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Spinorial tools have recently come back to fashion in loop gravity and spin foams. They provide

an elegant tool relating the standard holonomy-flux algebrato the twisted geometry picture of the

classical phase space on a fixed graph, and to twistors. In these lectures we provide a brief and

technical introduction to the formalism and some of its applications.
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Spinors and Twistors in LQG and SF Simone Speziale

1. Introduction

The Hilbert spaceHLQG used in loop quantum gravity can be heuristically understood as a
collection of certain Hilbert spaces associated to all possible graphs.1 While being big enough to
represent the infinite number of degrees of freedom of the gravitational field, the space is made of
simple building blocks, the finite-dimensional Hilbert spacesHΓ = L2(SU(2)E,dEg), whereE is
the number of edges of that graph anddEg the product Haar measure. Each graph space carries only
a finite number of degrees of freedom, thereforeHΓ ⊂HLQG corresponds to a truncation of the full
theory [1]. The resulting finite degrees of freedom are usually interpreted in terms of continuous but
distributional configurations of the gravitational field [2, 3].2 On the other hand, it has been shown
in [7, 8] and then [1, 9] that the same degrees of freedom describe a new discretized version of
general relativity, more general than Regge calculus, called twisted geometries. These are discrete
geometries where each building block is described by an elementary polyhedron; however, the
polyhedra are glued together in a “twisted” way such that theresulting metric is discontinuous at
the faces. Spin network functions, which form an orthogonalbasis of eachHΓ, can therefore be
interpreted as the quantum versions of these polyhedral geometries [9]. Related ideas have been
pushed further in [10, 11, 12], and unraveled a powerful U(N) symmetry in the intertwiner space.

Remarkably, all these structures are captured in a simple and elegant way using spinors. This
is rooted in the elementary fact that Lie groups carry a complex structure which can be used to give
a representation of the algebra in terms of harmonic oscillators. The fundamental spaceHΓ, and
the classical phase space behind it, can be described using spinors and twistors. This is done asso-
ciating a spinors to each half-edge of the graph, and leads tothe usual variables, a group element
and a Lie-algebra element on each edge. In these short lectures, we give a concise introduction to
the formalism, and some of its applications.

2. Twisted geometries, spinors and null twistors

The non-gauge-invariant Hilbert spaceHΓ is a tensor product of individual spaces associated
to each edgee, He = L2(SU(2)). Hence, for the moment we restrict attention to a single edge.
The space carries a representation of the angular momentum algebra as derivative operators, and
of SU(2) group elements as multiplicative operators. The total algebra is known as holonomy-flux
algebra, from its interpretation in terms of Ashtekar variables. The space is a quantum version
of the phase spaceT∗SU(2), the cotangent bundle of SU(2), with its canonical Poisson algebra.
The bundle trivializes asT∗SU(2) ≃ SU(2)× su(2). Accordingly, it can be parameterized using
coordinates(g,X) ∈ SU(2)× su(2), with g being the holonomy of the Ashtekar connectionA
along the edgee, andX the flux of the densitized triadE along a surface dual to the edge and
infinitesimally near its initial point.

1In loop gravity the Hilbert space associated to a graphΓ is given byHΓ := L2(SU(2)E,dEg) whereE is the
number of edges of that graph anddEg the product Haar measure. The Hilbert space of the continuumtheory arises
from the individual graph-Hilbert spaces as an inductive limit HLQG := ∪ΓHΓ/∼, where∼ denotes an equivalence
relation between states living on different graphs and the completion in an appropriate topology is taken.

2An alternative but analogously continuous interpretationhas been proposed in [4, 5]. See also [6] for a related
Hilbert space representation based on the non-commutativeflux variables.
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This structure can be easily obtained from the simpler spaceT = C
2 ×C

2 with canonical
Poisson brackets [8]. One considers two spinors, say|z〉 and |z̃〉, living respectively at the initial
and final vertex ofe.3 Each spinor is equipped with the canonical symplectic structure

{zA, z̄B}=−iδ AB, A,B= 0,1. (2.1)

We construct a vector inR3 by projection onto the Pauli matrices,

~X(z) :=
1
2
〈z|~σ |z〉, (2.2)

which is defined up to a phase:|z〉 andeiϕ |z〉 define the same vector. Using (2.1), it is easy to see
that the vector carries a Poisson representation of the Lie algebrasu(2),

{Xi(z),X j(z)} = ε i jkXk(z). (2.3)

Similarly, we obtain an independent representation of the algebra using the second spinor,|z̃〉,
which we denote as̃X(z̃), or X̃ in short. Then, we define the matrix [11]

g(z, z̃) :=
|z〉[z̃|− |z]〈z̃|√

〈z|z〉〈z̃|z̃〉
, (2.4)

which is well-defined provided the norm of both spinors is non-zero. Such singular configurations
can be safely excluded, as we explain below, and in the following we will often restrict attention to
the spaceC2

∗ := C
2−{〈z|z〉 = 0}. Notice thatg|z̃〉 = −α |z], where the proportionality coefficient

α is the ratio of the spinor norms.
Thus far, the functionsX(z) andg(z, z̃) on the eight-dimensional phase spaceT∗ =C

2
∗×C

2
∗ do

not describe the manifoldT∗SU(2): they span a larger dimensional space, in particularg(z, z̃) as a
matrix is not unitary. Consider then the followingarea matchingconstraint inT⋆,

M := 〈z|z〉− 〈z̃|z̃〉= 0. (2.5)

The constraint ensures that the two vectors have the same norm, |~X| !
= |~̃X|, and thatg is unitary and

of unit determinant. It generates U(1) transformations on the spinors,4

|z〉 U(1)→ eiθ |z〉, |z̃〉 U(1)→ e−iθ |z̃〉, (2.6)

that leave invariantX, X̃ as well as the group elementg. Hence, they provide coordinates for the
six-dimensional phase space obtained by symplectic reduction T∗//M . Furthermore, the Poisson

3Recall thatΓ is an oriented graph. Our notation is as follows:σi are the Pauli matrices,τi =−i/2σi the Hermitian
generators. A spinor|z〉 ∈ C

2 has componentsz0,z1, and a dual|z] := ε|z̄〉, whereε =−iσ2. The inner product onC2 is
denoted by〈z|w〉 := z̄0w0+ z̄1w1. Dirac’s notation is adopted to avoid explicit indices, however the reader should keep
in mind that we are dealing here withclassicalspinors, and not quantum states.

4The finite action is obtained via the exponential map,

e{θM ,·}|z〉 :=∑
n

θ n

n!
{M , |z〉}(n) = eiθ |z〉.
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algebra induced on the constraint hypersurfaceM = 0 is the canonical one ofT∗SU(2), that is

{Xi,Xj}= εi jk Xk, {X̃i, X̃j}= ε i j
k X̃k, {Xi, X̃j}= 0,

{Xi,g}=−τig, {X̃i,g}= gτi , {gAB,gCD}= 0
(2.7)

The two vectorsX(z) andX̃(z̃) turn out to be related via the adjoint representation,

X̃(z̃) =−g−1(z, z̃)X(z)g(z, z̃). (2.8)

That is,X andX̃ are the alternative parameterizations ofT∗SU(2) by right- and left-invariant vector
fields. The results are summarized by the following theorem.

Theorem 1. [8] The symplectic reduction of the spaceC2
∗×C

2
∗ by the constraintM is isomorphic

to the cotangent bundle T∗SU(2)−{|X|= 0} as a symplectic space.

Finally, the isomorphism can be extended to the full spaceT∗SU(2) by suitable reduction
on the singular configurations of zero norm, which ensures that one recovers the right topology.5

The theorem provides a classical counterpart to the well-known Schwinger representation of the
quantum angular momentum. It shows that the Hilbert spaceHe, associated to a single edge in loop
gravity, can be understood as the quantization of (a certainsymplectic reduction of) the classical
phase space spanned by two spinors, interpreted as living onthe initial and final vertex respectively.

2.1 Twisted geometries

The spinorial description is related to twisted geometriesin a simple way. Recall [7] that
twisted geometries parameterizeT∗SU(2) in terms of a conjugated pair(λ ,ξ ) ∈ R

+×S1 and two
unit vectorsN(ζ ) andÑ(ζ̃ ), whereζ and ζ̃ are stereographic complex coordinates onS2. Then,
the relation to spinors is given by the map

λ =
〈z|z〉

2
, ξ =−2arg(z1)−2arg(z̃1), ζ =

z0

z1 , ζ̃ =
z̃0

z̃1 . (2.9)

The last two equations can be recognized as Hopf projectionsS3 →S2. Using (2.2), we immediately
getX(z)≡ λN(ζ ). In terms of these variables, the Poisson algebra (2.7) reads

{Xi ,Xj}= εi jk Xk, {X̃i, X̃j}= ε i j
k X̃k, {Xi, X̃j}= 0,

{λ ,ξ}= 1, {ξ ,Xi}= Li(ζ ), {ξ , X̃i}= Li(ζ̃ ),
(2.10)

where

L(ζ ) = (−ζ̄ ,−ζ ,1) (2.11)

is a connection for the Hopf bundle compatible with the Hopf section. As anticipated,λ andξ are
conjugate variables.

5At the singular points, we have the following two different spaces: on the spinor side,T such that〈z|z〉= 〈z̃|z̃〉= 0
describes the manifoldS1 ×S2×S2; on the SU(2) side,|X| = 0 describes the manifoldS3 ∼= S1 ×S2. The reduction
needed to include the singular configurations consists simply of identifying the twoS2 of the spinor side. See [7] for
details.
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2.2 Twistors

The above structure can be also conveniently described in terms of a twistor [8]. For our
purposes, a twistor is simply a pair of spinors transformingunder the defining representation of
the Lorentz group SO(3,1). The reader should be familiar with the fact that the phase spacesC2

andT carry also a natural action of SL(2,C).6 However, the form (2.1) of the Poisson brackets is
not invariant under the boosts, which is an immediate consequence of the absence of an SL(2,C)
positive-definite scalar product. An invariant symplecticstructure can be obtained through a linear
transformation to new spinors with a well-defined handedness,

|r〉 :=
1√
2

(
|z〉+ i|z̃]

)
, |l〉 :=

1√
2

(
|z〉− i|z̃〉

)
. (2.12)

In the new variables, the Poisson brackets (2.1) read7

{r Ȧ, l̄B}=−iδ ȦB. (2.13)

Furthermore, the quantities

~J = Re〈l |~σ |r〉, ~K = i Im〈l |~σ |r〉, (2.14)

generate an SL(2,C) algebra, and their action leaves (2.13) invariant [13].

The twistorZ = (|r〉, |l〉) ∈ T transforms underG∈ SL(2,C) as

GZ=

(
G|r〉

(G†)−1 |l〉

)
, (2.15)

and it comes with a natural, SL(2,C)-invariant (non positive definite) bilinear form,

(Z′,Z) := 〈l ′|r〉+ 〈r ′|l〉. (2.16)

Using this we can define thehelicity of a twistor ass(Z) := 1
2(Z,Z).

Reformulated in these new variables, the constraintM can be seen to impose the vanishing
of the helicity:M (l , r) = 2s(Z). Hence, the area matching means restricting attention tonull (i.e.
zero helicity) twistors, andM generates a U(1) transformation,

Z
U(1)7→ eiϕZ. (2.17)

The result of the previous section can be now summarized as a parameterization ofT∗SU(2) as
the canonical phase space of null twistors up to U(1) transformations. In this picture, we do not
distinguish between source and target of the edge: now thereis simply one twistorassociated to
each edge.

6In the spinorial representations, the boosts are given respectively by(1/2)Re[z|σ |z〉 and Re[z̃|σ |z〉 [13].
7We adopt here the standard spinor conventions of distinguishing right-handed indices with a dot.
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3. Gauge-invariant spinor networks and polyhedral geometries

Let us now generalize the previous results from a single edgeto the full oriented graphΓ: two
spinors are then living on each edge. We adapt the notation byremoving the tildes, and denoting
explicitly the spinors in terms of source and target nodes,zs

e and zt
e. Local gauge invariance is

imposed at each node of the graph by the closure condition,

cn = ∑
e∈n

Xe = ∑
e∈n

λeNe = 0. (3.1)

On each node, (3.1) gives three first class constraints, generating SU(2) transformations. Denote
SΓ =PΓ//c

N the reduced space, wherePΓ = (C2
∗×C

2
∗//M )E ∼= T∗SU(2)E. The result is the gauge-

invariant phase space8 of loop gravity on a fixed graph. That is,SΓ = T∗SU(2)E/T∗SU(2)N [7].
Gauge invariance eliminates the simple Cartesian structure of the initial phase space.

In terms of spinor, (3.1) is equivalent to the 2×2 matrix equation

cn := ∑
e
|zn

e〉〈zn
e|−

1
2∑

e
〈zn

e|zn
e〉I= 0. (3.2)

The spinorial description of the symplectic structure onSΓ is summarized by the following action,
with τ an auxiliary variable playing the role of time,

SΓ[z
s,t
e ] ≡

∫
dτ ∑

e
−i〈zs,t

e |∂τzs,t
e 〉+∑

e
Φe(〈zs

e|zs
e〉− 〈zt

e|zt
e〉)+∑

n
∑
e∋n

〈zn
e|Θn|zn

e〉. (3.3)

The scalarsΦe and the traceless matricesΘn are the Lagrange multipliers for area-matching and
closure constraints respectively. This quantity defines a notion of spinor network[12], as the
classical counterpart of a spin network. This should not be confused with a coherent spin network
state. What we mean is that quantizing the classical Poissonian structure described by (3.3), we
end up with the Hilbert space of gauge-invariant spin networks equipped with a representation of
the holonomy-flux algebra. Conversely, any family of coherent spin network states is labelled by a
point in such spinorial phase space.9

The reduced phase spaceSΓ can be further given a geometric interpretation in terms of poly-
hedra, using the twisted geometry variables (2.9). Let us briefly review this useful result, as an
application of the formalism. Consider first a single node, say of valenceF. Associated with it,
there is a set ofF unit vectorsNe, e= 1. . .F, plus a norm,λe, and an angle,ξe. An old theorem
by Minkowski guarantees that if (3.1) holds, these data reconstruct a unique polyhedron dual to the
node:

Theorem 2. [Minkowski] If N1, . . . ,NF are non-coplanar unit vectors andλ1, . . . ,λF are positive
numbers such that the closure condition(3.1)holds, than there exists a bounded, convex polyhedron
whose faces have outwards normals Ne and areasλe, unique up to rotations and translations.

8More precisely, a symplectic manifold itself up to singularpoints, see for example [14].
9Different families of coherent spin networks exist, which differ in their peakedness properties. Regardless of their

specific form, they can always be labeled by a point in that phase space.
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See [9] for more details and the explicit algorithm for the reconstruction of the polyhedron.
Thanks to the theorem, a spinor network can be interpreted asa collection of polyhedra with adja-
cency relations established by the connectivity of the graph. The emerging geometric picture has
an important peculiarity, that motivates its name oftwistedgeometries.10 In fact, the geometries
are piecewise flat, but can be discontinuous at the faces connecting the polyhedra. The origin of
the discontinuity lies in the fact that the local face geometry of a polyhedron depends on the entire
set of data of the polyhedron. A face shared by two adjacent polyhedra has, by definition, the same
area, but there is nothing that guarantees the same shape. Hence, the metric on a face jumps when
switching from one frame to the next, in particular the lengths, angles and even number of sides of
a face change discontinuously.

To make the geometries continuous, one needs to include additional shape-matchingcondi-
tions. For the special case of a four-valent graph, dual to a triangulation, these were found in
[15], and effectively reduce the data to edge lengths, thus Regge calculus is recovered. For general
graphs, they were studied in [9], and the result would be a generalization of Regge calculus to
arbitrary 3d cellular decompositions.11 Such discontinuity might appear appalling at first, but it
can be argued for: after all, standard Regge calculus is torsion-free, whereas the kinematical phase
space of loop quantum gravity should carry room for torsion.In this geometric picture, the angles
ξe carry a notion of discreteextrinsicgeometry among the polyhedra. The presence of extrinsic
geometry is granted by the symplectomorphism with the algebra of T∗SU(2), which is related to
a discretization of the phase space of general relativity. An elegant result, in this perspective, is
theabelianizationof part of the Poisson algebra (2.10), with the canonically conjugatedλe andξe

capturing some “scalar” components of intrinsic and extrinsic geometry. See [7] for more details
on the relation betweenξe and extrinsic curvature. In Regge geometries, the extrinsic curvature is
also captured by an angle, the dihedral angle between tetrahedra. ξe can be similarly thought of,
although a naive identification with a dihedral angle is prevented by the discontinuous nature of the
twisted geometries.12

3.1 U(N) formalism

The spinorial description ofSΓ, captured in (3.3), unravels also the existence of a U(N) sym-
metry acting on the nodes. This symmetry arises if we allow for the individual areas – the normsλe

– to vary, but keeping the value of their sum around each node fixed, and it is the classical version
of the U(N) symmetry for the space of intertwiners introduced a while back in [17]. To bring to
light this symmetry, we use a beautiful property of the spinorial description, which allows us to
find a genuine algebra of invariants. Recall in fact that the basis of invariants commonly used, the
scalar products~Xe ·~Xf (eand f being edges sharing the same node), fails to give a Poisson algebra,
because of the well-known relation

{~Xe ·~Xf ,~Xe ·~Xg}= ~Xe ·~Xf ∧~Xg. (3.4)

10Of course, the existence of a description in terms of twistoris also a reason for the name!
11Note that the fundamental variables of such a generalization would be areas and angles, and not edge lengths.
12In fact, it has been shown in [16] that prior to imposing the shape matching conditions in a triangulation, there are

three independent dihedral angles per triangle, one associated with each side of the triangle. It is only when the shapes
match that the three coincide, and the usual dihedral angle emerges.
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A different basis is then required. Let us for the moment ignore the edge constraintsMe: Then, the
spinor variables completely factorize to sets of independent spinors around each node, as many as
the valency of the node. A complete family of quadratic spinor invariants can be identified [12],

Ee f ≡ 〈ze|zf 〉, Fe f ≡ [ze|zf 〉. (3.5)

The matrixE is Hermitian,Ee f = E f e, while the matrixF is holomorphic in the spinor variables
and anti-symmetric,Fe f = −Ff e. It is easy to check that they commute with (3.2), and that they
form an (over)complete13 basis of local SU(2) invariants. For instance, the scalar products are
expressed via~Xe·~Xf =

1
2

(
|Ee f|2−|Fe f|2

)
. Remarkably, the invariants (3.5) form a genuine algebra

[12]. In particular, theE alone generate au(N) subalgebra. This property of the U(N) formalism
has important applications which have been used at the quantum level (e.g. [10, 11, 12]), where
these invariants are promoted to operators acting on the Hilbert space of intertwiner states with
fixed total area.

The individual node spacesU represent shapes of framed polyhedra with fixed total area.
Finally, reintroducing the area matching conditions amongadjacent polyhedra, the variousE,F
variables around different nodes become related to one another, and the non-local structure ofSΓ is
recovered. All this can be summarized by the following diagram:

Twistor phase space,×
e
C

4 −→ holonomy-flux phase space,×
e

T∗SU(2)

area matching
↓ closure ↓ closure

U(N) formalism,×
n
U −→ gauge-invariant space,

area matching (closed) twisted geometries

In both paths, we start from a simple Cartesian product phasespace, which is preserved by re-
duction by either the area mathing or gauge invariance. It isthe reduction bybothconditions that
makes the final space non-trivial.

4. Spinorial Hilbert space for loop gravity

We have so far discussed properties of the classical theory.However, the spinorial description
has many applications also at the quantum level [18, 19]. Oneof the main result is a quantum
version of theorem 1, which introduces a coherent spin network representation in terms of the
Bargmann holomorphic representation of the harmonic oscillator.

Theorem 3. [18] The U(1)-symmetry reduction of the double copy of the Bargmann spaceF2 of
holomorphic, square-integrable functions in two complex variables with respect to a normalized
Gaussian measure is unitarily equivalent to the space of square integrable functions overSU(2)
with respect to the Haar measure,F2⊗F2/U(1)≃ L2(SU(2),dg).

In the remainder of this section we will explain the content and the consequences of this
theorem: one surprising feature of the spinorial formalism, which was discussed in [18], is that the

13There exist(F −2)(F −3) independentPlücker relationsamong them, of the formFi j Fkl = FikFjl −Fil Fjk [13].
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Haar measure on SU(2) turns out to be just a Gaussian measure onC
4 when written in terms of

spinors, in the sense that

∫
dg f(g) =

∫
dµ(z)

∫
dµ(z̃) f (g(z, z̃)), dµ(z) :=

1
π2 e−〈z|z〉d4z.

for any f ∈ L2(SU(2)) and the group elementg interpreted as function of spinors as in (2.4) on
the right side. Using spinorial variables to characterize SU(2) can be understood as choosing a
coordinate system with a lot of redundant degrees of freedom. Thus, f (g(z, z̃)) is constant along
certain directions inC4 which can be used to turn the Haar measure into Gaussian form.We
mention also that a similar construction exists for the Haarmeasure on SL(2,C) [21].

The usual Hilbert space associated to a single edge in loop gravity is He := L2(SU(2),dg).
The symplectomorphism stated in Theorem 1 however allows tofollow a different route. The
most natural space to quantizeC2 and its canonical brackets (2.1) is the Bargmann spaceF2 of
square-integrable, holomorphic functions over two complex coordinates with a normalized Gaus-
sian measure,

F2 := L2
hol(C

2,dµ(z)), (4.1)

As there are two spinors, one living on each vertex ofe, restricted by the U(1)-constraint enforcing
them to have equal length, the appropriate space to look for arepresentation ofT∗SU(2) is

H
spin

e := F2⊗F2/U(1) , (4.2)

which we call thespinor Hilbert spaceassociated to an edgee. The spinors|z〉 and|z̃〉 are repre-
sented onH spin

e as ladder operators,g andX are then constructed as composite operators via (2.2)
and (2.4). Restricting attention to U(1)-invariant functions of both spinors singles out polynomials
of the form (labeled byα , α̃ ∈C

2, j ∈ 1
2N)

P
j

αα̃(z, z̃) :=
1

(2 j)!
〈α |z〉2 j [z̃|ε |α̃〉2 j , (4.3)

which are holomorphic in both spinor variables and further have matching degree. They form an
over-complete basis ofH spin

e , the completeness relations can be derived as
∫

dµ(z)
∫

dµ(z̃)P j
ωω̃(z, z̃)P

k
αα̃(z, z̃) = δ jk〈α |ω〉2 j〈ω̃ |α〉2 j ,

∑
j

∫
dµ(ω)dµ(ω̃)

d j

(2 j)!
P

j
ωω̃(z1, z̃1)P

j
ωω̃(z2, z̃2) = I0(2〈z1|z2〉〈z̃1|z̃2〉) .

Here I0(x) is the zeroth modified Bessel function of first kind. It plays the role of the delta-
distribution onH spin

e , in the sense that
∫

dµ(z)
∫

dµ(z̃)I0(2〈z|w〉〈z̃|w̃〉) f (z, z̃) = f (w,w̃) ∀ f ∈ H
spin

e (4.4)

The basis elements (4.3) can be extented to the whole graph, and gauge-invariance imposed at the
nodes via the usual group-averaging technique. The result is a new type of coherent spin networks,
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Spinors and Twistors in LQG and SF Simone Speziale

based on the coherent states for the harmonic oscillator.14 In particular, it carries a holomorphic
representation of the holonomy-flux algebra, which is unitarily equivalent to the standard one. To
see this, notice that the above completeness relations are,up to a missing factor ofd j := 2 j + 1
on the right side, exactly the ones fulfilled by the Wigner matrix elements inL2(SU(2),dg) when
written in the coherent state basis. Thus it is immediate to see that the two spaces are unitarily
equivalent. The unitary map can explicitly be written in terms of an integral kernel as

Te : He → H
spin

e ; (4.5)

f (g) 7→ (Te f )(z, z̃) :=
∫

dgKg(z, z̃) f (g) ,

Kg(z, z̃) = ∑
k∈N

√
k+1
k!

[z̃|εg−1|z〉k .

When applied to Wigner matrix elements in the coherent statebasis this map has an interesting
interpretation: it essentially (up to some combinatorial factors) restricts the representation matrices
of SU(2), when written in terms of spinors, to their holomorphic part

D j
ωω̃(g) =

(
〈ω | |z〉[z̃|− |z]〈z̃|√

〈z|z〉〈z̃|z̃〉
|ω̃〉
)2 j

T7→ 1

(2 j)!
√

d j
〈ω |z〉2 j [z̃|ε |ω̃〉2 j .

The unitary map (4.5) directly generalizes from a single edge e to an arbitrary graphΓ, showing
unitary equivalence between the Hilbert spacesHΓ andH

spin
Γ =⊗eH

spin
e :

TΓ : HΓ → H
spin

Γ .

Thus, equivalence classes of spinor functions living on different graphsΓ andΓ′ can be defined by
demanding the following diagram to commute

HΓ
TΓ

//

∗pΓΓ′

��

H
spin

Γ

∗pspin
ΓΓ′

��

HΓ′
TΓ′

// H
spin

Γ′

Here∗pΓΓ′ are the isometric embeddings that define equivalence classes on the group side. Their
counterparts on the spinor side∗pspin

ΓΓ′ are then used to define equivalence classes of spinor states.
Thus, equivalence classes on the left side by construction are mapped to equivalence classes on the
right side, no matter whichTΓ is used. This assures that the construction is cylindrically consistent
and allows to abstractly define thecontinuum spinor Hilbert spaceas

H
spin

LQG := ∪ΓH
spin

Γ /∼ .

Although the exact properties of this space are, for the moment, not very well understood, this
shows that the spinor tools can be lifted from a fixed graph to the continuum level. The Gaussian
form of the measure, together with the simple polynomial form of the holomorphic basis (4.3), is
expected to lead to simplification for practical computations: quantities of interest concern the mo-
ments of a simple Gaussian measure onC

4 for which combinatorial tools, such as Wick’s theorem,
are available.

14See [20] for comparison among some coherent spin network proposals.
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5. Twistors and covariant twisted geometries

The construction described in section 2 can be extended to SL(2,C), and gives a notion of
covariant twisted geometries based on the Lorentz group andnot just SU(2). This is relevant for
spin foam models and for the projected spin networks used in covariant versions of loop quantum
gravity. In all these models the starting point is the 12d phase spaceT∗SL(2,C) ≃ SL(2,C)×
sl(2,C), which is associated to each edge. Analogous to the construction of T∗SU(2) from spinors,
discussed in section 2, one can construct the cotangent bundle T∗SL(2,C) from twistors [13, 21,
22]. While the algebra can be represented onT alone, representing the group element requires a
second twistor. To avoid confusion with the previous twistorial description ofT∗SU(2), we denote
this time|t〉 and|u〉 the right- and left-handed components ofZ(u, t). We take the same invariant
symplectic structure,

{tȦ, ūB}=−iδ ȦB. (5.1)

We associate this twistor to the initial node of each edge, and a partner̃Z(ũ, z̃) to the final node, and
equipped with the same brackets (5.1). As before, we must eliminate some degenerate configura-
tions from our description, which are now the cases〈u|t〉 = 0 and〈ũ|t̃〉= 0. We denote byT2∗ the
non-degenerate space. We then consider [21]

~JL =
1
2
〈t|~σ |u〉, ~JR =

1
2
〈u|~σ |t〉, G=

|t〉[t̃|− |u]〈ũ|√
〈u|t〉〈ũ|t̃〉

,

~̃JL =
1
2
〈t̃|~σ |ũ〉, ~̃JR =

1
2
〈ũ|~σ |t̃〉, (5.2)

and a similar area matching condition as before,

M = 〈u|t〉− 〈ũ|t̃〉, (5.3)

which ensures that both twistors on a given edge have the same(complex) helicity, but not neces-
sarily vanishing as before. This time the constraint is complex, and its real and imaginary part form
a first class system, whose gauge transformations are the U(1)C transformations

|t〉 7→ e+
i
2β |t〉, |u〉 7→ e+

i
2 β̄ |u〉, |t̃〉 7→ e−

i
2β |t̃〉, |ũ〉 7→ e−

i
2 β̄ |ũ〉, β ∈ C, (5.4)

which leaves (5.2) invariant. Hence, the symplectic reduction removes four dimensions. On the
reduced 12d surfaceT∗×T∗//M , a lengthy but simple computation shows that the coordinates
(5.2) satisfy the Poisson-algebra ofT∗SL(2,C), with J andJ̃ again right- and left-invariant vector
fields, andG in the defining right-handed representation(0,1/2). By taking the hermitian conjugate
G†, or alternatively by exchanging the spinors for their dualsand vice versa in (5.2), one gets a left-
handed representation(1/2,0).

This leads to a generalization of theorem 1 to the Lorentziancase,

Theorem 4. [21] The symplectic reduction of the spaceT∗×T∗ by the constraintM is isomorphic
to the cotangent bundle T∗SL(2,C)−{|J|= 0} as a symplectic space.
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A reduction to the previous SU(2) case is obtained if we identify the canonical SU(2) subgroup
of unitary matrices, viaG† = G−1 and ~JL = ~JR. This is achieved if we set|u〉 = |t〉 := |z〉 and
|ũ〉= |t̃〉 := |z̃〉. Then, (5.2) reduce to (2.2,2.4), and the area matching (5.3) to (2.5).

On the complete graph, we have a twistor per half-edge, and adapt the notation toZn = (un, tn),
as before. The constraints are the complex area matching conditions (5.3) on each edge, and the
SL(2,C) closure condition on each node, which can be written in the chiral decomposition as

∑e∈n
~JR
e = ∑e∈n

~JL
e = 0. In the same manner as (3.3), the structure of such atwistor networkis

summarized by an action principle

SΓ[t
s,t
e ,us,t

e ]≡
∫

dτ ∑
e
−i〈us,t

e |∂τ ts,t
e 〉− i〈ts,t

e |∂τus,t
e 〉+Φe(〈us

e|ts
e〉− 〈ut

e|tte〉)+∑
n

∑
e∋n

〈tn
e|Θn|un

e〉 (5.5)

where the complex scalarsΦe and the complex traceless matricesΘn are Lagrangian multipliers.
A geometric interpretation of the twistor networks is obtained doubling up the SU(2) picture

of a collection of polyhedra. We now have a pair of spinors,(ue, te), for each face around a noden,
and accordingly a bivectorJIJ = (~JL, ~JR) via (5.2). The bivector represents the two-normal to the
face embedded in Minkowski spacetime, in the frame ofn. The chiral closure conditions together
with Minkowski’s theorem imply the existence oftwo polyhedra, corresponding to the right- and
left-handed sectors. A Hopf section decomposition similarto (2.9) can be also given, see [21]
for details. The geometric interpretation becomes more interesting if one includes the simplicity
constraints. As we review below, this amounts to identifying the right- and left-handed polyhedra,
and leads to a notion ofcovariant twisted geometries, a collection of 3d polyhedra with arbitrary
SL(2,C) curvature among them.

5.1 GL(N,C) formalism

Before moving on, let us briefly discuss the algebra of invariants, which will play an important
role in the following. As for the SU(2) case, a basis of invariants is given by the scalar products
among bivectors, but these fail to form a proper algebra, again because of (3.4) which is still valid
on each right/left sector. A solution to this problem can be found using spinors. As shown in
[13], an (over)complete basis for the space of global SL(2,C) invariants is given by the following
quantities,

〈ui |t j〉 = Ai j − iBi j , 〈ti|u j〉 = Ai j + iBi j , [ti|t j〉 = Fi j − iGi j , [ui |u j〉 = Fi j + iGi j . (5.6)

The matricesAi j andBi j are Hermitian, whileFi j andGi j are antisymmetric and holomorphic. The
invariants form a genuine algebra [13], of whichA andB generate agl(N,C) subalgebra, which is
the complexification of theu(N) algebra found in the case of SU(2) invariants.

6. Holomorphic simplicity constraints

In covariant formulations of Loop Quantum Gravity, such as spin foam models, a crucial role
is played by the simplicity constraints. In the continuum theory, they guarantee that the bi-vectors
BIJ define a unique tetrad.15 At the discrete level, they can be realized as quadratic equations on

15More precisely, they imply that the two tetrads naturally defined byBIJ are to be identified, see [23].
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the space of SL(2,C) invariants,

~JR
e · ~JR

f −e2iθ ~JL
e · ~JL

f = 0, θ = 2arctanγ , (6.1)

whereγ is the Immirzi parameter. Alternatively, as linear equations on each edge,~Ke+ γ~Je = 0 (in
the time gauge). The linear version is the one used in the EPRLspin foam models, and can be also
rewritten as

~JR
e +eiθ~JL

e = 0. (6.2)

The constraints are second class, and do not form an algebra on the gauge-invariant intertwiner
space, both aspects being direct consequences of (3.4). This poses notorious difficulties at the
quantum level, which have been the focal point of various discussions in the literature.

The spinorial formalism offers a new and powerful way to approach this issue. In fact, one
can find a version of the constraints, quadratic in the spinors, which implies (6.1) and (6.2), and
which does form a genuine algebra on the space of SL(2,C) invariants. It is based on the invariants
discussed earlier. The new simplicity constraints have been introduced in [24] for the Euclidean
case, and in [13] for the Lorentzian case. They take the form of an antisymmetric matrix,

Ce f ≡ [te|t f 〉−eiθ [ue|uf 〉= 0. (6.3)

The constraints are holomorphic with respect to the naturalcomplex structure of the spinors, and
furthermore they Poisson commute with each other:

{Ce f,Cgh}= 0, (6.4)

while of course{Ce f,C gh} 6= 0. This is the key property of such holomorphic simplicity con-
straints, which has important applications at the quantum level. Notice that because of the Plücker
relations, there are only 2N− 3 independent constraints per node. Nevertheless, they canall be
imposed harmlessly since they commute. See [13] for more details. Observe also that the distinc-
tion between diagonal and off-diagonal constraints, familiar from the quadratic version (6.1), now
disappears, with the advantage of a proper algebra and a clear holomorphic factorization.

If we add the holomorphic simplicity constraints (6.3) to the action of twistor networks (5.5),
we get a notion ofsimpletwistor networks,

S
simple

Γ [ts,t
e ,us,t

e ] = SΓ[t
s,t
e ,us,t

e ]+
∫

dτ ∑
n

∑
e, f∋n

Ψe, f

(
[tn

e|tn
f 〉−eiθ [un

e|un
f 〉
)
, (6.5)

with Ψe, f a suitable Lagrange multiplier. The role of the simplicity constraints is then to identify
the right- and left-handed sectors as in (6.2), up to aγ-dependent phase. This identifies a unique
polyhedron around each node, with the face bivectors all lying in the same 3d spacelike surface,
plus a timelike normal,NI

n, encoded in the spinors [13]. The role of the Immirzi parameter is to
determine the true area bivector asBIJ = (I− γ ⋆)JIJ . This information can be effectively traded
for a single spinor |zn

e〉 per half-edge, and one pure boostΛn ∈ SL(2,C)/SU(2) per node, such
that |tn

e〉= Λn|zn
e〉 and|un

e〉= (Λn)
−1|zn

e〉 [13]. In other words, a simple twistor network describes a
covariant twisted geometry: a collection of closed 3d polyhedra with arbitrary SL(2,C) curvature
among them.
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These simple twistor networks are very interesting from theperspective that they contain the
same information as a normal spinor network for SU(2), but allow to describe its natural embedding
into a SL(2,C)-invariant structure, through the introduction of non-trivial time-normals living at
each vertex of the graphΓ. They provide a classical version of the simple projected spin networks
[25], which form the boundary Hilbert space of EPRL/FK spin foam models [25, 26]. Furthermore,
the existence of a new, holomorphic formulation of the simplicity constraints (6.3), allows a new
treatment of the quantization, in which all the constraintsare treated on the same footing and
imposed strongly thanks to their commutativity. This program has been realized in [24, 27, 28] for
the Euclidean case, where it was shown its equivalence to a weak imposition, á la Gupta-Bleuler, of
the original second class quadratic constraints. Exact solutions have been constructed as coherent
U(N) intertwiners, and the resulting spinfoam amplitudes are directly written as a discrete action
in terms of spinors and holonomies. For the Lorentzian case,the construction of suitable coherent
states has not appeared yet, and the quantization program isin progress [29].

7. Summary and Outlook

Describing the classical phase space of loop quantum gravity in terms of spinor variables ap-
pears to be a powerful idea. The standard holonomy-flux structure is derived from a much simpler
collection of spinors on a graph, a spinor network. This is linked to a discrete geometric picture,
the twisted geometries [7, 8]. The spinors give a different Hilbert space representation for loop
gravity and new calculational tools [18, 19], which are expected to find many application: physical
quantities such as correlation functions in loop quantum gravity involve complicated SU(2) inte-
grals, which with the help of spinors become Gaussian integrals over the complex plane, a priori
much easier to handle. Furthermore, these ideas extend naturally to covariant descriptions in which
the full Lorentz group appears. Using the relation to twistors [8], it is straighforward to extend the
spinorial formalism to SL(2,C), described in terms oftwistor networks[21, 22]. This allows the
identification of new holomorphic simplicity constraints [13], classically equivalent to the usual
linear and quadratic constraints, but with the key propertythat they Poisson commute. Includ-
ing these constraints, one gets simple twistor networks describing covariant twisted geometries, a
collection of 3d polyhedra with arbitrary SL(2,C) curvature among them.

Finally, for some references, recent developments using spinor techniques in the context of
loop gravity and spin foams include a toy-model for quantum cosmology [30, 31, 32, 33], a new
look on the simplicity constraints in spinfoam models [24, 27, 28, 13], advances in the context of
group field theory [34] and topological BF-theory [35]. Thisspinorial framework in the covariant
context could provide a new angle of attack to tackle the issue of renormalization and coarse-
graining of spin foam amplitudes and group field theories [28, 34].
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