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Abstract

We review the black hole entropy calculation in the framework of
Loop Quantum Gravity based on the quasi-local definition of a black
hole encoded in the isolated horizon formalism. We show, by means of
the covariant phase space formalism, the appearance in the conserved
symplectic structure of a boundary term corresponding to a Chern-
Simons theory on the horizon and present its quantization both in the
U(1) gauge fixed version and in the fully SU(2) invariant one. We
then describe the boundary degrees of freedom counting techniques
developed for an infinite value of the Chern-Simons level case and, less
rigorously, for the case of a finite value. This allows us to perform
a comparison between the U(1) and SU(2) approaches and provide a
state of the art analysis of their common features and different im-
plications for the entropy calculations. In particular, we comment on
different points of view regarding the nature of the horizon degrees of
freedom and the role played by the Barbero-Immirzi parameter. We
conclude by presenting some of the most recent results concerning pos-
sible observational tests for theory.
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1 Introduction

Black holes are intriguing solutions of classical general relativity describing
important aspects of the physics of gravitational collapse. Their existence in
our nearby universe is by now supported by a great amount of observational
evidence [1]. When isolated, these systems are remarkably simple for late
and distant observers: once the initial very dynamical phase of collapse is
passed the system is expected to settle down to a stationary situation com-
pletely described (as implied by the famous results by Carter, Israël, and
Hawking [2]) by the three extensive parameters (mass M , angular momen-
tum J , electric charge Q) of the Kerr-Newman family [3].

However, the great simplicity of the final stage of an isolated gravita-
tional collapse for late and distant observers is in sharp contrast with the
very dynamical nature of the physics seen by in-falling observers which de-
pends on all the details of the collapsing matter. Moreover, this dynamics
cannot be consistently described for late times (as measured by the in-falling
observers) using General Relativity due to the unavoidable development,
within the classical framework, of unphysical pathologies of the gravitational
field. Concretely, the celebrated singularity theorems of Hawking and Pen-
rose [4] imply the breakdown of predictability of General Relativity in the
black hole interior. Dimensional arguments imply that quantum effects can-
not be neglected near the classical singularities. Understanding of physics in
this extreme regime requires a quantum theory of gravity (see, e.g., [5]-[7]).
Black holes (BH) provide, in this precise sense, the most tantalizing theo-
retical evidence for the need of a more fundamental (quantum) description
of the gravitational field.

Extra motivation for the quantum description of gravitational collapse
comes from the physics of black holes available to observers outside the hori-
zon. As for the interior physics, the main piece of evidence comes from the
classical theory itself which implies an (at first only) apparent relationship
between the properties of idealized black hole systems and those of thermo-
dynamical systems. On the one hand, black hole horizons satisfy the very
general Hawking area theorem (the so-called second law) stating that the
black hole horizon area aH can only increase, namely

δaH ≥ 0 . (1)

On the other hand, the uniqueness of the Kerr-Newman family, as the final
(stationary) stage of the gravitational collapse of an isolated gravitational
system, can be used to prove the first and zeroth laws: under external
perturbation the initially stationary state of a black hole can change but the
final stationary state will be described by another Kerr-Newman solution
whose parameters readjust according to the first law

δM =
κH

8πG
δaH + ΦH δQ+ ΩH δJ, (2)
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where κH is the surface gravity, ΦH is the electrostatic potential at the
horizon, and ΩH the angular velocity of the horizon. There is also the zeroth
law stating the uniformity of the surface gravity κH on the event horizon of
stationary black holes, and finally the third law precluding the possibility of
reaching an extremal black hole (for which κH = 0) by means of any physical
process1.

The validity of these classical laws motivated Bekenstein [8] to put for-
ward the idea that black holes may behave as thermodynamical systems
with an entropy S = αa/`2p and a temperature kT = ~κH/(8πα) where α is
a dimensionless constant and the dimensionality of the quantities involved
require the introduction of ~ leading in turn to the appearance of the Planck
length `p. The key point is that the need of ~ required by the dimensional
analysis involved in the argument called for the investigation of black hole
systems from a quantum perspective.

In fact, not long after, the semiclassical calculations of Hawking [9] –
that studied particle creation in a quantum test field (representing quantum
matter and quantum gravitational perturbations) on the space-time back-
ground of the gravitational collapse of an isolated system described for late
times by a stationary black hole – showed that once black holes have settled
to their stationary (classically) final states, they continue to radiate as per-
fect black bodies at temperature kT = κH~/(2π). Thus, on the one hand,
this confirmed that black holes are indeed thermal objects that radiate at a
given temperature and whose entropy is given by S = a/(4`2p), while, on the
other hand, this raised a wide range of new questions whose proper answer
requires a quantum treatment of the gravitational degrees of freedom.

Among the simplest questions is the issue of the statistical origin of
black hole entropy. In other words, what is the nature of the large amount
of micro-states responsible for black hole entropy. This simple question
cannot be addressed using semiclassical arguments of the kind leading to
Hawking radiation and requires a more fundamental description. In this
way, the computation of black hole entropy from basic principles became an
important test for any candidate quantum theory of gravity.

In String Theory the entropy has been computed using dualities and
no-normalization theorems valid for extremal black holes [10]. There are
also calculations based on the effective description of near horizon quantum
degrees of freedom in terms of effective 2-dimensional conformal theories
[11, 12]. In the rest of this work, we are going to review the quantum
description of the microscopic degrees of freedom of a black hole horizon
and the derivation of its entropy in the framework of Loop Quantum Gravity
(LQG) [13]. In all cases agreement with the Bekenstein-Hawking formula is
obtained with logarithmic corrections in a/`2p.

1The third law can only be motivated by a series of examples. Extra motivations come
from the validity of the cosmic censorship conjecture.
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In LQG, the basic conceptual ideas leading to the black hole entropy
calculation date back to the mid nineties and bloomed out of the beautiful
interplay between some pioneering works by Smolin, Rovelli and Krasnov.

In [14] Smolin investigated the emergence of the Bekenstein bound and
the holographic hypothesis in the context of non-perturbative quantum grav-
ity by studying the quantization of the gravitational field in the case where
self-dual boundary conditions are imposed on a boundary with finite spa-
tial area. This was achieved through the construction of an isomorphism
between the states and observables of SU(2) Chern-Simons theory on the
boundary and quantum gravity. This correspondence supported the assump-
tion that the space of states of the quantum gravitational field in the bulk
region must be spanned by eigenstates of observables that are functions of
fields on the boundary and provided the following picture. The metric of
a spatial surface turns out to label the different topological quantum field
theories that may be defined on it. The physical state space that describes
the 4 dimensional quantum gravitational field in a region bounded by that
surface will then be constructed from the state spaces of all the topological
quantum field theories that live on it.

In [15] Rovelli obtained a black hole entropy proportional to the area by
performing computations (valid for physical black holes) based on general
considerations and the fact that the area spectrum in the theory is discrete.
He suggested that the black hole entropy should be related to the number of
quantum microstates of the horizon geometry which correspond to a given
macroscopic configuration and are distinguishable from the exterior of the
hole.

Combining the main ingredients of these two works then, Krasnov pro-
vided [16] a description of the microscopic states of Schwarzschild black hole
in terms of states of SU(2) Chern-Simons theory. Using this description
as the basis of a statistical mechanical analysis, he found that the entropy
contained within the black hole is proportional to the area of the horizon,
with a proportionality coefficient which turns out to be a function of the
Barbero-Immirzi parameter.

These fundamental steps provided a solid conceptual (and also technical)
basis to the seminal works of [17, 18, 19], which followed right after. Here
the authors started from the important observation that the very notion of
black hole – as the region causally disconnected from future null infinity –
becomes elusive in the context of quantum gravity. This is due to the simple
fact that black hole radiation in the semiclassical regime imply that in the full
quantum theory the global structure of space-time (expected to make sense
away from the strong field region) might completely change – in fact, recent
models in two dimensions support the view that this is the case [20] –. For
that reason, the problem of black hole entropy in quantum gravity requires
the use of a local or quasi-local notion of horizon in equilibrium. Such a local
definition of BH has been introduced [21] (see also [22]-[24]) through the
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concept of Isolated Horizons (IH). Isolated horizons are regarded as a sector
of the phase-space of GR containing a horizon in “equilibrium” with the
external matter and gravitational degrees of freedom. This local definition
provided a general framework to apply to the black hole entropy calculation
in the context of LQG, as first performed (for spherically symmetric IH)
in [19]. In this work the authors show, after introduction of a suitable
gauge fixing, how the degrees of freedom that are relevant for the entropy
calculation can be encoded in a boundary U(1) Chern-Simons theory.

After separately quantizing the bulk and the boundary theory of the sys-
tem and imposing the quantum version of the horizon boundary condition,
bulk and boundary degrees of freedom are again related to each other and
(the ‘gauge fixed’ version of) Smolin’s picture is recovered [19]. By counting
the number of states in the boundary Hilbert space, tracing over the bulk
degrees, [19] found a leading term for the horizon entropy matching the
Bekenstein-Hawking area law, as long as the Barbero-Immirzi parameter β
is fixed to a given numerical value. From this point on, the semi-classical re-
sult of Bekenstein and Hawking started to be regarded as physical ‘external’
input to fix the ambiguity affecting the non-perturbative quantum theory of
geometry.

Soon after this construction of quantum isolated horizons, there has been
a blooming of literature devoted to the improvement of the counting prob-
lem and which led to the important discoveries of sub-leading logarithmic
corrections as well as of a discrete structure of the entropy for small values
of the horizon area. First, in [25], a reformulation of the counting problem
was performed according to the spirit of the original derivations, and solv-
ing certain incompatibilities of the previous computations. An asymptotic
computation of entropy, based on this new formulation of the problem, was
performed in [26], yielding a first order logarithmic correction to the leading
linear behavior. Alternative approaches to the counting and the computa-
tion of logarithmic correction were also worked out in [27, 28].

In [29, 30], an exact detailed counting was performed for the first time,
showing the discretization of entropy as a function of area for microscopic
black holes. Several works followed [31, 32, 33, 34], analyzing these effect
from several points of view. A more elegant and technically advanced exact
solution, involving analytical methods, number theory, and generating func-
tions was developed in [35, 36, 37], providing the arena for the extension of
the exact computation to the large area regime, studied in [38].

However, despite the great enthusiasm fueled by these results, some fea-
tures of the entropy calculation in LQG were not fully satisfactory. First of
all, the need to fix a purely quantum ambiguity represented by the Barbero-
Immirzi parameter through the request of agreement with a semi-classical
result (coming from a quantum field theory calculation in curved space-
times with large isolated horizons) didn’t seem a very natural, let alone
elegant, passage to many. Moreover, a controversy appeared in the liter-
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ature concerning the specific numerical value which β should be tuned to
and a discrepancy was found between the constant factor in front of the
logarithmic corrections obtained in the U(1) symmetry reduced model and
the seemingly very general treatment (which includes the String Theory cal-
culations [10]) proposed by Carlip [12]. All this stressed the necessity of
a more clear-cut relationship between the boundary theory and the LQG
quantization of bulk degrees of freedom. Finally, a fully SU(2) invariant
treatment of the horizon degrees appeared more appropriate also from the
point of view of the original conceptual considerations of [14, 15, 16, 39].

The criticisms listed above motivated the more recent analysis of [40,
41, 42], which clarified the description of both the classical as well as the
quantum theory of black holes in LQG making the full picture more trans-
parent. In fact, these works showed that the gauge symmetry of LQG need
not be reduced from SU(2) to U(1) at the horizon, leading to a drastic sim-
plification of the quantum theory in which states of a black hole are now in
one-to-one correspondence with the fundamental basic volume excitations
of LQG given by single intertwiner states. This SU(2) invariant formulation
– equivalent to the U(1) at the classical level – preserves, in the spherically
symmetric case, the Lie algebraic structure of the boundary conditions also
at the quantum level, allowing for the proper Dirac imposition of the con-
straints and the correct restriction of the number of admissible boundary
states. In this way, the factor −3/2 in front of the logarithmic corrections
is recovered, as shown in [43], eliminating the apparent tension with other
approaches to entropy calculation. Moreover, the more generic nature of the
SU(2) treatment allows to loose the numerical restriction on the value of β,
by only requiring a given relationship between the parameter in the bulk
theory (LQG) and the analog in the boundary theory (the Chern-Simons
level), in order to recover the Bekenstein-Hawking entropy [42, 44] – the
resolution of this last issue has become even more satisfactory in the very
recent analysis of [45].

The aim of the present work is to review this exciting path which char-
acterized the black hole entropy calculation in LQG, trying to show how
the analysis of isolated horizons in classical GR, the theory of quantum ge-
ometry, and the Chern-Simons theory fuse together to provide a coherent
description of the quantum states of isolated horizons, accounting for the
entropy. We will present both the U(1) symmetry reduced and the fully
SU(2) invariant approaches, showing their common features but also their
different implications in the quantum theory.

We start by reviewing in Section 2 the formal definition of isolated hori-
zon, through the introduction of the notion of non-expanding horizon first
and weakly isolated horizon afterwards. In the second part of this Section,
we also provide a classification of IH according to their symmetry group
and a notion of staticity condition. We end Section 2 by stating the main
equations implied by the isolated horizon boundary conditions for fields at
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the horizon, both in the spherically symmetric and the distorted cases.
In Section 3 we construct the conserved symplectic structure of gravity

in the presence of a static generic IH. We first use the vector-like (Pala-
tini) variables and then introduce the real (Ashtekar-Barbero) connection
variables, showing how, in this passage, a Chern-Simons boundary term ap-
pears in the conserved symplectic structure. In Section 4 we briefly review
the derivation of the zeroth and first law of isolated horizons.

In Section 5 we show how the classical Hamiltonian framework together
with the quantum theory of geometry provide the two pieces of information
needed for quantization of Chern-Simons theory on a punctured surface,
which describes the quantum degrees of freedom on the horizon. We first
present the U(1) quantization for spherically symmetric horizons and then
the SU(2) scheme for the generic case of distorted horizons, showing how
the spherically symmetric picture can be recovered from it.

In Section 6 we perform the entropy calculation of the quantum system
previously defined. We first present the powerful methods that have been
developed for the resolution of the counting problem in the infinite Chern-
Simons level case, involving the U(1) classical representation theory; in the
second part of the Section, we introduce the finite level counting problem
by means of the quantum group Uq(su(2)) representation theory, following
less rigorous methods. The main results of and differences between the two
approaches are analyzed.

In Section 7 we comment on the nature of the entropy degrees of freedom
counted in the previous Section and try to compare different points of view
appeared in the literature. Section 8 clarifies the role of the Barbero-Immirzi
parameter in the LQG black hole entropy calculation, trying to emphasize
how the tuning to a given numerical value is not a necessary step to recover
the semi-classical area law.

In Section 9 we want to enlighten the connection between the boundary
theory and conformal field theory, motivated by other approaches to the
entropy problem. In Section 10 we present some recent results [46] on the
possibility of using observable effects derived from the black hole entropy
description in LQG to experimentally probe the theory, based on some very
recent Monte Carlo simulations. Concluding remarks are presented in Sec-
tion 11.

2 Definition of Isolated Horizons

In this Section, we are going to introduce first the notion of Non-Expanding
Horizons (NEH) from which, after the imposition of further boundary con-
ditions, we will be able to define Weakly Isolated Horizons (WIH) and the
stronger notion of Isolated Horizons (IH), according to [21, 47, 48, 49, 50, 51].
Despite the imposition of these boundary conditions, all these definitions are
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far weaker than the notion of an event horizon: The definition of WIH (and
IH) extracts from the definition of Killing horizon just that ‘minimum’ of
conditions necessary for analogues of the laws of black hole mechanics to
hold. Moreover, boundary conditions refer only to behavior of fields at the
horizon and the general spirit is very similar to the way one formulates
boundary conditions at null infinity.

In the rest of the paper we will assume all manifolds and fields to be
smooth. Let M be a 4-manifold equipped with a metric gab of signature
(−,+,+,+). We denote ∆ a null hypersurface of (M , gab) and ` a future-
directed null normal to ∆. We define qab the degenerate intrinsic metric
corresponding to the pull-back of gab on ∆. Denoted ∇a the derivative
operator compatible with gab, the expansion θ(`) of a specific null normal `

is given by θ(`) = qab∇a`b, where the tensor qab on ∆ is the inverse of the
intrinsic metric qab. With this structure at hand, we can now introduce the
definition of NEH.

Definition: The internal null boundary ∆ of an history (M , gab) will
be called a non-expanding horizon provided the following conditions hold:

i) ∆ is topologically S2 ×R, foliated by a family of 2-spheres H;

ii) The expansion θ(`) of ` within ∆ vanishes for any null normal `;

iii) All field equations hold at ∆ and the stress-energy tensor Tab of matter
at ∆ is such that −T ab`b is causal and future directed for any future
directed null normal `.

Note that if conditions (ii) and (iii) hold for one null normal ` they hold
for all. Let us discuss the physical meaning of these conditions. The first
and the third conditions are rather weak. In particular, the restriction on
topology is geared to the structure of horizons that result from gravitational
collapse, while the energy condition is satisfied by all matter fields normally
considered in general relativity (since it is implied by the stronger dominant
energy condition that is typically used). The main condition is therefore the
second one, which implies that the horizon area (aH) is constant ‘in time’
without assuming the existence of a Killing field.

In the following it will be useful to introduce a null-tetrad which can
be built from the null normal field `a by adding a complex null vector field
ma tangential to ∆ and a real, future directed null field na transverse to
∆ so that the following relations hold: n · ` = −1,m · m̄ = 1 and all other
scalar products vanish. The quadruplet (`, n,m, m̄) constitutes a null-tetrad.
There is, of course, an infinite number of null tetrads compatible with a given
`, related to one another by restricted Lorentz rotations. All the conclusions
of this Section will not be sensitive to this gauge-freedom.
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Figure 1: The characteristic data for a (vacuum) spherically symmetric iso-
lated horizon corresponds to Reissner-Nordstrom data on ∆, and free radia-
tion data on the transversal null surface with suitable fall-off conditions. For
each mass, charge, and radiation data in the transverse null surface there
is a unique solution of Einstein-Maxwell equations locally in a portion of
the past domain of dependence of the null surfaces. This defines the phase-
space of Type I isolated horizons in Einstein-Maxwell theory. The picture
shows two Cauchy surfaces M1 and M2 “meeting” at space-like infinity i0. A
portion of I + and I − are shown; however, no reference to future time-like
infinity i+ is made as the isolated horizon need not to coincide with the
black hole event horizon.

Conditions (i) and (iii) also imply that the null normal field `a is geodesic,
i.e., denoting the acceleration of `a by κ(l), it holds

`b∇b`a = κ(l)`
a. (3)

The function κ(l) is called the surface gravity and is not a property of the
horizon ∆ itself, but of a specific null normal to it: if we replace ` by `′ = f`,
then the surface gravity becomes κ(l′) = fκ(l) +L`f , where L indicates the
Lie derivative.

As we saw above, condition (ii) that `a be expansion-free is equivalent to
asking that the area 2-form of the 2-sphere cross-Sections of ∆ be constant
in time. This, combined with the Raychaudhuri equation and the mat-
ter condition (iii), implies that `a is also shear-free, namely σ = 0, where
σ = mamb∇a`b is the shear of ` in the given null tetrad. This in turn implies
that the Levi-Civita derivative operator ∇ compatible with gab naturally de-
termines a derivative operator Da intrinsic to ∆ via XaDaY

b ≡ Xa∇aY b,
where Xa, Y a ∈ T (∆) are tangent to ∆. However, since the induced met-
ric qab on ∆ is degenerate, there exist infinitely many derivative operators
compatible with it. In order to show that every NEH has a unique intrinsic
derivative operator D, we observe that there is a natural connection 1-form
on ∆: Since ` is expansion, shear and twist free, there exists a one-form ωa
intrinsic to ∆ such that

Da`
b = ωa`

b. (4)
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H

` n
Ψ0 = 0 Ψ4

∆ N

Figure 2: Space-times with isolated horizons can be constructed by solving
the characteristic initial value problem on two intersecting null surfaces, ∆
and N which intersect in a 2-sphere H. The final solution admits ∆ as
an isolated horizon [52]. Generically, there is radiation arbitrarily close to
∆ and no Killing fields in any neighborhood of ∆. Note that Ψ4 need not
vanish in any region of space-time, not even on ∆.

which in turn implies, for the pull-back on ∆,

Da`b = 0. (5)

Relation (5) has two important consequences. Firstly, it is exactly the con-
dition that guarantees that every NEH has a unique intrinsic derivative
operator D [51]. Secondly, it implies that the entire pull-back qab of the
metric to the horizon is Lie dragged by `a, namely

L`qab = 0. (6)

From eq. (4) it is immediate to see that the surface gravity κ(`) can be
written as

κ(`) = ωa`
a. (7)

In terms of the Weyl tensor components, using the Newman-Penrose nota-
tion, the boundary conditions (i)-(iii) together with (4) imply that on ∆ [48]

Ψ0 = Cabcd`
amb`cmd = 0 Ψ1 = Cabcd`

amb`cnd = 0, (8)

and hence Ψ2 is gauge invariant on ∆, i.e. independent of the choice of
the null-tetrad vectors (n,m, m̄). The Ψ2 component of the Weyl curvature
will play an important role in the following, entering the expression of some
constraints to be satisfied by fields at the horizon (Section 2.3); moreover,
its imaginary part encodes the gravitational contribution to the angular-
momentum at ∆ [50] and this will provide a condition for classification of
isolated horizons (Section 2.2). A useful relation valid on ∆ between the
intrinsic derivative operator D and this component of the Weyl tensor is ex-
pressed by the exterior derivative of the connection ω (which is independent
of the choice of `, even if the connection itself is), namely [48]

dω = 2Im(Ψ2) 2ε, (9)
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where 2ε ≡ im ∧ m̄ is a natural area 2-form on ∆ (2ε can be invariantly
defined [48]).

So far, we have seen that, even though the three boundary conditions in
the definition of NEH are significantly weaker than requiring the horizon to
be a Killing horizon for a local Killing vector field, they are strong enough
to prove that every null normal vector ` is an infinitesimal symmetry for the
intrinsic metric q. It is important though to stress that, on the other hand,
space-time gab need not admit any Killing field in any neighborhood of ∆;
boundary conditions (i)-(iii) refer only to behavior of fields at ∆. Note that,
at this stage, the only geometric structure intrinsic to ∆ which is ‘time-
independent’ is the metric q, but not the derivative operator D. Moreover,
since ` can be rescaled by a positive definite function, the surface gravity
κ(`) does not need to be constant on ∆. Therefore, additional restriction
on the fields at ∆ need to be introduced in order to establish the 0th law
of black hole mechanics. This will lead us in a moment to the definition of
WIH.

The next natural step to strengthen the boundary conditions and restrict
the choice of ` is to add to the geometric structures conserved along ∆ also
the ‘extrinsic curvature’, once an appropriate definition of it is introduced
(since we are dealing with a null surface). In order to do this, we are now
going to introduce the definition of WIH and then show how, with this
definition, the invariance of a tensor field, which can be thought of as the
analogue of the extrinsic curvature, under the infinitesimal transformations
generated by a preferred equivalence class [`] can be proven.

Definition: A weakly isolated horizon (∆, [`]) consists of a non-expanding
horizon ∆, equipped with an equivalence class [`] of null normals to it sat-
isfying

iv) L`ω = 0 for all ` ∈ [`], where two future-directed null normals ` and `′

belong to the same equivalence class [`] if and only if `′ = c` for some
positive constant c.

Note that, under this constant rescaling, the connection 1-form ω is
unchanged (ω′ = ω 2) and, therefore, if condition (iv) holds for one `, it
holds for all ` in [`]. Even though we don’t have a single ` yet, by definition,
a WIH is equipped with a specific equivalence class [`] of null normals. In
particular, given any NEH ∆, one can always select an equivalence class [`]
of null normals such that (∆, [`]) is a WIH.

WIH admit a natural, generically unique foliation which can be regarded
as providing a ‘rest frame’ for the horizon. As shown in [51], this foliation

2Under the rescaling `′ → f` the connection 1-form ω transforms according to ωa →
ω′a = ωa +Da ln f .
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into good cuts 3 always exists and is invariantly defined in the sense that it
can be constructed entirely from structures naturally available on (∆, [`]).
In particular, if the space-time admits an isometry which preserves the given
WIH, good cuts are necessarily mapped in to each other by that isometry.
We require that the fixed foliation of the horizon coincide with a foliation
into ‘good cuts’.

Before showing how, with this further restriction, the 0th law can now be
recovered, let us shortly discuss the physical interpretation of condition (iv).
Recall that, on a space-like hypersurface H, the extrinsic curvature can be
defined on H as Ka

b = ∇anb, where n is the unit normal. A natural analog
of the extrinsic curvature on a WIH is then La

b = Da`
b. By virtue of (4)

then, condition (iv) is enough to show that La
b is Lie-dragged along `, in fact

L`Ka
b = L`(ωa`

b) = (L`ωa)`
b = 0. Thus, on a WIH not only the intrinsic

metric q is ‘time-independent’, but also the analog of extrinsic curvature.
Note however that the full connection D or curvature components such as
Ψ4 can be time-dependent on a WIH (see Figure 2).

We are now ready to show that the boundary conditions entering the def-
inition of WIH are enough to prove that that the surface gravity is constant
on ∆, i.e. the 0th law holds for weakly isolated horizons. By construction,
it is immediate to see that ` · 2ε = 0, and this, together with (9), implies

` · dω = 0; (10)

on the other hand,
0 = L`ω = d(` · ω) + ` · dω. (11)

Therefore, by virtue of (7), we have

d(` · ω) = dκ(`) = 0. (12)

Thus, surface gravity is constant on ∆ without requiring the presence of a
Killing field even in a neighborhood of ∆.

As observed above, in the passage from NEH to WIH we had to intro-
duce a more rigid structure in order to recover the 0th law of black holes
mechanics: whereas on a NEH we only ask that the null normal be a Killing
field for the intrinsic metric qab on ∆, on a WIH, the permissible null normals
Lie drag also the connection 1-form ω, constraining only certain components
of the derivative operator D to be ‘time-independent’. To see this, we notice
that the boundary condition (iv) can be reformulated as

[L`, D]`a = 0 on ∆. (13)

It is immediate to see that the previous condition implies L`ω = 0 through
(4). A stronger notion of isolation can now be introduced by requiring

3A 2-sphere cross-Section H of ∆ is called a ‘good cut’ if the pull-back of ωa to H is
divergence free with respect to the pull-back of gab to H.
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the intrinsic metric q and the full derivative operator D (rather than just
the 1-form ω) be conserved along ∆. This can be achieved by relaxing the
restriction of the action of the left side of (13) to ` and leads to the definition
of isolated horizons.

Definition: An isolated horizon is a pair (∆, [`]), where ∆ is a NEH
equipped with an equivalence class [`] of null normals such that

v) [L`, Db]v
a = 0, for all vector fields va tangential to ∆ and all ` ∈ [`].

If this condition holds for one ` it holds for all ` ∈ [`]. Let ∆ be a NEH with
geometry (q,D). We will say that this geometry admits an isolated horizon
structure if there exists a null normal ` satisfying (v). Intuitively, a NEH is
an IH if the entire geometry (q,D) of the NEH is ‘time-independent’. From
the perspective of the intrinsic geometry, this is a stronger and perhaps more
natural notion of ‘isolation’ than that captured in the definition of a WIH.
However, unlike (iv), condition (v) is a genuine restriction. In fact, while any
NEH can be made a WIH simply by choosing an appropriate class ` of null
normals, not every NEH admits a null normal satisfying (v) and generically
this condition does suffice to single out the equivalence class [`] uniquely [51].
Thus, even though (v) is a stronger condition than (iv), it is still very weak
compared to conditions normally imposed: using the initial value problem
based on two null surfaces [53], it can be shown that the definition of IH
contains an infinite-dimensional class of other examples [52]. In particular,
while all geometric fields on ∆ are time-independent as on a Killing horizon,
the field Ψ4, for example, can be ‘time-dependent’ on a generic IH.

To summarize, IH are null surfaces, foliated by a (preferred) family of
marginally trapped 2-spheres such that certain geometric structures intrinsic
to ∆ are time independent. The presence of trapped surfaces motivates the
term ‘horizon’ while the fact that they are marginally trapped — i.e., that
the expansion of `a vanishes — accounts for the adjective ‘isolated’. The
definition extracts from the definition of Killing horizon just that ‘minimum’
of conditions necessary for analogues of the laws of black hole mechanics to
hold4.

Remarks:

1. All the boundary conditions are satisfied by stationary black holes in
the Einstein-Maxwell-dilaton theory possibly with cosmological con-
stant. More importantly, starting with the standard stationary black

4We will see in the following how the first law can be recovered by requiring the
time evolution along vector fields ta ∈ T(M ), which are time translations at infinity and
proportional to the null generators ` at the horizon, to correspond to a Hamiltonian time
evolution [48]
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holes, and using known existence theorems one can specify procedures
to construct new solutions to field equations which admit isolated hori-
zons as well as radiation at null infinity [52]. These examples already
show that, while the standard stationary solutions have only a finite
parameter freedom, the space of solutions admitting IH is infinite di-
mensional. Thus, in the Hamiltonian picture, even the reduced phase-
space is infinite dimensional; the conditions thus admit a very large
class of examples. Nevertheless, space-times admitting IH are very
special among generic members of the full phase-space of general rel-
ativity. The reason is apparent in the context of the characteristic
formulation of general relativity where initial data are given on a set
(pairs) of null surfaces with non trivial domain of dependence. Let us
take an isolated horizon as one of the surfaces together with a transver-
sal null surface according to the diagram shown in Figure 1. Even
when the data on the IH may be infinite dimensional, in all cases no
transversing radiation data is allowed by the IH boundary condition.

2. The freedom in the choice of the null normal ` we saw existing for
isolated horizons is present also in the case of Killing horizons. Given
a Killing horizon ∆K , surface gravity is defined as the acceleration of
a static particle near the horizon, moving on an orbit of a Killing field
η normal to ∆K , as measured at spatial infinity. However, if ∆K is
a Killing horizon for η, it is also for cη,∀c = const > 0. Therefore,
surface gravity is not an intrinsic property of ∆K , but depends also
on a specific choice of η: its normalization is undetermined, since it
scales under constant scalings of the Killing vector η (even though
this freedom does not affect the 0th law). However, even if one can-
not normalize η at the horizon (since η2 = 0 there), in the case of
asymptotically flat space-times admitting global Killing fields, its nor-
malization can be specified in terms of the behavior of η at infinity.
For instance, in the static case, the Killing field η can be canonically
normalized by requiring that it have magnitude-squared equal to −1
at infinity. In absence of a global Killing field or asymptotic flatness
though, this strategy does not work and one has to keep this constant
rescaling freedom in the definition of surface gravity. In the context
of isolated horizons, then, it is natural to keep this freedom. Never-
theless, one can, if necessary, select a specific ` in [`] by requiring, for
instance, κ(`) to coincide with the surface gravity of black holes in the
Reissner-Nordstrom family:

κ(`) =

√
(M2 −Q2)

2M [M +
√

(M2 −Q2)]−Q2
, (14)

whereM is the mass andQ the electric charge of the black hole. Indeed
this choice is the one that makes the zero, and first law of IH look just
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as the corresponding laws of stationary black hole mechanics [48, 41]
(see Section 4 for a discussion on the zeroth and first laws).

3. Notice that the above definition is completely geometrical and does not
make reference to the tetrad formulation. There is no reference to any
internal gauge symmetry. In what follows we will deal with general
relativity in the first order formulation which will introduce, by the
choice of variables, an internal gauge group corresponding to local
SL(2,C) transformations (in the case of Ashtekar variables) or SU(2)
transformations (in the case of real Ashtekar-Barbero variables). As
pointed out in the introduction, the original quantization scheme of
[19, 49, 54] uses a gauge symmetry reduced framework while a more
recent analysis [40, 41, 42] preserves the full internal gauge symmetry.
Both approaches are the subject of Sections 5.1 and 5.2.

2.1 IH Classification According to Their Symmetry Groups

Next, let us examine symmetry groups of isolated horizons. As seen above,
boundary conditions impose restrictions on dynamical fields and also on
gauge transformations on the boundary. At infinity all transformations are
required to preserve asymptotic flatness; hence, the asymptotic symmetry
group reduces to the Poincaré group. On the other hand, a symmetry of
(∆, q,D, [`a]) is a diffeomorphism on ∆ which preserves the horizon geom-
etry (q,D) and at most rescales elements of [`a] by a positive constant.
These diffeomorphisms must be compositions of translations along the inte-
gral curves of `a and general diffeomorphisms on a 2-sphere in the foliation.
Thus, the boundary conditions reduce the symmetry group G∆ to a semi-
direct product of diffeomorphisms generated by `a with Diff(S2). In fact,
there are only three possibilities for G∆ [50]:

(a) Type I: the isolated horizon geometry is spherical; in this case, G∆ is
four dimensional (SO(3) rotations plus rescaling-translations5 along `);

(b) Type II: the isolated horizon geometry is axisymmetric; in this case,
G∆ is two dimensional (rotations round symmetry axis plus rescaling-
translations along `);

(c) Type III: the diffeomorphisms generated by `a are the only symmetries;
G∆ is one dimensional.

Note that these symmetries refer only to the horizon geometry. The full
space-time metric need not admit any isometries even in a neighborhood of
the horizon.

5In a coordinate system where `a = (∂/∂v)a the rescaling-translation corresponds to
the affine map v → cv + b with c, b ∈ R constants.
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2.2 IH Classification According to the Reality of Ψ2

As observed above, the gravitational contribution to angular momentum of
the horizon is coded in the imaginary part of Ψ2 [50]. Therefore, the reality
of Ψ2 allows us to introduce an important classification of isolated horizons.

(1) Static: In the Newman-Penrose formalism (in the null tetrads adapted
to the IH geometry introduced above), static isolated horizons are char-
acterized by the condition

Im(Ψ2) = 0 (15)

on the Weyl tensor component Ψ2 = Cabcd`
ambm̄cnd. This corresponds

to having the horizon locally“at rest”. In the axisymmetric case, accord-
ing to the definition of multiple moments of Type II horizons constructed
in [54], static isolated horizons are non-rotating isolated horizons, i.e.
those for which all angular momentum multiple moments vanish. Static
black holes (e.g., those in the Reissner-Nordstrom family) have static
isolated horizons. There are Type I, II and III static isolated horizons.

(2) Non-Static: In the Newman-Penrose formalism, non-static isolated hori-
zons are characterized by the condition

Im(Ψ2) 6= 0. (16)

The horizon is locally “in motion”. The Kerr black hole is an example
of this type.

Remark:

In the rest of the paper we will concentrate only on static isolated horizons.
We will show that for this class of IH one can construct a conserved pre-
symplectic structure with no need to make any symmetry assumptions on
the horizon. On the other hand, the usual pre-symplectic structure is not
conserved in the presence of a non-static black hole (see Section 3.2 below),
which implies that a complete treatment of non-static isolated horizons (in-
cluding rotating isolated horizons) remains open—see [42] for a proposal
leading to a conserved symplectic structure for non-static isolated horizons
and the restoration of diffeomorphisms invariance.

2.3 The Horizon Constraints

We are now going to use the definition of isolated horizons provided above
to derive some equations which will play a central role in the sequel. General
relativity in the first order formalism is described in terms a tetrad of four
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1-forms eI (I = 0, 3 internal indices) and a Lorentz connection ωIJ = −ωJI .
The metric can be recovered by

gab = eIae
J
b ηIJ (17)

where ηIJ = diag(−1, 1, 1, 1). In the time gauge, where the tetrad eI is
such that e0 is a time-like vector field normal to the Cauchy surface M , the
three 1-forms Ki = ω0i play a special role in the parametrization of the
phase-space. In particular the so-called Ashtekar connection is

A+i
a = Γia + iKi

a (18)

where Γi = −1
2ε
ijkωjk is the spin connection satisfying Cartan’s first equa-

tion
dΓe

i = 0. (19)

On ∆ one can, of course, express the tetrad eI in terms of the null-tetrad
(`, n,m, m̄) introduced above; in particular, at H = ∆ ∩M , the normal to
M can be written as e0a = (`a + na)/

√
2 at H (recall that na is normalized

according to n · ` = −1).
We also introduce the 2-form

ΣIJ ≡ eI ∧ eJ and Σ+i ≡ εi jkΣjk + 2iΣ0i

and F i(A+) the curvature of the connection A+i. In Section 5.2, at H, we
will also often work in the gauge where e1 is normal to H and e2 and e3 are
tangent to H. This choice is only made for convenience, as the equations
used there are all gauge covariant, their validity in one frame implies their
validity in all frames.

When written in connection variables, the isolated horizons boundary
condition implies the following relationship between the curvature of the
Ashtekar connection A+i at the horizon and the 2-form Σi ≡ Re[Σ+i] =
εijke

j ∧ ek [18, 42]

⇐Fab
i(A+) = (Ψ2 − Φ11 −

R

24
)⇐Σ

i
ab, (20)

where the double arrows denote the pull-back to H. For simplicity, here we
will assume that no matter is present at the horizon, Φ11 = R = 0, hence

⇐Fab
i(A+) = Ψ2 ⇐Σ

i
ab. (21)

An important point here is that the previous expression is valid for any two
sphere S2 (not necessarily a horizon) embedded in space-time in an adapted
null tetrad where `a and na are normal to S2. In the special case of pure
gravity, and due to the vanishing of both the expansion and shear of the
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generators congruence `a, the Weyl component Ψ2 at the Horizon is simply
related to the Gauss scalar curvature R(2) of the two spheres.

Eq. (20) can be derived starting from the identity (that can be derived
from Cartan’s second structure equations)

Fab
i(A+) = −1

4
R cd
ab Σ+i

cd, (22)

where Rabcd is the Riemann tensor, using the null-tetrad formalism (see
for instance [55]) with the null-tetrad introduced above, and the definitions
Ψ2 = Cabcd`

ambm̄cnd and Φ11 = Rab(`
anb+mam̄b)/4, where Rab is the Ricci

tensor and Cabcd the Weyl tensor (for an explicit derivation using the spinors
formalism see [18] Appendix B).

In the case of Type I IH, we have [18]

Ψ2 − Φ11 −
R

24
= −2π

aH
(23)

at H, where aH is the area of the IH. Therefore, the horizon constraint (21)
becomes

⇐Fab
i(A+) = −2π

aH ⇐
Σi
ab (24)

in the spherically symmetric case [18, 41].
Notice that the imaginary part of the eq. (21) implies that, for static

IH,

⇐dΓK
i = 0. (25)

Relation (21), which follows from the boundary conditions on ∆, provides
a restriction on the possible histories of the phase-space whose points are
represented by values of the space-time fields (A+,Σ+). In particular, at H,
the behavior of the (curvature of) Ashtekar connection A+ is related to the
pull-back of Σ through the Weyl tensor component Ψ2. In this sense, at the
classical level, all the horizon degrees of freedom are encoded in the range of
possible values of Ψ2, which, without symmetry restriction, can be infinite-
dimensional. We will see in the next Sections how this picture changes at
the quantum level.

Another important relation, valid for static IH and following from con-
dition (v) [42], is

⇐K
j ∧⇐K

kεijk = c⇐Σ
i (26)

for c : H → R an extrinsic curvature scalar.

Remark:

In the GHP formalism [56], a null tetrad formalism compatible with the
IH system, the scalar curvature of the two-spheres normal to `a and na is
given by

R(2) = K + K̄ (27)
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where K = σσ′−ρρ′−Ψ2 +R+Φ11, while σ, ρ, σ′ and ρ′ denote spin, shear
and expansion spin coefficients associated with `a and na respectively . The
shear-free and expansion-free conditions in the definition of IH translate into
ρ = 0 = σ in the GHP formalism, namely

R(2) = −2Ψ2 (28)

Similarly, the curvature scalar c in (26) can be expressed in terms of spin
coefficients as

c =
1

2
(ρ′ρ̄′ − σ′σ̄′) (29)

which is invariant under null tetrad transformations fixing `a and na.

3 The Conserved Symplectic Structure

In this Section we prove the conservation of the symplectic structure of grav-
ity in the presence of an isolated horizon that is not necessarily spherically
symmetric but static. For the non-static case, we will see how diffeomor-
phisms tangent to the horizon are no longer degenerate directions of the
symplectic structure and, therefore, the quantization techniques described
in Section 5 need to be generalized. Quantization of rotating black holes
remains an open issue in the framework of LQG.

Conservation of the symplectic structure was first shown in [18] for Type
I IH in the U(1) gauged fixed formalism. In the rest of this Section, we will
follow the proof presented in [42], where the full SU(2) invariant formalism
is applied to generic distorted IH. The gauge fixed symplectic form for Type
I IH will be introduced at the end of Section 3.3.1 in order to describe the
U(1) quantization of spherically symmetric horizons in Section 5.1.

3.1 Action Principle and Phase-Space

The action principle of general relativity in self dual variables containing
an inner boundary satisfying the IH boundary condition (for asymptotically
flat space-times) takes the form

S[e,A+] = − i
κ

∫
M

Σ+

i (e) ∧ F i(A+) +
i

κ

∫
τ∞

Σ+

i (e) ∧A+i, (30)

where κ = 16πG and a boundary contribution at a suitable time cylinder
τ∞ at infinity is required for the differentiability of the action. No horizon
boundary term is necessary if one allows variations that fix an isolated hori-
zon geometry up to diffeomorphisms and Lorentz transformations. This is
a very general property, as shown in [41].
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First variation of the action yields

δS[e,A+] =
−i
κ

∫
M
δΣ+

i (e) ∧ F i(A+)− dA+Σ+

i ∧ δA
+i + d(Σ+

i ∧ δA
+i)

+
i

κ

∫
τ∞

δ(Σ+

i (e) ∧A+i), (31)

from which the self dual version of Einstein’s equations follow

εijke
j ∧ F i(A+) + ie0 ∧ Fk(A+) = 0

ei ∧ F i(A+) = 0

dA+Σ+

i = 0 (32)

as the boundary terms in the variation of the action cancel.
We denote Γ the phase-space of a space-time manifold with an internal

boundary satisfying the boundary condition corresponding to static IH, and
asymptotic flatness at infinity. The phase-space of such system is defined by
an infinite dimensional manifold where points p ∈ Γ are given by solutions
to Einstein’s equations satisfying the static IH boundary conditions. Explic-
itly, a point p ∈ Γ can be parametrized by a pair p = (Σ+, A+) satisfying
the field equations (32) and the requirements of the IH definition provided
above. In particular fields at the boundary satisfy Einstein’s equations and
the constraints given in Section 2.3. Let Tp(Γ) denote the space of variations
δ = (δΣ+, δA+) at p (in symbols δ ∈ Tp(Γ)). A very important point is that
the IH boundary conditions severely restrict the form of field variations at
the horizon. Thus we have that variations δ = (δΣ+, δA+) ∈ Tp(Γ) are such
that for the pull-back of fields on the horizon they correspond to linear com-
binations of SL(2,C) internal gauge transformations and diffeomorphisms
preserving the preferred foliation of ∆. In equations, for α : ∆ → sl(2, C)
and v : ∆→ T(H) we have that

δΣ+ = δαΣ+ + δvΣ
+

δA+ = δαA
+ + δvA

+ (33)

where the infinitesimal SL(2, C) transformations are explicitly given by

δαΣ+ = [α,Σ+], δαA
+ = −dA+α, (34)

while the diffeomorphisms tangent to H take the following form

δvΣ
+

i = LvΣ
+

i = vydA+Σ+

i︸ ︷︷ ︸
= 0 (Gauss)

+dA+(vyΣ+)i−[vyA+,Σ+]i

δvA
+i = LvA

+i = vyF+i+dA+(vyA+)i, (35)

where (vyω)b1···bp−1 ≡ vaωab1···bp−1 for any p-form ωb1···bp , and the first term
in the expression of the Lie derivative of Σ+

i can be dropped due to the
Gauss constraint dAΣ+

i = 0.
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3.2 The Conserved Symplectic Structure in Terms of Vector
Variables

So far we have defined the covariant phase-space as an infinite dimensional
manifold. For it to become a phase-space it is necessary to provide it with
a pre-symplectic structure. As the field equations, the pre-symplectic struc-
ture can be obtained from the first variation of the action (32). In particular
a symplectic potential density for gravity can be directly read off from the
total differential term in (32) [57, 58]. In terms of the Ashtekar connection
and the densitized tetrad, the symplectic potential density is

θ(δ) =
−i
κ

Σ+

i ∧ δA
+i ∀ δ ∈ TpΓ (36)

and the symplectic current takes the form

J(δ1, δ2) = −2i

κ
δ[1Σ+

i ∧ δ2]A
+i ∀ δ1, δ2 ∈ TpΓ. (37)

Einstein’s equations imply dJ = 0. From Stokes theorem applied to the four
dimensional (shaded) region in Figure 1 bounded by M1 in the past, M2

in the future, a time-like cylinder at spacial infinity on the right, and the
isolated horizon ∆ on the left, it can be shown that the symplectic form

κΩM (δ1, δ2) =

∫
M
δ[1Σi ∧ δ2]Ki (38)

is conserved in the sense that ΩM2(δ1, δ2) = ΩM1(δ1, δ2), where M is a
Chauchy surface representing space. The symplectic form above, written in
terms of the vector-like (or Palatini) variables (Σ,K), is manifestly real and
has no boundary contribution.

In the case of diffeomorphisms for the variations on the horizon, conser-
vation of the symplectic form (38) follows from the relation

vyΣi ∧Ki = 0, (39)

which holds only for static IH [42]. Therefore, in presence of a non-static IH,
the symplectic form (38) for gravity is no longer conserved: rotating isolated
horizons boundary conditions break diffeomorphisms invariance6.

6More precisely, the gauge symmetry content of isolated horizon systems is character-
ized by the degenerate directions of the pre-symplectic structure. As shown in [42], tangent
vectors of the phase-space Γ, i.e. variations δ ∈ TpΓ corresponding to diffeomorphisms
tangent to the horizon are degenerate directions of ΩM if an only if the isolated horizon
is static. Nevertheless, variations corresponding to SU(2) gauge transformations remain
degenerate directions also in the non-static case.
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3.3 The Conserved Symplectic Structure in Terms of Real
Connection Variables

In order to be able to apply the LQG formalism in Section 5 to quantize the
bulk theory, we now want to introduce the Ashtekar-Barbero variables

Aia = Γia + βKi
a (40)

where β is the Barbero-Immirzi parameter. We can write the symplectic
potential corresponding to (38) as

κΘ(δ) =
1

β

∫
M

Σi ∧ δ(Γi + βKi)− 1

β

∫
M

Σi ∧ δΓi

=
1

β

∫
M

Σi ∧ δ(Γi + βKi) +
1

β

∫
H
ei ∧ δei, (41)

where in the last line we have used a very important property of the spin
connection [13] compatible with ei, namely∫

M
Σi ∧ δΓi =

∫
H
−ei ∧ δei. (42)

In terms of the Ashtekar-Barbero connection the symplectic structure (38)
takes the form

κΩM (δ1, δ2) =
1

β

∫
M
δ[1Σi ∧ δ2]Ai −

1

β

∫
H
δ[1e

i ∧ δ2]ei . (43)

Before introducing connection variables also for the boundary theory, a some
comments are now in order. We have shown that in the presence of a static
isolated horizon the conserved pre-symplectic structure is the usual one when
written in terms of vector-like variables. When we write the pre-symplectic
structure in terms of Ashtekar-Barbero connection variables in the bulk, the
pre-symplectic structure acquires a boundary term at the horizon of the
simple form [41, 59]

κΩH(δ1, δ2) =
1

β

∫
H
δ[1e

i ∧ δ2]ei . (44)

This boundary contribution provides an interesting insight already at the
classical level, as the boundary symplectic structure, written in this way, has
a remarkable implication for geometric quantities of interest in the first or-
der formulation. More precisely, this implies the kind of non-commutativity
of flux variables that is compatible with the use of the holonomy-flux al-
gebra as the starting point for LQG quantization. In fact, (44) implies
{eia(x), ejb(y)} = εabδ

ijδ(x, y) from which one can compute the Poisson brack-
ets among surface fluxes

Σ(S, α) =

∫
S⊂H

Tr[αΣ], (45)
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where S ⊂ H and α : H → su(2), and see that they reproduce the su(2) Lie
algebra [41]. This is an interesting property that follows entirely from clas-
sical considerations using smooth field configurations. This fact strengthens
even further the relevance of the uniqueness theorems [60], as they assume
the use of the holonomy-flux algebra as the starting point for quantization,
for which flux variables satisfy commutation relations corresponding exactly
to this Poisson structure.

A second observation is that the symplectic term (44) shows that the
boundary degrees of freedom could be described in terms of the pull back of
the triad fields ei on the horizon subjected to the obvious constraint

Σi
H = Σi

Bulk, (46)

which are three first class constraints—as it follows from (44)—for the six
unconstrained phase-space variables ei. One could try to quantize the IH
system in this formulation in order to address the question of black hole
entropy calculation. Despite the non-immediacy of the background inde-
pendent quantization of the boundary theory in terms of triad fields, as
pointed out in [42], difficulties would appear in the quantum theory due
to the presence of degenerate geometry configurations which would consti-
tute residual gauge local degrees of freedom in ei not killed by the quantum
imposition of (46). This would naively lead to an infinite entropy.

While a more detailed study of the quantization of the ei fields on H
would be definitely interesting and might reveal interesting geometric im-
plications, the situation is very much reminiscent of the theory in the bulk,
where the same issue of choice of continuum variables to use for the phase-
space parametrization appears. More precisely, while the bulk theory can
very well be described in terms of vector-like variables (Σ,K), we wouldn’t
know how to quantize the theory in a background independent framework
using these variables. That is why we chose a phase-space parametrization in
terms of (Ashtekar-Barbero) connections and then apply the LQG machinery
to quantize the bulk theory. This suggests that also for the boundary theory
the passage to connection variables may simplify the quantization process7.
Evidence for this comes, for instance, from the spherically symmetric case,
where the degrees of freedom are encoded instead in a connection Ai and
the analog of the constraints Σi

H = 0 (where there are no bulk punctures)
are F i(A) = 0 (see the following Subsection for more details). The di-
mensionality of both the unconstrained phase space and constraint surfaces
are the same as in the treatment based on triads; however, the constraint
F i(A) = 0 completely annihilates the local degrees of freedom at places
where there are no punctures, rendering the entropy finite. This motivates
the use of connection variables to describe (44). In the generic distorted

7Recall that the boundary theory was originally derived in terms of connection variables
[18, 19].
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case, this alternative description can be achieved by the introduction of a
pair of SU(2) connection variables

Aiσ+ = Γi +
2π

aH
σ+e

i and Aiσ− = Γi +
2π

aH
σ−e

i , (47)

where σ± are two new free adimensional parameters (the factor 1/aH is there
for dimensional reasons). In terms of these new variables, the boundary
contribution of the conserved symplectic form (44) becomes

κβ ΩH(δ1, δ2) =
aH

2π(σ2
− − σ2

+)

(∫
H
δ[1A

i
σ+∧ δ2]Aσ+i −

∫
H
δ[1A

i
σ−∧ δ2]Aσ−i

)
.

See [42] for the proof of the previous relation. From the IH boundary con-
ditions, through the relations (21) and (26), Cartan’s equations, and the
definitions (47), the following relations for the new variables hold

⇐F
i(Aσ±) = Ψ2⇐Σ

i +

(
π

aH
σ2
± +

c

2

)
⇐Σ
i . (48)

This means that there is a two-parameter family of equivalent classical de-
scriptions of the system that in terms of triad variables is described by (44)
(we will see in the sequel that the two parameter freedom reduces indeed
to a single one when additional consistency requirements are taken into ac-
count). The appearance of these new parameters σ± is strictly related to
the introduction of the SU(2) connection variables (as was already observed
in [41]). This fact fully reflects the analogy with the bulk theory, where the
appearance of the Barbero-Immirzi parameter follows from the introduction
of the Ashtekar-Barbero variables (replacing the vector-like variables) in the
parametrization of the phase-space of general relativity in the bulk.

In the quantum theory, at points where there are no punctures from
the bulk, the two connections are subjected to the six first class constraints
F i(Aγ) = 0 = F i(Aσ) implying the absence of local degrees of freedom at
these places. The new variables resolve in this way the difficulty related to
the treatment in terms of the triads ei. In addition, the connection fields Aγ
and Aσ are described by Chern-Simons symplectic structures respectively,
with levels

k+ = −k− =
aH

4π`2pβ(σ2
− − σ2

+)
, (49)

which will allow us the use of some of the standard techniques, firstly applied
to Type I isolated horizons in [19], for the quantization of arbitrary static
isolated horizons.

3.3.1 The Spherically Symmetric Case

Before starting the discussion on the boundary theory quantization, we are
now going to revise briefly the description of the horizon degrees of freedom
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in terms of connection variables for Type I IH. We will first derive the
boundary theory in the full SU(2) invariant set-up and at the end present
its U(1) gauge fixed formulation.

For a spherically symmetric IH the Weyl tensor component Ψ2 and the
curvature invariant c in (26) take the constant values: Ψ2 = − 2π

aH
and

c = 2π
aH

(see [41]), from which the horizon constraint (21) and the relation
(26) become

⇐Fab
i(A+) = −2π

aH ⇐
Σi
ab and εijk⇐K

j ∧⇐K
k =

2π

aH⇐
Σi . (50)

The previous equations in turn imply that the curvature of an SU(2) con-
nection Aiσ = Γi + σKi on the horizon be related to the pull-back of the
2-form Σ in the bulk through

⇐F
i(Aσ) = −π(1− σ2)

aH ⇐Σ
i , (51)

where a new parameter σ (independent of the Barbero-Immirzi parameter)
has appeared due to the introduction of the boundary connection Aiσ. We
can now express the symplectic form boundary contribution (44) in terms
of this new connection. If we do so, the symplectic structure of spherically
symmetric IH takes the form [41]

κβ ΩM (δ1, δ2) =

∫
M
δ[1Σi ∧ δ2]Ai −

aH
π(1− σ2)

∫
H
δ[1A

i
σ ∧ δ2]Aσi . (52)

Therefore, the degrees of freedom of Type I IH are described by a single
SU(2) Chern-Simons theory with level

k =
aH

4π`2pβ(1− σ2)
, (53)

which depends on both the Barbero-Immirzi and the new parameter σ.
In [18] the classical description of spherically symmetric IH phase-space

was original performed by introducing a partial gauge fixing from the inter-
nal gauge SL(2,C) to U(1). In this setting one fixes and internal direction
ri ∈ su(2) and then the horizon degrees of freedom are encoded on the
Abelian part W of the pull-back to H of the connection A, namely

Wa ≡ −
1√
2⇐

Γiari . (54)

The IH boundary condition (51) now becomes

dW = −2π

aH⇐
Σiri, ⇐Σ

ixi = 0, ⇐Σ
iyi = 0, (55)

26



where xi, yi ∈ su(2) are arbitrary vectors completing an internal triad; and
the horizon conserved symplectic structure takes the form

κβ ΩM (δ1, δ2) =

∫
M
δ[1Σi ∧ δ2]Ai −

aH
π

∫
H
δ1W ∧ δ2W . (56)

Therefore, in addition to the standard bulk term, the symplectic structure
contains a surface term which coincides with that of a U(1) Chern-Simons
theory for W with level

k =
aH

4πβ`2P
. (57)

Notice that, in this gauge fixed set-up, no new free parameter appears in
the boundary theory description. We will see in the next Section the im-
portant role of this additional free parameter introduced by the description
of the horizon theory in terms of SU(2) connections and absent in the U(1)
formulation.

4 The Zeroth and First Laws of BH Mechanics for
Isolated Horizons

The definition of WIH given in Section 2 implies automatically the zeroth
law of BH mechanics as κ(`) is constant on ∆ (see eq. (12)). In turn, the first
law cannot be tested unless a definition of energy EtH associated with the IH
is given. Since there can be radiation in space-time outside ∆, EADM is not a
good measure of EtH . In absence of global Killing vector fields, the behavior
of the (time) vector fields ta ∈ T(M) near the horizon is unrelated to its
behavior near infinity and hence, at the horizon, it is not possible to define
a unique time evolution. Fortunately, the Hamiltonian framework provides
an elegant way to define a notion of energy associated to the horizon. This
consists of requiring the time evolution along vector fields ta, which are
time translations at infinity and proportional to the null generators ` at the
horizon, to correspond to a Hamiltonian time evolution [48]. More precisely,
denote by δt : Γ → T (Γ) the phase-space tangent vector field associated to
an infinitesimal time evolution along the vector field ta (which we allow to
depend on the phase space point). Then δt is Hamiltonian if there exists a
functional Ht such that

δHt = ΩM (δ, δt). (58)

This requirement fixes a family of good energy formula since the Hamiltonian
Ht, in presence of a boundary, acquires a surface term8 and one can therefore
define EtH as the surface term at H in the Hamiltonian—in addition to

8The volume (bulk) term in Ht is a linear combination of constraints, henceforth, they
are absent in the covariant phase-space framework, since this consists only of solutions to
the field equations.
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the surface term at infinity representing the ADM energy. Remarkably, by
means of the IH boundary conditions, the notion of isolated horizon energy
EtH singled out by condition (58) automatically satisfies the first law of black
hole mechanics, namely

δEtH =
κ(t)

κ
δaH + Φ(t)δQH + other work terms , (59)

where we have put the explicit expression of the electromagnetic work term
where Φ(t) is the electromagnetic potential (constant due to the IH boundary
condition) and QH is the electric charge. The above equation implies κ(t)

and Φ(t) to be functions of the IH area aH and charge QH alone.
In other words, the vector field δt on Γ defined by the space-time evo-

lution field ta is Hamiltonian if and only if the first law (59) holds. The
general treatment and derivation of the first law can be found in [48, 50].

Recently, a local first law for isolated horizons has been derived in [61],
whose uniqueness can be proven once a local physical input is introduced.
Interestingly, this allows to associate an energy to the horizon proportional
to its area. This notion of area as energy could have important implications
for statistical mechanical consideration of quantum IH (see, e.g., [62]).

5 Quantization

Isolated horizons—defined in Section 2—are the main ingredient we will use
for the definition of a quantum black hole. Although very interesting devel-
opments [63, 64] have been recently carried out towards the characterization
of black holes within the full quantum theory, we will follow here the well
established, but somehow effective, approach based on starting from a clas-
sical space-time containing a black hole. Therefore, the goal is to quantize
the sector of general relativity containing an isolated horizon as an internal
boundary.

We will first present this quantization as it was originally carried out
in [19] for the spherically symmetric case. However, we will only give an
introductory description quantization procedure. For technical details and
a thorough description the reader is referred to the original works [18, 19].
For computational simplicity, as described above, a gauge fixing was imple-
mented that reduced the gauge group on the horizon from SU(2) to U(1).
That is, however, just a technical tool, not fundamental in the setup of this
framework. Thus, in Section 5.2, we will present a more recent construction
[41, 40, 42] in which this gauge fixing is avoided resulting in a quantum
theory with a SU(2) gauge group on the horizon. These two approaches are
expected to be fully equivalent; they should agree on all physical predictions.
However, the different nature of the horizon constraints and number of free
parameters in the theory within the two frameworks will have important
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consequences in the entropy computation, as we are going to see in Section
6.

5.1 U(1) Quantization

The starting point is a space-time containing an inner boundary. As we have
seen in the previous Section, it is not necessary to introduce a horizon bound-
ary term in the action when working with vector-like variables. However,
when passing to real Ashtekar-Barbero connection variables (A,Σ), in order
to have a conserved symplectic current, one needs to introduce a boundary
term corresponding to the horizon in the symplectic structure. In the U(1)
gauge fixed formulation, the resulting symplectic structure takes the form
(56). As it can be seen from this expression, the boundary term corresponds
to the symplectic structure of a U(1) Chern-Simons theory. This fact pro-
vides the main guidance on the strategy to quantize the system, namely
to perform a separate quantization of the bulk and surface Hilbert spaces,
where the surface Hilbert space will correspond to a quantum Chern-Simons
theory on a (punctured) sphere.

From the structure of (56) it is possible to observe that we can split
the phase-space in a bulk and a surface part. However, at the classical
level, given a state in the bulk, the corresponding surface state is completely
determined through continuity of the fields. The key point for the description
of an entropy associated to the horizon is the fact that this no longer holds
at the quantum level. Due to the distributional nature of quantum states,
states in the horizon Hilbert space are not fully determined by the bulk. The
horizon acquires independent degrees of freedom through the quantization
process, and those are precisely the degrees of freedom giving rise to black
hole entropy (we will come back to this point in Section 7).

5.1.1 Bulk Hilbert Space

Let us then start the quantization process by describing the bulk Hilbert
space. The quantization of the bulk geometry follows the standard procedure
of LQG [13] where one first considers (bulk) Hilbert spaces defined on a graph
γ ⊂M and then takes the projective limit containing the Hilbert spaces for
arbitrary graphs.

As a result, geometry in the bulk is described by spin networks. However,
due to the presence of the inner boundary, some of the spin network edges
are not connected to vertices in the bulk, but they end at the horizon. These
open ends of the spin network piercing the horizon H, denoted γ∩H, are not
connected to intertwiners and they acquire an additional label m (the spin
projection) as a result of the non-gauge invariance at those points. Magnetic
numbers mi satisfy then the standard relation with the corresponding spin
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labels ji at each edge ei

mi ∈ {−ji,−ji + 1, . . . , ji}. (60)

For a given set of points P on the horizon H one can define the Hilbert
space H P

M as the space formed by all open spin networks with one edge
finishing at each of the points of P. We can assume, without loss of general-
ity, that each puncture is connected to only one edge. Then, the total bulk
Hilbert space can be written as the direct limit

HM = lim
P

H P
M (61)

letting P range over all finite sets of points in H. The quantum operator
associated with Σ is

Σ̂i(x) = 8π`2pβ
∑

p∈γ∩H
δ(x, xp)Ĵ

i(p) , (62)

where [Ĵ i(p), Ĵ j(p)] = εijkĴ
k(p) at each p ∈ γ ∩H.

Another important operator that can be defined in H P
M is the area of the

horizon H. This operator is a particular case of the general area operator
in LQG, in which edges only pierce the horizon from one side, and there
are no edges lying on the surface. If we denote these spin network states
by |{jp,mp}N1 ; ···〉, where jp and mp are the spins and magnetic numbers
labeling the N edges puncturing the horizon at points xp (other labels are
left implicit), the eigenvalues of the horizon area operator âH are

âH |{jp,mp}N1 ; ···〉 = 8πβ`2p

N∑
p=1

√
jp(jp + 1)|{jp,mp}N1 ; ···〉. (63)

The bulk Hilbert space HM can be split into a direct sum of subspaces
diagonalizing this operator. More precisely, for a given set of points P and a
set j = {j1, . . . , jN}, the space of all open spin networks with N edges ending
at the points in P and labeled by the set of spins in j, form the Hilbert space
H P,j
M . Then, the total volume Hilbert space HM can be written as

HM =
⊕
P,j

H P,j
M . (64)

This decomposition diagonalizes the horizon area operator âH . All the states
in a subspace H P,j

M correspond to the same area eigenvalue given by (63).
Notice that throughout this construction the area of the horizon is taken
as an operator acting on the volume Hilbert space. When referring to this
area, we are thus referring to a geometrical property of the horizon H as a
surface embedded in M .
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An important issue that we will address later on is the gauge invariance
of states in HM . As we saw above, there is a set of points P whose gauge
invariance is not established since they are associated to open edges of the
spin network, not connected to an intertwiner. For the study of this gauge
invariance it will be convenient to split the volume Hilbert space in a dif-
ferent way. Instead of using the above decomposition, that diagonalizes the
geometric operators, it will be interesting to use a decomposition in terms of
the spin projections m, that as we will see below diagonalizes the action of
the gauge transformations. Taking this into account, one can consider the
Hilbert subspace corresponding to spin networks piercing the horizon in a
given set of points P with spin projections m = {m1, . . . ,mN}. Then, the
volume Hilbert space can be written as

HM =
⊕
P,m

H P,m
M . (65)

As we will see, this decomposition tuns out to be very convenient also for
the computation of entropy.

5.1.2 Surface Hilbert Space

For quantizing the surface space, we start with a phase-space endowed with
the symplectic structure of a Chern-Simons theory. Our phase-space is then
made up of flat connections. However, through the quantization procedure,
and due to the boundary conditions, those points where the spin network
of the bulk pierce the horizon, behave as topological defects for the Chern-
Simons theory. This gives rise to non-trivial degrees of freedom that will
correspond to the horizon entropy. What is to be quantized, then, is a
Chern-Simons theory over a punctured sphere. This quantization is carried
out following a geometric quantization procedure, that we will not present
in detail here (see [19] for details). After this, what is left is a Hilbert space
formed by flat connections except at the punctures, where conical singular-
ities of curvature occur. This distributional curvature concentrated at each
puncture can be quantified as the angle deficit obtained when computing the
holonomy of a path winding around the corresponding puncture. Therefore,
these holonomies will be appropriate operators to encode the horizon degrees
of freedom and then to characterize the quantum states. Furthermore, the
angle deficits are quantized. The corresponding holonomies are given by

ĥiΨP,a = e
2πiai
k ΨP,a (66)

where ai ∈ Zk are integer numbers modulo k that label the angle deficit
at each puncture, and k is the level of the Chern-Simons theory. Thus, a
convenient way to represent the states of the surface Hilbert space HH is
by characterizing a set of punctures over the surface, and the corresponding
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set a = {a1, . . . , aN} of labels associated to them. This is precisely what the
state ΨP,a ∈HH means in the above expression.

Although we will not get in details of the geometric quantization process
here, there is however an important step that we need to comment on, given
its relevance importance for the entropy counting.

The first step of the quantization is to construct the quantum phase-
space, consisting of generalized connections that are flat everywhere except
at the punctures. One has to show, then, that this phase-space is compact.
This is done by showing that, for a given set P of N punctures, the corre-
sponding phase-space XP is diffeomorphic to a 2(N − 1)-torus. It can also
be shown that, in spite of the existence of punctures with the corresponding
singularities of curvature (curvature can be seen now as distributional), the
Chern-Simons symplectic form is still well defined.

The important point that we want to discuss is related to this demon-
stration of the phase-space XP being diffeomorphic to a 2(N − 1)-torus.
During this process, an additional structure consisting, among other things,
of an ordering of the punctures is introduced. This ordering is then required
for the quantization procedure to be well defined. But such a structure is
not invariant under the action of diffeomorphisms on the horizon surface.
In fact, diffeomorphisms act transitively on this additional structure. Thus,
starting from a given ordering, one can obtain any other possible one, just
through the action of a diffeomorphism. As a consequence, these different
orderings cannot be considered as different physical states, since they are
just related by a diffeomorphism. In fact, once one ordering is chosen, what-
ever this is, the physical states contained in the corresponding space are
exactly the same as the ones that would be obtained with any other order-
ing. Then, one does not have to care about the ordering that is given to the
punctures. But it is very important to keep in mind that, regardless of what
the ordering is, the punctures have to be ordered in order for the quantiza-
tion procedure to be well defined. This is a crucial point, as it affects the
statistical character of the punctures. As ordered points, punctures have to
be regarded as distinguishable objects. This will have a major relevance in
the counting of states leading to black hole entropy.

With all this, the standard procedure for geometric quantization of XP
can be carried out, by first endowing this phase space with a Kähler structure
with the symplectic form is its imaginary part and then defining a holomor-
phic line bundle L. This line bundle, however, can only be well defined if
the level of the Chern-Simons theory takes an integer value k ∈ Z. Then,
the Hilbert space H P is formed by holomorphic Sections of the line bundle
L. This Hilbert space contains all the geometries of the horizon H that are
flat everywhere except at the set P of punctures. As commented above, a
convenient basis for such a Hilbert space H P is given by the states ΨP,a,
characterized by the list a of the corresponding ai labels associated to each
puncture.
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There is an additional consideration that can be made at this point. The
spherical topology of the (spatial slices of the) horizon imposes a restriction
reflecting the fact that holonomies of the N punctures are not all indepen-
dent. A path winding around all the punctures is contractible on a sphere,
so the composition of the individual holonomies for all the punctures must
be identity. This fact translates into a constraint on the labels ai of the
holonomies, the so-called projection constraint :

N∑
i=1

ai = 0. (67)

This constraint will also play an important role on the entropy counting.
With this, for a given set P of points in the horizon surface and a certain

labeling a for this points, satisfying (67), we can define a sub-space H P,a
H of

the surface Hilbert space. The total surface Hilbert space HH can be then
written as a direct sum of subspaces H P,a

H

HH =
⊕
P,a

H P,a
H (68)

where the sum ranges over all finite sets of punctures P labeled with nonzero
integer numbers ai ∈ Zk that sum up to zero. It is important to impose the
condition of ai being nonzero elements, in order for the direct sum decom-
position to be well defined. In fact, if one considers a state with a puncture
p0 labeled with a0 = 0, this would correspond to having no curvature for
this puncture. Physically, this state would be the same as a state with N−1
punctures, all of them with nonzero values of ai. In order for the subspaces
H P,a
H to be disjoint, avoiding a double counting of states, we have to require

the nonzero condition on the ai labels.

5.1.3 Quantum Boundary Conditions

Once the volume HM and surface HH Hilbert spaces have been separately
constructed, we now have to impose the necessary conditions for matching
states in these two spaces. It is at this point that one requires the boundary
to be an isolated horizon, precisely by imposing the boundary conditions
derived in the previous Section. The analysis of classical isolated horizons
[18] shows that the pull back of the SU(2) Ashtekar-Barbero connection
to a (spatial Section of the) isolated horizon can be fully characterized by
the value aH of the horizon area and a U(1) connection. Therefore, we can
perform a gauge fixing on the constraint (24) by projecting this equation on
a fixed internal vector r on the sphere, as illustrated in Section 3.3.1. This
would allow us to work with a U(1) Chern-Simons theory on the quantum
horizon. This gauge fixing is, however, not a necessary step, and we will see
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in next Section how the quantization can be carried out keeping the SU(2)
freedom.

When we project equation (24) on an internal vector ri, and express it in
terms of real Ashtekar-Barbero variables, we obtain the boundary condition
(55), namely

Fab = −2π

aH⇐
Σi
ab ri , (69)

where, in order to match the notation in [19], we have introduced Fab = dW ,
the curvature of the U(1) connection W obtained by projecting the pull-back
to the horizon of the spin connection Γia on ri (see (54)).

We will promote this equation to a quantum operator equation and im-
pose it on the states of our Hilbert spaces. However, only the exponentiated
version of the operator F̂ is well defined on the horizon. Thus, we will
take the exponentiated version of the operators and establish the boundary
condition as

(1⊗ exp(iF̂ ))Ψ = (exp(−i2πβ
aH ⇐

Ĵ · r)⊗ 1)Ψ . (70)

This equation relates an operator acting on the surface with an operator
acting on the volume. The structure of this equation implies that we can
obtain a basis ΨM ⊗ΨH of solutions such that ΨM and ΨH are eigenstates
of ⇐Ĵ · r and exp(iF̂ ) respectively. In order for the boundary condition to be

satisfied, the spectra of these two operators should coincide. There is no a
priori reason why this should be even possible. However, the spectrum of
the operator ⇐Ĵ · r satisfies

(⇐Ĵ · r)ΨM = 8π`2P

N∑
i=1

miδ
2(x, pi)ηΨM , (71)

where pi ∈ P are the finitely many points in which the spin network punc-
tures the horizon and mi are the corresponding spin projection labels that
the edges acquire at those points. Then at each point of P the operator
exp(−i2πβ

aH ⇐Ĵ · r) takes eigenvalues given by

exp(−2πiβ

aH
(8π`2Pmi)). (72)

On the other hand, the operator exp (iF̂ ) acts as the holonomy around each
of the punctures P, so, at each of this points the operator has eigenvalues
given by

exp(
2πiai
k

) , (73)

where ai are the corresponding integers modulo k labeling the angle deficits.
It is easy to see that these two spectra do indeed coincide if the relation

2mi = −ai mod k (74)
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is imposed between m and a labels.
Then, by using the splitting of the volume and surface Hilbert spaces in

terms of m and a labels respectively, we can construct the total kinematical
Hilbert space, including the boundary conditions, as

Hkin =
⊕

P,m,a: 2m=−a mod k

H P,m
M ⊗H P,a

H . (75)

The boundary conditions imposed by the isolated horizon definition are, at
the end of the day, codified in a simple relation between labels of surface an
volume states. States satisfying this relation are the ones giving rise to the
kinematical Hilbert space.

It remains to impose the set of constraints necessary to construct the
physical Hilbert space. Some additional comments can be made at this
point. First, it can be shown that states satisfying this boundary conditions
are automatically gauge invariant. The action of gauge transformations on
the horizon turns out to be implemented by the same operators involved in
the isolated horizon boundary condition, in such a way that states satisfying
(74) are gauge invariant. Thus, the role played by equation (74) is precisely
to ensure gauge invariance at the punctures. Second, in order for states to be
diffeomorphism invariant, the position of punctures on the horizon cannot
be a physical quantity. States that only differ on the localization of the
punctures on the horizon, are related by a diffeomorphism and correspond to
the same physical state. Thus, only the number n of punctures is needed to
characterize physical states, and no reference to their position on the horizon
will be made as a consequence of imposing the diffeomorphism constraint.
Finally, since the Hamiltonian constraint has no effect on the horizon (the
smearing function vanishes on the horizon [18]), it will suffice to make the
(mild) assumption that for any horizon state there is at least one compatible
bulk state satisfying the Hamiltonian constraint. Therefore, with all this we
have a well defined physical Hilbert space with states satisfying Quantum
Einstein’s equations.

5.2 SU(2) Quantization

Let us now go back to the fully SU(2) invariant framework and relax any
symmetry assumption on the horizon. In Section 3.3 we have seen that, for
generic distorted horizons, one has to introduce two new SU(2) connections
on the boundary and the horizon degrees of freedom are then described in
terms of a pair of Cher-Simons theories satisfying the constraints (48).

Now, following Witten’s prescription to quantize the two Chern-Simons
theories with punctures [65], we introduce:

k±
4π
F i(Aσ±) = J i±(p), (76)

35



where the levels k± are given in (49). If we do so, we can now rewrite the
constraints as [42]

Di(p) = J ib(p) + J iγ(p) + J iσ(p) = 0 (77)

plus the constraint

Ci(p) = J iγ(p)− J iσ(p) + αJ i(p) = 0, (78)

where

α ≡
(σ2
− + σ2

+) + aH
π (2Ψ2 + c)

(σ2
− − σ2

+)
(79)

will have a precise definition in the quantum theory in terms of bulk and
boundary operator, as clarified in the following.

In a similar fashion as in Section 5.1.2, we can now quantize the boundary
theory following Witten’s prescription. In fact, the Hilbert space of the
boundary model is that of two Chern-Simons theories associated with a pair
of spins (j+

p , j
−
p ) at each puncture. More precisely,

H CS
H (j+

1 · · · j
+
N )⊗H CS

H (j−1 · · · j
−
N ) ⊂ Inv(j+

1 ⊗· · ·⊗j
+
N )⊗Inv(j−1 ⊗· · ·⊗j

−
N ) .
(80)

The Hilbert space of an SU(2) Chern-Simons theory with given punctures
on the sphere can be thought of as the intertwiner space of the quantum
deformation of SU(2) denoted Uq(su(2)). The inclusion symbol in the pre-
vious expression means that the later space is isomorphic to a subspace of
classical SU(2) intertwiner space. This is due to the fact that, in this iso-
morphism, the spins associated to the Chern-Simons punctures cannot take
all values allowed by the representation theory of SU(2), but are restricted
by the cut-off k/2 related to the deformation parameter by q = exp( iπ

k+2)
where k is the Chern-Simons level.

The operators associated to J i+(p) and J i−(p) describe the spins of the
pair of Chern-Simons defects at the punctures. They are observables of
the boundary system with which the spins j+

p and j−p are associated. The
theory is topological which means in our case that non-trivial d.o.f. are only
present at punctures. The operator associated to J i(p), on the other hand,
corresponds to the LQG flux operator (62) coming from the bulk.

Therefore, the distorted IH is modeled by a pair of SU(2) quantum
intertwiners with each edge of one intertwiner coupled to an edge of the
other and a puncture coming from the bulk. In a graphical representation,
we have, at each puncture,

With all this we can now impose (77) which, at a single puncture, requires
invariance under SU(2) local transformations

δJ jA = [αiD
i, J jA] = εijkαiJ

k
A ,
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J

J+ J− .

where JA = J+, J−, J respectively. Equivalently, the constraint (77) requires
the quantum state to be proportional to the singlet state with zero total
SU(2) charge: zero total angular momentum. More precisely, the quantum
constraint D̂i(p) = 0 simply requires that

Inv(jp ⊗ j+
p ⊗ j−p ) 6= ∅ (81)

at each puncture p.
In order to analyze the imposition of the constraint (78), we first need

to study the nature of the constraint system formed by D̂i(p), Ĉi(p). The
constraint algebra is9:

[Ĉi(p), Ĉj(p′)] = εijk (Ĵk+(p) + Ĵk−(p) + α2Ĵk(p)) δpp′

[Ĉi(p), D̂j(p′)] = εijk Ĉ
k(p) δpp′

[D̂i(p), D̂j(p′)] = εijk D̂
k(p) δpp′ , (82)

from which we see that, in the generic distorted case, the constraint Ĉi(p) is
not first class. At this point, it is important to recall that in the spherically
symmetric case, where the horizon degrees of freedom are described by a
single SU(2) Chern-Simons theory, the boundary constraint (51) is first class
since it closes an SU(2) Lie algebra, as shown in [41]10. As a consequence,
for Type I IH one can correctly impose all the constraints strongly and end
up with a single quantum SU(2) intertwiner modeling the horizon. This
means that, in this new description, we need to be able to implement the
constraint Ĉi(p) = 0 strongly for Type I IH in order to end up with the
same number of d.o.f.

9Even though in the classical analysis, in order to prove that the symplectic structure
is conserved, one has to identify the Σ in the bulk with that on the boundary, in the
quantization process the degrees of freedom of the Σ bulk are decoupled from those on the
boundary encoded in J+, J−. That’s the reason why at the quantum level Ĵ i commutes
with Ĵ i+, Ĵ

i
−.

10This is no longer the case in the U(1) gauge fixed version of the theory since the
set of constraints (55), in the quantum theory, is no longer first class due to the non-
commutativity of Σi in LQG. We will come back in the next Section on the consequences
of this fact in the entropy computation.
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Therefore, let us now concentrate for a moment on the spherically sym-
metric case and see if, within this more general framework, it is possible to
recover the picture of [41]; it turns out that the answer is in the affirmative
and the contact with Type I IH theory will allow us to reduce from two to
one the number of free parameters (σ+, σ−) entering the system description.

As we saw in Section 3.3.1, for a spherically symmetric IH we can replace
in the expression for α (79) Ψ2 and c with their constant classical values:
Ψ2 = − 2π

aH
and c = 2π

aH
. In this way, the function α becomes constant and

we can use the freedom in the parameters σ+, σ− to set α2 = 1. If we do
so, the algebra of constraints (82) now closes, reproducing a su(2) ⊕ su(2)
local isometry. The previous analysis implies that we can impose spherical
symmetry strongly if and only if (σ2

−+σ2
+)± (σ2

−−σ2
+) = 2. The solutions to

the two branches of the previous equation are: σ2
+ = 1 and σ− arbitrary (for

the plus branch α = 1), and σ2
− = 1 and σ+ arbitrary (for the minus branch

α = −1). The two cases α = ±1 can be shown to be completely analogous
and simply amount to switch the two indices ‘+’ and ‘−’. Henceforth, in
the following we choose to fix σ2

+ = 1 and keep σ− free. With this choice,
the Chern-Simons levels k± become

k− = −k+ =
aH

4π`2pβ(1− σ2
−)
. (83)

If we now rewrite the constraints (77-78) as Ĉi±(p) ≡ (D̂i(p)± Ĉi(p))/2, the
algebra (82) becomes

[Ci±(p), Cj±(p′)] = εijk C
k
±(p) δpp′

[Ci±(p), Cj∓(p′)] = 0 (84)

and we can impose Ci± = 0 strongly by setting the boundary spins j−p = 0
and j+

p = jp. In this way the Hilbert space of generic static isolated horizons

H CS
H (j+

1 · · · j+
n ) ⊗H CS

H (j−1 · · · j−n ) (restricted only by the condition (81))
reduces, for Type I IH, to

H CS
H (j1 · · · jn) ⊂ Inv(j1 ⊗ · · · ⊗ jn) , (85)

in complete agreement with the analysis of [41]. Moreover, the level (83) for
the single SU(2) Chern-Simons theory left on the boundary exactly matches
the value found in [41] for Type I IH.

This correspondence works also at the classical level. We have seen that
spherical symmetry implies C− = 0 which, according to eq. (76), requires

F (Aσ−) = 0 ; (86)

as the horizon H is simply connected, this implies that Aσ− = gdg−1, i.e.,
pure gauge. Therefore, the non-trivial degrees of freedom of the Type I iso-
lated horizon are described by a single Chern-Simons theory with connection
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Aσ+ and constraint C+ = 0 equivalent to

k

4π
F (Aσ+) = Σi , (87)

in complete classical correspondence with the treatment of [41].
Therefore, the requirement that spherical symmetry can be imposed

strongly reduces the two-parameter family of models of a distorted hori-
zon to a one-parameter one. Recall that this one-parameter ambiguity, also
present in the spherical isolated horizon case, is a feature proper of the SU(2)
treatment while is absent in the U(1) set-up.

We can now go back to generic distorted case and fix one of the two
free parameters σ+, σ− in the general case to the value obtained from the re-
quirement of the constraints to close a Lie algebra for the case of spherically
symmetric IH. Namely, from now on, choosing the plus branch α = 1, we
will set σ2

+ = 1 and keep σ− as the only free parameter. In the arbitrarily
distorted case, α is no more a constant and, therefore, the constraint algebra
(82) doesn’t close any more. This means that imposing the six constraints
strongly is a far too strong requirement that risks to kill relevant physical de-
grees of freedom. Henceforth, in order to deal with the constraint Ĉi(p) = 0,
one has to introduce alternative techniques which allow to impose it weakly.
A natural way of doing so consists of imposing Ĉi(p) = 0 strongly in the
semi-classical limit, i.e. for large spins. In order to see what this implies,
let us first notice that—using the closure constraint D̂i(p) = 0, which we do
impose strongly as they are first class—the constraint Ĉi(p) can be written
in the following form

Ĉi(p) ≈ Ĵ i+(p)− Ĵ i−(p)− α(Ĵ i−(p) + Ĵ i+(p)) = 0. (88)

If we interpret for a moment the previous constraint classically, we see that
it implies that the vectors J i+(p), J i−(p), and (through Di(p) = 0) J i(p)
are parallel. In order to derive this condition more rigorously, we are now
going to introduce the master constraint technique [66]. More precisely, one
can replace the constraint Ĉi(p) = 0 with the equivalent master constraint
Ĉ2(p) = 0, which now commutes with D̂i(p) = 0. Trying to impose this
master constraint strongly, one would find that the only states in the kernel
of Ĉi(p) are spherically symmetric states. Namely, the condition for Ĉ2(p)
to vanish can be expressed as the restriction

Ĵ2
−(p)Ĵ2

+(p)− (Ĵ+(p) · Ĵ−(p))2 = 0, (89)

which is equivalent to the vanishing of the quantum angle between Ĵ i+(p)

and Ĵ i−(p). The only strict solutions of that constraint are Ĵ i−(p) = 0 or

Ĵ i+(p) = 0 which give α = ±1 and hence spherically symmetric states only.
We can relax the previous constraint by requiring eq. (89) to hold only in the
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large spin limit. Since the imposition of the closure constraint D̂i(p) = 0 tells
us that, at each puncture, we can decompose the boundary Hilbert space

according to Vρ = Vj+ ⊗ Vj− =
⊕j++j−

j=|j+−j−| Vj , where Vj is the Irrep associ-

ated to the puncture coming from the bulk, the requirement of (89) to hold
in the large spin limit amounts to select only the lowest and highest weight
Irreps in the previous boundary Hilbert space decomposition. Namely, the
weak imposition of Ĉi(p) = 0 correspond to the restriction

j =

{
j+ + j−

|j+ − j−|. (90)

All this implies that it is consistent to take

α̂ ≡
Ĵ2

+(p)− Ĵ2
−(p)

Ĵ2(p)
(91)

as a definition of the quantum operator associated to the horizon distor-
tion degrees of freedom (79). The spins restriction (90) implies that the
eigenvalues of the operator (91) are divided into the two sectors

|α|
{
< 1 for j = j+ + j−

> 1 for j = |j+ − j−|, (92)

with the eigenvalue |α| = 1 corresponding to spherically symmetric config-
urations. Notice that, for j = |j+ − j−|, the case where the two boundary
punctures have the same spin, i.e. j+ = j−, is not allowed since it would
give a j = 0 for the bulk puncture and therefore excluded from the entropy
counting.

Notice also that α̂ defined in (91) commutes with all the observables
in the boundary system; thus, the quantity 2Ψ2 + c remains ‘classical’ in
this sense in agreement with the assumptions used for the construction of
the phase-space of our system and the operator associated to it has no
fluctuations in the Hilbert space of the distorted horizon.

Eq. (91) represents a well defined expression for an operator encoding
the degrees of freedom of distortion; its eigenvalues are determined by the
spins associated to the bulk and horizon punctures and they characterize the
distorted configurations which will contribute to the entropy calculation.
More precisely, the sum over the bulk and horizon spins performed (see
next Section) in the state counting corresponds to the sum over the allowed
distorted configurations of the model. In this sense, we can trace back
the horizon entropy to the counting of the boundary geometry degrees of
freedom.

6 Entropy Computation

Once we have described the quantization procedure and the resulting horizon
and bulk Hilbert spaces, we want to compute the entropy associated to such
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a black hole. As commented above, we consider the approach where only
horizon degrees of freedom contribute to the black hole entropy. Hence, we
need to trace out the degrees of freedom corresponding to the bulk. We
construct the density matrix ρbh for the system and assume a maximally
mixed state. In this way, the entropy of the horizon will be given by

Sbh = −Tr(ρbh ln ρbh) .

From standard statistical mechanics, we know that this is equivalent to
Sbh = lnNbh, where Nbh is the total number of states in the horizon Hilbert
space HH . Computing this number is the main goal of the rest of this
Section, and in general, of the black hole entropy computation in LQG.

Thus, after all the formal quantization and setup of the framework, the
main problem we are faced with, in order to obtain the behavior of the
entropy of a black hole in loop quantum gravity, can be expressed as a
purely combinatorial problem. In the following we state this combinatorial
problem in a precise way.

At this point, it is important to comment on the different imposition of
the constraints in the U(1) and SU(2) set-up. As already noted above, the
set of constraints (55) in the U(1) formulation are no longer first class in the
quantum theory due to the non-commutativity of Σi in LQG. Therefore, in
the original derivation [18, 19] of the model, spherical symmetry is imposed
already at the classical level. In this case, one considers a U(1) Chern-
Simons theory with a level that scales with the macroscopic classical area
k ∝ aH . This makes the state-counting (necessary for the computation of
the entropy) a combinatorial problem which can be entirely formulated in
terms of the representation theory of the classical group U(1): for practical
purposes one can take k =∞ from the starting point [25, 26, 35].

A striking result of these calculations is, besides the recovering of the
leading term proportional to the horizon area, the appearance of logarith-
mic corrections in the Bekenstein-Hawking area law. In a first moment,
these logarithmic corrections to the formula for black hole entropy in the
loop quantum gravity literature were thought to be of the (universal) form
∆S = −1/2 log(aH/`

2
p) [27]. However, in [67] it was pointed out that, as-

suming SU(2) gauge symmetry of the isolated horizon system, the counting
should be modified leading to corrections of the form ∆S = −3/2 log(aH/`

2
p).

This suggestion revealed to be particularly interesting since it would elimi-
nate the apparent tension with other approaches to entropy calculation. In
particular, the result of [67] is in complete agreement with the seemingly
very general treatment (which includes the string theory calculations) pro-
posed by Carlip [68], in which logarithmic corrections with a constant factor
−3/2 also appear11—see also [69] for an interesting relation between black

11See Section 9 for more details on the connections between Conformal Field Theory
and the LQG description of the horizon theory.
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hole thermodynamics and polymer physics in which a logarithmic correction
with the same numerical coefficient is derived.

From this perspective, the necessity of an SU(2) gauge invariant for-
mulation comes from the requirement that the isolated horizon quantum
constraints be consistently imposed in the quantum theory, leading to the
correct set of admissible states—in [40] it was suggested that the U(1) treat-
ment leads to an artificially larger entropy due to the fact that some of the
second class constraints arising from the SU(2)-to-U(1) gauge fixing can
only be imposed weakly12.

This observation, together with the basic conceptual ideas contained in
the pioneering works [15]-[39], motivated the more recent derivation, per-
formed in [40, 41, 42], of the horizon theory preserving the full SU(2)
boundary symmetry. However, the SU(2) formulation is not unique as
there is a one-parameter family of classically equivalent SU(2) connections
parametrizations of the horizon degrees of freedom. More precisely, in the
passage from Palatini-like variables to connection variables, that is neces-
sary for the description of the horizon degrees of freedom in terms of Chern-
Simons theory (central for the quantization), an ambiguity parameter arises,
as shown in the previous section. This is completely analogous to the situ-
ation in the bulk where the Barbero-Immirzi parameter reflects an ambigu-
ity in the choice of SU(2) variables in the passage from Palatini variables
to Ashtekar-Barbero connections (central for the quantization in the loop
quantum gravity approach). In the case of the parametrization of the iso-
lated horizon degrees of freedom, this ambiguity can be encoded in the value
of the Chern-Simons level k, which, in addition to the Barbero-Immirzi pa-
rameter, becomes an independent free parameter of the classical formulation
of the isolated horizon-bulk system.

Therefore, it is no longer natural (nor necessary) to take k ∝ aH . On the
contrary, it seems more natural to exploit the existence of this ambiguity by
letting the Chern-Simons level be arbitrary. More precisely, we can reabsorb
in the free parameter σ the dependence on aH and thus take k ∈ N as an
arbitrary input in the construction of the effective theory describing the
phase-space of IH. In this way, the SU(2) classical representation theory
involved in previous calculations should be replaced by the representation
theory of the quantum group Uq(su(2)) with q a non-trivial root of unity
[70]. Thus quantum group corrections become central for the state-counting
problem.

The advantages of this paradigm shift introduced in [42] are that, on
the one hand, it gives a theory which is independent of any macroscopic
parameter—eliminating in this simple way the tension present in the old
treatment associated to the natural question: why should the fundamen-
tal quantum excitations responsible for black hole entropy know about the

12Namely, in [19], for the last two constraints of (55), one has 〈Σixi〉 = 〈Σiyi〉 = 0.
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macroscopic area of the black hole?—on the other hand, compatibility with
the area law will (as shown below) only fix the relationship between the
level k and the Barbero-Immirzi parameter β; thus no longer constraining
the latter to a specific numerical value.

In the first part of this Section, we are going to present the powerful
methods that have been developed for the resolution of the counting problem
in the k =∞ case involving the U(1) classical representation theory [35, 36,
37, 32] (for a generalization to the SU(2) Lie group see [43]). In the second
part, we present the finite k counting problem by means of simple asymptotic
methods introduced in [44] and inspired by a combination of ideas stemming
from different calculations in the literature [28, 67, 71]. This second part
involves the quantum group Uq(su(2)) representation theory and follows a
less rigorous and more physical approach; perhaps, the more sophisticated
techniques developed in the infinite k case are generalizable to the finite k
case.

6.1 The Infinite k Counting

As seen in Section 5.1, there are three sets of labels taking part on the de-
scription of the horizon-bulk quantum system. On the one hand, there
are integer numbers a labeling the states on the surface Hilbert space.
Corresponding to the bulk Hilbert space, and associated with each edge
of the spin network piercing the horizon, there are two labels, j and m,
that satisfy the standard angular momentum relations. j characterizes a
SU(2) irreducible representation associated to the corresponding spin net-
work edge, while m is the associated magnetic moment, therefore satisfying
m ∈ {−j,−j + 1, . . . , j}. On the other hand, we have two constraints on
them. The first constraint is the area of the horizon, and restricts the pos-
sible sets of spins j.

A(~j) = 8πβ`2p

N∑
i=1

√
ji(ji + 1). (93)

The second is the projection constraint, that restricts the allowed configu-
rations of a labels.

N∑
i=1

ai = 0. (94)

Now, in principle, since we want to account only for the degrees of free-
dom intrinsic to the horizon, we should only be counting configurations
labelled by a-numbers. However, the area constraint acts on labels j, and
we still need to take it into account. Since we do not want to count degrees
of freedom corresponding to the bulk, we need to find a way of translating
the area constraint to the horizon states. Fortunately, we can make use
of the relation (60) between j and m labels and also the isolated horizon
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boundary condition (74) relating m and a labels. Noting this, a consistent
way of posing the combinatorial problem was given in [25]:

Nbh(A) is 1 plus the number of all the finite, arbitrarily long, sequences
~m of non-zero half-integers, such that the equality

N∑
i=1

mi = 0. (95)

and the inequality

8πβ`2P

N∑
i=1

√
|mi|(|mi|+ 1) ≤ aH . (96)

are satisfied.

This problem was first solved in [26] for the large area limit approxi-
mation. An exact computational solution for the low area regime was later
carried out in [29, 30], showing for the first time the effective discretization of
black hole entropy in loop quantum gravity. What we are going to present in
what follows is an exact analytical solution for this combinatorial problem,
as it was performed later in [35]. This analytical exact solution has interest
on its own, but it is also the point of departure for an asymptotic study of
the behavior of entropy. It will allow to obtain closed analytical expressions
for the behavior of entropy that can be used afterwards as the starting point
for the asymptotic analysis. In order to solve this combinatorial problem
we are going to use the following strategy (for a thorough exposition of this
procedure see [37]):

- In first place, given a value A of area, we will compute all sets of integer
positive numbers |mi| such that the following equality is satisfied

N∑
i=1

√
|mi|(|mi|+ 1) =

aH
8πβ`2P

. (97)

This is equivalent to give a complete characterization of the horizon
area spectrum in loop quantum gravity.

- For each set of |mi| numbers we will introduce a factor accounting for
all possible different ways of ordering them over the distinguishable
punctures.

- Then, for each set of |mi| numbers, we will compute all different ways
of assigning signs to them in such a way that the projection constraint
(95) is satisfied, thus getting the number of all possible ~m sequences
satisfying (95) and (97). We will call this quantity dDL(A).
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- By adding up the degeneracy dDL(A) obtained from the above steps
for all values A of area lower than the horizon area aH the complete
solution to the combinatorial problem is obtained.

6.1.1 Area Spectrum Characterization

The first problem that we want to address is the characterization of the
values belonging to the spectrum of the horizon area operator. In other
words, the first question that we want to consider is: Given aH ∈ R, when
does it belong to the spectrum of the area? Again, in order to simplify the
algebra and work with integer numbers we will make use of the labels si
defined as |mi| = si/2, so that the area eigenvalues become

aH =

N∑
i=1

√
(si + 1)2 − 1 =

smax∑
s=1

ns
√

(s+ 1)2 − 1. (98)

Here we have chosen units such that 4πβ`2P = 1, and the ns (satisfying
n1 + · · · + nsmax = N) denote the number of punctures corresponding to
edges carrying spin s/2.

In order to answer this question, there is an important observation that
we can make. Given any number

√
(s+ 1)2 − 1, one can always write it

as the product of an integer q and the square root of a square-free positive
integer number

√
p (SRSFN). A square-free number is an integer number

whose prime factor decomposition contains no squares. Then, by using the
prime factor decomposition of (s + 1)2 − 1 and factoring all the squares in
it out the square root, one can always get the above structure. Hence, with
our choice of units, every single area eigenvalue can be written as a linear
combination, with integer coefficients, of SRSFN’s. Only this integer linear
combinations of SRSFN’s

∑
I qI
√
pI can appear in the area spectrum. From

now on, we will use these linear combinations to refer to the values of area.
Then, the questions now are:

- First, given a linear combination
∑

I qI
√
pI of SRSFN’s pI with integer

coefficients qI , when does it correspond to an eigenvalue of the area
operator?

- Then, if the answer is in the affirmative, what are the permissible
choices of s and ns compatible with this value for the area?

Answering to these questions is equivalent to giving a full characterization
of the horizon area spectrum in LQG.

At this point, there is another important observation that we may do.
The square roots of square free numbers are linearly independent over the
rational numbers (and, hence, over the integers) i.e., q1

√
p1+· · ·+qr

√
pr = 0,

with qI ∈ Q and pI different square-free integers, implies that qI = 0 for
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every I = 1, . . . , r. This can be easily checked for concrete choices of the pI
and can be proved in general (see for instance [72]). We will take advantage
of this fact in the following.

In order to answer the two questions posed above we will proceed in the
following way. Given an integer linear combination of SRSFN’s

∑r
I=1 qI

√
pI ,

where qI ∈ N, we need to determine the values of the s and ns, if any, that
solve the equation

smax∑
s=1

ns
√

(s+ 1)2 − 1 =

r∑
I=1

qI
√
pI . (99)

Each
√

(s+ 1)2 − 1 can be written as an integer times a SRSFN so the left
hand side of (99) will also be a linear combination of SRSFN with coefficients
given by integer linear combinations of the unknowns ns.

We can start by solving a preliminary step: for a given square-free posi-
tive integer pI , let us find the values of s satisfying√

(s+ 1)2 − 1 = y
√
pI , (100)

for some positive integer y. At this point, it is very interesting to note that
solving this equation is equivalent to solving a very well known equation in
number theory, the Pell equation x2 − pIy2 = 1 where the unknowns are
x := k + 1 and y. Equation (100) admits an infinite number of solutions
(sIm, y

I
m), where m ∈ N (see, for instance, [73]). These can be obtained from

the fundamental one (sI1, y
I
1) corresponding to the minimum, non-trivial,

value of both sIm and yIm. They are given by the formula

sIm + 1 + yIm
√
pI = (sI1 + 1 + yI1

√
pI)

m. (101)

The fundamental solution can be obtained by using continued fractions [73].
Tables of the fundamental solution for the smallest pI can be found in stan-
dard references on number theory. As we can see both sIm and yIm grow
exponentially in m.

By solving the Pell equation for all the different pI we can rewrite (99)
as

r∑
I=1

∞∑
m=1

nsImy
I
m

√
pI =

r∑
I=1

qI
√
pI . (102)

Using the linear independence of the
√
pI , the previous equation can be split

into r different equations of the type

∞∑
m=1

yImnsIm = qI , I = 1, . . . , r. (103)

Several comments are in order now.
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- First, these are diophantine linear equations in the unknowns nsIm
with the solutions restricted to take non-negative values. They can
be solved by standard algorithms (for example the Fröbenius method
or techniques based on the use of Smith canonical forms). These are
implemented in commercial symbolic computing packages.

- Second, although we have extended the sum in (103) to infinity it is
actually finite because the yIm grow with m without bound.

- Third, for different values of I the equations (103) are written in terms
of disjoint sets of unknowns. This means that they can be solved
independently of each other –a very convenient fact when performing
actual computations. Indeed, if (sI1m1

, yI1m1
) and (sI2m2

, yI2m2
) are solutions

to the Pell equations associated to different square-free integers pI1 and
pI2 , then sI1m1

and sI2m2
must be different. This can be easily proved by

reductio ad absurdum.

It may happen that some of the equations in (103) admit no solutions.
In this case

∑r
I=1 qI

√
pI does not belong to the horizon area spectrum. On

the other hand, if all these equations do admit solutions, then the value∑r
I=1 qI

√
pI belongs to the spectrum of the area operator, the numbers sIm

tell us the spins involved, and the nsIm count the number of times that the

edges labeled by the spin sIm/2 pierce the horizon. Furthermore, if some of
the equations in (103) admit more than one solution, then the set of solutions
to (102) can be obtained as the cartesian product of the sets of solutions to
each single equation in (103). Each of the sets of pairs {(sIm, nsIm)} obtained
from this cartesian product will define a spin configuration {ns}∞s=1 compat-
ible with the corresponding value of area. We will call C(aH) the set of all
configurations {ns}∞s=1 compatible, in the sense of expression (97), with a
given value of area aH (note that, although the sets {ns} can be formally
considered to contain infinitely many elements ns, the area condition (97)
forces ns = 0 for all s larger than a certain value smax(aH), so for all practi-
cal purposes the sets {ns} ∈ C(aH) can be considered as finite). The number
of different quantum states associated to each of these {ns} configurations is
given by two degeneracy factors, namely, the one coming from re-orderings
of the si-labels over the distinguishable punctures (we will now call this r-
degeneracy, R({ns})) and the other originating from all the different choices
of mi-labels satisfying (95), (this will be now called m-degeneracy, P ({ns})).
The r-degeneracy is given by the standard combinatorial factor

R({ns}) =
(
∑

s ns)!∏
s ns!

(104)

We are going to compute the other factor in next Section.
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6.1.2 Generating Functions

Let us consider then the m-degeneracy. The problem that we have to solve
reduces to: Given a set of (possibly equal) spin labels si, i = 1, . . . , N , what
are the different choices for the allowed mi such that (95) is satisfied?

This problem reduces just to find all different sign assignments to the
mi numbers in such a way that the total sum of them is zero. This problem
is equivalent to solving the following combinatorial problem (closely related
to the so called partition problem): Given a set O = {s1, . . . , sN} of N
(possibly equal) natural numbers, how many different partitions of O into
two disjoint sets O1 and O2 such that

∑
s∈O1

s =
∑

s∈O2
s do exist? The

answer to this question can be found in the literature (see, for example, [74]
and references therein) and is the following

PDL(O) =
2N

M

M−1∑
r=0

N∏
i=1

cos(2πrsi/M) , (105)

where M = 1 +
∑N

i=1 si. This expression can be seen to be zero if there are
no solutions to the projection constraint.

There is, however, a very powerful alternative approach to solving this
problem: the use of generating functions. This approach has been exten-
sively studied in [36], and provides very useful analytical expressions that
can be used, as we will see, to study the asymptotic behavior of entropy.
In particular, for this precise problem of computing the m-degeneracy, a
generating function was obtained that gives rise to the following expression

PDL({ns}) =
1

2π

∫ 2π

0
dθ
∏
s

(2 cos(sθ))ns . (106)

By multiplying this factor by the reordering factor (104) for each {ns}smaxs=1

configuration, and summing the corresponding result for all different config-
urations of ns contained in C(A), we obtain the corresponding degeneracy
dDL(A). Finally, adding up dDL(A) for all values of area A ≤ aH , the total
horizon degeneracy corresponding to an horizon with area aH is obtained.
Once more, this problem can be solved by the use of generating functions.
For details on how to obtain a generating function to solve the whole com-
binatorial problem, and how to use it in order to obtain closed analytic
expressions for the solution, we refer the reader to [36, 37].

Finally, with very slight modifications, this whole procedure can be also
applied to the SU(2) case. This was done in [43], and we will also comment
the results of this computations in next Subsection.

6.1.3 Computational Implementation and Analysis of the Results

There are several ways of obtaining the results to the combinatorial prob-
lem presented above. One can simplify the problem from the beginning by
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introducing some approximations and computing in certain limits. This was
done in [26] for the large area limit, for instance. One can also implement
the detailed procedure we just presented, involving number theory and gen-
erating functions, in a computer, and perform the computations by running
an algorithm. This was also done in [35], and the results offer some new
insights that were not initially detected in the large area limit. Finally, one
can also try to extend the exact computation to the asymptotic limit in an
analytic way. This is a much harder problem, but it has also been studied in
[38], and we will present this analysis in next subsection. Let us summarize
the main results for the entropy of a black hole in loop quantum gravity in
the k =∞ case.

Linear behavior

In the first place, the most remarkable result is that the entropy shows a
linear behavior as a function of area. This was already obtained in the ini-
tial asymptotic computations and later corroborated by the computational
results. This result constitutes the main test for the whole framework, as it
shows compatibility with the expected Bekenstein-Hawking result. The first
order expression for the entropy as a function of area is given by

Sbh(aH) =
βH

4β`2P
aH , (107)

where βH is a constant obtained from the counting.
As one can see, the entropy grows linearly with the area, but there is also

a freedom on the proportionality coefficient, as it includes the free Barbero-
Immirzi parameter β. Therefore, the LQG U(1) counting reproduces the
Bekenstein-Hawking law

Sbh(aH) =
aH
4`2P

by choosing the appropriate value of this parameter β = βH . Within this
framework, the entropy computation can be regarded as a way of fixing the
value of the Barbero-Immirzi parameter in the theory.

However, the value of the Barbero-Immirzi parameter obtained by this
procedure for the two frameworks we are considering, namely the U(1) and
SU(2) quantizations, turns out to be slightly different. This is another hint
of inconsistency with the expectation that both approaches, when seen as
one just a gauge fixed version of the other, should yield the same results.
While this point of view is surely commonly shared at the classical level,
in the quantum theory things become more subtle and the equivalence be-
tween the two approaches is far from obvious. For instance, we have already
discussed above how the gauge fixing has important effects on the nature of
the boundary constraints at the quantum level, affecting their correct Dirac
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implementation and, therefore, the restriction to the proper set of admissible
states. We will come back to this issue in Section 7.

Logarithmic correction

If one looks at the next order, the first correction to the linear behavior is
a logarithmic correction. This was also computed in [26, 25] and later con-
firmed by computational analyses. As already pointed out at the beginning
of the Section, the coefficient C of this logarithmic correction depends on
details of the counting, and in particular differs again between the U(1) and
the SU(2) approaches being C = 1/2 in the former and C = 3/2 in the
latter case. The entropy is then given by the formula

Sbh(aH) =
βH
β

aH
4`2P
− C ln

aH
`2P

+O(a0
H) (108)

It is interesting to point out, however, that the logarithmic correction is
independent of the value of the Barbero-Immirzi parameter.

Effective discretization

The third result was first observed in [29, 30], and consists of an effective
discretization of the entropy for microscopic black holes, as a result of the
particular band structure showed by the black hole degeneracy spectrum.
This effect was not obtained in the first asymptotic calculations, and it only
became apparent when an exact computational algorithm was implemented.
A very extensive analysis of this phenomenon has been carried out during
the last few years. Some of these works can be found in the bibliography
[35, 36, 37, 29, 30, 33, 31], and the interested reader is encouraged to take a
look at them. Here we will present a brief review of the main features.

When one plots the results for the black hole degeneracy spectrum dDL(A)
obtained by implementing the procedure presented in the previous Section
in a computer, the results look like plot 3.

In order to obtain the entropy Sbh(aH), this quantity still has to be
“integrated” for all values of area between 0 and aH . When that sum is
performed, the result is as shown in plot 4.

This effect is a very precise manifestation of the intricate structure of the
black hole spectrum in loop quantum gravity, and has many potential impli-
cations. In particular, it can be seen to be in agreement with the Bekenstein
conjecture on the discretization of black hole entropy, as it was pointed out
in [30]. Furthermore, the structure of the degeneracy spectrum could leave
some traces on the Hawking radiation spectrum, making it possible to detect
a loop quantum gravity imprint on hypothetical microscopic black hole ob-
servations. This has recently been considered, and we will review the results
in Section 10.
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Figure 3: The degeneracy dDL obtained from the number-theoretical proce-
dure for each single area eigenvalue (in Planck units) is plotted.

Figure 4: The Sbh obtained from the number-theoretical procedure (in
Planck units) is plotted as a function of the horizon area.
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6.1.4 Large Area Asymptotics

One of the fundamental questions in view of the discrete behavior of entropy
for microscopic black holes described in the previous Section is whether this
behavior is also present for large black holes or not. It is not possible to
extend the computations to the large area limit by using computers, as it
was done to obtain the results in the previous Section. If one wants to study
the behavior of this discretization effect, one has to find some alternative
approach. This was done in [38]. We are going to present a brief review here
of the approach followed there.

The idea is to make use of some powerful theorems on analytic combi-
natorics, in particular about limits of distributions. We have already seen
that it is possible to obtain a generating function to solve the computation
of entropy. But in order to study this effect, it would be useful to have a
generating function for one single peak of degeneracy (one of the individual
bands that repeats periodically on the degeneracy spectrum). If we are able
to study the limit distribution generated by such a generating function, we
can understand the behavior of the band structure in this limit.

At this point, some ideas pointed out in [33] come at hand. There, it was
shown that there is a way of characterizing each single peak by means of a
given parameter K, constructed in terms of spins and number of punctures
of the horizon configurations. Introducing this parameter into the generat-
ing function in an appropriate way allowed to obtain a generating function
describing points only within one peak of the degeneracy spectrum. A the-
orem from [75] can be applied to this kind of generating function, and it
is therefore possible to show that the generated distribution approaches a
Gaussian when the value of area (or equivalently the value of the parameter
K) tends to infinity. Furthermore, it is possible to compute analytically the
behavior of the mean and the variance corresponding to that Gaussian. All
this was done in [38] and we refer the reader there for more details. The
result is that the “Gaussian” peaks in the spectrum are wider as the area
increases, reaching a point where they totally overlap each other, washing
out the discrete behavior of entropy and giving rise, eventually, to a smooth
linear growth. A model was constructed, using a superposition of the Gaus-
sians obtained from the analytical computations. It showed that within
the range of validity of the approximation, the discrete behavior completely
washes out.

The conclusion is, therefore, that the effective discretization of entropy is
a microscopic effect, only valid for black holes in their last stages of evapora-
tion, and it disappears in the large area limit of astronomical black holes13.

13A note of caution is needed here, since the approach used in [38] cannot completely
exclude the possibility of a revival of the effect at larger areas. This possibility seems,
however, rather remote.
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6.2 The Finite k Counting

As illustrated at the beginning of this Section, an alternative strategy to
deal with the counting problem and viable only in the SU(2) approach is
to use the one-parameter freedom, introduced by the passage to the SU(2)
connection variables on the horizon, to make the Chern-Simons level an
arbitrary parameter (i.e. independent of the horizon area aH). In this way,
the (now finite) level k enters the description of the boundary theory playing
a role analog to the Barbero-Immirzi parameter in the bulk theory. We are
now going to exploit further this ‘equal footing’ treatment and show how only
the existence of a given relationship between the two free parameters of the
boundary and bulk theories allows us to recover the Bekenstein-Hawking
area law, eliminating in this way the need of fixing the Barbero-immirzi
parameter to the specific numerical value βH .

Since the theory on the horizon is associated to Chen-Simons theory
with punctures, dealing with a finite value of the level k, we cannot neglect
anymore the quantum group representation theory underlying the structure
of the Chern-Simons Hilbert space. Henceforth, first we first introduce an
integral formulation of the dimension of the Chern-Simons theory Hilbert
space H CS , when the space is a punctured two-sphere, which appears to be
convenient to compute black hole entropy. Extending the relation between
Chern-Simons and random walk, investigated in the classical case (namely,
when k becomes infinite) in [71], to the quantum case (i.e. for a finite k),
it can be shown that, for a set of p punctures, denoted by ` ∈ [1, p], each
labeled by an unitary irreducible representation j` of the quantum group
Uq(su(2)), the dimension of the punctured 2-sphere Hilbert space can be
expressed as [44]

Nk(d) =
1

π

∫ 2π

0
dθ sin2(

θ

2
)
sin((r + 1

2)kθ)

sin kθ
2

p∏
`=1

sin(d`
θ
2)

sin θ
2

, (109)

where the dimension d` = 2j` + 1 of the j`-representation is the same as
in the classical theory (even though now we have the cut-off j` ≤ k/2) and
r ≡ [

∑p
`=1(d` − 1)/(2k)] (here [x] is the floor function). Notice that Nk(d)

coincides with the classical formula when r = 0, i.e. when
∑p

`=1(d`−1) < 2k.
Let us now briefly recall that the entropy of an IH is computed by the

formula S = tr(ρIH log ρIH), where the density matrix ρIH is obtained by
tracing over the bulk d.o.f., while restricting to horizon states that are com-
patible with the macroscopic area parameter a. Assuming that there exists
at least one solution of the bulk constraints for every admissible state on
the boundary, the entropy is given by S = log(N(a)) where N(a) is the
number of admissible horizon states. Henceforth, the entropy calculation
problem boils down to the counting, in the large horizon area limit, of the
dimension of the horizon Hilbert space. For a generic distorted IH, we have
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seen in Section 5.2 that the Hilbert space takes the form (80), for which the
dimension of each H CS

H is expressed by the formula (109).
Now, following the techniques introduced in [44], the entropy S(a) =

logN(a) of a distorted isolated horizon of macroscopic area

a =
1

2

p∑
`=1

√
(d` − 1)(d` + 1) , (110)

where a ≡ aH/8πβ`2p, is defined from the number of states

N(a) =

∞∑
p=0

∑
d

δ(a−
∑p

`=1

√
(d` − 1)(d` + 1)

2
)

·
k+1∑

d+,d−

(
p∏
`=1

Y (j`, j
+
` , j

−
` )

)
Nk(d

+)Nk(d
−), (111)

where the sums run over the families d±=(d±1 , · · · , d±p ), d=(d1, · · · , dp) of
representations dimensions associated with the boundary and bulk punctures
j±` , j`. In the previous expression, in order to implement the admissibility
condition, Y` ≡ Y (j`, j

+
` , j

−
` ) = 1 if (j`, j

+
` , j

−
` ) satisfy the restriction (90)

at each puncture, it vanishes otherwise. If one assumes that the number of
states grows exponentially with the area, the study of the entropy for large
a but finite k can be performed by means of the Laplace transform of N(a),
namely

Ñ(s, t) =

∫ ∞
0

da e−asa−tN(a) , (112)

and the number theory and the complex analysis aspects illustrated in the
previous Subsection are not necessary to get the main ideas and results. In
fact, the Laplace transform technique allows us to study the leading and
sub-leading terms in the asymptotic expansion of N(a). More precisely,
assuming an asymptotic behavior of the form

N(a) ∼ esca a−(tc+1), (113)

at large a, one can obtain the critical exponents sc and tc by studying the
convergence properties of the integral Ñ(s, t). This study has been done in
[44]; here we just report the results.

In the spherically symmetric case, the critical exponent sc is the unique
solution of the equation

1−
k∑
d=1

(d+ 1) e−
sc
2

√
d(d+2) = 0 , (114)
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which encodes the dependence of the Barbero-Immirzi parameter β on the
level k as we required the recovering of the Bekenstein-Hawking area law for
the leading term. In fact, one has

S = log (N(a)) =
aH
4`2p

+ o(log aH) (115)

as soon as sc = 2πβ. For increasing values of the level k, the solutions
of equation (114) for β reach fast an asymptotic value which coincides, as
expected, with the value βH found in [43] when k →∞.

For the sub-leading term one finds the critical exponent tc = 1/2 from
which

N(a) ∼ esca a−3/2 for large a. (116)

Therefore, even if the finiteness of the level k affects the behavior of the
leading term, it does not modifies the sub-leading corrections when a is
large. In that sense, the logarithmic corrections seems to be independent
of the Barbero-Immirzi parameter even in the SU(2) spherically symmetric
black hole, confirming the results of [67, 43] and they show the universal
nature conjectured in [68].

In the distorted case, it can be shown that, for k large enough, sc grows
logarithmically with k, while the critical exponent of the logarithmic correc-
tions is tc = 2. Eq. (113) then shows that the model presented in Section 5.2
for static IH provides a leading order entropy recovering exactly Hawking’s
area law (plus logarithmic corrections)

S =
aH
4`2p
− 3 log(aH) (117)

once the following relationship between the Barbero-Immirzi parameter β
and the Cher-Simons level k holds

1−
∑
d

k∑
d±=0

Y (d+ + 1)(d− + 1)e−πβ
√
d(d+2) = 0. (118)

The previous equation is obtained from the condition determining the value
of the critical exponent sc, as for (114) in the spherically symmetric case;
its numerical solution, for the first integer values of k, is plotted in Figure
5. The plot shows that the Barbero-Immirzi parameter grows, for values of
the level large enough, as

βk =
√

3/π log (k + 1) + O(1) , (119)

where the constant
√

3/π is obtained from eq. (118) in the large k limit and
assuming that all the bulk spins j are fixed to 1/2.

The factor −3 in front of the logarithmic corrections in the distorted
case can be traced back to the fact that now, instead of a single SU(2)
Chern-Simons theory describing the horizon d.o.f., we have two of them, as
a consequence of any symmetry assumption relaxation.
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Figure 5: In the figure we plotted the values of the Barbero-Immirzi parame-
ter βk as function of k ∈ N for the first integers; the plot shows a logarithmic
growth of the Barbero-Immirzi parameter with the level.

7 On the Nature of the Entropy Degrees of Free-
dom

After all this presentation of the black hole entropy calculation in LQG, both
in its original U(1) derivation and in its more recent fully SU(2) invariant
set-up, some questions arise naturally: What is, at the end, the nature of
the degrees of freedom accounting for the black hole entropy? Or, in other
words, what are these models really counting? Is there any difference in the
identification of these degrees of freedom between the U(1) and the SU(2)
frameworks?

Addressing these questions is the main goal of all the construction pre-
sented so far but the same answer is not always shared by all the community.
We now want to try to clarify this point and present some different perspec-
tives.

Let us start with the spherically symmetric case in its original U(1) for-
mulation [18, 19]. In this case, at the classical level, the system is character-
ized by a single degree of freedom corresponding to the horizon macroscopic
area. In fact, the classical boundary theory contains no independent states.
Independent boundary states arise only at the quantum level since the quan-
tum configuration space is larger than the classical one, as a consequence
of the fact that the former admits distributional connections. More pre-
cisely, the classical configuration space A of general relativity can be taken
to consist of smooth SU(2) connections on the spatial 3-manifold M . Its
completion Ā consists of ‘generalized’ SU(2) connections and this is what
represents the quantum configuration space since, in quantum field theories
with local degrees of freedom, quantum states are functions of generalized
fields which need not be continuous. In fact, holonomies of generalized con-
nections are not required to vary smoothly with the path and, therefore, Ā
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turns out to be very large14.
In other words, in the classical theory, even though the symplectic struc-

ture contains also a Chern-Simons term for a connection on the internal
boundary, the boundary connection does not represent new degrees of free-
dom, since it is determined by the limiting value of the connection on the
bulk. At the quantum level though, states are functions of generalized con-
nections fields which need not to be continuos. Therefore, the behavior of
generalized connections on the boundary H can be quite independent of
their behavior in the bulk; it follows that, at the quantum level, surface
states are no longer determined by bulk states.

The boundary condition (24) is such that, given the value of the area aH ,
the connection is unique up to gauge and diffeomorphisms. Henceforth, at
the classical level, there are no true ‘configuration space’ degrees of freedom
on the horizon. However, at the quantum level, when one first quantizes
and then imposes the constraints, the horizon boundary condition becomes
an operator restriction on the allowed quantum states. More precisely, both
the boundary connection A and the flux field Σ are allowed to fluctuate but
they do so respecting the quantum version of (24). Imposing this restriction
leads to the appearance of Chern-Simons theory with punctures which has
a finite number of states. This is the theory describing the geometry of the
quantum horizon and accounting for its entropy.

From this point of view, one has one physical (classical) macrostate which
corresponds to a large number of (quantum) microstates arising through
quantization: It is the quantum theory that ‘multiplies’ the number of de-
grees of freedom.

The distorted case in the U(1) framework has been firstly treated in [54].
In that approach, the distortion degrees of freedom contained in the real part
of the Weyl tensor component Ψ2 are encoded in the values of some geometric
multipoles which provide a diffeomorphism invariant characterization of the
horizon geometry. Thanks to the additional assumption of axisymmetry, the
system is then mapped to a model equivalent to the Type I case if the horizon
area and the multipole moments describing the amount of distortion are fixed
classically. Therefore, for fixed area and multipoles, the boundary theory is
still described in terms of a fiducial Type I U(1) connection, satisfying the
boundary condition (54). In this way, the problem of quantization reduces
to that of spherically symmetric IH and the mathematical construction of
the physical Hilbert space presented in Section 5.1 can be taken over.

Taking the limit k →∞, one can associate an operator to the Weyl tensor
component Ψ2 and the multipoles, whose eigenvalues can be expressed in
terms of the classically fixed values of the area and the multipoles and the
eigenvalues of the total area operator associated with H. In other words,

14Recall that the quantum configuration space Ā is constructed through projective limit
of configuration spaces Ag of SU(2) lattice gauge theory associated with a finite graph g.
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even if classically fixed, the multipoles can have quantum fluctuations and
these are dictated by the fluctuations in âH [54].

However, all this construction of quantum operators encoding Type II
horizon quantum geometry is argued to be inessential to the entropy count-
ing. This is due to the mapping to the equivalent Type I model and the
observation that the counting of the number of states in the micro-canonical
ensemble for which the horizon area and multipoles lie in a small interval
around their classically fixed values is, in this approach, the same as in the
spherically symmetric case. Hence, the horizon entropy is again given by
(108) with the same value of βH found in the Type I analysis and C = 1/2.

To summarize, the approach of [54] to incorporate distortion degrees
of freedom consists of introducing an infinite set of multipoles to capture
distortion and then define a Hamiltonian framework for the sector of general
relativity consisting of space-times which admit an IH with fixed multipoles.
The resulting phase-space is then mapped to one equivalent to a Type I IH
in order to use the counting techniques developed for this simpler case.

Classically, the complete collection of multipole moments characterize an
axisymmetric horizon geometry up to diffeomorphism. Fixing the values of
the area and the multipoles classically allows to select a phase-space sector
of the full classical one, corresponding to a given distorted intrinsic geometry
and all the others related to that by a diffeomorphism. However, if one wants
to take into account all possible kind of axisymmetric classical distortions,
one would end up with a pile of different phase-space sectors, which cannot
be related by a diffeomorphism. Each of these sectors would now have to
be mapped to a different Type I model, naively leading, in this way, to an
infinite entropy. The situation seems even worse if one takes into account
also all the non-axisymmetric configurations.

This issue has recently been addressed in [76]. In this work, the authors
relax the axisymmetry assumption in order to deal with generic horizon ge-
ometries. Remaining within the U(1) framework, they show how it is possi-
ble to quantize the full phase-space of all distorted IH of a given area without
having to fix classically a sector corresponding to a particular horizon shape,
with the resulting Hilbert space identical to that found previously in [19].
More precisely, they manage to extend the map to a spherically symmetric
U(1) connection introduced in [54] to the generic distorted case, which, how-
ever, now becomes non-local. Then they argue that the boundary term in
the symplectic structure for the full classical phase-space of all isolated hori-
zons with given area can be expressed in terms this Type I connection and
that all elements of the classical framework necessary for quantization in [19]
are also present in this more general context. This leads to the reinterpre-
tation of the quantization described in [19] as that of the full phase-space of
generic isolated horizons. Even further, [76] claims that the physical Hilbert
space as constructed in [19] does not incorporate spherical symmetry.

The point of view of [76] is, therefore, quite the opposite of the original
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one expressed in [18, 19]. At the classical starting level one does not have
any more a single degree of freedom (the value of the horizon area) which
then gets multiplied by the quantization procedure. On the contrary, one
starts with an infinite number of degrees of freedom, associated to all pos-
sible distortions of the intrinsic geometry, which would naively lead to the
expectation of an infinite entropy. But now the quantum structure plays the
inverse role by providing a cut-off to this infinite pile of degrees of freedom,
rendering the entropy finite.

Reinterpreting the quantization in this way, it is natural to consider
different horizon states in the Hilbert space to represent different quantum
shapes of the horizon. This reinterpretation of the physical Hilbert space
built in [19] reconciles the entropy calculation with the conceptual viewpoint
that entropy arises by counting different microscopic shapes of the horizon
intrinsic geometry, proposed in [39] and recently also investigated in [69].

The point of view of [76] is similar in spirit to the one adopted in [42],
and described in Section 5.2, for the definition of a statistical mechanical
ensemble accounting for the degrees of freedom of generic distorted SU(2)
IH. In [42] no symmetry assumption is necessary either (Type I, Type II,
and Type III horizons are all treated on equal footing), only staticity is a
necessary condition for the dynamical system to be well defined. However,
the approach of [42] differs from the previous works [54, 76] dealing with dis-
torted IH in two main respects: first the treatment is SU(2) gauge invariant,
avoiding in this way the difficulties found upon quantization in the gauge
fixed U(1) formulation, and second, distortion is not hidden by the choice of
a mapping to a canonical Type I connection. In particular, the degrees of
freedom related to distortion are encoded in observables of the system which
can be quantized and are explicitly counted in the entropy calculation. In
this new treatment, as shown in Section 5.2, one can find the old Type I
theory in the sense that when defining the statistical mechanical ensemble
by fixing the macroscopic area aH and imposing spherical symmetry, one
gets an entropy consistent with the one in [41].

More precisely, as in [76], the starting point of [42] is again the full clas-
sical phase-space of all distorted IH and, avoiding the passage to a non-local
Type I connection, both intrinsic and extrinsic15 geometry degrees of free-
dom can be quantized, leading to the definition of the distortion operator
(91). This operator has a discrete spectrum and its eigenvalues are bounded
by the cut-off introduced by the finite16 Chern-Simons level. Henceforth,

15Recall that, due to the more generic treatment required by inclusion of distortion, eq.
(26), relating intrinsic and extrinsic curvatures, plays a central role in the construction
of the conserved symplectic structure of the system and the curvature scalar c enters the
definition (79) of α.

16The passage to a finite level k, independent of the horizon area aH [42], is a crucial
step in the entropy calculation. In fact, if one keeps the linear growth of k with aH , it can
be shown that taking into account all the distorted d.o.f. leads to a violation of the area
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even though at the classical level we had an infinite number of distortion
degrees of freedom—encoded in all the possible (continuos) values of the real
part of Ψ2 and of the curvature invariant c—the physical Hilbert space de-
fined by (80) with the restrictions (81)-(90) provides a finite answer for the
entropy (117) due to the cut-off introduced by the quantum group struc-
ture and the consistency with the area constraint (required by the gauge
invariance condition (81)). This entropy can be directly traced back to the
distorted horizon quantum theory, accounting for both intrinsic and extrinsic
geometry degrees of freedom.

The analysis carried out in [76] and [42] surely provides a conceptually
common (to both the U(1) and the SU(2) approaches) framework to under-
stand the black hole entropy counting in LQG and try to answer coherently
the questions raised at the beginning of the Section. Nevertheless, a deeper
understanding of the relation between the two constructions seems necessary
in order to have a clearer description of the distorted quantum geometry of
the horizon. In this direction, it seems important to investigate further the
role played by transverse fluxes operators (i.e. fluxes Σ̂[T, f ] through sur-
faces T intersecting H transversely) in the characterization of the horizon
intrinsic geometry advocated in [76] and the properties of the distortion
operator (91)17.

8 On the Role of the Barbero-Immirzi Parameter

As show in Section 6, one of the main success of the black hole entropy
calculation in LQG is the recovering of the Bekenstein-Hawking area law
for the leading term in the asymptotic large area limit. This result was
first derived within the symmetry reduced U(1) model [18, 19], but left
many people not fully satisfied, since it implied an ‘unpleasant’ constraint
for the full quantum theory: In order to recover the numerical factor 1/4 in
the Bekenstein-Hawking formula, one had to fix the value of the Barbero-
Immirzi parameter, entering the calculation through the form of the area
spectrum in LQG, to a specific numerical value, as shown in Section 6.1.3.

Let us recall that the Barbero-Immirzi parameter has been introduced
in canonical non-perturbative quantum gravity to deal with the difficulties
raised by the non-compactness of the gauge group in relation to the passage
to Ashtekar self-dual variables. With the use of real connection variables
the gauge group becomes compact (the connection is now SU(2) Lie al-
gebra valued) and the formalism relevant at the diffeomorphism-invariant
and background-independent level easier to handle. However, even if classi-

law—namely, one obtains a leading term for the entropy of the form S ≈ aH log (aH).
17Recall that the definition of the distortion operator (91) is closely related to the

vanishing, in the large spin limit, of the quantum angle between Ĵ+ and Ĵ− [42].
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cally irrelevant18, the Barbero-Immirzi parameter represents a quantization
ambiguity in the kinematics of LQG; in fact, to different values of β cor-
responds, due to its appearance in the spectrum of geometric operators,
different sectors of the quantum theory which cannot be related by unitary
transformations [77]. Nevertheless, this β dependence would better drop out
from any physical prediction of the theory.

In this sense, using Hawking semi-classical analysis on black hole radia-
tion and entropy associated to it to fix the value of a parameter which plays
a role only in the quantum theory doesn’t seem very natural19. Moreover,
this would put a very stringent constraint on the consistency of the theory
and the determination of the same value from at least another application
of LQG would be required to strengthen the validity of this point of view.
In other words, the need to constrain β to a specific numerical value has so
far been seen as the Achille’s heel of the LQG computation, mostly from the
perspective of alternative approaches to black hole entropy derivation but
partly also within the community.

This issue has lately received a lot of attention again and it has, somehow,
also motivated the definition of the fully SU(2) invariant formulation of IH
quantization recently provided in [40, 41, 42]. As shown in Section 5.2, from
this analysis it emerged that, when avoiding the symmetry reduction, an
extra ambiguity parameter appears in the quantum theory describing the
horizon degrees of freedom in terms of SU(2) connection variables. This
new parameter in the boundary theory has exactly the same origin as the
Barbero-Immirzi parameter in the bulk and, when exploiting this analogy
in the entropy calculation, consistency with the Bekenstein-Hawking area
law doesn’t fix the value of β anymore. More precisely, as elucidated in
Section 6.2, the new ambiguity can be encoded in the level of the Chern-
Simons theory, describing the boundary degrees of freedom, to eliminate its
dependence on the horizon area and render it a free input. In this way,
the level is now finite and, by means of quantum groups representation
theory, the leading order aH/(4`

2
p) for generic distorted IH entropy can be

recovered as long as β and k satisfy (118) [41]. This implies that consistency
with the Hawking analysis now requires, in the semiclassical regime (i.e for
large values of k) the Chern-Simons level to grow logarithmically with the
Barbero-Immirzi parameter according to (119).

Therefore, the numerical restriction on the value of β turns out to be
just an artifact of the U(1) symmetry reduction. While it is encouraging

18In the classical theory the Barbero-Immirzi parameter introduces a symmetry which
can be realized as a canonical transformation.

19See, for example, [78] where the authors apply the Wald [79] approach to compute
entropy from Noether charges to the case of first order gravity with a negative cosmological
constant and adding the Holst term. They show that the AdS-Schwarzschild black hole
entropy obtained in this way from the semi-classical theory presents no Barbero-Immirzi
parameter dependence.
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that the SU(2) treatment contains a free parameter arising at the boundary
from exactly the analogous reason as the Barbero-Immirzi parameter ap-
pears in the bulk parametrization of the phase space. This keeps open the
possibility that dynamical considerations could lead to cancelation of both
ambiguities producing Barbero-Immirzi parameter independent predictions.
On a speculative level, this could be obtained, for example, by deriving the
relation (119) through semi-classical considerations involving Schwarzschild
near-horizon geometry.

Another possibility to eliminate the Barbero-Immirzi parameter depen-
dence from the leading term in the entropy has also, very recently, appeared
in [45]. In this work, the authors propose an alternative analysis of black
hole entropy in the LQG approach which gives a result in agreement with
Hawking’s semiclassical analysis for all values of the Barbero-Immirzi pa-
rameter. The key ingredient consists of a modification of the first law of
black hole mechanics by taking into account the underlying quantum geom-
etry description of the black hole horizon. More precisely, [45] introduces
a quantum hair for the black hole, related to the number N of topological
defects in the quantum isolated horizon and proportional to some chemical
potential µ, and exploits the consequences of having a minimal length in the
quantum theory of the order of the Planck scale. By doing so, they show
how, from the statistical mechanics of the basic quantum excitations of IH
in LQG, the leading order aH/(4`

2
p) for the entropy can be recovered, with

all the dependence on the Barbero-Immirzi parameter shifted on a chemi-
cal potential correction term which vanishes as soon as the relation (118)
holds. In this way, the Barbero-Immirzi parameter appears in an additive
correction to the semiclassical expression. This additive term is the quan-
tum correction to the semiclassical entropy induced by the quantum hair N
and the semiclassical results are reproduced even when β does not exactly
obey the relation (119) and the chemical potential is not exactly zero. More-
over, investigating more in detail the constraint (118) from this point of view
could provide useful insights to derive (119) from physical considerations.

To conclude this discussion on the role of the Barbero-Immirzi parame-
ter, we have seen that, since the introduction of the basic conceptual ideas
of [14]-[16] and the seminal works of [18, 19], research on black hole en-
tropy in LQG has been very active. We now have a fully SU(2) invariant
description available of the model and we understand better the thermody-
namical properties of the quantum IH system. This provided us with a set
of different possible interpretations of the role played by β in the entropy
calculation. Even if the original numerical constraint found in [19] is still
a valid possibility, this is no longer the only one. The statement that the
LQG calculation recovers the Bekenstein-Hawking area law only by fixing
the Barbero-Immirzi parameter to a specific numerical value is therefore no
longer true!

Surely, further study is necessary to understand better the semi-classical
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limit of IH.

9 Derivation from Conformal Field Theories

In this section we are going to present a different point of view on the
computation of entropy, paying special attention to the theoretical structure
of the framework and the possible underlying symmetries that could take
part in it, following the work in [34]. Motivated by the results of [11, 12],
we want to search for the possible interplay between the theory describing
black holes in loop quantum gravity and a possible underlying conformal
symmetry.

By paying special attention to the fact that the horizon is described by
a Chern-Simons theory, we are now going to make use of Witten’s proposal
about the connection between Chern-Simons theories and Wess-Zumino-
Witten models. More precisely, in [65] Witten proposed the correspondence
between the Hilbert space of generally covariant theories and the space of
conformal blocks of a conformally invariant theory. This idea has been ap-
plied in [67] to the computation of the entropy for a horizon described by
a SU(2) Chern-Simons theory, by putting its Hilbert space in correspon-
dence with the space of conformal blocks of a SU(2)-Wess-Zumino-Witten
(WZW) model. In this Section we are now going to make use of Witten’s
correspondence for the U(1) Chern-Simons theory describing the black hole
horizon in LQG, according to the model presented in Section 5.1, and look
for some hints on the role of CFT techniques in this framework.

Taking into account the fact that this U(1) group arises as the result of a
geometric symmetry breaking from the SU(2) symmetry in the bulk, one can
still make use of the well established correspondence between SU(2) Chern-
Simons and Wess-Zumino-Witten theories. However, in this case it will be
necessary to impose restrictions on the SU(2)-WZW model, as we will see,
in order to implement the symmetry reduction. Through this procedure we
expect to eventually reproduce the counting of the Hilbert space dimension
of the U(1) Chern-Simons theory.

Let us begin by recalling the classical scenario and how the symmetry
reduction takes place at this level. The geometry of the bulk is described by a
SU(2) connection, whose restriction to the horizon H gives rise to a SU(2)
connection over this surface. As a way of imposing the isolated horizon
boundary conditions, this connection can be reduced to a U(1) connection.
In [19] this reduction is carried out, at the classical level, just by fixing a unit
vector ~r at each point of the horizon. By defining a smooth function r : S →
su(2) a U(1) sub-bundle is picked out from the SU(2) bundle. This kind of
reduction can be described in more general terms as follows (see, for instance,
[80]). Let P (SU(2), S) be a SU(2) principal bundle over the horizon, and
ω the corresponding connection over it. A homomorphism λ between the
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closed subgroup U(1) ⊂ SU(2) and SU(2) induces a bundle reduction form
P (SU(2), S) to Q(U(1), S), Q being the resulting U(1) principal bundle
with reduced U(1) connection ω′. This ω′ is obtained, in this case, from
the restriction of ω to U(1). All the conjugacy classes of homomorphisms
λ : U(1) → SU(2) are represented in the set Hom(U(1), T (SU(2))), where
T (SU(2)) = {diag(z, z−1)|z = eiθ ∈ U(1)} is the maximal torus of SU(2).

The homomorphisms in Hom(U(1), T (SU(2))) can be characterized by

λp : z 7→ diag(zp, z−p) , (120)

for any p ∈ Z. However, the generator of the Weyl group of SU(2) acts on
T (SU(2)) by diag(z, z−1) 7→ diag(z−1, z). If we divide out by the action of
the Weyl group we are just left with those maps λp with p a non-negative
integer, p ∈ N0, as representatives of all conjugacy classes. These λp char-
acterize then all the possible ways to carry out the symmetry breaking from
the SU(2) to the U(1) connection that will be quantized later.

In alternative, one can follow another approach consisting of first quan-
tizing the SU(2) connection on H and imposing the boundary conditions
later on, at the quantum level. This would give rise to a SU(2) Chern-
Simons theory on the horizon on which the boundary conditions now have
to be imposed. The correspondence with conformal field theories can be used
at this point to compute the dimension of the Hilbert space of the SU(2)
Chern-Simons as the number of conformal blocks of the SU(2)-WZW model,
as it was done in [67]. It is necessary to require, then, additional restrictions
to the SU(2)-WZW model that account for the symmetry breaking, and
consider only the degrees of freedom corresponding to a U(1) subgroup.

Let us briefly review the computation in the SU(2) case, to later intro-
duce the symmetry reduction. The number NP of conformal blocks of the
SU(2)-WZW model, given a set of representations P = {j1, j2, ..., jN}, can
be computed in terms of the so-called fusion numbers N r

il [81] as

NP =
∑
ri

N r1
j1j2
N r2
r1j3

...N jN
rN−2jN−1

. (121)

These N r
il are the number of independent couplings between three primary

fields, i.e. the multiplicity of the r-irreducible representation in the decom-
position of the tensor product of the i and l representations [ji] ⊗ [jl] =⊕

rN r
il[jr]. This expression is known as a fusion rule. NP is then the

multiplicity of the SU(2) gauge invariant representation (j = 0) in the
direct sum decomposition of the tensor product

⊗N
i=1[ji] of the represen-

tations in P . The usual way of computing NP is using the Verlinde for-
mula [81] to obtain the fusion numbers. But alternatively one can make
use of the fact that the characters of the SU(2) irreducible representations,
χi = sin [(2ji + 1)θ]/ sin θ, satisfy the fusion rule χiχj =

∑
rN r

ijχr. Taking
into account that the characters form an orthonormal set with respect to
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the SU(2) scalar product, 〈χi|χj〉SU(2) = δij , one can obtain the number
of conformal blocks just by projecting the product of characters over the
character χ0 of the gauge invariant representation

NP = 〈χj1 ...χjN |χ0〉SU(2) =

∫ 2π

0

dθ

π
sin2 θ

N∏
i=1

sin [(2ji + 1)θ]

sin θ
. (122)

This expression is equivalent to the one obtained in [67] using the Verlinde
formula; it gives rise to the same result for every set of punctures P.

To implement, now, the symmetry breaking we have to restrict the repre-
sentations in P to a set of U(1) representations. In the case of Chern-Simons
theory, this corresponds to performing a symmetry reduction locally at each
puncture. It is known that each SU(2) irreducible representation j contains
the direct sum of 2j + 1 U(1) representations eijθ ⊕ ei(j−1)θ ⊕ ... ⊕ e−ijθ.
One can make an explicit symmetry reduction by just choosing one of the
possible restrictions of SU(2) to U(1) which, as we saw above, are given by
the homomorphisms λp. This amounts here to pick out a U(1) represen-
tation of the form eipθ ⊕ e−ipθ with some p ≤ j. The fact that we will be
using these reducible representations, consisting of SU(2) elements as U(1)
representatives, can be seen as a reminiscence from the fact that the U(1)
freedom has its origin in the reduction from SU(2).

Having implemented the symmetry reduction, let us compute the num-
ber of independent couplings in this U(1)-reduced case. Of course, we are
considering now U(1) invariant couplings, so we have to compute the mul-
tiplicity of the m = 0 irreducible U(1) representation in the direct sum
decomposition of the tensor product of the representations involved. As in
the previous case, this can be done by using the characters of the representa-
tions and the fusion rules they satisfy. These characters can be expressed as
η̃pi = eipiθ + e−ipiθ = 2 cos piθ. Again, we can make use of the fact that the
characters ηi of the U(1) irreducible representations are orthonormal with
respect to the standard scalar product in the circle. Then, the number we
are looking for is given by

NPU(1) = 〈η̃p1 ...η̃pN |ηH〉U(1) =
1

2π

∫ 2π

0
dθ

N∏
i

2 cos piθ , (123)

where ηH = 1 is the character of the U(1) gauge invariant irreducible repre-
sentation. We can see that this result is exactly the same as the one obtained
for P ({ns}) in eq. (106), coming from the U(1) Chern-Simons theory, just
by identifying the pi with si labels.

From the physical point of view, the main change we are introducing,
besides using the Chern-Simons/CFT analogy, is to impose the isolated hori-
zon boundary conditions at the quantum level, instead of doing it prior to
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the quantization process. This can be seen as a preliminary step in the
direction of introducing a quantum definition of isolated horizons.

10 Observational Tests

We would like to end this review by commenting on some of the most recent
results on black hole entropy.

We have seen that the combinatorial problem giving rise to the entropy
counting is quite an elaborate one, and some somewhat technical steps are
required to solve it. Furthermore, there is a nice interplay between the
different particular structures involved at each step that gives rise to non-
trivial structures on the degeneracy spectrum of black holes. In particular,
the observed band structure for microscopic black holes is a very character-
istic signature, and the precise features of the loop quantum gravity area
spectrum play a major role in this result.

One can ask whether all this detailed structures could have an influence
on some physical processes, like Hawking radiation, and whether they could
give rise to observable effects. That possibility was already conjectured in
[31], on the basis of a qualitative spectroscopical analysis. However, one
could try to use some computational methods – in particular Monte Carlo
simulations – to test if there is actually such an observational signal, and
whether it would be possible to discriminate between loop quantum gravity
and the standard semi-classical approach (or other quantum gravity theories)
by observing microscopic black hole evaporation. This question was very
recently addressed in [46]. In that work, a Monte Carlo simulation was
performed, using precise data on the black hole degeneracy spectrum as an
input. The transition probability between states was modulated by a factor
proportional to the degeneracy of the final state. In particular, following
[82], a factor of the form

P1→2 = Ne−∆S12 (124)

was introduced, where ∆S12 is the difference in entropy between the initial
and final states, and N is a gray-body factor, whose exact value was com-
puted numerically. The radiation spectrum resulting from the Monte Carlo
simulation is shown in Figure 6. Some characteristic lines superimposed to
the quasi-continuous spectrum can be clearly appreciated. On the basis of
this observation, a detailed statistical analysis was performed in order to
determine whether that signal could be discriminated from the predictions
of other black hole models. A Kolmogorov-Smirnov test – measuring the
distance between the cumulative distribution functions of both distributions
– was run to determine the ability to discriminate between loop quantum
gravity and the semiclassical Hawking spectrum in an hypothetical obser-
vation. The results are shown in Figure 7, where the deviation between
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Figure 6: Spectrum of emitted particles both for loop quantum gravity (up)
and for the semiclassical Hawking case, as resulting from the Monte Carlo
simulation.
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models (for several confidence levels) is plotted as a function of the number
of observed black holes and the relative error in the observation. It can
be seen that, either a large enough number of observed black holes, or a
small enough relative error, would allow to discriminate between both mod-
els. Additional tests comparing loop quantum gravity with other discrete
models were also performed, showing an even better result in the discrim-
ination. This shows that a (hypothetical) observation of microscopic black
hole evaporation could be used for probing loop quantum gravity.
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Figure 7: Number of observed evaporating black holes needed to discriminate
loop quantum gravity and semiclassical Hawking models as a function of the
relative error in the energy reconstruction of the emitted particles and the
confidence level.

A remarkable fact about these considerations is that the specific signa-
tures that are used to probe loop quantum gravity arise as a consequence,
not so much of the particular model used for the black hole description, but
of the structure of the area spectrum in the theory. This fact makes the
resulting predictions much more robust, since it is reasonable to think that
they are independent of the particular assumptions made for the current de-
scription of black holes in loop quantum gravity, and therefore they could be
expected to remain valid – up to a certain extent – even after a full quantum
description of a black hole is available in the theory.

Another possible observational test of the theory coming from the mea-
surement of the Hawking radiation spectrum has been very recently con-
jectured in [61]. There, the authors propose a modification of the black
hole radiation spectrum in relation to an additional term introduced in the
first law and proportional to the variation of the number of punctures con-
tributing to the macroscopic geometry of the horizon [45]. According to the
usual matter coupling in LQG, one would expect the emission/absorption of
fermions to induce a change in the number of punctures piercing the horizon
and this process would, therefore, become observable if such a modification
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of the first law affected the black hole radiation spectrum, as proposed by
[61].

11 Conclusions

The quasi-local definition of black hole encoded in the notion of isolated
horizon, for which the familiar laws continue to hold, provides a physi-
cally relevant and suitable framework to start a quantization program of
the boundary degrees of freedom. By extracting an appropriate sector of
the theory in which space-time geometries satisfy suitable conditions at an
inner boundary representing the horizon – to ensure only that the intrinsic
geometry of the horizon be time independent although the geometry out-
side may be dynamical and admit gravitational and other radiation –, one
can construct the Hamiltonian framework and derive a conserved symplec-
tic structure for the system. As shown in Section 3, when switching from
the vector-like variables to the (Ashtekar-Barbero) connection variables in
the bulk theory, in order to later allow the use of techniques developed for
quantization, the symplectic form acquires a boundary contribution.

There is a certain freedom in the choice of boundary variables leading
to different parametrizations of the boundary degrees of freedom. The most
direct description would appear, at first sight, to be the one defined sim-
ply in terms of the triad field (pulled back on H). Such a parametrization
is however less preferable from the point of view of quantization, as one
is confronted with the background independent quantization of form fields
for which the usual techniques are not directly applicable; moreover, as dis-
cussed in Section 3.3, with this parametrization the entropy may be affected
by the presence of degenerate geometry configurations left over after the
imposition of the boundary constraint. In contrast, the parametrization of
the boundary degrees of freedom in terms of connections directly leads to
a description in terms of Chern-Simons theory which, being a well-studied
topological field theory, drastically simplifies the problem of quantization.
This allows us to obtain a remarkably simple formula for the horizon en-
tropy: the number of states of the horizon is simply given in terms of the
(well-known) dimension of the Hilbert spaces of Chern-Simons theory with
punctures labeled by spins.

Performing a U(1) gauge fixing provides a classically equivalent descrip-
tion of the boundary degrees of freedom, but has some important implica-
tions in the quantum theory. One of these is the different numerical factor in
front of the logarithmic corrections. Avoiding the gauge reduction preserves
the full SU(2) nature of the IH quantum constraints, allowing us to impose
them strongly in the Dirac sense. This leads to sub-leading corrections of
the form ∆S = −3

2 log aH , matching other approaches [10, 12]. This way, the
relevance of the original intuition of [67], which yielded a universal form of
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logarithmic corrections in agreement with those found in different quantum
gravity formulations, is clarified and put on solid ground.

However, the SU(2) invariant description comes with the freedom of the
introduction of an extra dimensionless parameter. Such an appearance of ex-
tra parameters is intimately related to what happens in the general context
of the canonical formulation of gravity in terms of connections. Therefore,
this observation is by no means a new feature characteristic of IH. The ex-
istence of this extra parameter has a direct influence on the value of the
Chern-Simons level. As shown in Section 6.2, this can be used to define
an effective theory in which the entropy of the horizon grows as aH/(4`

2
p)

without the need of fixing the Barbero-Immirzi parameter to any specific
value, but simply imposing a given relation between β and k. Gaining phys-
ical insight on this relation between (a parameter proper of) the bulk and
the boundary theory may have potentially deep implications. In this direc-
tion, the new ‘relocation’ of the Barbero-Immirzi parameter in the entropy
formula provided by the recent analysis of [45] could turn out to be very
useful.

A remarkable fact is that, despite the various improvements and con-
stant evolution of the framework, most of the powerful techniques devel-
oped in [35, 36, 37] for the entropy computation are still useful –with slight
modifications– to solve the counting problem within this recently developed
approach [43]. Furthermore, the effective quantization of entropy, resulting
from the discrete nature of the problem, has proved to be a robust feature,
appearing repeatedly regardless of the approach followed. With the recent
analysis [38] showing the disappearance of this effect for large horizon areas,
the entropy discretization remains as a robust prediction of this framework
for black holes in the Planck regime. This consistency is particularly impor-
tant to support the study of possible observational signatures arising as a
consequence of the discretization effect.

The inclusion of distortion has been recently implemented, both in the
U(1) and in the SU(2) formulation. In the former case, this has been per-
formed by ‘reinterpreting’ the original Hilbert space of [19], through the
mapping to a fiducial Type I structure, as the quantum counterpart of
the full phase-space of all distorted IH of a given area [76]. In the lat-
ter case, horizon distortion can be taken into account by introducing two
SU(2) Chern-Simons theories on the boundary [42]. This allows to define a
quantum operator encoding the distortion degrees of freedom, whose eigen-
values are expressed in terms of the spins associated to the bulk and the
boundary punctures.

A better understanding of the relation between these two pictures could
be provided by a characterization of the horizon theory from the full theory.
The first steps in this direction have already been moved in [63, 64]. Here
the authors start from the flux-holonomy algebra of LQG which represents
a quantization of the kinematical degrees of freedom of GR in the connec-
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tion formulation. Studying a modification of the Ashtekar-Lewandowski
measure on the space of generalized connections, one can look for a repre-
sentation of this algebra containing states that solve the quantum analog
the boundary conditions and thus provide a quantum mechanics description
of black holes. Therefore, the approach taken in [63, 64] differs from the one
adopted in [19, 41], since there the boundary and bulk degrees of freedom
are no longer treated separately at the quantum level. On the contrary,
the horizon degrees of freedom are now represented simply by elements of
the flux-holonomy algebra of LQG, without any reference to the horizon.
Providing a characterization of the operators entering the IH boundary con-
ditions from the full quantum theory definitely represents a very important
step and it might provide a deeper understanding of the horizon quantum
geometry degrees of freedom, with the possibility to give new insights on the
relation between the models defined in [76] and [42].

Finally, the recent study showing that the particular features of loop
quantum gravity produce observational signatures that are relevant enough
to allow a clear discrimination between this theory and other possible quan-
tum black hole models on a simulated experiment [46], is a strong encour-
agement to keep extending and improving the understanding of quantum
black holes, and to tackle with interest the remaining open issues. After all,
who knows if they could be the key to the first observational test of quantum
gravity?
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