for all Ĉ, f ∈ Dkin (106)

5A net, that is a generalization of a sequence, (ℓα) converges in D∗

kin if (ℓα(f)) converges to ℓ(f) for any f

in Dkin.
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Let us denote the space of solutions to the constraints by D∗
phys. In general physical oper-

ators, those that commute with all constraint operators, will be unbounded and therefore
only be defined on a dense subspace of the physical Hilbert space Hphys denoted by Dphys,
which is an invariant domain for the algebra of physical operators. The set D∗

phys is
then the algebraic dual of Dphys and as before again one has also at the physical level a
topological inclusion

Dphys ⊂ Hphys ⊂ D∗
phys (107)

Given the situation that we have found D∗
phys there exists a systematic way to construct

an inner product by means of a so called rigging map η

η : Dkin → D∗
phys, f 7→ η(f) (108)

that maps elements in Dkin into D∗
phys. η(f) being an element of D∗

phys is a linear functional

on Dkin that additionally satisfies the condition in equation (105), hence [η(f)](f̃) is a
complex number and if in addition

(i) [η(f)](f̃ ) = [η(f̃)](f) (109)

(ii) [η(f)](f) ≥ 0 for all f, [η(f)](f) = 0⇒ f = 0 (110)

(iii) [η(f)](αg + βh) = α[η(f)](g) + β[η(f)](h) (111)

are satisfied we can use [η(f)](f̃) do define a physical inner product on the image of η
given by η(Dkin) ∈ D∗

phys. The bar in (i) denotes complex conjugation. Condition (iii) is
trivially satisfied since [η(f)] is a linear functional. Whether (i, ii) are satisfied and thus
[η(.)](.) defines a positive semi definite sesquilinear form needs to be checked once the
explicit form of η has been constructed. Apart from the minimal requirements (i-iii) we
want the inner product to satisfy the property that adjoints with respect to the physical
inner product 〈., .〉phys represent the adjoints in the corresponding kinematical case. That
means that we can either first extend the operators to D∗

phys and then construct the adjoint
or take the adjoint first in Dkin and then extend the adjoint operator to D∗

phys and we will
obtain the same result. This yields the following condition for the physical inner product

(iv) 〈(Ô′)†ψ, ψ̃〉phys = 〈(Ô†)′ψ, ψ̃〉phys (112)

Here we denoted the adjoint with respect to the physical inner product with the same
symbol † we used in the kinematical case. Furthermore, the rigging map needs to be
constructed in such a way that the physical operators Ô defined on Dphys respectively
preserve the space of solutions D∗

phys, that means

(v) Ô′η(f) = η(Ôf) for all f ∈ Dkin (113)

A physical inner product on the image of η, that is η(Dkin) ⊂ D∗
kin can then be defined as

〈ψ, ψ̃〉phys = 〈η(f), η(f̃)〉phys := [η(f̃)](f) (114)

The physical Hilbert space Hphys is then defined as the completion of η with respect to
〈., .〉phys With that definition of an inner product the condition (iv) in (112) is automati-
cally satisfied

〈(Ô′)†ψ, ψ̃〉phys = 〈ψ, Ô′ψ̃〉phys
= 〈η(f), η(Ôf̃)〉phys
= [η(Ôf̃)](f) = [Ô′η(f̃ )](f) = [η(f̃)](Ô†f)

= 〈η(Ô†f), η(f̃)〉phys
= 〈(Ô†)′ψ, ψ̃〉phys (115)
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An example how a rigging map can be explicitly constructed is the so called group aver-
aging procedure. Consider a set of constraint operators ĈI where I labels the individual
constraints that are self-adjoint and their first class algebra is a Lie algebra, then we can
define unitary operators by using the exponential map

Û(g) = exp

(
i
∑

I

θIĈI

)
(116)

with parameters θI ∈ T ⊂ R yielding a unitary representation of the Lie group. The
condition that a function f is annihilated by the infinitesimal generators of the constraints
carries over to the requirement that a linear functional is a solution of the constraints if
it is invariant under the action of those unitary operators, that is for f ∈ Dkin

[(Û(g))′](f) = ℓ((Û(g))†f) = ℓ(f) for all g ∈ G (117)

Using the unitary operators we can define a projector on physical states given by

P̂ =

∫

G

dµH(g)Û(g) (118)

where µH denotes Haar measure on G. The property of the Haar measure that it is
invariant under right and left translations are important for showing that the projector
defined above indeed projects on physical states as can be seen below

Û(g)P̂ f = Û(g)

∫

G

dµH(h)Û(h)f

=

∫

G

dµH(h)Û(g)Û(h)f

=

∫

G

dµH(h)Û(gh)f

=

∫

G

dµH(g−1g̃)Û(g̃)f

= P̂ f (119)

In the third line we used that G is a group, in the fourth line we introduced the new
integration variable g̃ := gh and in the one before the last line we used that µh is invariant
under translations. The rigging map η can now be expressed in terms of the projector
defined in (118)

η : Dkin → Hphys ⊂ D∗
phys f 7→ η(f) :=

∫

G

dµ(g)H〈Û(g)f, .〉kin (120)

and the physical inner product can then be defined as

〈η(f), η(f̃ )〉phys := [η(f̃)](f) (121)

Likewise to the case of quantum mechanics where the Dirac bra and ket vectors in the
spaces D× and D′ are distributions on D also here the linear functional η(f) defined
above is a distribution on Dkin. In this sense the rigged Hilbert space framework com-
bines Hilbert spaces with distribution theory and allows us to understand the case of
unbounded operators with continuous spectra along the lines of the standard language
used in quantum theory.
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Before we will apply RAQ to LQG in order to solve the diffeomorphism constraint, we
will discuss a simple example from quantum mechanics, where one basically could guess
the physical Hilbert space immediately so that the individual steps of the RAQ program
can be understood in a simple situation. We consider a two dimensional quantum me-
chanical system with kinematical Hilbert space Hkin = L2(R

2, dx2) with one constraint
given by Ĉ = p̂1. In the first step of RAQ we need to choose a dense subspace Dkin of
Hkin on which the elementary operators x̂1, x̂2, p̂1, p̂2 and arbitrary powers of them can
be defined. As usual we choose S(R2), the Schwartz space of rapidly decreasing functions
on R2 for Dkin. Now we are looking for solutions to the constraint Ĉ = p̂1 = −i~∂/∂x1.
These are functions that do not depend on the variable x1 and since the inner product of
Hkin involves an integral over R of dx1 those functions are not normalizable and thus no
elements of Hkin. However, they can be mathematically defined as elements of D∗

kin and
hence linear functionals ℓ on Dkin defined as

ℓ : Dkin → C f 7→ ℓ(f) := 〈ℓ, f〉kin =

∫

R2

d2xℓ(x)f(x) (122)

The second step of RAQ consists of finding solutions in D∗
kin and in our case these are

functionals that satisfy

[Ĉ′ℓ](f) := ℓ(Ĉ†f) =

∫

R2

d2xℓ̄(x)p̂†1f(x) = i~

∫

R2

dx1dx2
∂ℓ

∂x1
(x1, x2)f(x1, x2)

!
= 0 (123)

Obviously, the elements of D∗
phys ⊂ Dkin are those linear functionals that do not depend on

x1.Therefore, physical operators defined on Hphys or a dense subspace Dphys respectively
are operators that depend only on x̂2, p̂1, p̂2 because those commute with the constraint
Ĉ = p̂1. Now, since p̂1 is a constraint operator involving p̂1 correspond to classical objects
that vanish on the constraint surface and are thus rather uninteresting physical operators.
For this reason the relevant physical operators will be functions of x̂2, p̂2 only. Hence, the
physical Hilbert space in this simple example is just Hphys = L2(R, dx2). Let us show that
we end up with the same result when we use the rigging map to construct the physical
Hilbert space. The projector for group averaging in this example has the form

P̂ :=

∫

R

dteitp̂1 (124)

and using P̂ to define the corresponding rigging map η : Dkin → D∗
phys we obtain

η(f) :=

∫

R

dt〈eitp̂1f, .〉kin =

∫

R

dt

∫

R2

d2xf(x1 + t, x2) (125)

where we used that the unitary operator exp(itp̂1) generates translations. The physical
inner product can then be defined as

〈η(f), η(f̃)〉phys := [η(f̃)](f) =

∫

R

dt

∫

R2

dx1dx2f̃(x1 + t, x2)f(x1, x2) (126)

Let us introduce the variable t′ := t+ x1 then we rewrite the expression in (126) as

〈η(f), η(f̃)〉phys =
∫

R

dx2



∫

R

dt′f̃(t′, x2)





∫

R

dx1f(x1, x2)


 = 〈ψ̃, ψ〉L2(R,dx2) (127)

showing that the physical Hilbert space we end up with is indeed Hphys = L2(R, dx2).
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Finally, let us say a few words about alternative methods to solve the constraints in
cases where the refined algebraic quantization (RAQ) framework cannot be applied. This
is for instance the case for the Hamiltonian constraints since their algebra involves struc-
ture functions instead of structure constants. A way to circumvent this problem is to
replace the Hamiltonian constraint by the corresponding master constraint M defined in
(21) [27] , that (i) satisfies a trivial algebra and is constructed in such a way that one
obtains a self-adjoint operator [58]. Now one could on the one hand apply RAQ to find
solutions to the Master constraint. On the other hand one can also use the direct integral
decomposition (DID) method in order to construct the physical Hilbert space. In the
latter case one uses the fact that for self adjoint operators Ô on separable Hilbert spaces
the Hilbert space can be written as a direct integral

H ≃
⊕∫

R

dµ(λ)Hλ (128)

whereby µ is the spectral measure and Hλ are again separable Hilbert spaces with an
inner product induced from H. On each of this Hilbert spaces the operator Ô acts by
multiplication. So assuming that Ô is a constraint operator the physical Hilbert space
is just the Hilbert space Hλ associated with the eigenvalue λ = 0, that is Hphys = H0.

For LQG the kinematical Hilbert space on which the master constraint operator M̂ will
be defined is non separable. However, Hkin decomposes into a direct sum of separable
Hilbert spaces each of which are left invariant by the action of M̂ and therefore the DID
method can be applied to each of the individual Hilbert spaces in the direct sum, see [59]
for an application of this method.

3.3.3 Quantization and solutions of the diffeomorphism constraint

When looking for solutions to the diffeomorphism constraint, we would like to proceed in
a similar way than for the Gauss constraint. Doing so, the first step consists in defining
the infinitesimal version of the spatial diffeomorphism operator that is classically of the
form

~C( ~N) =

∫

Σ

d3xNaF j
abE

b
j (x) (129)

where Na is the shift vector, Fab = F j
abτj/2 the curvature associated to Aj

a and Ea
j the

densitized triad, where we neglected the terms involving the Gauss constraint Gj . Consid-

ering the term involving the Gauss constraint it is possible to rewrite ~C( ~N) as an integral
over Σ of Ea

j and (L ~NA
j)a yielding, likewise to the Gauss constraint, to an expression

that involves the densitized smeared over a 3 dimensional integral with a phase space de-
pendent smearing function. Now, when one tries to proceed and expresses ~C( ~N) in terms

of holonomies and fluxes one realizes that the operator corresponding to ~C( ~N) does not
exist onHkin. Note that recently in [60] a quantization of the infinitesimal diffeomorphism
operators was performed using a densitized shift vector of the form Na = Ea

j /
√
q yielding

an expression that is less singular and can be quantized. As we will see in section 4.2 the
same is also true for the classical expression qabCaCb.
However, that Ĉa itself does not exist is not a problem as far as the Dirac quantization
program is concerned because the requirement that the representation should be diffeo-
morphism covariant ensures that finite spatial diffeomorphism are implemented unitarily
(see also section 3.4 for a more detailed discussion). As a consequence we can work with
the those operators denoted by Û(ϕ) for ϕ ∈ Diff(Σ) instead when looking for solutions
of the diffeomorphism constraint.
The action of Û(ϕ) on a given spin network function is the following

Û(ϕ)Tγ,~j,~I = Tϕ(γ),~j,~I f.a. ϕ ∈ Diff(Σ) (130)
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showing that he action of Û(ϕ) map the graph γ that Tγ,~j,~I is defined onto its image under
the diffeomorphism ϕ. That the infinitesimal constraints do not exist as operators can be
also seen from the fact that the operators Û(ϕ) are not weakly continuous. An unitary
operator is said to be weakly continuous if for a family of operators Û(ϕt) we have

lim
t→0
〈Ts , Û(ϕt)Ts′〉 = 〈Ts , Ts′〉 f.a. Ts, Ts′ ∈ Hkin (131)

Let ϕV
t be a one-parameter family of diffeomorphisms generated by a vector field V 6= 0.

We choose γ in the support of V then there exists ǫ > 0 such that for all t ∈ (0, ǫ)
ϕV
t (γ) 6= γ. Now we choose Ts = Ts′ and obtain

lim
t→0
〈Ts , Û(ϕV

t )Ts〉 = lim
t→0
〈Ts , TϕV

t (s)〉 = 0 6= 1 = 〈Ts , Ts〉 (132)

which shows that the finite diffeomorphisms are not weakly continuous. For the reason
that any cylindrical function fγ can be written as a linear combination of spin network

functions, the action of Û(ϕ) can be easily extended to fγ . In contrast to the Gauss
constraint solutions to the spatial diffeomorphism constraint will not live in a subspace
of Hkin and we need to apply the RAQ program here, which has been done in [41]. An
application to 2+1 Euclidian gravity can be found in [61] and in [62] the RAQ quantization
program was applied to a scalar field toy model.
As a first step in RAQ we need to choose a dense subspace of Hkin on which arbitrary
finite powers of the elementary operators are defined. In the case of LQG Dkin = Cyl
the space of cylindrical functions. Now we are looking for solutions in the algebraic dual
D∗

kin = Cyl∗ and for this purpose the action of operators and particularly of Û(ϕ) on Hkin

needs to be extended to functionals ℓ in D∗
kin and is given by

[Û ′(ϕ)ℓ](f) = ℓ(Û−1(ϕ)f) f.a. f ∈ Dkin, ϕ ∈ Diff(Σ) (133)

where we denoted the extension of the operator with a prime as above. This allows us to
formulate the requirement for solutions ℓ

[Û ′(ϕ)ℓ](f) = ℓ(Û−1(ϕ)f)
!
= ℓ(f) f.a. f ∈ Dkin, ϕ ∈ Diff(Σ) (134)

Those solutions are elements of D∗
phys ⊂ D∗

kin defined as the set of those ℓ ∈ D∗
kin that

satisfy the condition in (134). Since the spin network functions lie dense in Dkin = Cyl we
can restrict the construction of solutions to the diffeomorphism constraint to them and
then express diffeomorphism invariant cylindrical functions as linear combinations of the
solutions associated with spin network functions.

[Û ′(ϕ)ℓ](Tγ,~j,~I) = ℓ(Û−1(ϕ)Tγ,~j,~I) = ℓ(Tϕ−1(γ),~j,~I)
!
= ℓ(Ts) f.a. f ∈ Dkin, ϕ ∈ Diff(Σ)

(135)

Let us introduce the multi-label s = {γ,~j, ~I} with ϕ(s) = {ϕ(γ),~j, ~I} and introduce orbits
of s associated with Diff(Σ) denoted by [s]

[s] := {ϕ(s), φ ∈ Diff(Σ)} (136)

For all orbits [s] a diffeomorphism invariant distribution can then be constructed as

ℓ[s] =
∑

s′∈[s]

〈Ts′ , .〉kin (137)

We need to ensure that the sum in (137) converges when applied to some spin network
function Ts as otherwise ℓ[s] would not be an element of D∗

phys. Fortunately, due to the
orthogonality property of spin network functions that follows from the Peter & Weyl
theorem, already mentioned in section 3.1, in the expression

ℓ[s](Ts̃) =
∑

s′∈[s]

〈Ts′ , Ts̃〉kin (138)
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only a finite number of terms will be non-vanishing. First, we only obtain a nonvanishing
contribution if s̃ ∈ [s], meaning the graph Ts̃ is defined on must be diffeomorphic to
the graph associated with the multi-label s. Furthermore the righthand side of (138)
is only nonvanishing if additionally the representations associated with the edges agree.
Depending on how symmetric (with respect to the representation associated with the
edges) the considered graph is this might yield to additional nonvanishing contributions
in the sum. However, since any graph consists only of a finite number of edges the
righthand side of (138) will always involve finitely many nonvanishing terms only. Note
that in the context of group averaging (138) can be understood as group averaging over
the orbits of [s] under Diff(Σ) using a counting measure on the orbit. That those ℓ[s] are

invariant under the action Û(ϕ) can be easily seen

Û ′(ϕ)ℓ[s](Ts̃) =
∑

s′∈[s]

〈Ts′ , Û †(ϕ)Ts̃〉kin

=
∑

s′∈[s]

〈Û(ϕ)Ts′ , Ts̃〉kin

=
∑

s′∈[s]

〈Tϕ(s′), Ts̃〉kin

=
∑

s′′∈[s]

〈Ts′′ , Ts̃〉kin

= ℓ[s](Ts̃) (139)

As far as the operators corresponding to strong Dirac observables with respect to spatial
diffeomorphism are concerned, these are operators that strongly commute with Û(ϕ), one
can show [41] that Hkin splits into mutually orthogonal super selection sectors, that is it
decomposes into a direct sum of Hilbert spaces associated with the individual orbits [s]

Hkin =
⊕

[s]

H[s]
kin with H[s]

kin =
⊕

s′∈[s]

Hs′

kin (140)

and (strongly) diffeomorphism invariant operator preserves those individual Hilbert spaces

H[s]
kin. The rigging map η is then constructed for each individual H[s]

kin separately. For this

purpose let us chose some dense subspace D[s]
kin ⊂ H

[s]
kin and consider the algebraic dual

(D[s]
kin)

∗
. A family of rigging maps η

[s]
a : D[s]

kin → (D[s]
diff)

∗
can then be defined as

η[s]a (Ts̃) := a[s]ℓ[s](Ts̃) (141)

where a[s] > 0 ∈ R is some up to now unspecified number labeling the family of maps.
Note, that in general the size of the orbits |[s]| and |[s′]| may be be different even when
the graphs associated with the multi-labels s and s′ are diffeomorphic. As a consequence
one needs to consider the orbit of the most unsymmetric graph (with respect to the

representations associated to the edges) for the definition of η
[s]
a in (141).

In order to make the connection to the group averaging more transparent we will rewrite

η
[s]
a as sum over diffeomorphisms in Diff(Σ). Note that the naive ansatz where one averages
over the total group Diff(Σ) does not work for the reason that there exist uncountably
infinitely many diffeomorphisms that leave a given graph invariant. Thus the trivial
diffeomorphisms need to be factored out in order to obtain a well defined element of

(D[s]
diff)

∗ ⊂ (D[s]
kin)

∗
. We consider the diffeomorphisms that leave a given graph γ invariant

and distinguish between two cases:

Diffγ := {ϕ ∈ Diff(Σ)|ϕ(γ) = γ}
TDiffγ := {ϕ ∈ Diff(Σ)|ϕ(γ) = γ, ′, ϕ(e) = e f.a.e ∈ E(γ)} (142)
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here we used the notation introduced in [5]. Both Diffγ and TDiffγ are subgroups of
Diff(Σ) and Diffγ includes all diffeomorphisms that preserve γ whereas elements of
TDiffγ additionally preserve all edges of γ. The quotient of the two groups turns out to
be a finite group, the group of graph symmetries of γ

GSγ := Diffγ/TDiffγ (143)

The group averaging can then be expressed as an averaging over the group of graph
symmetries and an averaging over the remaining diffeomorphisms that move the graph γ
in Diff(Σ)/Diffγ. The projector associated to the averaging over GSγ can be expressed
as

PGSγ
:=

1

|GSγ |
∑

ϕ∈GSγ

Û(ϕ) (144)

here we have introduced a normalization by dividing by the size of GSγ . Note that al-
though usually done in the literature this normalization is not necessary since such a factor
can always be absorbed in the arbitrary factor a[s] in (141) as long as we only consider spin
network functions without spurious vertices. The normalization chosen in (144) ensures
that the contribution in the group averaging procedure of the most symmetric graph is
normalized to 1. Considering also the averaging with respect to those diffeomorphisms
that move the graph we obtain for the rigging map

η[s]a (Ts̃) = a[s]
∑

ϕ∈Diff(Σ)/Diffγ

〈Û(ϕ)PGSγ
Ts̃ , .〉kin (145)

A diffeomorphism invariant inner product can the be constructed on the image of η
[s]
a

denoted by η
[s]
a (D[s]

kin) ⊂ (D[s]
diff)

∗
and the diffinvariant Hilbert space H[s]

diff is then the

completion of D[s]
diff with respect to 〈., .〉diff

〈η[s]a (Ts′), η
[s]
a (Ts)〉diff := [η[s]a (Ts)](Ts′) = a[s]

∑

ϕ∈Diff(Σ)/Diffγ

〈Û(ϕ)PGSγ
Ts , Ts′〉kin

(146)
It can be shown that the so defined inner product satisfies all five requirements mentioned
in section 3.3.2 in equations (109), (112) and (113). The Hilbert space Hdiff can then be

constructed as the direct sum of the individual Hilbert spaces H[s]
diff . Those requirements

in (109), (112) and (113) do not yield any further restrictions on the factor a[s] in (146) ex-
cept the already implemented condition that a[s] is a real positive number. Consequently,
as far as operators are considered that correspond to strong Dirac observables with respect
to spatial diffeomorphisms the inner product of the solution space is not unique because
we have a freedom to normalize the inner products associated with the mutually orthogo-

nal spaces H[s]
diff . However, one expects that operators corresponding to weak observables,

that is operators that commute with the spatial diffeomorphism constraint only modulo
constraint operators, will mix super selection sectors and could therefore yield additional
requirements for the normalization constants and hence further restrict the ambiguity of
the inner product on Hdiff .

Finally, let us briefly mention that also the Gauss constraint can be solved using group
averaging. Let us denote the unitary operators corresponding to finite SU(2) gauge trans-
formations by Û(g), then the associated rigging map is given by

η(Ts) =

∫

SU(2)

dµH(g)〈Û(g)Ts , .〉kin (147)

Using η above to construct the gauge invariant Hilbert space HG
kin yields to exactly the

same result that we obtained in section 3.3.1. Note, that solving the Gauss constraint can
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be equivalently be done either before solving the diffeomorphism constraints or afterwards.
The resulting Hilbert space HG

kin is, likewise to the kinematical Hilbert space Hkin still
non-separable. In [63] a proposal was introduced to obtain a separable Hilbert space for
Hdiff by allowing fields to have isolated point of non-differentiability. The associated gauge
symmetry is an extension of Diff(Σ) and includes homeomorphisms that, together with
their inverse are smooth everywhere except at at most finitely many points. An application
of the RAQ program with respect to this extension of Diff(Σ) yields a separable Hdiff .

3.4 More on representations of A

We have already discussed one representation of the canonical commutation relations
(41) (or rather their integrated version (53)). This was the diffeomorphisms covariant
representation (59) on the Ashtekar-Lewandowski Hilbert space Hkin. In this section we
would like to discuss other representations. Why would it be interesting to do so? There
are some aspects of the standard representation that are peculiar, and one might wonder
whether there are other representations that do not have these properties. Examples are:
In the standard representation,

• there are no operators representing the connection A directly,

• the generator of the unitary maps implementing diffeomorphisms does not exist,

• the spectrum of geometric operators is purely discrete.

Natural requirements for a “fundamental” representation include:

1. The representation is irreducible, i.e., each state in the representation Hilbert space
is cyclic.

2. The representation is diffeomorphism covariant, i.e., there exist unitary operators
implementing the diffeomorphisms.

3. There is at least one state that is invariant under diffeomorphisms.

A representation with all these characteristics is, however, equivalent to the the Ashtekar-
Lewandowski representation (59). This is a consequence of the uniqueness theorem

Proposition 1 ([64, 42]). There is only one cyclic representation of A with diffeomor-
phism invariant cyclic vector – the Ashtekar-Lewandowski representation (59).

We note that to really prove the above proposition, the algebra A and the class of
diffeomorphisms has to be defined in great detail. We also note that there are interesting
representations that violate one or more premises of the above proposition.6 For example,
[65] exposes a diffeomorphism invariant representation that is reducible. In [66], a cyclic
and diffeomorphism invariant representatiopn of an algebra slightly larger than the one
from the above proposition are described.

In the following, we will however describe a simpler class of representations due to
Koslowski, [67, 68, 69]. These representations have been called representations with classi-
cal spatial background geometry. The basic observation is that the Ashtekar-Lewandowski
representation is a member of a family of very similar representations. The AL ground
state is peaked on a degenerate triad E(0) = 0. But it is easy to construct similar rep-
resentations which, however are peaked on different classical triad fields E(0). A rough
sketch of the situation is as follows:

AL ground state Ω =̂ δ0(E) in momentum rep. (148)

Ground states w. background ΩE(0) =̂ δE(0)(E) in momentum rep. (149)

6To be precise, the examples given in the literature are for the somewhat simpler case of the structure group
SU(2) replaced by U(1), but it is likely that they generalize to the SU(2) case.
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How are these representations defined precisely? The Hilbert space, and the representation
of the holonomies stays the same,

HE(0) = Hkin, πE(0)(h) = h, (150)

but the representation of the fluxes is changed by adding a c-number term,

πE(0)(En(S)) = Xn(S) + E(0)
n (S) id, E(0)

n (S) =

∫

S

∗E(0)
i ni d2x. (151)

The new representations have the following properties.

• The representations πE(0) are cyclic.

• One can regularize the geometric operators in the representations πE(0) with exactly
the same methods as in the standard representation (described in sec. 3.2). The
resulting operators are

Âr(S) = ÂrAL(S) +Ar(E(0), S) id, V̂ (R) = V̂AL(R) + V (E(0), R) id, (152)

where S is a surface, R a region, the subscript AL denotes operator in the standard
representation7, and the c-number terms are given by the classical value in the
respective background. This result is very simple to state, but the proof is non-
trivial [68].

• Only the symmetries of E(0) can be implemented unitarily in the new representa-
tions.

We also note that for E(0) = 0, we recover the standard representation from (150),(151).
Equation (152) shows that the new representations can be interpreted as containing a
“geometric condensate”.

If we want to use the more general representations in the place of the standard rep-
resentation when implementing constraints, the failure of the diffeomorphisms to be im-
plemented unitarily is of concern. For example, for the operators U(φ) implementing the
diffeomorphisms in the standard representation one finds that generically

U(φ)πE(0) (En(S))U(φ)† 6= πE(0)(Eφ∗n(φ(S))) (153)

for diffeomorphisms φ. But one can easily show that one can also not find other unitaries
that will do the job. The reason is that the geometrical background E(0) is fixed can
can not transform under any operation on HE(0) ≡ Hkin. There is a way to remedy
this problem, at the price of going over to a much larger Hilbert space and a reducible
representation. Let us use the notation

|T 〉E(0) ≡ |T,E(0)〉 (154)

for a spin network function T interpreted as an element of HE(0) . Then define

H[E(0)] =
⊕

E(0)∈[E(0)]

H
E(0) . (155)

Here the direct sum is over all background triads in one gauge and diffeomorphism equiv-
alence class,

E(0) ∈ [E(0)] ⇐⇒ ∃g, φ : E(0) = Adg(φ∗E
(0)), (156)

where g denotes a gauge transformation and φ a diffeomorphism. We note that the Hilbert
space (155) is thus labeled by a spatial metric modulo diffeomormphisms, that is, a spatial

7V̂AL can be either, the Ashtekar-Lewandowski, or the Rovelli-Smolin version, depending on which regular-
ization procedure is chosen.
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geometry, or a point in superspace. A is represented on H[E(0)] through the direct sum of

the representations π
E(0) for E(0) ∈ [E(0)], and gauge transformations, diffeomorphisms,

as well as their semidirect product can be implemented unitarily. The representation on
H[E(0)] is not cyclic, however.

Starting from H[E(0)], it is possible to obtain states that solve the diffeomorphism and
Gauss constraint by group averaging, just as in the case of the standard representation
discussed in detail in sections 3.3.2. Let us consider the diffeomorphisms as an example.
We make the definitions

Diff(γ,E(0)) := {Diffeos φ : φ∗E
(0) = E(0) and φ(γ) = γ} (157)

TDiff(γ,E(0)) := {Diffeos φ : φ∗E
(0) = E(0) and φ(e) = e for all edges e of γ} (158)

Note that these definitions exactly parallel those used in the detailed treatment of the
group averaging procedure in section 3.3.3 and [5]. Like in the standard case both of these
sets actually form groups. Moreover their quotient

GS(γ,E(0)) = Diff(γ,E(0))/TDiff(γ,E(0)) (159)

can be shown to be a finite group. Then group averaging for a spin net Tγ in the E(0)-
sector of H[E(0)] effectively reduces to averaging over diffeomorphisms modulo Diff(γ,E(0))

and over GS(γ,E(0)). More precisely, let

(Tα, E
(0)|Tβ, E′(0)〉 :=

∑

G(φ)∈Diff/Diff
(α,E(0))

〈Tα, E(0) |P(α,E(0))U
†
φ |Tβ , E′(0)〉, (160)

where the projection P(α,E(0)) is defined as

P(α,E(0))|Tα, E(0)〉 := 1∣∣GS(α,E(0))

∣∣
∑

G(φ)∈GS
(α,E(0))

Uφ|Tα, E(0)〉. (161)

Now it is easy to show that

Proposition 2. The linear functionals (Tα, E
(0)| are well defined, finite, and diffeomor-

phism invariant,

(Tα, E
(0)| ◦ Uφ = (Tα, E

(0)| for all φ ∈ Diff. (162)

Similar results can be obtained for gauge transformations and, taking the semidirect
product of diffeomorphisms and gauge transformations, for bundle automorphisms. This
means that the quantum kinematics can be developed to the same point for the new
representations as for the standard representation. Among other things, this shows nicely
that diffeomorphism invariance is not antithetical to being peaked on a fixed geometry.

As an example consider the operator V̂ ol for the volume of the entire spatial slice.
Also in the new representations, it commutes with all automorphisms. It thus defines an
operator on Haut. Moreover, this operator acts in precisely the way one would expect. If
f is an eigenstate of the volume operator in the standard representation, with eigenvalue

λ, then |f, E(0)) is an eigenvector of V̂ ol with eigenvalue λ+ V ol(0).
We also note that the invariant states resulting from the vacuum representation are

again contained in these constructions as the special case E(0) = 0. Finally, while H[E(0)]

is large, this is partially remedied by the group averaging. For example, vectors | 1, E(0)〉,
| 1, E′(0)〉 ∈ H[E(0)] are mapped onto the same vector in Haut. More generally

(f, φ∗E
(0)| = (φ−1

∗ f, E(0)|. (163)
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4 Quantum dynamics

In this section we discuss the quantum dynamics of loop quantum gravity. In the case that
we use pure Dirac quantization the dynamics is encoded in the Hamiltonian constraint
and its quantization is explained in section 4.1. When we consider the Brown-Kuchar or
the scalar field model earlier introduced the dynamics is encoded in a so called physical
Hamiltonian. However, the quantization of the latter relies in both models on techniques
that have been used for the Hamiltonian constraint. The details of the quantization of
the Brown-Kuchar model are discussed in section 4.2, whereas the quantum theory of the
scalar field model is presented in 4.3.

4.1 The quantum Hamilton constraint

As we have seen in section 2.1, the Hamilton constraint of the classical theory is given by

C =
β

2

1√
q
Ea

i E
b
j ǫ

ij
kF

k
ab

︸ ︷︷ ︸
=:CE

−β(1 + β2)
1√
q
Ea

i E
b
jK

i
[aK

j
b]

︸ ︷︷ ︸
=:T

. (164)

In the present section we will discuss how to turn this classical expression into a well defined
operator. The general difficulty with this is obviously that C is a complicated nonlinear
function in the phase space variables, hence ordering problems present themselves. There
are also some specific difficulties with the expression:

• (164) contains the inverse volume element. The volume element itself has a large
kernel when quantized, see the discussion in section 3.2, so its inverse is ill defined.

• The expression (164) contains the curvature F of A, as well as the extrinsic curvature
K. For neither of them there is a simple operator in the quantum theory.

A guiding principle in the quantization process can be the Dirac algebra (18)–(20). In par-
ticular, the quantum Hamiltonian constraint should be invariant under gauge transforma-
tions, covariant under diffeomorphisms, and the commutator of two Hamilton constraints
should give a diffeomorphism constraint.

We should say that the knowledge about the quantization and implementation of the
Hamilton constraint is not complete. Many things remain to be understood. But we will
show that at least there is a strategy that leads to well defined constraint operators. Given
the difficulties outlined above this is highly nontrivial in itself.

The quantization strategy we will describe in the following is due to Thiemann [70,
71, 72], but draws on important earlier work and ideas by Rovelli, Smolin, Lewandowski
and others. Our presentation is in part based on [5].

Thiemann’s tricks

The quantization is based on two key ideas. The first one is to use various ingenious
classical identities to express parts of the Hamilton constraint in terms of Poisson brackets
before quantization. The second one is to express curvature in terms of holonomies. Let
us explain them in turn.

Let

V =

∫

Σ

d3x
√
det q, K =

∫

Σ

d3xKi
aE

a
i (165)

be the total volume of the spatial slice, and the integrated extrinsic curvature. Then

Ea
i E

b
j ǫ

ijk

√
det q

=
4

κ
ǫabc{V,Ak

c}, Kj
a =

2

κ
{K,Aj

a}. (166)
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These identities can be used to write

CE(N) = c

∫

Σ

d3xNǫabc tr (Fab{Ac, V }) , (167)

T (N) = c′
∫

Σ

d3xNǫabc tr
(
{Aa,K}{Ab,K}{Ac,K}

)
, (168)

where we have used the notation for the two parts of the Hamilton constraint introduced
in (164). c and c′ are simply two constants whose exact values are not so important for
us. The idea behind these reformulations is that it is natural to replace Poisson brackets
by commutators in the quantization process,

{ · , · } −→ 1

i~
[ · , · ]. (169)

This means that the quantization would be greatly simplified if operators existed for the
quantities V,K. Indeed we have already seen in section 3.2 that an operator exists for V .
With respect to K, the identity

K = {V,CE} (170)

suggests to first quantize CE, and then use the commutator with the volume operator
to define the operator for K. Thus we have already dealt with two of the difficulties
regarding the quantization of C: The inverse volume element is gone, and the extrinsic
curvature is dealt with. What remains is the quantization of the curvature F of A. Here
we use the well known fact that holonomies encode information about curvature. Let S
be an oriented surface such that the integral

∫
S F is small, and let α be the (oriented)

boundary of S. Then the first term on the right hand side of

∫

S

F =
1

2

(
hα − h−1

α

)
+O

((∫

S

F

)2
)

(171)

is a good approximation to the left hand side. Let e be an edge starting at a point s(e).
A similar approximation plus a second Taylor expansion gives

ǫėa(s(e)){A(s(e))a, V } ≈ h−1
e {he, V } (172)

where ė is the tangent to e in a chosen parametrization e(t) , and ǫ is the coordinate length
ǫ =

∫
e
dt of the edge in the given parametrization. In this way, we can express curvatures

and connections by holonomies. Putting everything together we can get a Riemann sum
approximation of the Euclidean part of the constraint,

CE(N) ≈ C(�)
E := c

∑

�

N(v�)

3∑

I=1

[(
h−1
αI (�) − hαI(�)

)
h−1
sI(�)

{
hsI (�), V

}]
. (173)

Here {�} is a decomposition of Σ into 3-dimensional cells, and for each cell a point v� has
been fixed. {αI(�)} is a set of loops and {sI(�)} a set of edges such that their tangents
span the tangent space in the point v� in the following sense: there is a basis {bI(�)}
of the tangent space at v(�), such that bI(�) is tangent to both αI(�) and sI(�), and
compatible with their orientations. We call the data ({�}, {v�}, {sI(�)}, {αI(�)}) a
regulator of CE, and sometimes denote it simply by �. The exact shape of these cells,
loops and edges does not matter. The approximation is good as long as the cells are much
smaller than the scale on which the fields A,E vary, and the loops and edges stay within
the cell.

Finally, we can consider families of regulators such that the cells shrink to points. Then
the corresponding approximations will converge to the exact result for a wide variety of
such families.
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The same kind of arguments can also be made for the second part of the Hamiltonian
constraint T (N). The connection components Aa in (168) can be replaced by holonomies
along edges with suitable tangents, and the integrated exterior curvature K by Poisson
brackets of V with the regulated Euclidean part (173), as per (170). The resulting ex-
pression is quite complicated and contains ambiguities, but the correct refinement limit is
obtained for a large class of regulators.

Quantization

We will now come to the quantization. The general idea is clear: Pick a family of regulators
which converge to the continuum result. Replace Poisson brackets by commutators, and
holonomies and volume operators by their operator counterparts, and obtain operators

Ĉ
(�)
E (N) = c

∑

�

N(v�)
3∑

I=1

((
h−1
αI(�) − hαI(�)

)
h−1
sI(�)

[
hsI (�), V̂

])
. (174)

on the kinematic Hilbert space. Now take the refinement limit � → Σ to obtain an
operator ĈE. There are, however, several difficulties when putting this program into
practice:

1. In the limit of infinite refinement, the operator is in danger of creating infinitely
many loops and edges. Hence the limit may be ill defined.

2. Even if problem 1. can be overcome, the operator will generically not converge, since

typically Ĉ
(�)
E Ψ ⊥ Ĉ(�′)

E Ψ for regulators � 6= �
′.

3. Since h and V̂ do not commute, there are ordering ambiguities.

4. There is a lot of ambiguity in the choice of regulators since now there is no guaran-
tee that different families of regulators will converge to the same operator, if they
converge at all.

The first problem can be solved by a suitable ordering. Let us consider the action on
a spin network. The volume operator acts only at the vertices, hence ordering it to the
right will force the loops and edges that are created by ĈE to be attached to the vertices
of the spin network only. Thus, for a given spin network, only finitely many new edges
and loops can be created. This also partially solves problem 3. To deal with the rest of
the difficulties, we will be less ambitious, and not demand convergence in the kinematic

Hilbert space. Rather, we consider the matrix elements of Ĉ
(�)
E between one kinematic

state and one diffeomorphism invariant one. It turns out that due to the diffeomorphism
invariance of the one state, many of the ambiguities in the attachment of the loops and
edges do not change the matrix elements. What is more, for several types of regulators it
is known that the matrix elements converge,

lim
�→Σ

(Ψ|Ĉ(�)
E |fγ〉 is well defined. (175)

Typically, the matrix elements already become constant at a finite refinement, namely
when the decomposition of Σ into cells is already so fine that there is at most one vertex
of γ per cell.

Now we have to be careful. Convergence of the above matrix elements does not imply
that there exists a limit operator on the kinematic Hilbert space. Rather, we can interpret

(Ψ|Ĉ(�)
E | as an element in the (algebraic) dual space of Cyl, and hence conclude that there

is an operator
Ĉ†

E : Hdiff −→ Cyl∗ . (176)

The detailed features of this operator depend on the chosen family of regulators. But the
generic features do not:
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• Ĉ†
E acts locally at the vertices.

• It acts by creating and annihilating edges and loops.

One can proceed in the same way with the quantization of T (N), but since the quan-

tized expression contains double commutators with Ĉ
(�)
E , the operator action becomes

extremely complicated. Nevertheless it is well defined and finite.

Solutions

Given the definition of the Hamilton constraints we sketched above, what are the solutions?
They are states Ψ in Hdiff such that

(Ψ|C(N)f〉 = 0 for all f ∈ Cyl and all N. (177)

One simple solution is the LQG vacuum | 〉, which can also be interpreted as a state in
Hdiff . But more complicated solutions exist. For working out the set of solutions in some
detail, details of the regularization used in the quantization of the constraints have to
be fixed, since they do matter. Suffice it to say that so called exceptional edges play an
important role in the construction of solutions. Exceptional edges are edges of the type
created by the quantum constraint itself. We will not discuss this in detail, but refer to
[70, 71, 72, 5] for more detailed accounts.

Solutions lie in the intersection of the kernels of all Hamilton constraints. Formally,
the projector on this space can be expressed and approximated as follows [73]:

PC = δ(Ĉ) =

∫
DNeiĈ(N)

= 1 + i

∫
DN

∫
N(X)Ĉ(x) +

i2

2

∫
DN

∫∫
N(X1)N(X2)Ĉ(x1)Ĉ(x2) + . . . .

(178)

Ĉ(x) denotes the local action of the constraint, which is zero unless x is the position of
a vertex of the state acted upon. The path integral over N gives an infinite result, but
by requiring diffromorphism invariance, it can be split into a divergent term that can be
normalized away, and a finite remainder [74].

The matrix elements of the projector can then be expanded into a series

(Tγ1 |PCTγ2) =

∞∑

N=0

∑

v1

. . .
∑

vn

cv1...vN (Tγ1 |Ĉ(v1)Ĉ(v2) . . . Ĉ(vN )|Tγ2) (179)

where the finite sums are over all vertices of γ2 and cv1...vN is the finite remainder of the
integral over the lapse function. It only depends on the diffeomorphism equivalence class
of the vertex set {v1, v2, . . . vN}. We note that a priori the multiple applications of the
local constraint in (179) do not make sense, since we have up to now only defined the
constraint operators in such a way that domain and range are disjoint, see (176). But it
is possible to enlarge the domain of definition in such a way that multiple applications of
the constraints become possible [74, 75]. We will sketch how this is done when we discuss
the question of anomalies below.

These matrix elements are interesting, because in principle they contain all the infor-
mation about the inner product on the Hilbert space of physical states,

(Tγ1 |PCTγ2) = 〈PC Tγ1 |PC Tγ2〉phys. (180)

The expansion (179) can be interpreted as a kind of Feynman expansion, organized in
terms of how many times the constraint acts. The individual terms can be nonzero only
if the action of the constraint operators on Tγ2 produces exactly Tγ1 . Thus the non-
zero diagrams can be thought of as terms coming from the evolution of one spin network
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state into another. More precisely, they can be labeled by a two-complex, whose faces
carry representations and whose edges carry intertwiners. The complex has the graphs
γ1, γ2 as boundaries, and the internal vertices correspond to the cation of the constraints.
These diagrams are called spin foams, and they show up independently in approaches that
discretize the covariant path integral for gravity, compare the contribution by Rovelli.
That they show up in an expression for the physical inner product of the canonical theory
is a very encouraging link between canonical and covariant picture. In fact, in the light of
the recent developments that are treated in Rovelli’s contribution to this volume, we are
getting close to actually having a precise correspondence

quantum Hamilton constraint ←→ spinfoam model. (181)

We will now discuss some further aspects of the Hamilton constraint quantization.

Symmetry, anomaly freeness, ambiguities

In principle, it would be desirable to produce a symmetric, or even selfadjoint Hamiltonian
constraint,

C†(N) = C(N). (182)

But this turns out to be hard in practice, and there are even some no-go theorems [75].
Interestingly, there are heuristic arguments to the effect that one can not have both,
symmetric constraints and a constraint algebra that is anomaly free.

We have seen that the constraints classically close to form an algebra with respect to
the Poisson bracket. The same should happen on the quantum level, now with respect to
the commutators. Otherwise the gauge symmetries may have been broken when quantizing
the theory. Such an anomaly in the gauge symmetries would strongly suggest the quantum
theory to be unphysical. In particular, we are interested in the commutators

[C(M), C(N)] (183)

since by the above construction, we can already see that the Hamilton constraints trans-
form correctly under gauge transformations and diffeomorphisms. Classically the above
commutator is proportional to a diffeomorphism constraint, hence at minimum one re-
quires that the commutator should vanish states of Hdiff . The problem is that the con-
straints map Hdiff to a certain subspace of Cyl∗ which is strictly larger than Hdiff . So the
above commutator is not well defined, as it stands. There are two proposed solutions to
this problem. The first, by Thiemann [72], is to look at the commutator on Hkin, before
removing the regulator. He finds

[C(�)(M), C(�)(N)] = something 6= 0, (Ψ| something = 0 for |Ψ) ∈ Hdiff . (184)

In this sense,
[C(M), C(N)]|Hdiff

= 0, (185)

and the quantization is anomaly free. The other solution to defining the commutator is
by Lewandowski and Marolf [75]. They introduce a certain class of elements of Cyl∗ that
is slightly larger than Hdiff . Without going into technical details, a vertex-smooth state
|Ψ) is a state

|Ψ) ∈ Cyl∗ : (Ψ|Uφfγ) is a function of V (φ(γ)), (186)

i.e., of the set of vertices of the graph φ(γ), for any diffeomorphism φ. Trivial examples of
vertex smooth states are given by diffeomorphism invariant states. A less trivial example
is the linear functional given by

Ψ′ 7→ (Ψ|
∫

Σ

N
√̂
det q||Ψ′〉 (187)
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for a lapse function N and |Ψ) in Hdiff .
Lewandowski and Marolf observe that (Ψ|C(N) is vertex-smooth for a large class of

regulators, and that its action can be extended to vertex-smooth states. Moreover, they
find

(Ψvs|[C(M), C(N)] = 0, (188)

where Ψvs is vertex-smooth. As far as diffeomorphism invariant states are concerned,
this result would be expected for an anomaly free representation. But since it holds for
all vertex-smooth states, it is surprising and a little worrisome, since the term in the
Dirac algebra that results from the Poisson bracket of two Hamiltonian constraints, a
diffeomorphism constraint, would be expected to act non-trivial on most vertex smooth
states. But this has to be checked explicitly, and it may be possible to find quantizations of
this term that indeed vanish on vertex-smooth states. New light on this question may be
shed by new results of Laddha and Varadarajan [76, 77, 60], who employ new techniques
to define constraints and their commutator algebra.

We should not finish without pointing out that there are various ambiguities in the
above procedure that are poorly understood, for example regarding the loop attachment
and the representation of the newly created links (see however [78]). Overall, it is however
very encouraging that we can find a family of well defined constraint operators that are
anomaly free in a certain sense, and that lead to a convergence of the canonical and
the spin-foam picture. Given the complexity of the Hamiltonian constraints of general
relativity, these results are highly non-trivial.
Some of the techniques discussed in this section will be used in the following two sections
where the quantization of the two classical models introduced in section 2.2.1 and 2.2.2.

4.2 The quantum Brown-Kuchar model

In this section we will discuss the quantization of the Brown-Kuchar model introduced in
section 2.2.1. We want to quantize the reduced phase space whose elementary variables
are given by the observables AJ

j and E
j
J shown in equation (29). Hence we need to look at

the algebra of these elementary observables in order to know what kind of representations
are possible for the corresponding quantum theory. A property of those models where
deparametrization occurs is that the algebra of the elementary observables is isomorphic
to the kinematical one, that is

{AJ
j (σ),E

k
K(σ′)} = κ

2
δJKδ

k
j δ

3(σ, σ′) (189)

In general the algebra of observables can be more complicated and is given by the expres-
sion [79]

{OA,T , OE,T } ≃ O{A,E}∗,T (190)

which involves the Dirac bracket denoted by {., .}∗. Here we denoted the general ob-
servables associated with A,E with respect to a reference field T by OA,T and OE,T

respectively. The reason why the Dirac bracket occurs on the righthand side is that the
originally first class constraint of a given system together with the gauge-fixing constraints
for the clock fields CI := TI − τI , where I labels the individual reference fields of a given
model, form a system of second class constraints. Applied to general relativity, we would
start with the first class system given by the Hamiltonian C and spatial diffeomorphism
constraint Ca . Then for the Brown-Kuchar-model we choose four reference fields T, Sj

with j = 1, 2, 3 and obtain four gauge-fixing constraints C0 = T−τ = 0, Cj = Sj−σj = 0.
In the framework of gauge unfixing introduced in [80] the construction of the observables
in section 2.2.1 corresponds to transforming the second class constraints C and Ca again
into first class constraints and using the gauge-fixing constraints to construct a projector
that maps A and E onto their corresponding observables with respect to the now first class
constraints C and Ca. Thus, the way how observables are constructed in the relational
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framework is a particular case of the gauge unfixing procedure.
It seems that for the Brown-Kuchar-model the quantization of the reduced phase space
seems to be a trivial task and considering only the algebra it looks like even a Fock quan-
tization would be possible. However, this is not the case because likewise to the Dirac
quantization where one requires that the kinematical representation needs to allow to
implement the constraints as well defined operators, here we are only interested in those
representations in which the physical Hamiltonian Hphys in (33) can be implemented
as a well defined operator. Since Hphys consists of terms that involve the gravitational
contribution of the Hamiltonian and diffeomorphism constraint, Fock quantization is ex-
cluded. However, a possible representation would be the one of the (gauge invariant)
kinematical Hilbert space in LQG on which the constraint operators can be defined. Note
that this representation becomes physically in this model since we are quantizing the re-
duced phase space here. Hence, as a first possible representation for Hphys let us choose
Hphys = L2(Ā, dµAL), restricted to its gauge invariant subspace. Now, our task is to quan-
tize the generator of the dynamics, that is Hphys. On the classical reduced phase space
the expression h2(σ) = C2 − qjkCjCk is constrained to be positive. Implementing this
in the quantum theory would correspond to defining self-adjoint operators for h2(σ) and
restrict for each σ the spectral resolution of the Hilbert space to the positive part of the
spectrum. Since this is technically impossible at the moment because of the complexity
of the operators in the full theory, we use the absolute value under the square root and
instead and quantize

Hphys =

∫

S

d3σ
√
|C2 − qjkCjCk|(σ) (191)

As a first step, likewise to the construction in section 4.1, we need to regularize the classical
expression. For this purpose we choose a partition of the spatial dust manifold S into 3
dimensional cells � such that S =

⋃
�. Hence, Hphys can be written as

Hphys =
∑

�

∫

�

d3σ
√
|C2 − qjkCjCk|(σ) (192)

Let us denote the refinement limit in which the partition becomes the continuum by
� → S, the volume of the cells by V (�) and a point inside � by σ(�), then we can
rewrite Hphys as a limit of a Riemann sum

Hphys = lim
�→Σ

∑

�

V (�)
√
|C2 − qjkCjCk|(σ(�)) (193)

As a second step we will reformulate the expression under the square root above so that
we are able to use quantization techniques that have been successfully applied to the case
of the Hamiltonian constraint and have been discussed in section 4.1. For simplicity we
will restrict our discussion to the euclidean part of the Hamiltonian constraint CE . As
has been explained in section 4.1 once this part has been quantized the remaining part
can be quantized using the operator for CE . We introduce the (rescaled) magnetic field
Bj

J and its contraction with a co-triad given by

B
j
J := 2ǫjkℓFJ

kℓ, B := B
j
JτJej (194)

where τJ = −iσJ/2 are, as before, a choice of a basis for su(2), σj are the Pauli matrices
and FJ

jk is the curvature associated to AJ
j . Note that the index position of the capital

indices is not important here since these are the su(2) Lie algebra indices are pulled with
δJK . Using that Tr(τJτK) = − 1

2δJK we obtain

Tr(B) = −ǫjkℓFJ
kℓe

J
j (195)
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The co-triad can be expressed in terms of triads by the following formula

eJj =
1

2

1

det(ejJ)
ǫJMN ǫjmne

m
MenN (196)

together with the identities E
j
J =

√
det(q)ejJ and det(eJj ) = sgn(det(e))

√
det(q) we

obtain

Tr(B) = −sgn(det(e))ǫ
JKLFJ

kℓE
k
KEℓ

L√
det(q)

(197)

Consequently we have [Tr(B)]2 = C2
E . For the second term under the square root

qjkCjCj using qjk = Ej
JE

k
Kδ

JK/ det(q) and Cj = FK
jkE

k
K we obtain

qjkCjCk =
FL

ℓjE
ℓ
LE

j
JF

M
mkE

m
MEk

Kδ
JK

det(q)
(198)

On the other hand when we use that Tr(τIτJτK) = 1
4ǫIJK and consider the term 4Tr(BτK)

we obtain

4Tr(BτK) = −sgn(det(e))
FI

kℓE
k
IE

ℓ
K√

det(q)
(199)

Thus we have
qjkCjCk = 16Tr(BτJ)Tr(BτK)δ

JK =: δJKCJCK (200)

Let us introduce the quantities

C(�) :=

∫

�

d3σC(σ) CJ(�) :=

∫

�

d3σCJ(σ) (201)

then in the refinement limit we can rewrite Hphys as

Hphys = lim
�→S

∑

�

√
|C2(�)− δJKCJ (�)CK(�)| (202)

and this finishes the regularization of the classical expression. Using the notation τ̃µ :=
(−I2, 4τJ) with µ = 0, 1, 2, 3 and the classical identity in (166) we can rewrite the regu-
larized expressions as

Cµ(�) =

∫

�

d3σTr(Bτ̃µ) =
4

κ

∫

�

Tr(F ∧ {V(�), A}τ̃µ) (203)

where V (�) is the volume of � given by

V (�) =

∫

�

d3σ
√

det(q) (204)

The corresponding quantum operator is then defined as

Ĥphys = lim
�→S

∑

�

√∣∣∣Ĉ†
0(�)Ĉ0(�)− δJKĈJ(�)ĈK(�)

∣∣∣ (205)

and one needs to show that the limit yields a well defined operator on Hphys. For the

operator Ĉ0(�) this has been shown in [26] and is briefly discussed in section 4.1. The

operator ĈI(�) can be quantized using similar techniques since in its definition also enters
the Tr(B) term with an additional τ̃J matrix inside the trace. At this point the symmetries
of the classical physical Hamiltonian become important. As mentioned in section 2.2.1
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the physical Hamiltonian is invariant under (active) diffeomorphisms on the dust manifold
S and we would like to preserve this symmetry also in the quantum theory having the
consequence that Ĥphys needs to be implemented as a spatially diffeomorphism invariant
operator. The representation we choose for Hphys is the gauge invariant sector of the usual
kinematical representation of LQG, namely L2(Ā, dµAL). For this representation it was
shown in [41] that spatially diffeomorphism invariant operators, need to be quantized in a
graph preserving way, meaning that those operators do not modify the underlying graph
that a spin network function is defined on. However, in its usual quantization discussed
in section 4.1 the operator Ĉ0 is quantized in a graph changing way. Thus, choosing
the usual kinematical representation of LQG for Hphys together with the requirement
that the classical symmetries of Hphys carry over to the quantum theory forces us to

quantize the operators Ĉµ in a graph preserving way. Since the Hilbert space in the chosen
representation decomposes into an orthogonal sum of the Hilbert spaces associated with
each individual graph, this means that each of these graph Hilbert spaces needs to be
preserved separately. In order to implement this graph preserving property we introduce
the notion of a minimal loop: Given a graph γ, consider a vertex v ∈ V (γ) and a pair of
edges e, ẽ ∈ E(γ) of edges starting at the vertex v. A loop αγ,e,ẽ in γ starting at v going
a long the edge e and ending at v along the edge ẽ−1 is said to be minimal provided that
there exist no other loop in γ with these properties and fewer edges transversed. Using
the notion of a minimal loop we can define an operator for each graph at a given vertex v

Ĉµ,γ,v =
1

ℓ2p|Tv(γ)|
∑

(e1,e2,e3)∈Tv(γ)

ǫIJK
1

|Lγ,v,eI ,eJ |
∑

α∈Lγ,v,eI ,eJ

Tr
(
τ̃µĥαĥek [ĥ

−1
eK , V̂γ,v]

)

(206)
here Tv(γ) denotes the set of ordered triples of edges at the vertex v and Lγ,v,eI ,eJ is the

set of minimal loops. Furthermore, V̂γ,v is the Ashtekar-Lewandowski volume operator
shown in equation (88). The operator for the physical Hamiltonian for each graph γ is
then defined as

Ĥphys,γ =
∑

v∈V (γ)

√∣∣Pγ

(
Ĉ

†
γ,vĈγ,v − δJK ĈJ,γ,vĈK,γ,v

)
Pγ

∣∣ (207)

whereby Pγ : Hphys → Hphys,γ is an orthogonal projection operator, that needs to be
introduced in order to ensure that Hphys,γ is graph preserving. Although the loop is
attached along already existing edges of the graph it can still be the case that when a
holonomy operator is acting the resulting product of representation includes the trivial
one. The final operator is then defined as

Ĥphys =
⊕

γ

Ĥphys,γ (208)

That Ĥphys has to be quantized in a graph preserving way, has the consequence, that in
the quantum theory, one has infinitely many conservation laws, one for each graph. Those
conservation laws have no classical counter parts and therefore in this naive quantization
of the physical Hamiltonian they seem rather artificial. A way to avoid this issue and
thus also the projection operators in (207) is to change the representation for Hphys. One
possible other representation introduced in the framework of Algebraic Quantum Gravity
(AQG) [29] is von Neumann’s infinite tensor product representation (ITP). In the context
of AQG one does not work with the embedded graphs used in LQG but considers one
(fundamental) abstract combinatorial graph on which the quantum dynamics is defined.
The embedding of the graph into a given spatial manifold happens only in the semiclassical
sector of the theory and how the abstract graph is embedded is encoded in semiclassical
states. To each edge of the abstract graph one associates an L2(SU(2), dµH) Hilbert space
and one considers a graph with countable infinitely many edges. One of the motivations
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to introduce the AQG model was that semiclassical computations of dynamical operators
technically simplify in this setup. This is due to the fact that for graph preserving op-
erators the current existing semiclassical states can be used and those operators can be
defined more naturally in the AQG framework. In [29] a combinatorial graph of cubic
topology was chosen and considering this graph we can define an (algebraic) operator for
the physical Hamiltonian. The algebraic version of the operator in (206) is given by

Ĉµ,v =
∑

s1,s2,s3=±1

s1s2s3ǫ
I1I2I3Tr

(
τ̃µĥαI1s1,I2s2

ĥev,I3s3
[ĥ−1

ev,I3s3
, V̂v]

)
(209)

here ev,Is denotes the edge starting at v and going in positive (s=+1) or negative (s=-1)
I-direction and αIs,Js̃ is the unique minimal loop in the algebraic graph of cubic topology,
that starts at v goes along the edge eIs and comes along the edge e−1

Js̃ before ending in v
again. In analogy one can define an algebraic volume operator, that is for a cubic graph
of the form

V̂v := ℓ3p

√√√√
∣∣∣∣∣
1
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∑

s1,s2,s3=±1

ǫIJKǫLMN ĴL
ev ,Is1

ĴM
ev ,Js2

ĴN
ev ,Ks3

∣∣∣∣∣ (210)

The final algebraic operator is then given by

Ĥphys =
∑

v∈V (γ)

√∣∣∣Ĉ†
vĈv − δJKĈJ,vĈK,v

∣∣∣ (211)

where the sum runs over the countable infinitely many vertices of the algebraic graph. In
contrast to the LQG framework in AQG trivial representations associated to the edges
are allowed. The picture of the dynamics is then that dynamical operators do not change
the underlying infinite abstract algebraic graph but only representations associated to the
edges. However, since trivial representations are allowed subgraphs of the fundamental
algebraic graph can and will be modified so that the quantum dynamics in the algebraic
framework looks similar to the graph modifying one in LQG. In both formulations the
usual LQG and the AQG model geometrical operators are defined on the physical Hilbert
space and are thus observables. Hence, these models are two examples where the discrete
spectra of those operators is carried over to the physical sector8

A further possibility to formulate a model for LQG, in which operators can be defined in a
graph changing way is the scalar field model discussed in section 2.2.2 whose quantization
will be discussed in the next section.

4.3 The quantum scalar-field model

In this section we discuss the quantization of the scalar field model whose classical theory
was introduced in section 2.2.2. As already mentioned at the end of section 2.2.2 the
physical Hilbert space Hphys of this model will be constructed from the gauge invariant
subspace of the diffeomorphism invariant Hilbert space denoted by HG

diff for the reason
that the diffeomorphism as well as the Gauss constraint are solved by means of Dirac
quantization. As discussed in section 3.3.2 and 3.3.3 the diffeomorphism invariant Hilbert
space can be constructed by using a rigging map ηdiff : Dkin → D∗

diff ⊂ D∗
kin. In addition

in order to construct the operator corresponding to the physical Hamiltonian Hphys of this
model, we need another Hilbert space denoted by Hdiff,x associated to a subgroup denoted
by Diff(Σ, x) of Diff(Σ) including those diffeomorphisms, which preserve a given point
x ∈ Σ. The construction of the rigging map for Diff(Σ, x) works analogously to that of
Diff(Σ) when using the techniques introduced in section 3.3.2. Next the gauge invariant

8Note that in AQG in contrast to the volume operator the area operator cannot be defined a priori since
it is not diffeomorphism invariant. Here one needs to modify the quantization of the area operator in order to
be able to write it as a spatial integral instead of an integral over a surface.
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subspace of these two Hilbert spaces can be easily obtained because for each gauge in-
variant cylindrical function f̃ ∈ Cyl, the linear functional ηdiff(f̃) is not affected by gauge
transformations that act on f ∈ Cyl in the sense that the expression [ηdiff(f̃)](f) is invari-
ant under gauge transformation. Consequently, we obtain HG

diff and HG
diff,x respectively

by restricting Dkin =Cyl to the subspace of gauge invariant cylindrical functions.

When we decide to do not reduce with respect to the Hamiltonian constraint at the clas-
sical level, we need to construct solutions to the Hamiltonian constraint in the quantum
theory, this yields an equation of the form

(
π̂(x) − ĥ(x)

)
Ψ = 0 (212)

Taking into account that π̂ is quantized as −iδ/δφ(x) (setting ~ = 1) we obtain as a
(formal) general solution

Ψ(φ,A) = e
∫
Σ
d3xφ̂(x)ĥ(x)ψ(A) (213)

where ψ(A) is an SU(2) gauge and spatially diffeomorphism invariant function.

Physical operators, these are operators that correspond to classical Dirac observables,
will be defined on Hphys or a dense subspace Dphys of it. We explained in section 3.3.2
that the action of operators on Hkin can be extended to D∗

kin. Therefore, in our case, we

have for symmetric diffeomorphism and gauge invariant operators L̂ defined originally on
Hkin a natural action on Hdiff , where we denote the extended operator by L̂′, given by

[L̂′ηdiff(f)](f̃) := [ηdiff(f)](L̂
†f̃) = [ηdiff(f)](L̂f̃) = 〈ηdiff(L̂f) , ηdiff(f̃)〉diff (214)

So far, the operators L̂ are only observables with respect to the diffeomorphism and
Gauss constraint but not with respect to the Hamiltonian constraint. In this model those
observables are not constructed at the classical level, like in the Brown-Kuchar model of
section 2.2.1 but are constructed as Dirac observables directly in the quantum theory on
Hphys. A quantum Dirac observable Ô is defined as an operator on Hphys (or a dense
subspace Dphys) with the following properties

• Ô is SU(2)-gauge and spatially diffeomorphism invariant.

• The operator Ô commutes with the Hamiltonian constraints, that is [Ĉtot(x), Ô] = 0
for all x ∈ Σ.

Inspired by the relational framework [30, 31] for the classical theory, one can (formally) de-
fine a family of Dirac observables. Let L̂ be an SU(2) gauge and diffeomorphism invariant
linear operators, then the operator Ô(L) defined as

Oτ (L̂) := e
i
∫

Σ

d3x(φ̂(x)−τ(x))ĥ(x)
L̂ e

−i
∫

Σ

d3x(φ̂(x)−τ(x))ĥ(x)
(215)

is a quantum Dirac observable. Here τ is the value that the reference field φ takes while
being transformed along its gauge orbit. We need to choose τ(x) := τ with τ being a
constant real number in order to ensure that the resulting operator is spatially diffeomor-
phism invariant. The classical interpretation of these Dirac observables is precisely the
analogue of those formal power series used to construct the observables AJ

j and E
j
J in the

Brown-Kuchar model shown in equation (29). Explicitly, we have in the quantum theory

Oτ (L̂) =

∞∑

n=0

in

n!


L̂,

∫

Σ

(φ̂(x) − τ)ĥ(x))



(n)

(216)

which is the quantization of the classical expression

Oτ (L) =

∞∑

n=0

1

n!
{L,

∫

Σ

(φ(x) − τ)h(x))}(n) (217)
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The quantum dynamics of the observables is given by the following equation

− i d
dτ
Oτ (L̂) =

[
O(L̂), Ĥphys

]
(218)

and those equations are the analogue of the Heisenberg picture in quantum mechanics.
Our final task is to implement the operator Ĥphys that is a quantization of the classical
expression in (39). Promoting the individual terms under the square root in Hphys to
operators we obtain the heuristic expression

Ĥphys =

∫

Σ

d3x

√
−
√
q̂Ĉ +

√
q̂

√
Ĉ2 − ̂qabCaCb (219)

where q̂ := d̂et(q). This operator will be defined on a suitable domain of HG
diff and thus act

only on states that are spatially diffeomorphism invariant. The operators corresponding
to the classical expression qabCaCb should annihilate diffeomorphism invariant states.
Therefore, assuming a suitable operator ordering for Hphys we assume that we can work
with the simplified operator

Ĥphys =

∫

Σ

d3x

√
−2
√
q̂Ĉ :=

∫

Σ

d3xĥ(x) (220)

and this is also the physical Hamiltonian suggested by Rovelli and Smolin in [35]. Although
we can use some of the already existing quantization techniques in the literature for
Ĉ and

√
q̂ respectively, what we need to define is an operator for

√
−2√qC and the

already existing operators are the Hamiltonian constraint Ĉ smeared against arbitrary
lapse functions (graph-modifying) in [26], the master constraint mentioned in section 2.2
[27] (graph-modifying and graph-preserving) and the physical Hamiltonian of the Brown-
Kuchar model (graph preserving) in [34]. The physical Hamiltonian Ĥphys for the scalar
field model will be defined on a suitable domain of HG

diff in a graph changing way. Let us
briefly sketch the quantization procedure. The regularization of the classical expression
for C will be that of [5], where the operator valued distribution for Ĉ is defined as

∫

Σ

d3xN(x)Ĉ(x) =
∑

x∈Σ

N(x)Ĉ′
x (221)

One of the differences to the regularization chosen by Thiemann in [26] is the way how
the loop is attached to the graph on which the spin network functions are defined on.
In Thiemann’s proposal the loop runs along the edges eI and eJ that belong to the
graph γ (see section 4.1) whereas in the regularization in [5] the loop lies in the plane
spanned by the edges eI and eJ but is only connected to the graph at the vertex v.

Note that neither the operator
√̂
qĈ(x) nor the operator ĥ(x) are defined on HG

diff due
to their dependence on x that breaks diffeomorphism invariance. Therefore, we need the
Hilbert spaces HG

diff,x in order to implement those operators in the quantum theory. Each

individual operator Ĉ′
x maps its domain from Hdiff to Hdiff,x and as shown in [75] defines

naturally an operator on Hdiff,x. The operators Ĉ′
x from [5] are non-symmetric, which

is no problem as long as we are working with constraint operators. However, here we
are quantizing a physical Hamiltonian, that involves a square root and we will need to
perform a spectral decomposition in order project on the positive part of the spectrum of
the operator under the square root. Therefore, we consider the operators

Ĉx :=
1

2

(
Ĉ′

x + Ĉ′†
x

)
(222)
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The operator valued distribution, that we consider for implementing the Hamiltonian
density h(x) of Hphys is then of the form

Ĉ(x) :=
∑

x′∈Σ

δ(x, x′)Ĉx′ (223)

Likewise one can define an operator valued distribution for the classical expression
√
q

given by √̂
q(x)

∑

x′∈Σ

δ(x, x′)
√̂
qx′ (224)

Note that both operator values distributions above are well defined for the reason that
when they are smeared against an arbitrary smearing function F and applied to some
cylindrical function only a finite number of non zero terms occur in the sum

∫

Σ

d3xF (x)
√̂
q(x)fγ =

N∑

k=1

F (vk)
√̂
qvkfγ (225)

where v1, ..., vN are the vertices of the graph γ and similar for the operator Ĉ(x). The
expressions in (223) and (224) can then be used to define an operator for Hphys =

∫
Σ h(x)

on (a subspace of) HG
diff,x

ĥ(x) :=
∑

x′∈Σ

δ(x, x′)

√
−2√̂q

1
2

x′Ĉx′

√̂
q

1
2

x′ (226)

Due to the square root in the equation above ĥ(x) is only well defined on the subspace

of HG
diff,x where the spectrum of

√̂
q

1
2

x′
Ĉx′

√̂
q

1
2

x′
is positive. In order to be able to consider

only the positive part of the spectrum we need to choose a selfadjoined extension for ĥ(x)
and in general this choice might not be unique. Let us denote the subspace of Hdiff,x

corresponding to the positive part of the spectrum by Hdiff,x,+. As discussed in [75] there
exists a natural map ηΣ : HG

diff,x → HG
diff with ηdiff(Σ,x)(f) 7→ ηdiff(Σ)(f). The domain of

the physical Hamiltonian operator is then the image of ηΣ on Hdiff,x,+ and we obtain as
the physical Hilbert space Hphys = ηΣ(Hdiff,x,+) with inner product

〈e
∫
Σ
d3xφ̂ĥψ, e

∫
Σ
d3xφ̂ĥψ′〉phys := 〈ψ, ψ′〉diff (227)

with ψ, ψ′ ∈ HG
diff . The final form of the operator for Ĥphys is then given by

Ĥphys =

∫

Σ

ĥ(x) =
∑

x∈Σ

√
−2√̂q

1
2

x Ĉx
√̂
q

1
2

x (228)

Finally, let us comment on the classical symmetries of the Hamiltonian in this model.
Likewise to the Brown-Kuchar model Hphys is invariant under spatial diffeomorphisms.
However, for the reason that here a different representation than the kinematical rep-
resentation of LQG was chosen, the requirement that Hphys needs to be quantized in
a graph preserving way is absent. Furthermore, also the classical Hamiltonian densi-
ties {h(x), h(y)} = 0 commute a general property of those deparametrized models. In
the framework of the habitat, being the home of so called vertex smooth states, briefly
mentioned at the end of section 4.1, it was shown in [75] that the commutator of two
Hamiltonian constraints smeared against arbitrary lapse functions vanishes on the habi-
tat. Thus, one would expect that the Hamiltonian densities in the scalar field model will
also vanish on the habitat [ĥ(x), ĥ(y)] = 0.
Although the graph modifying property of the physical Hamiltonian in the scalar field
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model has some advantages as far as the rather artificial infinitely many conservation
laws for graph preserving operators in the Brown-Kuchar model are concerned, when the
semiclassical sector of the model is considered the analysis becomes more complicated.
The reason for this is that with the current existing semiclassical techniques for the full
theory, graph modifying operators cannot be analyzed and those techniques would need
a strong improvement in order to be able to analyze the semiclassical sector of the scalar
field model in full generality.
Summarizing, both quantum models, the Brown-Kuchar as well as the scalar field model
could be a step in the right direction and help in the future to extract some physical
information out of full LQG but of course this is a long range project and on the way
there are still many technical issues to solve.

5 Summary and open problems

In the present lectures we have given an introduction to loop quantum gravity, in particular
its canonical quantization techniques. We also saw how it makes contact with the path
integral formulation developed in spin foam gravity. The latter topic, and its connection to
what we presented here is covered in detail in the contribution by Rovelli. But also in what
we did cover, we have left out many details, and did not even touch on any applications,
such as to the quantum theory of black hole horizons (covered in the contribution by
Barbero, Lewandowski and Villaseñor), or to cosmology (covered in the contribution by
Singh). A good starting point to get an overview over all of these developments is the
contribution by Ashtekar in these proceedings.

However, we hope that we have explained at least some of the other big achievements of
loop quantum gravity, namely its description of quantum geometry and the corresponding
dynamics. The quantum theory of (extrinsic and intrinsic) geometry, as described in
section 3 comprises in particular geometric operators with a discrete spectrum, the scale of
which is set by Planck lenght, and diffeomorphism invariant states. We have furthermore
seen that, based on this, well defined Hamiltonian constraints, and in the case of the
matter models we considered, well defined Hamiltonian operators can be obtained. This
is a highly non-trivial result, given the complicated nature of the classical dynamics.
Moreover, there is a clear connection to the spin foam approach to loop quantum gravity.

Although many of the structures that we have described have already been investigated
for some time, there are still lots of new developments. Some of those have already
been mentioned in the main text, but there are many more that we could not cover
in these lectures, among them new connections between the full theory and symmetry
reduced models [81, 82], coherent states for quantum geometry [83, 84, 85, 86, 87, 88], an
interpretation of quantum geometry in terms of polyhedra in flat space [89, 90, 91, 88,
92, 93], and corresponding stunning results about the quantum volume [94] and the use
of spinor techniques [88, 95, 96, 97, 98].

Let us finally list some important questions that are the subject of ongoing investigation
in loop quantum gravity:

• Barbero-Immirzi parameter: What role does it ultimately play in loop quantum
gravity with and without matter?

• Controlled approximations: Loop quantum gravity is a non-perturbative approach
to the quantization of gravity, but approximations will be vital to do physics. How
can we find controlled approximations to situations with symmetries from the full
theory, or approximately solve the Hamilton constraints? In the context of the
reduced models the Hamiltonian constraint is already solved and what we end up is
an evolution equation in the physical Hilbert space. However, also here one needs
approximation techniques for the reason that the evolution equations are similar
complicated to the solution equations of the Hamiltonian constraint.
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• Loop quantum gravity and matter: Which types of matter can be consistently cou-
pled to loop quantum gravity? What are the implications of quantized space-time
geometry to the propagation of matter?

• Physics from Hamilton constraints and Hamiltonians: How does one extract physics
from the solutions to the constraints? In particular one should be able to understand
how ordinary quantum field theory and classical general relativity are embedded into
loop quantum gravity. The first should correspond to a sector of quantum gravity
where quantum fluctuations of the geometry are small but matter is still treated
as a quantum object, whereas for general relativity both the matter and geometry
quantum fluctuations are expected to be negligible. Furthermore, it is important to
analyze how ambiguities in the quantization of constraints and physical Hamiltonians
do reflect in physical properties of the theory.

• Connection to spin foam gravity: What is the precise relation between scattering
amplitudes and the physical inner product? Which quantization of the Hamilton
constraint corresponds to which vertex amplitude?

For some of these, there are already some insights. Answers to these questions will be
crucial for the path that loop quantum gravity takes in the future.
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