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We give a complete and detailed description of the computation of black hole en-
tropy in loop quantum gravity by employing the most recently introduced number-
theoretic and combinatorial methods. The use of these techniques allows us to per-
form a detailed analysis of the precise structure of the entropy spectrum for small
black holes, showing some relevant features that were not discernible in previous
computations. The ability to manipulate and understand the spectrum up to the
level of detail that we describe in the paper is a crucial step towards obtaining the
behavior of entropy in the asymptotic (large horizon area) regime.
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I. INTRODUCTION

The identification of the microscopic degrees of freedom responsible for the black hole
entropy is one of the key results expected from any candidate quantum gravity theory. In
this respect loop quantum gravity (LQG) [1–3] can claim a reasonable success because
it accounts for the black holes degrees of freedom in a beautiful and mathematically
appealing way [4, 5]. Black hole degrees of freedom are described in this framework
as Chern-Simons (CS) states residing on the “surface” of a black hole modeled as an
isolated horizon [6]. This leads to an interesting interplay among quantum geometry,
Chern-Simons theory, and statistical mechanics. When the states describing a black hole
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are counted and this number is related to the black hole horizon area a, the resulting en-
tropy is found to be proportional to a. By taking advantage of the free Immirzi parameter
γ that labels inequivalent quantum sectors of general relativity in the connection formu-
lation, it is actually possible to make the proportionality factor between the entropy and
the area equal to 1/4, thus reproducing the Bekenstein-Hawking area law. The choice
of γ, initially made in the study of spherical non-rotating black holes, is universal in the
sense that it works also for other types of black holes (i.e. rotating or coupled to some
matter fields). As of today, there are no exceptions to this universality (see, however,
[7] for some interesting suggestions about the role of γ). The available framework also
predicts the first subleading corrections to the Bekenstein-Hawking law which turn out
to be logarithmic with area. These corrections are generically independent of γ and in
qualitative agreement with the ones obtained by using completely different approaches
[8].

In addition to the successful derivation of the entropy-area law, there have been some
recent results concerning small black holes [9–11]. In particular, a persistent “periodic-
ity” has been found in the so called black hole degeneracy spectrum when plotted as a
function of the area.1 The most degenerate quantum configurations accumulate around
certain evenly spaced values of area, with a much lower degeneracy in region between
those values. This produces an effectively equidistant area spectrum, despite the fact that
the area spectrum in LQG is not equidistant. This phenomenon makes contact in a non
trivial way with the evenly spaced black hole horizon area spectrum predicted by Beken-
stein and Mukhanov in [12, 13] under quite general conditions. The periodicity in the
degeneracy spectrum leads to a striking staircase behavior when the entropy is plotted
as a function of the area.

In a recent paper [14] we have proposed a novel way to understand the black hole
degeneracy spectrum by relying on number-theoretic and combinatorial methods. The
main goal of that paper was to confirm the original results obtained in [9–11] and extend
them by using an improved computer algorithm based on the new mathematical under-
standing of the problem. Once this goal has been achieved, the real challenge is trying to
see if macroscopic black holes display the same periodicity in the entropy as the micro-
scopic ones. To this end, one has to find appropriate exact expressions for the entropy as
a function of the area, which are suitable to derive its asymptotic behavior. A key step
in this direction is to codify the solution to the combinatorial problem of computing the
number of relevant microstates as the coefficients of a formal power series expansion of
the so called generating function (see [15, 16] for a pioneering suggestion in this direc-
tion). In many cases this formal expansion converges in non empty open disks in the
complex plane and admits an analytic extension allowing the coefficients to be written as
contour integrals whose asymptotic behavior can then be studied by more or less stan-
dard methods. The relevant generating functions for our problem were obtained and
used to derive the expression of the entropy as a function of the area in [17, 18].

The study of the asymptotics of black hole entropy has been attempted before [19].
In this remarkable paper, Meissner gave a clever method to sidestep many of the fine-
grained issues that we have looked at with our number-theoretic methods. There he
obtained a closed expression for the entropy as a function of the area in the form of an
inverse Laplace (actually Laplace-Fourier) transform. This poses some interesting ques-
1 Here and in the following, periodicity actually means a modulation with a regular period of some growing

magnitude.
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tions about the compatibility of his approach and ours: Are they compatible? Is it really
necessary to resort to the number theoretical methods of [14, 17]? These questions have
been answered in [18] (and the present work offers more evidence supporting the need
to use our methods to satisfactorily understand several important issues related to black
hole entropy). A first relevant point to highlight is the difficulty in confirming the struc-
ture seen in [10] by directly computing Meissner’s integrals due to the subtly oscillatory
nature of their integrands. To this end, the number theoretical and combinatorial meth-
ods of [14] are clearly better suited. The issue is then to show that they provide the same
answer as Meissner’s approach. This has been done in [18] where the integral expressions
of [19] have been obtained from the generating functions introduced in [17]. Another im-
portant issue that has been considered in [18] is the analytic structure of the integrand
of the inverse Laplace transform that gives the entropy. The presence or absence of the
sought for periodic structure for macroscopic black holes depends on the location of the
poles of the integrand. The results presented in [18] do not prove that the periodicity ex-
ists for large black holes, but certainly do not exclude this possibility owing to the subtle
behavior of the real parts of the poles. An alternative way to understand the periodicity
of the entropy (and justify why it should be present) has been given in [20]. We want
to mention here that some non-trivial “intermediate” regimes may be significant in the
behavior of the entropy because it is not inconceivable that the sizes of real astrophysical
black holes are actually outside the large-area asymptotic regime. This would mean that
a non-trivial behavior could be displayed by these objects even if the asymptotics of the
entropy is more or less trivial (i.e. just linear). Finally, the number-theoretic methods
that we propose lead to a clear identification of the role played by the different sources
of degeneracy in the black hole spectrum and how they explain the observed non-trivial
behavior of black hole entropy in LQG.

The purposes of this paper are manifold. First of all, we give a detailed and expanded
derivation of the number-theoretic methods of [14] and show how they can be effectively
used to understand in full detail many issues related to the behavior of black hole en-
tropy. To avoid confusion, we consider separately the computation of the entropy in the
Ashtekar-Baez-Corichi-Krasnov (ABCK) framework [5], as reinterpreted by Domagala
and Lewandowski (DL) [21], and other countings proposed in the literature [22, 23]. We
also consider the novel proposal of [24] where the authors study black hole entropy from
first principles without using any internal gauge fixing of the SU(2) symmetry on the
horizon. The reason to consider these other points of view is to illustrate the flexibility of
our approach. Our second goal is to derive and discuss the black hole generating func-
tions that codify all the information about black hole entropy as a function of the horizon
area. We will show how they can be immediately applied to derive the asymptotic be-
havior of the black hole degeneracy spectrum for some important subsets of the area
spectrum (a discussion of how they can be used to get an integral representation for the
black hole entropy appears in [18]). The third goal of the paper is to provide a detailed
account of how the periodic pattern in the black hole degeneracy spectrum arises. We
will take advantage of the number-theoretical methods described in the beginning of the
paper to study the interplay between the different contributions of the different combina-
torial factors to the entropy and also to show what the most relevant area configurations
are. We will also provide a simple heuristic argument that complements the one given
in [20]. Another important result in this respect will be to show that the interesting be-
havior of the black hole entropy is present even without taking into account the so-called
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“projection constraint” (though in this case the logarithmic correction to the entropy is
absent). Finally we give a number-theoretic prescription to label and classify the sub-
structures (“bands”) that appear in the black hole degeneracy spectrum. Summarizing,
the main new results presented in the paper are:

• We provide several independent methods to count the configurations selected by
the projection constraint, in particular, we explain how the counting can be made
by using auxiliary quantum Hamiltonians for spin systems. We also give a group-
theoretic treatment that can be used for all the different countings discussed in the
literature.

• We explain how to obtain the asymptotic behavior of the black hole degeneracy
spectrum for subfamilies of area eigenvalues characterized by a set of square free
integers. We use then this method to show how the band structure of the degener-
acy spectrum originates.

• We discuss the relative importance of the different sources of degeneracy. In partic-
ular we disentangle the contributions coming from the projection constraint from
the remaining ones.

• We provide a new argument that explains how the configurations contributing to
the bands in the degeneracy spectrum can be labeled by a simple function P of
the spin labels at the punctures on the black hole horizon. We do this by using a
straightforward continuum approximation.

• We introduce a new type of generating function, defined with the help of P, that
allows us to isolate the configurations contributing to specific bands in the degen-
eracy spectrum.

• We give the full details regarding the degeneracy spectrum and entropy for the
black holes with the smallest possible areas.

The paper is organized as follows. After this introduction we devote the next section
(section II) to a quick discussion of how black holes are modeled with the help of isolated
horizons. The aim of this section is to provide a frame to assess and compare the differ-
ent proposals, in particular those suggesting to employ a SU(2) Chern-Simons model to
describe the quantum degrees of freedom on the horizon. Section III describes in detail
the methods used to count the number of states relevant for the computation of the en-
tropy the ABCK prescription according to DL. In this section we introduce several precise
definitions (black hole configurations, degeneracy spectrum, etc.) and solve the relevant
number-theoretic and combinatorial problems step by step. Section IV will discuss the
application of our methods to other countings and proposals, in particular, there is a sub-
section devoted to the Ghosh-Mitra counting [22] and another to the SU(2)-black entropy
proposal of Engle, Noui and Perez [24]. In the process we will describe several ways to
solve the so called projection constraint. One of them is interesting because it offers some
tantalizing hints about the possible connection of the problem of computing black hole
entropy with conformal field theory techniques [25]. Another one makes use of a simple
type of generating function (a fact that originally suggested that it might be possible to
find generating functions for the exact black hole entropy [17]). A very short summary of
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the different schemes is presented in section V. Section VI provides a detailed account of
the features of the black hole degeneracy spectrum, how it arises, what the most relevant
area eigenvalues are, and the mathematical classification of the characteristic bands that
it shows. We give here an argument, alternative to the one given in [20], that explains
how the periodicity of the black hole degeneracy spectrum arises and we also provide
a generating function that selects the configurations that define the bands. In particular,
the analysis presented in this section contains new important information about the de-
tailed features of the entropy spectrum, and introduces new techniques for the study of
its periodic structures. All this information is valuable for the purpose of obtaining the
asymptotic behavior of the entropy in the limit of very large (astrophysical) black holes,
which is the main open problem in the number theoretic approach that we are follow-
ing. Section VII is devoted to our conclusions, comments, and suggests directions for
future work. We end the paper with several appendices. The first one (Appendix A) pro-
vides a pedagogical derivation of the generating functions used in the paper. Appendix
B gives a complete and explicit computation of the black hole degeneracy spectrum and
the entropy for all the small black holes with areas smaller than 18× 4πγ`2P. (Throughout
the paper we will denote by `P the Planck length.) Finally, Appendix C gives a unified,
group-theoretic treatment to solve the so called projection constraint in any of the count-
ing proposals discussed in the paper.

II. ISOLATED HORIZONS AND BLACK HOLE ENTROPY

The purpose of this section is to give a short history of the study of black holes in
the loop quantum gravity framework and, in particular, of the entropy computations
leading to the Bekenstein-Hawking law. Our main goal here is to provide the reader with
the background information necessary to establish the connections between the different
approaches and proposals, assess their degree of rigor and state of development, and
compare their relative merits. Several excellent reviews on the subject are available (see
for example [3, 26]).

The successful derivation of the Bekenstein-Hawking law is a key stepping stone in
the quest to arrive at a working theory of quantum gravity. This explains why the
main contenders in this area of fundamental physics –string theory and loop quantum
gravity– have struggled to derive this result within the respective frameworks.2 In both
approaches, the first problem that must be faced is the appropriate description of a quan-
tum black hole or, at least, a physical approximation to it. The history of the study of
black hole entropy in LQG can be divided in two different periods separated by the land-
mark paper of Ashtekar, Baez, Corichi and Krasnov [4]. The main importance of this
work lies in the fact that it proposes the key idea of describing black holes by using iso-
lated horizons. The reason why this is so important is because a “reduction” of general
relativity consisting of spacetimes admitting isolated horizons as inner boundaries can
be described within the Hamiltonian formalism. This idea is similar in spirit, but not
equal, to the study of the quantization of the symmetry reductions of general relativity
that gives rise to the popular mini and midisuperspace models. For both types of systems
a subset of the possible gravitational field configurations is chosen by imposing some re-
striction on the configuration space of metrics. In the mini and midisuperspace models

2 An interesting discussion of the relative merits and problems of both approaches can be found in [27].
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this is accomplished by restricting the allowed configurations to metrics satisfying some
kind of symmetry principle whereas in the case of black holes the requirement is that the
allowed metrics must have an isolated horizon.

During the period preceding the appearance of [4], several authors made interesting
suggestions that have played a key role in the development of the standard ABCK model.
In fact, it is fair to say that many of the ideas that have been instrumental in the currently
accepted framework made their appearance during those years. We want to mention
explicitly the work of Smolin in [28], where he discusses, among other things, the impor-
tance of considering the quantization of the gravitational field in spacetimes with inner
boundaries of finite area and the important role of the Chern-Simons theory and quan-
tum groups. After this paper, it is mandatory to highlight the works of Krasnov [29, 30]
and Rovelli [31, 32]. The first author gives several important insights related, in particu-
lar, to the issue of the distinguishable character of the spin network labels on the horizon,
the types of spin networks that are relevant to describe black holes and the concrete role
of the CS theory to describe horizon degrees of freedom.3 Rovelli, on his part, made
a direct counting and used simple combinatorial methods to arrive at an approximate
Bekenstein-Hawking law (in the sense that the linear growth of the entropy as a function
of the area was found but the proportionality coefficient was not fixed). He also insisted
on the role played by the distinguishability of punctures on the black hole horizon.

The currently accepted treatment of the problem is given in [4, 5] (see also the review
by Corichi [26]). The starting point is the Hamiltonian description of spacetimes with
isolated horizons in terms of Ashtekar variables. A crucial issue is the treatment of the
inner boundary and the consequences that its introduction has for the final Hamiltonian
description of the model. The following facts are particularly relevant.

• The isolated horizon condition translates itself into a matching boundary condition
involving the pullback of the Ashtekar connection and the tetrads to the spherical
slices of the inner boundary.

• The inner horizon boundary conditions force the SU(2) connection Aı  to be re-
ducible on the boundary [4] (here the indices ı and  are su(2) indices). This means
that there exists an internal vector field rı, defined on the spherical section of the
isolated horizon, satisfying the condition dArı = drı + Aı  r

 = 0. A choice of this
internal vector [that amounts to a partial gauge fixing of the SU(2) symmetry] is
used to explicitly take into account the reducibility of the connection on the bound-
ary. The U(1) invariance on the isolated horizon is guaranteed by the rı projection
of the matching conditions.

• The symplectic structure consists on a volume part (the same as in the usual models
without boundary) and a boundary part corresponding to a U(1)-CS theory. This
fact strongly suggests that the Hilbert space appropriate to describe the system is
a tensor product of a U(1) Chern-Simons Hilbert space and a LQG volume Hilbert
space.

• In the quantum formalism the rı-projected matching condition is quantized and
used to select the physical quantum states. The solutions to this condition automat-
ically satisfy the Gauss law. This means that it is treated as a first class constraint as
far as quantization is concerned.

3 It is interesting to mention at this point that the original proposal made use of a SU(2)-CS model.
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The reducibility condition of the connections on the horizon is a somehow unexpected
feature of the present scheme. Several authors have explored the physical consequences
of heuristically forgetting about this fact and retain a SU(2)-CS model on the horizon
[23, 33], whereas other authors have addressed the development of a SU(2) invariant
formalism from first principles [24, 34]. The possibility of using a SU(2) description is
an interesting topic. In fact there is a recently published but old proposal by Krasnov
and Rovelli [35] to describe quantum black holes –without the use of any semiclassical
approximations– that lead to results very similar to the ones presented in [24, 34].

Within all these models it is possible to obtain the Bekenstein-Hawking law by appro-
priately adjusting γ. There are also logarithmic corrections to the entropy that play an
important role because they are specific predictions of the different proposals that can be
used, in principle, to choose among them. The combinatorial problems associated with
the computation of the entropy for all these schemes are rather similar in nature and can
be approached with the techniques that we describe in this paper. In that respect, our
methods are quite robust and well adapted to the nature of the combinatorial problems
that appear, so we expect them to play a significant role also in the understanding of
dynamical aspects of black hole physics such as Hawking radiation or black hole evapo-
ration.

III. THE ABCK QUANTUM ISOLATED HORIZON AND THE DL COUNTING

The study of black holes within LQG [5] makes use of the isolated horizon concept
(see [6] and references therein). In this framework the horizon is introduced as an in-
ner boundary of the classical spacetime manifold. Several conditions are imposed on it
to guarantee that the relevant physical features of a black hole are captured, in particu-
lar its thermodynamical behavior. Spacetimes of this class admit 3-dimensional, spatial,
partial Cauchy surfaces. Each of them is bounded by a topological 2-sphere, that we will
refer to as the horizon. A Hamiltonian description for this sector of GR is available and is
the starting point for canonical quantization [36]. The details of the canonical description
strongly suggest that the appropriate Hilbert space should be built as a tensor product of
bulk and horizon Hilbert spaces, Hκ

Kin = Hκ
Hor ⊗ HBul. In this approach, it is natural to

adapt the bulk Hilbert space HBul to the presence of an inner boundary. As usual in LQG,
it is convenient to use a spin network basis4. A particular bulk spin network can pierce
the horizon or not. If it does, it will do so at a finite number of points that we will refer to
as punctures. These punctures have a distinguishable character, as a consequence of the
action of general diffeomorphisms over the horizon surface [5]. The punctures carry two
quantum numbers (j,m). The first one is just the spin j-label of the edge that defines it.
These spin quantum numbers allow us, in particular, to calculate the horizon area accord-
ing to the standard prescription of quantum geometry. The other quantum numbers are
spin components, m, defined with the help of the preferred su(2)-internal vector field rı
on the horizon (see section II). These labels play an important role in the implementation
of the quantum boundary conditions. Explicitly, the bulk Hilbert space HBul is spanned
by states of the form

|(0), · · · 〉Bul, . . . , |(m1, j1, . . . ,mN, jN), · · · 〉Bul , . . . (III.1)
4 A spin network is an oriented graph embedded in a spatial section of the spacetime, carrying a SU(2)

irreducible representation labeled by a spin number j on each of its edges, and a gauge invariant operator
(intertwiner) linking incoming and outgoing representations at each vertex [3].
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where the half integers jI ∈ 1
2
N label irreducible representations of SU(2) and

mI ∈ {−jI, −jI + 1, . . . , jI − 1, jI} (III.2)

are spin components in the direction of rı. The numbersmI and jI represent the quantum
degrees of freedom of the bulk geometry “close” to the horizon, and the “· · · ” in the bulk
state |(m1, j1, . . . ,mN, jN), · · · 〉Bul refer to bulk degrees of freedom away from the horizon.
Finally |(0), · · · 〉Bul denotes the states corresponding to spin networks that do not pierce
the horizon.

The surface horizon Hilbert space Hκ
Hor is described by a U(1) Chern-Simons theory.

The level κ ∈ N of this quantum CS-theory gives rise to a prequantized value aκ = 4πγ`2Pκ
for the area of the isolated horizon. In Hκ

Hor, the U(1)-CS basis states over the punc-
tured sphere |(c1, . . . , cN)〉κHor are characterized by arbitrarily long (ordered) sequences
(cI)

N
I=1 = (c1, . . . , cN) of non-zero congruence classes of integers modulo κ. Each of the

cI can be thought of as an integer number belonging to {1, 2, . . . , κ − 1} that labels the
quantized deficit angle 4πcI/κ associated with the I-th puncture. If the isolated horizon
has a spherical topology, there is an additional restriction over the total curvature, which
translates into a condition ∑

I

cI = 0 (mod κ),

for the congruence classes appearing in a given sequence. This condition can be inter-
preted as the quantum equivalent of the Gauss-Bonnet theorem. These cI labels turn out
to be related, through the quantized isolated horizon boundary conditions, to the label
mI in the jI representation of the spin network edge, |(jI,mI)

N
I=1, · · · 〉Bul ∈ HBul, piercing at

the corresponding puncture, according to

cI = −2mI (mod κ) ,

with mI ∈ {−jI,−jI + 1, . . . , jI}. This restriction on the form of the basis states |(cI)〉κHor ⊗
|(jI,mI), · · · 〉Bul of Hκ

Kin is the quantum counterpart of the isolated horizon boundary con-
dition.

The area induced on the horizon by a given bulk state is the eigenvalue of the standard
area operator

aLQG(jI,mI) = 8πγ`
2
P

∑
I

√
jI(jI + 1) , (III.3)

given in terms of the jI-labels of the punctures. For a fixed value of the black hole area,
there are different combinations of horizon labels compatible with it (i.e. the area eigen-
values are degenerate). The quantum states of the horizon belonging to Hκ

Hor and “com-
patible” with the area (III.3) are precisely the ones responsible for the black hole entropy.

Some important comments, relevant to the definition of the entropy, are in order now:

• Compatibility of areas: Two different types of areas associated with the horizon
are relevant here. The prequantized area aκ necessary for the quantization of the
CS theory and (III.3). The aκ does not belong to the spectrum of the area operator,
i.e.

aκ = 4πγ`
2
Pκ 6= aLQG(jI,mI) = 8πγ`

2
P

∑
I

√
jI(jI + 1) .
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This forces us to introduce a suitable, and physically sensible, notion of compatibil-
ity.5

• Entropy: In Quantum Statistical Mechanics the standard definition of the entropy
in the microcanonical ensemble makes use of an energy interval [38]. In vacuum
general relativity, the non-rotating and neutral black holes are fully characterized
by their areas. Therefore, it is convenient to use this geometrical feature in the dis-
cussion of their statistical mechanics. This is explained at length in [29, 39]. Here,
then, we introduce an area interval [aκ − δ, aκ + δ] in order to define an appropri-
ate statistical ensemble. This helps to solve the problem mentioned in the previous
item because, once the prequantized value of the area is fixed, there are always bulk
quantum states with area eigenvalues belonging to [aκ − δ, aκ + δ] for reasonable
choices of δ. The entropy is obtained by tracing out the bulk degrees of freedom
to get a density matrix that describes a maximal entropy mixture of surface states
with area eigenvalues in the previous interval. The value of the entropy is com-
puted by counting the number of allowed sequences (cI) of non-zero elements of
Zκ satisfying c1 + · · · + cN = 0, such that cI = −2mI (mod κ) for some permissi-
ble spin components (mI). Here permissible means that there exists a sequence of
non-vanishing spins (jI) such that eachmI is a spin component of jI and

aκ − δ ≤ aLQG(jI,mI) = 8πγ`
2
P

∑
I

√
jI(jI + 1) ≤ aκ + δ. (III.4)

The counting of horizon c-labels is equivalent to the determination of the dimension
of the Hilbert subspace of Hκ

Hor that represents the black hole degrees of freedom.

• Thermodynamical limit: In the thermodynamical limit, for standard statistical me-
chanical systems, the choice of energy interval introduced in the definition of the
microcanonical ensemble is irrelevant [38], i.e. it is equivalent to consider [E−∆, E+
∆], or [E−∆, E], or [E, E+∆], or even [E0, E], where E0 is the minimum energy of the
system. Moreover, only in the thermodynamical limit the entropy is a smooth func-
tion of the energy with the possible exception of points related to phase transitions.
This smoothness is crucial to define the derivatives appearing in the definition of
thermodynamical magnitudes. In the present case, one should follow a similar path
(with the area playing the role of the energy).

The possibility of taking an appropriate area interval has been used to simplify the
actual computation of the entropy. By using an interval of the form [0, aκ], Domagala and
Lewandowski [21] proved that the black hole entropy can be obtained according to the
following prescription involving only themI bulk labels:

The entropy S≤(aκ) of a quantum horizon of classical area aκ, according to Quantum Geom-
etry and the Ashtekar-Baez-Corichi-Krasnov framework, is

S≤(aκ) = log(1+N≤(aκ)) ,

5 In this respect we want to point out that there is another possible choice [37] for the horizon area operator
in LQG corresponding to an evenly spaced area spectrum. In this case the Bekenstein-Mukhanov [12, 13]
scheme is realized from the start and there is no need to introduce an area interval at this stage.
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whereN≤(aκ) is the number of all the finite, arbitrarily long, sequences (m1, . . . ,mN) of non-zero
half integers, such that the following equality and inequality are satisfied:

N∑
I=1

mI = 0,

N∑
I=1

√
|mI|(|mI|+ 1) ≤

aκ

8πγ`2P
.

The extra term 1 above comes from the trivial sequence.

Notice that, in the ABCK prescription, the entropy S≤(a) is defined only for area values of
the form a = aκ. However, we will extend the definition to arbitrary values of a ∈ [0,∞)
by just requiring that

N∑
I=1

√
|mI|(|mI|+ 1) ≤

a

8πγ`2P
.

We introduce this extension because we think that the detailed form of the area spectrum
predicted by loop quantum gravity may play a prominent role in gravitational systems
for which area is an important observable quantity. In the following, unless stated other-
wise, we will write areas in units of 4πγ`2P.

The rest of this section is devoted to describing methods based on number theory
that are useful to understand the structure of the black hole degeneracy spectrum and
entropy. The counting of the allowed sequences according to the previous definition is
conveniently performed in four successive steps:

Step 1. Fix a value for the area a and obtain all the possible choices for the half integers |mI|

compatible with the area, i.e. satisfying

N∑
I=1

√
|mI|(|mI|+ 1) =

a

2
.

Notice that, at this point, we are considering the possible choices of absolute values
of the spin components as the elements of a multiset (and hence there is no ordering
of the labels). In other words, at this stage we only want to know how many times
the spin component 1/2 appears, how many 1’s appear, and so on.

Step 2. Count the different ways in which the previous multisets can be reordered.

Step 3. Count all the different ways of introducing signs in the sequences of positive half-
integers |mI| obtained in the previous step in such a way that the projection con-
straint

∑N
I=1mI = 0 is satisfied.

Step 4. Repeat the same procedure for all the area eigenvalues smaller than a and add the
number of sequences obtained in each case.

III.1. Step 1: The Pell equation

The first step can be thought of, in fact, as a characterization of the part of the spectrum
of the area operator relevant to the computation of black hole entropy (regarding, in
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particular, the degeneracy of the different area eigenvalues). Let us start by introducing
the positive integer variables kI := 2|mI| and write

2

N∑
I=1

√
|mI|(|mI|+ 1) = a⇔ N∑

I=1

√
(kI + 1)2 − 1 = a⇔ kmax∑

k=1

Nk

√
(k+ 1)2 − 1 = a (III.5)

where the non-negative integers Nk (that will be allowed to be zero) in the last sum tell
us the number of times that the label k/2 ∈ N/2 appears in the sequence (|mI|) = (kI/2).
Also, we denote as kmax = kmax(a) the maximum value of the positive integer k compati-
ble with the area a. At this point we are interested in finding out the multisets mentioned
above, i.e. all the sets of pairs {(k,Nk) : k ∈ N, Nk ∈ N ∪ {0}} such that equation (III.5)
is satisfied. Notice that in the description provided by the multiset, we can restrict our-
selves to list only the values of k that do actually appear (i.e. those for which Nk 6= 0).
We want to point out now a simple but important fact. By using the prime factor de-
composition of k(k + 2), it is always possible to write

√
(k+ 1)2 − 1 as the product of an

integer times the square root of a square-free positive number pi. Square-free numbers
are integers that are not divisible by non-trivial square numbers (that we enumerate as
p1 = 2, p2 = 3, p3 = 5, and so on). Then, equation (III.5) tells us that the area eigenvalue
amust be an integer linear combination of square roots of squarefree numbers, and have
the form

a =

imax∑
i=1

qi
√
pi, qi ∈ N ∪ {0} ,

or else equation (III.5) cannot be satisfied. This leads then to the following condition

kmax∑
k=1

Nk

√
(k+ 1)2 − 1 =

imax∑
i=1

qi
√
pi . (III.6)

As a preliminary step to solve this equation, we want to separately consider each of the
square-free numbers pi and find out the possible values of k such that

√
(k+ 1)2 − 1 is

an integer multiple of
√
pi, i.e. we first solve the equations√

(ki + 1)2 − 1 = yi
√
pi

in the two unknowns ki and yi (here the label i refers to the square-free number pi). These
are equivalent to

x2i − piy
2
i = 1 , (III.7)

where we have written xi := ki + 1. For each fixed square-free integer pi, (III.7) is the
well known Pell equation [40], whose general solution can be found in the following
way. Obtain first a so called fundamental solution (xi1, y

i
1) with the smallest positive value

of x by using continued fractions as explained in [40]. Once this solution is known the
(infinitely many) remaining ones are given by (xi, yi) := (xiα, y

i
α), α ∈ N, where

xiα =
1

2

[
(xi1 + y

i
1

√
pi)

α + (xi1 − y
i
1

√
pi)

α
]
,

yiα =
1

2
√
pi

[
(xi1 + y

i
1

√
pi)

α − (xi1 − y
i
1

√
pi)

α
]
,
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from which we get the solutions to the original equation that we will label as (kiα, y
i
α).

For instance, for the first square-free p1 = 2, the previous sequence (k1α, y
1
α) starts as

(2, 2), (16, 12), (98, 70), (576, 408), . . . (see section VI.1 for more details).
Once we know the values of kiα that can contribute when a given pi appears in the

value of the area, equation (III.6) can be written as
kmax∑
k=1

Nk

√
(k+ 1)2 − 1 =

imax∑
i=1

∞∑
α=1

Nkiα
yiα
√
pi =

imax∑
i=1

qi
√
pi .

Now we make use of the fact that the square roots of the square-free numbers are linearly
independent over the rationals (and hence also over the integers) to show that the previ-
ous equation is equivalent to the following system of imax uncoupled, linear, diophantine
equations ∞∑

α=1

yiαNkiα
= qi, i = 1, . . . , imax. (III.8)

Several comments are in order now. The first is that, for a fixed value of the area a
(necessarily an integer linear combination of

√
pi with a finite number of coefficients qi)

only a finite number of labels kiα come into play. Second, it may happen that some of these
equations admit no solutions, in that case a does not belong to the spectrum of the area
operator (this happens, for instance, for a =

√
2). Finally, when they can be solved, their

solution tell us exactly what the allowed values for k are and the number of timesNk that
they appear. This construction identifies the set of allowed configurations C(a) consisting
of all multisets c = {(kiα, Nkiα

)} associated with a value of the area a =
∑

i qi
√
pi.

III.2. Step 2: The reordering degeneracy (r-degeneracy)

Up to this point we have found the number of all the possible choices for the absolute
values of the spin components |m| = k/2 compatible with a given value of the area a to-
gether with their multiplicitiesNk. Each of the configurations c ∈ C(a) can be represented
in the following schematic form

c =
( 1
2
, . . . ,

1

2︸ ︷︷ ︸
N1

, . . . ,
k

2
, . . . ,

k

2︸ ︷︷ ︸
Nk

, . . . ,
kmax

2
, . . . ,

kmax

2︸ ︷︷ ︸
Nkmax

)
,

where, in the previous representation, if a particular Nk is zero then there are no k/2
terms. The number of different sequences (kI/2) obtained from each configuration c by
reordering its elements is given by the multinomial coefficient

dr(c) :=

(∑kmax
k=1 Nk

)
!∏kmax

k=1 Nk!
. (III.9)

In the following we will refer to dr(c) as the r-degeneracy of the configuration c. We will
also define the r-degeneracy associated with a given value of the area a =

∑
i qi
√
pi as

Dr(a) =
∑
c∈C(a)

dr(c) . (III.10)

As we will see, this quantity plays a central role in the appearance of the black hole
entropy structure found in [10].
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III.3. Step 3: Solving the projection constraint (m-degeneracy)

Once we have identified all the possible sequences (|mI|) = (kI/2) of positive half-
integers satisfying the area condition, we have now to introduce signs in eachmI and find
out how many of the resulting sequences (mI) satisfy the so-called projection constraint

N∑
I=1

mI = 0 . (III.11)

There are several approaches to solve this problem that we will describe here. The rea-
sons to look at these different ways to solve the projection constraint are the following.
First, some of them are specially suited to be used in the computer algorithms that we
have employed in the actual black hole entropy computations. Second, the solution in
terms of generating functions is a preliminary step towards the obtention of the black
hole generating functions that we define below. Finally, some of the solutions suggest
intriguing connections with other interesting problems (such as conformal field theories
as we will mention briefly in Appendix C). Let us consider them one by one.

The partition problem: The problem of finding all the possible different ways to “sprin-
kle” the signs on a fixed sequence (kI/2) has already been considered in the literature. In
fact, it has a proper name: the partition problem, that can be stated as follows. Given a
sequence (kI/2) = (k1/2, k2/2, . . . , kN/2) of N real numbers (positive half-integers in our
case) find all the different partitions of {1, 2, . . . ,N} = N+ ∪N− such that∑

I∈N+

kI −
∑
I∈N−

kI = 0 .

Here we will solve the following slightly different problem: given M ∈ Z/2, find out
the number of different ways to partition {1, 2, . . . ,N} in such a way that the following
condition holds ∑

I∈N+

kI −
∑
I∈N−

kI = 2M . (III.12)

The answer to this question is known and can be found, for example, in [41]. It is given
by

2N

L

L−1∑
`=0

e−4πi`M/L
N∏
I=1

cos(2π`kI/L) =
2N

L

L−1∑
`=0

e−4πi`M/L
N∏
I=1

cos(4π`|mI|/L) (III.13)

where L is a conveniently chosen integer. As the result is independent of this choice (as
long as L is big enough, see below) we will take L := 1+ 2M+

∑N
I=1 kI.

The formula (III.13) is obtained in the following way [41]. For a given sequence of pos-
itive integers (k1, k2, . . . , kN) ∈ NN and M ∈ Z/2, let us define the auxiliary Hamiltonian
operator H : C2⊗N → C2⊗N as

H = 2M−

N∑
I=1

kIσ
(3)
I ,
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where the operator σ(3)I = 1 ⊗ · · · ⊗ 1 ⊗ σ(3) ⊗ 1 ⊗ · · · ⊗ 1 acts as the σ(3) Pauli matrix on
the Ith C2-factor of C2⊗N and trivially on the others. This operator satisfies

1

L

L−1∑
`=0

Tr
(

exp(−2πi`H/L)
)
=
1

L

L−1∑
`=0

∑
{σI=±1}

exp
(2πi`
L

( N∑
I=1

kIσI − 2M
))
.

When
∑N

I=1 kIσI − 2M = 0we have

1

L

L−1∑
`=0

exp
(2πi`
L

( N∑
I=1

kIσI − 2M
))

= 1.

On the other hand, when
∑N

I=1 kIσI − 2M 6= 0we can write

L−1∑
`=0

exp
(2πi`
L

( N∑
I=1

kIσI − 2M
))

=
1− exp

(
2πi
(∑N

I=1 kIσI − 2M
))

1− exp
(
2πi
(∑N

I=1 kIσI − 2M
)
/L
) = 0 .

In this last equation we have used the fact that
∑N

I=1 kIσI − 2M ∈ Z and L = 1 + 2M +∑N
I=1 kI to guarantee that the denominator in the previous expression never vanishes.

This way we conclude that

1

L

L−1∑
`=0

Tr
(

exp(−2πi`H/L)
)
=

∑
{σI=±1}

δ
(
2M,

∑
I

kIσI
)
, (III.14)

i.e. the trace above counts the partitions such that (III.12) holds. The left hand side of
equation (III.14) can be explicitly computed as

1

L

L−1∑
`=0

Tr
(

exp(−2πi`H/L)
)
=
1

L

L−1∑
`=0

e−4πi`M/L
N∏
I=1

Tr
(
exp(2πi`kIσ(3)/L)

)
=
2N

L

L−1∑
`=0

e−4πi`M/L
N∏
I=1

cos(2π`kI/L) . (III.15)

By comparing (III.14) and (III.15) it is clear that (III.13) provides the number of solutions
to the partition problem. It is important to notice that equation (III.14) implies that ex-
pression (III.13) is zero whenever no solutions to the projection constraint can be found.

Generating functions: Another method to solve the projection constraint (III.12) is
based on the use of a suitable generating function. Let us consider an ordered, finite,
sequence (kI/2) of positive half integers of the form k/2 with multiplicities given by
Nk > 0, and take the following function of the variable z (a Laurent polynomial)

N∏
I=1

(zkI + z−kI) =
∏
k

(zk + z−k)Nk . (III.16)

By expanding it in powers of z, it is easy to see that the coefficient of the power z2M,

[z2M]
∏
k

(zk + z−k)Nk ,
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is precisely the number of different ways to distribute signs among the elements of the
multiset in such a way that the sum of all the elements k/2 of the sequence equals M.
In particular, if we look for the constant, i.e. [z0], term in (III.16) we get the number of
solutions for the projection constraint that can be built from a given sequence.

A convenient way to extract this type of information is by using Cauchy’s theorem.
This allows us to extract these coefficients (for a given M) by computing the contour
integral

[z2M]
∏
k

(zk + z−k)Nk =
1

2πi

∮
C

dz
z2M+1

∏
k

(zk + z−k)Nk , (III.17)

where C is an index-one curve surrounding the origin. By choosing for it a unit circum-
ference, the previous integral can be written in the following useful alternative form

[z2M]
∏
k

(zk + z−k)Nk =
2N−1

π

∫π
−π

cos(2Mθ)
∏
k

cosNk(kθ)dθ (III.18)

=
2N−1

π

∫π
−π

cos(2Mθ)
N∏
I=1

cos(kIθ)dθ ,

whereN =
∑

kNk denotes the number of elements in the sequence (kI/2). It is important
to point out that (III.18) and (III.13) provide the same answer to the counting problem.
The advantage of this solution is that it is specially appropriate to find generating func-
tions for the black hole entropy as will be shown later. In Appendix C we provide a
different procedure to solve the same problem based on elegant group theoretical meth-
ods [compare equations (III.18) and (C.3)].

The definition ofm-degeneracy: Given a value of the area a =
∑

i qi
√
pi, we will define

them-degeneracy dDL
m (c) of the configuration c ∈ C(a) as

dDL
m (c) :=

2N−1

π

∫π
−π

∏
i

∏
α

cosNkiα (kiαθ)dθ

=
2N

L

L−1∑
`=0

∏
i

∏
α

cosNkiα (2π`kiα/L)

where N = N(c) =
∑

i

∑
αNkiα

and L = L(c) = 1+
∑

i

∑
α k

i
αNkiα

.
Black hole degeneracy spectrum: Once we have closed expressions for the r and m de-

generacies, we can define the black hole degeneracy associated with a given value of the
area a =

∑
i qi
√
pi as

DDL(a) =
∑
c∈C(a)

dr(c)d
DL
m (c) . (III.19)

We will refer in the following to DDL(a) as the black hole degeneracy spectrum for the DL
counting. According to the previous discussion, for every value of the area a, DDL(a)
gives the number of sequences of non-zero half-integers satisfying the two conditions

N∑
I=1

mI = 0,

N∑
I=1

√
|mI|(|mI|+ 1) =

a

2
.
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The procedure described above can be efficiently implemented in a computer to explic-
itly obtain the black hole degeneracy in terms of the area. In order to see the fundamental
structure of the degeneracy, we can plot the black hole degeneracyDDL(a) versus a. This
is shown in Fig. 1. We can see that the result obtained in [10] by a brute force analysis is
reproduced. Specifically, we can see that the number of sequences DDL(a) is distributed
forming a “band structure” in terms of the area. Peaks of degeneracy appear in an evenly
spaced fashion, interspaced with regions where the degeneracy is several orders of mag-
nitude smaller. This gives rise to an effectively equidistant spectrum [10].

FIG. 1. Plot of the black hole degeneracy spectrum DDL (in units of 1019) in terms of the area (in
units of 4πγ`2P) for a range of area values. The periodicity can be traced all the way back to the
smaller values of the area.

In the process of understanding the structure of the black hole degeneracy spectrum
(III.19) shown in Fig. 1, the m and r degeneracies play different roles. In order to dis-
entangle them it will be useful to consider an auxiliary description where the projec-
tion constraint is ignored. This means that, once we have identified all the possible
sequences (|mI|) = (kI/2) of positive half-integers satisfying the area condition, we in-
troduce signs in each mI without any additional restriction. For this auxiliary problem,
them-degeneracy of a configuration is given by

dDL
∗ (c) =

∏
i

∏
α

2
N
kiα = 2N(c)
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and the black hole degeneracy becomes

DDL
∗ (a) =

∑
c∈C(a)

dr(c)d
DL
∗ (c) . (III.20)

We will sometimes refer toDDL
∗ (a) as the “black hole degeneracy without projection con-

straint”.

III.4. Step 4: Adding up

In order to take into account the inequality appearing in the DL-prescription for the
black hole entropy, one can repeat the previous procedure for each of the relevant area
eigenvalues a ′ ≤ a and add up the resulting black hole degeneracies DDL(a ′). For a hy-
pothetical equally spaced area spectrum this task could be easily accomplished by using
generating functions (as has been done, for example, in [15, 37]). However, for the general
case that we are considering here, one has to resort to more complicated methods based
on the use of functional equations or a combination of generating functions and integral
transforms [18, 19]. It should be pointed out that, as the area spectrum is a countable
set, it is possible in principle to build the sequence (DDL(aLQG

n )) consisting of the values
of the black hole degeneracy corresponding to the nth area eigenvalue (ordered in such
a way that aLQG

n < aLQG
n+1), write a generating function for it, and perform the sum by the

same method used in [15, 16]. In practice, however, this is a difficult problem due to the
(current) lack of a simple enough algorithm to obtain the value of the nth area eigenvalue
aLQG
n in terms of n. This is the reason why we are forced to use Laplace transform methods

to complete this last step.
In order to fix ideas, let us consider the sequence (aLQG

n ) of eigenvalues of the (relevant
sector of the) area operator and some number sequence (βn) related to them (for exam-
ple the black hole degeneracies corresponding to the areas aLQG

n ). We want to solve the
following problem: given an area a, compute the sum∑

{n :aLQG
n ≤a}

βn .

The solution when a does not belong to the area spectrum is trivially given by∑
{n :aLQG

n ≤a}

βn =

∫a
0

∑
n∈N

βnδ(a
′ − aLQG

n )da ′ . (III.21)

We will take into account now the following two facts6

1. L(δ(a− α), s) = e−αs, for α ≥ 0.

2. If f(s) = L(F(a), s), then the Laplace transform of
∫a
0
F(a ′)da ′ is simply s−1f(s).

6 Here and in the following L(F(a), s) denotes the Laplace transform, expressed in the variable s, of the
function F(a). Also L−1(f(s), a) denotes the inverse Laplace transform of the function f(s) in terms of
the variable a.
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These properties allow us to rewrite (III.21) in the form

∑
{n :aLQG

n ≤a}

βn = L−1

(
s−1

∑
n∈N

βn exp(−aLQG
n s), a

)
. (III.22)

For the cases in which βn = DDL(aLQG
n ) or βn = DDL

∗ (aLQG
n ) the sum∑

n∈N

βn exp(−aLQG
n s) =: P(s) (III.23)

can be conveniently obtained from the generating functions introduced in Appendix A.
The idea is to take first the generating function given in [17] (see Appendix A for details)

GDL(z, x1, x2, . . . ) =

(
1−

∞∑
i=1

∞∑
α=1

(
zk
i
α + z−k

i
α

)
x
yiα
i

)−1

(III.24)

or, in the case of ignoring the projection constraint (by putting z = 1),

GDL
∗ (x1, x2, . . . ) = G

DL(1, x1, x2, . . . ) =

(
1− 2

∞∑
i=1

∞∑
α=1

x
yiα
i

)−1

, (III.25)

and perform the substitutions x1 = e−s
√
p1 , x2 = e−s

√
p2 , and so on. It is important to point

out that, in order to deal with the projection constraint, we need to introduce an extra
variable z. This means that, in this case, we will not directly get the function P(s) appear-
ing in (III.23) but rather a function of P(s, z) such that the inverse Laplace transform of
s−1P(s, z) in the variable s is a Laurent polynomial in z, with area dependent coefficients,
whose constant term gives the desired sum. In practice this requires the computation
of a contour integral in z or, equivalently, an inverse Fourier transform in the additional
variableω defined by z = eiω [18]. By following this procedure we find

PDL(s,ω) := GDL(eiω; e−s
√
p1 , e−s

√
p2 , . . . ) =

(
1−

∞∑
i=1

∞∑
α=1

(eiωk
i
α + e−iωk

i
α)e−sy

i
α
√
pi

)−1
.

The exponentials e−syiα
√
pi appearing in this function can be simplified if we use the Pell

equations (III.7), yiα
√
pi =

√
kiα(k

i
α + 2), to get

PDL(s,ω) =
(
1− 2

∞∑
i=1

∞∑
α=1

e−s
√
kiα(k

i
α+2) cos(ωkiα)

)−1
=
(
1− 2

∞∑
k=1

e−s
√
k(k+2) cosωk

)−1
.

Now, by using (III.22) we obtain the following expression for the entropy as an inverse
Laplace transform (and an additional inverse Fourier transform to deal with the projec-
tion constraint)

expS≤(a) =
1

(2π)2i

∫ 2π
0

∫ x0+i∞
x0−i∞ s−1

(
1− 2

∞∑
k=1

e−s
√
k(k+2) cosωk

)−1
eas dsdω, (III.26)

where x0 is a real number larger than the real part of all the singularities of the integrand
in the previous expression. This expression is valid for those area values a ≥ 0 that do
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FIG. 2. Plot of S≤(a) in terms of the area (in units of 4πγ`2P). The computation of S≤(a) has been
done by using the algorithm based in number-theoretical method discussed in the paper.

not belong to the spectrum of the LQG area operator and, in particular, it gives the exact
value of S≤(aκ) for the CS prequantized values of the area. For areas of the form aLQG

n the
previous formula gives the arithmetic mean of the left and right limits when a→ aLQG±

n .
The expression (III.26) can be used to study the asymptotic behavior of the entropy,

whose exponential growth as a function of the area is explained by the presence of the
pole in the integrand of (III.26) with the largest real part [19]. This pole determines, in
particular, the value of the Immirzi parameter γ = 0.237 . . . that must be chosen in order
to reproduce the Bekenstein-Hawking law. An additional logarithmic correction of the
form

−
1

2
log(a/`2P)

can also be derived from (III.26). When the projection constraint is ignored, the entropy
is given by

expS∗≤(a) =
1

2πi

∫ x0+i∞
x0−i∞ s−1

(
1− 2

∞∑
k=1

e−s
√
k(k+2)

)−1
eas ds , (III.27)

from which it is easy to see that the linear behavior of entropy with area and the value of
γ are unaltered. However, there are no logarithmic corrections in this case.

It must be pointed out that, from a purely numerical point of view, (III.26) and (III.27)
are rather bad because of the inherent difficulties associated with numerically computing
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improper integrals. Nonetheless, it can be seen that the formula (III.26) gives the ex-
act result for the lowest values of the area spectrum by comparing to a direct numerical
computation (that is impractical to extend for larger areas). Entropy computations are
carried out in practice by using the exact values for the black hole degeneracy spectrum
obtained by using the exact combinatorial methods described above and adding up. A
sample result for S≤(a) is shown in Fig. 2, which displays a characteristic step modula-
tion superimposed to a linear growth. This behavior may be present for large areas as
a consequence of the fact that the analytic structure of the integrand in (III.26) is rather
complicated and, in particular, the (real) pole that determines the growth of the entropy
and fixes the value of γ is an accumulation point for the real parts of the poles in the
integrand [18].

IV. OTHER APPROACHES

In the preceding sections we have discussed the computation of the entropy within the
framework developed in [4, 5] and expanded in [19, 21]. These papers have motivated
other authors to propose modifications in which some elements differ from the original
approach. In particular, Ghosh and Mitra have put forward a modified counting scheme
where the set of spin labels of horizon states is expanded to include jI andmI labels [22].
There is another series of papers by Kaul and Majumdar that explore the possibility of
using a SU(2)-CS theory to describe the horizon degrees of freedom [23, 33]. We think that
all these proposals have, at least, a heuristic value. Finally, a concrete way to show that
the horizon degrees of freedom are indeed accounted for by a SU(2)-CS theory is given
in [24, 34]. As these schemes differ in their predictions for γ and/or the logarithmic
corrections for the entropy, it should be possible in principle to falsify some (or all) of
them on physical grounds. Here we take a pragmatic approach motivated by our desire
to show that all these models can be rather easily handled by the techniques discussed
in the present paper. This shows that our methods are a sharp tool that can be used to
derive definite predictions within a broad class of LQG inspired models. The result of
the analysis of the different schemes can be summarized by saying that they all lead to
the Bekenstein-Hawking law (for different choices of γ), they predict similar logarithmic
corrections (though their coefficients differ among the proposals) and all of them display
the interesting substructure found in [9, 10].

IV.1. The Ghosh-Mitra counting

We will start by considering the alternative proposal put forward by Ghosh and Mitra
(GM) in [22] and showing how it can be handled by the same methods that we have used
for the ABCK approach. We will then analyze the results and compare both models. It
is important to highlight at this point that, as far as the computation of the degeneracy
spectrum is concerned, both countings can be formulated in very similar terms as done
in [14], where they were presented in such a way that the only differences between them
could be traced back to the form of the projection constraint.

In section III we have seen that the horizon states in the ABCK framework are de-
scribed by U(1)-CS labels that can be identified (by using the quantum boundary condi-
tion and introducing an area interval) with lists of spin components (mI-labels) that can
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be conveniently used to determine the entropy [21]. We want to insist at this point on the
equivalence of the original ABCK entropy definition and the prescription provided in
[21] to compute the entropy by employing only mI-labels. Punctures carrying mI-labels
are also characterized by the SU(2) irreducible representation jI associated with the edges
piercing the horizon. These play a role in the ABCK framework because the compatible
mI-lists that are counted in the DL prescription must be such that they correspond to lists
of jI-labels leading to an area eigenvalue in the prescribed area interval. The GM count-
ing, however, takes the j’s as “independent” labels. Although the GM approach has not
been derived from first principles, according to some authors “[it] is not an unreasonable
proposal” [1]; in fact, we will show that it leads to predictions that are quite close to the
ones derived by Engle, Noui and Perez in [24] (and in qualitative agreement with the
ABCK approach).

If we follow this approach, the prescription to obtain the entropy can be stated as
follows:

The entropy SGM
≤ (a) of a quantum horizon of the classical area a, according to the GM pre-

scription, is defined by computing

SGM
≤ (a) = log(1+NGM

≤ (a)) ,

whereNGM
≤ (a) is the number of all the finite, arbitrarily long, sequences ((j1,m1), . . . , (jN,mN))

of ordered pairs of non-zero half integers jI and spin components mI ∈ {−jI,−jI + 1, . . . , jI},
satisfying

2

N∑
I=1

√
jI(jI + 1) ≤ a and

∑
I

mI = 0.

Here we want to comment on the type of area interval used in the previous definition.
Whereas the mathematical details of the DL prescription require that the area interval
must have the form [0, a], there is no restriction in the GM approach on the form of the
interval. By invoking the thermodynamical limit, one would expect that the width of the
area interval is irrelevant. As far as the applicability of our method is concerned, it is
equally easy to handle an interval of the type [a − δ, a + δ], as originally proposed by
Ghosh and Mitra, than an interval such as [0, a], because the associated counting can be
obtained by subtracting the results for [0, a+ δ] and [0, a− δ].

The combinatorial problems associated with the computation of SGM
≤ (a) can be solved

by essentially following the same steps as in the previous section. These are now:

Step 1. Fix a value for the area a and obtain all the possible choices for the half integers jI
compatible with the area, i.e. satisfying

N∑
I=1

√
jI(jI + 1) =

a

2
.

At this point we do not look yet at the ordering of the labels. Notice that this step is
precisely equivalent to the first step in the DM counting, if one now writes jI = kI/2
instead of |mI| = kI/2 for the corresponding labels of each configuration c ∈ C(a).
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Step 2. Count the different ways that we can reorder each of the previous multisets.

Step 3. For each of the configurations corresponding to the first two steps (ordered se-
quences of non-zero half-integers), we have to find the possible choices for the mI-
labels that constitute the second element of the pairs that define the configurations
is this case. Notice that one can think of this step as a generalization of the third step
in the DL setting. The difference is that there we only had to worry about the signs
whereas here eachmI is a spin component taking values in {−jI,−jI + 1, . . . , jI}.

Step 4. Repeat the same procedure for all the area eigenvalues in the interval [0, a] and add
the number of sequences ((jI,mI)) obtained for each value of the area.

Step 1: The Pell equation again.

The first step now is identical to the one described for the DL counting. The only thing
that has to be remembered is the different meaning of the k/2 labels obtained in the GM
case.

Step 2: The reordering degeneracy (r-degeneracy)

This is again the same as before. The number of different reorderings is the one ob-
tained in the previous section. An interesting comment that must be made here is that,
as we will show later, the origin of the non-trivial structure in the black hole entropy and
the degeneracy spectrum comes from this reordering degeneracy. Hence, we expect to
have the same type of qualitative behavior both for the DL and the GM counting.

Step 3: Solving the projection constraint (m-degeneracy)

Up to this point, we have just determined the possible values of jI = kI/2 in the se-
quences ((jI,mI)). In this counting procedure “m-degeneracy” will refer to the number
of different ways to assign one of the 2jI + 1 values of mI ∈ {−jI,−jI + 1, . . . , jI} to each
of the jI labels. This assignment must be subject to the restriction given by the projection
constraint

∑
ImI = 0. This problem can be solved in several ways. Some of them are

analogous to the ones used in the study of the DL counting. However there is an addi-
tional method –relying on the use of fusion matrices– that suggests an intriguing con-
nection with conformal field theory and the SU(2) proposals that we will discuss later in
subsection IV.2.

The partition problem: The first approach to solving this problem is based on the one
used in [41] for the resolution of the partition problem as described in III.3. Given the
sequence (j1, . . . , jN), jI ∈ N/2, we want to find the number of sequences (mI) satisfying∑N

I=1mI = M and mI ∈ {−jI,−jI + 1, . . . , jI}. This number can be computed by intro-
ducing, as before, an appropriate Hamiltonian for an auxiliary system of spins. In this
case we just have to substitute the multiples of the Pauli matrices kIσ

(3)
I by the operator

S
(3)
I = 1⊗1 · · ·⊗1⊗s(3)I ⊗1⊗· · ·⊗1, where s(3)I : C2jI+1 → C2jI+1 are third-spin component ma-

trices associated with a jI-spin. We consider then the HamiltonianH : C⊗(2jI+1) → C⊗(2jI+1)

H =M−

N∑
I=1

S
(3)
I .
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Proceeding as above, we see that

1

L

L−1∑
`=0

Tr exp (−4πi`H/L) =
1

L

(
N∏
I=1

(2jI + 1) +

L−1∑
`=1

e−4πi`M/L
N∏
I=1

sin
(
2π(2jI + 1)`/L

)
sin(2π`/L)

)
=

∑
{mI=−jI,...,jI}

δ(M,
∑
I

mI) ,

where L is an integer that can be fixed as L = 1+ 2M+
∑N

I=1 kI = 1+ 2M+ 2
∑

I jI when
2M + 2

∑
I jI is even and L = 2 + 2M + 2

∑
I jI when 2M + 2

∑
I jI is odd (in order to

prevent the vanishing of the denominators). We conclude that the number that we are
looking for is

1

L

(
N∏
I=1

(2jI + 1) +

L−1∑
`=1

e−4πi`M/L
N∏
I=1

sin
(
2π(2jI + 1)`/L

)
sin(2π`/L)

)
.

Fusion matrices: The second approach relies on techniques used in the context of con-
formal field theories [42] and, in fact, is suggestive of a deep connection between them
and the problem of computing black hole entropy in LQG [25]. The key insight now
is to realize that the problem of determining the number of solutions to the projection
constraint

∑
ImI = 0 is equivalent to counting the number of SU(2) irreducible repre-

sentations, including multiplicities, that appear in the tensor product
⊗N

I=1[jI]. In the
following we will denote the SU(2) irreducible representation corresponding to spin jI as
[jI] = [kI/2].

We start by writing the tensor product of two SU(2) representations as[
k1

2

]
⊗
[
k2

2

]
=

∞⊕
k3=0

Nk3
k1k2

[
k3

2

]
,

where the integers Nk3
k1k2

, called fusion numbers [42], give us the number of times that
the representation [k3/2] appears in the tensor product of [k1/2] and [k2/2]. For each
k ∈ N ∪ {0}, we introduce then the infinite fusion matrices (Ck)k1k2 := Nk2

k1k
, where k1,

k2 ∈ N ∪ {0}. These satisfy the recursion relation

Ck+2 = XCk+1 − Ck, k = 0, 1, . . . (IV.1)

where we use the notation X := C1. Explicitly, Xk1k2 = δk1,k2−1+δk1,k2+1, which shows that
X is a so-called infinite Toeplitz matrix [43]. The solution to (IV.1), with initial conditions
C0 = I and C1 = X, is

Ck = Uk(X/2), k = 0, 1, . . .

where the Uk are the Chebyshev polynomials of the second kind. The tensor product of
any number of representations can be decomposed as a direct sum of irreducible repre-
sentations by multiplying the fusion matrices defined above. This way we get[

k1

2

]
⊗
[
k2

2

]
⊗ · · · ⊗

[
kN

2

]
=

∞⊕
k=0

(Ck2Ck3 · · ·CkN)k1k
[
k

2

]
.
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Notice that the product of matrices

Ck2Ck3 · · ·CkN = Uk2(X/2)Uk3(X/2) · · ·UkN(X/2)

is a polynomial in X. The total number of representations giving the solution to the com-
binatorial problem that we are trying to solve now is

∞∑
k=0

(Ck2Ck3 · · ·CkN)k1k =
∞∑
k=0

(Uk2(X/2)Uk3(X/2) · · ·UkN(X/2))k1k , (IV.2)

i.e. the sum of the (finite number of non zero) elements in the k1 row of the infinite matrix
Ck2Ck3 · · ·CkN . An integral representation for this sum can be obtained by introducing, as
in [43], a resolution of the identity for the Toeplitz matrix X and the identity Uk(cos θ) =
sin[(k + 1)θ]/ sin θ for the Chebyshev polynomials. Equation (IV.2) can be equivalently
written as

∞∑
k=0

(Ck2Ck3 · · ·CkN)k1k=
2

π

∫π
0

cos
θ

2

(
cos

θ

2
− cos

( N∑
I=1

kI +
3

2

)
θ

)
N∏
I=1

sin(kI + 1)θ
sin θ

dθ .

(IV.3)

Generating functions: The third way to solve the projection constraint for the GM
counting makes use of generating functions. The idea is to take now

∏
k

(
k∑
n=0

zk−2n

)Nk
=

∏
k

(
zk+1 − z−k−1

z− z−1

)Nk
.

This function is similar to the one corresponding to the DL counting (III.16). The number
of solutions to the projection constraint

∑
ImI =M is given now by the coefficient of z2M

in the previous expression and can be extracted as before by using Cauchy’s theorem.
The relevant coefficients for a given 2M are given now by

[z2M]
∏
k

(
zk+1 − z−k−1

z− z−1

)Nk
=

1

2πi

∮
C

dz
z2M+1

∏
k

(
zk+1 − z−k−1

z− z−1

)Nk
(IV.4)

where C is, again, an index-one curve surrounding the origin. By choosing for it a unit
circumference, the previous integral can be written in the following useful alternative
form

[z2M]
∏
k

(
zk+1 − z−k−1

z− z−1

)Nk
=
1

2π

∫π
−π

cos(2Mθ)
∏
k

sinNk(k+ 1)θ
sinNk θ

dθ . (IV.5)

In Appendix C we give yet another procedure to solve the projection constraint based on
group theoretical methods [see equation (C.1) and compare equations (IV.5) and (C.2)].

GM black hole degeneracy spectrum.
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As we did in the DL case, given an area a =
∑

i qi
√
pi we can define them-degeneracy

dGM
m (c) of the configuration7 c ∈ C(a) as

dGM
m (c) :=

1

L

(∏
i

∏
α

(kiα + 1)
N
kiα +

L−1∑
`=1

∏
i

∏
α

sinNkiα
(
2π(kiα + 1)`/L

)
sinNkiα (2π`/L)

)

=
2

π

∫π
0

cos
θ

2

(
cos

θ

2
− cos

(∑
i

∑
α

kiαNkiα
+
3

2

)
θ

)∏
i

∏
α

sinNkiα (kiα + 1)θ

sinNkiα θ
dθ

=
1

2π

∫π
−π

∏
i

∏
α

sinNkiα (kiα + 1)θ

sinNkiα θ
dθ ,

where the integer L = L(c) has been defined above.
We will also define the black hole degeneracy associated with a given value of the area

a =
∑

i qi
√
pi as

DGM(a) =
∑
c∈C(a)

dr(c)d
GM
m (c) ,

where dr(c) was given in (III.9). In the following we will refer to DGM(a) as the black
hole degeneracy spectrum for the GM counting. According to the previous discussion, for
every value of the area a, it gives the number of sequences ((jI,mI)), where jI ∈ N/2 and
mI ∈ Z/2, satisfying the conditions

2

N∑
I=1

√
jI(jI + 1) = a , mI ∈ {jI − n : n = 0, . . . , 2jI} ,

N∑
I=1

mI = 0 .

Step 4: Adding up.

In the previous paragraphs we have given a procedure to compute the black hole de-
generacy spectrum for the GM counting. As in the DL counting, we have to add the
degeneracies corresponding to all the possible values of the area spectrum in a certain
interval and, again, use integral transform techniques to deal with the difficult combina-
torial problem of summing for all the relevant values of the area. To this end we proceed
as in subsection III.4. Let us consider the generating function for the black hole degener-
acy DGM(a) (see Appendix A)

GGM(z, x1, x2, . . . ) =

(
1−

∞∑
i=1

∞∑
m=1

(zkim+1 − z−k
i
m−1

z− z−1

)
x
yim
i

)−1

. (IV.6)

and perform the substitutions z = eiω, x1 = e−s
√
p1 , x2 = e−s

√
p2 , . . . , to get

expSGM
≤ (a) =

1

(2π)2i

∫ 2π
0

∫ x0+i∞
x0−i∞ s−1

(
1−

∞∑
k=1

sin(k+ 1)ω
sinω

e−s
√
k(k+2)

)−1

eas dsdω. (IV.7)

7 The definition of the set of configurations C(a) here is the same as in the DL scheme and relies on the
solutions to the Pell equations as before.
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This expression corresponds to an area interval of the form [0, a] in the definition of the
entropy. As explained before, the values for an area interval [a − δ, a + δ] can be easily
obtained from it. The behavior of SGM

≤ (a) as a function of area is the same as for the DL
counting, namely a linear dependence and a logarithmic correction with −1/2 coefficient.
The Bekenstein-Hawking entropy-area relation is recovered now by taking γ = 0.274 . . ..

As in the case of the DL counting, it is possible to define a simplified combinatorial
problem by ignoring the projection constraint and considering all the 2j + 1 choices of
m-labels [19, 22]. This can be easily done just by replacing sin(k+ 1)ω/ sinω by k+ 1 in
equation (IV.7).

IV.2. SU(2) black hole entropy

The initial proposals of Smolin and Krasnov [28, 30] to study black hole entropy in
LQG (predating the more detailed ABCK approach) suggest that the horizon degrees of
freedom could be accounted for by a SU(2)-CS theory. One of the non-trivial points of the
ABCK treatment is the claim that the horizon degrees of freedom are, in fact, described
by a U(1)-CS model. This has been justified in this framework by a combination of ideas
involving the analysis of gauge transformations on the isolated horizon and Hamiltonian
methods. However, the definition of an isolated horizon does not require the introduction
of any internal symmetry so, on the face of it, no restriction on the internal symmetry on
the horizon is expected when connection variables are used [24]. The subtleties associated
with this issue have led some authors to explore the possible consequences of ascribing
the black hole degrees of freedom (and, hence, the entropy) to a SU(2)-CS theory. In
particular, Kaul and Majumdar [23, 33] have argued that the Bekenstein-Hawking area
law can be explained in a such scheme and have also proposed logarithmic corrections
to the black hole entropy. The entropy computations carried out in [23, 33] rely on well-
established conformal field theory methods [42] and, hence, will not be reviewed here.
The main problem with this approach is that the SU(2)-CS model on the horizon is really
put in by hand and not derived from the quantization of the relevant sector of general
relativity. Although it is definitely interesting to explore alternative approaches it stands
to reason that any model aspiring to provide a fundamental physical description of black
holes should be solidly rooted in theory.

Other authors have attempted to see if a SU(2)-CS description can be derived from
first principles within LQG. In particular Engle, Noui and Perez (ENP) have proposed a
covariant Hamiltonian scheme leading to a pure SU(2) formulation [24] (see also [34]).
These results are not compatible with the ABCK model but lead to a remarkable entropy
definition in the sense that it gives the same Immirzi parameter predicted by Ghosh and
Mitra and the same logarithmic correction proposed by Kaul and Majumdar.

The entropy in the ENP model is obtained according to the following prescription:

The entropy SENP
≤ (a) of a quantum horizon of the classical area aκ = 4πγ`2Pκ (when γ ≤

√
3)

is defined as

SENP
≤ (a) = log(1+NENP

≤ (a)) ,

where NENP
≤ (a) is the number of all the finite, arbitrarily long, sequences (j1, . . . , jN) of non-zero
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half integers jI satisfying

8πγ`2P

N∑
I=1

√
jI(jI + 1) ≤ aκ

and counted with a multiplicity given by the dimension of the invariant subspace Inv(⊗I[jI]).

The last condition in the ENP entropy prescription plays the role of the projection con-
straint characteristic of the other approaches. Actually, if instead of using Inv(⊗I[jI]) each
sequence is counted with a multiplicity given by the number of irreducible represen-
tations -taking into account multiplicities- that appear in the direct sum decomposition
of the tensor product ⊗I[jI] we recover precisely the GM counting. Hence, the number of
configurations accounting for the entropy for a given area in the ENP approach is slightly
lower than the one in the GM counting. It only changes the logarithmic correction (see
below).

We discuss now in an schematic way how the ENP entropy is computed in our scheme.

Step 1. Fix a value for the area a and obtain all the possible choices (without ordering) for
the half integers jI compatible with the area, i.e. satisfying

N∑
I=1

√
jI(jI + 1) =

a

2
.

Step 2. Count the different ways to reorder each of the previous multisets.

Step 3. Determine the dimension of the invariant subspace Inv(⊗I[jI]) associated with each
sequence (jI).

Step 4. Repeat the same procedure for all the area eigenvalues smaller than a and add the
numbers obtained in each case.

The only difference with the GM case is in step 3. In practice [44], this means that it
suffices to replace them-degeneracy dGM

m (c) by (see equation (C.3) in Appendix C)

dENP
m (c) = −

1

2πi

∮
C

dz
z

(z− z−1)2

2

∏
i

∏
α

(zk
i
α+1 − z−k

i
α−1)

N
kiα

(z− z−1)
N
kiα

=
1

π

∫ 2π
0

sin2 θ
∏
i

∏
α

sinNkiα (kiα + 1)θ

sinNkiα θ
dθ .

We will also define the black hole degeneracy associated with a given value of the area
a =

∑
i qi
√
pi as

DENP(a) =
∑
c∈C(a)

dr(c)d
ENP
m (c) ,

where dr(c) is given by (III.9). We will refer toDENP(a) as the black hole degeneracy spectrum
as before. The entropy can be computed by summing up black hole degeneracies. In
practice, this can be done by considering the generating function [44]

GENP(z, x1, x2, . . . ) = −
(z− z−1)2

2

(
1−

∞∑
i=1

∞∑
m=1

(zkim+1 − z−k
i
m−1

z− z−1

)
x
yim
i

)−1

(IV.8)
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and performing the substitutions z = eiω, x1 = e−s
√
p1 , x2 = e−s

√
p2 , . . . , to get

expSENP
≤ (a) =

2

(2π)2i

∫ 2π
0

∫ x0+i∞
x0−i∞ s−1 sin2ω

(
1−

∞∑
k=1

sin(k+ 1)ω
sinω

e−s
√
k(k+2)

)−1
eas dsdω.

This expression leads us to fix γ = 0.274 . . . and gives the logarithmic correction

−
3

2
log(a/`2P) .

In Figs. 3 and 4 we plot DENP(a) and SENP
≤ (a) as functions of the area. Notice that these

figures are similar to Figs. 1 and 2.

FIG. 3. Plot of the black hole degeneracy spectrum DENP (in units of 1021) in terms of the area (in
units of 4πγ`2P) for a range of area values.

V. SUMMARY OF THE DIFFERENT SCHEMES

The behavior of the entropy as a function of the area, obtained by using the differ-
ent countings considered in the previous sections, is compatible with the Bekenstein-
Hawking law for appropriate choices of the Immirzi parameter. The qualitative behavior
for the different models is shown in Figs. 2 and 4 (notice that the GM and ENP countings
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FIG. 4. Plot of SENP
≤ (a) in terms of the area (in units of 4πγ`2P). This plot is essentially the same for

SGM
≤ (a).

differ only in the logarithmic corrections and, hence, the plots of the entropy in these two
cases are essentially indistinguishable). These figures show that the entropy grows in
steps of a characteristic width ∆a that appears to be the same for all the countings (when
measured in units of 4πγ`2P), i.e.

χ

4π
:=

(∆a)DL

4πγDL`
2
P

=
(∆a)GM

4πγGM`
2
P

=
(∆a)ENP

4πγENP`
2
P

=
8.78 · · ·
4π

= 0.69 · · ·

There are also subdominant logarithmic corrections that differ from model to model.
These results are summarized in the following table.

Approach γ Logarithmic correction ∆a

ABCK-DL γDL = 0.237 · · · −1/2 log(a/`2P) χγDL`
2
P

GM γGM = 0.274 · · · −1/2 log(a/`2P) χγGM`
2
P

ENP γENP = γGM −3/2 log(a/`2P) χγENP`
2
P

A comment regarding ∆a is in order now. In the previous sections, we have measured
areas in units of 4πγ`2P. This choice of units is, in principle, model-dependent because
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the value of γ must be chosen differently in order to arrive at the Bekenstein-Hawking
law. This means that area steps in the entropy have different (but related) sizes for the
different countings and hence the actual value of γ leaves a characteristic signature in the
behavior of the entropy. A final remark regarding χ is the conjecture appearing in [20]
stating that χ = 8 log 3.

VI. DETAILED ANALYSIS OF THE ENTROPY MICROSTRUCTURE

The main goal of this section is to use the techniques presented in the preceding parts
of the paper to obtain a detailed understanding of the behavior of the entropy. The “mod-
ular” nature of the number-theoretic approach that we have followed will allow us to
ascribe some of the interesting behaviors that we want to understand (in particular the
staircase growth of the entropy) to some of the specific steps that we have followed. This
analysis is valuable on its own but can provide, in addition, important information to
tackle the difficult problem of fully understanding the asymptotic behavior of the en-
tropy in the large area limit.

We are going to separate the analysis in different parts. On the one hand, we are
going to study the relative importance of each of the possible values of the k-labels in
the different configurations. On the other hand, we are going to analyze the contribution
of each type of degeneracy, namely the r-degeneracy and the m-degeneracy, and their
influence in the observed patterns.

From a practical point of view it is better to focus on the behavior of the degeneracy
spectrum D(a) instead of the entropy. In the following we will concentrate on the DL-
counting because the arguments can be copied for all the other models that we have
discussed in the paper.

VI.1. Disentangling the area spectrum with the help of squarefree integers.

The methods developed in section III will allow us to analyze in detail the structure
of the black hole degeneracy spectrum and the entropy. The area spectrum is given by
certain integer linear combinations of square roots of squarefree numbers a =

∑
i qi
√
pi.

The solutions to the diophantine equations described above (subsection III.1) tell us how
to identify the configurations C(a) associated with each value of the area. One of the
important features of our formalism is the central role of the squarefree numbers in the
classification of the points in the area spectrum. In many instances, it is much more
convenient to use them instead of spin labels. Of course, once a squarefree is fixed, there
is an infinite number of possible spin labels given by the solutions to the Pell equation
(III.7). The squarefree numbers and the associated spin labels k/2 are given in table I. The
i label appearing in the first column identifies the elements of the sequence of squarefree
numbers listed in increasing order (p1 = 2, p2 = 3, p3 = 5, . . .). The squarefree numbers
themselves are shown in the second column. They are listed according to their order
of appearance in the successive eigenvalues of the area spectrum. The spin labels in
the column ki1 are associated with the fundamental solution of the corresponding Pell
equation. The spins in this column grow in units of 1/2. This pattern is only interrupted
by the appearance of “secondary” solutions in ki2, k

i
3, . . . (for example k/2 = 3 appears as

the second solution to the Pell equation for p2 = 3, i.e. in the ki2 column).
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As we know form previous analyses [21, 22], the smaller the k-label is, the higher its
contribution to the most degenerate states. This is the reason why for many practical pur-
poses we can concentrate on the study of the lowest squarefree numbers. For example,
if we want to consider only spin labels up to 5/2, we only have to take the squarefree
numbers 3, 2, 15, 6, and 35. The fact that the very first value of k, (corresponding to

√
3) is

1/2 justifies the well known observation that punctures with spin labels equal to 1/2 give
the most significant contribution to the entropy.

Subfamilies in the area spectrum consisting of area eigenvalues that are multiples of
the square root of a single square free number

√
pi are specially easy to analyze. Figure

5 shows the behavior of logDDL
∗ (a) and logDDL(a) in three different cases given by the

subfamilies of the area spectrum that can be written as integer multiples of
√
3,
√
2 and√

15. As we can see each of these subfamilies is characterized by a different growth rate.
The logarithm of the black hole degeneracy spectrum grows linearly with the area with
a slope si that can be determined numerically for each squarefree number pi by finding
the unique real solution to the equation [18]

1− 2

∞∑
α=1

e−si
√
kiα(k

i
α+2) = 0 (VI.1)

in the unknown si. The corresponding values are given in the last column of table I. As
we can see they decrease monotonically for each successive pi. In addition to the linear
growth there is a logarithmic correction of the form −(loga)/2 in the physically relevant

TABLE I. Pell equation: area spectrum and squarefrees

i
√
pi ki1/2 ki2/2 ki3/2 · · · si

2
√
3 1/2 3 25/2 · · · 0.4526794

1
√
2 1 8 49 · · · 0.2545910

10
√
15 3/2 15 243/2 · · · 0.1808782

4
√
6 2 24 242 · · · 0.1418796

22
√
35 5/2 35 845/2 · · · 0.1172453

5
√
7 7/2 63 2023/2 · · · 0.0873322

3
√
5 4 80 1444 · · · 0.0774971

7
√
11 9/2 99 3969/2 · · · 0.0696641

18
√
30 5 120 2645 · · · 0.0632754

88
√
143 11/2 143 6875/2 · · · 0.0579639

27
√
42 6 168 4374 · · · 0.0534775

119
√
195 13/2 195 10933/2 · · · 0.0496373

9
√
14 7 224 6727 · · · 0.0463128

156
√
255 15/2 255 16335/2 · · · 0.0434066

198
√
323 17/2 323 23273/2 · · · 0.0385677

...
...

...
...

...
. . .

...
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case for which the projection constraint is taken into account. It is important to point out
here that the actual growth rate of each family can only be determined once the value of
the Immirzi parameter γ has been fixed by enforcing the Bekenstein-Hawking area law.

The asymptotic approximation for the subfamilies considered above can be easily ob-
tained from the generating functions discussed in Appendix A. We will describe next how
this can be done for more general subfamilies of points in the area spectrum consisting
of integer linear combinations of a fixed number of square roots of squarefree numbers
pi1 ,. . . , pin labeled by the subset I = {i1, . . . , in} ⊂ N. The idea is to restrict the full generat-
ing function (III.24) by eliminating all the variables with the exception of a finite number
of them, (xi1 , . . . , xin), associated with the square free numbers defining the subfamily.
This way we get

GDL
I (z, xi1 , . . . , xin) =

(
1−

∑
i∈I

∞∑
α=1

(zk
i
α + zk

i
α)x

yiα
i

)−1
.

By using the Laplace transform methods described in [18] we can easily find the asymp-
totics corresponding to the subfamilies by performing the substitutions xi = e−s

√
pi , z = 1,

and solving the equation

1− 2
∑
i∈I

∞∑
α=1

e−sI
√
kiα(k

i
α+2) = 0 (VI.2)

that gives the real pole sI. This directly provides the slope of the asymptotic linear growth
of the degeneracy spectrum associated with the chosen subfamily. The functions of the
type

QI(s) = 1− 2
∑
i∈I

∞∑
α=1

e−s
√
kiα(k

i
α+2)

have some distinctive properties that justify the previous procedure:

• They have a single real zero sI.

• The remaining complex zeros have real parts that are smaller or equal than sI.

• The real parts of these zeros accumulate to the value sI.

These properties explain why the real solution to equation (VI.2) captures the effective
asymptotic behavior of the black hole degeneracy for the chosen subfamily, and leaves
room for interesting (i.e. periodic) substructures. Several comments are in order now:

• The derived growth applies to the “convex” envelope associated with the chosen
subfamily.

• There may be additional substructures (in the form of bands for the degeneracy
spectrum or steps for the full entropy).

• There may be subdominant (i.e. logarithmic) terms in the asymptotic expansions.
To find these the z variable must be reintroduced.

• For a given subfamily there are sub-subfamilies (chosen by further restricting the
number of squarefrees) with different growth rates.
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As we have mentioned above, the behavior of the black hole degeneracy spectrum for
area eigenvalues that can be written as integer multiples of a single squarefree is shown
in Fig. 5. The expected linear growth (with the corresponding logarithmic corrections
when the projection constraint is included) can be readily seen.

Figure 6 shows the degeneracy spectrum for the subset of area eigenvalues consisting
of integer linear combinations of

√
2 and

√
3 when the projection constraint is included.

There are several interesting features that can be seen in this case:

• The set of points represented in Fig. 6 corresponds to a subset of the area eigenval-
ues consisting in the union of subfamilies Ai(q

0) of the form

A1(q
0
2) = {q1

√
2+ q02

√
3 : q2 ∈ N ∪ {0}} , A2(q

0
1) = {q01

√
2+ q2

√
3 : q2 ∈ N ∪ {0}}

where q0i are fixed non-negative integers.

• The asymptotic growth of the degeneracy spectrum within each family Ai(q
0) is

controlled by si.

• Notice, however, that the “envelope” of the plot grows with a rate given by the
sI = 0.645008... with I = {1, 2}. This is larger than both s1 and s2. Also notice
that some points in each of these families contribute to the envelope that eventually
defines the growth of the degeneracy spectrum for intermediate values of the area.

• Although the band structure of the full degeneracy spectrum is not apparent at this
stage, the separation in area of the points that define the envelope is quite close to
the actual periodicity of the full spectrum. In fact it is possible to argue that these
points somehow define the “roots” of the bands.

Finally, Fig. 7 shows the result of considering area eigenvalues that can be written as
integer linear combinations of

√
2,
√
3 and

√
15. The appearance of the band structure in

the degeneracy spectrum is evident now. Figure 8 shows a detail of the plot for larger
values of the area spectrum where the band structure can be clearly seen. The envelope
of the graph grows now with a slope given by sI = 0.708187 · · · which is actually quite
close to the actual value obtained for the full area spectrum sN = 0.746232 · · · Several
comments are in order now:

The first is to notice that the band structure in the spectrum appears clearly for area
eigenvalues involving a small number of square roots of squarefree integers. In fact, with
linear combinations of the first two of them (

√
3 and

√
2) it is not possible to distinguish

those structures in the spectrum, but as soon as the first three are taken into account, the
bands readily show up as can be seen in Figs. 7 and 8.

The second point to make is that, once the first three squarefrees are considered,
adding more linear combinations does not significantly change the structure and position
of the bands. As one adds new squarefree numbers to the values of the area spectrum, the
only effect that can be observed is that more and more points appear ‘in’ the peaks, but
not ‘out’ the peaks, giving as a result a better resolution of the shape, but not modifying
any feature of the structure in a significant way.

The third point is that, as soon as the five or six first squarefree numbers (in the order
given in table I) are considered, the spectrum obtained is almost indistinguishable from
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the complete one. This means that, with the first five squarefree numbers, we are able
to reproduce all the points in the spectrum that have a degeneracy of the same order of
magnitude as the maximum. A possible way to quantify this fact is by looking at the
asymptotic growth rate of the envelope given by (VI.2) as a function of the number of
squarefrees used. This is shown in table II. The information that one can extract from

TABLE II. Asymptotic growth rate

s2 0.452679 . . .

s{1,2} 0.645008 . . .

s{1,2,10} 0.708187 . . .

s{1,2,4,10} 0.732215 . . .

s{1,2,4,10,22} 0.742270 . . .

s{1,2,4,5,10,22} 0.744388 . . .

s{1,2,3,4,5,10,22} 0.745368 . . .
...

...
sN 0.746232 . . .

the above analysis is valuable, in particular the fact that the highest degeneracy states
responsible for the observed pattern in the degeneracy spectrum are (mostly) composed
by punctures with k = 1, 2, 3, 4, 5, and 6. Moreover, we know that the area values cor-
responding to these configurations are those containing multiples of square roots of the
squarefree numbers 3, 2, 15, 6, and 35. Then, considering only these values of the area,
we are sure that no relevant information is being missed but the calculations are simpli-
fied. In fact, the plots appearing in the present paper corresponding to the largest area
eigenvalues considered have been obtained by using this approximation.

VI.2. Effects of the r-degeneracy andm-degeneracy on the entropy microstructure

Irrespective of the model (DL, GM, ENP), the black hole degeneracy spectrum D(a)
has the form

D(a) =
∑
c∈C(a)

dr(c)dm(c) .

There are then two different contributions to the degeneracy of each configuration: one,
the r-degeneracy, is model independent and comes from the possible reorderings of its
labels. The other, the m-degeneracy, originates in the projection constraint (or similar
conditions). In this subsection we want to study the relative contributions of each of
them and, specifically, try to understand if any of these can explain by itself the observed
microstructure ofD(a). To this end we will look at some auxiliary objects built out of the
dr(c) and dm(c), in particular

Dr(a) :=
∑
c∈C(a)

dr(c) , Dm(a) :=
∑
c∈C(a)

dm(c) .

Figure 9 shows Dm(a) for the DL case (the other cases behave in a similar way). As
we can see, there is some non-trivial substructure in this plot but this does not resemble
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FIG. 5. Plot of logDDL
∗ (a) and logDDL(a) in terms of the area (in units of 4πγ`2P). The figure shows

the values associated with area eigenvalues multiples of
√
3,
√
2 and

√
15 respectively. The solid

lines correspond to the asymptotic approximations given by straight lines with the slopes s2, s1
and s10 appearing in table I. When the projection constraint is taken into account (lower plot) the
asymptotic approximations have also a logarithmic correction −(loga)/2.
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FIG. 6. Plot of logDDL(a) for area eigenvalues of the form q1
√
2+q2

√
2with q1, q2 ∈ N∪ {0}. The

solid line with the largest slope s{1,2} = 0.645008 · · · (determined by equation (VI.2) for I = {1, 2})
gives the asymptotic approximation for their growth. The other solid lines correspond to the√
2 and

√
3 subfamilies. As it can be seen the “envelope” of the points grows faster than these

subfamilies. In all the cases the logarithmic correction −(loga)/2 has been included.
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FIG. 7. Plot of the logarithm of the black hole degeneracy spectrum, logDDL(a), in terms of the
area (in units of 4πγ`2P). The figure shows the values associated with area eigenvalues that can be
written as integer linear combinations of

√
3,
√
2 and

√
15. The arrows mark the position of the

bands as predicted by equation (VI.4), taking into account that only even values of P contribute
when the projection constraint is considered. Notice that beyond a = 5 there are bands at each of
these positions. Notice also that there are many values of the area spectrum for whichDDL(a) = 0

and, hence, do not contribute to the band structure shown here. The colors indicate the subfami-
lies to which the different points in the plot belong (blue for

√
3, red for

√
2, green for

√
15, purple

for linear combinations of
√
2 and

√
3 and black for linear combinations of

√
2,
√
3 and

√
15).

the band structure that can be seen in the full degeneracy spectrum D(a). On the other
hand, the plot of Dr(a) (Fig.10) readily shows a band structure similar to the one found
inD(a). The only significant difference is that the exponential growth of the peaks is less
pronounced. Therefore, we can conclude that the origin of the band structure resides in
the r-degeneracy, which is rooted in the distinguishable character of the punctures. This
is a consequence of the action of general diffeomorphisms over the horizon states. The
fact that this degeneracy is common for all the countings explains why the band structure
appears for all of them.

VI.3. The peaks in the degeneracy spectrum

In order to study the appearance of the peaks in the degeneracy spectrum it is very
useful to introduce the following function in the space of black hole configurations [20]

P(c) := 3K(c) + 2N(c) ,
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FIG. 8. Plot ofDDL (in units of 1030) versus area (in units of 4πγ`2P) considering only areas involv-
ing the squarefrees numbers 2, 3, and 15.

where, given c = {(k,Nk)}, we define K(c) :=
∑

k kNk and N(c) :=
∑

kNk (the sums
extend to all the k-labels appearing in c). P(c) is always a natural number, however, it is
important to notice that those configurations giving rise to odd values of P(c) correspond
to zero degeneracy. This is so because the projection constraint cannot be satisfied if P is
odd.

As we justify now, the crucial property of P(c) is that each peak in the degeneracy
spectrum is characterized by a single value of P (see Fig. 11). This fact can be under-
stood by following a simplified analysis, that we explain next, that captures the essential
features of the problem. To begin with let us consider the function defined by

FDL
∗ (c) := dr(c)d

DL
∗ (c) =

(
∑
Nk)!∏
Nk!

2
∑
Nk

in the configuration space C =
⋃
a C(a). Here we are neglecting the projection constraint

(though we will restrict ourselves to considering only even values of P). Notice, by the
way, that the degeneracy given by (III.20) is just the sum of FDL

∗ (c) for all the configura-
tions c ∈ C(a) ⊂ C corresponding to a specific area a. Now, it is possible to partition
the space of configurations according to the values of P(c). This procedure should be
thought of as a coarse grained alternative to the standard approach of describing the de-
generacy spectrum in terms of a because, for a fixed value of P, there are configurations
corresponding to a range of areas. The remarkable fact, as we will see, is that –in the
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FIG. 9. Plot of DDL
m (a) :=

∑
c∈C(a) d

DL
m (c) (in units of 1011) versus area (in units of 4πγ`2P)

continuous approximation– there is a single maximum of FDL
∗ (c) for each value of P. Fur-

thermore, the areas associated with the configurations that maximize FDL
∗ for the different

values of P closely match the observed position of the peaks in the degeneracy spectrum.
We show why this is so by considering continuous values for the variables Nk and

extending the function FDL
∗ accordingly. We then use the Lagrange multipliers method to

enforce the condition that P(c) = P with P ∈ N. By taking log FDL
∗ (c), using the Stirling

approximation, introducing a single Lagrange multiplier λ, and using the notation N̂k :=
Nk/(

∑
k′ Nk′), the extrema are determined by

N̂k = 2 exp
(
− λ(3k+ 2)

)
. (VI.3)

Adding the previous expressions in the label kwe get the condition

1 =

∞∑
k=1

2 exp
(
− λ(3k+ 2)

)
=
2e−2λ

e3λ − 1

that fixes the value of λ = − logν0 in terms of the single real solution ν0 of an auxiliary
quintic equation

2ν5 + ν3 − 1 = 0 .
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FIG. 10. Plot of r-degeneracyDr(a) =
∑
c∈C(a) dr(c)δm(c) (in units of 1012) versus area a expressed

in units of 4πγ`2P. Here δm(c) is one if the configuration c satisfies the projection constraint and
zero otherwise. Without this factor the period of the peaks decreases by a factor of two.

The solution ν0 can be written in terms of hypergeometric functions as

ν0 = 4F3

(
1

15
,
4

15
,
7

15
,
13

15
;
1

3
,
2

3
,
7

6
; −
6250

27

)
−
2

3
4F3

(
2

5
,
3

5
,
4

5
,
6

5
;
2

3
,
4

3
,
3

2
; −
6250

27

)
+
16

9
4F3

(
11

15
,
14

15
,
17

15
,
23

15
;
4

3
,
5

3
,
11

6
; −
6250

27

)
and it gives λ = 0.260847 · · ·

Introducing back the value of λ in (VI.3), we obtain the distribution for the N̂k. This
determines the values of the Nk –maximizing log FDL

∗ for a given P– modulo the value of
the sum

∑
kNk that can be obtained by using the constraint

P = 3K(c) + 2N(c) =
( ∞∑
k=1

Nk

)
·
(
2+ 6

∞∑
k=1

ke−λ(3k+2)
)⇒ ∞∑

k=1

Nk =
P

2+ 6
∑∞

k=1 ke
−λ(3k+2)

.

Finally, the area corresponding to the maximum of FDL
∗ in terms of the peak label P is

a(P) =

∑∞
k=1 e

−λ(3k+2)
√
k(k+ 2)

1+ 3
∑∞

k=1 ke
−λ(3k+2)

P = (0.34959 · · · )P . (VI.4)
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Several comments are in order now. First, it is interesting to compare the distribution
given by (VI.3) with the so called “maximum degeneracy distribution” (MDD) given by

N̂k = 2 exp
(
− λDL

√
k(k+ 2)

)
, where λDL = 0.746232 . . . (VI.5)

The MDD can be obtained by maximizing log FDL
∗ subject to the condition that the area∑

kNk

√
k(k+ 2) is fixed. As can be seen in Fig. 12, they are very close to each other

and, in particular, they are almost identical for the most relevant spin labels. A second
remark concerns the positions of the a(P). As can be readily seen in (VI.4) they are integer
multiples of the constant 0.34959 · · · , and in the physically relevant case where the pro-
jection constraint is taken into account (even P’s), they are multiples of 0.69918 · · · These
positions are very well correlated with the observed maxima of the degeneracy distribu-
tion. It is interesting to remark here that a very similar distribution has been obtained by
a completely different method in [20]. This compatibility is a non trivial cross check of
both approaches. Third, the previous computations have been performed in a continuum
approximation that neglects the fact that the values of Nk are integers. In practice, this
means that the actual shape of the peaks may be more irregular and secondary maxima
may be present.

Once we have checked that P plays an important role in the identification and labeling
of the peaks appearing in the degeneracy spectrum it is straightforward to write down
generating functions that allow us to select the contribution to the degeneracy spectrum
of the configurations associated with a given value of P. Following the approach de-
scribed in Appendix A, it is possible to take care of the values of P by introducing a new
variable ν in the generating functions. This way we find

GDL(ν; z, x1, x2, . . .) =

(
1−

∞∑
i=1

∞∑
α=1

ν3k
i
α+2(zk

i
α + z−k

i
α)x

yiα
i

)−1

. (VI.6)

The coefficient
DDL(a, P) := [z0][xq11 x

q2
2 · · · ][ν

P]GDL(ν; z, x1, x2, . . .)

gives the sum of the degenerations dr(c)dDL
m (c) of all the configurations with area a =∑

i qi
√
pi satisfying P(c) = P. Obviously, the black hole degeneracy is given by

DDL(a) =

∞∑
P=1

DDL(a, P) .

A graphical confirmation of the ability of the P(c) to identify the peaks in the black hole
degeneracy spectrum is given in Fig. 11. Here we have represented DDL(a, P) as a func-
tion of a for several consecutive values of P.

The preceding analysis can be easily carried out for the other countings presented in
the paper with similar results. As we have shown the band structure is explained by the
r-degeneracy. Them-degeneracy only plays the role of suppressing some configurations.
The main consequence of this is the effective change of the periodicity observed in the
black hole degeneracy spectrum.
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FIG. 11. This is a new version of Fig. 1 where we have highlighted one of the peaks singled out
by the peak counter P. We also show the position of the peaks according to formula (VI.4).

VII. CONCLUSIONS

We have given a comprehensive account of a number of combinatorial methods that
allow us to study in great detail the behavior of the entropy in loop quantum gravity.
The power of the techniques that we have employed can be appreciated by using them
to study the different counting proposals that appear in the literature. The number the-
oretic methods based in the solution of diophantine equations provide a very efficient
way to study the spectrum of the area operator and characterize the configurations of
black holes that determine the entropy. These methods also provide powerful classifying
criteria to disentangle the black hole degeneracy spectrum that can be exploited to under-
stand the origin of the entropy microstructure. This detailed information can be codified
in an extremely efficient way in suitable generating functions from which it is possible
to extract detailed information at will. We illustrate the power of these generating func-
tions by providing complete computations for the smallest black holes in Appendix B.
These computations show in a convincing manner how the interesting microstructure of
the entropy comes to life and show that it is a robust feature present in all the different
schemes. We give also in appendix C a new method based in group-theoretic arguments
that can be used to obtain, in a unified way, the results concerning the implementation of
the projection constraint.

The final goal of the approach that we have described here is to verify if the entropy
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FIG. 12. Plot of the degeneracy distribution given by formula (VI.3) (dashed line) compared to the
maximum degeneracy distribution (VI.5) (solid line).

discretization holds for macroscopic black holes. An important tool in this analysis is the
generating function given by VI.6 because it isolates the configurations that contribute to
the bands that appear in the black hole degeneracy spectrum. Actually the proper iden-
tification of this generating function is one of the main new results of the present paper.
We want to mention that, although this function is written here for the DL counting, the
method described in appendix A can be used to derive similar expressions for the other
countings mentioned in the paper. The main open problem –that we expect to solve
with the methods described here– is the persistence of the observed entropy structure for
macroscopic black holes. If this is the case, then LQG would realize in a very non-trivial
way the predictions about the effective equally spaced quantization of black hole areas.
In our opinion this would lend an important support to the theory.
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Appendix A: Generating functions

In this appendix we give a pedagogical account of how the different generating func-
tions mentioned in the paper are derived (a general treatment of generating functions
can be found in [45]). Our construction uses the set of allowed configurations C(a) con-
sisting of all multisets c = {(kiα, Nkiα

)} associated with a value of the area a =
∑

i qi
√
pi

(as explained in section III.1). The black hole degeneracy D(a) can be obtained from
C(a) by incorporating two sources of degeneracy. The first one is related to the possi-
ble reorderings (r-degeneracy) in each multiset and is common for all the models. The
second corresponds to the additional conditions that define the different countings (m-
degeneracy).

A.1. Generating function for the r-degeneracy

Given a value of the area a =
∑

i qi
√
pi the r-degeneracy is given by

Dr(a) =
∑
c∈C(a)

(∑
i

∑
αNkiα

)
!∏

i

∏
αNkiα

!
, (A.1)

whereNkiα
are the solutions to (III.8). In order to find the generating functionGr forDr(a)

we split the problem in three steps:

1. Find the generating function for the number of solutions of each of the diophantine
equations (III.8), that is, the number ∑

c∈C(a)

1 .

2. Modify this generating function to introduce the denominators appearing in the
definition (A.1) of Dr(a), that is, the number∑

c∈C(a)

1∏
i

∏
αNkiα

!
.

3. Modify the generating function obtained in the previous step to account also for the
numerators in (A.1).

The first step is solved by getting a generating function that counts the number of
solutions to diophantine equations of the form

yi1Nki1
+ yi2Nki2

+ yi3Nki3
+ · · · = qi , (A.2)

where the unknowns are the Nk and the yiα are given by the solutions to the Pell equa-
tions. If we formally consider the function

Fi(x) =
(
x0·y

i
1 + x1·y

i
1 + x2·y

i
1 + · · ·

)
·
(
x0·y

i
2 + x1·y

i
2 + x2·y

i
2 + · · ·

)
· · · ,



46

it is not difficult to see that the coefficient of the xqi term of the McLaurin expansion of
Fi(x) gives precisely the number of solutions of the diophantine equation (A.2). Now it is
possible to write Fi(x) as

Fi(x) =
1

1− xy
i
1

1

1− xy
i
2

· · · =
∞∏
α=1

1

1− xyiα
.

A judicious introduction of additional variables allows us to actually compute quantities
associated with the solutions of the diophantine equations (A.2). For example, if we want
to get the solutions themselves, we can introduce a set of variables να, α ∈ N, and take

Fi(x;ν1, ν2, . . .) =
1

1− ν1xy
i
1

1

1− ν2xy
i
2

· · · =
∞∏
α=1

1

1− ναxy
i
α
.

The coefficient of xqi is now a polynomial in the να such that each monomial of the form
νn11 ν

n2
2 · · · tells us that there is a solution Nki1

= n1, Nki2
= n2 . . . If we want to obtain

just the sum
∑

αNkiα
, we take να = ν for all α ∈ N. In this case, the coefficient of xqi is

a polynomial in the ν such that the degree n of each monomial signals the existence of
a solution to (A.2) with

∑
αNkiα

= n. This idea has been used to obtain the generating
function for the peaks given by (VI.6). Finally the substitution of the variables να by the
specific numerical value να = 2 would provide a generating function such that the coef-
ficient of xqi would be

∑
sols(qi)

∏
α 2

N
kiα , where the previous sum extends to the solutions

of (A.2) for a given qi and is zero if the equation has no solutions.
As we really have to consider sets of decoupled diophantine equations the actual num-

ber of solutions is the product of the number of solutions for each of them and hence the
generating function becomes

F(x1, x2, . . .) =

∞∏
i=1

Fi(xi) =

∞∏
i=1

∞∏
α=1

1

1− x
yiα
i

.

Hence, for a = q1
√
p1 + q2

√
p2 + · · · , the number that we are looking for is∑
c∈C(a)

1 = [xq11 x
q2
2 · · · ]F(x1, x2, . . .) ,

where [xq11 x
q2
2 · · · ]F(x1, x2, . . .) denotes the coefficient of the xq11 x

q2
2 · · · term in the power

series expansion of F(x1, x2, . . .) around (x1, x2, . . .) = (0, 0, . . .).
The factors appearing in the denominators ofDr(a) can be incorporated by modifying

the previous generating function Fi as follows

Hi(x) =
( 1
0!
x0·y

i
1+

1

1!
x1·y

i
1+

1

2!
x2·y

i
1+ · · ·

)
·
( 1
0!
x0·y

i
2+

1

1!
x1·y

i
2+

1

2!
x2·y

i
2+ · · ·

)
· · · =

∞∏
α=1

ex
yiα
.

Now, it is immediate to obtain the number we are looking for as∑
c∈C(a)

1∏
i

∏
αNkiα

!
= [xq11 x

q2
2 · · · ]H(x1, x2, . . .) ,
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where

H(x1, x2, . . .) =

∞∏
i=1

Hi(xi) =

∞∏
i=1

∞∏
α=1

ex
yiα
i = exp

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)
. (A.3)

Finally, the factor in the numerator of Dr(a) is N!, with N =
∑

i

∑
αNkiα

. In order to
introduce this factor we notice that the expansion of the exponential appearing in (A.3) is

exp

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)
= 1+

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)
+
1

2!

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)2
+ · · ·

The key point now is to realize the Nth-term in the above expansion,

1

N!

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)N
, (A.4)

gathers the contributions of those elements of C(a) satisfying precisely
∑

i

∑
αNkiα

= N.
This can be easily seen by introducing the single variable ν as above and checking that
each term of the form (A.4) appears now multiplied by νN. Then, it suffices to modify
H(x1, x2, . . .) by multiplying each term in the previous expansion by N! to get

Gr(x1, x2, . . .) = 1+

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)
+

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)2
+ · · ·+

( ∞∑
i=1

∞∑
α=1

x
yiα
i

)N
+ · · ·

=

(
1−

∞∑
i=1

∞∑
α=1

x
yiα
i

)−1

.

Summarizing, given an area eigenvalue a = q1
√
p1 + q2

√
p2 + · · · , its r-degeneracy is

given by
Dr(a) = [xq11 x

q2
2 · · · ]Gr(x1, x2, . . .) .

A.2. Generating functions for them-degeneracy

A straightforward extension of the argument given in the previous subsection to com-
pute quantities associated with the solutions to (A.2) by introducing auxiliary variables
allows us to incorporate the projection constraint (or similar conditions) to explain them-
degeneracy. It is straightforward, in particular, to introduce the terms for the projection
constraints (see subsections III.3, IV.1 and IV.2)

∞∏
i=1

∞∏
α=1

(zk
i
α + z−k

i
α)
N
kiα for DL ,

∞∏
i=1

∞∏
α=1

(
zk
i
α+1 − z−k

i
α−1

z− z−1

)N
kiα

for GM ,

−
(z− z−1)2

2

∞∏
i=1

∞∏
α=1

(
zk
i
α+1 − z−k

i
α−1

z− z−1

)N
kiα

for ENP .
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By doing this we get

GDL(z, x1, x2, . . .) =

(
1−

∞∑
i=1

∞∑
α=1

(zk
i
α + z−k

i
α)x

yiα
i

)−1

,

GGM(z, x1, x2, . . .) =

(
1−

∞∑
i=1

∞∑
α=1

zk
i
α+1 − z−k

i
α−1

z− z−1
x
yiα
i

)−1

,

GENP(z, x1, x2, . . . ) = −
(z− z−1)2

2

(
1−

∞∑
i=1

∞∑
m=1

(zkim+1 − z−k
i
m−1

z− z−1

)
x
yim
i

)−1

,

and, from them, we obtain the black hole degeneracies as

DC(a) = [z0][xq11 x
q2
2 · · · ]G

C(z, x1, x2, . . .) ,

where the index C refers to the counting scheme that we are interested in (i.e DL, GM or
ENP). Notice that, as we mentioned in section VI, the “master” generating functions GC

allow us to obtain other generating functions that can be used to study the behavior of
the degeneracy for every conceivable subfamily of area eigenvalues.

Appendix B: Explicit computations

We give here a complete computation of the black hole degeneracy spectrum and en-
tropy, corresponding to the first eigenvalues of the area spectrum, according to the DL
prescription [21]. On one hand, we will provide explicit computations to concretely show
how the different methods introduced in the main body of the paper work. On the other,
we want to explore the behavior of the entropy for the smallest black holes. This will al-
low us to see how the shapes of the black hole degeneracy spectrum –and of the entropy–
as a function of the area arise. Important features such as the linear growth of the entropy
with the area and the appearance of the periodicity observed in [9, 10] can be already seen
at this level. It is also possible to directly study the role of the projection constraint in the
definition of the entropy. The main steps of the computation are:

1) Determination of all the area eigenvalues smaller than a fixed value a+. For practi-
cal purposes we will consider areas smaller than 18 (in units of 4πγ`2p).

2) Computation of the black hole degeneracy spectrum by using generating functions.

3) Determination of the entropy according to the Domagala-Lewandowski recipe.

We will discuss these points with some detail.

1) The density of area eigenvalues grows very quickly as a function of the area. There
are 354 area eigenvalues smaller than 18. Though they can be easily handled by a com-
puter, they are too many to be listed here so in the following we provide a table with only
those eigenvalues smaller than 12. Nevertheless we will extend the plots that we give in
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this appendix up to areas of around 18. For a given upper bound of the area a+, we have
to find all the different numbers of the form

2
∑
I=1

√
jI(jI + 1) (B.1)

obtained by considering positive half-integers jI ∈ N/2 and such that they are smaller
than a+. In this process, different choices of the jI may actually give the same value. This
source of degeneracy is taken into account in a precise way by our counting methods (the
Pell equation, generating functions and so on). At this level we will just care about the
area eigenvalues disregarding their degeneracies.

For a+ = 18 the maximum allowed value of jI is obtained by solving the inequality√
j(j+ 1) < 9; this gives j = 17/2. On the other hand, if each jI takes the smallest non-zero

allowed value of 1/2, the maximum number of terms in the sum (B.1) is b18/
√
3c = 10.

This means that we can generate all the sought for area eigenvalues by considering the
points in the discrete set (N ∪ {0})10 contained in the ten-dimensional simplex defined by
the condition

∑10
I=1 jI ≤ 17/2. The 1/10! factor reduction with respect to the computation

extended to the cubic grid {1/2, 1, . . . , 17/2}10 is important to reduce the computing time.

2) The generating functions that we have introduced in Appendix A depend, in prin-
ciple, on an infinite number of variables xi associated with the square-free numbers pi.
For a finite subset of the area spectrum only the square roots of a finite number of them
are relevant. This means that we will only have to consider the finite number of variables
associated with them. If we take a < 18, the square roots of the squarefree numbers that
appear in the area eigenvalues are listed in Table I. The only variables that we need to
write explicitly in the generating functions are x1, x2, x3, x4, x5, x7, x9, x10, x18, x22, x27, x88,
x119, x156, x198 .We have to consider then:

GDL(z, x1, x2, x3, x4, x5, x7, x9, x10, x18, x22, x27, x88, x119, x156, x198)

=
(
1 −(z2 + z−2)x21 −(z16 + z−16)x121 −(z+ z−1)x2 −(z6 + z−6)x42
−(z8 + z−8)x43 −(z4 + z−4)x24 −(z7 + z−7)x35 −(z9 + z−9)x37
−(z14 + z−14)x49 −(z3 + z−3)x10 −(z10 + z−10)x218 −(z5 + z−5)x22
−(z12 + z−12)x227 −(z11 + z−11)x88 −(z13 + z−13)x119 −(z15 + z−15)x156 − (z17 + z−17)x198

)−1
,

GDL
∗ (x1, x2, x3, x4, x5, x7, x9, x10, x18, x22, x27, x88, x119, x156, x198)

=
(
1 −2x21 −2x121 −2x2 −2x42 −2x43 −2x24 −2x35 −2x37
−2x49 −2x10 −2x218 −2x22 −2x227 −2x88 −2x119 −2x156 − 2x198

)−1
.

The coefficients [z0][xq11 · · · x
q198
198 ]GDL and [xq11 · · · x

q198
198 ]GDL

∗ , respectively, tell us the values
ofDDL(a) andDDL

∗ (a) for a = q1
√
2+· · ·+q198

√
323. For example, for a = 2

√
2+3
√
3+
√
15

(i.e. the row corresponding to n = 71 in the table given at the end of this appendix) we
get

DDL(2
√
2+ 3

√
3+
√
15) = [z0][x21x

3
2x10]G

DL = 120 ,

DDL
∗ (2
√
2+ 3

√
3+
√
15) = [x21x

3
2x10]G

DL
∗ = 640 .

3) The entropy is obtained by adding up the values of DDL(a) up to a certain value of
the area.
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The table at the end of this appendix shows the explicit values of the black hole degen-
eracies for the first area eigenvalues (corresponding to areas smaller than 12 in our units)
and also their cumulative sum (that in the case of DDL(a) gives the exponential of the
entropy). The results of an explicit computation up to areas of the order of 18 are shown
in Figs. 13 to 15.

We want to make several comments at this point: First, in order to understand some
of the features of the entropy and the role of the projection constraint, it is convenient to
study the auxiliary entropy S∗≤(a) given by (III.27) and compare it with the actual entropy
S≤(a). Figure 13 shows both the exact values of S∗≤(a) for all the area eigenvalues smaller
than 18 and the values of S∗≤(a) as a function defined for all areas a ∈ [0, 18]. It is possible
to see that, after a short transient regime, the entropy grows linearly with area and a
characteristic staircase structure appears. As can be seen in the detailed plots of Fig. 14
this is more evident for the largest areas considered, where the plot of the entropy can
be effectively approximated by a smooth curve due to the increasing density of the area
spectrum. The width of the steps is roughly 0.35 in our units. This is in satisfactory
agreement with the prediction of equation (VI.4).

In order to obtain the physical entropy S≤(a) the projection constraint must be incor-
porated. It is instructive to compare the results obtained in this case with the ones de-
scribed above. In particular Fig. 15 is the counterpart of Fig. 13. In this case the staircase
structure is more evident because the width of the steps doubles (to a value around 0.7).
This doubling is a consequence of the effective suppression of many configurations by
the action of the projection constraint as justified in subsection VI.3; these configurations
are not shown in Fig. 15. Figure 15 shows also the values of the entropy corresponding
to the prequantized values of the areas (that are just integer values in units of 4πγ`2P). For
this subset of areas the growth of the entropy as a function of the area is linear (with the
additional logarithmic corrections). The imprint of the staircase structure is this case is
the presence of some larger than average jumps (“double jumps”) in the value of the en-
tropy for successive prequantized areas. Finally the last figure (Fig. 16) shows the black
hole degeneracy spectrum with its characteristic peak structure. As it can be seen the
peaks are quite pronounced and the distance between them corresponds to the width of
the steps in the entropy.
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FIG. 13. Plots of the value of S∗≤(a) for the points in the area spectrum and all the areas smaller
than 18 (in units of 4πγ`2p) respectively. A detailed view of the framed parts can be seen in Fig. 14.
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FIG. 14. Detail of Fig. 13 for areas a ∈ [14, 18]. Notice the steps that appear for the area values
considered in this plot.
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FIG. 15. Plot of the value of S≤(a) for both the points in the area spectrum and all the values of
the area smaller than 18 (in units of 4πγ`2p). We also show the entropy values corresponding to
prequantized values of the area.
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FIG. 16. Logarithmic plot of DDL(a) for all the points in the area spectrum smaller than 18 (com-
pare this figure with Fig. 7) and a detail of the last two peaks. The arrows mark the position of
the bands as predicted by equation (VI.4). Notice that there are many points in the area spectrum
for which DDL(a) = 0.
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n Area eigenvalue aLQG
n DDL(aLQG

n ) DDL
∗ (aLQG

n )
∑

a ′≤aLQG
n

DDL(a ′)
∑

a ′≤aLQG
n

DDL
∗ (a ′)

0 0 1 1 1 1
1

√
3 0 2 1 3

2 2
√
2 0 2 1 5

3 2
√
3 2 4 3 9

4
√
15 0 2 3 11

5 2
√
2+
√
3 0 8 3 19

6 2
√
6 0 2 3 21

7 3
√
3 0 8 3 29

8
√
3+
√
15 0 8 3 37

9 4
√
2 2 4 5 41

10
√
35 0 2 5 43

11 2
√
2+ 2

√
3 6 24 11 67

12
√
3+ 2

√
6 0 8 11 75

13 2
√
2+
√
15 0 8 11 83

14 4
√
3 6 18 17 101

15 2
√
3+
√
15 0 24 17 125

16 4
√
2+
√
3 0 24 17 149

17
√
3+
√
35 0 8 17 157

18 2
√
2+ 2

√
6 0 8 17 165

19 2
√
15 2 4 19 169

20 3
√
7 0 2 19 171

21 2
√
2+ 3

√
3 0 64 19 235

22 2
√
3+ 2

√
6 0 24 19 259

23 2
√
2+
√
3+
√
15 12 48 31 307

24 6
√
2 0 8 31 315

25 5
√
3 0 40 31 355

26 2
√
2+
√
35 0 8 31 363

27 2
√
6+
√
15 0 8 31 371

28 4
√
5 0 2 31 373

29 3
√
3+
√
15 8 64 39 437

30 4
√
2+ 2

√
3 24 96 63 533

31 2
√
3+
√
35 0 24 63 557

32 2
√
2+
√
3+ 2

√
6 0 48 63 605

33
√
3+ 2

√
15 0 24 63 629

34 4
√
2+
√
15 0 24 63 653

35
√
3+ 3

√
7 0 8 63 661

36 2
√
2+ 4

√
3 40 168 103 829

37
√
15+

√
35 0 8 103 837
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n Area eigenvalue aLQG
n DDL(aLQG

n ) DDL
∗ (aLQG

n )
∑

a ′≤aLQG
n

DDL(a ′)
∑

a ′≤aLQG
n

DDL
∗ (a ′)

38 4
√
6 2 4 105 841

39 3
√
11 0 2 105 843

40 3
√
3+ 2

√
6 0 64 105 907

41 2
√
2+ 2

√
3+
√
15 0 192 105 1099

42 6
√
2+
√
3 0 64 105 1163

43 6
√
3 20 88 125 1251

44 2
√
2+
√
3+
√
35 0 48 125 1299

45
√
3+ 2

√
6+
√
15 12 48 137 1347

46 4
√
2+ 2

√
6 6 24 143 1371

47 2
√
2+ 2

√
15 0 24 143 1395

48
√
3+ 4

√
5 0 8 143 1403

49 2
√
2+ 3

√
7 0 8 143 1411

50 4
√
3+
√
15 0 168 143 1579

51 2
√
6+
√
35 0 8 143 1587

52 4
√
2+ 3

√
3 0 320 143 1907

53 2
√
30 0 2 143 1909

54 3
√
3+
√
35 0 64 143 1973

55 2
√
2+ 2

√
3+ 2

√
6 24 192 167 2165

56 2
√
3+ 2

√
15 24 96 191 2261

57 4
√
2+
√
3+
√
15 24 192 215 2453

58 8
√
2 6 16 221 2469

59 2
√
3+ 3

√
7 0 24 221 2493

60 2
√
2+ 5

√
3 0 432 221 2925

61
√
3+
√
15+

√
35 0 48 221 2973

62
√
3+ 4

√
6 0 24 221 2997

63 4
√
2+
√
35 0 24 221 3021

64 2
√
2+ 2

√
6+
√
15 0 48 221 3069

65 3
√
15 0 8 221 3077

66
√
3+ 3

√
11 0 8 221 3085

67 2
√
2+ 4

√
5 0 8 221 3093

68 3
√
7+
√
15 0 8 221 3101

69 4
√
3+ 2

√
6 10 168 231 3269

70 2
√
35 2 4 233 3273

71 2
√
2+ 3

√
3+
√
15 120 640 353 3913

72 6
√
2+ 2

√
3 60 320 413 4233

73
√
143 0 2 413 4235
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Appendix C: A group theoretic treatment of the projection constraint

As pointed out in subsection IV.1, the problem of finding them-degeneracy for the GM
counting is equivalent to determining the number of irreducible representations –taking
into account multiplicities– that appear in the tensor product

⊗N
I=1[kI/2]. The reason

is that each of the irreducible representations that appear in the decomposition of the
tensor product as a direct sum has, precisely, one basic state with zero total third spin
component.

In order to solve this problem we propose a solution based on techniques developed
in the context of conformal field theories [25, 42]. The starting point is to write the tensor
product of two SU(2) irreducible representations in the form[

k1

2

]
⊗
[
k2

2

]
=

∞⊕
k3=0

Nk3
k1k2

[
k3

2

]
,

in terms of the fusion numbers Nk3
k1k2

. By taking into account that the tensor product and
direct sum of irreducible representations have a direct translation into the behavior of the
characters, and in particular:

1. The algebra of the characters of the SU(2) irreducible representations satisfies

χk1 · χk2 =
∑
k3

Nk3
k1k2
χk3 ,

2. and the characters of irreducible representations are ortonormal with respect to the
SU(2)-scalar product induced by the (normalized) Haar measure, i.e.

〈χk1 , χk2〉SU(2) =
∫
S3
χ̄k1χk2 dµS3 = δ(k1, k2) ,

we can easily obtain the number of irreducible representations in the composition of Nk

spin-k/2 associated with a configuration c = {(k,Nk)} as

dGM
m (c) =

∞∑
k ′=0

〈
∏
k

χNkk , χk ′〉SU(2)

=
2

π

∞∑
k ′=0

∫π
0

(∏
k

sinNk (k+ 1)θ
sinNk θ

)
sin (k ′ + 1)θ

sin θ
sin2 θdθ (C.1)

=
1

π

∞∑
k ′=0

∫ 2π
0

(∏
k

sinNk (k+ 1)θ
sinNk θ

)
sin (k ′ + 1)θ

sin θ
sin2 θdθ .

Notice that the group coordinate θ is naturally defined in θ ∈ [0, π] but, due to the parity
properties of the integrand in (C.1), it is possible to extend the integration in θ to [0, 2π].
This will prove useful to solve the present problem in yet another different way. The
key idea is to realize that we are actually composing SU(2) representations and asking
how many states with vanishing total third spin component appear in such composition.
This is done by computing, with the help of the characters of the representations, the
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multiplicity of the 0-irreducible representation ofU(1) in the decomposition of the tensor
product of the SU(2) representations involved. The characters ηk, k ∈ Z, of the U(1)
irreducible representations are orthonormal with respect to the standard scalar product
in the circle

〈ηk1 , ηk2〉U(1) =
∫
S1
η̄k1ηk2 dµS1 =

∫ 2π
0

e−ik1θeik2θ
dθ
2π

= δ(k1, k2) .

We can obtain the number that we are looking for just by projecting the product of char-
acters of the SU(2) representations onto the character ηk=0 of the U(1) irreducible repre-
sentation

dGM
m (c) = 〈η0 ,

∏
k

χNkk 〉U(1) =
1

2π

∫ 2π
0

∏
k

(
sin (k+ 1)θ

sin θ

)Nk
dθ . (C.2)

The last expression coincides with the one derived in subsection IV.1 by using generating
functions and shows an interesting interplay between the counting of SU(2) and U(1)
labels.

Similar considerations allow us to obtain the formulas corresponding to the ENP and
DL countings. In the first case we have to find the multiplicity of the singlet SU(2) ir-
reducible representation in the composition of the representations appearing in a given
configuration. This can be trivially obtained by projecting over the character χ0. In this
way we get

dENP
m (c) = 〈χ0 ,

∏
k

χNkk 〉SU(2) =
∫ 2π
0

sin2 θ
∏
k

(
sin (k+ 1)θ

sin θ

)Nk dθ
π
.

Finally, the result for the DL counting can also be obtained by using reducible U(1) repre-
sentations with characters η̃k = ηk + η−k and projecting over η0,

dDL
m (c) = 〈η0 ,

∏
k

η̃Nkk 〉U(1) =
1

2π

∫ 2π
0

∏
k

(2 coskθ)Nk dθ. (C.3)
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