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Abstract

This is a review of the present status of loop and spin foam approaches to quantization
of four-dimensional general relativity. It aims at raising various issues which seem to
challenge some of the methods and the results often taken as granted in these domains. A
particular emphasis is given to the issue of diffeomorphism and local Lorentz symmetries
at the quantum level and to the discussion of new spin foam models. We also describe
modifications of these two approaches which may overcome their problems and speculate
on other promising research directions.
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1 Introduction

Whereas string theory remains the most developed and active approach to quantum gravity,
during last years Loop Quantum Gravity (LQG) and Spin Foam (SF) models become more
and more popular. Following this growth of interest, there have appeared many reviews on
this subject [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Most of these reviews give a quite optimistic picture of
the developments in this domain, so that one could think that one has already at our disposal
a theory (or at least a model) of quantum gravity, which is derived in a rigorous way following
the standard well established quantization rules, internally self-consistent and able to produce
physical predictions. Besides, there have been several reviews comparing string theory and
LQG/SF approaches written mostly from the point of view of the latter [11, 12, 13]. On the
other hand, a critical overview of the recent advances almost does not exist in the literature. A
notable exception is the review [14] (see also its answer and criticism [15]) which concentrates
mostly on the Loop Quantum Gravity side.

The present review aims to fulfill this gap. It gives a picture of the present situation in
the domain of LQG and SF seen from the perspective which is based on the results obtained
by the authors during last years. Thus, it represents a personal viewpoint which might not
coincide with the viewpoint spread in the community. Although we have raised the points
already known by the experts in the field, they are rarely spelled out explicitly. At the same
time, their understanding is crucial for the viability of these theories. Unfortunately, it is
extremely difficult to obtain exact results which may resolve the raised questions in one or
another way. Besides, even the quantization procedure which must be followed in the case
of gravity is not completely well determined and still subject to questioning. Therefore, our
analysis cannot be claimed to be a proof of any kind, but it is supported by various arguments
that we find compelling.

The central question to be answered below is whether one has a model at Planck scale
which is mathematically self-consistent, has a potential to reproduce general relativity in the
low-energy limit, and incorporates consistently its fundamental gauge symmetries. The last
condition is the main point of concern in this review. We accept the viewpoint that the
fundamental symmetries of general relativity, such as space-time diffeomorphism invariance
and local Lorentz invariance in the tangent space, appearing as we are working in the first
order formalism, must not be anomalous in the corresponding quantum theory.

Of course, as soon as the notion of manifold may disappear at the quantum level as it
seems to happen in LQG, or be replaced by a simplicial complex as in SF models, one should
precise what is meant by diffeomorphism invariance. For example, in the discrete setting this
issue is very non-trivial and has been discussed in [16, 17]. In this review we do not enter
the discussion of this extremely important problem, but subscribe to the commonly accepted
idea that the diffeomorphism symmetry in SF models is recovered as a result of summing
over all admissible triangulations. In general, we take the viewpoint that a symmetry remains
unbroken if the quantum theory properly implements the corresponding constraints of the
classical phase space. All our conclusions are based on this assumption and therefore should
be taken with care.

Thus, we will pay a particular attention to the imposition of constraints in both loop and
SF quantizations. Since LQG is supposed to be a canonical quantization of general relativity,
in principle, it should be straightforward to verify the constraint algebra at the quantum level.
However, in practice, due to peculiarities of the loop quantization this cannot be achieved
at the present state of knowledge. Therefore, we use indirect results to make conclusions
about this issue. In particular, we use a Lorentz covariant approach [18], which allows to put
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LQG in a broader context and thereby to get insights on the fate of classical symmetries after
quantization.

In contrast, the SF approach is based on a covariant path integral. Nevertheless, con-
straints play an important role in this case too since the main idea of this approach is to get
quantum gravity by imposing certain constraints on the topological BF theory. During the
three previous years there was a great activity in this area. It was initiated by reconsider-
ing the old methods of imposing constraints and resulted in new techniques [19] and new SF
models [20, 21]. These models have been shown to possess some attractive features and in
particular it was claimed that they are consistent with LQG at least at the kinematical level.
Thus, it might look like one has a beautiful coherent picture where two different quantization
approaches lead to equivalent consistent quantum gravity models.

However, we suggest to revisit the constraint imposition once more, now for the new SF
models. For this purpose it is extremely useful to take into account the canonical structure of
the theory so that the preceding covariant analysis of LQG will be very helpful. Such approach
immediately reveals various fallacies of the new models and weak points in the interpretation
of their results.

Our main conclusions regarding the status of the two quantization approaches are the
following:

• Although LQG can perfectly incorporate the full local Lorentz symmetry, we find some
evidences that LQG might have problems to maintaining space-time diffeomorphism
symmetry at the quantum level. Thus, we argue that it is an anomalous quantization
of general relativity which is not physically acceptable.

• There is an alternative quantization following the same loop ideas, the so called Covari-
ant LQG (CLQG), which has a potential to resolve the drawbacks of LQG. However, it
is supplied with some serious technical obstacles (consisting mainly in finding a represen-
tation of the algebra of connections) preventing yet the realization of this quantization
program.

• The claim [21] that the recently introduced spin foam models [20, 21] have the same
boundary states as the kinematical states of LQG cannot be formulated as such because
they have completely different representations as functionals of connection.

• The new spin foam models in the presence of a finite Immirzi parameter represent quan-
tizations which do not respect the standard Dirac rules and we argue that they are
incompatible with a self-consistent canonical quantization. Moreover, any SF model
derived by the usual strategy “first quantize, then constrain” (see section 3.1.2), in-
cluding the models without the Immirzi parameter, does not implement consistently
all constraints of general relativity and therefore cannot properly describe its quantum
dynamics.

• A spin foam quantization consistent with the canonical one can be achieved by modifying
the association of geometric bi-vectors to generators of the gauge algebra and by relaxing
the closure constraint. The vertex amplitude should also be modified and in general is
given by the integral formula (3.73) with a non-trivial measure which however remains
still unknown.

Given these statements, we have to conclude that neither the canonical loop approach nor
its spin foam cousin were able to provide so far a model which can be claimed to be free
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from inconsistencies and anomalies. This does not mean however that the ideas behind these
approaches are not reasonable. They might well be relevant and even indispensable for a
theory of quantum gravity. For example, as argued in [22], there is a remarkable convergence
of various modern approaches to quantum gravity, which all lead to an effective spacetime
dimension 2 at the Planck scale. This feature is exhibited very explicitly in the loop and spin
foam quantizations. However, in our opinion, their present realization is not satisfactory and
requires a serious reconsideration. In fact, in this review we consider some of the modifications,
which have been already suggested, and point out their advantages and loopholes.

The review is not technical in the sense that the details of proofs and derivations, if they
are not subject of a critical discussion, are omitted. Instead, we concentrate mostly on the
ideas behind the loop and SF quantizations, their results, properties and interpretation. On
the other hand, the review does not address such important issues as the problem of time,
prediction power on the low energy limit, inclusion of matter, etc. Besides, we do not consider
some branches of LQG and SF such as, for example, Loop Quantum Cosmology (LQC) [23]
and evaluation of the graviton propagator [24]. Since these branches are based on results
and ideas of the two main approaches, they seem to have even less firm ground than those
approaches themselves. Therefore, for example, if LQG in its present form fails to provide a
consistent quantization of general relativity, it is highly unlikely that LQC can do better.

Let us briefly describe the content of the review. Chapter 2 is devoted to the loop approach
to quantum gravity which is a type of canonical quantization. In the first section of this chapter
we recall the basics of LQG following the standard presentation of this domain. Then in section
2.2 we briefly review the Lorentz Covariant approach, which allows to look at LQG from a
different angle and suggests an alternative loop quantization, as discussed in section 2.3. The
implications of these results are further analyzed in section 2.4, where we also discuss various
controversial issues and constructions of LQG. The closing section of this chapter presents a
summary of our main conclusions regarding the status of the loop quantization.

Chapter 3 deals with the SF quantization which can be seen as a discretized path integral
for general relativity. First, we give a brief introduction to general ideas of the SF approach and
present the strategy followed in most of the SF models in 4 dimensions. Then we introduce the
main SF models existing in the literature and realizing the strategy mentioned above: section
3.2 reviews the Barrett–Crane model and section 3.3 presents the new models. Since we want
to revise their derivation, we discuss its main steps in detail and critically analyze their relation
to LQG. Then in section 3.4 we reconsider the imposition of constraints in the new models
and observe a few sources of potential mistakes. The main issue, in our opinion, is that the
SF models quantize the symplectic structure not of general relativity, but of BF theory. This
results in various inconsistencies demonstrated on a simple example in subsection 3.4.1. This
does not however exhaust all problems which become apparent under the thorough analysis of
the constraint imposition in the following subsections. At the same time this analysis reveals
some connections to the structures appearing in the covariant approach to the canonical loop
quantization and suggests a way to cure the problems. So we finish this chapter by section
3.5 comparing the situations we arrived at in the spin foam and loop approaches to quantum
gravity.

Finally, in chapter 4 we speculate on possibilities to overcome the problems exposed in
this review. We consequently discuss the canonical (loop) approach, path integral (spin foam)
quantization and group field theory reformulation of SF models. The last section 4.4 is devoted
to a brief discussion of holography and the perspective on gravity as an emergent theory put
in the context of LQG and spin foams.
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2 Canonical approach

2.1 SU(2) Loop Quantum Gravity

We start by briefly reviewing the main elements of LQG. Although it is possible to provide
a mathematically precise construction involving cylindrical functions, GNS construction, pro-
jective limits, etc., which can be found for instance in [2, 3], our exposition will be very
elementary. It is nevertheless sufficient for introducing the main ideas and for understanding
the strong and the weak points of this approach.

2.1.1 Ashtekar–Barbero canonical formulation

LQG is based on a canonical formulation of general relativity obtained by a combination of
ideas of Ashtekar [25, 26] and Barbero [27, 28]. In the following it will be called Ashtekar–
Barbero (AB) formulation. There are many ways to arrive at this formulation. We follow the
way which is the most direct and most suitable for generalizations presented below.

The starting point is the so called Holst action [29]

S(γ)[e, ω] =
1

16πG

∫

M
εIJKLe

I ∧ eJ ∧
(
FKL(ω) +

1

γ
⋆ FKL(ω)

)
, (2.1)

where M is a four dimensional oriented manifold, the index I belongs to {0, 1, 2, 3}, eI is
a set of one-forms giving the cotetrad, ωIJ denotes the one-form of the spin-connection, the
Hodge star operator is defined on antisymmetric tensors as ⋆BIJ = 1

2
εIJKLB

KL, and F IJ(ω)
is the curvature of the spin-connection ω. The metric is recovered by gµν = ηIJe

I
µe
J
ν where

η = (σ,+,+,+) with σ = ± for Riemannian and Lorentzian cases, respectively. Although in
this chapter most of equations are written for the Lorentzian case, they are easily generalized
to the other signature.

The Holst action is a generalization of the usual Hilbert–Palatini action representing Ein-
stein gravity in the first order formalism. The second term in (2.1) does not change the
dynamics since the equations of motion following from it coincide with the usual Cartan equa-
tions ensuring the vanishing of torsion. Moreover, it vanishes on the surface of these equations.
As a result, the coupling constant γ in front of this term, called Immirzi parameter, is a real
parameter which is completely free in the classical theory and nothing depends on it. Its role
in quantum theory is a controversial issue which will be discussed a lot in the following.

To construct the Hamiltonian formalism for the action (2.1), one assumes that M = R×M
where M is a three dimensional manifold and introduces a 3+1 decomposition of ADM type,
this time for the tetrad field. Since the action (2.1) possesses several gauge symmetries, 4
diffeomorphism symmetries and 6 local Lorentz invariances in the tangent space, there will be
10 corresponding first class constraints in the canonical formulation. Unfortunately, as will
become clear in section 2.2, there are additional constraints of second class which cannot be
solved explicitly in a Lorentz covariant way. To avoid these complications, one usually follows
an alternative strategy. It involves the following three steps:

1. the boost part of the local Lorentz gauge symmetry is fixed from the very beginning by
choosing the so called time gauge, which imposes a certain condition on the tetrad field
(e0 = Ndt so that the normal to the equal-time hypersurfaces is time directed);

2. the three first class constraints generating the boosts are solved explicitly w.r.t. space
components of the spin-connection;
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3. the same is done for six second class constraints which leaves only nine independent
components for the space part of the spin-connection.

The result of these steps is the following phase space.1 The canonical coordinates and
momenta are given by

A
(γ)a
i = Γai (

∼
E)− γKa

i ,
∼
Ei

(γ)a =
1

γ

∼
Ei
a, (2.2)

where Γai (
∼
E) is the Christoffel connection compatible with the triad Ea

i = eai and K
a
i = ω0a

i is
the extrinsic curvature. The spatial volume element is

√
h = detEa

i from which one defines
the densitized triad

∼
Ei
a =

√
hEi

a where Ei
a is the inverse of Ea

i . By definition of the canonical
coordinates, the only non-vanishing Poisson brackets are2

{ ∼
Ej

(γ)b, A
(γ)a
i } = δji δ

a
b . (2.3)

On this phase space the canonical analysis forces to impose the three sets of first class con-
straints:

Ga = ∇i

∼
Ei

(γ)a = ∂i
∼
Ei

(γ)a − εab
cA

(γ)b
i

∼
Ei

(γ)c ≈ 0,

Hi =
∼
Ek

(γ)aF
(γ)a
ik ≈ 0, (2.4)

H =
1

2

∼
Ei

(γ)a

∼
Ej

(γ)b

(
εabcF

(γ)c
ij − (1 + γ2)Ka

[iK
b
j]

)
≈ 0,

with F
(γ)
ij being the curvature of the su(2) space connection A

(γ)
i .

The first one is the Gauss constraint generating the SU(2) gauge transformations in the
tangent space. It is easy to see that the canonical variables transform covariantly under its
action:

∼
Ei

(γ)a transforms as a vector, whereas A
(γ)a
i is a SU(2) connection. The constraints

Hi and H are related to diffeomorphism symmetry. The former is the generator of diffeomor-
phisms of the three-dimensional slice of constant time, whereas the latter is responsible for
time translations.

The constraints (2.4) would be polynomial in the canonical variables if not the last term
in the Hamiltonian constraint. This term disappears only for the choice γ = ±i, which cor-
responds to the original self-dual Ashtekar formulation. However, this formulation drastically
differs from the above presented formulation put forward by Barbero. First, the fact that the
canonical coordinates are complex variables requires to impose the so-called reality conditions
which ensure that the metric is real and the reality is preserved by the evolution. They are
formulated as

∼
Ei

(i)a =
∼
Ei

(i)a, A
(i)a
i + A

(i)a
i = 2Γai (

∼
E). (2.5)

These conditions are highly non-linear and non-holomorphic in the canonical self-dual variables
and therefore cannot be formulated merely on the self-dual phase space. Although the Dirac
analysis can be extended in order to take them into account, up to now no quantization have
been found which would be capable of incorporating them at the quantum level. The second

1We deviate from the common notations in the literature and denote SU(2) indices in the tangent space by
small letters a, b, . . . from the beginning of the alphabet, whereas the space coordinates are labeled by indices
i, j, . . . from the middle.

2We will omit the dependence on the space coordinates and the corresponding δ3(x, y) on the r.h.s. of the
commutation relations. Besides, we will not write explicitly the factors 8πG, but will indicate the dependence
on the Planck constant ℓ2p = 8π~G in the spectra of quantum geometric operators.
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Figure 1: SU(2) spin network

difference is that the actual gauge group for γ = ±i is extended to SO(3,C) which is the
same as the original Lorentz gauge symmetry. As we will see, the self-dual Ashtekar gravity
is much closer to the covariant canonical formulation of [18] than to the Ashtekar–Barbero
formulation presented in this section.

All other values of the Immirzi parameter seem to be on equal footing. Moreover, the clas-
sical formulations with different γ can be related to each other by a canonical transformation
[30] generated by eβ{K, · } with

K :=

∫
d3xKa

i

∼
Ei
a. (2.6)

This fact explicitly demonstrates that the introduction of the Immirzi parameter does not
change the classical dynamics of general relativity.

2.1.2 Loop quantization: kinematical Hilbert space

The loop quantization of the above phase space proceeds as follows. One assumes that the
Wilson loops of the SU(2) connection A(γ)

U (j)
α = Tr j [Uα] , Uα[A

(γ)] = P exp

(∫

α

dxiA
(γ)a
i Ta

)
, (2.7)

where trace is taken in representation j of SU(2), α is a loop, i.e., a smooth closed curved
immersed inM (it may have self-intersection points) and Ta denote a basis of the Lie algebra of
the gauge group, are well defined operators in the Hilbert space of quantum gravity. Physically
this means that the excitations of quantum geometry are concentrated on one-dimensional
structures, such as loops in three-dimensional space.

Considering the SU(2) invariant functionals, one finds oneself immediately in a (kinemat-
ical) Hilbert space HG where the Gauss constraint has been already imposed. The loops
however are not very convenient to label the states of this Hilbert space because they give rise
to an overcomplete basis. An orthonormal basis in HG is found by performing harmonic anal-
ysis on the space of SU(2) invariant functions of connections and is given by the so-called spin

network states. Such a state is labeled by a colored graph Γ embedded in M . The embedded
graph is just a finite number of points {v} connected by a finite number of smooth embedded
curves {e} in M , whereas the coloring associates irreducible representations of SU(2) (half-

integer spins je) to the edges e and SU(2) invariant intertwiners I(v)
SU(2) to the vertices v (see

Fig. 1). The corresponding state ΨΓ is constructed by contracting holonomies of A(γ) along
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edges in representations je with invariant intertwiners at vertices

ΨΓ(A
(γ)) =

〈
⊗

e

R
(je)
SU(2)

(
Ue[A

(γ)]
)
,
⊗

v

I(v)
SU(2)

〉
. (2.8)

These states are orthonormal with respect to the scalar product defined as follows. First
we introduce it on cylindrical functions CylΓ defined by a graph Γ and a function f on E
copies of the gauge group (SU(2))E where E is the number of edges of Γ

ΨΓ,f(A
(γ)) = f(Ue1[A

(γ)], . . . , UeE [A
(γ)]). (2.9)

For two such cylindrical functions, the scalar product is given simply by an integral over the
normalized Haar measure of functions trivially extended to the union of Γ and Γ′

〈ΨΓ,f |ΨΓ′,f ′〉 =
∫

[SU(2)]EΓ∪Γ′

dµ(h)f(h1, . . . , hE)f
′(h1, . . . , hE). (2.10)

Since the cylindrical functions are dense in the space of all functions of connection, the kine-
matical Hilbert space HG is defined by completion of the former space with respect to the
measure induced by the scalar product (2.10). Note that this Hilbert space is not separable.

On the Hilbert space HG one still has to impose the first class constraints Hi and H . We
postpone this to subsection 2.1.4 and before we discuss various geometric operators defined
on HG.

2.1.3 Geometric operators

One of the most elaborated aspects of LQG is the study of geometric operators associated to
the process of measuring area, volume and length. Although these operators are defined only
on the kinematical Hilbert space HG, they are extremely important for the interpretation of
LQG results as well as for the implementation of the remaining constraints. Below we mainly
concentrate on the area and volume operators.

It is also possible to define a length operator which has been done in [31] (see [32] for
a new, spin foam motivated version of this operator). However, it has not found so far an
important application in the LQG analysis and therefore we do not consider it here.

Area operator

The most studied geometric operator is the area [33], mainly due to its relative simplic-
ity, unambiguiousness, its relevance for the black hole entropy calculation and various other
applications. This operator, acting on the kinematical Hilbert space HG, is a quantization of
the classical expression for the area of a two-dimensional surface Σ embedded into M

SΣ =

∫

Σ

d2σ
√
ninjgij, gij = δab

∼
Ei
a

∼
Ej
b , (2.11)

where ni is the normal to the surface. The quantization of this operator amounts to still
consider Σ as a classical embedded surface in M and to define ŜΣ in terms of the smeared
triad operators

∼̂
Ea(Σ

′) =

∫

Σ′

d2σ ni(σ)
∼̂
Ei
a(σ) (2.12)
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Figure 2: Intersection of a surface with a spin network.

associated to a surface Σ′ ⊂ Σ. The smearing ensures that their action on spin network states
is well defined. To define the area operator, one then uses a decomposition of the measured
surface into small pieces and takes the limit of infinitely small partition, ρ : Σ =

⋃
nΣn, of a

regularized expression for the area

ŜΣ = lim
ρ→∞

∑

n

√
ĝ(Σn), ĝ(Σn) = δab

∼̂
Ea(Σn)

∼̂
Eb(Σn). (2.13)

Applying the resulting operator to a spin network state ΨΓ, one finds that it is an eigenstate
with the eigenvalue given by the following expression3

SΣ,Γ = γℓ2p
∑

e∩Σ 6=∅

√
je(je + 1), (2.14)

where we restored the dependence on the Planck constant and the sum goes over intersections
of the surface with the graph determining the spin network (Fig. 2). The expression in the
square root is nothing else but the Casimir operator of SU(2). Thus the LQG spectrum of
the area operator is discrete and has a minimal non zero eigenvalue.

An important observation is that the spectrum (2.14) is proportional to the Immirzi pa-
rameter γ. This proportionality arises due to the difference between

∼
E and the variable

∼
E(γ)

having canonical commutation relations with the connection. It signifies that this parameter,
which did not play any role in classical physics, becomes a new fundamental physical constant
in quantum theory. This fact obviously requires an explanation how this could happen. A
usual explanation is that it is similar to the θ-angle in QCD [35]. However, in contrast to the
situation in QCD, the formalism of LQG does not even exist for the most natural value γ = ∞
corresponding to the usual Hilbert–Palatini action. Moreover, the Immirzi parameter enters
the spectra of geometric operators in LQG as an overall scale, which is a quite strange effect.
Even stranger is that the canonical transformation (2.6), mapping classical formulations with
different γ to each other, turns out to be implemented non-unitarily, so that the area operator
is sensitive to the choice of canonical variables. To our knowledge, there is no example of such
a phenomenon in quantum mechanics. Although [35] suggests a special quantization of a three
dimensional non-relativistic particle of zero orbital momentum which is supposed to give rise

3We ignore situations where the intersections of the surface with the spin network happen at vertices of
the latter. The full spectrum taking into account all possible cases can be found in [34].
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to such an effect with the role of the area played by the kinetic energy, a correct analysis of this
example given in [36] shows the physical inadequacy of this quantization. Anyway, the issue
is not settled until an explanation is not given. Below we will argue that the dependence on
the Immirzi parameter is due to a quantum anomaly in the diffeomorphism symmetry, which
in turn is related to a particular choice of the connection used to define quantum holonomy
operators (2.7). We return to the discussion of the area operator in section 2.4.

Volume operator

The next operator to be considered is the volume operator which has been defined in
[33, 37]. This operator is very important because it is at the heart of the construction by
Thiemann of the quantization of the Hamiltonian constraint [38] to be considered below. Like
the area operator, it is defined on the kinematical Hilbert space as a quantization of the
classical volume of a region R ⊂M which is given by the following integral

VR =

∫

R

d3x
√
h =

∫

R

d3x

(∣∣∣∣
1

3!
εijkε

abcẼi
aẼ

j
b Ẽ

k
c

∣∣∣∣
)1/2

. (2.15)

There exist two different regularizations of this classical expression, leading to two different
versions of the quantum volume operator. The first one is due to Rovelli and Smolin [33] and
the second one is due to Ashtekar and Lewandowski [37], so that we denote them as V̂ RS

R and
V̂ AL
R , respectively.
To give the action of these operators on a spin network state, let us first introduce left

(right) derivatives on the space of cylindrical functions (2.9). If Γ is a colored graph immersed
in M and eI is an oriented edge starting at a vertex v, we define the operator Xa

v,eI
as

Xa
v,eI

ΨΓ,f =
d

dt
f(Ue1 [A

(γ)], ..., etτaUeI [A
(γ)], ..., UeE [A

(γ)])

∣∣∣∣
t=0

. (2.16)

If v is the arrival point of eI , one writes a similar formula with the exponential on the right. In
terms of these derivative operators, the action of the volume operators on spin network states
are given by

V̂ RS
R ΨΓ = γ3/2ℓ3p

∑

v∈R∩Γ

∑

I,J,K

∣∣∣∣
iCreg

8
εabcX

a
v,eI

Xb
v,eJ

Xc
v,eK

∣∣∣∣
1/2

ΨΓ (2.17)

and

V̂ AL
R ΨΓ = γ3/2ℓ3p

∑

v∈R∩Γ

∣∣∣∣∣
iCreg

8

∑

I,J,K

ǫv(eI , eJ , eK)εabcX
a
v,eI

Xb
v,eJ

Xc
v,eK

∣∣∣∣∣

1/2

ΨΓ, (2.18)

where Creg is a constant dependent on the regularization scheme, the second sum goes over all
triples of edges meeting at vertex v, and in the Ashtekar–Lewandowski version ǫv(eI , eJ , eK) ∈
{−1, 1, 0} is the sign of the orientation of the three tangent vectors at v of the curves eI , eJ , eK .

This result is derived using a procedure similar to the one used for the area operator, i.e.,
partitioning the region R in sufficiently small cubes Rn and expressing their volume elements
through the densitized triad. The two versions are called external and internal regularizations,
respectively, because the second one is such that it depends on the orientation of the tangent
vectors inside these small cubes, whereas the first is independent on these data. Besides, note
that in the first version, the operator is given as a sum of square root factors, whereas in the
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je1

je2

je3

je4

v

Rn

Figure 3: Infinitesimal volume element centered on a vertex v

second it appears as the square root of the sum over triples of edges. Thus, the two versions
realize inequivalent quantizations of the classical volume function.

In fact, in [39] it has been demonstrated that only V̂ AL
R passes the so called triad test.

This is the requirement that the action of the smeared triad operator (2.12) coincides with the
action of its classical equivalent constructed from commutators of the volume with holonomies
of the gauge connection. This ensures the self-consistency at the kinematical level of the loop
quantization and the regularization procedures involved in the definitions. Remarkably, only
the Ashtekar–Lewandowski version of the volume operator satisfies this condition, whereas the
Rovelli–Smolin version turns out to be ruled out.4 Besides, this test allows to fix the scheme
dependent constant left undetermined above. It has to be chosen as Creg =

1
3!8

.
The important fact is that the contribution to the volume operator of a vertex of valence

less or equal to 3 vanishes so that only vertices of valence greater than 3 contribute to the
volume. This is important because in the old formulation of LQG expressed in terms of
Ashtekar variables, states were labeled by loops (eventually with intersection points) and it was
shown that loop states without intersections (called regular loops) satisfy all the constraints
of LQG including the Hamiltonian constraint [40]. However, it was soon realized that with
these regular loop states one could not reproduce in any limit a classical geometry because
the action of the volume operator on these states is zero. Therefore the weave state of [41]
constructed using regular loops cannot be considered as states satisfying all constraints and
approximating a classical metric. These weave states have been corrected in [42] by including
4-valent intersections, but the resulting state is only a kinematical state approximating a
classical metric and it does not satisfy the Hamiltonian constraint.

Another important property of the volume operator is that it is not diagonal on general
spin network states contrary to the area operator. Therefore, although it is easy to see that
its spectrum is discrete [33], computing its precise form is a much more complicated problem
than it is for the area operator. However, this is just a technical difficulty which comes from
the various sign possibilities for ǫ(eI , eJ , eK) in V̂ AL

R . Numerically the spectrum of V̂ AL
R has

been extensively studied and much about it can be found, for example, in [43, 44, 45]. In
particular, these computations indicate that the lower bound of this spectrum tends to zero
when evaluated on spin networks having vertices of valence 5 and 6.

4In fact, the Ashtekar–Lewandowski volume operator satisfies the triad test only on 6-valent spin network
graphs. Therefore, the actual meaning of this test is still unclear and is a subject of debate.
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2.1.4 Loop quantization: diffeomorphism and Hamiltonian constraints

The imposition of Hi and H on the kinematical Hilbert space is implemented in the LQG
approach in two very different schemes. One first implements the spatial diffeomorphisms by
identifying spin network states which are in the same orbit of Diff(M). This is usually done
as follows: let D be a set of spin networks embedded in M . For each spin network Γ ∈ D we
define the element 〈ΨΓ, ·〉 of the algebraic dual D⋆, and denote

Ψ[Γ] =
∑

ϕ(Γ),ϕ∈Diff(M)

〈Ψϕ(Γ), ·〉. (2.19)

Although the sum is infinite, this gives a well defined element of D∗ because the action on
an element of D has only a finite number of non-vanishing contributions. This element only
depends on the orbit [Γ] of Γ under Diff(M). One can define a preHilbert space on the
subvector space of D∗ generated by Ψ[Γ] with the inner product:5

〈Ψ[Γ],Ψ[Γ′]〉Diff := 〈Ψ[Γ],ΨΓ′〉. (2.20)

After completion of this pre-Hilbert space, one obtains the Hilbert space HGDiff on which
Diff(M) acts trivially. A Hilbertian basis of HGDiff is therefore labeled by the equivalence
classes of embedded spin networks in M under diffeomorphisms.

The imposition of the Hamiltonian constraint causes much more trouble mainly because
its action on spin networks does not have an easy geometric interpretation. But the first
problem to be solved is actually to construct an operator Ĥ which could be considered as a
quantization of the classical function H given in (2.4). On general ground, this operator has
to satisfy the following requirements:

• Ĥ should give back H in the classical limit and its definition should not be too much
dependent on a regularization;

• Ĥ should properly implement the quantization of the Dirac algebra of constraints;

• there should exist normalizable states annihilated by Ĥ whose classical limit is described
by solutions of general relativity.

A proposal for such quantum Hamiltonian constraint operator has been given by Thiemann
in the series of works [38, 46, 47] and it essentially relies on the definition of the volume operator
described in the previous subsection. Note that the classical Hamiltonian constraint (2.4) is
naturally split into two pieces. The first one is polynomial in canonical variables and can be
written as

HE =
1

2

∼
Ei

(γ)a

∼
Ej

(γ)bε
ab
cF

(γ)c
ij = −γ−3εijkδabF

(γ)a
ij {A(γ)b

k , VM}, (2.21)

where VM is the volume function of the whole spacelike hypersurface. It is called sometimes
“Euclidean” Hamiltonian constraint because in Euclidean theory the second non-polynomial
term of the Hamiltonian constraint in (2.4) is weighted by the factor 1− γ2 and thus vanishes
for the real value γ = ±1, corresponding to self-dual theory, leaving us with HE . The classical
expression (2.21) is easy to quantize, whereas the second term dependent on the extrinsic
curvature is much more difficult to deal with. A beautiful insight of Thiemann was that

5We have simplified a little bit the definition here by assuming that Γ,Γ′ have no symmetries. It is easy to
correct the picture in the general case.
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classically it can be recovered from the Poisson algebra generated by the canonical variables
and the volume operator. More precisely, the extrinsic curvature can be obtained from the
commutation relation with its integrated trace K defined in (2.6) as Ka

i = γ−1{K,A(γ)a
i },

whereas the latter can be written using the above defined Euclidean Hamiltonian

K =

{
VM ,

∫

M

HE(x)d
3x

}
. (2.22)

Thus, the quantum Hamiltonian constraint operator Ĥ can be constructed by ”quantizing”
these classical relations.

Thus, the quantization of the Hamiltonian constraint and its representation on the kine-
matical Hilbert space follows the following steps:

1. choose a triangulation ∆ of the spacelike hypersurface M and for each tetrahedron t ∈ T
select one of its vertices vt;

2. define V̂ = V̂ AL
M ;

3. define ĤE[N ] =
∑

t∈∆ ĤE, t where N is a lapse function and

ĤE, t = −N(vt)

i~γ3
εijk tr

(
Uαt

ij
Uet

k

[
U−1
et
k

, V̂
])
, (2.23)

where eti are the three edges of the tetrahedron t meeting at vt and α
t
ij is the closed loop

originating from vt and bounding the face of t defined by eti, e
t
j ;

4. define K̂ = 1
i~

[
V̂ , ĤE[1]

]
;

5. finally, define the quantum Hamiltonian constraint to be Ĥ [N ] =
∑

t∈∆ Ĥt where

Ĥt = ĤE, t +
1 + γ2

(i~)3γ
N(vt)ε

ijk tr
(
heti

[
h−1
eti
, K̂
]
hetj

[
h−1
etj
, K̂
]
het

k

[
h−1
et
k

, V̂
])
. (2.24)

It is easy to see that the action of Ĥ [N ] on a spin network state is a finite linear combination of
spin networks. By taking ∆ sufficiently small and adapted to Γ, it can be shown that Ĥ [N ]ΨΓ

does not depend on ∆ under refinement and thus the operator is well defined. Its action can
be computed explicitly in terms of matrix elements of the volume operator [46].

We refer to [14, 15] for discussion of weak points of this construction. Even our second
requirement that Ĥ properly implements the Dirac algebra is not evidently satisfied. But the
most difficult problem is to say something about the third requirement, essentially equivalent
to that one should recover Einstein gravity in the classical limit. However, even before taking
the limit, not much progress has been done in finding the physical Hilbert space of LQG by the
canonical method (see however the master constraint program [48]). Therefore, at present the
hope relies on covariant methods of spin foams6 appearing in this context from expansion of
the projection operator, which is determined by the Hamiltonian constraint and maps states
from HGDiff to the physical states [50]. This approach will be the main subject of chapter 3.

6Note in this relation that recently a new quantization of the Hamiltonian constraint has been proposed
in [49]. It goes essentially along the same lines as Thiemann’s quantization with the only modification in the
Euclidean Hamiltonian (2.23) where the curvature is approximated using a certain tetrahedron instead of the
triangle αt

ab. Such regularization was argued to be more compatible with the spin foam approach than the
original one.
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2.2 Lorentz covariant approach

2.2.1 Covariant canonical formulation

Although the construction leading to LQG is straightforward and somewhat elegant, it pos-
sesses one feature which is not completely satisfactory. Whereas general relativity in the first
order formulation has the Lorentz group as a local symmetry in the tangent space, the gauge
group of LQG is only its SU(2) subgroup. If this is a consistent quantization, it must be pos-
sible to formulate it in a Lorentz covariant way. Below we shall see that this is indeed possible,
but the corresponding construction reveals other issues hidden in the original framework.

The reduction of the gauge group originates from the first two steps in the procedure leading
to the AB canonical formulation on page 6. Therefore, it is natural to construct a canonical
formulation and to quantize it avoiding any partial gauge fixing and keeping all constraints
generating Lorentz transformations in the game. The third step in that list (solution of the
second class constraints) can still be done and the corresponding canonical formulation can
be found in [51]. However, this necessarily breaks the Lorentz covariance. On the other hand,
it is natural to keep it since the covariance usually facilitates analysis both at classical and
quantum level. Thus, we are interested in a canonical formulation of general relativity with
the Immirzi parameter, which preserves the full Lorentz gauge symmetry and treats it in a
covariant way.

Such a formulation was constructed in [18]. It originates from the following 3 + 1 decom-
position of the cotetrad

e0 = Ndt + χaE
a
i dx

i, ea = Ea
iN

idt+ Ea
i dx

i. (2.25)

As usual, Ea
i is the triad, whereas N and N i are the usual laps and shift, respectively, which

however should be properly redefined to appear precisely as Lagrange multipliers for the
constraints generating diffeomorphisms. The new field which appears here is χa. It has a very
clear geometric meaning: χa determines the direction of the normal to the three-dimensional
slices of constant time. In particular, the slice is spacelike, timelike or lightlike depending on
whether χ2 = χaχa is less, larger or equal to 1. In the following we restrict ourselves to the
case of spacelike foliation, although the timelike case can be treated in the same way [52].

It is useful to define a four-dimensional unit vector (xIxI = σ) determined by χa

xI(χ) =

(
1√

1 + σχ2
,

χa√
1 + σχ2

)
(2.26)

and two orthogonal projectors acting in the adjoint representation of the gauge algebra g

IIJ,KL(Q) (x) = ηI[KηL]J − 2σ x[JηI][KxL], IIJ,KL(P ) (x) = 2σ x[JηI][KxL]. (2.27)

The vector xI is precisely the direction of the normal mentioned above. It defines a subgroup7

Hx = SUx(2) of the gauge group G = SO(η) which is the isotropy subgroup of xI with respect
to the standard action of G on R4. Then the geometric meaning of I(Q) and I(P ) is that they
project on the Lie subalgebra of Hx (rotations) and on its orthogonal complement (boosts)
with respect to the Killing form gIJ,KL, respectively. These projectors play an important role
and appear both in canonical and spin foam approaches to quantum gravity.

7In this review we do not distinguish between SU(2) and SO(3) groups. The choice of the correct group is
a controversial issue in LQG (see, for example, [53]), but most of the analysis is done at the algebraic level
anyway and does not depend on this choice.
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The time gauge heavily used to obtain the AB canonical formulation corresponds to the
particular choice χa = 0. The subgroup Hx coincides in this case with the canonically embed-
ded SO(3), which is the central object of LQG defining its structure.

As usual, various components of the tetrad play different role in the canonical formulation.
The laps and shift appear as Lagrange multipliers for the diffeomorphisms and Hamiltonian
constraints, respectively, whereas the triad and the field χa enter canonical variables. The
latter are given by the space components of the spin-connection ωIJi and by the field

∼
P(γ)

i
IJ =

(
1 +

1

γ
⋆

)
∼
P i
IJ (2.28)

with
∼
P i
IJ =

1

2
εijkεIJKLe

K
j e

L
k =

{ ∼
Ei
a I = 0, J = a∼

Ei
aχb −

∼
Ei
bχa I = a, J = b

(2.29)

It is clear that not all components of the field
∼
P(γ)

i
IJ are independent. By a counting argument,

there should be six constraints which can be written as

φij = εIJKL
∼
P i
IJ

∼
P j
KL ≈ 0. (2.30)

They are of second class because commuting them with the Hamiltonian, one generates sec-
ondary constraints

ψij = f IJ,KL,MN ∼
Ql
IJ

∼
Q

{j
KL∇l

∼
Q
i}
MN ≈ 0, (2.31)

where
∼
Qi
IJ = − ⋆

∼
P i
IJ and fMN

IJ,KL are so(3, 1) structure constants, and these constraints do
not commute with the primary ones, {φij, ψkl} 6= 0. The conditions (2.30) are the famous
simplicity constraints ensuring that the bi-vectors

∼
P i
IJ are constructed from tetrads as in

(2.29). At the same time, the conjugate constraints (2.31) impose certain conditions on the
spin-connection sitting in the covariant derivative. In the Lagrangian picture they arise as a
part of Cartan equations.

The presence of the second class constraints is the main complication of the covariant
canonical formulation. They change the symplectic structure on the phase space which must
be determined by the corresponding Dirac bracket. It can be computed straightforwardly. In
particular, one has the following commutation relation

{ωIJi ,
∼
P(γ)

j
KL}D = δji δ

IJ
KL − 1

2

(
gIJ,MN − 1

2γ
εIJMN

)( ∼
Qj
MN ∼Q

PQ
i + δji I

PQ
(Q)MN

)
gPQ,KL, (2.32)

where the definition of ∼Q
IJ
i can be found in [18]. Another new feature is that the spin-

connection becomes ”non-commutative” in the sense that the Dirac bracket of two spin-
connections is non-vanishing.

This phase space carries the action of ten first class constraints. Six of them, GIJ , generate
local Lorentz transformations and four, Hi and H , generate space-time diffeomorphisms. The
constraints have essentially the same form as the ones of AB formulation (2.4) with

∼
Ei

(γ)a, A
(γ)a
i

being replaced by
∼
P(γ)

i
IJ , ω

IJ
i , the structure constants of SU(2) being replaced by the structure

constants of SO(3, 1) and the last term in the Hamiltonian constraint (2.4) involving the
intrinsic curvature being dropped.8 Thus, all constraints are polynomial in the canonical
variables as in the self-dual Ashtekar gravity.

8Besides, the first term in the Hamiltonian constraint contains additional factor
1− 1

γ
⋆

1+1/γ2 .

16



This completes the description of the resulting canonical formulation. But this is not the
end of the story yet. Unfortunately, it turns out that the spin-connection is not appropriate
for the loop quantization [54]. Indeed, if one considers spin network states constructed from
the spin-connection (forgetting about its non-commutativity), they are not eigenstates of the
area operator (2.13), where the metric in our variables reads

gij = −1

2
gIJ,KL

∼
P i
IJ

∼
P j
KL. (2.33)

This happens due to the complicated structure of the commutator (2.32) which replaces the
simple canonical commutation relation of LQG (2.3). Thus, one looses one of the fundamental
results of LQG together with the geometric interpretation of the spin network states.

Quite remarkably, there is a way to overcome this problem. The solution is very simple:
one should construct loop states using a different connection appropriately chosen so that the
area operator is diagonal on the new states. To achieve such a diagonalization, one should
assure that the action of

∼
P smeared over a surface is purely algebraic on these states, i.e., it

does not depend on embedding of the underlying graph and the surface. The necessary and
sufficient condition for that is the proportionality of the Dirac bracket between

∼
P and the

new connection to δji , which is not the case for the spin-connection due to the second term in
(2.32).

But what are these connections which can be taken to define the loop states? It is clear that
they should be functions on the phase space, let us call them AIJ

i , transforming under gauge
symmetries of the theory in the same way as the spin-connection. Adding to this condition
the above requirement that the area operator is diagonal, one arrives at the following list of
conditions on these quantities:

i) {G(n),AIJ
i }D = ∂in

X + f IJKL,MNAKL
i nMN ,

ii) {D( ~N),AIJ
i }D = AIJ

j ∂iN
j +N j∂jAIJ

i , (2.34)

iii) {AIJ
i ,

∼
P j
KL}D ∼ δji ,

where Di = −Hi +AIJ
i GIJ are the generators of spatial diffeomorphisms and ∼ means up to

a factor which can be arbitrary tensor in the tangent space indices. It is not a very difficult
exercise to find all AIJ

i (ω,
∼
P ) satisfying (2.34). Once the second class constraints (2.31) are

taken into account, there is a two-parameter family of such objects (a,b)AIJ
i labeled by (a, b) ∈ R2

[55]. What we need to know about them is their Dirac brackets with
∼
P which are given by

{(a,b)AIJ
i ,

∼
P j
KL}D = δji

(
(1− b)δIJMN − a

2
εIJMN

)
IMN
(P )KL. (2.35)

An important consequence of this Dirac bracket, which will play an essential role in the
following, is that all new connections commute with the projectors (2.27) and therefore with
the field χc

{(a,b)AIJ
i , χ

c}D = 0. (2.36)

This is possible only if (a,b)AIJ
i have three independent components less than the spin-connection.

And indeed, only nine of their components are independent. Six components are fixed by the
constraints ψij and the three missing components can be recovered from the Gauss constraint
GIJ . Thus, the parametrization of the phase space, which we would like to use as the starting
point for quantizing the theory, is provided by (a,b)AIJ

i ,
∼
P i
IJ and GIJ subject to various first and

second class constraints.
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2.2.2 Loop quantization

Let us now try to quantize the covariant canonical formulation presented above following the
ideas of the loop approach. This means that we assume the loop functionals of the connection
(a,b)A to give rise to well defined states of quantum gravity. There are however several differences
of the present situation comparing to the one in LQG, which must be taken into account.

• First of all, the connection lives now in the Lorentz Lie algebra so that its holonomy
operators belong to a non-compact group. This is a striking distinction from LQG where
the compactness of the structure group SU(2) is crucial for the discreteness of geometric
operators and the validity of the whole construction.

• The symplectic structure is not anymore provided by the canonical commutation rela-
tions of the type (2.3) but is given by the Dirac brackets. In particular, the commutator
relevant for the evaluation of the area spectrum is (2.35). This means that one has to
quantize a much more complicated system than one had previously.

• As a consequence of the new symplectic structure, all (except one) connections (a,b)A are
non-commutative. This questions the use of the loop or spin network functionals to span
the Hilbert space of quantum theory.

• The fact that passing to the new connection one lost three independent components
and as a result (a,b)A commutes with χ (2.36), indicates that it is insufficient to consider
the functionals of only (a,b)A. The full configuration space is spanned by functionals
dependent on both, (a,b)A and χ.

• In addition to the first class constraints generating gauge symmetries, the phase space
to be quantized carries second class constraints. Although they are already taken into
account in the symplectic structure by means of the Dirac brackets, they lead to a
degeneracy in the Hilbert space constructed ignoring their presence [52]. It is a non-
trivial problem to remove such a degeneracy.

How do these differences affect the construction? As we will see, the non-compactness of
the Lorentz group is actually not a serious obstacle and moreover in some cases it does not
imply that the discreteness of LQG is lost. Also the commutation relation (2.35) can be easily
realized since the action of the smeared

∼
P operator on holonomies of (a,b)A is purely algebraic.

A really difficult issue is the non-commutativity of the connection. But even this property
does not prevent from considering loop states because of the path ordering in the definition of
holonomies, which makes them well defined. The loop states defined by a non-commutative
connection associated to the Lorentz group are well known in the context of the Chern-Simons
approach to 2+1 gravity with positive cosmological constant [56]. However, here the situation
is more complicated due to a more complicated from of the commutator of two connections
[57, 52]. We will discuss this issue in more detail later in section 4.1.

The fourth point in the above list does lead to something new. Since the wave functionals
have to depend now on two variables of different origin, the basis elements of the corresponding
Hilbert space are going to have a richer structure than the usual spin networks. To define
the Hilbert space structure, one considers generalized cylindrical functions which, as the usual
ones, are associated with graphs and whose dependence on the connection is supposed to be
through the Lorentz group elements represented by holonomies. In addition, they also depend
on the values of the field χ at vertices. Note that χ is naturally encoded in the unit vector xI
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Figure 4: Projected spin network and the structure of its intertwiners.

(2.26) which can be considered as an element of the quotient space X = G/H . This implies
that the generalized cylindrical functions live on the homogeneous space GE×XV . The scalar
product is then given by a natural generalization of the scalar product (2.10)

〈ΨΓ,f |ΨΓ′,f ′〉 =
∫

GE
Γ∪Γ′

dµ(g)f(g1, . . . , gE; x1, . . . , xV )f
′(g1, . . . , gE; x1, . . . , xV ), (2.37)

where the two functions are evaluated on arbitrary, but same xv and the scalar product does
not depend on their choice due to the gauge invariance of the wave functionals.

A basis in this Hilbert space can be found by the method of harmonic analysis and is given
by the so called projected spin networks [58]. As the usual spin networks, they are represented
by graphs colored by representations and intertwiners. But now the coloring is richer. One
assigns an irreducible representation λe of the group G to each edge, a representation jve of the
subgroup H to each couple of edge and vertex belonging to this edge, and an intertwiner I(v)

H

of H which couples the representations jve (see Fig. 4). Remarkably, despite the appearance
of the subgroup, the full state is invariant with respect to the full gauge group G. This is
possible because the subgroup to be considered is actually defined by the element x of the
factor space and is transformed together with the group elements defined by holonomies of
the connection.

More specifically, let Hx be the stationary subgroup of x ∈ X (as below (2.27)) and

Hλe
G =

⊕

jve

Hjve
Hxv

(2.38)

is the decomposition of the representation λe to the subgroup defined by the value of x at the
vertex v. Let π(jve)(xv) be the projector to the subspace of representation jve. Then the state
associated with the projected spin network can be written as

ΨΓ(
(a,b)A, χ) =

〈
⊗

e

(
π(jt(e)e)(xt(e))R

(λe)
G

(
Ue[

(a,b)A]
)
π(js(e)e)(xs(e))

)
,
⊗

v

I(v)
H (xv)

〉
, (2.39)

where t(e) and s(e) denote target and source vertices, respectively, of the edge e. The pro-
jectors and intertwiners carry dependence on xv because they are defined with respect to the
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subgroup dependent on it. Due to this, they transform under a general gauge transformation
precisely in such a way to leave the whole state invariant.

Thus, we see that the naive generalization of the SU(2) spin networks to their Lorentz
analogues is not the correct way to proceed. A more elaborated structure is required. The
origin of this novelty can be traced back to the presence of the second class constraints which
modified the symplectic structure and invoked a connection different from the usual spin-
connection. The projection appearing in the definition (2.39) solves also some problems arising
for the usual spin networks defined for a non-compact gauge group [59], because it effectively
reduces the holonomies to the compact subgroup in the sense that they now live in finite
dimensional representation spaces of H . In particular, the projected spin network states can
be well evaluated on a vanishing connection.

These states turn out to be extremely important also in the context of spin foams since
they describe boundary states of any SF model of four-dimensional general relativity based on
Plebanski formulation (see the next chapter) [60]. In particular, the boundary states associated
with the new vertices of [20, 21] belong to particular subsets of projected spin networks.

Using the commutation relation (2.35), one can evaluate the action of the area operator
on the states (2.39). The result is given in terms of Casimir operators of both the full gauge
group and the subgroup [55]

S = ℓ2p

[
(a2 + (1− b)2)CSO(3) − (1− b)2C

(1)
SO(3,1) + a(1− b)C

(2)
SO(3,1)

]1/2
, (2.40)

where the two Casimir operators of so(3, 1) are defined in terms of the generators and evaluated
on a principal series representation λ = (n, ρ) as follows

C
(1)
SO(3,1) = −1

2
gIJ,KLT̂IJ T̂KL = n2 − ρ2 − 1,

C
(2)
SO(3,1) = −1

4
εIJKLT̂IJ T̂KL = 2nρ,

(2.41)

and the representations of the subgroup are restricted to satisfy j ≥ n. The spectrum (2.40)
depends explicitly on the parameters a, b entering the definition of the connection. This
implies that the quantizations based on different connections of the two-parameter family are
all inequivalent.

Finally, we notice that the projected spin networks are obtained by quantizing the phase
space of the covariant canonical formulation ignoring the second class constraints. Therefore
they form what can be called enlarged Hilbert space and as we mentioned above this space
contains many states which are physically indistinguishable. To remove this degeneracy one
has to somehow implement the second class constraints at the level of the Hilbert space. The
idea is that this can be done by appropriately restricting the labels of spin networks [52, 61].
How this is done in detail depends of course on the explicit form of the second class constraints
in question, which in turn is determined by the choice of connection. Below we will see how
this works in some particular cases.

2.3 Two quantizations

As we saw, different connections of the two-parameter family give rise to inequivalent quantiza-
tions. Of course, such situation is unsatisfactory until we resolve this quantization ambiguity.
For this purpose some additional physical arguments should be invoked.
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It turns out that there are two natural additional requirements to the list (2.34), each
selecting one particular connection. Thus, there are two distinguished quantizations which
are in fact different and in some sense even orthogonal to each other. Here we describe their
main features and in the next subsection we discuss which of the two is the physically relevant
one.

2.3.1 LQG in a covariant form

Above we mentioned that all connections (a,b)A except one are non-commutative with respect
to the symplectic structure induced by the Dirac bracket. The non-commutativity is a serious
obstacle to find a representation of the classical commutation relations. Therefore, it is natural
to require the commutativity as an additional condition on the connection to be used in the
loop operators. This condition fixes parameters a and b as follows [62]

a = −γ, b = 1, (2.42)

and the corresponding connection can be written as

AIJ
i ≡(−γ,1)AIJ

i = IIJ(Q)KL(1− γ⋆)ωKLi + 2(1 + γ⋆)x[J∂ix
I]. (2.43)

It possesses the following properties:

• It is commutative
{AIJ

i ,A
KL
j }D = 0. (2.44)

• In the time gauge χ = 0, it coincides with the Ashtekar-Barbero SU(2) connection, thus
being its Lorentz generalization:

AIJ
i =

χ=0

{
0 I = 0, J = a

ωabi − γεabcω
0c
i = εabcA

(γ)c
i I = a, J = b

(2.45)

• Its commutator with the bi-vector
∼
Q is

{AIJ
i ,

∼
Qj
KL}D = γδji I

IJ
(Q)KL, (2.46)

where I(Q) is the projector on the SUx(2) part of the Lorentz group. In the time gauge
it reproduces the basic commutator of AB formulation (2.3).

Due to this last relation and as follows from (2.40) with (2.42), the area spectrum corresponding
to this SL(2,C) connection coincides exactly with the one coming from LQG given by the
Casimir operator of SU(2) (2.14). Thus, despite the fact that the connection lives in the
Lorentz algebra and the full Lorentz symmetry is preserved, the spectrum is discrete and one
recovers the standard LQG results.

Moreover, one can show that once the second class constraints are taken into account at
the level of the Hilbert space, the kinematical states reduce to the usual SU(2) spin networks
[62]. Indeed, the second class constraints read

IIJ(P )KLA
KL
i = 2 x[J∂ix

I]. (2.47)

Assuming that xI = const, they imply that only the SUx(2) part of the connection is non-
trivial. Due to this its holonomy belongs to this subgroup and therefore

π(j1)(x) · R(λ)
G (Uα[A]) · π(j2)(x) = δj1j2R

(j1)
Hx

(Uα[A]) . (2.48)
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The r.h.s. does not depend on the representation λ and is non-vanishing only for j1 = j2.
Substituting this into (2.39), one obtains an SU(2) spin network labeled by representations je
(the label v becomes auxiliary) and intertwiners I(v)

SU(2). It is clear that the case of arbitrary

xI can be obtained by performing a Lorentz gauge transformation. Since the initial projected
spin networks are gauge invariant, the result does not change. Thus, choosing the parameters
as in (2.42), we obtain LQG in the Lorentz covariant form.

2.3.2 CLQG

Although the commutativity of the connection is a nice property, there is another possibility
of imposing an additional condition to resolve the quantization ambiguity, which has a clear
physical origin. Notice that the Lorentz transformations and spatial diffeomorphisms, which
appear in the list of conditions (2.34), do not exhaust all gauge transformations. What is
missing is the requirement of correct transformations under time diffeomorphisms generated
by the full Hamiltonian. Only the quantity transforming as the spin-connection under all local
symmetries of the theory can be considered as a true spacetime connection. Thus, another
possible condition on (a,b)A is that on mass shell it should satisfy

iv) δ(ξ0)AIJ
i = ξ0∂0AIJ

i +AIJ
0 ∂iξ

0,

δ(ξ0)AIJ
0 = ∂0(ξ

0AIJ
0 ).

(2.49)

Remarkably, there is a unique member of the two-parameter family which solves (2.49). It
corresponds to vanishing a and b and is given explicitly by [55]

AIJ
i ≡(0,0)AIJ

i =ωIJi +
1

2

(
1− γ−1 ⋆

)
IIJ,KL(Q) fSTKL,PQ∼P

PQ
i ∇k

∼
P k
ST

= IIJ(P )KL

(
1 + γ−1 ⋆

)
ωKLi +

(
1− γ−1 ⋆

)
ΓIJi (

∼
P ),

(2.50)

where ΓIJi is the SL(2,C) connection compatible with
∼
P . From this expression one finds the

following properties:

• AIJ
i is non-commutative.

• On the surface of the Gauss constraint it coincides with the spin-connection.

• Its commutator with the bi-vector
∼
P is

{
AIJ
i ,

∼
P j
KL

}
D
= δji I

IJ
(P )KL. (2.51)

The last property, or equivalently (2.40) with vanishing a and b, implies that the area spectrum
in this case is completely different from the one of LQG and reads as

S = ℓ2p

√
CSO(3) − C

(1)
SO(3,1). (2.52)

In particular, it involves a Casimir of the Lorentz group and hence this spectrum is continuous.
But the most striking and wonderful result is that the spectrum does not depend on the
Immirzi parameter! Moreover, one can show that this parameter drops out completely from
the symplectic structure written in terms of A and

∼
P [52]. Thus, it remains unphysical as it

was in the classical theory, at least at this kinematical level.
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The differences between the two cases are in fact very deep. Comparing (2.51) with (2.46),
one observes that the dynamical parts of A and A are orthogonal to each other: for A these
are the SU(2) components that are dynamical, whereas in the case of A these are the boost
components. This is confirmed by the second class constraints which for A read as follows

IIJ(Q)KLAKL
i = ΓIJi (

∼
P ) (2.53)

and show that its SU(2) part is fixed by the conjugate variables. Note the similarity of these
constraints with the reality conditions (2.5) for the complex Ashtekar connection. It is not
accidental since for γ = i the chiral component of the shifted connection coincides with the
Ashtekar connection and the reality conditions play the role of the second class constraints on
an extended phase space [63].

The quantization relying on the use of the connection A was called Covariant Loop Quan-
tum Gravity (CLQG) [64]. Unfortunately, there are two (related) problems which put this
quantization on unsteady ground. First, due to the complicated nature of the commutator of
two connections, it is not known how to represent the full Dirac algebra. In principle, the Dirac
bracket of two connections is known explicitly [57, 52] and has some nice properties, which
can be easily derived from the constraints (2.53). In particular, the commutator does not
involve the connection and can be seen as a first order differential operator with

∼
P -dependent

coefficients acting on δ(x, y). However, this information did not help so far to understand its
underlying geometric meaning. The second problem is that it is not known how the constraints
(2.53) can be taken into account by a restriction of labels of projected spin networks similarly
to how the constraints (2.47) have been treated. Nevertheless, we would like to take the above
results seriously and to discuss what they imply for the status of LQG.

2.4 Discussion

The results presented in the previous subsection imply that LQG is a mathematically well
established quantization which can be formulated in a Lorentz covariant form. But the basic
holonomy operators are defined using a connection which transforms properly only under space
diffeomorphisms, whereas the action of time diffeomorphisms on it is extremely complicated.
In other words, this connection is not a pull-back of a spacetime connection, as was noticed
in [65].

What does this mean? Is it just an inessential feature of the formalism or a serious
problem? From our point of view, this is a very important fact which indicates that LQG may
have troubles with the diffeomorphism invariance at the quantum level. The situation is in
fact similar to the one with space diffeomorphisms. Why do we need that the connection be
a one form? Because then the action of a diffeomorphism ϕ on the holonomy along a loop is
another holonomy defined along the shifted loop

Uα[ϕ
∗(A)] = Uϕ(α)[A]. (2.54)

If this property is not satisfied, it seems to be impossible to realize the symmetry preserving
all commutation relations. The constraint algebra almost unavoidably is going to acquire an
anomaly. And this is what we think does happen in LQG. Some old observations supporting
this conclusion can be found in [66, 67, 14].

A breaking of some symmetry is not necessarily excluded. A notable example is the chiral
symmetry. However, here we deal with a local symmetry which is supposed to be fundamental
and we do not consider possibilities where it arises only in the low energy limit, as it happens,
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for example, in the recent proposal [68]. The diffeomorphism invariance is one of the starting
points of LQG and it would be against its basic principles to give it up.

In fact, one could at least in principle consider such a possibility, if it was impossible
to preserve it at the quantum level. But as we saw in the previous subsection, there is an
alternative choice of connection, suitable for the loop quantization, which respects all gauge
symmetries. Besides, the latter approach, which we called CLQG, leads to results which seem
to us much more natural. For example, since it predicts the area spectrum independent on the
Immirzi parameter, there is nothing special to be explained and there is no need to introduce an
additional fundamental constant. Moreover, the spectrum appears to be continuous which is
very natural given the non-compactness of the Lorentz group and results from 2+1 dimensions
(see below).

Although these last results should be taken with great care as they are purely kinematical
and obtained ignoring the connection non-commutativity, in our opinion, the comparison of
the two possibilities to resolve the quantization ambiguity points in favor of the second choice.
The only disadvantageous feature of this choice is that it is not so developed and experiences
serious technical difficulties. On the other hand, there is no reason to expect quantum gravity
to be simple. We believe that this feature cannot be considered as a physical argument in
favor to neglect this possibility and to take LQG as the only reasonable canonical quantization.
Moreover, the issue of diffeomorphism invariance harms the SU(2) approach independently
on whether or not CLQG can be given a consistent realization, and does not allow to view it
as a physically acceptable theory.

Let us put now some of the LQG issues into a broader context.

2.4.1 Immirzi parameter

Since in LQG the Immirzi parameter becomes a new fundamental constant, it was asked
whether there are some effects where it appears already at the classical level, so that it could
be measured and compared, for example, with the value necessary to match the black hole
entropy [69]. At the same time, this would make its appearance in quantum theory not so
surprising.

In [70] it was proposed that the role of such classical effect may be played by the coupling
with fermions. If one assumes that at the fundamental level the fermions can be coupled to
gravity only in a minimal way through the spin-connection, as is well known, integrating it
out leads to a four-fermion interaction with the coupling determined by the Newton constant.
It turns out that the presence of the Immirzi parameter modifies the coupling and thus, in
principle, is measurable.

However, later it was noticed that this effect can be easily undone by a simple modifica-
tion of the fermion kinetic term [71]. Although the modified action deviates from the standard
minimal coupling, it is still quadratic in fermions. This observation suggested to consider the
most general coupling of this type [72]. Then, the resulting effective action contains several
current-current interaction terms. The corresponding coupling constants are in general depen-
dent on the Immirzi parameter, but this dependence can be absorbed by a reparametrization
of the initial coupling constants appearing in the original action. Thus, it is impossible to
measure the Immirzi parameter once the fundamental couplings are not fixed.

Moreover, for a special choice of these couplings identical to the one from [71], the Immirzi
parameter also drops out from the torsion removing CP violation effects. This choice is
clearly distinguished, which is confirmed also by an attempt to include the Immirzi parameter
into supergravity [73]. It turns out to be possible, but local supersymmetry imposes so strong
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restrictions that there is a unique way to achieve this goal. It is a straightforward generalization
of the coupling suggested in [71] and leads to no effects of the parameter.

These results show that the Immirzi parameter strongly resists against any attempt to
make it observable. Although this is a classical story, one might expect it to continue in
quantum theory as well.

2.4.2 Area spectrum

One of the striking differences between LQG and CLQG is the nature of the area spectrum:
whether it is discrete or continuous. Can one find some hints from simplified models about
which type of the spectrum one should expect in 4d gravity?

A very useful model for this purpose is general relativity in 2+1 dimensions. Since this is a
topological theory9 it is much easier comparing to gravity in 4 dimensions. In fact, there exist
many successful approaches to its quantization. However, different approaches are suitable for
different types of questions. Here we are interested in the spectrum of the length operator,
which is the 3-dimensional analogue of the area spectrum in 4 dimensions. Such spectrum
was investigated in [75] and, not surprisingly, it was found that the spectrum is continuous
for spacelike intervals and discrete for timelike intervals. This is precisely the pattern which
one has in CLQG [52]!

In fact, there is no way to avoid this conclusion in 3 dimensions. In this case there are
no second class constraints and therefore there is no reason to introduce a time gauge or to
change the connection. As a result, one has to deal with the usual spin-connection and the
structure group coincides with the full gauge group SO(2, 1). It is non-compact and naturally
leads to a continuous spectrum.10

In fact, there are two other more general issues which show that the LQG area spectrum is
far from being engraved into marble. First, the area operator is a quantization of the classical
area function and, as any quantization, is supplied with ordering ambiguities. In fact, it is
possible to define other quantizations of this classical observable leading to other spectra, even
in the standard LQG framework. For example, in [76] the equidistant form of the spectrum,
SΣ ∼ j + 1

2
, was advocated. Moreover, a similar ambiguity is used in the new SF models

[20, 21] to adjust constraint operators so that they would have non-trivial solutions. Thus,
the possibility of such renormalization effects should not be ignored.

Second, the computation of the area spectrum has been done only at the kinematical level.
The problem is that the area operator is not a Dirac observable. It is only gauge invariant,
whereas it is not invariant under spatial diffeomorphisms and does not commute with the
Hamiltonian constraint. This fact raises questions and suspicions about the physical relevance
of its spectrum and in particular about the meaning of its discreteness, even among experts
in the field [77, 78].

One can distinguish two viewpoints on this very important issue. The first one is that one
must stick to the Dirac formalism of constrained systems and to its standard quantization

9It is commonly said that 2+1 gravity is a topological theory completely equivalent to Chern-Simons theory
but this has to be taken with caution because of the problem of degenerate metrics which is well analyzed in
[74]

10There are many works where people make contact between loop quantizations of 4 and 3-dimensional
general relativity. However, very often in 3d they consider Riemannian gravity without even mentioning this.
Of course, then the gauge group is SU(2) like in LQG and the spectra of kinematical length operators are
discrete. But one should remember that this is a different theory and results found there cannot be used to
support the results of LQG.
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scheme. In this scheme only Dirac observables have a physical meaning. Therefore, the area
operator should be promoted to some true Dirac observable. This can be done, for example,
by coupling matter fields and using the theory of partial and complete observables in general
relativity developed in [79, 80].

The second strategy is to abandon the Dirac scheme and to use instead a relational inter-
pretation of relativistic Quantum Mechanics as advocated in [6]. In this case the quantum
theory is defined by a kinematical Hilbert space (in our case it is HG), whereas the dynamics is
implemented by a projection operator P : HG → HG whose image lies in the physical Hilbert
space. This implies that if Qn is a family of quantum partial observables, then the probability
of observing qn when q′n has been observed is given by |〈qn|P |q′n〉|2.

The difference between the two interpretations and the importance of this issue has been
clarified in [77, 81]. Namely, the authors of [77] proposed several examples of low dimensional
quantum mechanical constrained systems where the spectrum of the physical observable as-
sociated to a partial observable is drastically changed. This is in contradiction with the
expectation of LQG that the spectrum should not change. Then in [81] it was argued that
one should not stick to the Dirac quantization scheme but to the relational scheme. Accepting
this viewpoint allows to keep the kinematical spectra unchanged. Thus, the choice of inter-
pretation for physical observables directly affects predictions of quantum theory and clearly
deserves a precise scrutiny.

Whereas the relational viewpoint seems to be viable, the work [77] shows that if we adhere
only to the first interpretation, which is the most commonly accepted one, then it is of upmost
importance to study the spectrum of complete observables. Unfortunately, up to now there
are no results on the computation of the spectrum of any complete Dirac observable in full
LQG. On the other hand, in the 2+1 dimensional case, some examples of complete observables
associated to length variables of spacelike and timelike distances were exhibited in [78]. The
spectra of these variables are both continuous and not bounded from below.

Given all complications with the search and quantization of complete Dirac observables, one
can restrict oneself to the study of partial observables which are only invariant under spatial
diffeomorphisms. For example, the partial observables corresponding to geometric operators
can be defined identifying the measured space region by some values of a matter field [33].
As above, such an analysis can be performed exactly in 2 + 1 gravity coupled to point-like
particles [82]. In this case the role of the length operator is replaced by an operator measuring
the position of the particle. It was shown that its spacelike component is continuous, whereas
the timelike spectrum is discrete. Again, this is precisely the same qualitative picture which
one finds in CLQG and for the length operator in three dimensions.

In our opinion, all these findings and the above mentioned issues clearly make the discrete-
ness found in LQG untrustable and suggest that the CLQG spectrum (2.52) is a reasonable
alternative.

2.4.3 Black hole entropy

The area spectrum and its discreteness are closely related to another result of LQG which is
often presented as one of its main achievements — the derivation of the Bekenstein–Hawking
formula for the black hole entropy [83, 84, 85]. Can one trust this derivation and how rigid is
it?

The LQG derivation can be summarized as follows. The horizon of a black hole is con-
sidered as a spacetime boundary. The condition that the boundary is an (isolated) horizon is
formulated in terms of some boundary conditions which induce a dynamics of the boundary
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degrees of freedom described by a Chern–Simons theory with the structure group either U(1)
[86] or SU(2) [87, 88]. The system is quantized by following the loop quantization in the bulk
and the standard Chern–Simons technique on the boundary. After that a quantum version of
the boundary conditions couples the bulk and boundary quantum states. As in the bulk the
states are given by the usual spin networks, they puncture the horizon and the boundary con-
ditions impose some restrictions on the holonomies around these punctures. Finally, a suitable
counting of distinguishable states determined by the area spectrum produces the entropy lin-
ear in the horizon area. Since the overall coefficient is proportional to the Immirzi parameter,
one can adjust the latter to reproduce the famous coefficient 1/4 in the Bekenstein–Hawking
formula.

From the first sight the discreteness of the area spectrum is crucial for this derivation.
Without it one would have a continuum of states to be counted. However in [89] (see also
[90]) it was argued that the counting should actually be restricted to the states producing
the minimal area quantum at each puncture because all other states describe a different bulk
geometry which is not stationary. Of course, this still requires the existence of a non-vanishing
area quantum. Remarkably, for the CLQG spectrum (2.52) it is non-vanishing, Smin = 8π~G,
once one restricts to the principal series representations of SL(2,C).

However, since the spectrum (2.52) is independent of the Immirzi parameter, the chal-
lenge now is to find such counting which gives the exact coefficient 1/4, and not just the
proportionality to the horizon area. In fact, the last point is the weakest place of the LQG
derivation comparing to all other derivations existing in the literature. All of them are able to
get the exact coefficient without invoking any additional parameter fitting. Usually, it is not
a big deal to get the proportionality to the area. It is the coefficient that is non-trivial. See,
for example, numerous entropy countings in string theory where the restriction to extremal
or near-extremal geometries is compensated by remarkable coincidences for plenty of charge
combinations [91].

Besides, there are two other points which make the LQG derivation suspicious. First, it is
not generalizable to any other dimension. If one draws direct analogy with the 4-dimensional
case, one finds a picture which is meaningless in 3 dimensions and does not allow to formulate
any suitable boundary condition in higher dimensions. Indeed, in the former case the punctures
of the horizon would split it into a set of disjoint segments. It is unclear what they can be
used for. In the latter situation the problem appears because any loop is contractible on the
punctured n-dimensional sphere with n > 2. As a result, a boundary theory formulated in
terms of connections allows to write a quantum boundary condition only if a spacelike section
of the horizon is two-dimensional.

This situation should be contrasted with the universality of the entropy counting observed
in [92, 93]. Moreover, comparing the LQG derivation with the approach to black hole entropy
developed by Carlip [94, 95] raises the second question. In that approach the entropy follows
from the counting of states in some CFT appearing as a symmetry of the near horizon geom-
etry. But the directions of spacetime supporting this CFT are orthogonal to the ones relevant
for the LQG calculation. Whereas in the latter case these are spacelike directions along the
horizon, in the former case they form the orthogonal (r, t)-plane. Thus, there is a fundamen-
tal difference between these two approaches, which also explains why one is universal and the
other is stuck to 4 dimensions.
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2.4.4 Diffeomorphisms

Finally, let us mention also a few issues with the imposition of diffeomorphism and Hamiltonian
constraints:

• Although at first sight it seems that the spatial diffeomorphisms reduce the degrees of
freedom related to the embedding of the spin network graph to just information about
its topology, this not quite true. In fact, there still remain some continuous moduli
depending on the relative angles of edges meeting at a vertex of sufficiently high valence
[96]. Due to this the Hilbert space HGDiff is not separable and if one does not want
that the physics of quantum gravity is affected by these moduli, one is led to modify this
picture. To remove this moduli dependence, one can extend Diff(M) to a subgroup
of homeomorphisms of M consisting of homeomorphisms which are smooth except at
a finite number of points [97] (the so called “generalized diffeomorphisms”). If these
points coincide with the vertices of the spin networks, the supposed invariance under
this huge group will identify spin networks with different moduli and solve the problem.
However, this procedure has different drawbacks. First, the generalized diffeomorphisms
are not symmetries of classical general relativity. Moreover, they transform covariantly
the volume operator of Rovelli–Smolin but not the one of Ashtekar–Lewandowski which
is favored by the triad test [39]. This analysis indicates that these generalized diffeo-
morphisms should not be implemented as symmetries at quantum level and, as a result,
we remain with the unsolved problem of continuous moduli. In 2 + 1 dimensions this
problem does not appear because in this case the Hamiltonian constraint fixes the con-
nection to be flat and on the flat solutions the evaluation of a spin network does not
depend on these continuous moduli. This shows that a problem which cannot be cured
at the kinematical level might sometimes be resolved on the physical Hilbert space.

• In all canonical approach to quantum gravity, the manifold M is fixed and the states of
geometry on M are given by embedded spin networks. So the claim that “spin networks
are not embedded in space but are quantum states of space” is not completely true
because it forgets the topological degrees of freedom of the spin networks coming from
their embedding (knotting) in M. The relevance for physics of these topological degrees
of freedom is not very well understood in the present formalism of LQG.

• In the Dirac formalism the constraints Hi only generate diffeomorphisms which are con-
nected to the identity. Therefore, there is a priori no need for defining HGDiff to be
invariant under large diffeomorphisms. On the other hand, in LQG these transforma-
tions, forming the mapping class group, are supposed to act trivially. This is justified in
[2] (section I.3.3.2) to be the most practical option given that the mapping class group
is huge and not very well understood. However, in 2+1 quantum gravity in the Hamil-
tonian picture on Σ × R described in the Chern-Simons theory formalism [98], one is
led to first define a Hilbert space of states which are only invariant under the group of
diffeomorphisms connected to the origin and then to define a unitary projective repre-
sentation of the mapping class group of Σ on this space of states. Thus, the simplest
option taken by LQG might be an oversimplification missing important features of the
right quantization.

• The construction of the Hamiltonian constraint operator has a lot of intrinsic arbitrari-
ness. It appears in the choice of representations associated to the holonomies defining
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the operator (2.23) [99, 100], and in the choice of particular regularization procedure
[49]. Moreover, a huge arbitrariness is hidden in the step suggesting to replace the clas-
sical Poisson brackets, as for example (2.22), by quantum commutators. In general, this
is true only up to corrections in ~ and on general ground one could expect that the
Hamiltonian constructed by Thiemann may be modified by such corrections. This is a
bit disappointing situation for a would be fundamental quantum gravity theory.

In principle, all this arbitrariness should be fixed by the requirement that the quantum
constraints reproduce the closed Dirac constraint algebra. However, the commutators
of quantum constraint operators are not under control, although a weak closure of the
algebra in the form

〈Ψ[Γ′], [Ĥ[N1], Ĥ[N2]]ΨΓ〉 = 0 (2.55)

has been demonstrated in [38]. This is the place where we expect some anomalies to
appear, as is suggested by our covariant analysis (see also section 6.2 of [14] on this
issue).

• Although some solutions of the Hamiltonian constraint can be found in [47], one does
not know yet how to construct the physical scalar product on them. And, of course, the
most important problem is how to extract the classical limit and whether it will have
something to do with general relativity.

2.5 Summary

Let us recapitulate our main conclusions concerning the canonical loop approach to quantum
gravity.

Trying to incorporate the full Lorentz gauge symmetry into the standard LQG framework
based on the SU(2) group, we discovered that LQG is only one possible quantization of a two-
parameter family of inequivalent quantizations. All these quantizations differ by the choice of
connection to be used in the definition of holonomy operators — the basic building blocks of
the loop approach. LQG is indeed distinguished by the fact that the corresponding connection
is commutative. Nevertheless, a more physically/geometrically motivated requirement selects
another connection, which gives rise to the quantization called CLQG. Although the latter
quantization has not been properly formulated yet, it predicts the area spectrum which is
continuous and independent on the Immirzi parameter, whereas LQG gives a discrete spectrum
dependent on γ.

We argued that these facts lead to suspect that LQGmight be an anomalous quantization of
general relativity: in our opinion they indicate that it does not respect the 4d diffeomorphism
algebra at quantum level. If this conclusion turns out indeed to be true, LQG cannot be
physically accepted. At the same time, CLQG is potentially free from these problems. But
due to serious complications, it is far from being accomplished and therefore the status of the
results obtained so far, such as the area spectrum, is not clear.

We also pointed out that some of the main LQG results are incompatible either with other
approaches to the same problem or with attempts to generalize them to other dimensions. We
consider these facts as supporting the above conclusion that LQG is not, in its present state,
a proper quantization of general relativity.
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3 Path integral approach

3.1 Spin foam models

The second part of this critical review is devoted to the spin foam approach to quantum
gravity. It is very closely related to the loop approach discussed in the first part, but they
should not be mixed up. In a nutshell, LQG is supposed to give an Hamiltonian picture of
quantum gravity based on the use of specific variables (connections), whereas spin foam models
are certain type of discretized path integral approach to the quantization. A priori these are
different approaches using different methods and leading to different results. Of course, in the
best case their predictions should coincide and they should be just equivalent quantizations.
But at present such an agreement has not been achieved yet.

We start by describing what a spin foam and a spin foam model are. Then we present the
basic strategies to derive SF models. In the following sections, we discuss the most important
models of 4-dimensional general relativity existing in the literature, their derivation, self-
consistency, and relation to the canonical quantization. Some nice reviews on this subject can
be found in [101, 102, 4].

3.1.1 Basic concepts

A spin foam is an oriented 2-dimensional complex colored with some group theoretic data like
representations and intertwiners. The representations are assigned to the faces of the complex,
whereas the intertwiners are associated to the edges. Note that the vertices are not colored.
This is because the coloring can be thought as a representation of a kinematical information,
whereas the vertices encode the dynamics (see below).

Spin foams can have boundaries. It is clear that on each connected component of the
boundary the spin foam induces a spin network such that its labeling is consistent with the
labeling of the foam. Reversing this picture allows to view spin foams as quantum histories
of spin networks (Fig. 5). Since the latter are supposed to represent a quantum space, spin
foams are thus considered as a representation of quantum spacetime interpolating between
given boundary data. Moreover, depending on the number of boundaries, they can describe
processes of either splitting of space into different components, or disappearing of space into
nothing, etc.

The appearance of spin networks at the boundaries points toward a connection with the
loop approach [50]. To get such a connection in a more precise way, one should start from
the physical scalar product between two kinematical states. The physical scalar product can
be rewritten in terms of the kinematical one by means of insertion of a certain projection
operator, which is closely related to the evolution operator and is written as exponential of
the Hamiltonian [103]. Expanding the exponential, one obtains a series of terms given by
expectation values of finite powers of Ĥ between spin network states. It is easy to see that
each such term can be represented as a particular spin foam with the number of vertices given
by the power of the Hamiltonian operator. The vertices mark points in the evolution of spin
networks where an interaction takes place. The full transition amplitude is represented in
this way as a formal sum over all spin foams or, given their interpretation, as a sum over all
possible histories of spin networks.

This provides a qualitative relation between the two background independent approaches.
In fact, it is clear that given a loop quantization supplied with a Hamiltonian constraint
operator there should exist a spin foam model corresponding to it and, following the above
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ΨΓ

ΨΓ′

Figure 5: A spin foam representing a transition amplitude between two spin networks.

procedure, one may try to find such a model. However, due to the complicated form of the
Hamiltonian constraint, one usually starts from the opposite side. Namely, one tries to derive
a spin foam model by means of other techniques and then compare the result with what is
expected from the loop side. This is why the SF approach should be distinguished from the
loop quantization. And as we will see, the results of the two approaches are indeed different
so far.

But let us return to the definitions and define what a general SF model is. Any spin
foam model is supposed to associate a complex amplitude ZΨ(M) to a spacetime region M
with boundaries provided the latter are characterized by fixed spin networks Ψ. For example,
in the case of two disconnected boundaries, such amplitudes are interpreted as transition
amplitudes from one spin network state to the other. Besides, they should satisfy a set of
natural properties such as

ZΨ(M1 ∪M2) =
∑

Ψ′

ZΨ1(M1)ZΨ2(M2), (3.1)

where Ψ′ is the restriction of Ψ1 and Ψ2 on ∂M1 ∩ ∂M2 and Ψ is the union of the remaining
parts.

In all SF models the amplitudes can be represented in the following general form

ZΨ(M) =
∑

C:∂C=ΓΨ

w(C)
∑

J,I

∏

f

Af
∏

e

Ae
∏

v

Av. (3.2)

Here the sum goes over all 2-complexes C fitting the given graph of the spin networks at the
boundaries and over all colorings (J, I) of each C fitting the coloring of the spin networks,
possibly with some additional restrictions on allowed representations and intertwiners. The
weight w(C) is usually some symmetry coefficient and Af , Ae, Av are face, edge and vertex

amplitudes, respectively. These three quantities are the main ingredients defining the model.
To give a SF model essentially means to provide explicit expressions of these amplitudes and
the allowed set of representations and intertwiners.

Usually, the amplitudes are supposed to be local, i.e., they depend only on the coloring
of adjacent simplicial elements. Thus, Af is a function of the representations located on the
face f , Ae is a function of the intertwiner assigned to e and of the representations on the faces
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containing e, whereas Av depends on the representations on the faces and on the intertwiners
on the edges containing the vertex v.

The fact which makes possible a geometric interpretation of a spin foam is that the 2-
complex can be viewed as the dual 2-skeleton of a 4-dimensional triangulation of spacetime.
More precisely, to each triangulation of space time one can associate a 2-complex, the dual
2-skeleton, by associating to each simplex a point in its interior (the vertices of the skele-
ton), by connecting these points by edges when the corresponding 4-simplices have a common
tetrahedron, and by associating to each face of the triangulation a face of the 2-complex cor-
responding to all the tetrahedra having this face in common. In the other way around, one
draws a 4-simplex around each vertex of the spin foam such that edges and faces intersect
tetrahedra and triangles of the triangulation, respectively. In case where there are more than
5-valent vertices involved (or the boundary spin networks have more than 4-valent vertices),
simplicial decomposition has to be replaced by a more general one.11

This “duality” opens two main ways to derive SF models. The first relies on a quantization
of the geometry of 4-simplex. Note that the representation (3.2) implies that the contribu-
tions of each 4-simplex to the total amplitude are factorized. Therefore, it is sufficient to
consider just one 4-simplex, to find the corresponding amplitude and then to glue such several
contributions together.

This approach makes also clear the meaning of all ingredients defining the model. First,
the allowed set of representations and intertwiners selects the allowed boundary states and
therefore one can say that it defines a kinematical Hilbert space. For example, if one wants
to have a model consistent with LQG, the corresponding boundary states must be the usual
SU(2) spin networks parameterized by SU(2) spins and SU(2) invariant intertwiners. Next,
the vertex amplitude determines the dynamics and therefore it is the most important quantity
which one has to look for. According to [50], in the canonical picture it would correspond to
an expectation value of the Hamiltonian operator. Finally, the face and edge amplitudes are
responsible for a consistent gluing of different simplex contributions.

The approach based on the geometric quantization can be very useful and illuminating in
determining the state space of the model, but it is difficult to use it to find the right gluing
factors and even the vertex amplitude. A more rigorous and powerful approach is the one based
on the discretized path integral [105]. It arises very naturally in this context because from
our discussion above, it follows that the amplitude (3.2) can be seen as a sum over discretized
spacetimes. This is precisely what the discretized path integral for gravity is supposed to be.

By itself, however, the passage to a discretization does not solve any problems except in
3-dimensions where it is exact. The discretized path integral is usually even more complicated
than its continuous cousin. This is why some additional hints are required to be able to extract
a SF model. Below we discuss a strategy which allows to do that and which is widely accepted
in most of the SF derivations.

3.1.2 The strategy

Our aim is to describe the SF approach to 4-dimensional general relativity. But let us start
from a much more simple 3-dimensional case where spin foams appeared for the first time. In
this case, gravity with cosmological constant Λ is described by the simple action

S3d =

∫
εIJK

(
eI ∧ F JK(ω) +

Λ

6
eI ∧ eJ ∧ eK

)
. (3.3)

11See, for example, [104] for a spin foam construction using cubulations.
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An important feature of this theory is that it is topological, i.e., it does not have local prop-
agating degrees of freedom (locally all solutions to the equations of motion are pure gauge).
This property implies that the theory can be discretized without losing any information and
moreover it does not depend on the chosen discretization if the latter is sufficiently refined to
take into account all global degrees of freedom. Due to this, 3-dimensional gravity is amenable
to the spin foam quantization and transition amplitudes can be written in the form (3.2), but
without the sum over all possible 2-dimensional complexes. This is a crucial simplification
allowing to find the Ponzano–Regge model (Λ = 0) [106] and the Turaev–Viro model (Λ > 0)
[107], both of them describing Riemannian gravity. The discretization independence of these
models follows from the pentagon relation satisfied by the vertex amplitude given in terms of
6j coefficients of Uq(su(2)) with q = ei

√
Λ. Note that when Λ > 0 the sum over the coloring is

a finite sum because of the infrared cutoff j ≤ Λ− 1
2 on the allowed representations.

Trying to lift these results to four dimensions, one finds that there is a model which takes
a somewhat intermediate place between 3 and 4-dimensional gravity. This is the so called BF
theory, which has been first studied in [108]. It exists in any number of dimensions and is
always given by the following action

SBF =

∫
BIJ ∧ F IJ(ω), (3.4)

where BIJ is understood as a d − 2-dimensional form taking values in the Lie algebra of the
local symmetry group SO(η). One can also include a cosmological constant term which in
four dimensions is represented by a term quadratic in the B-field.

It is clear that 3-dimensional gravity is a particular case of BF theory where BIJ = εIJKe
K .

Moreover, it turns out that its main property, namely, that this is a topological theory, extends
to BF theory in any dimension. Similarly, BF theory can be quantized by spin foam methods
leading to a discretization independent model [109].

Why is all this important for us? The reason for that is the form of the action of general
relativity in the first order formulation. If one denotes

BIJ = ∗(eI ∧ eJ), (3.5)

the Hilbert–Palatini action becomes the action of 4-dimensional BF theory (3.4)! Of course,
these are not the same theories because in general relativity the independent variable is the
tetrad one form eI and not the 2-form bi-vector BIJ . However, if one ensures that the latter is
restricted to be given in terms of the tetrads as in (3.5), the BF theory will reduce to general
relativity.

This idea is accomplished in Plebanski formulation [110, 111, 112] which differs from the
action (3.4) by the presence of an additional term

SPl =

∫ (
BIJ ∧ F IJ(ω) +

1

2
ϕIJKLB

IJ ∧BKL

)
, (3.6)

where φIJKL is an independent field satisfying suitable symmetry constraints which in par-
ticular include εIJKLφIJKL = 0. The additional term is introduced to impose the so called
simplicity constraints obtained by varying with respect to φIJKL. In the non-degenerate case,
i.e., when V = 1

4!
tr (B ∧ B) does not vanish, they are equivalent to

BIJ ∧BKL = σV εIJKL ⇔ εIJKLB
IJ
µνB

KL
ρσ = σV εµνρσ, (3.7)
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where σ is as usual the sign distinguishing Riemannian and Lorentzian cases. Of these two
equivalent forms, it is the second form that will be important for our purposes.

The role of the simplicity constraints is precisely to reduce BF theory to general relativity.
This is done because, again for a non-vanishing V, they have two sets of solutions. Both of
them are written in terms of a tetrad. The first coincides with (3.5) and the second is given
by its Hodge dual BIJ = eI ∧ eJ . Plugging the first solution into Plebanski action (3.6),
one reproduces the usual Hilbert–Palatini formulation, whereas the second solution gives the
action coinciding with the second term of the Holst action (2.1). The latter does not have
local degrees of freedom and therefore the corresponding sector of Plebanski theory is called
topological.

Most of the constructions of SF models of 4-dimensional general relativity heavily rely on
the Plebanski formulation and translate the classical relation between BF theory and gravity
directly to the quantum level. In other words they all employ the following strategy:

1. discretize the classical theory putting it on a simplicial complex;

2. quantize the topological BF part of the discretized theory;

3. impose the simplicity constraints at the quantum level.

Thus, instead of quantizing the complicated system obtained after imposing the constraints,
they first quantize and then constrain.

This strategy is behind all the progress achieved in the construction of 4-dimensional SF
models. However, at the same time, this is a very dangerous strategy and, as we believe, it is
the reason why most of these models cannot be satisfactory models of quantum gravity. As we
will show, it is inconsistent with the Dirac rules of quantization and is somewhat misleading.
But before explaining what is wrong with it, let us present the most important and elaborated
spin foam models.

3.2 Barrett–Crane model

The Barrett–Crane model was the first spin foam model for 4-dimensional gravity and re-
mained the leading proposal during 10 years. It exists in both Riemannian [113] and Lorentzian
versions [114], but the logic of the derivation does not depend on the signature. Therefore, we
can treat simultaneously both cases.

There are various ways to derive this model, all of which perfectly fit the strategy described
above. Therefore, let us start by discretizing the basic variables which are the spin-connection
ωIJ and the 2-form BIJ . On a triangulation, the former naturally gives rise to holonomies
gt along edges of the 2-complex (spin foam) dual to the triangulation which connect two
4-simplices and are in one-to-one correspondence with tetrahedra. The B-field associates a
bi-vector to each triangle through

BIJ
f =

∫

∆f

BIJ . (3.8)

Since triangles are dual to faces of the dual 2-complex, one can use the latter to label the bi-
vectors. When these bi-vectors come from the metric structure (the tetrad) they have a clear
geometric meaning: their norm gives the area of the corresponding triangle and the tensor
structure encodes the direction of its normal.

This provides the kinematical variables for the discretized BF theory and Plebanski formu-
lation of general relativity. But the latter contains in addition the simplicity constraints (3.7)
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which should also be discretized. For that purpose, one smears their second version over two
triangles of the discretization belonging to the same tetrahedron. Depending on the relative
position of the triangles one obtains three types of constraints:

• diagonal simplicity: εIJKLB
IJ
f B

KL
f = 0 — if two triangles are the same;

• cross simplicity: εIJKLB
IJ
f B

KL
f ′ = 0 — if two triangles share an edge;

• volume constraint: εIJKLB
IJ
f B

KL
f ′ = ±Vv — if two triangles meet only at the vertex.

It is worth to distinguish these three constraints because they have different implications on
spin foams.

There is also an additional constraint which is imposed in the BC and many other models.
It appears from the geometric interpretation of the bi-vectors mentioned above. If Bf come
from the tetrad, they also should satisfy the closure constraint

∑

f⊂t
Bf = 0. (3.9)

In fact, these constraints are not independent from the previous ones. It was shown [115]
that the closure constraint together with the diagonal and cross simplicity implies the volume
constraint.

The next step is to quantize BF theory. This can be done, for example, via path integral.
Since the discretized action

SBF =
∑

f

tr (Bfgf ) , (3.10)

where gf is the full holonomy around a dual face f , is linear in Bf , the integral over the
bi-vectors in the partition function is easily evaluated yielding a product of delta-functions
imposing the flatness condition on the curvature

ZBF =

∫ ∏

t

dgt
∏

f

δ

(
∏

t⊃f
gt

)
. (3.11)

This flatness condition is also one of the equations of motion of the continuous BF theory and
it is the main reason why this theory is topological. Of course, in gravity this condition should
be relaxed which is achieved by implementing the simplicity constraints.

A spin foam representation of the partition function is obtained from (3.11) by using the
Plancherel decomposition of the δ-function on the group. It gives

ZBF =
∑

λf

∫ ∏

t

dgt
∏

f

dλf tr λf

(
∏

t⊃f
gt

)
, (3.12)

where λ denotes an arbitrary unitary irreducible representation appearing in the Plancherel
measure of the group G and dλ is its dimension. In the Lorentzian case where the gauge group
is non-compact the sum over representations with the weight given by dλ should be replaced by
the integral with the Plancherel measure. As a result of this decomposition, one associates an
irreducible representation to each face. Finally, the integral over gt can be evaluated assigning
invariant intertwiners to the edges of the dual 2-complex. The partition function is thus given
by the product of spin networks dual to the boundary of a 4-simplex and constructed from the
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representations λf and invariant intertwiners, which are evaluated on flat connections, with
some additional factors determined by dλf . The resulting representation is of the type (3.2)
where one omits the sum over discretizations due to the topological nature of the theory.

If the original gauge group was SU(2) then we could label the space of intertwiners⊗4
k=1Hjk → C by a spin j and denote them by Ij . In this case one gets a SF model with the

following amplitudes:

A
SU(2)
f (j) = dj, ASU(2)

e (j1, ..., j4; Ij) = d−1
j ,

(3.13)

t t

t t

t

�
�
�
�
�
��L

L
L
L
L
LL

Ij1

Ij2

Ij3

Ij4

Ij5

j12

j23 j34

j45

j51

j24

j25 j14

j13 j53
A
SU(2)
v ({jab}; {Ija}) =

where a, b = 1, . . . , 5 label the tetrahedra of a 4-simplex, jab is the spin associated to the trian-
gle shared by tetrahedra a and b, and we used the graphical representation of the 15J symbol.
This representation shows the spin network which gives the 15J symbol being evaluated on
a flat connection. Its graph corresponds to the structure of the 4-simplex and is dual to its
boundary.

However, the BF theory relevant for our purposes has the gauge group G = SO(η). In
the Euclidean case G = SU(2)× SU(2) so that one simply has to double the SU(2) BF spin
foam model. Since the irreducible representations of SO(4) are labeled by a couple (j+, j−),

the intertwiner I(j+,j−) = Ij+ ⊗ Ij− and the different weights factorize as A
SO(4)
v (j+i , j

−
i ) =

A
SU(2)
v (j+i )A

SU(2)
v (j−i ). In the Lorentzian case, the result is formally the same, provided one

associates the couple 2j± + 1 = n ± iρ to a unitary principal representation (n, ρ) and uses
the factorized formula from the Euclidean case.

Considering a discretization with a boundary, one immediately infers that the state space of
the model is spanned by G-spin networks. The vertex amplitude is then obtained as evaluation
of a boundary state of a 4-simplex on a flat connection. In fact, we will see that the last point
is the general feature of all SF models derived using the strategy which starts from quantizing
BF theory.

Finally, we now come to the crucial step of implementing the simplicity constraints at the
level of the SF model of BF theory. For this purpose one needs to find a quantum version
of these constraints. In the BC model this is achieved by identifying the bi-vectors BIJ

f with

generators T̂ IJ of the Lie algebra in the representation λf and by requiring that the operators
obtained from the simplicity conditions using this identification annihilate the boundary states
of any spin foam.

Then the diagonal simplicity constraint gives a restriction on representations λf

C
(2)
G (λf) = −1

4
εIJKL T̂

(λf )
IJ T̂

(λf )
KL = 0, (3.14)

where C
(2)
G is the second Casimir operator of the group G = SO(η). On representations

λ = (j+, j−) of SO(4) and on unitary principal representations of type λ = (n, ρ) of SO(3, 1),
it is given by

C
(2)
SO(4)(j

+, j−) = 2j+(j+ + 1)− 2j−(j− + 1), C
(2)
SO(3,1)(n, ρ) = 2nρ (3.15)
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Figure 6: The Barrett-Crane intertwiner

leading to j+ = j− and n = 012 for Riemannian and Lorentzian cases, respectively. The
irreducible representations satisfying this condition are called simple representations. Thus,
only simple representations are associated to faces in the BC spin foam model.

The cross simplicity constraint is imposed already at the level of a tetrahedron and induces
a restriction on possible intertwiners. Taking into account that the intertwiners couple simple
representations, it is easy to conclude that the restriction means that, given a decomposition
of any two λf ’s, the intertwiner has support only on simple intermediate representations (see
Fig. 6). In [113] an intertwiner satisfying this condition has been constructed explicitly and
in [117] it has been proven that it is actually unique.

A very simple expression for this intertwiner, which is naturally generalized to any dimen-
sion, has been given later in [118]. It is based on the fact that any simple representation has
a vector invariant with respect to the proper maximal compact subgroup H (in the case of
G = SO(4), it is the diagonal SU(2) subgroup). Let the intertwiner couples representations
λk, k = 1, . . . , L (in the case of 4d simplicial decomposition one always has L = 4), p labels
the basis elements in the representation space and p = 0 corresponds to the invariant vector
mentioned above. Then the matrix elements of the BC intertwiner can be represented as an
integral over the factor space X = G/H

I(BC)p1...pL =

∫

X

dx
L∏

k=1

R
(λk)
pk0

(gx), (3.16)

where gx is a representative of x ∈ X in G and R
(λ)
pq (g) is the matrix element of g in the

representation λ.
Now one can implement these restrictions at the level of the partition function. For this it is

sufficient to take the spin foam representation of the BF partition function and restrict the sum
over λf to only simple representations and to remove the sum over intertwiners substituting
for them I(BC).

In principle, one still has to impose the volume simplicity constraint. However, it is ignored
in the BC model. This is justified by the fact that it is a consequence of the previous constraints
supplemented by the closure (3.9). The latter is also required to hold on the boundary states.
But since we started from the state space of BF theory where the closure was already satisfied,
it does not produce any further conditions. In fact, it is ensured by the integral over x in the
definition (3.16) of the BC intertwiner.

12The solutions of (3.14) with ρ = 0 have been disregarded in the initial model [114], but incorporated later
in [116].
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Once we determined the state space, the vertex amplitude of the BC model is obtained
by using the above prescription as the boundary state of a 4-simplex evaluated on a flat
connection. This leads to the famous BC vertex (also called 10j symbol), which can be
expressed through the vertex amplitude of BF theory as follows

ABC
v ({jab}) = ASO(4)

v ({(jab, jab)}; {IBC}). (3.17)

Here we wrote the relation for the Euclidean case. In the Lorentzian case, it is sufficient to
replace the SO(4) representations (jab, jab) by the SL(2,C) representations (0, ρab). However,
this gives rise to an ill defined amplitude since the integral over X5 coming from the definition
of the BC intertwiner (3.16) is divergent. It can be easily regularized [114] by integrating only
over X4, which amounts to eliminate the infinite volume factor of X . More generally, using
the expression (3.16), one can show [113] that the evaluation on a flat connection of any spin
network which edges and vertices are colored by simple representations and the BC intertwiner,
respectively, can be expressed as a Feynman integral over XnV −1 (where nV is the number of

vertices) with a propagator K(x, y) associated to each edge given by K(x, y) = R
(λk)
00 (xy−1).

The BC model was extensively studied during the years following its invention. It has been
also reformulated in terms of a group field theory [119], which was later generalized to incor-
porate timelike bi-vectors [116]. This overcomes the restriction of the initial Lorentzian BC
model [114] that it only contains faces which are spatial, whereas this is clearly a non-generic
configuration. However, the properties of the model [116] have not been studied in detail and
it remains poorly understood. In particular, due to the fact that the propagator associated to
a representation (k, 0) develops a singularity for coincident points, the corresponding vertex
amplitude is infinite and no precise regularization has been given up to date.

A great excitement about the BC model was caused by the finiteness results of [120, 121].
Namely, it has been shown that the integration over the representations λf , i.e., the integra-
tion over the size of the dual triangles, for a fixed triangulation of spacetime, gives a finite
result. This has been claimed to indicate a possible resolution of the non-renormalizability of
perturbative quantum gravity. However, in fact, this result has nothing to do with the UV
finiteness because it comes from the absence of divergence when the area goes to infinity which
is an IR regime. Besides, it relies on three very important assumptions:

• the complex of the spin foam should be dual to a triangulation;

• the faces of the triangulation are all of spatial type;

• a special form of the face and edge amplitudes.

When one of these conditions is removed it is very unlikely that the finiteness remains pre-
served. And on top of that, it is restricted to a fixed triangulation and there is no clue on how
to perform or to control the sum over 2-complexes, which is a central problem to be solved for
building the physical scalar product. As a result, it is not clear what is the actual meaning of
these findings.

Unfortunately, despite big efforts, the face and edge amplitudes have not been uniquely
determined. Various attempts to fix them led to different results, whereas they could affect
enormously the physics of the resulting theory [122, 123]. It became more and more clear
that the BC model suffers from different problems and it is not able to capture the dynamics
of general relativity. One of these problems concerns the asymptotic expansion of the vertex
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amplitude when the area of the faces gets large. In this limit the vertex amplitude is expected
to reproduce the semi-classical Regge action through the formula

ABC
v ∼ e

i
~
SRegge . (3.18)

However, it has been shown in different works [124, 125, 126] that the asymptotics is not
dominated by the semi-classical Regge action but by some degenerate configurations. This
result has questioned the ability of the Barrett-Crane model to be a viable model of quantum
gravity.

3.3 New vertices

These doubts have become certain after it was shown that the BC model is not able to repro-
duce the structure of the graviton propagator [127]. This last problem and some of the above
were related to the ultralocality of the BC model due to which the partition function factorizes
into a product of completely disentangled simplex contributions. In turn this ultralocality is a
consequence of the uniqueness of the BC intertwiner. Such unique intertwiner is not sufficient
to carry information from one simplex to another.

Since the uniqueness of the BC intertwiner is a consequence of the imposition of the
simplicity constraints, it became clear that one should modify the way these constraints are
implemented. This led to a revision of the BC model culminating in two new models, [21]
(EPRL) and [20] (FK), which we are going to discuss here. The new models appeared as
results of the two approaches to the derivation of spin foam models, which we mentioned
in section 3.1.1, based, respectively, on the quantization of the simplex geometry and the
discretized path integral.

Although the models of [21] and [20] are in general different from each other and obtained
using different ideas, they have several common inputs. First, they both rely on the idea
allowing to effectively linearize the simplicity constraints [128, 61]. This linearization trivially
follows from the geometric meaning of the diagonal and cross simplicity conditions which
state that four triangles belonging to the same tetrahedron t and described by bi-vectors Bf ,
f ⊂ t, lie in one hyperplane. In other words, there should exist a vector xt, normal to the
tetrahedron, such that

(⋆Bf )
IJ (xt)J = 0 ⇔ I(Q)(xt) ·Bf = 0, (3.19)

where the second form of the condition is written with help of one of the projectors (2.27).
The normal xt becomes an additional variable of our discretization. It is easy to see that once
(3.19) is satisfied, the simplicity constraints, except their volume part, trivially follow. But
in fact (3.19) is stronger because it excludes the topological sector B = ±e ∧ e of Plebanski
formulation. Thus, the linearization solves simultaneously the problem of the BC model that it
does not distinguish between the gravitational and the topological sectors. The new constraint
leads directly to the sector we are interested in. The corresponding reformulation of Plebanski
action with quadratic constraints replaced by the linear ones was studied at the classical level
in [129].

Second, both models suggest to quantize an extension of Plebanski formulation which
includes the Immirzi parameter. This results in crucial deviations from the results of the BC
model already at the level of imposing the diagonal simplicity constraint. Let us demonstrate
this following the logic of the EPRL model. For the FK model the result is identical.
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The Immirzi parameter can be incorporated to Plebanski formulation (3.6) by modifying
either the simplicity constraints [130] or the BF part of the action. Here we take the second
point of view. Assuming that the bi-vector coupled to the curvature should be quantized as in
the usual BF theory, being represented by the generator of the symmetry algebra, one arrives
at the quantization rule

Bf +
1

γ
⋆ Bf 7→ −i~ T̂

γ2 6=σ⇔ Bf 7→ −i~
γ2

γ2 − σ

(
T̂ − 1

γ
⋆ T̂

)
. (3.20)

Plugging in this identification into the diagonal simplicity constraint, one finds the following
condition on representations

(
1 +

σ

γ2

)
C

(2)
G (λf)−

2σ

γ
C

(1)
G (λf) = 0. (3.21)

At this point one should consider separately the Riemannian and Lorentzian cases. Let
us start with σ = 1. Then, as has been noted already in [131], the constraint (3.21) does
not have solutions except some trivial ones.13 However, appealing to the ordering ambiguity,
the authors of the model [21] adjusted the operator in (3.21) so that the constraint does have
solutions. The resulting restriction on representations is

j+ =

∣∣∣∣
γ + 1

γ − 1

∣∣∣∣ j
−. (3.22)

In the second model [20] the fine tuning of the ordering is not needed since the diagonal
constraint is also linearized (see below).

The result (3.22) has striking consequences. Since j± are (half-)integers, the condition
(3.22) has solutions only for a rational γ. Thus, the approach described above leads to a
“quantization” of the Immirzi parameter! This is a completely unexpected feature for which
there are no signs in the canonical approach.

However, this is true only in the Euclidean theory. In the Lorentzian case σ = −1,
the spectra of both Casimir operators are continuous as the irreducible representations are
parameterized by one continuous and one discrete labels, ρ and n, respectively. Therefore, the
condition (3.21) simply fixes the former in terms of the latter as [21]

ρ = γn, or ρ = −n/γ. (3.23)

But this constraint on the allowed representations has important implications because it turns
the spectra of geometric operators given by combinations of Casimir operators of the Lorentz
group, which are normally continuous, into discrete spectra. Below we will discuss this issue,
which is one of the main conclusions of this model, to more extent.

In other aspects of the derivation the EPRL and FK models are different. Nevertheless, it
turns out that the final constructions coincide for the values of the Immirzi parameter γ < 1.
Here we present the two constructions separately.

13In fact, the authors of [131] proposed to rotate the identification of the B-field with the generators so
that the change in the identification compensates the modification of the simplicity constraints due to the
Immirzi parameter. As a result, one arrives at the standard constraint of the BC model (3.14). This strategy
is however rejected in the new models which insist on using the identification borrowed from the quantization
of the BF part of the action.
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3.3.1 EPRL model

The main suggestion of this model, which distinguishes it from the BC model and was first
realized in [128], is that the simplicity constraints should be imposed only in a weak sense
that is instead of imposing the constraints on the allowed states by Cn|Ψ >= 0 one only
requires < Ψ′|Cn|Ψ >= 0. This is justified by noting that after identification of the bi-
vectors Bf with generators of the gauge group or a combination thereof (3.20), the simplicity
constraints become non-commutative and imposing them strongly leads to inconsistencies, as
is well known for any second class constraints. This does not concern the diagonal simplicity
constraint which lies in the center of the constraint algebra and therefore can still be imposed
strongly14 leading to the restriction (3.21) on the allowed representations.

The other idea already mentioned above is to use the linearized version (3.19) of the sim-
plicity constraints. The latter involves a four-dimensional vector xt, the normal to tetrahedron
t. Let this tetrahedron be associated with the part of the boundary state we are interested
in. The approach employed in [128, 132, 21] is to impose the cross simplicity for a fixed xt
and then to average over all vectors. This is achieved by inserting an integral over the gauge
group and is viewed as implementation of the closure constraint (3.9). For the fixed xt, (3.20)
leads to the condition 〈

Ψ′| xt ·
(
T̂ − σγ ⋆ T̂

)
|Ψ
〉
= 0 (3.24)

for any allowed boundary spin network states Ψ,Ψ′. In fact, it should be stressed that (3.24)
encodes both diagonal and cross simplicity. However, in the EPRL approach the diagonal sim-
plicity is treated on its own leading to the condition (3.21) (see however footnote 23), whereas
the constraint (3.24) implies, as in the BC model, a restriction on intertwiners. Namely, let
us fix the maximal compact subgroup H leaving the vector xt invariant. Then the space of all
intertwiners between representations λk can be parameterized by representations jk appearing
in the decomposition of λk on H and H-intertwiners between these jk. In this parametrization,
the constraint (3.24) results in the following conditions on jk [21]15

Euclidean : j =

{
j+ + j− γ < 1
j+ − j− γ > 1

, Lorentzian : j = n. (3.25)

Thus, one has to always choose either highest or lowest weight representations depending on
the value of the Immirzi parameter and the signature. But since they are all non-trivial except
the case σ = 1, γ = ∞, the solution of the simplicity constraints is non-unique and there is
more than one intertwiner per tetrahedron due to the remaining freedom in the choice of
SU(2)-intertwiners.

The two restrictions, (3.22) (or (3.23)) and (3.25), define the state space of the EPRL
model. The vertex amplitude then follows as usual from evaluation of the resulting spin
network on a flat connection and can be expressed through 15JG symbols. The corresponding
SF model with certain face and edge amplitudes has been proposed in [134].

14The reader should not confuse the terms weak and strong with similar terms in Dirac’s theory. Here we
use them in the sense described above and, in fact, imposing constraints strongly corresponds to the weak
imposition in Dirac’s terminology.

15From now on we restrict to positive γ, for which the constraint (3.22) ensures that j+ ≥ j−. Note that in
[133] a generalization of the Lorentzian EPRL model, similar in the spirit to [116], was suggested which shows
how to include timelike bi-vectors by considering H = SU(1, 1) as the isotropy subgroup of the normal xt.
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3.3.2 FK model

The second model [20] follows a different approach similar to the one which was presented in
section 3.2 for the BC model. One starts again from the partition function for BF theory (3.12)
where the simplicity constraints should be implemented as restrictions on the representation
labels. However, before doing that one makes a refinement of the decomposition (3.12) using
the coherent state techniques developed in [19].

Here we concentrate on the Euclidean case. Although the Lorentzian case was also consid-
ered in [20], the corresponding construction is much more complicated and even the Immirzi
parameter has not been incorporated in it so far. Thus, we have to deal with the coherent
states for the group SO(4) = SO(3) × SO(3). They can be constructed from the coherent
states associated with the two SO(3) factors. The latter states are parameterized by a unit
3-dimensional vector n ∈ S2 and form an overcomplete basis in a representation space, which
means that one can write the following decomposition of the identity

1j = dj

∫

S2

dn |j, n〉〈j, n|. (3.26)

An SO(4) coherent state is just the tensor product of two SO(3) coherent states and therefore
is defined as

|λ,n〉 = |j+, n+〉 ⊗ |j−, n−〉, (3.27)

where n = (n+, n−) is a pair of two normals, which can be thought also as SU(2) elements
defined up to a phase since SU(2)/U(1) = S2.

The idea of [19] is to split the trace in (3.12) into a product of factors associated with
different simplices without performing integration over gt. For that purpose one introduces
“half-holonomies” gσt from the center of 4-simplex σ to the center of tetrahedron t so that
gt = gσt(gσ′t)

−1. Then one inserts the decomposition of the identity in terms of the SO(4)
coherent states analogous to (3.26) between the two group elements for each tetrahedron and
each dual face. As a result, (3.12) becomes

ZBF =
∑

λf

∏

f

dλf

∫ ∏

(t,σ)

dgσt

∫ ∏

(t,f)

dλfdntf
∏

(σ,f)

〈λf ,ntf |(gσt)−1gσt′ |λf ,nt ′f 〉 (3.28)

and the simplicity constraints should now be imposed as certain restrictions on representation
labels and the normals ntf .

To get such conditions, one associates to each coherent state |λf ,ntf 〉 a bi-vector obtained
by averaging the generators

XIJ
(λf ,ntf )

= 〈λf ,ntf | T̂ IJ |λf ,ntf 〉. (3.29)

Since the coherent states are in a sense quasiclassical, their labels can be thought as encoding
an information about the geometry of a classical tetrahedron. In particular, λf encodes the
area of the triangle dual to face f and ntf describes its normal viewed from tetrahedron t.
Then the bi-vector (3.29) should be associated with the geometric bi-vector (3.8). However,
in the presence of the Immirzi parameter, the correct relation is done through (3.20). Thus,
one arrives to the conclusion that

X(λf ,ntf ) −
1

γ
⋆X(λf ,ntf ) (3.30)
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must be a simple bi-vector. Above, in (3.19), we found a very convenient criterium for this
condition. In our case it can be equivalently rewritten as the requirement of existence of such
Xf ∈ su(2) and xt ∈ SU(2) that the chiral decomposition reads as

X(λf ,ntf ) =

((
1 +

1

γ

)
Xf ,−

(
1− 1

γ

)
xtXfx

−1
t

)
. (3.31)

Using 〈j, n| ~T |j, n〉 = j ~n, one then finds the condition (3.22). But on top of that, the two
normals n±

tf viewed as group elements get related as

(n+
tf , n

−
tf ) = (ntfh

|1− 1
γ |

φtf
, xtntfh

−(1+ 1
γ )

φtf
ǫ), (3.32)

where the U(1) elements hφ = eiφσ3 take care that n± are defined up to a phase16 and ǫ is

either 1 or the matrix
(

0 1
−1 0

)
such that hǫ = ǫh̄ for ∀h ∈ SU(2) depending on whether γ is

less or larger than 1.
The two restrictions, (3.22) and (3.32), on the variables of the BF partition function

represent the simplicity constraints at the quantum level. They are to be inserted into (3.28)
supplemented by integrations over φtf , xt and ntf . The first two are not important and can
be easily performed. Assuming that the last integral is performed with the standard measure
on S2, it produces for every pair (tf) the following factor [20]

γ < 1 :

∫
dn |j+, n〉 ⊗ |j−, n〉〈j+, n| ⊗ 〈j−, n| = Cj+j− j++j−Cj+j− j++j−, (3.33)

γ < 1 :

∫
dn |j+, n〉 ⊗ |j−, n〉〈j+, n| ⊗ 〈j−, n| =

j++j−∑

j=j+−j−
dj

∣∣∣Cj+j−k
j+j− j+−j−

∣∣∣
2

Cj+j− jCj+j− j ,

where the Clebsch–Gordan coefficients are considered as maps between SU(2) representation
spaces

Cj+j− j : Hj+ ⊗Hj− → Hj, Cj+j− j : Hj → Hj+ ⊗Hj−. (3.34)

From this result one can read off the possible intertwiners. Again, it is convenient to parametrize
them by SU(2) representations jtf appearing in the decomposition of λf on the diagonal sub-
group and by SU(2) intertwiners It coupling the resulting jtf . From (3.33) one finds that for
γ < 1 only the highest weight representation plays the role so that the state space is exactly
the same as in the EPRL model (see (3.25)). On the other hand, for γ > 1 all representations
appearing in the decomposition of λf = (j+f , j

−
f ) contribute with some particular weights given

by the ClebschGordan coefficients.
The final partition function is obtained by integrating over holonomies and leads to the

vertex amplitude as usual given by evaluation of a simplex boundary state on a flat connection.
For γ > 1, comparing to the EPRL vertex, it has 15 additional labels jtf arising from the sum
over representations in (3.33).

16The powers of the phase elements cannot be fixed classically since they can be changed by redefining ntf .
However, such redefinition would also affect the integration measure in the partition function. We have chosen
the powers in such way so that the partition function is non-trivial for the standard choice of the measure.
This issue is not discussed in [20] as the solution (3.32) is written there only for γ = ∞.
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3.3.3 The new models and LQG

As should be clear from above, for γ < 1 the two models are essentially identical: they possess
the same state space and vertex amplitude, whereas on the edge and face amplitudes there
is no agreement anyway even in the framework of one model (cf. [134] and [135]). This
is a somewhat surprising result given that the models are obtained by completely different
methods, although a bridge between these two approaches has been established in [115]. It is
even more surprising taking into account that for γ > 1 they do differ from each other. In the
FK model the space of intertwiners is much larger because the representation j of the diagonal
SU(2) in (3.33) is not fixed contrary to (3.25).

This difference allows to ask which of the models is more preferable for γ > 1. To answer
this question, it is useful to look at the limit γ → ∞, which is perfectly smooth in the
classical theory. Then it is easy to see that in this limit the EPRL model reduces to the
BC model. But the latter is expected to be an incorrect quantization of gravity from many
different perspectives. In fact, in [20] it was shown that the coherent state technique leads to
the BC model if one decouples the normals ntf seen from different simplices. This amounts
to integrating in (3.33) independently over the normal nσtf appearing in the bra-vectors and

another normal nσ
′

tf in the ket-vectors. This gives rise to the unique BC intertwiner, but

clearly involves an unjustified step — there is no physical reason to take nσtf 6= nσ
′

tf . Thus, this
consideration points in favor of the FK model.

In the opposite limit γ → 0, both models are expected to describe the topological sector of
Plebanski formulation.17 However, it is not clear whether the limit should be actually smooth
as it is not the case in the continuum theory.

Let us now look at the state space of the EPRL model (or FK for γ < 1) for generic
rational Immirzi parameter. The relations (3.25) and (3.22) (or (3.23)) can be inverted and
the representation labels λ of the gauge group can be expressed through the SU(2) labels
j. As a result, the states are labeled only by SU(2) representations associated with dual
faces (becoming links of a graph on the boundary) and the usual SU(2) intertwiners assigned
to tetrahedra (vertices of the boundary graph). Due to this fact it was claimed that the
boundary states of the new models are the ordinary SU(2) spin networks [128] and it is now
widely believed that there is a perfect agreement between the new SF models and LQG at the
kinematical level [10].

However, it is easy to see that this is just not true. First of all, the states induced on the
boundary of a spin foam are not the ordinary spin networks, but projected ones considered
in section 2.2.2 — the SU(2) representations jtf parameterizing the intertwiners are precisely
the representations jve which one projects to in (2.39). In fact, this is a particular case
of a quite general statement. In [60] it was proven that the boundary states of any spin
foam model obtained by imposing the simplicity constraints are always given by projected
spin networks. The state spaces of different models are distinguished by constraints on the
labels. For example, it has been known for long time [58, 62] that the states of the BC
model are obtained from generic projected spin networks by taking simple representations
λf , all jtf = 0, and integrating over the normals xt appearing as additional argument in the
canonical quantization. The EPRL and FK models simply provide a generalization of this
construction.

17In fact, the initial version of the EPRL model [128, 132] corresponds precisely to this case. The flipped
symplectic structure used there is nothing else but the symplectic structure of the topological theory given by
the second term in the Holst action (2.1).

44



However, this does not mean yet that there is no agreement between the new models
and canonical quantization. As we know, in certain cases the projected spin networks can
reduce to the usual ones. An example of such situation has been considered in section 2.3.1
where one gets precisely the kinematical Hilbert space of LQG. However, the key point of
that construction was the choice of connection in the definition of holonomies. In particular,
to get the Hilbert space of LQG this connection should be chosen as in (2.43) and then the
constraints (2.47) are responsible for the reduction. On the other hand, in the spin foam
models all holonomies are defined with respect to the usual spin-connection and therefore the
projected spin networks describing their boundary states cannot be reduced to the kinematical
states of LQG.

In fact, a precise relation between the two types of states has been elucidated in [136]. It
turns out that if one adjusts appropriately restrictions on representations (3.22), (3.23) and
(3.25) of the EPRL model, which amounts to choosing a different ordering for Casimir opera-
tors thereby fixing this ambiguity, the projection of the spin connection on the representation
of the subgroup fixed by the constraints gives rise to the Ashtekar–Barbero connection

π(j)
(
ωIJi T

(λ)
IJ

)
π(j) = A

(γ)a
i L(j)

a , (3.35)

where L
(j)
a is a generator of boosts in representation j. This happens, for example, if one takes

in the Lorentzian theory
ρ = γ(n+ 1), j = n. (3.36)

Note also that this choice is favored by the fact that, contrary to (3.23), it provides an
exact solution to the constraints (3.24), which does not require any additional large-spin
approximation or ordering fitting [137]. If the relation (3.35) holds, the projected spin networks
can be reduced to the usual ones by inserting π(j) at all points along edges of the graph. This
is equivalent to inserting infinitely many bi-valent vertices and amounts to considering “fully
projected holonomies” of the type

U
(λ,j)
α = lim

N→∞
P
{

N∏

n=1

π(j)R
(λ)
G (Uαn

[ω])π(j)

}
, α =

N
∪
n=1

αn, (3.37)

first introduced in [57]. Then the property (3.35) ensures that

U
(λ,j)
α = R

(j)
SU(2)

(
Uα[A

(γ)]
)
, (3.38)

similarly to (2.48), and the resulting functionals reduce to the SU(2) spin networks defined
with the Ashtekar–Barbero connection.18 However, on one hand, there is no any fundamental
reason to perform such a projection. And on the other hand, this relation shows that the
kinematical states of LQG and the boundary states of the EPRL model are indeed physically
different and the agreement between their labels is purely formal.19

18Strictly speaking, the above equations are written in the time gauge. They are easily generalized to the
general case where the role of A(γ), not surprisingly, is played by the Lorentz connection A (2.43). However,
it is clear that this construction works only if one does not integrate over the normals xt at the vertices, which
corresponds to the relaxed closure condition as explained below.

19In fact, in the Euclidean case when the Immirzi parameter must be a rational number, there is no even
one-to-one correspondence between the state space of the SF model and the SU(2) spin networks. Indeed, for
example, for γ < 1 let 1+γ

1−γ = p
q where p, q are two coprime integers. Then j can take only values 1

2 m(p+ q),
m ∈ N. As a result, spin networks with representations which do not belong to this set are missing.
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The claimed agreement is often justified by comparison of the spectra of geometric opera-
tors, area [21] and volume [138]. By appropriately adjusting the ordering, the spectra in spin
foams and LQG can be made coinciding. However, the operators, which are actually evaluated
in these papers, are not the standard ones, but shifted by constraints. For example, the area
of a face is taken in the form

S2
f =

1

2
(⋆Bf) · (⋆Bf)− (xt · (⋆Bf))

2 =
1

2
Bf · I(P )(xt) · Bf . (3.39)

It explicitly depends on the normal xt. But in the EPRL approach the boundary states are
supposed to be integrated over these normals so that the operator corresponding to (3.39) is
simply not defined! On top of that, even if one drops the integration over xt, as we argue
below, and gets a well defined operator on a modified state space, we see that the quantization
of the geometric operators is not unique. To get the coincidence with LQG requires ad hoc
choice of the ordering and of the classical expression to be quantized.

In the next section it will become clear that this ambiguity is a reflection of serious prob-
lems of the presented approach. They arise because the way the simplicity constraints are
incorporated into quantum theory does not respect quantization rules of constrained systems.
As a result, the new models cannot be considered as proper quantizations of general relativity.

3.4 Imposition of constraints revisited

All models presented in the previous section have been derived following the strategy of section
3.1.2: first quantize and then constrain. Now we want to reconsider the resulting constructions
taking lessons from the canonical approach.

As we showed in the previous section, the spin foam quantization originates in Plebanski
formulation of general relativity. The canonical analysis of this formulation has been carried
out in [139, 140, 141] and turns out to be essentially equivalent to the Lorentz covariant
canonical formulation of the Hilbert–Palatini action [18] once εijkBjk is identified with

∼
P i. The

Immirzi parameter is also easily included and appears in the same way. Thus, the canonical
structure to be quantized can be borrowed from section 2.2.1. In particular, the role of the
simplicity constraints is played by the constraints (2.30).

What is however important is that there are also secondary constraints (2.31), which
together with the usual simplicity form a system of second class constraints. Due to this, as
we extensively discussed in section 2, the correct symplectic structure is provided by Dirac
brackets. In particular, the commutation relation we are mostly interested in can be found in
(2.32) where

∼
P and

∼
Q should be replaced by the B-field and its Hodge dual.

Similarly to the Lorentz covariant formulation, one can define a shifted connection AIJ
i

coinciding with the spin-connection on the surface of the Gauss constraint [140] (see section
2.3.2). This connection satisfies a simpler commutation relation

{
AIJ
i , ε

jklBKL
kl

}
D
= δji I

IJ,KL
(P ) . (3.40)

Its “rotational” part is non-dynamical in agreement with the secondary second class constraints
which now take the form

IIJ(Q)KLAKL
i = ΓIJi (B). (3.41)

Our aim is to verify whether the new SF models provide a quantization of Plebanski
formulation consistent with this canonical analysis. For that purpose we take a closer look
at the imposition of constraints in the EPRL and FK models. But first, to illustrate the
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situation, we suggest a very simple example [136] which however contains the essential features
of kinematics relevant to our problem.

3.4.1 A simple example

Let us consider a system described by the following action:

S =

∫
dt
[
p1q̇1 + p2q̇2 − 1

2
p21 − α cos q2 + λ(p2 − γp1)

]
. (3.42)

Here the coordinates q1 and q2 are supposed to be compact, so that we consider them as living
in the interval [0, 2π), and α, γ are numerical parameters.

The canonical analysis of this system is elementary. The momenta conjugate to q1 and q2
are p1 and p2, respectively, so that the only non-vanishing Poisson brackets are

{q1, p1} = 1, {q2, p2} = 1. (3.43)

The variable λ is the Lagrange multiplier for the primary constraint

φ = p2 − γp1 ≈ 0. (3.44)

Commuting this constraint with the Hamiltonian

H = 1
2
p21 + α cos q2 − λφ, (3.45)

one finds a secondary constraint
ψ = sin q2 ≈ 0, (3.46)

which has two possible solutions q2 = 0 or q2 = π.
Since the two constraints, φ and ψ, do not commute, they are of second class. A way

to take this into account is to construct the Dirac bracket. It is easy to find that the only
non-vanishing Dirac brackets between the original canonical variables are

{q1, p1}D = 1, {q1, p2}D = γ. (3.47)

The second bracket here is actually a consequence of the first one provided one uses p2 = γp1.
The Hamiltonian is given (up to a constant) by

H = 1
2
p21. (3.48)

As a result, classically the system reduces to the very simple system describing one free particle
on a circle.

As for the quantum theory, first, we would like to quantize the action (3.42) following the
strategy adopted by the spin foam approach. This is not a problem since the analogy of this
model with the kinematics of Riemannian general relativity is rather direct: q1 and q2 are
analogous to the right and left parts of the SO(4) spin-connection under chiral decomposition,
p1 and p2 correspond to the chiral parts of the B-field, φ is similar to the diagonal simplicity
constraint, ψ is its secondary partner, and γ plays the role of the Immirzi parameter (or rather
of its combination γ+1

γ−1
).

At the first step, we ignore the second class constraints and quantize the unconstrained
symplectic structure represented by the Poisson commutation relations (3.43). Thus, in the
coordinate representation the canonical variables are realized by the following operators

q̂1 = q1, q̂2 = q2, p̂1 = −i~∂q1 , p̂2 = −i~∂q2 . (3.49)
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Since the configuration variables are compact, the state space is spanned by linear combina-
tions of

Ψj1,j2(q1, q2) = eij1q1+ij2q2, (3.50)

where j1, j2 are two integers. These states form an orthonormal basis with respect to the
scalar product

〈Ψ|Ψ′〉 = 1

(2π)2

∫
dq1dq2Ψ(q1, q2)Ψ

′(q1, q2). (3.51)

At the second step, one should impose the primary constraint. As in the spin foam models,
we do this by requiring that the states should satisfy

φ̂Ψ = (p̂2 − γp̂1)Ψ = 0. (3.52)

Being applied to the basis states (3.50), this condition leads to the following restriction on the
labels

j2 = γj1, (3.53)

so that the physical states are spanned by

Ψj(q1, q2) = eij(q1+γq2). (3.54)

They are similar to the SU(2) spin networks with q1+γq2 being an analogue of the Ashtekar–
Barbero connection. In particular, this provides an illustration for the reduction mechanism,
presented in (3.35), of a generic spin connection to the Ashtekar–Barbero connection. More-
over, since the representation labels in (3.53) are integer, one gets the quantization condition
on γ that this parameter should be a rational number. This is precisely the same result which
one has for the Immirzi parameter in the EPRL and FK spin foam models.

Let us compare this construction with the standard Dirac quantization. Although it can
be done in a straightforward way by passing immediately to the phase space reduced by the
second class constraints, we present it in a longer version, which is closer to the procedure one
follows in the covariant loop approach. Namely, we start with an “enlarged” Hilbert space
consisting of square-integrable functions of q1 and q2, quantize the Dirac commutation relations
(3.47), and impose the constraint (3.46) to remove a degeneracy of the original Hilbert space.

Our enlarged Hilbert space is spanned by the linear combinations of (3.50) and thus co-
incides with the starting point of the previous approach. On the other hand, the canonical
variables are represented now by the following operators:

q̂1 = q1, q̂2 = q2, p̂1 = −i~∂q1 , p̂2 = −i~γ∂q1 . (3.55)

This representation differs from (3.49) since it is obtained by quantizing the Dirac algebra
(3.47). Together with the quantum operators, one should also adjust the scalar product,
which must now include one of the second class constraints. Namely, the physical scalar
product is given by20

〈Ψ|Ψ′〉ph =
1

(2π)2

∫
dq1dq2 δ(ψ)Ψ(q1, q2)Ψ

′(q1, q2) =
1

(2π)2

∫
dq1Ψ(q1, 0)Ψ

′(q1, 0). (3.56)

20Here we neglected the contribution from the second solution of (3.46) which has essentially the same
form. On the other hand, in the path integral (3.60) considered below only one of the two solutions of ψ can
contribute because of the continuity of the classical trajectories one sums over. Which of the two solutions
contributes depends on the boundary conditions at the initial and final moments. For simplicity we assume
that this is q2 = 0.
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The resulting Hilbert space is degenerate along q2 as it is fixed by the secondary constraint ψ.
This degeneracy can be removed by restricting to the states with j2 = 0 because

Ψj1,j2=0(q1, q2) = Ψj1,j2(q1, q2)|ψ . (3.57)

As a result, we end up with the Hilbert space spanned by the states

Ψj1(q1) = eij1q1, (3.58)

and all operators can be built from q̂1, p̂1 defined in (3.55). In particular, the Hamiltonian is
represented as

Ĥ = −~2

2
∂2q1 . (3.59)

This result reproduces the quantization of a free particle on a circle and thus agrees with the
reduced phase space quantization. It is easy to see that this agrees also with the path integral
method, which starts from the phase space path integral:

〈O〉 =

∫
dq1dq2dp1dp2 | det {φ, ψ}| δ(φ)δ(ψ) e

i
~

∫
dt(p1q̇1+p2q̇2− 1

2
p21−α cos q2)O(q1, q2, p1, p2)

=

∫
dq1dp1 e

i
~

∫
dt(p1q̇1− 1

2
p21)O(q1, 0, p1, γp1). (3.60)

Comparing the results of the two approaches, one observes a drastic discrepancy: γ is either
quantized or not. In the former approach for a non-rational γ the quantization simply does
not exist, whereas there are no any obstructions in the latter. Besides, the resulting states,
(3.54) and (3.58), are also different. In principle, they can be made identical by identification
q1 + γq2 → q1, which however may affect correlation functions. In contrast, the problem
with the quantization condition on γ cannot be avoided by any tricks. It shows that the two
quantizations are indeed inequivalent. Taking into account that the second approach represents
actually a result of several possible methods, which all follow the standard quantization rules,
it is clear that it is the second quantization that is more favorable. The quantization of γ does
not seem to have any physical reason behind itself.

In fact, it is easy to trace out where a mistake has been done in the first approach: it takes
too seriously the symplectic structure given by the Poisson brackets, whereas it is the Dirac
bracket that describes the symplectic structure which has a physical relevance. In particular,
in the presented example, the Poisson structure tells us that p2 is the momentum conjugate
to q2, whereas in fact it is conjugate to q1.

It is easy to see that this leads to inconsistency of the first quantization. For example, the
Hamiltonian, which reads in this case as

Ĥsf = −~2

2
∂2q1 + α cos q2, (3.61)

is simply not defined on the subspace spanned by linear combinations of (3.54). This problem
is caused by the second term involving q2. It is impossible to ignore this term by requiring
that ψ̂ vanishes on the physical states since it would be in contradiction with the commutation
relations (3.49). Moreover, even if one manages to define a Hamiltonian operator on the phys-
ical subspace, it would not have eigenstates there. Indeed, assuming that Ψ is a simultaneous
eigenstate of φ̂ and Ĥ, one finds [Ĥ, φ̂]Ψ = i~αψ̂Ψ = 0 so that Ψ is annihilated also by ψ̂. But
as we already mentioned, this is not consistent with (3.49).

49



Figure 7: The assignment of coordinates and momenta to the discretized time line.

However, one can take a “minimalistic” point of view and do not require the existence
of a well defined Hamiltonian on the constrained state space.21 After all, spin foam models
are designed to compute transition amplitudes. Therefore, we are really interested not in
the Hamiltonian itself, but in its matrix elements and the latter can be defined by using the
Hamiltonian and the scalar product on the original unconstrained space. Moreover, one has
the following encouraging property

sf〈j|Ĥsf |j′〉sf = 〈j|Ĥ|j′〉ph, (3.62)

where the states appearing on the l.h.s. |j〉sf ≡ |j, γj〉 are those which arise in the first, spin
foam like quantization and are represented by (3.54), whereas the states on the r.h.s. result
from the standard Dirac’s approach and are defined in (3.58). This gives a hope that the
transition amplitudes computed by SF models may nevertheless be compatible with a self-
consistent canonical picture. In particular, the vertex amplitude is believed to be given by a
matrix element of the Hamiltonian operator [50] and, if this is the case, a property like (3.62)
would ensure its agreement with the results of a more rigorous Dirac’s approach.

However, this expectation turns out be wrong. As is clear from the derivations in [20,
132] and has been explicitly demonstrated in a simple cosmological model [142], the vertex
amplitude actually appears as a matrix element of the evolution operator. This requires to
consider expectation values of higher powers of the Hamiltonian for which the property (3.62)
does not hold anymore. This leads to deviations of results obtained by the spin foam strategy
from those which are based on the well grounded canonical quantization.

Let us demonstrate this disagreement on the example considered above. To this end,
we put it on a lattice, construct an analogue of the vertex amplitude, and investigate its
dependence on the coupling constant α. It is clear that any results compatible with the
canonical quantization should be α-independent as this coupling multiplies the term fixed by
the second class constraints to a constant.

At the first step, one introduces a discretization of our “spacetime”, which amounts to
replacing the continuous time-line by a set of points. The discretized coordinates q(k) =
(q1,(k), q2,(k)) are assigned to these points, whereas their conjugate momenta p(k) are associated
to the intervals ∆k between two points (see Fig. 7). A possible discretization of the action
(3.42) then reads

Sdisc =
∑

k

S∆k
(q(k), q(k+1), p(k)) (3.63)

where

S∆(q, q
′, p) = p1 sin(q

′
1 − q1) + p2 sin(q

′
2 − q2)−

1

2
p21 −

α

2
(cos q′2 + cos q2) , (3.64)

and the kinetic term is written in terms of the sin-function to take into account the compactness
of the configuration variables. The vertex amplitude should be associated with the intervals

21We thank Carlo Rovelli for discussion of this possibility.
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∆k since they are simplices of the highest dimension. Due to this, the coordinates q, living at
the end points of the intervals, are naturally considered as boundary variables and the vertex
in “q-representation” can be defined by a “path integral” over internal momenta22

A(q, q′) =

∫
dp1dp2 e

iS∆ = δ(q′2 − q′2) e
i
2
sin2(q′1−q1)−2α cos q2. (3.65)

To get the usual representation in a “spin-network basis”, it is enough to evaluate the matrix
element of (3.65) between two states (3.54). This gives the following result

A(j, j′) = sf〈j′|A(q, q′)|j〉sf = Ac(j, j
′)Aa(j − j′), (3.66)

where

Ac(j, j
′) =

∫
dq1dq

′
1 e

i
2
sin2(q′1−q1)+ijq1−ij′q′1 ,

Aa(j) =

∫
dq2 e

−iα cos q2+iγjq2 ∼ Jγj(α).

(3.67)

The first factor here, Ac(j, j
′), is the amplitude which we would obtain by following the

standard canonical quantization equivalent to working with the reduced phase space only.
The second factor is an anomalous contribution which marks the difference between the two
approaches. It depends explicitly on the coupling α and thus shows incompatibility of the
spin foam strategy with the canonical quantization.

Had we worked with a non-compact version of the model, we could get a trivial α-
dependence (as an overall factor) due to the factor δjj′ coming from Ac. But such trivialization
happens only in free models leading to the trivial dynamics (j′ = j) and cannot be expected
to hold for such a non-linear theory as general relativity. As soon as the spin dynamics is
non-trivial, the dependence on the coupling constant is non-trivial as well.

Let us summarize what we learnt studying the simple model (3.42):

• The strategy based on “first quantize, then constrain” leads to a canonical quantiza-
tion which is internally inconsistent as the Hamiltonian operator is ill-defined on the
constrained state space.

• The origin of the problem as well as the quantization of the parameter γ can be traced
back to the use of the Poisson symplectic structure which does not take into account the
presence of the second class constraints.

• Besides, this approach completely ignores the presence of the secondary second class
constraint which is crucial for suppressing the fluctuations of non-dynamical variables
and producing the right vertex amplitude in discretized theory.

• An attempt to interpret the results of such quantization only as an approach to compute
transition amplitudes using (unphysical) Hamiltonian (3.61) does not work as they turn
out to be incompatible with the results of the standard (path integral or canonical)
quantization. As a result, the transition amplitudes computed in this way do not have
any consistent canonical representation.

In our opinion, all these problems are just manifestations of the fact that the rules of the
Dirac quantization cannot be avoided. This is the only correct way to proceed leading to a
consistent quantum theory.

22Note that the δ-function factor is reminiscent the flatness condition of BF-theory. In this respect, our
model is not a complete analogue of general relativity in Plebanski formulation because it contains non-linear
terms in p1 which prevent from getting a similar “flatness condition” for q1.
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Figure 8: The action of the smeared B-field on a holonomy.

3.4.2 A new look at simplicity and SF strategy

The example presented above explicitly reveals the main problems of the new SF models and
their origin. All these models start from the symplectic structure provided by the simple BF
theory, which ignores constraints of general relativity. In particular, they all use the usual
identification of the B-field with the generators of the gauge group, or its γ-dependent version
(3.20), when the constraints are translated into quantum level. But this identification does
not agree with the symplectic structure of general relativity. Why this is so can be understood
from the following consideration [61].

Let us consider the action of the operator B̂, smeared over a 2-dimensional surface, on a
holonomy of a connection A. In BF theory the B-field is canonically conjugate to A = ω and
therefore the action simply brings down the generator T of the gauge group

∫

Σ

B̂ · Uγ[A] = −i~Uγ1 [A] · T̂ · Uγ2 [A], (3.68)

where we assumed that a curve γ is split into γ1 ∪ γ2 by an intersection with the surface Σ
(Fig. 8). It is this relation that allows to identify B with the generator. More generally, as
soon as

[ εjklB̂IJ
kl (y), Â

KL
i (x)] = −i~CIJ,KLδji δ(x, y) (3.69)

with some arbitrary function CIJ,KL, one obtains the same result with T IJ replaced by
CIJ,KLTKL. Thus, the above identification is true only if CIJ,KL = ηI[KηL]J , i.e., B and
A are canonically conjugate.

On the other hand, as we discussed in the beginning of this section, the canonical analysis of
Plebanski formulation [139, 140] shows that it is not the case for general relativity because the
symplectic structure to be quantized is given by Dirac brackets having a non-trivial form. In
fact, the commutator of the B-field with the spin-connection (2.32) is even more complicated
than (3.69). This form, needed to geometrize the B-field, can be achieved by replacing the spin-
connection by the shifted connection A. But then the commutation relation (3.40) implies
that the identification of B with the generators holds only for the boost part of the field,
whereas the rotation part effectively vanishes.

Anyway, it is clear that the quantization rule (3.20) disagrees with the canonical structure
of Plebanski formulation. As a result, one can apply the conclusions made in the previous
subsection about the simple model (3.42) directly to most of SF models in 4 dimensions.
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Indeed, this example captures the U(1)× U(1) sector of the Euclidean theory constrained by
the diagonal simplicity which is imposed in a strong way as in (3.52). How the non-diagonal
degrees of freedom are treated and how the cross simplicity is imposed is not already relevant
for the validity of these conclusions. In particular, they are not affected by the progress in
understanding the cross simplicity in the new models and can be applied to both EPRL and FK
as well as to the original BC model.23 Besides, we considered the compact case corresponding
to the Riemannian models just to elucidate the issue with the quantization condition on γ,
but all conclusions remain to be valid in the Lorentzian theory as well, where the conditions
on the representation labels are obtained in the same way and look equally unnatural from a
group-theoretic point of view.

In fact, a special care which is paid to the diagonal simplicity, when it is imposed strongly
whereas the cross simplicity constraints are imposed only weakly, results from another common
confusion. As we explained in section 3.3.1, this is done because the diagonal simplicity is
in the center of the non-commutative constraint algebra of all simplicity constraints and thus
interpreted as first class. But this classification would be correct only if there were no other
constraints to be considered. It completely ignores the presence of the secondary constraints.
The latter do not commute with all simplicity and in particular with the diagonal simplicity.
As a result, all these constraints are second class and should be quantized via the Dirac bracket.

Given all this, we expect that the new SF models suffer from inconsistencies which we met
in the previous subsection. They can be summarized by saying that the statistical models
defined by the SF amplitudes do not have a consistent canonical quantization picture, where
the vertex amplitude appears as a matrix element of an evolution operator determined by a
well defined Hamiltonian. In particular, there is no reason to expect that the new models
may be in agreement with LQG or any of its modifications. Note that this incompatibly with
the canonical quantization manifests itself in the issues involving the Hamiltonian. This is
why one does not see it in a semiclassical analysis or in any investigation restricting to the
kinematical level.

It should be stressed that this critics is not just about face or edge amplitudes, which
depend on details of the path integral measure but can be found in principle from consistency
on the gluing of simplices [135]. In fact, the ignorance of the secondary second class constraints
has much more profound implications and, what is the most important, it affects the vertex
amplitude (see the next subsection). The standard prescription that the vertex is obtained by
evaluating the boundary state of a 4-simplex on a flat connection is a direct consequence of
the employed strategy, which starts by quantizing the topological BF theory, and should be
modified to take into account all constraints of general relativity.

Of course, the SF models are still well defined as statistical models. But, in our opinion, this
is not enough to consider them as candidates for quantum gravity. A good candidate should
allow a quantum mechanical representation in terms of wave functions, Hamiltonian, etc.,
especially if one hopes to find a viable loop quantization of gravity. The point we are making
here is that the SF models derived using the strategy “first quantize and then constrain” do
not satisfy this requirement.

23One could think that the derivation of the EPRL model presented in [137] is not captured by our analysis
because it does not distinguish the diagonal simplicity imposing all constraints weakly as in (3.24). However,
it was overlooked that this approach leads to another model having a much larger boundary state space since

the condition (3.23) is absent and λ can take any values
(
j + k, γ

j(j+1)
j+k

)
with k ∈ N. If one wants to get back

the EPRL model, one still has to impose the diagonal simplicity strongly. This issue is discussed also in [143]
where it was concluded that consistency requires the diagonal simplicity to be imposed only weakly.
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There is however one special case when our reasoning, based on the use in the SF quan-
tization of a wrong symplectic structure, is not applied. This is the FK model without the
Immirzi parameter (γ = ∞) [20]. Since in this model the simplicity constraints are imposed
not directly on the generators, but on their expectation values in a coherent state (3.29), for
γ = ∞ the generators of the subgroup SU(2), defined with respect to xt, drop out and only
the boost generators survive. In other words, effectively, the bi-vectors are quantized as

Bf 7−→ B̂ft = −i~ I(P )(xt) · T̂ (λf ). (3.70)

Note that each bi-vector gets two realizations depending on the frame of one of the two
tetrahedra sharing the face. The effective quantization rule (3.70) is consistent with the
symplectic structure of Plebanski formulation (3.40) written in terms of the shifted connection
A where the second class constraints have been taken already into account by means of the
Dirac bracket.24 Thus, in contrast to all other models, the FK model without γ may correctly
incorporate the primary simplicity constraints. Nevertheless, as we will see below, this model
still suffers from ignoring the secondary constraints which should affect it at the dynamical
level.

3.4.3 Secondary constraints and vertex amplitude

The SF representation of quantum gravity can be seen as an outcome of a Lagrangian path
integral for discretized Plebanski formulation of general relativity. However, the Lagrangian
or a configuration space path integral is a derived concept. A more fundamental one is the
path integral over the phase space. Its measure can be rigorously derived and in particular it
contains δ-functions of all second class constraints. On the other hand, the Lagrangian path
integral can be obtained from the canonical one only at certain very special circumstances.
Usually, this amounts to integrating over some variables and to use some additional tricks.
We refer to [144] for an extensive discussion of various obstacles appearing on this way.

Fortunately, here we deal with the first order formulations so that we do not need to
integrate over momenta which are a part of the configuration variables of the initial Lagrangian.
Thus, the main problem which remains in connecting the two path integrals is to remove from
the measure all secondary constraints. Indeed, in the Lagrangian path integral the measure
contains only δ-functions resulting from integrating over Lagrange multipliers, i.e., of the
primary constraints. In the presence of second class constraints there is a nice trick suggested
in [145] which fulfils a transformation removing secondary constraints from the measure and
leaving there just some local factor. However, since it involves a canonical transformation of
variables, it works only for the partition function and fails for correlators [60].25 Therefore,

24For generic γ, (3.31) implies that effectively the bi-vectors are quantized as

Bf 7−→ B̂ft = −i~
γ2

γ2 − 1
I(P )(xt) ·

(
T̂ − 1

γ
⋆ T̂

)
.

This is consistent with Dirac bracket (2.35) for a = − γ
1−γ2 and b = 1

1−γ2 . However, the generic connection
(a,b)A appearing in this commutation relation has nothing to do with the spin-connection defining the group
elements of the discretized theory. Therefore, there is no any reason why the symplectic structure formulated
in terms of this connection may be relevant.

25In [144] it was shown that the trick of [145] does work if one restricts the measured observables to the
set of reduced phase space coordinates. However, it is a hard task to relate them to the initial phase space
variables so that it is not clear that this can be accomplished in practice for such complicated systems as
general relativity. Even if one does that, one still finds a non-trivial (non-spacetime invariant) contribution
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if one wants to calculate transition functions as one does in SF models, one must use the
canonical path integral.

The main consequence of this conclusion is that, as we mentioned above, the secondary
second class constraints should appear explicitly in the integration measure. We believe that
this is an important point missed by the present-day SF models. In [60] it was shown that it
affects the expression for the vertex amplitude so that it is crucial to take it into account to
produce the right quantum dynamics.

The secondary constraints following from the canonical analysis are naturally written using
orthogonal projectors (see, for example, (3.41)) and therefore will depend on the normals xt
after discretization. Thus, the measure involving the constraints should also depend on these
normals

D(xt)[gσt] ∼ δ(ψdiscr (gσt, xt)) dgσt, (3.71)

where ψdiscr is a discrete version of the secondary constraints. However, this dependence should
be consistent with the following covariance property

D(xt) [gσt g] = D(xgt )[gσt], xgt = g · xt. (3.72)

This property is sufficient to prove that the corresponding vertex amplitude is given by [60]

A(λf , jtf , It) =
∫ ∏

t

D(xt)[gt] Ψ
(λf ,jtf ,It)
∆

[
g−1
d(f)gu(f); xt

]
, (3.73)

where u(f), d(f) denote two tetrahedra sharing the triangle dual to face f , “up” and “down”,

It labels different SU(2) intertwiners and Ψ
(λf ,jtf ,It)
∆ is the projected spin network associated

with the boundary of a 4-simplex.
This result represents a natural generalization of the standard prescription that the vertex

is obtained as the spin network evaluated on a flat connection. Indeed, if the measure is
taken to be the usual Haar measure on the group, D(xt)[gt] = dgt, the integrals over the
group elements simply ensure the G-invariance of the spin network and can be neglected if
the intertwiners are already invariant. This leaves the unity in the argument producing the
standard recipe, which can be traced back to the flatness condition in (3.11). However, the
result (3.73) shows that in the presence of second class constraints this prescription is incorrect.
The secondary constraints modify the measure and, in particular, restrict the integration to a
certain subspace of G due to the presence of δ-function in (3.71).

One might argue that since the secondary constraints appear as stability conditions for
the primary ones and the latter are imposed in the path integral at every moment of time,
the secondary constraints should follow automatically and need not to be imposed explicitly.
For example, in SF models based on Plebanski formulation one could expect that all set of
simplicity constraints ensures the simplicity of bi-vectors at all times and thus it is enough.
However, this argument works only at the quasiclassical level where the equations of motion
are satisfied. Off-shell the quantum fluctuations of degrees of freedom fixed classically by
the secondary constraints are not suppressed if the constraints are not inserted in the path
integral. Moreover, in SF models the primary constraints are not imposed everywhere, but
only on the boundary of 4-simplices, because this is the place where the bi-vectors live. At
the same time, as is clear from the example of section 3.4.1, the vertex amplitude can be seen

to the measure [139, 146] which is not taken into account in SF models. Therefore, most of our conclusions
remain to be valid anyway.
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as an unconstrained path integral inside the simplex. This is why we claim that it represents
the dynamics of BF theory rather than the true dynamics of general relativity.

Due to this reason it should be clear that the modification of the measure which we advocate
affects only the dynamics of the corresponding SF model, but is crucial to get the right one
[144]. It is also not seen at the quasiclassical level since the missing constraint is obtained on
mass shell anyway. Therefore, it is not in contradiction with the fact that the semiclassical
asymptotics of the EPRL and FK amplitudes reproduce the Regge action [147, 148, 149], i.e.,
the correct classical limit. The problem is that the secondary constraints are not imposed
strongly at the quantum level and as a result one might expect the appearance of additional
quantum degrees of freedom in the new models.26

Unfortunately, we were not able to find the right measure D(xt)[gσt] at the discrete level.
The main difficulty is that the constraints (3.41) contain a non-trivial, B-dependent right hand
side. Thus, a credible candidate for a spin foam model of quantum gravity is still lacking.

3.4.4 Closure constraint

The necessity to insert the secondary second class constraints into the path integral measure
over holonomies has important implications for another constraint widely used in the SF
approach, the closure (3.9). The usual identification of the bi-vectors Bf with the generators
of the gauge algebra implies that its quantum version requires the invariance of intertwiners
assigned to tetrahedra ∑

f⊂ t

T̂ (λf ) I(t)
G = 0. (3.74)

In the spin foam models considered above such invariance is achieved by averaging over the
normals xt appearing after implementation of the cross simplicity constraints. For example, in
the BC intertwiner (3.16) this is equivalent to the insertion of an integral over the factor space
(boosts) X . However, in [60] it was argued that integrating the boundary states over xt is
inconsistent with the gluing of different simplices which respects the second class constraints.

Indeed, the gluing of two simplex contributions is performed by integrating over holonomies
associated to triangles common to the two simplices. If the correct measure includes the
contribution of the secondary constraints, it depends on the normal to the shared tetrahedron,
as explained in the previous subsection. It is clear that this is the same normal which appears
in the corresponding boundary states of the glued simplices. On the other hand, the insertion
of integrals over this normal in the states would make xt’s appearing in the states and in the
measure unrelated. This is clearly inconsistent with the fact that the geometry (the B-field)
assigns unique data to the elements of the simplicial decomposition.27

In other words, the gluing should be done according to the following schematic formula

Ψ12 [gf ; xt] =

∫ ∏

f12

D(xt12)[ρf12 ] Ψ1 [gf1, gf12ρf12 ; xt1 , xt12 ] Ψ2

[
gf2, ρ

−1
f12

; xt2 , xt12
]
, (3.75)

26In [141] it was noticed that in a class of generalized gravity theories based on a generalization of the
non-chiral Plebanski action (3.6) the secondary second class constraints are missing and as a result one finds
6 more propagating degrees of freedom. The resulting theory was interpreted as a bi-metric gravity in [150].
The difference with our situation is that in these generalized gravities the constraints are missing already at
the classical level.

27This may be compared to the derivation of the BC model in the FK approach. As discussed in section
3.3.3, it arises after incorrect decoupling of the normals nσ

tf for different simplices. Similarly, we argue that
the normals xσt should be taken equal for all σ ⊃ t.
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where f = (f1, f2, f12), t = (t1, t2, t12), the labels 1,2 refer to non-shared faces and tetrahedra
of the corresponding glued simplices and the label 12 marks the shared faces and tetrahedron.
What we explained above is that the normal xt12 should be the same in the measure, Ψ1

and Ψ2. Thus, it must be an additional argument of the boundary state functional as shown
explicitly in (3.75). Moreover, using (3.72), it is easy to see that the dependence on xt12 drops
out from this integral. Thus, even in the complete partition function all normals should not
be integrated over and must be kept fixed as otherwise one would get an infinite factor in the
Lorentzian case. This has a simple interpretation of a gauge fixing of boosts in the discretized
path integral.

Once it is forbidden to insert integrals over xt in the definition of the boundary states,
their intertwiners are not invariant anymore. Indeed, the boundary states are precisely given
by projected spin networks (2.39) whose intertwiners can be written as [61]

I({λk},{jk},It)
(Ψ) p1···pL (xt) =

∑

ℓj1 ···ℓjL

I(t) {jk}
SU(2) ℓj1 ···ℓjL

L∏

k=1

R
(λk)
pkℓjk

(gxt), (3.76)

where k = 1, . . . , L (for one simplex L = 4), the indices ℓjk label the basis of the subspace
Hjk
SU(2) appearing in the decomposition of the representation λk on the subgroup SU(2), and

It ≡ I(t)
SU(2) is an SU(2) invariant intertwiner. The intertwiners I(Ψ) provide a natural gener-

alization of the BC intertwiner (3.16) where one drops the integral over x and replaces the
projection to the trivial representations jk = 0 by a generic one. It is easy to see that they
satisfy the following property

∑

q1···qL

(
L∏

k=1

D(λk)
pkqk

(g)

)
I({λk},{jk},It)
(Ψ) q1···qL (xt) = I({λk},{jk},It)

(Ψ) p1···pL (g · xt), (3.77)

or in the infinitesimal form

∑

f⊂ t

T̂ (λf ) I(Ψ)(xt) = T̂ · I(Ψ) (xt) , (3.78)

where T̂ acts on functions of xt as the usual generator of rotations

T̂IJ · f(x) = ηIKx
K∂Jf − ηJKx

K∂If. (3.79)

Thus, according to our analysis, the new condition (3.78) replaces the usual constraint on
intertwiners (3.74). This relaxed version of the closure condition has been proposed in [61] on
the basis of comparison with the canonical approach and appeared also in recent group field
theory models [151]. It expresses the covariance of intertwiners under the action of the gauge
group, rather than their invariance as is usually required.

Note that the relaxed closure condition is not in contradiction with the classical closure
constraint (3.9). In fact, the latter follows from the gauge invariance only provided the flatness
condition on the connection is satisfied, which arises only as an equation of motion. Therefore,
in quantum theory it is expected to appear only in the quasiclassical limit. As a result, one
should distinguish two forms of the closure [152]: the strong condition (3.9) holding only
on shell and the usual Gauss constraint expressing the gauge invariance. The latter is more
general and our relaxed condition (3.78) shows how it should be incorporated at the quantum
level.
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3.5 Comparison with the canonical approach

Summarizing our analysis of the spin foammodels, we see that already the proper consideration
of the diagonal simplicity constraint shows that all attempts to include the Immirzi parameter
following the usual strategy lead to inconsistent quantizations. All problems of the EPRL
and FK models can be traced back to that they quantize the symplectic structure of the
unconstrained BF theory and impose (a half of) the second class constraints after quantization.
So we conclude that the widely used strategy “first quantize and then constrain” does not work
and should be abandoned.

This leaves us with the FK model for γ = ∞ which appears to be the best proposal up to
now. But as we showed, even in this case not all constraints are properly incorporated. Namely,
it misses the secondary second class constraints affecting the path integral measure and as a
result influencing the model at the dynamical level. In particular, the vertex amplitude should
not be given anymore by evaluation of a spin network on a flat connection, which is again an
artefact of the misleading strategy, but must be represented by a more complicated integral
(3.73).

In fact, the analysis of the discretized path integral shows [60] that once all constraints
are properly incorporated, the boundary states of a spin foam are always given by projected
spin networks. Moreover, the arguments of these spin networks should be constrained by the
secondary second class constraints so that there is a perfect agreement at the kinematical level
with the covariant canonical loop approach of section 2.2.2.

However, a concrete implementation of the secondary constraints both in the boundary
states and in the vertex amplitude (3.73) remains problematic. This is precisely the same
problem which supplies the canonical approach. In particular, it is closely related with the
non-commutativity of the connection. Thus, although it is possible to obtain a picture similar
to the loop quantization, the goal, which is to provide a credible spin foam model and, in
particular, a vertex amplitude correctly taking into account all constraints of general relativity,
is far from being accomplished.
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4 Roads to Quantum Gravity

How to overcome the problems which have been exposed in the previous chapters? What
ideas can give new insights on these problems? Where is the mysterious pathway to quantum
gravity? Here we would like to suggest tentative answers to some of these questions and to
speculate on possible research directions which seem to be promising to us.

4.1 Canonical way

As we argued in chapter 2, the idea of the loop quantization potentially can be realized in
various inequivalent ways. LQG is only one of them and not the best. In our opinion this is the
approach of CLQG described in section 2.3.2 that has more chances to successfully quantize
general relativity. But on this way one encounters two major problems:

1. to find a unitary irreducible representation of the quantization of the classical algebra
of Dirac brackets;

2. to impose the secondary second class constraints (2.53) at the level of the kinematical
Hilbert space.

These two problems are closely related because the first of them arises due to the non-
commutativity of the connection AIJ , which is the central object of this approach playing
the same role as the Ashtekar–Barbero connection plays in LQG. This non-commutativity can
be traced back to the constraints (2.53) which show that the rotation components of the con-
nection are expressed in terms of coordinates canonically conjugate to its boost components.
Therefore, it is very likely that a solution to one the above problems will solve also the second.

The most straightforward way to find a representation of the Dirac algebra would be to
understand the geometric meaning of the commutator of two connections. The easiest solution
would be if it is related to some non-commutative algebra structure, not too complicated to
study, as it happens for example in Chern–Simons theory [153] where it appears to be related
to quantum groups. But although this commutator was known for some time [57, 52], no such
structure has been discovered so far.

A different possibility would be to give up the connection representation and to develop
a representation which starts from a configuration space given by classically commuting vari-
ables. Such set of variables is provided, for example, by triads which hints that it might be
reasonable to look for a triad representation [63]. But unfortunately the classical commutativ-
ity disappears as soon as one passes to the triads smeared over two-dimensional surfaces (2.12)
[154], which is the necessary step in the background independent loop approach. Remarkably,
in the simple case of LQG kinematics, this is not really a problem and the triad or flux rep-

resentation can be constructed and is formulated in terms of non-commutative functions on
Lie algebras [155]. It is an exciting problem whether this LQG flux representation can be
generalized to take into account the non-commutativity of the CQLG connection.

Finally, an interesting possibility to deal with the non-commutativity and to address the
problem of how to impose the secondary constraints on arguments of projected spin networks
is opened by the coherent state technique developed in the context of SF models [19]. It
might help to disentangle degrees of freedom responsible for different geometric information
in a similar way as has been done for the usual SU(2) spin networks [156, 157]. Once the
geometric meaning of different elements is understood, the geometric quantization methods
may give insights on the right quantization.
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4.2 Path integral way

In our opinion, it is a very encouraging fact that, once all constraints are properly taken
into account, the spin foam path integral leads to a picture consistent with the canonical
approach. In particular, one finds that the state space is the same and provided by projected
spin networks with suitably constrained arguments.

But this convergence of results implies that the problems of the two approaches are also
similar. Indeed, the main obstacle which prevents us so far from formulating a consistent and
credible SF model is again related to the secondary constraints. This time the problem is how
to incorporate them in the measure (3.71) to be used in the vertex amplitude (3.73). In fact,
it can be split into two parts:

1. how to discretize the secondary second class constraints;

2. which measure the discretized constraints induce for the vertex amplitude.

Very promising results concerning the first point appeared recently in [158, 159] and [129]
where they were identified with some geometric constraints on the phase space of simplicial
geometries. This geometric interpretation in the simplicial context might be very helpful in
incorporating them directly in the discretized path integral, but this has not been done in full
detail yet.

On the other hand, the problem of the right measure in the vertex amplitude does not
seem to allow a simple solution. The main difficulty again comes from the fact that the
secondary constraints (3.41) depend on the B-field which, as we recall, was the origin of the
non-commutativity of the connection in CLQG. Due to this it is very difficult to integrate the
B-field out, as is usually done in derivations of SF models, and it is impossible to insert the
constraints directly in the vertex amplitude, since the integral formula (3.73) assumes that
the measure is B-independent.

A promising research direction in this respect is an attempt to construct a spin foam
model where the bi-vectors appear on equal footing with holonomies. Such models has been
introduced in the framework of group field theories (GFT) [160, 151, 161] and will be discussed
in the next section.

We would like to finish this short section with a remark which might turn out to be
important in trying to construct a path integral quantization of general relativity. It is usually
of prime importance to choose an appropriate gauge fixing condition which may either facilitate
or complicate the quantization. The connection representation widely used in LQG might
suggest that it could be convenient to impose conditions on the connection variables. However,
in [162] it was shown in the context of the BRST path integral quantization that such gauges
lead to higher ghost terms in the effective action appearing due to the dependence of the
structure constants of the constraint algebra on the dynamical fields. As a result, the ghosts
cannot be integrated out to produce the usual Faddeev–Popov determinant. This indicates
that gauge conditions on connections should be systematically avoided.

4.3 GFT way

A group field theory (GFT) formulation of spin foam models appears from the observation
that SF amplitudes can be presented as evaluation of Feynman graphs on product of groups
or homogeneous spaces. Therefore, it is very natural to build a QFT whose perturbative
expansion produces these Feynman integrals. This aim is fulfilled by GFTs, combinatorial
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non-local QFTs on Gd, where G is the group appearing in the corresponding SF model and
d is the dimension of spacetime. The expansion of the partition function of such theory in a
coupling constant λ gives precisely the expansion of the spin foam type

ZGFT =
∑

C

λnV (C)

sym(C)

∑

J, I

∏

f

Af
∏

e

Ae
∏

v

Av. (4.1)

The group field theories were first invented as higher dimensional extensions of matrix mod-
els quantizing two-dimensional gravity. The first model in three dimensions was defined by
Boulatov [163] and in four dimensions by Ooguri [164]. Later they were generalized in [165]
to get a GFT reformulation of the BC spin foam model. For recent reviews on GFT see, for
example, [166, 167].

An advantage of the GFT formulation is that it generates not only spin foam amplitudes,
but also organizes them in a sum with certain weights. Therefore, it is expected that the
“non perturbative” study of these GFTs can be a promising direction for giving insights
on the construction of the physical scalar product in the Hamiltonian approach and on the
particularly obscure issue of the summation over 2-complexes. Moreover, there is a viewpoint
that GFTs are not just auxiliary QFTs, which role is to eventually solve these problems, but
they are fundamental formulations of quantum gravity. One hopes that they can, for example,
address fundamental issues such as the topology change, which are poorly studied by means
of other techniques.

It might be useful to recall the basic ideas of GFT. Let G be a Lie group and denote dx the
right invariant Haar measure. In the applications to spin foam models associated to quantum
gravity, the gauge group is usually G = SO(η) (in that case the Haar measure is right and left
invariant) and the group field φ is a map φ : Gd → R denoted φ(xi), i = 1, ..., d. The general
form of the GFT action is given by

S[φ] =
1

2

∫ d∏

i=1

dxidyi φ(xi)K(xiy
−1
i )φ(yi) +

λ

d+ 1

∫ d+1∏

i 6=j
dxij V(xijx−1

ji )
d+1∏

i=1

φ(xij), (4.2)

where φ(xij) = φ(xi1, ..., xid+1), K is a kinetic kernel, V is an interaction kernel and λ is a
coupling constant whose precise physical meaning is still a matter of debate. This action
has a global symmetry given by φ(xi) 7→ φ(xig), g ∈ G. If one assumes that K and V are
bi-invariant under G, i.e., K(gxig

′) = K(xi) and V(gixijg−1
j ) = V(xij), ∀g, g′, gi ∈ G, one

obtains an additional gauge symmetry which can be gauge fixed by requiring that the group
field satisfies ϕ(gxi) = ϕ(xi). Then the link between Feynman graphs following from this
action and spin foam amplitudes is precisely obtained through this invariance: one expands
the field ϕ in Fourier modes given by matrix elements of irreducible unitary representations
and imposes the G-invariance through Clebsch-Gordan maps. The rest is described by tensor
matrix models whose Feynman graphs can be easily computed and appear to be spin foam
amplitudes.

In practice, however, very often it is more convenient to work not in terms of kernels, but
using certain projectors, especially if the actual space where the field lives is not the group, but
a homogeneous space G/H where H is a closed subgroup of G. This happens, for example, for
the BC model and is expected to be the case for any credible GFT model of general relativity
in four dimensions. For example, GFTs for BF theory and the BC spin foam model can be
constructed as follows. Let us define two commuting projectors acting on a field ϕ on Gd as

(P r
Hϕ)(xi) =

∫

Hd

∏

i

dhi ϕ(xihi), (P l
Gϕ)(xi) =

∫

G

dg ϕ(gxi). (4.3)
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Then the GFT action, which defines a theory on the homogeneous space G/H , reads as [165]

S[ϕ] =
1

2

∫ d∏

i=1

dxi
(
(P r

HP
l
Gϕ)(xi)

)2
+

λ

d+ 1

∫ d+1∏

i 6=j
dxij

d+1∏

i=1

(P r
HP

l
Gϕ)(xij). (4.4)

Choosing various subgroups H , one recovers different spin foam models. In particular, the SF
model of BF theory is obtained by taking H = {e}, whereas taking G = SO(4) and H being
its diagonal SO(3) subgroup leads to the BC model with a certain choice of face and edge
amplitudes. The corresponding kernels K and V are then given by combinations of δ-functions.

Since GFTs automatically generate expansions which have interpretation in terms of spin
foams, but can be formulated in a more compact and geometric way, one may hope that they
propose a natural framework to seek for a correct implementation of the simplicity constraints.
Although this goal has not been achieved yet, we would like to point out an interesting
development already mentioned in the previous section. This is a new class of GFTs proposed
in [160, 151, 161] which is formulated in terms of fields living on (G × g)d where g is the
Lie algebra of G. Such models are supposed to provide a “GFT in a first order formalism”
because, whereas the group variables are usually used to encode holonomies g, the algebra-
valued variables should describe the B-field of Plebanski formulation. The presence of both
variables gives a possibility to work with the constraints of the type (3.41) which depend on
the connection and on the B-field as well. However, it still remains an unsolved problem how
to incorporate these constraints as restrictions on the group field and which consequences for
the SF amplitudes this implies.

What has been already realized in the framework of these models is that the closure
constraint should be imposed in the relaxed form proposed in (3.78) [60]. Indeed, it was found
that the only consistent way to implement the gauge invariance for such generalized field is to
require that ϕ(ggi, gxig

−1) = ϕ(gi, xi). As a result, the gauge transformation affects both, the
holonomies and the variable encoding the B-field, which is of course absolutely natural from
the continuum point of view. But this implies that the intertwiners entering SF boundary
states are no more invariant under gauge transformations, but rather covariant, precisely as
in (3.78). We view this convergence of results as a promising indication.

However, we should mention that there is an issue common to all GFT models, which on
one hand makes their results non-conclusive, but on the other hand has a potential to solve
some of the fundamental problems such as the summation over 2-complexes or the classical
limit. This is the problem of interpretation of the expansion parameter λ. Is it a fundamental
constant or should it be fixed to some particular value? Up to now there is no definite opinion
on this issue. In [166] it was proposed that it should be sent to zero what will select only a
particular class of two-complexes, those which do not have some unwanted bubbles. But this
proposal has not been put on a solid ground. A different proposal has been put forward in [142]
where in the context of a loop quantum cosmology model it was argued that λ should be related
to the cosmological constant. On the other hand, recalling that GFT is a generalization of
matrix models for two-dimensional gravity, one might think that there should be some double
scaling limit involved [168, 169, 170]. In the case of matrix models this limit was crucial to
perform the sum over surfaces, to get the classical limit and to make the models integrable.
Therefore, it would be an exciting result if such a limit is found to govern GFT. Unfortunately,
GFT models have somewhat different structure than their matrix analogues and so far no signs
have been found that a double scaling limit is relevant for these models.

On the other hand, recently some progress has been done on the problem of summing over
two-complexes. For example, this problem was addressed in the works [171, 172, 173, 174]
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and some results for the 3d Boulatov’s model (which is topological and based on SU(2))
were obtained concerning questions such as: What is the planar limit of this model? Can
one give bounds on general Feynman graphs? Can one show Borel summability for some
quantities? Besides, the question of topological singularities in the simplicial complexes dual to
the Feynman graph expansion of GFT models has been studied in [175, 176] and an interesting
proposal how to avoid such singularities has been suggested. However, being very important,
these issues are still far from their complete resolution, especially in the case of GFT models
for four-dimensional gravity.

4.4 Gravity as an effective theory

All the above approaches to quantum gravity are conservative in the sense that they try to
quantize various reformulations of the standard Einstein action of general relativity. Although
this is not a priori impossible, this is also one of the main points of criticism of these ap-
proaches: it is not clear why one should believe that an action describing a classical theory
in infrared remains valid also in ultraviolet. Experience with quantum field theories indicates
that this expectation is in general unreliable as a fundamental ultraviolet action can acquire
completely different form in the infrared limit, where even degrees of freedom may change.
Therefore, considering the Einstein action as a fundamental action to be quantized is a huge
assumption which should be taken with great care.

Besides, now there are serious evidences that general relativity is only an effective theory,
coming first of all from its thermodynamic properties (see, for example, [177, 178, 179]). These
properties most explicitly show up in the black hole entropy which scales as the horizon area,
but this scaling in fact is only a particular manifestation of a more general holographic behavior
of gravity which is found in various approaches. Quite remarkably, such behavior is already
seen at the level of the classical action and almost uniquely determines its form [180, 181].
This shows that the holography is an important feature of at least classical gravity and should
likely play an important role in its quantum description. On the other hand, neither in LQG
nor in SF models the holographic behavior has been observed so far (see however [182]). In
our opinion, this is an indication that something important is missing in these approaches.

These results point in the direction that gravity is some kind of thermodynamic limit of a
more fundamental theory. Such scenario is realized, for instance, in string theory where the
holography appears as open/closed string duality which allows to describe gravity encoded
in degrees of freedom of closed strings in terms of gauge theories described by open strings.
Moreover, the latter often have a description in terms of matrix models which in turn can be
reduced to a system of free fermions. Thus, gravity is found to be hidden in the dynamics of
these elementary degrees of freedom and arises as their collective field theory [183].

In fact, in the approaches where gravity arises as an effective theory, spacetime itself ap-
pears often as an emergent phenomenon. Nowadays this is a huge research area and we do
not aim to review it here. Instead we would like to remark that the loop and spin foam quan-
tizations fit this emergent strategy because they both suggest that the continuous spacetime
appears only in the classical limit whereas the quantum geometry is intrinsically discrete.
Moreover, there is a close analogy with the situation in the above mentioned matrix models
and their fermionic description. Indeed, in both cases the vacuum represents a “no space”
state such that it cannot be associated with any spacetime. To get the latter one should
consider states with a large number of excitations, which in matrix models corresponds to the
famous large N limit and its more refined version, the double scaling limit [168, 169, 170].
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This analogy is not a surprise given that the GFT models, considered in the previous
section and supposed to be a fundamental formulation of spin foams, have been constructed
as generalization of matrix models. However, it also indicates that in LQG and SF there is
a tension between two ingredients: whereas spacetime is emergent, the fundamental action is
taken to be the one which describes this emergent spacetime. The above discussion suggests
that it would be more natural to have some fundamental quantum theory of spin networks
or spin foams which knows nothing about the Einstein action, except that it appears in the
infrared limit, and is defined instead using some natural symmetry or other principles. It is
not clear how such a theory can be found as it certainly requires additional insights. Note
however that the recent research on GFT models goes essentially in this direction [160, 151]
and it has been argued that the whole GFT framework can be seen as a realization of this
idea [184]. Hopefully, it will allow to end up with a reliable model free of the inconsistencies
which have been discussed in this review.
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