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We propose a new method of unifying gravity and the Standard Model by introducing a spin-
foam model. We realize a unification between an SU(2) Yang-Mills interaction and 3D general
relativity by considering a Spin(4) ∼ SO(4) Plebanski action. The theory is quantized à la spin-
foam by implementing the analogue of the simplicial constraints for the broken phase of the Spin(4)
symmetry. A natural 4D extension of the theory is shown. We also present a way to recover 2-point
correlation functions between the connections as a first way to implement scattering amplitudes
between particle states, aiming to connect Loop Quantum Gravity to new physical predictions.

Introduction. One of the hardest challenges of high
energy physics in the last decades is to provide a viable
quantum theory of gravity. While there are a few theoret-
ically consistent realizations, the main goal of any phys-
ical theory is to make contact with experiment. In this
spirit, we propose, following the perspective discussed in
[1], a unified theory that includes quantum gravity and
Yang-Mills (YM) interactions as subgroups of an overall
gauge unified theory. Our approach relies on the non-
perturbative quantization à la Loop Quantum Gravity
(LQG) of the theory in its initial phase. Then the theory
is broken down to the general relativity (GR) and the
Standard Model (SM) parts.

The theory is introduced as a spin-foam model, where
the fundamental spin-networks (see subsection below)
have quantum number representations of the entire gauge
group, which will contain, as subgroups, the SO(3, 1)GR
and the SU(3)C×SU(2)W ×U(1)Y of the SM. The spin-
foam is defined as living in a 4D manifold and the spin-
network in a foliation of the manifold, as usual in LQG.
After a brief discussion of the Coleman-Mandula theo-
rem [2] and the main properties of this unified theory, we
propose a method to compute the expectation value of
Wilson loops involving the YM and the GR fields. This
is an equivalent of the n-point function defined in [3] and
the method relies on using the boundary formalism [4–6].

So as to provide the underlying structure and logic of
our approach and avoid mathematical complexities, we
will show calculations in a non trivial, Euclidean 3D case.
Remarkably, this simplified case provides an exactly sol-
uble toy model which shows the emergence of a quantum
theory of GR and YM interactions from the spin-foam
quantization of the overall theory. We establish exactly
how the simplicity constraints, which in 4D are realized
from Thiemann’s procedure of the master constraint [7],
is connected to the emergence of the YM kinetic term.
We then provide the reader with the holonomy repre-
sentation [8] of the boundary propagator W , encoding
spin-foam dynamic, propose an extension of spin-network
coherent states for both the GR and YM sectors and dis-
cuss the expectation value of the Wilson loops of the
connections in the holomorphic representation [8].

A spin-foam proposal towards unification. The theory
is defined following this procedure:

i) the action is a modified Plebanski BF theory that
lives over a 4D oriented smooth manifold;

ii) the theory is invariant under some unified Lie group,
i.e. SO(N,M), with (N + M) > 4, which defines a
principal SO(N,M)-bundle PSO(N,M);

iii) the basic fields of the theory are a connection A
on PSO(N,M), an ad−PSO(N,M)-valued 2-form B on M4

and a multiplet of scalar fields Φ on M4, which will be
responsible of the symmetry breaking of the theory;

iv) we overcome the limitations of the Coleman-
Mandula theorem for a curve spacetime, due to an initial
phase completely background independent, and only a
following “broken” phase with an emergent metric, as
explained in detail in [9] for a general class of models.
In the broken phase all the standard implications of the
theorem are recovered in the low energy limit;

v) we use the spin-foam implementation of the LQG
dynamics [6]. The details of the spin-foam quantization
are based on the discretization of the path integral for
the BF theory and on the consequent imposition on the
quantized kinematical Hilbert space (constructed from
the discretized phase-space of the canonical theory) of
the “Plebanski-like” constraints to the BF theory. This
produces a generalization of Hgrav

Γ , the Hilbert space of
the GR sector for a fixed 1-complex Γ (Here Γ belongs
to the dual triangulation ∆∗ of M4 [10] and represents
the section of a spin-foam 2-complex.);

vi) the generalized Hilbert space contains as subsets
the GR Hilbert space Hgrav

Γ , the YM Hilbert space HYM
Γ

and non trivial sectors related to the cosets generated by
the symmetry breaking mechanism;

vii) the asymptotic states expanded on spin-network
basis elements do not necessarily carry a simplicial inter-
pretation [11]. The spin-foam dynamics interpolating the
1-complexes on which asymptotic states are supported
[12, 13], provides the proposal for a LQG predictive scat-
tering process.

We believe that this proposal represents a robust and
novel approach that implements LQG techniques in de-
veloping a unified theory. There are many peculiar sub-
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tleties in the model, both conceptual and technical which
may cloud fruitful progress. For instance, the issue of
dealing with a 4D spin-foam with {15j}G re-coupling el-
ements derived by the contraction of the intertwiners of
the unification group G, makes the explicit calculations
particularly laborious. At the same time, the presence of
the sectors associated to the GR and SM cosets makes the
interpretation of the results rather obscure. In addition,
despite recent successes in the derivation of asymptotics
for pure gravity in 4D [14], persistent challenges to find
a formulation of LQG where matter degrees of freedom
emerge naturally has created some level of ambiguity as
to the expectations for phenomenology. Finally, these
aspects are so intertwined with each other that it is a
particularly hard task to disentangle the consequences of
each single element of the proposal.

In this first work we explore a model that obviates, in a
natural way, the non diagonal cosets of the unification Lie
group and the intrinsic difficulties of large spin-network
state calculations. Nonetheless we are still able to retain
the richness of the enlarged spin-network Hilbert space
and its proposed phenomenological interpretation. In or-
der to achieve this goal, we study a Plebanski theory
over a 3D oriented smooth manifold M3, over which we
choose to consider a principal Spin(4)-bundle PSpin(4).
The basic fields of the theory are in this case a connec-
tion A on PSpin(4), an ad(PSpin(4))-valued 1-form B on
M3 and a multiplet of scalar field ΦABC on M3, with
capital latin letters labeling indices in the adjoint repre-
sentation of the algebra Spin(4)=su(2)×su(2).
The group SO(4) ∼ SU(2) × SU(2) on a 3D manifold
provides us with some evident simplifications:

i) the two SU(2) groups are naturally diagonal, making
our theory simpler, although non-trivial;

ii) one SU(2) will be interpreted as the GR sector, and
is expected to be similar (at least as a limit) to the stan-
dard 3D LQG, a theory extensively studied; the other
sector will be identified with an SU(2) YM, which is the
easiest non-abelian gauge theory we can write;

iii) a Spin(4) ∼ SO(4) model is expected to share sim-
ilarities with the standard 4D LQG (although the mani-
fold dimensionality and the constraints are different);

iv) the absence of fermions and multiplets (at least at
this initial stage) will make more evident which proper-
ties are intrinsic to the structure of the theory.

An explicit 3-dimensional model . We claim that both
an SU(2) YM and GR can be unified in 3D by a modified
BF theory of the form

SPleb=
1

G

∫
M3

Tr[B ∧ F (A)] + Φ · B + gΦ · B (Φ · Φ) , (1)

in which we have defined the 3-form BIJK≡BI∧BJ∧BK
and denoted with · contraction of internal indices. By
variation of the action, manifestly Spin(4) gauge invari-
ant, Gauß law DA ∧ BI = 0 is recovered—DA is the co-
variant derivative with respect to AI . The “field-strength

constraint” now reads FI = ΦIJKB
J ∧ BK(1 − gΦ · Φ),

while the generalization to the unified theory of those
that are the simplicity constraints in the 4D BF -theory
formulation of pure gravity

BIJK (1− gΦ · Φ)− 2g (Φ · B) ΦIJK = 0. (2)

The Spin(4) symmetry of the theory is here broken by
considering the ansatz on the decomposition of the mul-
tiplet of fields in ΦIJK = Φijk ⊕ Φabc, where the indices
ijk and abc belong each one to a different SU(2)∈Spin(4)
subgroup, which is identified with the GR and YM the-
ory, respectively. We assume that the auxiliary field
Φijk is order

√
g −1 and Φabc is order

√
g 0 [29]. We

make an ansatz on the YM components of the multi-
plets, Φabc = χεabc with χ constant. This latter and the
constraint (2) provide (see [15]) the relation between the
su(2)-valued components of BI , namely

BGR = γ BYM , (3)

that represents a second class constraint [16] in the phase-
space of the theory and in which γ3 = 3λ

√
2 g. Equation

(3) implements the breakdown of the Spin(4) symmetry
down to the product SU(2)×SU(2) in which symmetry
between the two subgroups is lost, and in this limit it
gives the action for 3D gravity coupled to YM

SPlebnoΦ [e, ω,A,B] = 1
G

∫
M3

ei ∧ Fi(ω) + Ba ∧ Fa(A)

+ 2 θ
G
√

3 g

∫
M3

dVol ·
√
εµνρ εαβγ eiµe

i
α e

j
νe
j
β B

a
ρB

a
γ . (4)

In (4) we have split the two subgroups component of the
connection in ωi (whose field strength is denoted asR(ω))
for the GR sector and Ac (F (A) being the field strength)
for the YM sector, and denoted the GR su(2)-valued 1-
form as BiGR = eiµdx

µ, namely the triad, and the YM
ones simply by Ba. The coupling constant θ is related to
g by θ2 = (1 + (gλ2)−

1
3 )2 (1 + (gλ2)

1
3 ). After evaluating

the action subject to the B-field relation (3), we recover
3D GR coupled to YM:

SPleb
noΦ =

1

G

∫
M3

ei ∧ Fi(ω) +

√
3 g

2 θ

∫
M3

Tr[F (A)∧ ?F (A)] .

(5)
Quantization à la spin-foam can be easily implemented

in this context, following a standard recipe:
i) the manifold is discretized by means of the intro-

duction of an oriented triangulation ∆ over M3, that
is an abstract cellular complex constituted of points p,
segments s and triangles t. In the dual triangulation
∆∗, constituted by vertices v, edges e and faces f , n-
dimensional objects belonging to ∆ are mapped in (3−n)-
dimensional ones.

ii) It follows that each SU(2) subgroup of the B fields
are smeared as algebra elements Bs ≡ l−1

P Biµl
µ
s τi ∼

l−1
P τi

∫
s
Biµ(x̃)dxµ, x̃∈s denoting a weighted point (with
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respect to the averaging procedure) along the segment s,
lP standing for the Planck length and lµs being an ori-
ented averaged vector whose length is that of s.

iii) Connection A are smeared on the dual triangula-
tion by associating to the discretization procedure group
variables representing holonomies over edges e ∈ ∆∗,

namely Ue ≡ eA
ij
µ l
µ
e ∼ e

∫
e
A. These are conjugated vari-

ables to Bs obeying canonical Poisson brackets.
iv) Loop quantization of the SU(2)-cotangent space

over the spatial hypersurfaces ofM3 proceeds construct-
ing the Hilbert space of cylindrical functionals HCyl [17],
over which holonomies are represented in a multiplicative
way and fluxes are represented as left invariant derivative
operators with respect to the connections [6].

v) In 3D a basis in this space is given by the eigen-
states [18] of the area (volume in 4D) and the length
(area in 4D) operators, i.e. the spin-network state basis
ψΓ,j,ι. Elements of this basis are supported on a graph
Γ ∈ ∆∗ and are labelled by spin j of the irreducible rep-
resentations (irreps) of each SU(2) subgroup and by the
intertwiner quantum number ι. By construction, the ele-
ments ψΓ,j,ι are SU(2) gauge invariant. Invariance under
diffeomorphisms is implemented by considering topolog-
ically equivalent classes of graph Γ over which ψΓ,j,ι are
supported. The physical Hilbert space HPhys of the the-
ory, implementing gauge and diffeomorphisms invariance
[19], is then easily achieved by considering closure ofHCyl

under the Ashtekar-Lewandowski (A-L) measure [20].
vi) Realization of time re-parametrization encoded in

the field strength constraint (scalar constraint for pure
gravity in 4D) is implemented in a spin-foam setting by
considering the discretization of the path integral of the
theory. An amplitude between the boundary graph Γ of a
2-complex (over which spin-foam is supported) yields the
evolution of states over Γ. Consisting of two topological-
BF -theories and SU(2)-symmetric sectors constrained
by the additional symmetry breaking (3), the theory re-
sults in a constrained sum over the two SU(2) subgroups
irreps, whose relation, derived by (3), reads jYM =γjGR.
Denoting hence the SU(2) subgroups irreps as jGR = j
and jYM =γ(g)j, the partition function of the theory (1)

ZPleb
∆ =

∑
js, γjs

∏
s

dim js dim (γj)s
∏
τ

{6 j}
∏
τ ′

{6 γj}, (6)

in which dim j stands for the dimension of the j SU(2)
irreps and {6 j} denotes the 6-j symbol of SU(2) recou-
pling theory. Notice that switching off g, and hence γ, ac-
counts to obtain the sum from the Ponzano-Regge model,
namely for SU(2) topological BF theory.

Boundary propagator for one-vertex amplitude. From
(6) we can extract the vertex amplitude and reformu-
late it in the holonomy representation [8]. As a result,
the vertex amplitude is achieved by performing an inte-
gration at each node over the gauge-group-elements G̃ ∈
Spin(4). If we are considering a one-vertex-amplitude,

the integration over the bulk group element Gbulk of the
two-complex is not necessary, as each Gbulk already rep-
resent Spin(4) holonomies associated to the link l of the
boundary graph Γ4. Then, assigning to any link l a
group-element Gl ∈ Spin(4),

WPleb
v (Gl)=

∫
Spin(4)4

4∏
n=1

dG̃n
∏
l

K0

(
G̃nl Gl G̃

−1
n′l

)
, (7)

where K0 = Kt|t=0 and Kt denotes the propagation heat-
kernel, whose heat-time is t and that is expressed as a
sum over the irreps of each SU(2) subgroup of Spin(4):

Kt(G)=
∑
j, γj

dimj dim(γj) e−j(j+1) t2 Tr
[
Π(j,γj)(G̃nGG̃

−1
n′ )
]
.

The vertex amplitude (7) provides the restriction of the
boundary propagator to the tetrahedral graph Γ4 ∈ ∆∗.
This restriction can be thought to originate (see e. g.
[21]) from the perturbative expansion in the coupling con-
stant λ of an appropriate Group Field Theory (GFT) for
the unified Plebanski theory here studied. In GFT the
sum over two-complexes provides a triangulation inde-
pendent partition function ZPleb [22].

Coherent spin-network states for the broken theory.
Spin-network states for the broken phase of the full the-
ory can be constructed generalizing [23], [13] and their
related holomorphic spin-foam formulation [12]. Instead
of considering only one SL(2,C) group element for label-
ing coherent states (such as [12]), we must consider an
element H = H ×H ′ of SL(2,C)⊗ SL(2,C). We assume
that the two group elements H and H ′ carry the same
information about the normals to the 1-cells of the trian-
gulation, i.e. to the segments s bounding triangles. The
SL(2,C) elements Hl decompose as a complexification of

SU(2) elements by Hl = ns(l)e
−izl

σ3
2 n−1

t(l). In 3D each

Hl is hence labelled by two normals to the segment s,
namely ns(l) and nt(l), whose relative rotation is achieved
by a U(1) subgroup of SU(2). For the element H label-
ing the GR subgroup of the coherent states, the complex
parameter zl = ξ + iη has the same meaning as in 4D : ξ
expresses the dihedral angle of a semiclassical Regge ge-
ometry [24], while η the length of the 1-simplices, i.e. the
segments s. The H ′l element labeling the YM subgroup
can be thought as the necessary quantities to define a
YM copy of the Regge geometry (as a YM lattice [15]).

The complex parameters z′l of H ′l are associated with
the length of the YM lattice spacing, and is related to the
flux though s of the electric field BYM . As a consequence
of (3), the flux of BYM is the 1/γ rescaling of the GR
electric field flux. In a similar way, the GR dihedral angle
is mapped, by multiplication by 1/γ2, in the equivalent
dihedral angle of the YM lattice. This follows from (3)
and the expression of the extrinsic curvature in terms of ξ
(see e.g. [25]). As on the YM lattice ξγ = ξ/γ2 represents
the conjugated variable to the flux of the electric field,
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we can argue that ξγ represents the index contraction of
the gauge invariant field strength F (AYM ) (see e.g. [26]).
Finally, coherent spin-network states read

ΨΓ,Hl(Gl)=

∫
Spin(4)4

(∏
n

dG̃n

)∏
l

Ktl
(
Gl, G̃nHlG̃−1

n

)
,

in which the heat kernel Kt has been specified above.
Expectation value of product of holonomies. The re-

construction theorem [27] ensures, at least for a certain
class of topologies of the (connected) manifoldM3, that
gauge-invariant information about the principle fiber
bundle PSpin(4) can be recovered from Wilson loops.
Therefore the boundary formalism, developed in [3] and
[21], paves a way to compute the expectation value of the
product of two holonomies, each belonging to a different
SU(2) subgroup of the theory. In the most straightfor-
ward setting, this expectation value will be calculated on
the connected graph Γ4, the tetrahedral spin-network.
We evaluate Wilson loops Uβx(hl) and Uβ′y(h′l), where hl
and h′l are SU(2) group-elements for each subgroup of
Spin(4), and βx and β′y are loops with base points x and
y. For convenience, say that the two base points corre-
spond to two nodes of Γ4, and that the two loops bound
two triangles sharing a segment. Within the Euclidean
space M3 taken into account, we can think this graph
to be embedded on the Regge submanifold that is the
discretization of the boundary of a 3-ball, namely of S2.
The boundary propagator is described by Wv(Gl), while
the coherent states, representing the state over which the
expectation value is computed, are given by ΨΓ,Hl(Gl).
Both of them are supported on Γ4. At the first order in
the GFT parameter λ we can calculate

A = 〈Wv(Gl)|Uβx(hl)Uβ′y(h′l)|ΨΓ,Hl(Gl)〉 , (8)

in which we use the inner product of the A-L measure [20]
for each SU(2) subgroup. This ensures gauge invariance
and space-diffeoinvariance for (8). The result is the sum
over SU(2) spin j of the product of the expectation value
of Uβx(hl) on the GR subgroup of Wv(Gl) and ΨΓ,Hl(Gl),

say Ã(ji, s) its “spin and intertwiner representation”, and
of Uβ′y(h′l) on the YM subgroup, say it Ã(γji, s):

A =
∑
jl,γjl

Ã(jm, s1)
∏
l

dimjl e
− (jl−j

0
l )

2

2σ2
l e−iξljl

∏
n

Φι(nl)×

Ã(γjn, s1)
∏
l′

dimγjl′ e
−

(γj
l′−γj

0
l′ )

2

2σ2
l′ e−iξ

l′
γ γjl′

∏
n

Φιγ (nl′). (9)

In (9) ι denotes a trivalent intertwiner between irreps
j, ιγ denotes a trivalent intertwiner between irreps γj,
the coefficients Φι(nl) and Φιγ (nl) are the coherent in-
tertwiner defined in [13], and finally dim j0

l = ηl/tab,
dim γj0

l = γηl/tab and σ2
l = 1/(2tl). Each A is the

the contraction of twelve Wigner 3j symbols involving
the six GR SU(2) irreps j (or YM γj) labelling Γ4 on

the boundary of the interaction region. Eq. (8) is the
first step to implement the scattering of particle states
in this research program, which aims to connect LQG to
physical predictions.

x ! !’
y

ι1 ιγ1

ι2 ιγ2

ι3 ιγ3

ι4 ιγ4

j1, γj1

j2, γj2

j3, γj3

j4, γj4

j6, γj6

j5, γj5

FIG. 1: Two Γ4 and two loops βx and β′
y on S2, as in (8)

(left). Γ4, colored with GR irreps j and YM irreps γj (right).

Conclusions. We present a proposal for unifying grav-
ity and Yang-Mills theory in LQG. The richness and
mathematical complexity of the model offer exciting
prospects for both theoretical and phenomenological de-
velopment. In the past there has been interest in gravity
and YM in 3D [28] and it would be important to develop
the model to compare it with well established results.
Also, the choice of our constraint was dictated by min-
imality, but it is not the only possible choice. Further
work will need to explore more of the 3D set up.

The procedure is naturally implemented in 4D and has
no obvious or apparent obstacles if not for a more com-
plex manipulability. We believe, though, that much can
be already understood in the dimensionally reduced case.

Finally, the proposal for the scattering amplitude pro-
vides large room for phenomenological predictions, and
could be an important milestone for pushing LQG be-
yond its present limitations.
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