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Gravity quantized
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Abstract ...”but we do not have quantum gravity.” This phrase is often used when analysis of a
physical problem enters the regime in which quantum gravity effects should be taken into account.
In fact, there are several models of the gravitational field coupled to (scalar) fields for which the
quantization procedure can be completed using loop quantum gravity techniques. The model we
present in this paper consist of the gravitational field coupled to a scalar field. The result has similar
structure to the loop quantum cosmology models, except for that it involves all the local degrees
of freedom because no symmetry reduction has been performed at the classical level.

PACS numbers: 4.60.Pp; 04.60.-m; 03.65.Ta; 04.62.+v

I. INTRODUCTION

The recent advances in loop quantum gravity (LQG) [1–4], strongly suggest that the goal of
constructing a candidate for quantum theory of gravity and the Standard Model is within reach.
Remarkably, that goal can be addressed within the canonical formulation of the original Einstein’s
general relativity in four dimensional spacetime. A way to define ’physical’ dynamics in a back-
ground independent theory, where spacetime diffeomorphisms are treated as a gauge symmetry,
is the framework of relational Dirac observables (often also called “partial” observables [5],[6, 7],
section I.2 of [2]). The main idea is, that part of the fields adopt the role of a dynamically coupled
observer, with respect to which the physics of the remaining degrees of freedom in the system is
formulated. In this framework the emergence of the dynamics, time and space can be explained as
an effect of the relations between the fields. As far as technical issues of a corresponding quantum
theory are concerned, the most powerful example of the relational observables framework is the
deparametrization technique [8–11]. This allows to map canonical General Relativity into a theory
with a (true) non-vanishing Hamiltonian, that is independent of the (emergent) time provided by
the observer fields. All this can be achieved at the classical level, the framework of Loop Quantum
Gravity (LQG) itself, provides then the tools of the quantum theory like quantum states, the
Hilbert spaces, quantum operators of the geometry and fields and well defined quantum oper-
ators for the classical constraints of General Relativity (see [2],[4] and references therein). The
combination of LQG with the relational observables and deparametrization framework makes it
possible to construct general relativistic quantum models. Applying LQG techniques to perform
the quantization step has the consequence that the quantum fields of the Standard Model have
to be reintroduced within the scheme of LQG. This is due to the reason that the standard quan-
tum field theory (QFT) defined on the Minkowski (or even ADS) background is incompatible with
quantization approach used in LQG. Therefore, the resulting quantum theory of gravity cannot
be just coupled to the Standard Model in it’s present form. The formulation of the full Standard
Model within LQG will require some work. For this reason, we proceed step by step, increasing
gradually the level of complexity. The first step was constructing various cosmological models by
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analogy with LQG by performing a symmetry reduction already at the classical level. They give
rise to loop quantum cosmology [12–18] (LQC). We have learned from them a lot about qualitative
properties of quantum spacetime and its quantum dynamics [19, 20]. That knowledge is very useful
in performing the second step, that is introducing quantum models with the full set of the local
gravitational degrees of freedom. The first quantum model of the full, four dimensional theory
of gravity was obtained by applying LQG techniques [21] to the Brown-Kuchar model of gravity
coupled to dust [8]. In the current paper we apply LQG to the model introduced by Rovelli and
Smolin [22] whose classical canonical structure was studied in detail by Kuchar-Romano [23]. This
is a model of gravity coupled to a massless scalar field. Our goal is to complete the construction of
the quantum model with the tools of LQG. In the firs part of the paper (Sections I-II), we introduce
the model, study the structure of the space of solutions to the quantum constraints, and the Dirac
observables, assuming only suitable Hilbert products and operators exist. The result of this part is
a list of mathematical elements necessary and sufficient for the model to exist. In the second part
(Section III) we apply the framework of LQG. We show it provides the necessary Hilbert spaces
and operators, and complete the construction of the model.

II. CANONICAL GRAVITY COUPLED TO A CLASSICAL SCALAR FIELD

A. The standard approach

The point of our interest in this paper is gravity coupled to a scalar field. We are considering a
metric tensor field qab and a scalar field φ on a 3-manifold M (the space). The conjugate momenta
are denoted respectively by pab and π. The only non-vanishing Poisson brackets among them are

{qab(x), pcd(y)} = δ(x, y)δc(aδ
d
b), {φ(x), π(y)} = δ(x, y). (2.1)

The intrinsic and extrinsic geometry of M (as M being the Cauchy surface of 4-dimensional space-
time) is described by the first pair of canonically conjugate variables (qab, p

ab). The field qab defines
the intrinsic Riemann geometry of M whereas pab contains the information about the extrinsic cur-
vature of M imbedded in the spacetime.

The variables (qab, p
ab) are known from the standard canonical formulation of gravity usually

called ADM formalism [31] (see also chapter 10 and appendix E of [24]). But one can use any other
variables in this part of our paper (Section I-II). In Section III we will apply loop quantum gravity
(LQG), and therein we will be using the Ashtekar-Barbero variables (Ai

a, P
a
i ), i = 1, 2, 3 (and the

notation of [4]). They are also canonically conjugate to each other, and the only non-vanishing
Poisson bracket is

{Ai
a(x), P b

j (y)} = δ(x, y)δbaδ
i
j . (2.2)

The intrinsic and extrinsic geometry of M can be recovered out of them, as they are defined by the
orthonormal coframe eia, the corresponding connection 1-form Γi

a, the extrinistic curvature 1-form
Ki

a and a fixed Barbero-Immirzi parameter γ (for its value see[25–27]), namely

Ai
a = Γi

a + γKi
a, P i

a =
1

16πGγ
ejae

k
bη

abcǫijk, (2.3)

where η123 = 1 = ǫ123 and ηabc, ǫabc are completely antisymmetric.
The fields (Ai

a, P
a
i ) set an su(2) valued 1-form, and, respectively, su(2)∗ valued vector density

A = Ai
a(x)τi ⊗ dxa, P = P a

i (x)τ i ⊗ ∂

∂xa
(2.4)

where xa are local coordinates in M , τ1, τ2, τ3 ∈ su(2) is a basis such that

η(τi, τj) := −2Tr(τiτj) = δij ,

and τ1, τ2, τ3 is the dual basis.
Einstein’s theory of gravity is subject to constraints. In the standard ADM approach we have

two constraints, namely the vector constraint generating the diffeomorphisms of M and the scalar
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constraint generating dynamics, that is diffeomprphisms orthogonal to the Cauchy hypersurface
M :

Ca(x) = Cgr
a (x) + π(x)φ,a(x), (2.5)

C(x) = Cgr(x) +
1

2

π2(x)√
q(x)

+
1

2
qab(x)φ,a(x)φ,b(x)

√
q(x) + V (φ)

√
q(x), (2.6)

where the terms Cgr
a and Cgr involve the gravitational field variables qab and pab only.

In LQG, the fields qab and pab in the constraints are expressed by the variables Ai
a and P a

i ,
and we get an additional constraint - the Gauss constraint generating the “Yang-Mills”1 gauge
transformations of the fields (A,P ):

Gi
a(x) = ∂aP

a
i + ǫij

kAj
aP

a
k . (2.7)

All the transformations generated by the vector, scalar and the Yang-Mills constraint are gauge
transformations, because the constraints are of first class.

In Section I and Section II the choice of the variables describing the gravitational part does
not matter, so one can either use the ADM variables (qab, p

ab) and the constraints (2.5, 2.6) or,
respectively, the Ashtekar-Barbero variables (Ai

a, P
a
i ) and, the constraints (2.5, 2.6, 2.7). In Section

III, the latter choice is necessary, because we will apply LQG. For the sake of the continuity, we
will stick to the Ashtekar-Barbero variables, remembering that qab, p

ab,Cgr and Cgr
a should be

considered as functions of (Ai
a, P

a
i ).

Each choice of the fields (Ai
a, P

a
i , φ, π) defines a point in the phase space Γ. The solutions to

the constraints form a constraint surface. We will also consider separately the phase space of
gravitational degrees of freedom denoted by Γgr, which by definition is set by the pairs (Ai

a, P
a
i ).

By assuming that the vector and the scalar constraints are satisfied

C(x) = 0, Ca(x) = 0 (2.8)

we can solve the vector constraint in (2.5) for the gradient φ,a obtaining φ,a = −Cgr
a

π and inserting
this into the scalar constraint (2.6). What we get, remembering (2.8) and solving the scalar
constraint for π, is an expression for π2 as a function of the geometry variables (Ai

a, P
a
i ) and the

potential V (φ) only,

π2 =
√
q

(
−
(
CGR +

√
qV (φ)

)
±
√

(CGR +
√
qV (φ))

2 − qabCGR
a CGR

b

)
. (2.9)

The ambiguous sign ± in (2.9) defines different regions in the phase space Γ. In particular, only the
choice of a plus sign includes the special case of a homogenous and isotropic geometry coupled to a
scalar field. In the case of the minus sign specialized to cosmological spacetimes, where each vector
constraints vanishes identically, the expression for π2 above will just yield zero on the righthand
side.

B. A deparametrized model

What we have done in the last section is solving the scalar constraint for the scalar field mo-
mentum by using the vector constraint. Physically, this corresponds, as will be explained more in
detail below, to choose the scalar field φ as our emergent time with respect to which the dynamics
of the observables will be formulated. This calculation provides the relation between the standard
real scalar field coupled to gravity, on the one hand, and the model we actually define below, on
the other hand.

1 Although we do not consider the Yang-Mills theory itself, the Ashtekar-Barbero variables are subject to the gauge
transformations known from the Yang-Mills theory.
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In our paper we will consider a model, that is defined by the vector constraint (2.5), the Gauss
constraint (2.7) and the following scalar constraint

C′(x) = π(x) − h(x), (2.10)

h :=

√
−√

qCgr +
√
q

√
(Cgr)2 − qabC

gr
a C

gr
b . (2.11)

The scalar constraint C(x) has been rewritten using (2.9). That theory is equivalent to the theory
defined in the previous subsection in the case of no potential

V (φ) = 0 (2.12)

and in the region of the phase space Γ such that ‘+’ holds in (2.9) and

π > 0. (2.13)

Since the potential is set to zero in the model, φ no longer occurs in the function h and the scalar
constraints deparametrizes. Notice, that in the consequence of the constraints, in that region

Cgr < 0. (2.14)

The deparametrized scalar constraints, being linear in the scalar field momentum, strongly Poisson
commute

{C′(x), C′(y)} = 0, (2.15)

as a consequence of the following identity

{h(x), h(y)} = 0 (2.16)

proved in [23]. A Dirac observable is the restriction to the constraint surface of a function f : Γ → R,
such that

{f, Ca(x)} = {f, C′(x)} = {f,Gi
a(x)} = 0. (2.17)

The vanishing of the first Poisson bracket means, that f is invariant with respect to the action
of the local diffeomorphisms (that is all diffeomorphisms generated by the vector fields tangent to
M), the vanishing of the third Poisson bracket is equivalent to the Yang-Mills gauge invariance of
f . The vanishing of the second Poisson bracket reads

{f, π(x)} = {f, h(x)}. (2.18)

III. QUANTUM CANONICAL GRAVITY COUPLED TO A SCALAR FIELD

In this section we introduce a “formal” structure of our theory. Our goal, at this point, is to
conclude what mathematical structures (Hilbert spaces, operators etc.) are needed to complete
the quantization of the model. How to construct them using LQG will be explained in the next
section.

Assuming for the time being, that all Hilbert spaces and operators we need exist, and that they
have the usual properties, we will now derive:

• a general solution to the quantum constraints,

• a large class of the quantum Dirac observables, their classical interpretation and their physical
evolution,

• the Hilbert product between two solutions.
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A. Quantum states and quantum fields

The quantum states are complex valued functions

(φ,A) 7→ Ψ(φ,A), (3.1)

where φ and A are the scalar field and the Ashtekar-Barbero connection defined on M in the
previous section (henceforth, we will write A and P instead of Ai

a and P a
i ).

For a given representation the fields φ, π,A, P give rise to quantum operators

φ̂(x)Ψ(φ,A) = φ(x)Ψ(φ,A), π̂(x)Ψ(φ,A) =
1

i

δ

δφ(x)
Ψ(φ,A) (3.2)

Â
j
b(x)Ψ(φ,A) = A

j
b(x)Ψ(φ,A) P̂ b

j (x)Ψ(φ,A) =
1

i

δ

δA
j
b(x)

Ψ(φ,A) (3.3)

These elementary operators are needed to define the operators corresponding to the classical con-
straints and to define the quantum observables.

B. The quantum constraints and their solutions

We turn now to the quantum constraints and their solutions. The first step is defining the quan-
tum counterparts of the classical constraints (2.5,2.6,2.7). In LQG we assume, that the quantum
Gauss constraints corresponding to the classical expression in (2.7) still generate the “Yang-Mills”
gauge transformations, hence their solutions are functions such that

Ψ(φ, a−1Aa+ a−1da) = Ψ(φ,A) (3.4)

for every a : M →SU(2).
Similarly, we assume that the quantum vector constraints generate the local diffeomorphism

transformations of the quantum states, and in the consequence, the quantum vector constraint
carries over to the condition that Ψ be invariant with respect to all local diffeomorphisms ϕ : M →
M , that is

Ψ(ϕ∗φ, ϕ∗A) = Ψ(φ,A). (3.5)

The quantum deparametrized scalar constraint operator has the following form,

Ĉ′(x)Ψ =
(
π̂(x) − ĥ(x)

)
Ψ. (3.6)

We use the equation (2.11) (which gives the expression for h as a functional of A red and P ) to
quantize the second term in the parenthesis. Heuristically we get

ĥ(x) = h(Â, P̂ )(x).

Due to operator ordering aspects the definition of ĥ is not unique and will be completed later in
this paper. In order to avoid a quantum anomaly we must respect the classical symmetry in (2.16)
also at the quantum level and must make sure, that

[ĥ(x), ĥ(y)] = 0, (3.7)

(compare to (2.16)). Given the quantum constraint operator (3.6), the constraint itself reads

(
π̂(x) − ĥ(x)

)
Ψ = 0. (3.8)

To solve the quantum deparametrized scalar constraint, we write Ψ as

Ψ = ei
∫
d3xφ̂(x)ĥ(x)ψ, (3.9)
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with a new function ψ, and insert it in (3.8) to obtain

δ

δφ(x)
Ψ(φ,A) = iĥ(x)Ψ(φ,A). (3.10)

Due to the commutator in (3.7), the constraint equation (3.10) turns into

δ

δφ(x)
ψ = 0. (3.11)

Hence, a general solution to (3.10) is

Ψ(φ,A) = ei
∫
d3xφ̂(x)ĥ(x)ψ(A). (3.12)

Notice, that the exponentiated operator acting at ψ on the right hand side of (3.9) is Yang-Mills
gauge, and diffeomorphism invariant itself. Therefore:

A general solution to the quantum vector, gauss and scalar constraints is every function (3.12),
such that for every local diffeomorphism ϕ : M →M ,

ψ(ϕ∗A) = ψ(A), (3.13)

and for every a : M →SU(2)

ψ(a−1Aa+ a−1da) = ψ(A). (3.14)

In the remaining part of the article we will be using the abbreviation
∫
d3xφ̂ĥ :=

∫
d3xφ̂(x)ĥ(x). (3.15)

C. Quantum Dirac observables

A quantum Dirac observable is the restriction to the space of solutions to the quantum constraints
of an operator O which satisfies the following two properties:

• O is invariant under local diffeomorphism and Yang-Mills gauge transformations,

• [O, Ĉ′] = 0.

Following the ideas of the relational framework for observables [5–7] it is easy to construct a large

family of Dirac observables. Let L̂ be a linear operator which maps the functions A 7→ ψ(A) into

functions A 7→ L̂ψ(A). Consider an operator

O(L̂) := ei
∫
d3xφ̂ĥL̂e−i

∫
d3xφ̂ĥ. (3.16)

As required, the operator O(L̂) commutes with the quantum version of the deparametrized scalar
constraints,

[O(L̂), Ĉ′(x)] = 0. (3.17)

Moreover, the operator O(L̂) is Yang-Mills gauge and local diffeomorphism invariant provided the

operator L̂ is.
Each of the operators O(L̂) defined by a Yang-Mills gauge, and diffeomorphism invariant operator

L̂ preserves the space of solutions to the constraints. Indeed,

O(L̂)ei
∫
d3xφ̂ĥψ(A) = ei

∫
d3xφ̂ĥψ′(A), (3.18)

ψ′ = L̂ψ. (3.19)
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The operators (3.18) with the Yang-Mills gauge, and local diffeomorphism invariant operators L̂
set a family (algebra, modulo the domains) of the Dirac observables.

The total scalar field momentum
∫
M d3xπ̂(x) defines a Dirac observable as well, namely

O(

∫

M

d3xĥ(x)) =

∫

M

d3xĥ(x). (3.20)

The family of those Dirac observables is large enough to characterize the physical states.

D. Classical interpretation of our Dirac observables

Suppose, that a given operator L̂ used to construct the Dirac observable O(L̂) corresponds in
the quantum theory to a classical function L defined on the gravitational phase space Γgr, and that
the support of L is contained in the set on which

Cgr < 0. (3.21)

To find a classical observable O(L) whose quantum counterpart is O(L̂), it is convernient to express
the operator (3.16) in terms of a formal power series given by

O(L̂) =

∞∑

n=0

in

n!

[
L̂,

∫
d3xφ̂ĥ

]

(n)

(3.22)

where [., .](n) denotes the iterated commutator defined by [L̂,
∫
d3xφ̂ĥ](0) = L̂ and [L̂,

∫
d3xφ̂ĥ](n) =

[[L̂,
∫
d3xφ̂ĥ](n−1),

∫
d3xφ̂ĥ]. The usual substitiution [·, ·] 7→ −i{·, ·}, leads to a formal series

O(L) =

∞∑

n=0

1

n!
{L,

∫
d3xφh}(n) (3.23)

for a classical observable O(L). That series, defines a number O(L)(A,P, φ, π) at each point
(A,P, φ, π) ∈ Γ, such that the field φ can be, briefly speaking, gauge transformed to zero in a
unique way. In other words, the orbit of the transformations generated by deparametrized scalar
constraints passing through the point (A,P, φ, π) contains a unique point (A′, P ′, φ′, π′) such that

φ′ = 0. (3.24)

Then,

O(L)(A,P, φ, π) = L(A′, P ′). (3.25)

In conclusion, the quantum Dirac observable O(L̂) corresponds to the function O(L),

Ô(L) = O(L̂). (3.26)

E. Dynamical evolution of the observables

The Dirac observables we have defined are relational observables (often called “partial” [5],[6],
section I.2 of [2] ). In that class of the observables there is still defined an evolution governed by
the scalar constraints. To see it in the construction of the function O(L) from a given function L,
replace the condition (3.24) by

φ′ = φ0 (3.27)

where φ0 is an arbitrarily fixed function. Denote the resulting function by Oφ0
(L). The corre-

sponding quantum operator is

Oφ0
(L̂)Ψ(φ,A) = ei

∫
d3x(φ(x)−φ0(x))ĥ(x)L̂e−i

∫
d3x(φ(x)−φ0)ĥ(x)Ψ(φ,A), (3.28)
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where we used φ̂Ψ(φ,A) = φΨ(φ,A). This definition will not enlarge the class of the Dirac
observables (3.18), indeed

Oφ0
(L̂) = O(L̂′) (3.29)

with

L̂′ = e−i
∫
d3xφ0(x)ĥ(x)L̂ei

∫
d3xφ0ĥ(x). (3.30)

Therefore we have an abelian group of maps labelled by the functions φ0,

O(L̂) 7→ Oφ0
(L̂). (3.31)

However, only the maps corresponding to

φ0 = const (3.32)

preserve the diffeomorphism invariance of the Dirac observables. This 1-dimensional group encodes
the dynamics in the family of the Dirac observables we have defined.

F. The physical Hamiltonian

The dynamics is generated by the following equation

d

dφ0
Oφ0

(L̂) = −i[ĥphys,Oφ0
(L̂)] (3.33)

Where

ĥphys :=

∫
d3xĥ(x) (3.34)

is usually called the physical hamiltonian for the reason that it is a non-vanishing Dirac observable
generating true ’physical’ evolution in contrast to the Hamiltonian costraint.

The physical Hamiltonian will be an exact implementation of the heuristic formula

ĥphys =

∫
d3x

√
−
√
q̂Ĉgr +

√
q̂

√
(Ĉgr)2 − q̂abĈ

gr
a Ĉ

gr
b . (3.35)

We remember however, that the operator will be applied to diffeomorphism invariant states (3.5)

whereas the operator Ĉgr
a should generate the diffeomorphisms. Therefore, assuming the suitable

choice of the ordering, the physical Hamiltonian acting on the diffeomorphism invariant functions
ψ is

ĥphys ψ(A) =

∫
d3x

√
−2

√
q̂ Ĉgr ψ(A), (3.36)

where we also took into account (recall (2.14)),

Ĉgr < 0. (3.37)

This result coincides with that of [22].

G. The Hilbert product between the solutions: Hphys

Suppose we have a sesquilinear scalar product for the Yang-Mills gauge and local diffeomorphism
invariant functions (or distributions) defined on the space of the Ashtekar-Barbero connections.
Denote the product of the functions ψ and ψ′ by

(ψ|ψ′), (3.38)
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and the corresponding Hilbert space by Hdiff .
We can use it to define the “physical” (that is respecting the dynamics) Hilbert product in the

space of solutions (3.12):
(
ei

∫
φ̂ĥψ | ei

∫
φ̂ĥψ′

)
phys

:= (ψ|ψ′). (3.39)

The resulting Hilbert space Hphys is “physical”, and its elements are the physical states.

H. Summary: exact structures we need

In summary, in order to construct the quantum model we will need:

• the Hilbert space Hdiff of the Yang-Mills gauge and the local diffeomorphism invariant quan-
tum states of geometry,

• the operators in Hdiff which admit a well understood geometric interpretation,

• the physical Hamiltonian operator ĥphys defined in a suitable domain in Hdiff (which is not
expected to be dense, because the heuristic formula for the operator involves the square roots
of non definite expressions).

Given all that, the physical Hilbert space is unitarily isomorphic via

ei
∫
d3xφ̂ĥψ 7→ ψ (3.40)

with the domain of ĥphys in Hdiff .

Every observable O(L̂) (for simplicity let L̂ be bounded) is the pullback by (3.40) of an operator

L̂ which preserves the completion of the domain of ĥphys.
Finally, the emerged dynamical evolution (3.33) of the observables reads

L̂(τ) = e−iτ ĥphysL̂eiτ ĥphys . (3.41)

This is precisely the very well known Heisenberg picture evolution defined by the Hamiltonian

ĥphys.

Notice, that in fact, it is not necessary for L̂ to preserve the domain of ĥphys. Indeed, given any
ψ in that domain, the expectation value

(ψ|e−iτ ĥphysL̂eiτ ĥphysψ) = (eiτ ĥphysψ | L̂eiτ ĥphysψ)

is well defined. This can be seen by using that it is equivalent to replace L̂ by the operator

L̂′ = PL̂P, (3.42)

where P is the orthogonal projection onto the completion of the domain of ĥphys, and to considering

the pullback of the Dirac observable O(L̂′) together with its dynamics.

This kind of structure will be necessary for the outcome. This is all we need to complete the
quantization of a model of quantum gravity coupled to a scalar field.

In the derivation of the operator corresponding to the physical hamiltonian ĥphys, however, we
will need yet more structure:

• the operator ĥphys should be defined by using the suitably defined operator valued distribution

M ∋ x 7→ ̂√
q(x)Cgr(x),

• the distribution should be self-adjoint, so that we can use the spectral decomposition to define
the subspace

̂√
q(x)Cgr(x) < 0 (3.43)

and thereon the new operator valued distribution

ĥ(x) =
√
−2

√
q(x)Cgr(x), (3.44)
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• we should be able to verify the condition

[ĥ(x), ĥ(y)] = 0, (3.45)

• and finally define

ĥphys =

∫
d3xĥ(x). (3.46)

Notice, that none of the operators
√
q(x)Cgr(x) or ĥ(x) can be defined within the Hilbert space

Hdiff , because the x dependence manifestly breaks the diffeomorphism invariance. Therefore, the
properties of the self-adjointness require some extra Hilbert spaces, Hdiff,x, labelled by the points
of M , whereas the commuting at different points can be defined only on a yet bigger Hilbert space.

Remarkably, all the suitable structures can be constructed within the LQG framework, as we
will explain in the next section.

IV. APPLICATION OF LQG

A. The Hilbert spaces

1. The kinematical Hilbert space of quantum states of the geometry

In LQG (we use the notation of [4]), the kinematical Hilbert space of quantum states of the
geometry is set by the so called cylindrical functions of the connection A. A cylindrical function is
defined by a set α of finite curves e1, ..., en in M and by a continues function f : SU(2)n → C, in
the following way

ψα,f (A) = f(A(e1), ..., A(en)) (4.1)

where the symbol A(e) denotes the parallel transport along e defined by the connection A. The
set Cyl of the cylindrical functions is a vector space, and an associative algebra. The space of the
cylindrical functions Cyl is endowed with an integral

ψα,f 7→
∫
ψα,f (4.2)

used to define the sesquilinear scalar product

(ψα,f |ψα′,f ′)gr =

∫
ψα,fψα′,f ′ , (4.3)

and defines (after the completion) the kinematical Hilbert space H for the geometric operators in
LQG. We assume in this paper that the manifold and the curves are piecewise analytic. Then, for
every cylindrical function there exist curves α = {e1, ..., en} which form a graph embedded in M
(that is they are allowed to intersect only at the ends) such that the function is given by (4.1).
The curves eI are called edges of the given graph α.2

For a cylindrical function defined by a graph, we have
∫
ψα,f =

∫

SU(2)n
dngf(g1, ..., gn), (4.4)

where dng is the Haar measure on SU(2)n. The geometric operators preserving the space Cyl are

Â(e)BCψα,f (A) = A(e)BCf(A(e1), ..., A(en)) (4.5)

2 To be more precise, in what follows, an edge is either an oriented semianalytic imbedding of a circle in M , or
a parametrization free, oriented, finite curve defined by e : [0, 1] → M such that either e is an imbedding, or
e(0) = e(1).
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and
∫

S

P̂ a
i ψα,f =

1

2i

∫

S

δ

δAi
a

ψα,f ηabcdx
b ∧ dxc. (4.6)

There is an orthogonal decomposition of H into subspaces H′
α labelled by the embedded graphs

α. To define it, denote first by (unprimed) Hα ⊂ H the Hilbert subspace spanned by the cylindrical
functions ψα,f , with all the possible functions f . Those spaces, however, are too big to provide
the orthogonal decomposition. Given a graph α, whenever a graph β can be obtained from the
edges of α by glueing, or reversing the orientation or removing some of them, then Hβ ⊂ Hα.
Therefore, define H′

α ⊂ Hα to be the orthogonal complement in Hα of the subspace spanned by
those subspaces Hβ . The decomposition is

H =
⊕

α

H′
α, (4.7)

where α runs through the set of all the semianalytic embedded graphs in M .

2. The Hilbert space of the diffeomorphism invariant states of the geometry

Semianalytic diffeomorphisms Diff(M) of M preserve the space Cyl and act unitarily in the
Hilbert space H just by the natural pullback of the Ashtekar-Barbero connections. Denote the
action of ϕ ∈Diff(M) by

Uϕ : H → H. (4.8)

To implement the construction of the quantum operator corresponding to the physical Hamiltonian,
we will need two different Hilbert spaces: One of them includes states, that are invariant with
respect to all (semi-analytic) local diffeomorphisms Diff(M) of M and the other one is the home
of the states invariant with respect to the subgroup Diff(M,x), which preserves a given point
x ∈M . (Later, we will also impose the Gauss constraint, that is the condition of Yang-Mills gauge
invariance). Let Diff stands for either Diff(M) or Diff(M,x). The only Diff invariant direction in
H is the constant function. However, since the group Diff is not compact, we expect the invariant
states to be distributions on the space of the Ashtekar-Barbero connections, that is linear maps

〈Ψ| : Cyl → C. (4.9)

Whereas the space of all distributions seems to be too big, a suitable rigging map can be defined,
which carries each ψ ∈ Cyl into a Diff invariant distribution ηDiff(ψ). To recall the definition of this
map, we need the orthogonal decomposition (4.7). The map ηDiff is introduced for each subspace
H′

α individually. By the linearity, it extends to every cylindrical function. That is, the domain
of the rigging map ηDiff is Cyl⊂ H. The first step in the construction of the rigging map ηDiff ,
is identification of the elements of H′

α that will be annihilated. Consider those diffeomorphisms
ϕ ∈Diff which map each edge of α into another edge modulo the orientation, and let us call them
the symmetries of α and denote their group by Diffα. The functions ψ ∈ H′

α invariant with respect
to Diffα form a subspace denoted either by H′

α,inv in the Diff=Diff(M) case, or H′
α,inv,x, in the

case of Diff=Diff(M,x). The elements of H′
α orthogonal to H′

α,inv are anihilated by the rigging

map ηDiff . For ψ ∈ H′
α,inv, ηDiff(ψ) is defined as follows

ηDiff(ψ) : ψ′′ 7→
∑

[φ]∈Diff/Diffα

(Uφψ|ψ′′). (4.10)

Note, that if ψ′′ ∈ H′
α′′ , then the right hand side is zero if α′′ is not Diff equivalent to α, and in

the case there is φ′′ ∈Diff such that

φ′′(α) = α′′, (4.11)

the only possibly non-zero term in the sum in (4.10) is

ηDiff(ψ) : ψ′′ 7→ (Uφ′′ψ|ψ′′). (4.12)
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Since every cylindrical function is a finite sum of elements of the Hilbert spaces H′
α, ηDiff(ψ) is

defined in Cyl. For the same reason, the map

ψ 7→ ηDiff(ψ) (4.13)

extends by the finite linearity to Cyl.
With the rigging map ηDiff we define not only the vector space of the Diff invariant states to be

the image ηDiff(Cyl), but also the sesquilinear product

(ηDiff(ψ)|ηDiff(ψ′))Diff := 〈ηDiff(ψ), ψ′〉 (4.14)

In this way we have defined a Hilbert space HDiff . The map ηDiff defines a natural isometry

HDiff ≡
⊕

[α]

H′
α,Diff (4.15)

where [α] runs through the set of the Diff classes of the graphs embedded in M . Recall that Diff
= Diff(M), Diff(M,x). Therefore, we have defined two types of the Hilbert spaces: the Hilbert
HDiff(M) and, respectively, per each point x ∈M , the Hilbert space HDiff(M,x).

3. The Hilbert spaces of the Yang-Mills gauge and diffeomorphism invariant states of the geometry

Imposing the Gauss constraint is yet easier, than requiring diffeomorphism invariance, and could
be equivalently done, either before, or after solving the diffeomorphism constraint. The group of
unitary transformations of H given by the Yang-Mills gauge transformations is compact. Hence all
solutions to the Gauss constraint in H are invariant elements of H (as opposed to non-normalizable
states, distributions). Moreover, the group of the Yang-Mills gauge transformations (3.4) preserves
each of the subspaces H′

α. For every Yang-Mills gauge invariant ψ ∈Cyl, the Diff invariant distri-
bution

ηDiff(ψ) ∈ HDiff (4.16)

is also insensitive to gauge transformations of ψ′′ ∈Cyl. Namely, the number

ηDiff(ψ)(ψ′′)

is invariant. The converse is also true: If ηDiff(ψ)(ψ′′) is invariant with respect to the Yang-Mills
gauge transformations of ψ′′, than ψ is Yang-Mills gauge invariant.

In conclusion, the Yang-Mills gauge and diffeomorphism invariant distributions on the space of
the Ashtekar-Barbero connections we want to use to construct the Hilbert space Hdiff of section
III.G, are the distributions

ηDiff(M)(ψ) (4.17)

obtained from the Yang-Mills gauge invariant cylindrical functions ψ. Denote their Hilbert space
by Hdiff . By construction

Hdiff ⊂ HDiff(M). (4.18)

For the introduction of the physical Hamiltonian we will also use the Hilbert space Hdiff,x

obtained by replacing in the construction of the Hilbert space Hdiff the group Diff(M) by the
group Diff(M,x).

B. The operators

1. The Dirac observables

From the previous subsection we already have the LQG candidate for the Hilbert space Hdiff

of the Yang-Mills gauge invariant and diffeomorphism invariant quantum states of geometry. As
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we already know from Section III.G, from a suitable subspace of this space we will construct
the “physical” Hilbert space of solutions to all the constraints of the model we are considering.
Secondly, in the Hilbert space Hdiff we will need the operators representing the geometry of the
initial data defined on M , from which we will construct the Dirac observables.

Let us begin with this second task, because it is easier. We assume below, that the operators
we consider in the Hilbert space H, as the domain have the vector subspace Cyl of the cylindrical
functions. Every Yang-Mills gauge and Diff(M) symmetric operator L̃ defined in the kinematical

Hilbert space H, defines naturally by the duality a symmetric operator L̂ in Hdiff ,

〈L̂ηDiff(M)(ψ), ψ′′〉 := 〈ηDiff(M)(ψ), L̃ψ′′〉 = 〈ηDiff(M)(L̃ψ), ψ′′〉 (4.19)

where the bracket is the action of a distribution (a first entry) into a given cylindrical function ψ′′,
that is, we could fraze it in a simpler way

L̂ηDiff(M)(ψ) = ηDiff(M)(L̂ψ). (4.20)

An excellent example of a Yang-Mills gauge and diffeomorphism invariant operator in H available
in the literature [4],[29] is the volume of the underlying manifold M operator

ṼM =

∫
dx

√̃
q(x). (4.21)

Another example we manage to construct might be any quantum operator representing the integral
of a scalar constructed from the intrinsic or extrinsic curvature.

In the kinematical Hilbert space H, there is also a well defined operator valued distribution

√̃
q(x) =

∑

x′∈M

δ(x, x′)
√̃
qx′ , (4.22)

where each of the operators
√̃
q
x′

is Diff(M,x′) invariant. The uncountable sum on the right hand
side is well defined, because for every smearing function F : M → R, and a cylindrical function
ψα,f , we have

∫
d3xF (x)

√̃
q(x)ψα,f =

n∑

I=1

F (vI)
√̃
qvIψα,f , (4.23)

where v1, ..., vn are the vertices of the graph α. Via (4.20), for every x′ ∈ M , the operator
√̃
q
x′

defines an operator
√̂
q
x′

in Hdiff,x′ . Morally,
√̃
q(x) is also Diff(M,x) invariant for every given

x ∈ M , therefore (4.20) should also be somehow generalized to this case. Indeed, (see [30]) the
suitable generalization is natural and provides in this case a distribution

√̂
q(x) =

∑

x′∈M

δ(x, x′)
√̂
qx′ , (4.24)

which makes sense due to the fact that all the Hilbert spaces Hdiff,x are embedded in the single
vector space Cyl∗.

There is one more technical remark in order at this point. Consider two operator valued distri-
butions in H, of the form

Ã(x) =
∑

x′∈M

δ(x, x′)Ãx′ , B̃(x) =
∑

x′∈M

δ(x, x′)B̃x′ (4.25)

each of which satisfies the property (4.23). A natural regularization by smearing leads to a new
operator valued distribution

√
Ã(x)B̃(x) =

∑

x′∈M

δ(x, x′)

√
S(Ãx′B̃x′) (4.26)
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which also has the property (4.23), where S stands for a symmetric product of the operators, and

the domain of the resulting operator is restricted by the positivity of S(ÃxB̃x) requirement. The
regularization consist in the smearing

Ãǫ(x) =

∫
d3Ã(y)δǫ(y, x), B̃ǫ(x) =

∫
d3B̃(y)δǫ(y, x) (4.27)

with a smearing function whose support goes uniformly to x = y as ǫ→ 0, and which goes to the
Dirac δ(x, y). The key trick is an observation that for every fixed graph α, for sufficiently small ǫ

Ãǫ(x)B̃ǫ(x)ψα,f =
n∑

I=1

(δǫ(x, vI))2ÃvI B̃vIψα,f , (4.28)

for any cylindrical function ψα,f , and more over, the sum on the right hand side contains at most
one non zero element. Due to the latter property

√
Ãǫ(x)B̃ǫ(x) =

n∑

I=1

δǫ(x, vI)

√
ÃvI B̃vIψα,f (4.29)

provided the square root is well defined itself. Finally,

∫
d3xF (x)

√
Ãǫ(x)B̃ǫ(x)ψα,f →

n∑

I=1

F (vI)

√
ÃvI B̃vIψα,f . (4.30)

2. The quantum scalar constraint and the physical Hamiltonian

As we remember, our first task we can finally turn to now, is a construction of the physical
Hamiltonian operator

ĥphys =

∫
d3x

√
−2 ̂√

q(x)Cgr(x) (4.31)

defined in Hdiff .
A quantum scalar constraint Ĉgr was defined in [28], its properties and possible generalizations

were studied in [4, 30]. We will be using here the formulation of the scalar constraint of [4]. In order
to use it for our current construction, we will need a new element. Thus far, the scalar constraint was
used either as smeared against arbitrary laps function

∫
d3xN(x)Ĉ(x), or, as the master constraint∫

d3x
√̂
q(x)−1Ĉ(x)Ĉ†(x), or as a physical Hamiltonian defined after deparametrization with respect

to 4 scalar fields. The smeared scalar constraint maps a domain in Hdiff into Cyl∗, there is no
sense in which it could be symmetric or self-adjoint. The master constraint, on the other hand, as
well as the physical Hamiltonian after the 4-fold deparametrization, respectively, is defined in the
kinematical Hilbert space H as a graph preserving operator. The current case, is a new one, we

will need an operator

√
−2 ̂√

q(x)Cgr(x) defined in Hdiff .

The quantum scalar constraint presented in [4] takes the following form,

∫
d3xN(x)Ĉ(x) =

∑

x∈M

Ĉx, (4.32)

where each of the operators Ĉx maps its domain contained in Hdiff into Hdiff,x. However, as it
follows from [30], it naturally defines an operator in the corresponding Hilbert space Hdiff,x. The
advantage is, that only now we can require the symmetry (self-adjointness) of those operators. As

defined in [4], the operators Ĉx come out non-symmetric. The minor improvement, but necessary
for our current work, consists in replacing them by symmetric operators

Ĉgr
x =

1

2

(
Ĉx + Ĉ†

x

)
. (4.33)
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and choosing an essentially self-adjoint extension that may be non-unique. Then, the quantum
scalar constraint operator we will use for the physical Hamiltonian takes the following form

Ĉgr(x) =
∑

x′∈M

δ(x, x′)Ĉgr
x′ . (4.34)

On the other hand we have already considered above the volume density quantum operator written
in the similar form,

√̂
q̂(x) =

∑

x′∈M

δ(x, x′)
√̂
q̂x′ . (4.35)

At this point, we are in the position to define the operator

√
−2 ̂√

q(x)Cgr(x) (4.36)

A regularization in H similar to the one discussed above, gives

√
−2 ̂√

q(x)Cgr(x) =
∑

x′∈M

δ(x, x′)

√
−2

√̂
qx′

1/2
Ĉ

gr
x′

√̂
qx′

1/2
=: ĥ(x). (4.37)

However, the operator is well defined only in the subspace of Hdiff,x corresponding to the positive

part of the spectrum of
√̂
qx

1/2
Ĉgr

x
√̂
qx

1/2
. To formulate that condition we need to choose a self-

adjoint extension of the operator in the case it is not unique. Denote the resulting subspace of
Hdiff,x by Hdiff,x+. There is a natural averaging map

ηM : Hdiff,x → Hdiff (4.38)

ηDiff(M,x)(ψ) 7→ ηDiff(M)(ψ). (4.39)

The domain of the physical hamiltonian is

Hphys = ηM (Hdiff,x+), (4.40)

and the formula for physical Hamiltonian reads

ĥphys =

∫
d3xĥ(x) =

∑

x∈M

√
−2

√̂
qx

1/2
Ĉ

gr
x
√̂
qx

1/2
. (4.41)

We remember the anomaly free condition (3.45) that should be satisfied by our construction. In
[30] an extension of the Hilbert space Hphys is introduced in which the smeared scalar constraint
operators

Ĉgr(N) =

∫

M

d3xN(x)Ĉgr(x) (4.42)

are defined and their products

Ĉgr(N)Ĉgr(N ′) (4.43)

are contained. It follows from the results of [30] that the smeared constraint operators commute

[Ĉgr(N), Ĉgr(N ′)] = 0 (4.44)

on a large subspace of the enlarged vector space. It justifies our conjecture, that the condition

[ĥ(x), ĥ(y)] = 0 (4.45)

is a restriction on the ambiguities in the definition of the operators ĥ(x), that is on the loop
assignment [2, 4] and the self-adjoint extensions.



16

V. CONCLUDING REMARKS, OUTLOOK

We have another quantum model model of gravity involving all the degrees of freedom. The
quantization of this model is complete and every necessary element exists within the framework of
LQG. However, there are still ambiguities though, present in the LQG definition of the quantum
scalar constraint operator due to its non-polynomial structure. The only way to understand them
and their possible physical meaning is to start applying the model. Before explaining what the
model discussed in this work is good for, let us compare it briefly to the first model that was
completed by Giesel and Thiemann.

3. Comparison with the Brown-Kuchar model applied to LQG

The Brown-Kuchar (BK-) model [8] considers four scalar fields that have the properties of dust
and become a dynamically coupled observer, with respect to which the dynamics of the remaining
degrees of freedom is formulated. This model was used by Giesel and Thiemann [21] and a reduced
phase space of gravity coupled to dust was derived. For this purpose the BK-model needed to be
extended since the reduced phase space requires also the construction of (classical) Dirac observ-
ables with respect to the scalar constraint. The original BK-model is rather the counter part of
what is done in this paper because there the vector constraint was reduced classically, whereas for
the scalar constraint a quantum condition was formulated.
In the reduced phase space quantization procedure discussed in [21] both, the scalar as well as
the diffeomorphism constraint, are reduced classically. The Gauss constraint is, as in this paper,
solved at the quantum level. This yields to an algebra of observables describing the classical phys-
ical phase space. Due to the deparametrization of the scalar constraints, this algebra turns out to
be isomorphic to the kinematical one. In contrast to what is done in this paper, a quantization of
the observable algebra accesses directly the physical Hilbert space (once also the Gauss constraint
is satisfied). Since the kinematical algebra is isomorphic to the physical one, in [21] the standard
kinematical representation of LQG can also be used for the physical Hilbert space Hphys. Similar to
the work in this paper, the generator of the physical dynamics, the so called physical Hamiltonian
hphys, is invariant under local diffeomorphisms. In the reduced approach this leads to the require-
ment, that in order to avoid a quantum anomaly, the operator needs to be invariant under local
diffeomorphisms too. As shown in [32] operators being invariant under local diffeomorphisms and
defined in the standard (kinematical) LQG representation cannot be graph-changing. This means,
that they need to preserve the graph they are acting on, yielding the condition, that the LQG con-

straint operators [4, 28] entering the physical Hamiltonian ĥphys in [21] need to be quantized in a
graph-preserving way. As we explained above, LQG is glued from the Hilbert spaces corresponding
to all possible graphs. The original LQG scalar constraint operator does not preserve those graph
Hilbert spaces. In the model of [21] the physical Hamiltonian must preserve each graph Hilbert
space. In the consequence, the constraint operator has to be suitably redefined in [21] when the
standard (kinematical) LQG representation is used for Hphys. The paper [21] also discusses the
quantization of the reduced model in the framework of Algebraic Quantum Gravity [33], where
a different representation is used, namely von Neumann’s infinite tensor product representation.
The quantum dynamics is not defined on embedded graphs but on abstract ones. carrying only
combinatorial information. In this framework only the infinite combinatorial graph, that the the-

ory is defined on and that acts like an abstract lattice, needs to be preserved by ĥphys, whereas
any possible subgraph of this does not. In the case of the model presented in this paper here, the
graph Hilbert spaces are not preserved and they evolve in the emergent time.

4. Application of this model

Our model can be used to verify the properties of quantum space-time we expect after learning
the lessons from LQC and QFT in curved spacetime.

In the LQC models of the homogeneous massless scalar field coupled to gravity, Big Bang turns
out to be replaced by Big Bounce, as the result of the quantum gravity effects. Now, with our model,
we can consider the same system of fields from the point of view of the full theory, without the
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symmetry reduction. Similarly, we can also consider the quantum gravitational collapse, quantum
black holes, theory entropy. All those cases are manageable within our model, and the only difficulty
is of technical nature. Also the Hawking radiation and black hole evaporation process expected
from the theory of quantum fields on the classical black hole background are in the range of our
model. The next step to obtain progress in this direction is the construction of semiclassical states
for full LQG, which are preserved under quantum dynamics generated by the physical Hamiltonian
on appropriate time scales.
In conclusion, our paper opens the door to understanding the properties of quantum spacetime
from the point of view of the full quantum gravity.
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