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New progress in loop gravity has lead to a simple model of ‘general-covariant quantum field theory’.
I sum up the definition of the model in self-contained form, in terms accessible to those outside
the subfield. I emphasize its formulation as a generalized topological quantum field theory with
an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications
supporting the conjecture that the model is related to general relativity and UV finite.

I. THE MODEL

A simple model has recently emerged in the context of
loop quantum gravity. It has the structure of a general-
ized topological quantum field theory (TQFT), with an
infinite number of degrees of freedom, local in sense of
classical general relativity (GR). It can be viewed as an
example of a “general-covariant quantum field theory”.
It is defined as a function of two-complexes and may have
mathematical interest in itself. I present the model here
in concise and self-contained form.

The model has emerged from the unexpected conver-
gence of many lines of investigation, including canonical
quantization of GR in Ashtekar variables [1–5], Ooguri’s
[6] 4d generalization of matrix models [7–11], covari-
ant quantization of GR on a Regge-like lattice [12–14],
quantization of geometrical “shapes” [15–18] and Pen-
rose spin-geometry theorem [19]. The corresponding lit-
erature is intricate and long to penetrate. Here I skip all
‘derivations’ from GR, and, instead, list the elements of
evidence supporting the conjectures that the transition
amplitudes are finite and the classical limit is GR.

The model’s dynamics is defined in Sec. II. States and
operators in Sec. III and IV. Sec. V reviews the evidence
relating the model to GR, and some of its properties.

II. FEYNMAN RULES

The model is defined assigning transition amplitudes
ZC(hl) with hl∈SU2, to two-complexes C with boundary.

A two-complex (see Fig.1) is a finite set of F elements
f denoted “faces”, E elements e (“edges”), and V ele-
ments v (“vertices”), equipped with a boundary relation
∂ associating a cyclically ordered set of edges to each
face and an ordered couple of vertices {se, te} (“source”
and “target”) to each edge. Its boundary is a (possibly
disconnected) graph Γ, whose L links l are edges of C
bounding a single face and whose N nodes n are vertices
of C bounding (links and) a single internal edge. ZC(hl)
is defined as the integral obtained associating:
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FIG. 1: A two-complex with one bulk vertex.

1. Two group integrations to each internal edge (or
one to each adjacent couple {internal edge, vertex})
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∫
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2. A group integration to each couple of adjacent
{face, internal edge}
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χj(h) is the spin-j SU2 character of h.

3. A sum to each face f
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εlf
ef

)
. (3)

where gef := gesehefg
−1
ete for internal edges, and gef

= hl ∈ SU2 for boundary edges. dj is (2j + 1).
χp,k(g) is the SL2C character in the unitary rep-
resentation with (continuous and discrete) Casimir
eigenvalues p and k. εef =±1 according to whether
the orientations (defined by ∂) of the edge e and
the face f are consistent or not. γ is a fixed real
parameter called Barbero-Immirzi parameter.

4. At each vertex, one of the integrals
∫
SL2C

dgev in
(1) (which is redundant) is dropped.

The resulting amplitude can be written compactly as

ZC(hl) =

∫
(SL2C)2(E−L)−V

dgve

∫
(SU2)V−L

dhef∑
j
f

∏
f

dj
f
χγ(j

f
+1),j

f

( ∏
e∈∂f

g
εlf
ef

) ∏
e∈∂f

χjf(hef ) (4)

where V is the sum of the valences of all the faces. This
completes the definition of the model.

ar
X

iv
:1

01
0.

19
39

v1
  [

gr
-q

c]
  1

0 
O

ct
 2

01
0



2

For a two-complex without boundary, (4) reduces to
the “partition function”

ZC =

∫
(SL2C)2E−V

dgve

∫
(SU2)V

dhef
∑
j
f

∏
f

dj
f

(5)

χγ(j
f
+1),j

f

( ∏
e∈∂f

(gesehefg
−1
ete)

εlf
) ∏
e∈∂f

χjf(hef ).

(The sum defining the SL2C character converges because
the SU2 integral reduces it to a finite subspace.) A for-
mulation more similar to the one common in the litera-
ture is in Sect. IV B (the one above is related to [20]).

Section III clarifies in which sense the ZC(hl) define a
general covariant QFT, and Section V clarifies the rela-
tion with GR, and how these transition amplitudes can
be used to compute physical quantities such as graviton’s
n-points functions or the evolution of a classical space-
time. Before going into this, however, I anticipate some
comments on the intuitive physical interpretation of these
quantities.

There are two related but distinct physical interpreta-
tions of the above equations, that can be considered. The
first is as a concrete implementation of Misner-Hawking
intuitive “sum over geometries”

Z =

∫
Metrics/Diff

Dgµν e
i
h̄S[gµν ]. (6)

As we shall see, indeed, the integration variables in (5)
have a natural interpretation as 4d geometries (Sect.
IV B), and the integrand approximates the exponential
of the Einstein-Hilbert action S[gµν ] in the semiclassical
limit (Sect.V). Therefore (5) gives a family of approxi-
mations of (6) as the two-complex is refined. But there
is a second interpretation, compatible with the first but
more interesting: the transition amplitudes (4), formally
obtained sandwiching the sum over geometries (6) be-
tween appropriate boundary states, can be interpreted
as terms in a generalized perturbative Feynman expan-
sion for the dynamics of quanta of space (Sect. IV A). In
particular, (4) implicitly associates a vertex amplitude
(given explicitly below in (21)) to each vertex v: this is
the general-covariant analog for GR of the QED vertex
amplitude

= e γABµ δ(p1+p2+k). (7)

Therefore the transition amplitudes (4) are a general co-
variant and background independent analog of the Feyn-
man graphs. These remarks about interpretation should
become more clear in the last section.

The model has a euclidean version [13, 18], obtained
replacing SL2C with SO4, and can be written in a (eu-
clidean or lorentzian) quantum deformed version, ob-
tained by replacing SO4 and SL2C with their q defor-
mation (see [21]). The q-deformed version has not yet

been sufficiently studied, but one might expect it to cor-
respond to the the inclusion of a cosmological constant
and its transition amplitudes (4) to be finite for appro-
priate values of q.

III. TQFT ON MANIFOLDS WITH DEFECTS

Atiyah has provided a compelling definition of a gen-
eral covariant QFT, by giving axioms for topological
quantum field theory (TQFT) [22, 23]. In Atiyah scheme,
a 4d TQFT is defined by the cobordisms between 3d man-
ifolds. To each compact 3d manifold M3 without bound-
aries is associated a finite dimensional Hilbert spaceHM3

,
and to each 4d manifold M4 with boundary ∂M4 is asso-
ciated a state ψM4

∈ H∂M4
. These satisfy natural com-

position axioms.
The model defined by (4) belongs to a simple general-

ization of Atiyah’s TQFT, where: (i) boundary Hilbert
spaces are not necessarily finite dimensional; (ii) 4d man-
ifolds are replaced by two-complexes; (iii) 3d manifolds
are replaced by graphs [24–26]. Graphs bound two-
complexes in the same manner in which 3d manifolds
bound 4d manifolds.

Consider a graph Γ, namely a set of L elements l called
“links” and N elements n called “nodes”, and a boundary
relation ∂ associating to each link an ordered couple of
nodes ∂l = {sl, tl}. Associate to each graph Γ the Hilbert
space

HΓ = L2[(SU2)L/(SU2)N ] (8)

where the L2 is defined by the Haar measure and
the “gauge” action of (SU2)N on the states ψ(hl) ∈
L2[(SU2)L] is

ψ(hl)→ ψ(VslhlV
−1
tl

), Vn ∈ (SU2)N . (9)

If C is a two-complex bounded by the (possibly discon-
nected) graph Γ, then (4) defines a state in HΓ which sat-
isfies TQFT composition axioms [27]. Thus, the model
defined above defines a generalized TQFT in the sense of
Atiyah.1

1 This generalization consists essentially in replacing manifolds M
by “manifold with defects” M̃ . A graph Γ is related to a 3d
manifold with defects M̃3 as follows. Take a cellular decompo-
sition ∆ of a (say, topologically trivial) 3d manifold M3. Then
M̃3 is constructed removing the 1-skeleton ∆1 of ∆ from M3,
that is M̃3 = M3−∆1, and Γ is identified with Γ = ∆∗1, the
1-skeleton of the dual complex. Notice that Γ captures fully the
fundamental group of M̃3. Similarly, a two-complex C can be
related to a 4d manifold with defects M̃4 by M̃4 =M4 −∆2 and
C=∆∗2, namely removing the 2-skeleton of the cellular complex,
and identifying C with the 2-skeleton of the dual complex. Now,
recall that in Regge gravity curvature is concentrated on defects
with codimension 2, and the holonomy of the Levi-Civita con-
nections on the flat manifold with defects Mn−∆n−2 captures
entirely the geometry. Manifolds with codimension-2 defects (or
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In the next section I show (following [29]) that the
states in this boundary space have a natural interpreta-
tion as 3-geometries, thanks to a beautiful theorem by
Penrose.

IV. PENROSE METRIC OPERATOR

The boundary Hilbert space (8) has a natural inter-
pretation as a space of quantum metrics, that was early
recognized by Roger Penrose. The natural “momentum”
operator on L2[SU2] is the derivative operator

Liψ(h) ≡ i
d

dt
ψ(heitτi)

∣∣∣∣
t=0

, (10)

where i = 1, 2, 3 labels a hermitian basis ~τ = {τi} in the
su2 algebra. The gauge invariant operator

Gll′ = ~Ll · ~Ll′ (11)

where ~Ll = {Lil} is the derivative with respect to hl and
sl = sl′ := n, is well defined on HΓ and coincides with
Penrose’s metric operator. Penrose spin-geometry theo-
rem then gives states in HΓ a consistent interpretation
as quantized 3-geometries. The metric operator Gll′ de-
termines the angle between the links l and l at the node
n [19, 30, 31] (see Fig.2). The theorem states that these
angles obey the dependency relations expected of angles
in three dimensional space. A volume element associated
to the node n can be defined in terms of Penrose metric
operator, using standard relations between metric and
volume element [32]. For instance, for a 4-valent node
n, bounding the links l1, ..., l4 the volume operator Vn is
given by

V 2
n = |~Ll1 · (~Ll2 × ~Ll3)|; (12)

gauge invariance (9) at the node ensures that this defini-
tion does not depend on which triple of links is chosen.
Analogously, the diagonal terms Gll of the metric deter-
mines the area element Al normal to the link l by

A2
l = ~Ll · ~Ll. (13)

The Area and Volume operators Al and Vn form a com-
plete set of commuting observables in HΓ, in the sense of
Dirac. The spectrum of both operators can be computed
[32]; it is discrete and it has a minimum step between zero
and the lowest non-vanishing eigenvalue. In the case of
the area, this gap is

a0 =

√
3

2
. (14)

graphs and two-complexes) are this natural carriers of curved
Regge geometries. In [28], the space HΓ is precisely constructed
as the quantization of a space of flat SU2 connections on M̃3, or
equivalently a space of Regge metrics where curvature is on the
defects.

l’
!

l

FIG. 2: The angle defined by the Penrose metric operator on
the graph.

The orthonormal basis that diagonalizes the complete
commuting commuting set of operators Al, Vn is called
the spin-network basis. This basis can be obtained via
the Peter-Weyl theorem. It is labelled by a spin jl for
each link l and an SU2 intertwiner in for each node n
[33–35], and defined by

ψΓ,jl,in(hl) =
〈
⊗l djl Djl(hl)

∣∣ ⊗n in 〉Γ (15)

where Djl(hl) is the Wigner matrix in the spin-j repre-
sentation and 〈·|·〉Γ indicates the pattern of index con-
traction between the indices of the matrix elements and
those of the intertwiners given by the structure of the
graph.2 A G-intertwiner, where G is a Lie group, is an
element of a (fixed) basis of the G-invariant subspace of
the tensor product⊗lHjl of irreducibleG-representations
—here those associated to the links l bounded by n. Since
the Area is the SU2 Casimir, the spin jl is easily recog-
nized as the Area quantum number and in is the Volume
quantum number.

Coherent states in HΓ have been studied by a number
of authors and are particularly useful in applications [17,
36–43] (see also [44–46]).

A. Spin networks as quantum 3-geometries

The results above equip the boundary states of the
model (4) with a geometrical interpretation: the spin net-
work state ψΓ,jl,in is interpreted as representing a gran-
ular space. Each node is a quantized “chunk”, or “quan-
tum” of space (see Fig.3); the graph gives the connec-
tivity relations between these quanta; in is the quantum
number of the volume of the n’th quantum of space; and
jl is the quantum number of the area of the elementary
surface separating the adjacent nodes sl and tl.

Thus, the quantum states of the theory describe
background-independent quantum excitations of the ge-

2 Both tensor products live in

HΓ ⊂ L2[(SU2)L] =
⊕
jl

⊗
l

Vjl ⊗ Vjl =
⊕
jl

⊗
n

⊗
e∈∂n

Vjl . (16)

where Vj is the SU2 spin-j representation space, here identified
with its dual.
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FIG. 3: “Granular” space. Each node of the graph describes
a “quantum” of space.

ometry of space. Physical space is built up, or “weaved
up” [4] by such nets of atoms of space.

As in classical GR [47, 48], and unlikely in ordinary
field theory, in this theory localization is only relative to
the field itself. In this sense, the theory is profoundly
different from ordinary local quantum field theory.

Two important comments about the length scale of
the theory are in order. First, metric quantities are ex-
pressed here in natural units, without dimension-full pa-
rameters. To relate them to centimeters, we need the cen-
timeters value of the minimal gap a0, or equivalently the
dimension-full expression of the operator Lil. Let’s call
LPl the unit of length in which all the equations above
hold. LPl is a fundamental parameter of the theory, set-
ting the scale at which the theory is defined, namely the
scale of the quantum granularity of space.3

Second, the Hilbert space (8) is precisely the Hilbert
space of lattice gauge theory, in the Kogut-Susskind [49]
canonical formulation. The similarity with lattice gauge
theory can be emphasized by rewriting (5) in the local
form

ZC =

∫
dgve

∫
dhef

∏
f

Kf (gve, hef ) (18)

where the “face amplitude” is

Kf (gve, hef ) =
∑
j

dj χγ(j+1),j

(∏
e∈∂f

g
εlf
ef

) ∏
e∈∂f

χj(hef ).

(19)
But there is a key difference between the physical in-
terpretation in the two cases, which leads to a rather
different dynamics. Lattice gauge theory assumes the
lattice to be defined at a scale a, the “lattice spacing”.

3 If we disregard radiative corrections, LPl can be related to h̄ and
the low-energy Newton constant G, using the classical limit of
the theory. As we see later, indeed, the group elements Ul and
the derivative operators Li are recognized as the holonomy of the
Ashtekar-Barbero connection and the inverse densitized triad. A
quantum representation of the Poisson algebra of these is iden-
tical to the Lil , Ul operator algebra if 8πγh̄G = 1. (The Newton
constant and the Barbero-Immirzi parameter enter the action
and hence the definition of the momentum; the Planck constant
appears in promoting Poisson brackets to commutators.) Hence

LPl = 8πγh̄G, up to radiative corrections. (17)

The running of the Newton between the Planck scale and low-
energy can modify this relation.

This scale enters (indirectly) in the Hamiltonian and the
physical theory is defined by appropriately taking the
limit where a→ 0 and the number N of nodes of the lat-
tice goes to infinity: N →∞. The lattice spacing is the
imprint of the background metric. Here, instead, there
is no background metric, and the lattice has no metrical
significance whatsoever (as the coordinates of classical
GR). It is the operator Gll′ that has metric significance,
and a metric emerges only in terms of expectation values
and eigenvalues of such operator on the quantum states.
Since geometrical operators have discrete eigenvalues and
there are an Area and a Volume gaps, there is an intrin-
sic minimal scale (at the scale LPl), set by the quantum
discreteness itself. It emerges in the same manner as the
minimal scale in the energy of a quantum harmonic oscil-
lator. The theory has no degrees of freedom at a smaller
length scale. To capture the full theory, we only need
to consider the N → ∞ limit, namely arbitrary graphs,
without any lattice spacing to be taken to zero.

B. Transition amplitudes in terms of spinfoams

By explicitly performing all integrals in (4), and going
to the spin network basis, it is not difficult to see that
(4) can be rewritten in the form

ZC(jl, in) =
∑
jf ,ie

∏
f

djf
∏
v

Wv(σ). (20)

where ie associates an SU2 intertwiner to each internal
edge. A triple σ = {C, jf , ie} is called a spinfoam. The
“vertex amplitude” Wv(σ) turns out to be [5, 12–14, 17,
18, 50]

Wv(σ) = Tr
∏
e

I(ie) (21)

where the product is over the edges bounded by v and
I is a map from SU2 intertwiners to SL2C intertwin-
ers defined as follows. Fix a subgroup SU2 of SL2C
and decompose the SL2C irreducible representation Hpk
into spin-j SU2 irreducibles Hpk = ⊕jHpkj . Let Yγ be

the isomorphism Yγ : Hj → Hγ(j+1),j
j sending a spin-j

SU2 representation to the spin-j subspace of the unitary
SL2C representation with p = γ(j + 1), k = j. Recall
that ie ∈ ⊗lHjl . Then I is defined by I : ⊗lHjl →
PSL2C [⊗lYγHjl ] where PSL2C is the projection on the
SL2C invariant subspace. The Trace Tr means that the
SL2C intertwiners are contracted among themselves in
(21), following the pattern of index contraction formed
by the graph surrounding the vertex. The expression (20)
(or similar) is the one commonly found in the LQG liter-
ature. Notice that the QED vertex (7) too can be viewed
as formed by intertwiners.

When Γ is disconnected, for instance if it is formed
by two connected components, expression (20) defines
transition amplitudes between the connected compo-
nents. This transition amplitude can be interpreted as
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a quantum mechanical sum over histories. Slicing a two-
complex, we obtain a history of spin networks, in steps
where the graph changes at the vertices. The sum (20)
can therefore be viewed as a Feynman sum over histories
of 3-geometries, or a sum over 4-geometries. This is what
connects the two intuitive physical pictures mentioned in
Section II: the particular geometries summed over can
also be viewed as histories of interactions of quanta of
space.

The amplitude of the individual histories is local, in
the sense of being the product of face and vertex ampli-
tudes. It is locally Lorentz invariant at each vertex, in
the sense that the vertex amplitude (21) is SL2C invari-
ant: if we choose a different SU2 subgroup of SL2C (in
physical terms, if we perform a local Lorentz transforma-
tion), the amplitude does not change. The entire theory
is background independent, in the sense that no fixed met-
ric structure is introduced in any step of the definition of
the model. The metric emerges only via the expectation
value (or the eigenvalues) of the Penrose metric operator.

V. RELATION WITH GR

A number of elements of evidence support the conjec-
ture that the model is related to GR:

1. The classical limit of the theory is given send-
ing h̄ → 0 at fixed value of boundary geometry.
Since geometrical quantities are defined by spins
j multiplied by powers of (17), the limit is the
“large quantum numbers” j → ∞ limit, as always
in quantum theory. In other words, the classical
limit of pure quantum gravity is also the large dis-
tance limit, as expected. The asymptotic expan-
sion of the vertex (21) for high quantum numbers
has been studied in detail and computed explicitly
for five-valent vertices [51–54]. The result is that
it gives the Regge approximation of the Hamilton
function of the spacetime region bounded by the
3-geometry determined by the spin network sur-
rounding v. Since, in turn, the Regge action is
known to be the Einstein-Hilbert action S[gµν ] of
a Regge geometry, we have that

Wv(σ) ∼ e ih̄S[gµν ]. (22)

Accordingly, in the semiclassical regime the sum (5)
truly reduces to a sum over geometries weighted by
the exponential of the GR action, as in (6).

2. The Hilbert space and the operators of the theory
match those obtained by a canonical quantization
of GR using the Ashtekar variables and choosing
Wilson loops as basic observables [2, 3, 55–57]. The
SU2 group elements hl are holonomies of the real
Ashtekar connection along a curve and the opera-

tors ~Ll are the Ashtekar electric fied, or the den-
sitized inverse triad integrated on a surface cut by

the curve. This convergence is the result that has
sparked the interest in this model, a few years ago
[12, 14, 17, 18]. A notable theorem states that un-
der general assumptions —the key one being diff-
invariance— this quantum kinematics is essentially
unique [58, 59].4

3. GR’s action can be written in the form [62]

S =

∫
(e ∧ e)∗ ∧ F +

1

γ

∫
e ∧ e ∧ F. (23)

The first term is the standard Einstein-Hilbert ac-
tion S[gµν ]=

∫√
gR, written in first order form and

in terms of a tetrad e and an SL2C connection with
curvature F . The second term is a parity violating
term that does not affect the equations of motion
and leads to the real Ashtekar variables. This ac-
tion is the BF action

SBF =

∫
B ∧ F (24)

where the two-form field B is restricted to the form
B=(e∧ e)∗+ 1

γ (e∧ e). A constraint on B forcing it

to have this form is called “simplicity constraint”.
Now, (5) is as a modification of Ooguri’s BF parti-
tion function [6]

ZC =

∫
G2E−V

dgve
∏
f

δ
( ∏
e∈∂f

(geseg
−1
ete)

εlf
)

(25)

=

∫
G2E−V

dgve
∑
j
f

∏
f

dGj
f
χjf
( ∏
e∈∂f

(geseg
−1
ete)

εlf
)
,

obtained restricting the sum precisely to the states
where such simplicity constraint hold [63, 64].
These constraints turn the (topologically invariant)
BF partition function into the (non topologically
invariant) partition function for GR. Because of the
restriction in the representations summed over and
the SU2 integrations, (5) relaxes the BF flatness
condition implemented in (25) by the delta func-
tion on the holonomy around each face, turning
local degrees of freedom on.

4. The model can be directly obtained via a discretiza-
tion and quantization of GR on a lattice [13, 18].

5. It is possible to compute particle’s (graviton’s) n-
point functions from the model. n-point functions
depend on the choice of a background. The back-
ground is introduced in the calculation via the
choice of the boundary state. Coherent states in
HΓ give intrinsic and extrinsic [41] 3d-geometries,

4 Alternatively, this Hilbert space can be obtained quantizing a
space of the “shapes” of the geometry of solids figures (polyhe-
dra) [15, 40, 51, 60, 61].
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probed up to a given scale. Particle states over
such geometries are obtained acting with the metric
field operator on such states. (On the meaning of
the notion of “particle” in this context see [69].) n-
point functions for these particle states can then be
computed perturbatively expanding the transition
amplitudes in the number of vertices [70, 71]. This
technique allows in principle particle n-point func-
tions to be computed at all orders, and therefore
to compare the model with the standard perturba-
tive quantum GR defined by conventional effective
quantum field theoretical methods over flat space.
The 2-point function has been computed in the eu-
clidean theory to first order using this technique
[65, 66] and the result is that it matches the one
computed by expanding GR over a flat background,
namely the free graviton propagator. Therefore the
model can describes linearized gravitational waves.

6. A similar technique can be used to compute the cos-
mological evolution of homogeneous isotropic met-
rics (described by suitable coherent states). The
result is that the (gravitational part) of the Fried-
mann equation has been derived from the model
[67]. This indicates that the model may me consis-
tent with the cosmological regime of classical GR.

All these facts converge in suggesting that the classical
limit of the model is GR.

A. Physical amplitudes, expansion and divergences

Physical amplitudes. Consider the subspace of HΓ

where the spins jl vanish on a subset of links. States
in this subspace can be naturally identified with states
inHΓ′ , where Γ′ is the subgraph of Γ where jf 6=0. Hence
the family of Hilbert spacesHΓ has a projective structure
and the projective limit H = limΓ→∞HΓ is well defined.
H is the full Hilbert space of states of the theory. It
describes an infinite number of degrees of freedom.5

In the same manner, two-complexes are partially or-
dered by inclusion: we write C′≤C if C has a sub-complex
isomorphic to C′. If the limit exist, we define

Z(hl) = lim
C→∞

ZC(hl) (26)

where the limit is in the sense of nets6. The transition
amplitudes Z(hl) are defined on H.

These same transition amplitudes can be defined sum-
ming over all two-complexes bounded by Γ

Z(jl, in) =
∑
C
Z∗C(jl, in). (27)

5 It has a structure similar to Fock space, with HΓ, which is a
space of states with V quanta of space, being the analog to the
Fock N -particle state.

6 ∀ε ∃Cε s.t. |Z − ZC | ≤ ε ∀C ≥ Cε, where C and Cε have the same
boundary.

where Z∗ is defined by the same sum as Z, but excluding
the jf =0 spins from the sum and including appropriate
combinatorial factors. In spite of the apparent difference,
these two definitions are equivalent [68], since the reor-
ganization of the sum (26) in terms of the sub-complexes
where jf 6= 0 gives (27). The sum (27) can be viewed as
the analog of the sum over all Feynman graphs in con-
ventional QFT. Thus, the amplitudes (4) are families of
approximations to the physical amplitudes (26).

A hint about the regime where this expansion is ef-
fective, namely where the complete sum is well approx-
imated by its lowest terms (possibly renormalized, see
below), is given by the fact that in the classical limit
the vertex amplitude goes to the Regge action of large
simplices. This indicates that the regime where the ex-
pansion is effective is around flat space; this is the hy-
pothesis on which the calculations in items 5 and 6 above
are based.

Divergences. There are no ultraviolet divergences, be-
cause there are no trans-Planckian degrees of freedom.
However, there are potential large-volume divergences,
coming from the sum over j. In ordinary Feynman
graphs, momentum conservation at the vertices implies
that the divergences are associated to closed loops. Here
SU2 invariance at the edges implies that divergences are
associated to “bubbles”, namely subsets of faces forming
a compact surface without boundary [20, 72–75]. Such
large-volume divergences are well known in Regge calcu-
lus, and can be visualized as “spikes” of the 4-geometry.

Spikes are likely to be effectively regulated by going to
the quantum group. It is commonly understood that the
q-deformation amounts to the inclusion of a cosmological
constant. This is consistent with the fact that q-deformed
amplitudes are suppressed for large spins, correspond-
ingly to the fact that the presence of a cosmological con-
stant sets a maximal distance and effectively “puts the
system in a box”. Whether divergent or not, radiative
corrections renormalize the vertex amplitude.

The second source of divergences is given by the limit
(26). Less is known in this regard, but it is tempting
to conjecture that this sum could be regularized by the
quantum deformation as well.

Scales. Equation (4) that defines the theory includes
explicitly a single dimensionless parameter: γ. To this
we add q in the q-deformed case, which determines the
cosmological constant Λ in natural units; and the Planck
scale, which enters the theory for the reason explained in
Section IV. The model has therefore three parameters:
LP , which sets the minimal length scale, beyond which
there are no degrees of freedom, Λ, which determines a
maximal scale, and γ, which has analogies with the θ
parameter in QCD, as evident from (23).

The transition amplitudes (4) can be coded into a gen-
erating functional. More precisely [20, 76], they can be
seen as Feynman graphs of a generating auxiliary field
theory, precisely as for the matrix models. From this
perspective, a further dimensionless coupling constant λ
can be naturally added to the theory as a coupling con-
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stant multiplying the vertex amplitude (21).
I close mentioning that strictly related to this the-

ory is the ample literature on loop quantum cosmology
[77, 78] and LQG black hole entropy [79–81], which has
lead, respectively, to study the hypothesis of a quantum-
gravity induced “Big-Bounce”, and the hypothesis that
the “quanta of space” described in Section IV be the
microstructure responsible for the Bekenstein-Hawking
entropy.

————
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