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1. Introduction

The Hilbert space’{ o used in loop quantum gravity can be heuristically undecdstas a
collection of certain Hilbert spaces associated to all jpisgjraphs: While being big enough to
represent the infinite number of degrees of freedom of thatgtenal field, the space is made of
simple building blocks, the finite-dimensional Hilbert spa.#¢ = L2(SU(2)F,dEg), whereE is
the number of edges of that graph aftd) the product Haar measure. Each graph space carries only
afinite number of degrees of freedom, therefé¢e C .7{ o corresponds to a truncation of the full
theory [1]. The resulting finite degrees of freedom are ugurterpreted in terms of continuous but
distributional configurations of the gravitational fiel| }.> On the other hand, it has been shown
in [A, B] and then[[1[]9] that the same degrees of freedom idbeser new discretized version of
general relativity, more general than Regge calculusedaNisted geometriesThese are discrete
geometries where each building block is described by anexiény polyhedron; however, the
polyhedra are glued together in a “twisted” way such thatrésellting metric is discontinuous at
the faces. Spin network functions, which form an orthogdoaais of eachy#t, can therefore be
interpreted as the quantum versions of these polyhedraheeies [P]. Related ideas have been
pushed further in[3d, 11, J12], and unraveled a powerf(\ lUsymmetry in the intertwiner space.

Remarkably, all these structures are captured in a simplekgant way using spinors. This
is rooted in the elementary fact that Lie groups carry a cemptructure which can be used to give
a representation of the algebra in terms of harmonic otmifa The fundamental spacét, and
the classical phase space behind it, can be described ysimggsand twistors. This is done asso-
ciating a spinors to each half-edge of the graph, and leattetasual variables, a group element
and a Lie-algebra element on each edge. In these shortdsciue give a concise introduction to
the formalism, and some of its applications.

2. Twisted geometries, spinorsand null twistors

The non-gauge-invariant Hilbert spag#- is a tensor product of individual spaces associated
to each edge, % = L?(SU(2)). Hence, for the moment we restrict attention to a single edge
The space carries a representation of the angular momergefira as derivative operators, and
of SU(2) group elements as multiplicative operators. Tl talgebra is known as holonomy-flux
algebra, from its interpretation in terms of Ashtekar Vlales. The space is a quantum version
of the phase spact*SU(2), the cotangent bundle of $B), with its canonical Poisson algebra.
The bundle trivializes a$*SU(2) ~ SU(2) x su(2). Accordingly, it can be parameterized using
coordinates(g, X) € SU(2) x su(2), with g being the holonomy of the Ashtekar connectién
along the edge, and X the flux of the densitized triaé along a surface dual to the edge and
infinitesimally near its initial point.

LIn loop gravity the Hilbert space associated to a grapis given by := L?(SU(2)E,d®g) whereE is the
number of edges of that graph adBig the product Haar measure. The Hilbert space of the continiin@ory arises
from the individual graph-Hilbert spaces as an inductiveitlif o := Ur 7 / ~, where~ denotes an equivalence
relation between states living on different graphs and tmepetion in an appropriate topology is taken.

2An alternative but analogously continuous interpretatias been proposed iﬂ [E, 5]. See aIEo [6] for a related
Hilbert space representation based on the non-commuftativgariables.
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This structure can be easily obtained from the simpler sfaeeC? x C? with canonical
Poisson bracketg][8]. One considers two spinors,|8agnd|2), living respectively at the initial
and final vertex o&.2 Each spinor is equipped with the canonical symplectic sirec

(AP} =-i6"®, AB=0,1 (2.1)

We construct a vector iR® by projection onto the Pauli matrices,

X(2) := %(z\am, (2.2)

which is defined up to a phasg) ande?|2) define the same vector. Using {2.1), it is easy to see
that the vector carries a Poisson representation of thelgébeasu(2),

{X'(2),X)(2)} = £*XK(2). (2.3)

Similarly, we obtain an independent representation of fgetaa using the second spindg),
which we denote aX (2), or X in short. Then, we define the matrixJ11]

2[2 - 174
(#d2)(7z7)

which is well-defined provided the norm of both spinors is4zeno. Such singular configurations
can be safely excluded, as we explain below, and in the faligwe will often restrict attention to
the spaceC? := C? — {(z]2) = 0}. Notice thatg|Z) = —a|Z, where the proportionality coefficient
a is the ratio of the spinor norms.

Thus far, the functionX (z) andg(z Z) on the eight-dimensional phase spage= C2 x C2 do
not describe the manifol@i*SU(2): they span a larger dimensional space, in particg(arZ) as a
matrix is not unitary. Consider then the followiagea matchingconstraint inT,,

9(z2) = (2.4)

M= (Z)z) — (Z]Z) = 0. (2.5)

The constraint ensures that the two vectors have the same hﬂré \)?\, and thag is unitary and
of unit determinant. It generates(l transformations on the spindfts,

2 W0y, jpWelop), (2.6)

that leave invariank, X as well as the group elemegt Hence, they provide coordinates for the
six-dimensional phase space obtained by symplectic reai@t.//.#. Furthermore, the Poisson

SRecall that” is an oriented graph. Our notation is as followsare the Pauli matrices, = —i/20; the Hermitian
generators. A spinde) € C? has component®,z', and a dualZ] := ¢€|Z), whereg = —igy. The inner product oft? is
denoted byzw) := 2wP 4 Z'w!. Dirac’s notation is adopted to avoid explicit indices, lever the reader should keep
in mind that we are dealing here wittassicalspinors, and not quantum states.

4The finite action is obtained via the exponential map,

" -
0.4 . .7 _ 46
ez = 5 S A DY =l
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algebra induced on the constraint hypersurfage= 0 is the canonical one @f*SU(2), that is

(X, X} = &k X (X, X1 =€lXe, {X%,Xj} =0,

(2.7)
{X.9t=-ng, {X.9}t=gm, {9aB,9cp} =0
The two vectorsX(z) andX (2) turn out to be related via the adjoint representation,
X2 = -9 H2DX(29(z2). (2.8)

That is,X andX are the alternative parameterizationg 68U(2) by right- and left-invariant vector
fields. The results are summarized by the following theorem.

Theorem 1. [B] The symplectic reduction of the spa€8 x C2 by the constraint# is isomorphic
to the cotangent bundle*BU(2) — {|X| = 0} as a symplectic space.

Finally, the isomorphism can be extended to the full spat8U(2) by suitable reduction
on the singular configurations of zero norm, which ensurasdhe recovers the right topologyy.
The theorem provides a classical counterpart to the wellknSchwinger representation of the
guantum angular momentum. It shows that the Hilbert spégeassociated to a single edge in loop
gravity, can be understood as the quantization of (a cestgmplectic reduction of) the classical
phase space spanned by two spinors, interpreted as livitigeanitial and final vertex respectively.

2.1 Twisted geometries

The spinorial description is related to twisted geometiea simple way. Recal[]7] that
twisted geometries paraNmeterEéSU(Z) in terms of a conjugated paih, &) € R* x St and two
unit vectorsN(¢) andN(), whereZ and{ are stereographic complex coordinates3n Then,
the relation to spinors is given by the map

(2|2) . rag = P
A= = —2argz) - 2argZ == = 2.9
s f=—2agd)-2ag?), (=3, (=3 (2.9)
The last two equations can be recognized as Hopf projecBbasS?. Using (2.2), we immediately
getX(z) = AN(Q). In terms of these variables, the Poisson algebra (2.75read

(X, X} =&k X (XX} =ehKe, {X.Xj} =0,
) (2.10)
{A. 8} =1, {&€.X}=L(0), {&X}=Ll(J),

where
L) =(-¢,~¢.1) (2.11)

is a connection for the Hopf bundle compatible with the Hagaft®n. As anticipated) and& are
conjugate variables.

SAt the singular points, we have the following two differepases: on the spinor sid&,such thatz|z) = (72) = 0
describes the manifol8' x S x $; on the SU(2) side}X| = 0 describes the manifole® =~ S x . The reduction
needed to include the singular configurations consistslgiofidentifying the twoS? of the spinor side. Setﬂ [7] for
details.
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2.2 Twistors

The above structure can be also conveniently describedrimstef a twistor [B]. For our
purposes, a twistor is simply a pair of spinors transformimmgler the defining representation of
the Lorentz group S@,1). The reader should be familiar with the fact that the phaseegC?
andT carry also a natural action of $2 C).6 However, the form[(2]1) of the Poisson brackets is
not invariant under the boosts, which is an immediate carsscg of the absence of an @LC)
positive-definite scalar product. An invariant symplesticicture can be obtained through a linear
transformation to new spinors with a well-defined handesines

In ::\%(\z>+i;2]), \|>:=\%(\z>—iyz>). (2.12)
In the new variables, the Poisson brackgtd (2.1)read
{rA 1B} = —i5"8. (2.13)
Furthermore, the quantities
J=Rel|a]r), K=ilm(|a]r), (2.14)

generate an SI2,C) algebra, and their action leavés (2.13) invarign} [13].
The twistorZ = (|r),|l)) € T transforms unde@ € SL(2,C) as

GZ= <(G(T3)“f“>>, (2.15)

and it comes with a natural, $2, C)-invariant (non positive definite) bilinear form,
(Z,Z) .= {'|r) + {r'|I). (2.16)

Using this we can define theelicity of a twistor ass(Z) := %(Z,Z).

Reformulated in these new variables, the constraiican be seen to impose the vanishing
of the helicity: .#(1,r) = 2s(Z). Hence, the area matching means restricting attentionftdi.e.
zero helicity) twistors, and# generates a (1) transformation,

7z doz. 2.17)

The result of the previous section can be now summarized asaangterization of *SU(2) as
the canonical phase space of null twistors up to U(1) transfitions. In this picture, we do not
distinguish between source and target of the edge: now thesienply one twistorassociated to
each edge.

8n the spinorial representations, the boosts are givereatisply by(1/2)Relz0|2) and RéZ|a|2) [E].
"We adopt here the standard spinor conventions of distihjnggight-handed indices with a dot.
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3. Gauge-invariant spinor networks and polyhedral geometries

Let us now generalize the previous results from a single ealge full oriented graph: two
spinors are then living on each edge. We adapt the notatioerhgving the tildes, and denoting
explicitly the spinors in terms of source and target nodgsndZ. Local gauge invariance is
imposed at each node of the graph by the closure condition,

"= F Xe= S AeNe=0. 3.1
¢ e; e; (3.1)

On each node[(3.1) gives three first class constraints,ragmg SU(2) transformations. Denote
S =P+ //cN the reduced space, whefle= (C? x C2//.#)F = T*SU(2)E. The result is the gauge-
invariant phase spatef loop gravity on a fixed graph. That i§ = T*SU(2)E/T*SU2)N ).
Gauge invariance eliminates the simple Cartesian strictiihe initial phase space.

In terms of spinor,[(3]1) is equivalent to thex2 matrix equation

=3 )@ -5 3 EA=0 (32)

The spinorial description of the symplectic structureSsris summarized by the following action,
with t an auxiliary variable playing the role of time,

A = [dry @R + Y Ol(ZIR) - @A) +Y Y Bleld). (33

n

The scalarsbe and the traceless matric&, are the Lagrange multipliers for area-matching and
closure constraints respectively. This quantity defineotion of spinor network[[[J], as the
classical counterpart of a spin network. This should notdrgused with a coherent spin network
state. What we mean is that quantizing the classical Pdmsatructure described bfy (B.3), we
end up with the Hilbert space of gauge-invariant spin netw@quipped with a representation of
the holonomy-flux algebra. Conversely, any family of conéspin network states is labelled by a
point in such spinorial phase spate.

The reduced phase spagecan be further given a geometric interpretation in termsaby-p
hedra, using the twisted geometry variables](2.9). Let ieflpreview this useful result, as an
application of the formalism. Consider first a single nods; ef valence. Associated with it,
there is a set oF unit vectorsNe, e=1...F, plus a normAe, and an angleé.. An old theorem
by Minkowski guarantees that {f (3.1) holds, these datanisttact a unique polyhedron dual to the
node:

Theorem 2. [Minkowski] If Ny,...,Nr are non-coplanar unit vectors am, ..., A are positive
numbers such that the closure conditi@a]) holds, than there exists a bounded, convex polyhedron
whose faces have outwards normalsadd areas)e, unigque up to rotations and translations.

8More precisely, a symplectic manifold itself up to singusaints, see for examplﬂ14].
9Different families of coherent spin networks exist, whidfiat in their peakedness properties. Regardless of their
specific form, they can always be labeled by a point in thaselspace.

015/6



Spinors and Twistors in LQG and SF Simone Speziale

See [P] for more details and the explicit algorithm for theamstruction of the polyhedron.
Thanks to the theorem, a spinor network can be interpreteccaiection of polyhedra with adja-
cency relations established by the connectivity of the lgrafhe emerging geometric picture has
an important peculiarity, that motivates its nametwistedgeometries? In fact, the geometries
are piecewise flat, but can be discontinuous at the facesecting the polyhedra. The origin of
the discontinuity lies in the fact that the local face geamef a polyhedron depends on the entire
set of data of the polyhedron. A face shared by two adjacdghpdra has, by definition, the same
area, but there is nothing that guarantees the same shapee Hlee metric on a face jumps when
switching from one frame to the next, in particular the lérisgangles and even number of sides of
a face change discontinuously.

To make the geometries continuous, one needs to includéaddishape-matchingondi-
tions. For the special case of a four-valent graph, dual teaadulation, these were found in
[[H], and effectively reduce the data to edge lengths, theggR calculus is recovered. For general
graphs, they were studied ifi [9], and the result would be @mgdization of Regge calculus to
arbitrary 3d cellular decompositiof$. Such discontinuity might appear appalling at first, but it
can be argued for: after all, standard Regge calculus imtefsee, whereas the kinematical phase
space of loop quantum gravity should carry room for torsiorthis geometric picture, the angles
&e carry a notion of discretextrinsicgeometry among the polyhedra. The presence of extrinsic
geometry is granted by the symplectomorphism with the afgebT*SU(2), which is related to
a discretization of the phase space of general relativity. efegant result, in this perspective, is
the abelianizationof part of the Poisson algebrfa (3.10), with the canonicadiyjegatede and &
capturing some “scalar” components of intrinsic and estdrgeometry. Sed][7] for more details
on the relation betwee& and extrinsic curvature. In Regge geometries, the extricisivature is
also captured by an angle, the dihedral angle between éetrahé, can be similarly thought of,
although a naive identification with a dihedral angle is préed by the discontinuous nature of the
twisted geometrie&?

3.1 U(N) formalism

The spinorial description -, captured in[(3]3), unravels also the existence of il }usym-
metry acting on the nodes. This symmetry arises if we allavitfe individual areas — the normg
— to vary, but keeping the value of their sum around each nadd,fand it is the classical version
of the U(N) symmetry for the space of intertwiners introduced a whilekbia [[L7]. To bring to
light this symmetry, we use a beautiful property of the spadadescription, which allows us to
find a genuine algebra of invariants. Recall in fact that theidof invariants commonly used, the
scalar product¥.- X; (e and f being edges sharing the same node), fails to give a Poisgehbral
because of the well-known relation

{Xe- X, Xe- Xgt = Xe X5 A Xg. (3.4)

100f course, the existence of a description in terms of twistaitso a reason for the name!

1INote that the fundamental variables of such a generalizaiimuld be areas and angles, and not edge lengths.

12| fact, it has been shown iﬂlG] that prior to imposing themhmatching conditions in a triangulation, there are
three independent dihedral angles per triangle, one agsdaivith each side of the triangle. It is only when the shapes
match that the three coincide, and the usual dihedral amgéeges.
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A different basis is then required. Let us for the moment rgrthe edge constraint#,.: Then, the
spinor variables completely factorize to sets of indepahdpinors around each node, as many as
the valency of the node. A complete family of quadratic spineariants can be identifiefl [12],

Eet = (Z21), Fet = [2e]2s). (3.5)

The matrixE is Hermitian,Ees = Ete, While the matrixF is holomorphic in the spinor variables
and anti-symmetriclet = —Fte. It is easy to check that they commute wifh [3.2), and thay the
form an (over)completé basis of local SU(2) invariants. For instance, the scaladycts are
expressed ViXe- X; = 3 (|Ee|2 — |Fet|?). Remarkably, the invariantp (3.5) form a genuine algebra
[LF]. In particular, theE alone generate @ N) subalgebra. This property of the(N) formalism

has important applications which have been used at the gualetvel (e.g. [A0[ 1], 12]), where
these invariants are promoted to operators acting on tHeeHikpace of intertwiner states with
fixed total area.

The individual node space® represent shapes of framed polyhedra with fixed total area.
Finally, reintroducing the area matching conditions amadgcent polyhedra, the variols F
variables around different nodes become related to onéan@nd the non-local structure &fis
recovered. All this can be summarized by the following ckegr

Twistor phase space;C* — holonomy-flux phase space,T*SU(2)
e e
area matching
J closure J closure
U (N) formalism, x % — gauge-invariant space,
n
area matching (closed) twisted geometries

In both paths, we start from a simple Cartesian product pepaee, which is preserved by re-
duction by either the area mathing or gauge invariance.thtegeduction bypoth conditions that
makes the final space non-trivial.

4. Spinorial Hilbert space for loop gravity

We have so far discussed properties of the classical thelawever, the spinorial description
has many applications also at the quantum lefdl [IB, 19]. @rte main result is a quantum
version of theorenj]1, which introduces a coherent spin mitwepresentation in terms of the
Bargmann holomorphic representation of the harmonic lasail

Theorem 3. [[L§] The U(1)-symmetry reduction of the double copy of the Bargmann sg&cef
holomorphic, square-integrable functions in two complaxiables with respect to a normalized
Gaussian measure is unitarily equivalent to the space o&integrable functions ove8U(2)
with respect to the Haar measuré, © .%,/U(1) ~ L?(SU(2),dg).

In the remainder of this section we will explain the contentl dhe consequences of this
theorem: one surprising feature of the spinorial formaliamich was discussed ifi [[L8], is that the

13There exis(F — 2)(F — 3) independenPliicker relationsamong them, of the forrRj Ry = FikFj — Fi Fik [E].
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Haar measure on S) turns out to be just a Gaussian measureCrwhen written in terms of
spinors, in the sense that

[dofe) = [au@ [du@fez2),  du@ = e @d

i

for any f € L2(SU(2)) and the group elemert interpreted as function of spinors as [n [2.4) on
the right side. Using spinorial variables to characteritd 2 can be understood as choosing a
coordinate system with a lot of redundant degrees of freedbnus, f (g(z,2)) is constant along
certain directions inC* which can be used to turn the Haar measure into Gaussian fove.
mention also that a similar construction exists for the Haaasure on S2,C) [P]].

The usual Hilbert space associated to a single edge in lagtgis .7z := L2(SU(2),dg).
The symplectomorphism stated in Theor§m 1 however allowisltow a different route. The
most natural space to quanti#® and its canonical bracketp (P.1) is the Bargmann spagef
square-integrable, holomorphic functions over two comgleordinates with a normalized Gaus-
sian measure,

F2 = Lpol(C?,du(2)), (4.1)

As there are two spinors, one living on each verteg, aéstricted by the (L)-constraint enforcing
them to have equal length, the appropriate space to lookrepr@sentation of *SU(2) is

PN — Ty @ T /U(L), (4.2)

which we call thespinor Hilbert spaceassociated to an edge The spinorgz) and|Z) are repre-
sented on#2"" as ladder operatorg,andX are then constructed as composite operatorg[via (2.2)
and [2:}). Restricting attention to(l))-invariant functions of both spinors singles out polynosiia

of the form (labeled byr, & € C?, j € 3N)

Pa(22) = (a2 [Ze]d)?, (4.3)

1
(2j)!
which are holomorphic in both spinor variables and furth@rehmatching degree. They form an
over-complete basis o#P", the completeness relations can be derived as

 autz / A (2) Ply(2.0 Pea(2.D) = 5*(a|w)? (@la)

/du du(cb)“')@ S(21,2) P (22,%) = 1o(2(21]22) (71]2)).

Here Io(X) is the zeroth modified Bessel function of first kind. It playe trole of the delta-
distribution on#2P", in the sense that

[du(@ [ du@lo(2ew) @)1 @2 = fw) Vi e rg (4.4)

The basis elementf (#.3) can be extented to the whole graggaaige-invariance imposed at the
nodes via the usual group-averaging technique. The resalhéw type of coherent spin networks,
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based on the coherent states for the harmonic osciltatbm. particular, it carries a holomorphic
representation of the holonomy-flux algebra, which is uitjtaquivalent to the standard one. To
see this, notice that the above completeness relationsipr®, a missing factor ofl; := 2j + 1
on the right side, exactly the ones fulfilled by the Wigner minaglements inL?(SU(2),dg) when
written in the coherent state basis. Thus it is immediateetothat the two spaces are unitarily
equivalent. The unitary map can explicitly be written imtarof an integral kernel as

To: Ho— AP (4.5)
f(0)~ (%) (22 = [ doKe(z2)f(g).

vk+1

o [eg ).

%(Zv 2) = k;\]

When applied to Wigner matrix elements in the coherent siates this map has an interesting
interpretation: it essentially (up to some combinatorldrs) restricts the representation matrices
of SU(2), when written in terms of spinors, to their holomorphic part

J

2j
j 22| - 4(7, - 7 1 2i (3 o /) 2]
Diss(9) = (wlyiwla» = ————(w[2)7[Ze|@D)”.
v (42)(22) (2))ty/d
The unitary map|[(4]5) directly generalizes from a singleeeeitp an arbitrary grapir, showing
unitary equivalence between the Hilbert spaggsand /""" = @e. 28"

Tr - A — A"

Thus, equivalence classes of spinor functions living ofedéht graph$ andl"” can be defined by
demanding the following diagram to commute

I

%_ %_spin

*prrlt l*pﬁ)j’n
o AN SPn
Here*prr are the isometric embeddings that define equivalence slassthe group side. Their
counterparts on the spinor sidpﬁ?',” are then used to define equivalence classes of spinor states.
Thus, equivalence classes on the left side by construct®mapped to equivalence classes on the
right side, no matter whictr is used. This assures that the construction is cylindyicahsistent

and allows to abstractly define tkentinuum spinor Hilbert spacas
spin,__ spin
%_QG — Ur% / ~.,

Although the exact properties of this space are, for the nmbymeot very well understood, this
shows that the spinor tools can be lifted from a fixed graplméocontinuum level. The Gaussian
form of the measure, together with the simple polynomiaifaf the holomorphic basi§ (4.3), is
expected to lead to simplification for practical computasioquantities of interest concern the mo-
ments of a simple Gaussian measureldrior which combinatorial tools, such as Wick’s theorem,
are available.

l4gee ] for comparison among some coherent spin netwogogeds.
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5. Twistorsand covariant twisted geometries

The construction described in sectidn 2 can be extended (8, Sl, and gives a notion of
covariant twisted geometries based on the Lorentz grougnanglist SU(2). This is relevant for
spin foam models and for the projected spin networks usedvar@ant versions of loop quantum
gravity. In all these models the starting point is the 12dsghspacel *SL(2,C) ~ SL(2,C) x
s[(2,C), which is associated to each edge. Analogous to the cotistnuaf T*SU(2) from spinors,
discussed in sectidq 2, one can construct the cotangentebTin8L(2, C) from twistors[[L3, 2],

P2]. While the algebra can be representedloalone, representing the group element requires a
second twistor. To avoid confusion with the previous twisticdescription ofT *SU(2), we denote
this time|t) and|u) the right- and left-handed componentsZifi, t). We take the same invariant
symplectic structure,

(tA, @B} = —i5"B. (5.1)

We associate this twistor to the initial node of each edge ggpartne (0, ) to the final node, and
equipped with the same brackefs |5.1). As before, we musirelie some degenerate configura-
tions from our description, which are now the cagds) = 0 and({[f) = 0. We denote b¥f',. the
non-degenerate space. We then considér [21]

5 ? - tus _ 10— U@
o, F=zuen.  6="rrrs

folm,  J*=3woi, (5.2)

= NI

and a similar area matching condition as before,
A = (ult) — (0[F), (5.3)

which ensures that both twistors on a given edge have the gmglex) helicity, but not neces-
sarily vanishing as before. This time the constraint is demp@and its real and imaginary part form
a first class system, whose gauge transformations are(thé ttansformations

t) e 2By, U)o et Blu), B e P, |0y e tBla), BeC,  (5.4)

which leaves[(5]2) invariant. Hence, the symplectic redactemoves four dimensions. On the
reduced 12d surfac&, x T.//.#, a lengthy but simple computation shows that the coordinate
(B-2) satisfy the Poisson-algebra®fSL(2,C), with J andJ again right- and left-invariant vector
fields, andS in the defining right-handed representat{®nl/2). By taking the hermitian conjugate
G, or alternatively by exchanging the spinors for their dwaid vice versa i (8.2), one gets a left-
handed representatidi,/2,0).

This leads to a generalization of theorﬂm 1 to the Lorentzésme,

Theorem 4. [£7] The symplectic reduction of the spaEex T by the constraint# is isomorphic
to the cotangent bundle*BL(2,C) — {|J| = 0} as a symplectic space.
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A reduction to the previous SQ) case is obtained if we identify the canonical SU(2) subgroup
of unitary matrices, viaG" = G- andJ' = JR. This is achieved if we seu) = |t) := |z) and
|G) = [f) := |2). Then, (BR) reduce t¢ (2[2,p.4), and the area matchingy (6®.3).

On the complete graph, we have a twistor per half-edge, aggt #loe notation t@" = (u",t"),
as before. The constraints are the complex area matchirdjtioms (5.B) on each edge, and the
SL(2,C) closure condition on each node, which can be written in theakcdecomposition as
YeendR = Teends = 0. In the same manner &g (3.3), the structure of suthisdor networkis
summarized by an action principle

st &t o st st i /+St St t

SIS /drz (U005~ T620ruE") + Pe((LBIE) — (W) + Y Y (2/nlul) (5.5)
where the complex scala# and the complex traceless matrié@sare Lagrangian multipliers.

A geometric interpretation of the twistor networks is ob&d doubling up the SU(2) picture
of a collection of polyhedra. We now have a pair of spingus, tc), for each face around a node
and accordingly a bivectal? = (Jt, JR) via (5.2). The bivector represents the two-normal to the
face embedded in Minkowski spacetime, in the frama.ofhe chiral closure conditions together
with Minkowski’'s theorem imply the existence tfo polyhedra, corresponding to the right- and
left-handed sectors. A Hopf section decomposition sintita@.9) can be also given, sge][21]
for details. The geometric interpretation becomes momr@sting if one includes the simplicity
constraints. As we review below, this amounts to identdyihe right- and left-handed polyhedra,
and leads to a notion afovarianttwisted geometries, a collection of 3d polyhedra with a&bit
SL(2,C) curvature among them.

5.1 GL(N,C) formalism

Before moving on, let us briefly discuss the algebra of irars, which will play an important
role in the following. As for the S(R) case, a basis of invariants is given by the scalar products
among bivectors, but these fail to form a proper algebranasgcause of (3 4) which is still valid
on each right/left sector. A solution to this problem can benid using spinors. As shown in
[L3], an (over)complete basis for the space of globalZ3C) invariants is given by the following
guantities,

() = Ay —iBij,  (tiluj) = Aij +iBjj,  [tift;) = Fj —iGij,  [uifuj) = R +iGij. (5.6)

The matrices\j andB;; are Hermitian, whilds; andG;; are antisymmetric and holomorphic. The
invariants form a genuine algebfa]13], of whigrandB generate al(N,C) subalgebra, which is
the complexification of the(N) algebra found in the case of $2) invariants.

6. Holomorphic simplicity constraints

In covariant formulations of Loop Quantum Gravity, such pis$oam models, a crucial role
is played by the simplicity constraints. In the continuuradty, they guarantee that the bi-vectors
B define a unique tetrak®. At the discrete level, they can be realized as quadratictEmsaon

5More precisely, they imply that the two tetrads naturallfinted byB" are to be identified, sef [23].
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the space of S(2,C) invariants,
JRIR_O3L.3- =0,  6=2arctary, (6.1)

wherey is the Immirzi parameter. Alternatively, as linear equasion each edgé&c+ yJe = 0 (in
the time gauge). The linear version is the one used in the EpRLfoam models, and can be also
rewritten as

R4+t =o. (6.2)

The constraints are second class, and do not form an algebitaeayauge-invariant intertwiner
space, both aspects being direct consequencels pf (3.43. pbhes notorious difficulties at the
guantum level, which have been the focal point of variousidisions in the literature.

The spinorial formalism offers a new and powerful way to @ggh this issue. In fact, one
can find a version of the constraints, quadratic in the spin@hich implies [[6]1) and (8.2), and
which does form a genuine algebra on the space 023L) invariants. It is based on the invariants
discussed earlier. The new simplicity constraints haven tieoduced in [[24] for the Euclidean
case, and in[[13] for the Lorentzian case. They take the fdram@ntisymmetric matrix,

Get = [teftr) —€°[uelur) = 0. 6.3)

The constraints are holomorphic with respect to the natoaiplex structure of the spinors, and
furthermore they Poisson commute with each other:

{Cet, Cfgh} =0, (6.4)

while of course{%ss,gn} # 0. This is the key property of such holomorphic simplicity con-
straints, which has important applications at the quanewall Notice that because of the Pliicker
relations, there are onlyNe— 3 independent constraints per node. Nevertheless, thewlche
imposed harmlessly since they commute. [13] for mowrElgeDbserve also that the distinc-
tion between diagonal and off-diagonal constraints, famftom the quadratic versiof (§.1), now
disappears, with the advantage of a proper algebra andrahdkemorphic factorization.

If we add the holomorphic simplicity constrainfs (6.3) te tiction of twistor networkd (§.5),
we get a notion osimpletwistor networks,

S|mp|e[tat uat tit uit _|_/d-[ LIJe.f ([tg|t?>—ei9[UQIU?>), (6.5)
n e

with We ¢ a suitable Lagrange multiplier. The role of the simplicinstraints is then to identify
the right- and left-handed sectors as[in](6.2), up jedependent phase. This identifies a unique
polyhedron around each node, with the face bivectors alglyn the same 3d spacelike surface,
plus a timelike normalN}, encoded in the spinor§ J13]. The role of the Immirzi parané to
determine the true area bivectorB$ = (I — yx)JV. This information can be effectively traded
for a single spinor |Z) per half-edge, and one pure bodst € SL(2,C)/SU(2) per node, such
that tD) = An|Z2) and|ul) = (An)~122) [[[J]. In other words, a simple twistor network describes a
covariant twisted geometry: a collection of closed 3d petita with arbitrary S[2,C) curvature
among them.
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These simple twistor networks are very interesting fromglespective that they contain the
same information as a normal spinor network for(3)Jbut allow to describe its natural embedding
into a SL(2,C)-invariant structure, through the introduction of nomwitil time-normals living at
each vertex of the gragh. They provide a classical version of the simple projected sptworks
[BF], which form the boundary Hilbert space of EPRL/FK spiarin models[[49, 26]. Furthermore,
the existence of a new, holomorphic formulation of the sinityl constraints [(6]3), allows a new
treatment of the quantization, in which all the constraiats treated on the same footing and
imposed strongly thanks to their commutativity. This peogrhas been realized in [44) 7] 28] for
the Euclidean case, where it was shown its equivalence t@k ivgosition, & la Gupta-Bleuler, of
the original second class quadratic constraints. Exaatisak have been constructed as coherent
U(N) intertwiners, and the resulting spinfoam amplitudes arectly written as a discrete action
in terms of spinors and holonomies. For the Lorentzian dasegonstruction of suitable coherent
states has not appeared yet, and the quantization progiamrisgress[[39].

7. Summary and Outlook

Describing the classical phase space of loop quantum griavierms of spinor variables ap-
pears to be a powerful idea. The standard holonomy-flux tstreigs derived from a much simpler
collection of spinors on a graph, a spinor network. Thisr&dd to a discrete geometric picture,
the twisted geometrieg][f} 8]. The spinors give a differeitibédt space representation for loop
gravity and new calculational toolg J1[8] 19], which are estpd to find many application: physical
quantities such as correlation functions in loop quantuavigr involve complicated S(2) inte-
grals, which with the help of spinors become Gaussian iategyver the complex plane, a priori
much easier to handle. Furthermore, these ideas extencliato covariant descriptions in which
the full Lorentz group appears. Using the relation to twis{§], it is straighforward to extend the
spinorial formalism to S[2,C), described in terms dfvistor networkgp1, [22]. This allows the
identification of new holomorphic simplicity constrainfE3], classically equivalent to the usual
linear and quadratic constraints, but with the key propéngt they Poisson commute. Includ-
ing these constraints, one gets simple twistor networksritesg covariant twisted geometries, a
collection of 3d polyhedra with arbitrary $2,C) curvature among them.

Finally, for some references, recent developments usiimpispechniques in the context of
loop gravity and spin foams include a toy-model for quantwsneology [3P[31f 34, 3], a new
look on the simplicity constraints in spinfoam moddl [24, [28,[IB], advances in the context of
group field theory[[34] and topological BF-theoify][35]. Tisjginorial framework in the covariant
context could provide a new angle of attack to tackle theeissurenormalization and coarse-
graining of spin foam amplitudes and group field theorjek [B28.
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