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A School on Loop Quantum Gravity was held at the IMSc during Sept 8 – 18, 2009. In the
first week a basic introduction to LQG was provided while in the second week the focus was
on the two main application, to cosmology (LQC) and to the black hole entropy. These notes
are an expanded written account of the lectures that I gave. These are primarily meant for
beginning researchers.
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Preface

It has been felt for a while that our graduate students do not get an opportunity to get an
exposure to the non-perturbative, background independent quantum theory of gravity at a
pedagogic level. Although there are several excellent reviews and lecture notes available,
an opportunity for complementing lectures by discussions is always an added bonus for the
students. With this in mind and taking into account of the background preparation of the
students, the School on Loop Quantum Gravity was organized at IMSc, for a period of 10 days.
The first 5 days were devoted to the basics of connection formulation and loop quantization
up to sketching steps involved in the quantization of the Hamiltonian constraint. The next 5
days were devoted to the applications to quantum cosmology and to the black hole entropy.
In all 20 lectures and 10 tutorials were planned, however some tutorials ‘became’ additional
lectures.

These notes are an expanded version of the topics that I covered. In particular the material
of chapter 2, sections 4.2.1, 4.2.2, 4.2.3 and appendices 5.1, 5.3, 5.4 have been added. Email
discussions on the sections of chapter 4 and appendix 5.4 with Abhay Ashtekar, Martin
Bojowald and Madhavan Varadarajan have been very helpful and are gratefully acknowl-
edged. There could still be some differences in the perceptions and formulations, what I
have presented is my understanding of the issues.

The other main lecturers at the school were: Prof Amit Ghosh, Saha Institute of Nuclear
Physics, Kolkata; Dr Alok Laddha, Raman Research Institute, Bengaluru; Parthasarathi
Majumdar, SINP, Kolkata. In addition, Prof Romesh Kaul, IMSc, Dr Kinjal Banerjee,
IUCAA, Pune and Ayan Chatterjee, SINP, Kolkata also gave a few lectures. Amit and
Alok discussed the connection formulation and loop quantization up to the basic steps in
the quantization of the Hamiltonian constraint. Partha, Amit and Ayan discussed classical
formulation of isolated horizons and entropy associated with them. Romesh discussed the
possibility of a ‘vacuum structure for gravity’ and Alok also briefly discussed the Brown-
Kuchar dust model. It is a pleasure to acknowledge their contributions. At least some notes
of the topics covered by these will be available in not-too-distant a future.

The funding for the school was provided by the Institute of Mathematical Sciences under
the XIth Plan Project entitled Numerical Quantum Gravity and Cosmology. It is envisaged
that a more specialized workshop at an advanced level will be held in the summer of 2010
with the possibility of a similar School being repeated one more time.

March 17, 2010 Ghanashyam Date
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Chapter 1

General Remarks:

1.1 Why a Quantum Theory of Gravity?

This is not a rhetorical question but it is intended to identify physical context in which the
classical theory of gravity, specifically the Einstein Theory of Gravity also referred to as
General Relativity, is inadequate and calls for an extension. One has met with inadequacies
of classical theories many times and has seen how their quantum versions have alleviated
the inadequacies. For example, the classical theory of charges and electromagnetic fields was
quite adequate until the hydrogen atom was found to have a central nucleus with an electron
going around it. Classical theory predicts that since the electron is necessarily accelerated,
it must radiate away its energy and spiral into the proton. Indeed in about 10−9 seconds (!)
the classical trajectory of a (bound) electron would ‘end’ in the proton. We all know that
this is physically wrong and the atoms are known to be stable for billions of years. We also
know that the ‘fault’ lies not with the ‘Coulomb law’ (which does get modified) but with
the classical framework of using well defined trajectories to describe the dynamical evolution
for both the electron and the electromagnetic field. Inadequacies of classical theories are
also revealed in the black body spectrum, specific heat of solids at low temperatures etc etc
and the appropriate quantum theory of matter and electromagnetism cures these problems
i.e. gives results consistent with experimental observations. The quantum nature of other
interactions such as the strong and the weak is also verified in nuclear and particle physics.
What about the gravitational interactions?

Gravitationally bound ‘atoms’ can also be considered. If gravity is described in the Newto-
nian manner, there is no gravitational radiation from an accelerated motion and the inward
spiralling problem will not arise. But Einstein’s theory of gravity is very different and ac-
celerated sources do radiate away energy and the stability issue re-surfaces. Of course the
‘weakness’ of gravitational interaction does not threaten the existence of such gravitation-
ally bound atoms if the decay time is larger than the age of the universe, but in principle
possibility exists. In fact Einstein did suggest a need for a quantum theory of gravity [1]
almost immediately after GR was constructed1.

General relativity however uncovered two distinct contexts in which the theory calls for an

1At that time, the universe was supposed to be eternal and hence, however small the gravitational
instability, existence of stable atoms would threaten GR unless gravitational radiation is also terminated at
certain stage.
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extension – the context of (i) cosmological and black hole singularities and (ii) entropy of
black hole horizons. Let us take a little closer look at these contexts.

The cosmological context: Under the assumption of homogeneity and isotropy, the space-
time metric is described in terms of a single dynamical variable – the scale factor. As long
as the energy density is positive and the pressure is not too negative (which is true for the
properties of known matter), in an expanding universe (an observational fact), the scale factor
vanishes at a finite time in the past. The universe has ‘beginning’, a finite age and the space-
time curvature (or gravity) is infinitely large. Thus, a homogeneous, isotropic universe has
singular beginning. If one relaxes isotropy but retains homogeneity, one has several types of
space-times. There are now a maximum of six dynamical variables. The simplest of these, the
vacuum Bianchi I space-time, has three ‘scale factors’ whose time dependence is given by the
(exact) Kasner solution. This is also singular. As one evolves back in time, two of the scale
factors vanish while the third one diverges. The most complex of these models, the vacuum
Bianchi IX space, is also singular and the backward evolution has an oscillatory behaviour.
Like the Kasner solution, two scale factors begin decreasing and the third one increasing.
But after a while, the three scale factors change their behaviour and a different pair begins
decreasing. This continues ad infinitum. If the non-diagonalmetric components are included,
then the directions along which contraction/expansion takes place are also ‘rotated’. If one
relaxes homogeneity as well, then a beautiful analysis done by Belinskii-Khalatnikov-Lifschitz
(BKL), shows that there exists a general solution of the vacuum Einstein equations which can
be described as smaller and smaller portions of the spatial slice behaving as a homogeneous,
Bianchi IX solution. The BKL analysis in particular shows that singular solutions found in
the simpler situations are not due to high degree of symmetry (homogeneity and isotropy),
but even without such symmetries, there exist general solutions which are singular (diverging
curvatures) and the nature of singularities can be extremely complicated.

During the sixties Geroch-Penrose-Hawking used another approach to establish the Singu-
larity theorems identifying conditions under which singularities are inevitable consequence
of classical GR. For these theorems, singular space-times were defined as those in-extendible
space-times which admit at least one causal (time-like or null) geodesic which is incomplete.
Here incompleteness means that the geodesic cannot be defined for all real values of an affine
parameter. There are three types of inputs in these theorems: (a) One restricts to a class
of space-times which are causally well-behaved eg are free from closed causal curves. The
space-times which are free of all causal pathologies and are fully deterministic are the so-
called globally hyperbolic space-times. (b) The space-times are solutions of Einstein equation
with the matter stress tensor satisfying suitable energy condition(s). This incorporates that
idea that gravity is attractive (for positive mass/energy). These two types of conditions are
general requirements for a space-time model to be physically relevant. (c) the third input is
a condition that distinguishes specific physical context such as an everywhere expanding uni-
verse or a gravitational collapse which has proceeded far enough to develop trapped surfaces.
The presence of the last condition(s) shows that not every solution satisfying the first two
conditions is singular (e.g. the Minkowski space-time). Thus, singularity theorems do not
imply that gravitational interactions always produce singularities – the (c) type condition
is necessary. While inclusion of (c) will imply singular space-times, it is not automatic that
this condition is realized in the physical world. In our physical world however universe is
expanding and it is widely believed that black holes also exist and hence condition (c) is
realized in nature. Thus, physical contexts exist wherein classical GR is inadequate.

Remark 1: The global hyperbolicity condition implies that the space-time is stably causal i.e.
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a global time function exists such that each hyper-surface of constant ‘time’ is space-like.
Furthermore, a time function can be chosen such that the space-like hypersurfaces are Cauchy
surfaces. The topology of such space-times is necessarily R×Σ. A Hamiltonian formulation
makes sense only in such space-times. Thus, not every solution of Einstein equation yields
a physically acceptable space-time (i.e. causally well behaved or globally hyperbolic). A
Hamiltonian evolution however constructs such space-times 2.

Remark 2: In specific solutions, one encounters singularities (regions of diverging curvatures)
which are space-like (positive mass Schwarzschild solution, homogeneous cosmologies), time-
like (negative mass Schwarzschild solution) or even null (some of the Weyl class of solutions).
Singularities that arise in an evolution from non-singular initial conditions are the ones which
strongly display inadequacy of the theory. Typically, these are the space-like singularities.
Since the Hamiltonian formulation is an initial value formulation, it can “see” only such
singularities.

The Black hole context: Black holes are objects whose ‘interiors’ are inaccessible to far
away observers. More precisely, these are space-time geometries that have a horizon which
leave some regions out of bounds for asymptotic observers. The special class of stationary
black holes are characterized by a few parameters – mass (M), angular momentum (J) and
electric charge (say) (Q). Associated with their horizons are some characteristic parameters
– area of the horizon (A), surface gravity at the horizon (κ), angular velocity at the horizon
(Ω) and electromagnetic potential at the horizon (Φ). In the seventies, a remarkable set of
“laws” governing processes involving black holes were discovered. If in a process a black
hole is disturbed (by accreting mass, say) and returns to a stationary state again, then the
changes in the parameters obey:

δM =
κ

8π
δA+ ΩHδJ + ΦHδQ , δA ≥ 0 . (1.1)

These are very temptingly analogous to the laws of thermodynamics! Especially after one also
proves that κ is constant over the surface of the horizon. Bekenstein in fact suggested that
area of the horizon be identified with the entropy of a thermodynamic system. This suggests
that the surface gravity be identified with a temperature. Hawking subsequently showed
that when possibilities of quantum instabilities are taken into account, a black hole can be

thought of a black body with temperature T =
κℓ2P
2π

and hence S = 1
4
A
ℓ2P
, ℓ2P := G~. For all

other systems we know that thermodynamics is a manifestation of an underlying statistical
mechanics of a large number of microscopic degrees of freedom. What are these micro-
constituents of the black holes? Notice that from far away, only the exterior of a horizon is
accessible and so also parameters such as mass and angular momentum. All detailed memory
of what collapsed to form the black hole is lost. So these micro-constituents must be distinct
from the matter degrees of freedom. They must represent “atoms” of geometry. But classical
geometry is continuous so how does a particulate nature arise? Perhaps, not just the specific
dynamics given by Einstein equation is inadequate but the framework of classical geometry
itself is inadequate. Note that black hole horizons are not regions of high curvatures and
geodesic incompleteness occurs in their interiors. Thus, black hole thermodynamics is a
qualitatively different situation.

In summary, classical GR contains within its domain, physically realizable physical context
where the theory is inadequate. At least one of its context involves highly dynamical ge-

2One could analytically extend such maximally Cauchy evolved solutions further. These will have Cauchy
Horizons, an example being Reissner-Nordstrom space-time.
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ometries with high curvatures, matter densities etc. Because of these features, it is hard to
imagine how any perturbative approach can be developed in these contexts. Since gravity (or
space-time geometry) is dynamical and a perturbative approach is unlikely to be suitable, it
is necessary to have a quantum theory of gravity which of does not use any fixed background
space-time in its construction.

1.2 An Essential Feature of Classical Gravity

Let us recall briefly that special relativity combines Newtonian notions of space and time
into a single entity, the space-time (Minkowski space-time). The analysis of the geometry
inferred in a rotating frame indicates that the geometry is non-Euclidean. Principle of
equivalence, which identifies uniform acceleration with uniform gravity (in the Newtonian
sense), then implies that gravity affects the space-time geometry and since matter affects
gravity, it also affects geometry. In the final formulation of the relativistic theory of gravity,
the space-time geometry, described by a metric tensor, is a dynamical (changeable) entity
with the Newtonian gravity being a manifestation of the curvature. The law governing the
matter-geometry interaction is encoded in the Einstein equation. That all observers are on
equal footing to formulate the laws of physics implies that all quantities (and equations) be
tensor fields (and equations) with respect to general coordinate transformations. Note that
a general coordinate transformation corresponds to a change of chart in the framework of
differentiable manifolds.

Such coordinate transformations however have another interpretation in terms of mapping
of the manifold (or local regions thereof) into itself – the active diffeomorphisms. Under
the action of such mappings, the pull-backs and push-forwards, generate “new” tensor fields
from the old ones. That is, in a given neighbourhood, we will have the original tensor field
and the one obtained via pull-back/push-forward. If x → y(x) represents the mapping in
terms of local coordinates, then the pulled-back (pushed-forward) quantities are related to
the original ones in precisely the same manner as general coordinate transformation 3. If
the dynamical equations are covariant with respect to general coordinate transformations
(coordinate transform of a solution is also a solution), they must also be covariant with
respect to the active diffeomorphisms i.e. a configuration and its transform under active
diffeomorphism are both solutions if any one of them is. This has far reaching implications.

The Einstein Hole Argument: The active diffeos can be chosen such that they map non-
trivially only in some region (‘sub-manifold’) of the manifold. Choose a region which is
free of any matter. Assume that the equations determining gravitational field and matter
distribution are also tensor equations (i.e. generally covariant). Consider a solution which
has certain curvature distribution inside our chosen ‘hole’. Make a diffeo which is non-trivial
only inside the hole and change the curvature distribution. This will also be a solution by
covariance. Thus we get a situation that even though matter distribution is unchanged, in
a region where there is no matter, we can have two ‘different’ gravitational fields i.e. matter

3Let φ : p → φ(p) be a smooth map of a manifold onto itself. Given a function f ′ : M → R, define
another function f :M → R as: f(p) := f ′(φ(p)). This function is the pull-back of f ′ and is also denoted as
f := φ∗(f ′). Likewise, given a vector field X on M define a new vector field X ′ as: X ′(f ′)|φ(p) := X(f)|p.
The new vector field is called the push-forward of X and is also denoted as: X ′ = φ∗(X). Now introduce
local coordinates xi around p and yi around φ(p). It is easy to see that the components of tensors relative
to these coordinates are related in exactly the same manner as though x→ y(x) is a change of chart.
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distribution does not determine the gravitational field. But in the non-relativistic limit
Newtonian gravity is determined by matter. So either the equations should not be covariant
or in the absence of any matter available for ‘marking’ points of a manifold, the ‘different’
distributions of curvature must be regarded as describing the ‘same’ gravitational field. It
is the latter possibility that remains once the covariance of the equations is accepted. This
in turn implies that it is the equivalence classes of solutions, with respect to the space-time
diffeomorphisms, that correspond to physical reality.

Note: The size of the hole in the hole argument is unimportant. Also, the metric description
itself does not play a role; one could repeat the argument for any other field. All that is used
is that the fields are tensors under general coordinate transformations (chart change), field
equations are covariant and the fields are inhomogeneous within a hole. Values of individual
fields at any, manifold point are irrelevant but values of fields at points specified by other
fields are invariant and thus physical.

Since ‘points’, not marked by any dynamical entity, have no physical meaning, the only,
physically meaningful, questions are of relational nature. That is, it is physically meaningless
to ask what is the curvature (or say electric field) “here and now”. The meaningful questions
is what is the curvature where a certain field has a certain value. If we had any particular
field to be fixed (non-dynamical), then with reference to that field we could ask the ‘here and
now’ question. Such a field, constitutes a background. Note that the usual non-gravitational
theories or in the perturbative treatment of gravity, the space-time geometry (metric) plays
the role of a background. Since in the general relativistic theory all fields including the
metric are fundamentally dynamical, such a theory is necessarily background free. The
twin features of the framework namely all fields on a manifold being dynamical and the
fundamental equation being generally covariant and deterministic, implies covariance with
respect to active diffeomorphisms and physical characterization being in terms of 4-diffeo
equivalence classes of fields 4.

This is an essential feature of general relativity, much more fundamental than the particular
Einstein equations themselves. The challenge is to construct a quantum theory which faith-
fully incorporates this feature i.e. a quantum theory of gravity must be background free (or
at least recover background independence in the classical limit).

This also poses challenges, because we have to construct observables which are space-time dif-
feomorphism invariant. These alone could characterise specific equivalence classes of space-
times and this problem is not understood even classically for spatially compact case and in
absence of matter! Note that curvature invariants, although scalars, are local and not diffeo
invariants. Hence these cannot be physical observables. Consequently identifying a physical
state corresponding to (say) Minkowski space-time is much harder.

For a more detailed discussion of these conceptual issues, see [2].

4Since we have taken (differential) equations as specifying a presentation of a theory, the manifold cannot

be thought of as a background, but rather part of the specification of the theory. If we take some transition
amplitudes (among topological spaces, sets, ...) as specifying a theory, then the choice of a particular
differential structure will constitute a background since it is also a dynamical entity. We will restrict to
manifold category. This also explains why metric by itself is not essential for background independence of
gravity, a dynamical tetrad with compatible spin connection would do just as well.
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1.3 Towards the construction of a quantum theory

Ultimately constructing a quantum theory of some phenomenon means specifying a state
space - (projective) Hilbert space, identifying (self-adjoint) operators on it to correspond to
physically observable quantities, a notion of evolution or dynamics such that in a suitable
semi-classical approximation, the evolution of expectation values of a class of observables
tracks the corresponding classical evolution with the quantum uncertainties less than the
observational precision. Here the classical evolution is the one specified by the classical
description of the phenomenon. Using such a framework, one can compute matrix elements
of suitable observables or transition amplitudes etc. One familiar procedure is that of the
canonical quantization.

In canonical quantization, typically we have a classical phase space which is cotangent bundle,
T ∗Q of some configuration manifold Q and the Hilbert space is the space complex valued
functions of Q which are square integrable with respect to some suitable measure, dµ. When
Q ∼ RN , we have the familiar L2(R

N , dµLebesgue) which is unique thanks to the Stone-von
Neumann theorem. This comfortable situation changes once Q becomes topologically non-
trivial and/or becomes infinite dimensional. The former can arise due to constraints while
the latter arises in a field theory. In relativistic field theory, the classical configuration space,
Q, is (say) the space of suitably smooth tensor fields which is inadequate to describe the
corresponding quantum fields which can be arbitrarily non-smooth. Typically, Q is extended
to a quantum configuration space, Q̄, which should admit a suitable measure.

For a quantum theory of gravity, there are two additional features - (i) we have a theory
with first class constraints (i.e. a gauge theory) and (ii) we would like to have background
independence.

In presence of constraints, the quantization procedure is a two step process. In the first step
one constructs a kinematical Hilbert space on which are defined the constraint operators. The
second step aims to ‘solve’ the constraints to get a quantum theory corresponding to physical
degrees of freedom. Again, typically, there are no vectors in the kinematical Hilbert space
which are annihilated by the constraint operators and one is forced to consider distributional
solutions5. The space of distributional solution however is not a Hilbert space and another
inner product needs to be defined on this space to make it into the physical Hilbert space.
The choice of this inner product is limited by demanding that a suitable class of Dirac
observables – operators which leave the space of solutions invariant – be self-adjoint.

There are many choices to be made along the way. The requirement of background indepen-
dence means that no non-dynamical fields should be used in any step. This poses a severe
challenge to constructing even the kinematical Hilbert space. The connection formulation of
gravity is of great help as the quantum configuration space of a gauge theory, A/G - space
of generalized connections modulo generalized gauge transformations - admits several mea-
sures and the demand that the conjugate variables be represented by derivative operators
essentially singles out a unique measure - the Ashtekar-Lewandowski measure, essentially
constructed from the Haar measure on compact groups. One has a natural choice of Ω
and (non-unique) definitions of constraint operators so that the kinematical set-up is well

5Let Ω ⊂ Hkin be a dense subspace of the kinematical Hilbert space. Let Ω∗ denote its algebraic dual
(space of linear functions on Ω) so that Ω ⊂ Hkin ⊂ Ω∗. Ω is chosen so that it contains the domains of the
constraint operators as well as of other operators of interest. Distributional solutions of constraints are those
elements of Ω∗ which evaluate to zero on all elements of Ω of the form Ĉ|ψ〉, ∀ ψ ∈ Ω.
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founded. We will see the details of these steps.

We will begin with the Hamiltonian formulation of GR in terms of the metric (ADM for-
mulation). Discover the redundant variables and make a canonical transformation to a set
of new variables (connection formulation) which are amenable to background independent
presentation. These will lead us to the holonomy-flux variables and their Poisson bracket
algebra whose representation theory will give us a Hilbert space. This will complete the
first step in the construction of the quantum theory. Some of its novel features will be re-
vealed through the properties of the geometrical operators. Our study of the basic formalism
will conclude with the presentation of the constraint operators on the kinematical Hilbert
space. The dynamical aspects will be studied through the simpler cases of homogeneous and
isotropic cosmology leading to the Big Bang singularity resolution. The other application
of quantum geometry, namely revealing the ‘atoms’ of geometry responsible for the black
entropy will be discussed in the second week along with the loop quantum cosmology.
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Chapter 2

Classical Hamiltonian Formulation

We are familiar from usual spacial relativistic field theories (say a scalar field) that solutions
of the field equations can be viewed as an evolution of fields, their spatial derivatives and
their velocities from one spatial slice to another one (“a Cauchy evolution”). In the general
relativistic case, one has to deal with space-times other than the Minkowski space-time and
eventually make the space-time itself to be ‘dynamical’. However not all space-times support
this notion of evolution.

To have a well defined, causal (no propagation faster than speed of light in vacuum) and
deterministic (given certain data at one instance, the future data is uniquely determined),
the space-time must be free of causal pathologies such as (i) no closed causal (i.e. time-
like or null) curves (excludes by chronology condition); (ii) no closed causal curves but
causal curves which return arbitrarily close to themselves (excluded by strong causality);
(iii) strong causality holds but when the space-time metric is made slightly ‘wider’, it is
violated (excluded by stable causality). All such pathologies are absent in space-time which
are stably causal i.e. admit a differentiable function such that ∂µf is a time-like vector field.
This alone is still not sufficient to guarantee the possibility of a Cauchy Problem. For this,
one needs Globally Hyperbolic Space-times. These are space-times which are which admit
a spatial hyper-surface such that events to the future (past) are completely determined by
data specified on it. Such space-time admit a globally defined ‘time function’ whose equal
time surfaces are Cauchy surfaces. It follows further that such space-times must have the
topology: M = R× Σ3.

Thus, in order to have a well-posed causal theory of matter fields, the space-times must be
globally hyperbolic.

It is a non-trivial result of analysis of Einstein equation that Einstein equation can be cast
in a Hamiltonian form such that if initial conditions are chosen to satisfy certain constraints,
then corresponding Hamiltonian evolution generates a solution (space-time) of the Einstein
equation1.

1This is local existence and uniqueness theorem for the Einstein equation. Since these are short time
evolutions, one cannot guarantee that largest possible space-time constructed will be globally hyperbolic.
However, if a globally hyperbolic solution is to exist, one can perform a time + space decomposition to put
the equations in a Hamiltonian form. That Einstein equation admit a well-posed initial value problem is
a necessary condition for globally hyperbolic solutions. That the equations are of Hamiltonian form is an
additional, non-trivial property. This follows most directly via the Einstein-Hilbert action formulation.
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Although a Hamiltonian formulations can be specified ab initio by giving a phase space which
is a symplectic manifold, a Hamiltonian function and specifying evolution by the Hamilton’s
equations of motion, it is more common that a theory is specified in terms an action which
is a functional defined on a set of fields on a space-time manifold. Typically this is expressed
as an integral of a Lagrangian density made up of finite order derivatives of a set of tensor
(spinor) fields. In such a manifestly space-time covariant presentation, one needs to choose a
“time” direction along which to ‘evolve’ data specified on a ‘equal time surface’. These data
identify the configuration space variables and their velocities. The Hamiltonian formulations
is then obtained from this Lagrangian formulation by passing through a Legendre transform.
This identification of a time direction and a spatial slice on which data are to be specified is
referred to as a “3 + 1 decomposition”.

2.1 The 3 + 1 decomposition

Let us assume that our would be space-time manifold is such as to admit a smooth function
T : M → R such that the T = constant level sets, generate a foliation. Different possible T -
functions will generate different foliations. For this to be possible, we must haveM ∼ R×Σ3.

Now choose a vector field tµ∂µ which is transversal to the foliation i.e. every integral curve
of the vector field intersects each of the leaves, transversally. Furthermore, locally in the
parameter of the curve, the leaves are intersected once and only once. Normalize the vector
field so that tµ∂µT = 1. This ensures that values of the T−functions can be taken as a
“time” parameter which we denote as t.

Fix a leaf Σt0 and introduce coordinates, xa, a = 1, 2, 3 on it. Carry these along the integral
curves of the vector fields, to the other leaves. This sets up a local coordinate system on
M such that the normalized parametrization provides the coordinate t while the integral
curves themselves are labelled by the {xa}. Note that there is no metric so M is not yet a
space-time. We have only set up a coordinate system.

Choose tensors gab, N
a, N on each of the leaves in a smooth manner ad define a space-time

metric via the line element:

ds2 := −N2dt2 + ḡab (dx
a +Nadt)

(
dxb +N bdt

)
. (2.1)

Choosing ḡab to be positive definite and N 6= 0 ensures that the space-time metric gµν is
invertible. Its inverse is given by,

gtt = −N−2 , gtb = N bN−2 , gab = ḡab −N−2NaN b , ḡacḡcb = δab . (2.2)

We now have a space-time. The space-time metric is defined in terms of 10 independent
functions and so there is no loss of generality. It is a convenient parametrization for reasons
given below, but alternative parametrization are possible.

It follows that, (i) The induced metric on the leaves is the Riemannian metric ḡab.

(ii) nµ := ∂µT is normal to the leaves, since for any tangent vector Xµ∂µ, to Σt, X
µnµ =

Xµ∂µT = 0. Thanks to the normalization of tµ∂µ, we have nµ = (1, 0, 0, 0).

(iii) nµ := gµνnν ⇒ nµnµ = gtt = −N2 < 0 and therefore the normal is time-like and hence
the leaves are space-like. The Nnµ is a unit time-like vector.
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(iv) The original transversal vector field can be decomposed as tµ = anµ+Ñµ where Ñµnµ = 0
and hence Ñµ is tangential to the leaves and Ñ0 = 0. This decomposition refers to N2 as the
lapse function and Ñµ as the shift vector. Next, tµnµ = 1 ⇒ a = −N2. The integral curve
equation, dtx

µ = −N2nµ + Ñµ implies for µ = a, Ña = N2na = N2gat = N2(N−2Na) = Na.
This identifies the Na with the shift vector (which is spatial).

The particular parametrization of the space-time metric can be said to be adapted to the
pre-selected coordinate system. Since the coordinate system is defined without any reference
to any metric, we can similarly parametrize other tensor fields, notably the co-tetrad, eIµ.

Note: We chose an arbitrary foliation (through an arbitrary choice of a “Time” function
and then a transversal vector field to enable us to choose coordinate on the manifold. The
foliation provides us with a normal nµ and the transversal vector field can be parametrized
in terms of this normal, a lapse function and a shift vector. Varying the lapse and shift
varies the transversal vector field relative to the foliation. If we also change the foliation,
then the normal changes and so must the shift vector. The changes induced by lapse and
shift correspond to making a space-time diffeomorphism and every infinitesimal space-time
diffeomorphism can be generated by infinitesimal changes in the lapse and shift.

2.2 Digression on tetrad formulation

General relativity is formulated as theory consisting of tensorial fields on a manifold and a
second rank, symmetric, non-degenerate (invertible) tensor field, gµν encoding gravitational
phenomena. To do differential calculus on general tensor fields one also needs to define
a covariant derivative, ∇µ which involves the introduction of an affine connection, Γλ

µν ,
which is usually taken to symmetric and metric compatible i.e. ∇λgµν = 0. The non-abelian
gauge theories already introduce quantities which are not just tensors with respect to general
coordinate transformations but also transform under the action of “an internal” group, eg
a Higgs field Φa, a YM potential Aa

µ, its corresponding field strength, F a
µν etc. The index a

indicates a response to the (adjoint) action of a group such as SU(N). Developing calculus for
such quantities, also needs a gauge covariant derivative and a corresponding gauge connection
eg Aa

µ.

Consider now a quantity, eIµ(x) where µ responds to a general coordinate transformation (eIµ
transform as a covariant rank 1 tensor) and the index I responds to the local action of the
pseudo-orthogonal group, SO(1, 3) under the defining representation. This quantity can also
be thought of as a 4×4 matrix and we will take it to be an invertible matrix. This is referred
to as a co-tetrad while its inverse quantity, eµI is referred to as a tetrad: eIµe

µ
J = δIJ , e

I
µe

ν
I = δνµ.

It is possible to formulate the theory of gravity in terms of a (co-)tetrad as follows.

(1) Let ΛI
J ∈ SO(1, 3) i.e. ΛI

KΛ
J
Lη

KL = ηIJ holds where ηIJ = diag(−1, 1, 1, 1). Then the
co-tetrad transforms as:

(e′)Iµ(x
′(x)) := ΛI

J(x)
∂x′ν

∂xµ
eJν (x) . (2.3)

The Λ− transformation is referred to as a Local Lorentz Transformation (LLT) while x →
x′(x) is the General Coordinate Transformation (GCT). Clearly to have the derivatives of
the co-tetrad to transform covariantly under both sets of transformations, we need two
connections: an affine connection (not necessarily symmetric in the lower indices) and a
Spin connection, ωµ

IJ . The spin connection is anti-symmetric in the IJ indices and thus
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transforms as the adjoint representation of the pseudo-orthogonal group. The derivative
covariant with respect to the LLT is denoted by Dµ, that with respect to GCT is denoted
by the usual ∇µ while the one with respect to both will be denoted by Dµ. The Lorentz
indices will be raised/lowered using the Lorentz metric ηIJ , ηIJ ,where η

IKηKJ = δIJ .

Armed with the tetrad, the spin connection and the Lorentz metric, define the following
quantities:

Torsion : T I(e, ω) := deI + ωI
J ∧ eJ

T I
µν = ∂µe

I
ν + ωµ

I
Je

J
ν − (µ ↔ ν)

Curvature : RIJ(ω) := dωIJ + ωI
K ∧ ωKJ

RIJ
µν = ∂µων

IJ + ωµ
I
Kων

KJ − (µ ↔ ν)

Bianchi Identity : (DR)I J = 0 := dRI
J + ωI

K ∧ RK
J + ωJ

K ∧RI
K

Cyclic Identity : (DT )I = RI
J ∧ eJ := dT I + ωI

J ∧ T J

Metric : gµν(e, η) := eIµe
J
νηIJ

Christoffel Connection :

{
λ
µν

}
(g(e)) := 1

2
gλα (gαµ,ν + gαν,µ − gµν,α)

Affine connection : Γλ
µν(e, ω) :=

{
λ
µν

}
(g(e)) + 1

2
gλα (Tαµν − Tµνα − Tνµα)

where, Tαµν(e, ω) := eIαT
I
µν(e, ω)

These imply

Matric compatibility : ∇λgµν = 0
tetrad compatibility : Dµe

I
ν = 0 := ∇µe

I
ν + ωµ

I
Je

J
ν − Γλ

µνe
I
λ

Compatibility ⇒ Rα
λµν(Γ) = eαI eλJR

IJ
µν(ω)

No assumption about the torsion tensor is made.

(2) It is possible to invert the torsion equation to ‘solve for’ the spin connection in terms
of the tetrad, its derivatives and the torsion tensor. All one needs to do is manipulate the
combination Tλµν + Tµνλ − Tνλµ and use the invertibility of the (co-)tetrad. The result is:

ωµ
IJ := ω̂µ

IJ(e) +Kµ
IJ(e, T ) (2.4)
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ω̂µ
IJ :=

1

2

[
eνI
(
∂µe

J
ν − ∂νe

J
µ

)
− eνJ

(
∂µe

I
ν − ∂νe

I
µ

)
− eνIeλJ

(
∂νe

K
λ − ∂λe

K
ν

)
eµK
]
(2.5)

Kµ
IJ := −1

2
eνIeλJ (Tνλµ + Tλµν − Tµνλ) (2.6)

The K is called the con-torsion tensor and ω̂ is the torsion-free spin connection which is
explicitly determined by the tetrad. The Affine connection equation is the corresponding
inversion of the metric compatibility condition (covariant constancy of the metric) to express
the general affine connection in terms of the torsion free Christoffel connection plus the
torsion combinations.

Notice that a priori, we have two connections: the affine and the spin. Both define corre-
sponding and independent torsions (T I

µν and the antisymmetric part of Γλ
µν). The intro-

duction of the metric as the ‘square’ of the co-tetrad and the two compatibility conditions
together identify the two torsions.

The last equation demonstrates that we can use the tetrad and the co-tetrad to convert
the Lorentz indices and the general tensor indices into each other with the compatibility
conditions ensuring the two distinct curvatures also going into each other.

Although we have referred to only 4 dimensions and Lorentz signature metric, the definitions
generalise to any dimensions and any signature.

(3) Four dimensions have additional features available. One can define internal dual (Lorentz
dual) for anti-symmetric rank-2 Lorentz tensors apart from the usual Hodge dual (space-time
dual) for 2-forms.

Let, E IJKL and Eµναβ denote the Levi-Civita symbols; These are completely antisymmetric
in their indices and we choose the conventions: E0123 = 1 = Etxyz. The indices on these are
raised and lowered by the Lorentz and the space-time metric respectively. Using these we
define:

X̃IJ :=
1

2
E IJ

KLX
KL (Internal Dual) (2.7)

(∗X)µν :=
1

2
Eµν αβXαβ (Hodge Dual) (2.8)

(4) From the tetrad and the spin connection, the following Local Lorentz invariant four
forms can be constructed whose integrals are candidate terms for an action.

1. Hilbert-Palatini: LHP (e, ω) := 1
2
EIJKLR

IJ(ω) ∧ eK ∧ eL.
The variational equations following from this are equivalent to the Einstein equations.
The spin-connection equation implies that the torsion vanishes and the tetrad equation
implies the vanishing of the Ricci tensor. The Hilbert-Palatini action is thus classically
equivalent to the Einstein-Hilbert action of the metric formulation.

This term taken as an action with the tetrad and spin connection treated as indepen-
dent variables is sometimes referred to as the tetrad formulation of gravity.

2. Cosmological Constant: LΛ(e) := Λ
4!
EIJKLe

I ∧ eJ ∧ eK ∧ eL

This is the usual cosmological constant term, proportional to the volume form.

3. Euler Invariant: LE(ω) := 1
2
EIJKLR

IJ ∧RKL.
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This 4-form is a topological term i.e. its variation under arbitrary infinitesimal changes
in the spin connection, is an exact form and therefore the variation of its integral
receives contributions only from the boundary values. Furthermore, explicitly,

LE(ω) = − d

{
1

2
E I

JMNω
MN ∧

(
dωJ

I +
2

3
ωJ

K ∧ ωK
I

)}
(2.9)

4. Pontryagin Invariant: LP (ω) := RIJ ∧RIJ .

This 4-form is also a topological term. Furthermore, explicitly,

LP (ω) = − d

{
ωI

J ∧
(
dωJ

I +
2

3
ωJ

K ∧ ωK
I

)}
(2.10)

The terms enclosed within the braces is the Chern-Simmons 3-form.

5. Nieh-Yan Invariant: LNY (e, ω) := T I ∧ TI − RIJ ∧ eI ∧ eJ .
This 4-form is also a topological term which depends on both the tetrad and the spin
connection. It vanishes if torsion is zero (for zero torsion, the second term vanishes by
the cyclic identity.) Explicitly,

LNY = d
{
eI ∧ T I

}
. (2.11)

Note that we have 5 different, Lorentz covariant 2-forms: T I ,ΣIJ := eI ∧ eJ , Σ̃IJ , RIJ , R̃IJ .
From these, we can form the six Lorentz invariants: T 2,Σ2(= 0 = −Σ̃2),Σ ∧ Σ̃, R2(=
−R̃2), R ∧ R̃, R ∧ Σ, R ∧ Σ̃. If we are to get the Einstein equation (with a cosmological
constant), then the T 2 and R ∧ Σ must be combined into the Nieh-Yan combination,

(5) We will note a parametrization of the tetrad, adapted to the 3+1 decomposition, which
leads to the corresponding metric decomposition. This can be derived from the identifica-
tions:

eIt e
J
t ηIJ := −N2 + ḡabN

aN b

eIt e
J
aηIJ := ḡabN

b (2.12)

eIae
J
b ηIJ := ḡab

It follows,

Co− tetrad : Introduces nI

eIt := NnI +NaV I
a nInJηIJ := −1 , nIV J

a ηIJ = 0

eIa := V I
a (free)

ḡab := V I
a V

J
b ηIJ is invertible;

Tetrad : Defines V a
I

etI := −N−1nI nIV a
I := 0

eaI := N−1nIN
a + V a

I V a
I V

I
b = δab , V a

I V
J
a = δJI + nIn

J
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In this parametrization, the 16 variables in the tetrad have been traded with V I
a (12), N,N

a(4)
and nI(4) variables with 4 conditions: n2 = −1, n · Va = 0. The conditions can be viewed
as 4 conditions on nI given freely chosen V I

a or one condition on nI and 3 conditions on V I
a

given freely chosen spatial vector ni.

Notice that we have the normalized normal, Nnµ defined by the foliation. From this we can
construct an internal vector ñI := eµI (Nnµ). In the parametrization, we have also introduced
an internal normalized time-like vector nI , determined by the freely chosen V I

a . These two
are related by the parametrization of the tetrad as, ñI = −nI .

We can view nµ defined by the foliation and nI defined by a choice of V I
a as two time-

like normalized vectors in the T ∗(M). These are not identical in general and in particular
nI is not normal to the foliation. Demanding it to be so, puts a restriction on the V I

a :
nI ∝ nµ ⇒ ni = 0, n0n

0 = −1 and n ·Va = 0 ⇒ V 0
a = 0. This implies that V I

a are confined
to T ∗(Σ). This choice is the so-called time gauge.

Finally, we reiterate that using the tetrad and co-tetrad we can freely convert the Lorentz
and the general coordinate indices into each other. The normalized normal (Nnµ) can be
used to define a projector, P µ

ν := δµν +N
2nµnν which projects space-time tensors onto spatial

tensors. This would lead to 3+1 decomposition (or parametrization) of all other tensorial
quantities.
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Chapter 3

Symmetry Reduction

There are different uses of the term ‘symmetry reduction’. Heuristically, if S is a state space
of a system, on which is specified an action of a group, G, which preserves the defining
specification of the system (so that G is its symmetry group), then the space S gets “decom-
posed” into orbits of G. The space of orbits, S/G, is ‘smaller’ than S and could constitute
a simplification. S/G, is thought of as a symmetry reduction of S by G. Alternatively, one
could restrict to the subset of the so called invariant states which may be thought of as a
collection of trivial orbits. In our context, we will be using the term in the latter sense. The
system could be classical or quantum mechanical.

For example, if S is the quantum mechanical state space of a particle with a rotationally
invariant Hamiltonian, then the subspace of the invariant states would be all the states with
zero angular momentum. If it is the phase space of a particle with a rotationally invariant
dynamics, then the only invariant ‘state’ is the origin of the configuration space with zero
momentum. If however, S denotes the space of field configurations on a manifold, then the
subset of invariant configurations is non-trivial. If the quantum mechanical state space of a
system consists of distributions on a space of ‘test functions’, then invariant states could be
defined as those distributions whose support consists of invariant test functions.

If one obtains a reduction by restricting to invariant states (and invariant observables) of
a quantum system, one has followed the first quantize, then reduce route and the reduced
system can be thought of as a symmetric sector. This is not always possible, since one does
not have adequate explicit control over the quantum system. Alternatively, one can consider
invariant subspace of a classical phase space and construct a corresponding quantum theory.
This is the first reduce, then quantize route. In general, the relation between these two
approaches is unclear.

While the former approach is more desirable, in practice, it is the latter approach which is
followed commonly. We will also follow this approach. However, we will follow the methods
– basic variables, construction of quantum Hilbert space etc – used in the full theory. The
viability of these simplified models are then thought to constitute a test of the methods and
premises of the full theory. The reduction of the classical theory is carried out by requiring
certain symmetries to be exactly realized.
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3.1 Symmetry Reduced Models

We are already familiar with use of symmetries to simplify a problem. For example, as-
suming spherical symmetry we choose coordinates and metric components to simplify the
Einstein equation and obtain the Schwarzschild solution or using homogeneity and isotropy
one obtains the FRW solutions. Thus symmetry groups (isometries) allow us to classify
suitable ansatz for the basic variables of the theory. Note however that we are not interested
in solving Einstein equations, but rather in obtaining a classical action with fewer degrees
of freedom and constructing a corresponding quantum theory. In the context of spherical
symmetry for example, this corresponds to restricting to only spherically symmetric form
of 3-metrics: ds2 = Λ2(t, r)dr2 + R2(t, r)(dθ2 + sin2θdφ2) and reducing the Einstein-Hilbert
action to get an action in terms of the two field degrees of freedoms – Λ(r), R(r). Such
reductions of degrees of freedom is termed mini-superspace model if the degrees of freedom
is finite and a midi-superspace model, if the degrees of freedom is still infinite i.e. a lower di-
mensional field theory. The former occur in homogeneous cosmologies while examples of the
latter include spherical symmetry, certain inhomogeneous cosmological models such as the
Gowdy models, Einstein-Rosen waves etc. Needless to say that the midi-superspace models
are still very complicated. We will concentrate on the mini-superspace models and specifi-
cally on (spatially) homogeneous cosmologies. We begin by defining spatially homogeneous
space-times which are not necessarily solutions of Einstein equation.

3.1.1 Spatially homogeneous models

A four dimensional space-time is said to be spatially homogeneous if (a) it can be foliated
by a 1-parameter family of space-like hypersurfaces, Σt and (b) possessing a (Lie) group of
isometries such that for each t and any two points p, q ∈ Σt there exist an isometry of the
space-time metric which maps p to q. The isometry group G is then said to act transitively
on each of the Σt. If the group element connecting p, q is unique, the group action is said to
be simply transitive (otherwise multiply transitive). Spatially homogeneous space-times are
further divided into two types.

A spatially homogeneous space-time is said to be of a Bianchi type if the group of isometries
contains a subgroup (possibly itself), G∗, which acts simply transitively on Σt otherwise it
is said to be of the Kantowski-Sachs type (interior of Schwarzschild solution). It turns
out that except for the special case of Σ ∼ S2 × R and G = SO(3)× R, in all other cases
one has a Bianchi type space-time.

Transitive action implies that there must be at least three independent Killing vectors at
each point of Σt since Σt is three dimensional. But there could be additional Killing vectors
which vanish at a point. These Killing vectors generate the isotropy (or stability) subgroup,
H of G. Since H will induce a transformation on the tangent spaces to the spatial slices,
it must be a subgroup of SO(3) and thus dimension of G can be at most 6 and at least 3
since the dimension of G∗ is always 3. All 3 dimensional Lie groups have been classified by
Bianchi into 9 types. The classification goes along the following lines[3].

A Lie algebra (or connected component of a Lie group) is characterised by structure constants
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CI
JK with respect to a basis XI , satisfying the antisymmetry and Jacobi identity namely,

[XJ , XK ] = CI
JKXI ; CI

JK = CI
KJ ;

∑

(IJK)

CN
ILC

L
JK = 0 , I, J,K = 1, 2, 3 .

Using the availability of the Levi-Civita symbols, EIJK , E IJK, E123 = 1 = E123, we can write
the structure constants as,

CI
JK = EJKLC

LI , CIJ :=M IJ + E IJKAK (3.1)

Thus, the 9 structure constants are traded for 6 M IJ (symmetric in IJ) and the 3 AK . This
has used only antisymmetry. The Jacobi identity implies, M IJAJ = 0.

Noting that the structure constants are subject to linear transformations induced by linear
transformations, XI → S J

I XJ , on the basis of the Lie algebra, the symmetric M IJ can
be diagonalized by orthogonal transformations and the non-zero eigenvalues can be further
scaled to ±1: M IJ = nIδIJ . The conditionM IJAJ = 0 implies that either AI = 0 (Class A)
or AI 6= 0 (class B) in which case M IJ has a zero eigenvalue and we may take the non-zero
eigenvector AI to be along the “1st” axis, i.e. AI = aδI,1 and n1 = 0. This leads to,

[XJ , XK ] = nIEIJKXI +XJAK −XKAJ .

In the class A, there are precisely 6 possibilities organized by the rank of the matrix – 0, 1,
2, 3 and signature for ranks 2, 3 viz (++,+−) and (+++,++−). The eigenvalues of M IJ

can be taken to be nI = ±1, 0.

In the class B, the rank ofM IJ cannot be 3 and the possibilities are restricted to the ranks 0,
1, 2 and signatures (++,+−) for rank 2. If the rank ofM is 0, all three eigenvalues are zero
and scaling X1, we can arrange a = 1. For rank 1, taking n3 to be the non-zero eigenvalue,
scaling X1, X3 ensures a = 1. For rank 2 however, (n2 = ±1, n3 = ±1), no scaling can
preserve n2, n3 and set a = 1 (of course a = 1 is possible).

Here is a table of the classification of Riemannian, homogeneous 3-geometries[3]:

Type a n1 n2 n3 Remarks
Class A

I 0 0 0 0 Euclidean space
(Leads to the Kasner space-time)

II 0 1 0 0
VII0 0 1 1 0
VI0 0 1 -1 0
IX 0 1 1 1 S3 is a special case (with isotropy)

(Central to BKL Scenario)
VIII 0 1 1 -1

Class B
V 1 0 0 0 H3 a special case (with isotropy)
IV 1 0 0 1
VIIa a 0 1 1
III 1 0 1 -1 sub-case of type VIa
VIa a 0 1 -1
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Of interests to us are the so called class A models which are characterised by the structure
constants satisfying CI

IJ = 2AJ = 0 1.

When H = SO(3), one has homogeneity and isotropy i.e. FRW space-times. We know that
these come in three varieties depending on the constant spatial curvature. The spatially flat
case is of type Bianchi I while positively curved case is of type Bianchi IX. (The negatively
curved case is in class B, type V).

The metrics of the general Bianchi type space-times have at the most 6 degrees of freedom
thus constituting mini-superspaces. The spatial metrics can be put in the form: ds2 =
gIJ(t)e

I
i e

J
j dx

idxj , where eIi dx
i are the so called Maurer-Cartan forms on the group manifold

G∗, satisfying deI = −1
2
CI

JKe
J ∧ eK . When one further restricts to diagonal gIJ one gets the

so-called diagonal Bianchi models.

Remark: One should notice that restricting to a subclass of metrics amounts to introducing
background structures from the perspective of the full theory. In the present case, these
structures are the symmetry group and the coordinates adapted to the group action (which
allowed the metric to be put in the specific form). This is unavoidable and constitutes a spec-
ification of the reduced model. From the perspective of a reduced model, these structures are
non-dynamical, analogous to the manifold structure for the full theory and therefore do not
automatically violate background independence. Instead, the background independence now
means that quantization procedure should not depend the metric gIJ which is a dynamical
variable.

Our basic variables however are not the 3-metric and the extrinsic curvatures. They are the
SU(2) connection and the densitized triad. In the metric variables, the natural notion of
symmetry is isometry while in the connection formulation it is the group of automorphisms
of the SU(2) bundle. Thus, the cosmological models will now be understood to be charac-
terised by groups of automorphisms of the SU(2) bundle which acts on the base manifold Σ
transitively. The task is to characterise the connection and triad variables which are invari-
ant under the group action (just as isometries mean invariant metrics). This requires more
mathematical machinery and we will only state the conclusions2.

For the Bianchi models, the invariant connections and densitized triad are of the form:

Ai
a(t, x) := Φi

I(t)ω
I
a(x) , Ea

i (t, x) :=
√
g0(x)p

I
i (t)X

a
I (x). (3.2)

In the above equation, a refers to spatial coordinate index, i refers to the adjoint representa-
tion of SU(2) and I refers to the adjoint index of the Lie algebra of the symmetry (sub) group
G∗ (and hence takes 3 values). The ωI

adx
a are the Maurer-Cartan 1-forms (left-invariant 1-

forms) on Σt identified with the group manifold while Xa
I

∂
∂xa are the corresponding invariant

vector fields dual to the 1-forms, i.e. ωI(XJ) = ωI
aX

a
J = δIJ . The g0(x) is the determinant

of the invariant metric on the symmetry group and provides the necessary density weight.
It is regarded as a fiducial quantity and will drop out later. All the coordinate dependence
resides in these forms, vector fields and the fiducial metric while the coefficients containing
the t dependence are the basic dynamical variables3.

1The remaining, Class B models are thought not have a Hamiltonian formulation and hence are not
amenable to analysis by canonical methods [4].

2A few essential details from Forgacs and Manton are summarised in the appendix.
3Similar decomposition is made for all quantities with spatial and the Lorentz indices. The contravariant

spatial index is expressed using the invariant vector fields and the covariant one using the invariant 1-forms.
In particular, Ki

a := Ki
Iω

I
a , Γ

i
a := γiIω

I
a.
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If we have isotropy in addition, then the degrees of freedom are further reduced: Φi
I :=

cΛi
I , p

I
i := pΛI

i and there is only one degree of freedom left. Here the Λ’s are a set of
orthonormal vectors satisfying, Λi

IΛ
i
J = δIJ ,Λ

i
IΛ

j
JΛ

k
Kǫijk = ǫIJK . The phase space variables

c, p are gauge invariant.

The intermediate case of diagonal models arises from a choice Φi
I := cIΛ

i
I , p

I
i := pIΛI

i (no
sum over I). The residual (SU(2)) gauge transformations act on the Λ’s and leaving the
cI , p

I as the gauge invariant phase space variables thereby solving the Gauss constraint at
the outset4. Thus there are only 3 degrees of freedom [5].

Having identified relevant degrees of freedom parameterising quantities invariant under sym-
metry transformation, the next task is to obtain the symplectic structure (basic Poisson
brackets) and simplify the expressions for the constraints.

Symplectic form: In the full theory, this is given by (8πGγ)−1
∫
Σ
d3xȦi

a(t, x)E
a
i (t, x). Direct

substitution gives,

1

κγ

∫

Σ

d3xȦi
a(t, x)E

a
i (t, x) =

1

κγ
Φ̇i

Ip
I
i

{∫

Σ

d3x
√
g0

}
, ⇒ {Φi

I , p
J
j } =

κγ

V0
δijδ

J
I . (3.3)

The quantity in the braces is the fiducial volume, V0, of Σt. For spatially flat, isotropic case,
the slice is non-compact and the fiducial volume is infinite. This problem is addressed by
restricting to a finite cell whose fiducial volume is finite. One has to ensure that the final
results do not depend on the fiducial cell5. The dependence on the fiducial volume is gotten
rid off by redefining the basic variables as Φ → ΦV

−1/3
0 , p → pV

−2/3
0 . If we have isotropy,

the symplectic form would become 3
κγ
V0ċp which leads to (after rescaling) to the Poisson

bracket, {c, p} = κγ
3
. With this rescaling understood, we will now effectively put V0 = 1.

Curvature: The curvature corresponding to the invariant connection above, is obtained as:

F i := dAi +
1

2
ǫi jkA

j ∧Ak :=
1

2
F i
JKω

J ∧ ωK (3.4)

∴ F i
JK = −Φi

IC
I
JK + ǫi jkΦ

j
JΦ

k
K (3.5)

Gauss Constraint: The full theory expression is:

G(Λ) :=

∫

Σ

Λi

{
1

κγ

(
∂aE

a
i + ǫij

kAj
aE

a
k

)}

=
Λi

κγ


pIi

∫

Σ

∂a(
√
g0X

a
I )

︸ ︷︷ ︸
+ ǫij

kpIkΦ
i
J

∫

Σ

√
g0X

a
I ω

J
a

︸ ︷︷ ︸




−V0CJ
IJ V0 (3.6)

∴ Gi = (κγ)−1
{
−pIiCJ

IJ + ǫ k
ij Φ

j
Ip

I
k

}
. (3.7)

Notice that for the class A models, the first term is zero and for the diagonal models the
second term vanishes as well (since ǫ is antisymmetric in j, k while the Λ factors are symmetric
in j, k). There are no continuous gauge invariances left. Note that the first term in eqn (3.7),

4There is still a discrete invariance remaining and involves changing the sign of two of the triad and
connection components.

5This is discussed in more details in section 4.2.2
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is a surface term which could vanish if Σ has no boundaries. But this would not be true for
say spatially flat models which will have the Σ as a cell on which the invariant vector fields
need not vanish. The integrand however is proportional to CJ

IJ and these vanish for the
class A models.

Diffeo Constraint:

Cdiff( ~N) :=
1

κγ

∫

Σ

Na(x)Eb
i (x)F

i
ab(x)−

∫

Σ

Na(x)Ai
a(x)Gi(x)

Na(t, x) := N I(t)Xa
I (x) (3.8)

∴ N ICI =
N I

κγ

[(
CK

JKΦ
i
I + CK

IJΦ
i
K

)
pJi
]

(3.9)

This constraint again vanishes for diagonal, class A models.

Hamiltonian Constraint: The full theory Hamiltonian constraint is given by,

CHam(N) :=
1

2κ

∫

Σ

N
Ea

i E
b
j√

|detq|
[
ǫijkF

k
ab − 2(1 + γ2)Ki

[aK
j
b]

]
(3.10)

To carry out the integration, we need to note the expressions:

√
g0 =

1

3!
ǫIJKǫ

abcωI
aω

J
b ω

K
c ,

1√
g0

= ǫabcǫ
IJKXa

IX
b
JX

c
K . (3.11)

This leads to,

detq = det(Ea
i ) :=

1

3!
ǫabcǫ

ijk(g0)
3/2Xa

IX
b
JX

c
Kp

I
i p

J
j p

K
k =

1

3!
g0ǫ

ijkǫIJKp
I
i p

J
j p

K
k (3.12)

Now the integration can be carried out immediately to give,

Hgrav =
N

2κ


 pIi p

J
j√

1
6
|ǫijkǫIJKpIi pJj pKk |

{
ǫij kF k

IJ − 2(1 + γ2)K
[i
I K

j]
J

}

 (3.13)

In the above, Ki
I = γ−1(Φi

I − Γi
I). These expressions are valid for general Bianchi models.

At this stage, we could in principle attempt to carry out the usual Schrodinger quantization
with Φi

I being multiplicative operators and P I
i being the derivative operators. Both transform

covariantly under the action of SU(2).

However, we can also imagine ‘specializing the holonomy-flux variables’ of the full theory,
for these symmetric fields. It is natural to choose edges along the symmetry directions
i.e. along integral curves of the Xa

I vector fields. It follows that due to homogeneity, the
path ordered exponentials, holonomies, become just the ordinary exponentials, hI(Φ) :=
heI (Φ) := Pexp{

∫
eI
Φi

Iτiω
I
adx

a} = exp{Φi
I(t)τi

∫
eI
ωI
adx

a}. There is no sum over I in these

expressions. These can be further expressed using the identity eiθn̂·~σ = cos(θ)+in̂·~σsinθ. The
holonomy is then given in terms of θ ∼

√
Φi

IΦ
i
I which is gauge invariant and two angular,

gauge variant components corresponding to the direction n̂ ∼ unit vector in the direction
of Φi

I . A simplification occurs if we further restrict to the diagonal models: Φi
I := cIΛ

i
I

which makes the n̂ = ~ΛI and now the matrix elements of these holonomies can be obtained
from the elementary functions, eµ(I)cI/2. These have been termed as the point holonomies.
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The fluxes through surfaces perpendicular to the symmetry directions, likewise simplify to
ESJK

(f) = pIΛI
i f

i
∫
SJK

√
g0(x)ǫabcX

a
I dS

bc ∝ pI . Unlike the flux operators in the full theory,
these fluxes Poisson commute among themselves. Thus, in the diagonal models, we can
extract gauge invariant phase space coordinates, with the holonomies and fluxes having the
usual Poisson algebra. In quantum theory, a useful triad representation can then be set-up.

Point holonomies and commuting flux variables are new features which arise in the (diagonal)
mini-superspace reduction. These are also responsible for the relative ease of analysis possible
for these models. This will be discussed more below.

What about inhomogeneous models? There have fewer efforts regarding these. Among the
inhomogeneous models, the reduction for the Gowdy model on 3-torus can be seen in [6],
while spherical symmetric model can be seen in [7]. Martin’s lattice model is briefly discussed
in the appendix.
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Chapter 4

Singularity Resolution in Quantum
Theory

The most detailed analysis of the singularity resolution is available for the homogeneous and
isotropic geometry coupled to a massless scalar and this is the case that we discuss below.
Prior to 2005, the singularity resolution was understood as the deterministic nature of fun-
damental equation (the Hamiltonian constraint) and in terms of an effective picture deduced
either from the WKB approximation of by taking expectation values of the Hamiltonian.
In this sense, resolution of singularities was seen for (i) FRW coupled to a scalar field with
arbitrary positive semidefinite potential and (ii) diagonalised Bianchi class A (anisotropic)
models. These resolutions were seen as an implication of the inverse triad quantum correc-
tions which were present in the matter sector (and in the curvature for non-flat models).
Post 2005, it was realized, at least for the FRW case, that the holonomy corrections by
themselves could also resolve singularities. This required restriction to massless scalar and
treating it as a clock variable, thereby paving the way for construction of physical states,
Dirac observables and physical expectation values. Although restricted to special matter, it
allows completion of the quantization program to the physical level and throws light on how
a quantum singularity resolution may be viewed. For this reason, we this case is discussed
in detail. Subsequently, Madhavan also showed another quantization for the same case, also
completed to physical level, wherein holonomy corrections are absent and singularity reso-
lution is achieved by inverse triad corrections only. There are also some issues which have
been better understood in the past few years. These are briefly summarised and discussed
in sections 4.2.2 and 4.2.3 .

4.1 FRW, Classical Theory

Classical model: Using coordinates adapted to the spatially homogeneous slicing of the
space-time, the metric and the extrinsic curvature are given by,

ds2 := −dt2 + a2(t)
{
dr2 + r2dΩ2

}
:= − dt2 + a2(t)ds2comoving . (4.1)
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Starting from the usual Einstein-Hilbert action and scalar matter for definiteness, one can
get to the Hamiltonian as,

S :=

∫
dt

∫

cell

dx3
√

|detgµν |
{
R(g)

16πG
+

1

2
φ̇2 − V (φ)

}

= V0

∫
dt

{
3

8πG
(−aȧ2) + 1

2
a3φ̇2 − V (φ)a3

}
(4.2)

pa = − 3V0
4πG

aȧ , pφ = V0a
3φ̇ , V0 :=

∫

cell

d3x
√
gcomoving ;

H(a, pa, φ, pφ) = Hgrav +Hmatter

=

[
−2πG

3

p2a
V0a

]
+

[
1

2

p2φ
a3V0

+ a3V0V (φ)

]
(4.3)

=

(
3V0a

3

8πG

)[
− ȧ

2

a2
+

(
8πG

3

)(
Hmatter

V0a3

)]
(4.4)

Thus, H = 0 ↔ Friedmann Equation. For the spatially flat model, one has to choose a
fiducial cell whose fiducial volume is denoted by V0.

In the connection formulation, instead of the metric one uses the densitized triad i.e. instead
of the scale factor a one has p̃, |p̃| := a2 while the connection variable is related to the
extrinsic curvature as: c̃ := γȧ (the spin connections is absent for the flat model). Their
Poisson bracket is given by {c̃, p̃} = (8πGγ)/(3V0). The arbitrary fiducial volume can be

absorbed away by defining c := V
1/3
0 c̃, p := V

2/3
0 p̃. Here, γ is the Barbero-Immirzi parameter

which is dimensionless and is determined from the Black hole entropy computations to be
approximately 0.23 [8]. From now on we put 8πG := κ. The classical Hamiltonian is then
given by,

H =

[
−3

κ

(
γ−2c2

√
|p|
)]

+

[
1

2
|p|−3/2p2φ + |p|3/2V (φ)

]
. (4.5)

For future comparison, we now take the potential for the scalar field, V (φ) to be zero as well.

One can obtain the Hamilton’s equations of motion and solve them easily. On the constrained
surface (H = 0), eliminating c in favour of p and pφ, one has,

c = ± γ

√
κ

6

|pφ|
|p| , ṗ = ± 2

√
κ

6
|pφ||p|−1/2 .

φ̇ = pφ|p|−3/2 , ṗφ = 0 , (4.6)

dp

dφ
= ±

√
2κ

3
|p| ⇒ p(φ) = p∗e

±
√

2κ
3
(φ−φ∗) (4.7)

Since φ is a monotonic function of the synchronous time t, it can be taken as a new “time”
variable. The solution is determined by p(φ) which is (i) independent of the constant pφ and
(ii) passes through p = 0 as φ → ±∞ (expanding/contracting solutions). It is immediate
that, along these curves, p(φ), the energy density (p−6p2φ/2) and the extrinsic curvature
diverge as p→ 0. Furthermore, the divergence of the density implies that φ(t) is incomplete
i.e. t ranges over a semi-infinite interval as φ ranges over the full real line1.

1For the FRW metric, integral curves of ∂t are time-like geodesics and hence incompleteness with respect
to t is synonymous with geodesic incompleteness.
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Thus a singularity is signalled by every solution p(φ) passing through p = 0 in finite syn-
chronous time (or equivalently by the density diverging somewhere along any solution). A
natural way to ensure that all solutions are non-singular is to ensure that either of the two
terms in the Hamiltonian constraint is bounded. Question is: If and how does a quantum
theory replace the Big Bang singularity by something non-singular?

There are at least two ways to explore this question. One can imagine computing corrections
to the Hamiltonian constraint such that individual terms in the effective constraint are
bounded. This approach presupposes the classical framework and thus will have a domain
of validity of these corrections. Alternatively and more satisfactorily, one should be able to
define suitable Dirac observables whose expectation values will generate the analogue of p(φ)
curves along which physical quantities such as energy density, remain bounded. Both are
discussed below.

4.2 FRW, Quantum Theory

Schrodinger Quantization: In the standard Schrodinger quantization, one can introduce
wave functions of p, φ and quantize the Hamiltonian operator by c→ i~κγ/3∂p , pφ → −i~∂φ,
in equation (4.5). With a choice of operator ordering, ĤΨ(p, φ) = 0 leads to the Wheeler-De
Witt partial differential equation which has singular coefficients. We will return to this later.

Loop Quantization: The background independent quantization of Loop Quantum Gravity
however suggest a different quantization of the isotropic model. One should look for a
Hilbert space on which only exponentials of c (holonomies of the connection) are well defined
operators and not ĉ. Such a Hilbert space is obtained as the representation space of the
C* algebra of holonomies. In the present context this algebra is the algebra of almost
periodic functions of c, finite linear combinations of functions of the form eiλjc, λj ∈ R.
Inner product (analogue of the Ashtekar-Lewandowski measure) on the space of the almost
periodic functions is given by:

(Ψ,Φ) := lim
T→∞

1

2T

∫ T

−T

dc Ψ∗(c)Φ(c) . (4.8)

The single exponentials form an orthonormal set. Let us denote it as, 〈c|µ〉 :=exp{ i
2
µc}, µ ∈

R. The holonomy-flux representation can now be made explicit as:

p̂|µ〉 =
1

6
γℓ2Pµ|µ〉 , 〈µ|µ′〉 = δµ,µ′ , µ ∈ R

ĥν |µ〉 :=
̂
e
i
2
νc|µ〉 = |µ+ ν〉 (4.9)

Notice that that the triad operator has every real number as a proper eigenvalue (i.e. has
a corresponding normalizable eigenvector, the spectrum is discrete). This implies that the
holonomy operator, is not weakly continuous in the label ν i.e. arbitrary matrix elements of
ĥν are not continuous functions of ν. Therefore one cannot define a ĉ operator. Note that
the volume operator, is given by V̂ := |p|3/2.
Inverse Triad Operator: The fact that spectrum of the triad operator is discrete, has a
major implication: inverses of positive powers of triad operators do not exist 2. These have

2The domain of the inverse power operator(s) will have to exclude the subspace corresponding to the zero
eigenvalue of the triad operator. But this makes the domain non-dense and its adjoint cannot be defined [9].
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to be defined by using alternative classical expressions and promoting them to quantum
operators. This can be done with at least one parameter worth of freedom, eg.

|p|−1 =

[
3

κγl
{c, |p|l}

]1/(1−l)

, l ∈ (0, 1) . (4.10)

Only positive powers of |p| appear now. However, this still cannot be used for quantization
since there is no ĉ operator. One must use holonomies: hj(c) := eµ0cΛiτi , where τi are
anti-hermitian generators of SU(2) in the jth representation satisfying Trj(τiτj) = −1

3
j(j +

1)(2j + 1)δij, Λ
i is a unit vector specifying a direction in the Lie algebra of SU(2) and µ0

is the coordinate length of the edge used in defining the holonomy. It is a fraction of V
1/3
0 .

Using the holonomies,

|p|−1 = (8πGµ0γl)
1

l−1

[
3

j(j + 1)(2j + 1)
TrjΛ · τ hj

{
h−1
j , |p|l

}] 1
1−l

, (4.11)

which can be promoted to an operator. Two parameters, µ0 ∈ R and j ∈ N/2, have crept in
and we have a three parameter family of inverse triad operators. The definitions are:

|̂p|−1
(jl)|µ〉 =

(
2jµ0

6
γℓ2P

)−1

(Fl(q))
1

1−l |µ〉 , q :=
µ

2µ0j
:=

p

2jp0
, (4.12)

Fl(q) :=
3

2l

[
1

l + 2

{
(q + 1)l+2 − |q − 1|l+2

}

− 1

l + 1
q
{
(q + 1)l+1 − sgn(q − 1)|q − 1|l+1

} ]

Fl(q ≫ 1) ≈
[
q−1
]1−l

, (4.13)

Fl(q ≈ 0) ≈
[

3q

l + 1

]
.

All these operators obviously commute with p̂ and their eigenvalues are bounded above. This
implies that the matter densities (and also intrinsic curvatures for more general homogeneous
models), remain bounded over the classically singular region. Most of the phenomenological
novelties are consequences of this particular feature predominantly anchored in the matter
sector. In the effective Hamiltonian computations, this modification will imply the second
term in the Hamiltonian constraint (4.5) is rendered bounded implying singularity avoidance.

We have also introduced two scales: p0 := 1
6
µ0ℓ

2
P and 2jp0 := 1

6
µ0(2j)ℓ

2
P. The regime

|p| ≪ p0 is termed the deep quantum regime, p ≫ 2jp0 is termed the classical regime and
p0 . |p| . 2jp0 is termed the semi-classical regime. The modifications due to the inverse
triad defined above are strong in the semi-classical and the deep quantum regimes. For
j = 1/2 the semi-classical regime is absent. Note that such scales are not available for the
Schrodinger quantization.

The Gravitational Constraint: Since ĉ operator does not exist, the gravitational Hamil-
tonian (the first bracket in eq.(4.5)), has to be expressed in an equivalent form using
holonomies. For this, let us go back to the full theory Hamiltonian:

6

γ2
c2
√
p = γ−2

∫

cell

d3x
ǫijkE

aiEbjF k
ab√

|detE|
(4.14)
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Now use the two identities:

ǫijkE
aiEbj

√
|detE|

=
∑

k

4 sgn p

κγµ0V
1/3
0

ǫabc ωk
c Tr

(
h
(µ0)
k

{(
h
(µ0)
k

)−1

, V

}
τi

)
(4.15)

F k
ab = −2 lim

A�→0
Tr

(
h
(µ0)
�ij

− 1

µ2
0V

2/3
0

)
τk ωi

a ω
j
b (4.16)

h
(µ0)
�ij

:= h
(µ0)
i h

(µ0)
j

(
h
(µ0)
i

)−1 (
h
(µ0)
j

)−1

(4.17)

In the above, the fiducial cell is thought to have been sub-divided into smaller cells of side
µ0ℓ, ℓ := V

1/3
0 . The area of a plaquette is A� = ℓ2µ2

0. The plaquette is to be shrunk such that
its area goes to zero. The superscript (µ0) on the holonomies is to remind that the length
of the edge is µ0. The 1-forms ωi

a are the fiducial 1-forms whose square gives the fiducial
metric and the ǫabc is the (fiducial) metric dependent Levi-Civita density.

In quantum geometry however there is a gap in the spectrum of area operator and thus it is
not appropriate to take the area to zero, but at the most to the smallest possible eigenvalue.
Independently, if we force the limit, it will imply µ0 → 0 which in turn amounts to defining
ĉ operator which does not exist on the Hilbert space.

Substituting these in the (4.14) and carrying out the integration over the cell leads to (sup-
pressing the µ0 superscript on the holonomies),

Hgrav = − 4

8πGγ3µ3
0

∑

ijk

ǫijkTr
(
hihjh

−1
i h−1

j hk{h−1
k , V }

)
(4.18)

In the above, we have used j = 1/2 representation for the holonomies and V denotes the
volume function. In the limit µ0 → 0 one gets back the classical expression 3.

If we promote this expression to a quantum operator (modulo ordering ambiguities) on the
LQC Hilbert space constructed above, then we cannot take the limit µ0 → 0 because it would
imply that ĉ exist which we have shown to be impossible. Thus, at the quantum level we
should not take the limit µ0 → 0. The best we can do is to take reduce µ0 such that the area
reaches its smallest possible (and non-zero due to the gap) eigenvalue ∆ := (2

√
3πγ)ℓ2P. But

which area do we consider, the fiducial or the physical? These are related by a factor of |p|.
It seems appropriate to choose the physical area, which implies that we must take µ0 to be a
function µ̄ of p given by, µ̄(p) :=

√
∆/|p|. Note that this is one prescription to interpret the

limitation on shrinking of the plaquette. There are others which will be mentioned later. In
the following we will continue to use the µ0 notation and replace it by µ̄(p) when needed.

While promoting this expression to operators, there is a choice of factor ordering involved
and many are possible. We will present two choices of ordering: the non-symmetric one
which keeps the holonomies on the left as used in the existing choice for the full theory, and
the particular symmetric one used in [10].

Ĥnon−sym
grav =

24i

γ3µ3
0ℓ

2
P

sin2µ0c
(
sin

µ0c

2
V̂ cos

µ0c

2
− cos

µ0c

2
V̂ sin

µ0c

2

)
(4.19)

3The expression for the Hamiltonian constraint follows exactly from the full theory procedure. Starting
from the equation (4.14), the integral will be replaced by a sum over smaller cells of a triangulation. The
size parameter of the cells will drop out thanks to density weight 1 of the Hamiltonian. Due to homogeneity,
contribution from each cell will be the same and hence the total sum will be number of cells of the triangula-

tion times the contribution of one cell. There are exactly µ−3
0 cubical (say) cells with side of length µ0V

1/3
0

and this produces the factor of µ−3
0 in equation (4.18). The V0 of course disappears as in the full theory
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Ĥsym
grav =

24i(sgn(p))

γ3µ3
0ℓ

2
P

sinµ0c
(
sin

µ0c

2
V̂ cos

µ0c

2
− cos

µ0c

2
V̂ sin

µ0c

2

)
sinµ0c (4.20)

At the quantum level, µ0 cannot be taken to zero since ĉ operator does not exist. The action
of the Hamiltonian operators on |µ〉 is obtained as,

Ĥnon−sym
grav |µ〉 =

3

µ3
0γ

3ℓ2P
(Vµ+µ0 − Vµ−µ0) (|µ+ 4µ0〉 − 2|µ〉+ |µ− 4µ0〉) (4.21)

Ĥsym
grav|µ〉 =

3

µ3
0γ

3ℓ2P
[|Vµ+3µ0 − Vµ+µ0 | |µ+ 4µ0〉+ |Vµ−µ0 − Vµ−3µ0 | |µ− 4µ0〉

− {|Vµ+3µ0 − Vµ+µ0 |+ |Vµ−µ0 − Vµ−3µ0 |} |µ〉] (4.22)

where Vµ := (1
6
γℓ2P|µ|)3/2 denotes the eigenvalue of V̂ .

We also have the Hilbert space for the matter degrees which for us is a single scalar, φ and
the full kinematical Hilbert space is the tensor product of the L2(RBohr, dµBohr)⊗Hmatter.

Wheeler-DeWitt Difference Equation: Let |Ψ〉 :=
∑

µΨ(µ, φ)|µ〉, where the sum is
over a countable subset of R, the coefficients Ψ(µ, φ) are valued in the matter Hilbert space
and the argument φ is a reminder of that. The Hamiltonian constraint is imposed on these
|Ψ〉 which leads to the Wheeler-DeWitt equation for the coefficients. Thanks to the presence
of the trigonometric operators, this equation is a difference equation. In the Schrodinger
quantization, this would be a differential equation.

For the non-symmetric operator we get,

A(µ+ 4µ0)Ψ(µ+ 4µ0, φ)− 2A(µ)Ψ(µ, φ) + A(µ− 4µ0)Ψ(µ− 4µ0, φ)

= − 2κ

3
µ3
0γ

3ℓ2PHmatter(µ)Ψ(µ, φ) (4.23)

where, A(µ) := Vµ+µ0 − Vµ−µ0 and vanishes for µ = 0.

For the symmetric operator one gets,

f+(µ)Ψ(µ+ 4µ0, φ) + f0(µ)Ψ(µ, φ) + f−(µ)Ψ(µ− 4µ0, φ)

= − 2κ

3
µ3
0γ

3ℓ2PHmatter(µ)Ψ(µ, φ) where, (4.24)

f+(µ) := |Vµ+3µ0 − Vµ+µ0 | , f−(µ) := f+(µ− 4µ0) , f0 := − f+(µ)− f−(µ) .

Notice that f+(−2µ0) = 0 = f−(2µ0), but f0(µ) is never zero. The absolute values have
entered due to the sgn(p) factor.

The difference equations relate Ψ(µ)’s only for µ’s in a “lattice”, Lµ̂ := {µ = µ̂+4µ0n, n ∈ Z}
and the coefficients labelled by different lattices are completely independent. The µ̂ ∈
[0, 4µ0), label different superselected sectors.

The equations are effectively second order difference equations and the Ψ(µ, φ) are deter-
mined by specifying Ψ for two consecutive values of µ eg for µ = µ̂ + 4µ0N and µ =
µ̂ + 4µ0(N + 1). Since the highest (lowest) order coefficients vanishes for some µ, then the
corresponding component Ψ(µ, φ) is undetermined by the equation. Potentially this could
introduce an arbitrariness in extending the Ψ specified by data in the classical regime (eg
µ ≫ 2j) to the negative µ. Potentially, maintaining determinism of the quantum wave
function, is one of the restrictive criteria for choosing the ordering.
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For the non-symmetric case, the highest (lowest) A coefficients vanish for their argument
equal to zero thus leaving the corresponding Ψ component undetermined. However, this
undetermined component is decoupled from the others. Thus apart from admitting the trivial
solution Ψ(µ, φ) := Φ(φ)δµ,0, ∀µ, all other non-trivial solutions are completely determined
by giving two consecutive components: Ψ(µ̂, φ),Ψ(µ̂+ 4µ0, φ).

For the symmetric case, due to these properties of the f±,0(µ), it looks as if the difference
equation is non-deterministic if µ = 2µ0 + 4µ0n, n ∈ Z. This is because for µ = −2µ0,
Ψ(2µ0, φ) is undetermined by the lower order Ψ’s and this coefficient enters in the deter-
mination of Ψ(2µ0, φ). However, the symmetric operator also commutes with the parity
operator: (ΠΨ)(µ, φ) := Ψ(−µ, φ). Consequently, Ψ(2µ0, φ) is determined by Ψ(−2µ0, φ).
Thus, we can restrict to µ = 2µ0 + 4kµ0, k ≥ 0 where the equation is deterministic.

In both cases then, the space of solutions of the constraint equation, is completely determined
by giving appropriate data for large |µ| i.e. in the classical regime. Such a deterministic
nature of the constraint equation has been taken as a necessary condition for non-singularity
at the quantum level 4.

Effective Hamiltonian: By introducing an interpolating, slowly varying smooth function,
Ψ(p(µ) := 1

6
γℓ2Pµ), and keeping only the first non-vanishing terms, one deduces the Wheeler-

De Witt differential equation (with a modified matter Hamiltonian) from the above difference
equation. Making a WKB approximation, one infers an effective Hamiltonian which matches
with the classical Hamiltonian for large volume (µ ≫ µ0) and small extrinsic curvature
(derivative of the WKB phase is small). There are terms of o(~0) which contain arbitrary
powers of the first derivative of the phase which can all be summed up. The resulting
effective Hamiltonian now contains modifications of the classical gravitational Hamiltonian,
apart from the modifications in the matter Hamiltonian due to the inverse powers of the
triad. The largest possible domain of validity of effective Hamiltonian so deduced must have
|p| & p0 [11, 12].

An effective Hamiltonian can alternatively obtained by computing expectation values of the
Hamiltonian operator in semi-classical states peaked in classical regimes [13]. The leading
order effective Hamiltonian that one obtains is (spatially flat case):

Hnon−sym
eff = − 1

16πG

(
6

µ3
0γ

3ℓ2P

)[
B+(p)sin

2(µ0c) +

(
A(p)− 1

2
B+(p)

)]
+Hmatter ;

B+(p) := A(p+ 4p0) + A(p− 4p0) , A(p) := (|p+ p0|3/2 − |p− p0|3/2) , (4.25)

p :=
1

6
γℓ2Pµ , p0 :=

1

6
γℓ2Pµ0 .

For the symmetric operator, the effective Hamiltonian is the same as above except that
B+(p) → f+(p) + f−(p) and 2A(p) → f+(p) + f−(p).

The second bracket in the square bracket, is the quantum geometry potential which is neg-
ative and higher order in ℓP but is important in the small volume regime and plays a role in
the genericness of bounce deduced from the effective Hamiltonian [14]. This term is absent in
the effective Hamiltonian deduced from the symmetric constraint. The matter Hamiltonian

4For contrast, if one just symmetrizes the non-symmetric operator (without the sgn factor), one gets a
difference equation which is non-deterministic. Note that this issue arises only in one superselection sector
so may not really be an issue. However, requiring deterministic equation in all sectors could be invoked as
a criterion to discriminate between different factor ordering.
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will typically have the eigenvalues of powers of inverse triad operator which depend on the
ambiguity parameters j, l.

We already see that the quantum modifications are such that both the matter (due to inverse
volume corrections) and the gravitational part (due to holonomy corrections) in the effective
Hamiltonian, are rendered bounded and effective dynamics must be non-singular.

For large values of the triad, p ≫ p0, B+(p) ∼ 6p0
√
p − o(p−3/2) while A(p) ∼ 3p0

√
p −

o(p−3/2). In this regime, the effective Hamiltonians deduced from both symmetric and non-
symmetric ordering are the same5. The classical Hamiltonian is obtained for µ0 → 0. From
this, one can obtain the equations of motion and by computing the left hand side of the
Friedmann equation, infer the effective energy density. For p≫ p0 one obtains 6,

3

8πG

(
ȧ2

a2

)
:= ρeff =

(
Hmatter

p3/2

){
1− 8πGµ2

0γ
2

3
p

(
Hmatter

p3/2

)}
, p := a2/4 . (4.26)

The effective density is quadratic in the classical density, ρcl := Hmatterp
−3/2. This modifi-

cation is due to the quantum correction in the gravitational Hamiltonian (due to the sin2

feature). This is over and above the corrections hidden in the matter Hamiltonian (due to
the “inverse volume” modifications). As noted before, we have two scales: p0 controlled by
µ0 in the gravitational part and 2p0j in the matter part. For large j it is possible that we
can have p0 ≪ p ≪ 2p0j in which case the above expressions will hold with j dependent
corrections in the matter Hamiltonian. In this semi-classical regime, the corrections from
sin2 term are smaller in comparison to those from inverse volume. If p ≫ 2p0j then the
matter Hamiltonian is also the classical expression. For j = 1/2, there is only the p ≫ p0
regime and ρcl is genuinely the classical density.

To summarize:

(1) The connection formulation, in the homogeneous and isotropic context, uses variables
(c, p ∈ R) in terms of which the classical singularity (p = 0) is in the interior of the phase
space. By contrast, in the ADM variables (a ≥ 0, K), in the same context, the classical
singularity (a = 0) is on the boundary. This requires a boundary condition on the quantum
wave functions to be specified in the deep quantum region where the classical framework is
suspect. When the singularity is in the interior, only a continuation of the quantum wave
function is required, given its specification in the semi-classical region.

(2) The connection variables also strongly motivate the very different loop quantization. Its
immediate implications are two types of corrections - the holonomy corrections and the
inverse triad corrections. Either of these is sufficient to indicate a bounce in the effective
Hamiltonian picture. The same use of holonomies make the Wheeler-DeWitt equation, a
difference equation.

(3) The analysis at the level of effective Hamiltonian already indicates (i) replacement of
big bang by big bounce; (ii) natural prediction of an inflationary (accelerated) phase; (iii)
singularity resolution for more general homogeneous models with curvature.

5The effective Hamiltonian then reduces to − 3
κγ

−2√p
[
µ−2
0 sin2(µ0c)

]
. This is also the Hamiltonian in eq.

(4.18) for non-zero µ0.
6For p in the semi-classical regime, one should include the contribution of the quantum geometry potential

present in the non-symmetric ordering, especially for examining the bounce possibility [12].
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(4) There are at least three distinct ambiguity parameters: µ0 related to the fiducial length
of the loop used in writing the holonomies; j entering in the choice of SU(2) representation
which is chosen to be 1/2 in the gravitational sector and some large value in the matter
sector; l entering in writing the inverse powers in terms of Poisson brackets. The first one
was thought to be determined by the area gap from the full theory. The j = 1/2 in the
gravitational Hamiltonian seems needed to avoid high order difference equation and larger
j values are hinted to be problematic in the study of a three dimensional model [15]. Given
this, the choice of a high value of j in the matter Hamiltonian seems unnatural7. Nevertheless
the higher values of j in the matter sector allow for a larger semi-classical regime. The l
does not play as significant a role.

(5) LQC being a constrained theory, it would be more appropriate if singularity resolution
is formulated and demonstrated in terms of physical expectation values of physical (Dirac)
operators i.e. in terms of “gauge invariant quantities”. This can be done at present with
self-adjoint constraint i.e. a symmetric ordering and for free, massless scalar matter.

Physical quantities and Singularity Resolution: When the Hamiltonian is a constraint,
at the classical level itself, the notion of dynamics in terms of the ‘time translations’ generated
by the Hamiltonian is devoid of any physical meaning. Furthermore, at the quantum level
when one attempts to impose the constraint as Ĥ|Ψ〉 = 0, typically one finds that there
are no solutions in the Hilbert space on which Ĥ is defined - the solutions are generically
distributional. One then has to consider the space of all distributional solutions, define a
new physical inner product to turn it into a Hilbert space (the physical Hilbert space), define
operators on the space of solutions (which must thus act invariantly) which are self-adjoint
(physical operators) and compute expectation values, uncertainties etc of these operators to
make physical predictions. Clearly, the space of solutions depends on the quantization of
the constraint and there is an arbitrariness in the choice of physical inner product. This is
usually chosen so that a complete set of Dirac observables (as deduced from the classical
theory) are self-adjoint. This is greatly simplified if the constraint has a separable form
with respect to some degree of freedom8. For LQC (and also for the Wheeler-De Witt
quantum cosmology), such a simplification is available for a free, massless scalar matter:
Hmatter(φ, pφ) :=

1
2
p2φ|p|−3/2. Let us sketch the steps schematically, focusing on the spatially

flat model for simplicity [10, 17].

1. Fundamental constraint equation:

The classical constraint equations is:

− 6

γ2
c2
√

|p|+ 8πG p2φ |p|−3/2 = 0 = Cgrav + Cmatter ; (4.27)

The corresponding quantum equation for the wave function, Ψ(p, φ) is:

8πGp̂2φΨ(p, φ) = [B̃(p)]−1ĈgravΨ(p, φ) , [B̃(p)] is eigenvalue of |̂p|−3/2 ; (4.28)

Putting p̂φ = −i~∂φ, p := γℓ2P
6
µ and B̃(p) := (

γℓ2P
6
)−3/2B(µ), the equation can be written

in a separated form as 9,

∂2Ψ(µ, φ)

∂φ2
= [B(µ)]−1

[
8πG

(γ
6

)3/2
ℓ−1
P Ĉgrav

]
Ψ(µ, φ) := − Θ̂(µ)Ψ(µ, φ). (4.29)

7For an alternative view on using large values of j, see reference [16].
8A general abstract procedure using group averaging is also available.
9Our primary goal here is to compare the classical geometry (Wheeler-DeWitt quantization) and quantum
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The Θ̂ operator for different quantizations is different. For Schrodinger quantization
(Wheeler-De Witt), with a particular factor ordering suggested by the continuum limit
of the difference equation, the operator Θ̂(µ) is given by,

Θ̂Sch(µ)Ψ(µ, φ) = − 16πG

3
|µ|3/2∂µ (

√
µ ∂µΨ(µ, φ)) (4.30)

while for LQC, with symmetric ordering, it is given by,

Θ̂LQC(µ)Ψ(µ, φ) = −[B(µ)]−1
{
C+(µ)Ψ(µ+ 4µ0, φ) + C0(µ)Ψ(µ, φ)+

C−(µ)Ψ(µ− 4µ0, φ)
}
,

C+(µ) :=
πG

9µ3
0

∣∣ |µ+ 3µ0|3/2 − |µ+ µ0|3/2
∣∣ , (4.31)

C−(µ) := C+(µ− 4µ0) , C0(µ) := − C+(µ)− C−(µ) .

Note that in the Schrodinger quantization, the BSch(µ) = |µ|−3/2 diverges at µ = 0
while in LQC, BLQC(µ) vanishes for all allowed choices of ambiguity parameters. In
both cases, B(µ) ∼ |µ|−3/2 as |µ| → ∞.

2. Inner product and General solution:

The operator Θ̂ turns out to be a self-adjoint, positive definite operator on the space of
functions Ψ(µ, φ) for each fixed φ with an inner product scaled by B(µ). That is, for
the Schrodinger quantization, it is an operator on L2(R, BSch(µ)dµ) while for LQC it is
an operator on L2(RBohr, BBohr(µ)dµBohr). Because of this, the operator has a complete
set of eigenvectors10:

Θ̂ek(µ) = ω2(k)ek(µ) , 〈ek|ek′〉 = δ(k, k′) , k, k′ ∈ R. (4.32)

Consequently, the general solution of the fundamental constraint equation can be ex-
pressed as

Ψ(µ, φ) =

∫
dk Ψ̃+(k)ek(µ)e

iω(k)φ + Ψ̃−(k)ēk(µ)e
−iω(k)φ . (4.33)

The orthonormality relations among the ek(µ) are in the corresponding Hilbert spaces.
Different quantizations differ in the form of the eigenfunctions, possibly the spectrum
itself and of course ω(k). In general, these solutions are not normalizable in L2(RBohr×
R, BBohr(µ)dµBohr × dµ), i.e. these are distributional.

Remarks:

(1) The Θ̂ operator acts in each of the superselected sector (thanks to the difference
equation structure) and these are separable. Hence Dirac-δ appears in general when
the label takes continuous values.

(2) The group averaging can be seen as follows. Given any f(µ, φ) one defines its group
average,

Ψf (µ, φ) :=

∫ ∞

−∞
dλ eiλĈtot f(µ, φ) ; Ĉtot :=

∂2

∂φ2
+ Θ̂ ,

geometry (loop quantization). Consequently, the gravitational constraint is quantized in two different ways
but for simplicity, the matter sector is quantized in the usual Schrodinger way. In both quantizations,
pφ = −i~∂φ and there is no φ dependence in the matter Hamiltonian, so the two quantum Hamiltonian will
have identical expressions. However, using φ as labelling an ‘emergent time’ would be questionable.

10For the Schrodinger quantization, the explicit eigenfunctions are: ek(µ) :=
|µ|1/4

4π eikℓn|µ| and the eigen-
values are: ω2(k) := 2κ

3 (k2 + 1/16) [17].
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The eigenfunctions of the constraint operator are of a product form thanks to separa-
bility,

∂2

∂φ2
gσ(φ) = − σ2gσ(φ) , Θ̂ek(µ) = ω2(k)ek(µ) , gσ(φ) = eiσφ, k, σ ∈ R

Expanding the general function f(µ, φ) in the eigenbasis of the constraint operator,

f(µ, φ) :=

∫
dk

∫
dσ Ak,σ gσ(φ)ek(µ) ,

implies,

Ψf(µ, φ) =

∫
dk

∫
dσ Ak,σgσ(φ)ek(µ)δ(σ

2 − ω2(k))

=

∫ ∞

−∞

dk

2|ω(k)|
[{
Ak,ω(k)e

iω(k)φ + Ak,−ω(k)e
−iω(k)φ

}
eω(µ)

]
(4.34)

In the second equation above, we have carried out the integration over σ using δ(σ2 −
ω2(k)) = 1

2|ω(k)|(δ(σ − ω(k)) + δ(σ + ω(k)). Clearly the group average of a general

function reproduces precisely the general solution given in equation (4.33).

3. Choice of Dirac observables:

Since the classical kinematical phase space is 4 dimensional and we have a single
first class constraint, the phase space of physical states (reduced phase space) is two
dimensional and we need two functions to coordinatize this space. We should thus look
for two (classical) Dirac observables: functions on the kinematical phase space whose
Poisson bracket with the Hamiltonian constraint vanishes on the constraint surface.
Specific values of these functions serve to label the physics states. Thus physical
observables are values of the Dirac observables. Classically, the Dirac observables can
be obtained as follows.

Our constraint is: p2φ/2− 3
κ
γ−2c2p2 ≃ 0. A Dirac observable is a function f(φ, pφ, c, p)

whose Poisson bracket with the constraint vanishes on the constraint surface. We
can describe the constraint surface by solving for c as: c(φ, pφ, p) := ±

√
κ/6γpφp

−1

(say). Consequently it should suffice to consider the Dirac observables to be a func-
tion of (φ, pφ, p) (we need only two independent Dirac observables). Then the Dirac
observables are defined by the differential equation,

∂f

∂φ
±
√
2κ/3

∂f

∂ℓnp
= 0 ⇒ f = f(ζ, pφ) , ζ := φ∓

√
3

2κ
ℓnp .

Evidently, f = pφ is a Dirac observable. For the second one, we can choose any

function of ζ . A particularly convenient choice is: f(ζ(φ, p)) := #exp{∓
√

2κ/3ζ} =

p exp{∓
√

2κ/3(φ − φ0)}. These Dirac observables taking a particular value, say p∗,

define curves in the (p, φ) plane, p(φ) := p∗exp{±
√

2κ/3(φ−φ0)} which are the classical
solutions in (4.7).

In the quantum theory, the notion of Dirac observable is that it is an operator which
maps solutions of the constraint to (other) solutions. We already have the general
solution in eq (4.33) which is obtained via unitary evolution (in φ) from an ini-
tial Ψ±(φ0, µ). Hence a Dirac observable is constructed by defining an operator on
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Ψ±(φ0, µ) to generate a new ‘initial state’, and evolving the new state by the uni-
tary operator, thereby constructing a new solution of the constraint. This proce-
dure is followed for the two Dirac operators corresponding to f1(φ, pφ, p) := pφ and

f2(φ, pφ, p) := p exp{∓
√

2κ/3(φ − φ0)}. Notice that at φ = φ0, these become the
functions: pφ and p respectively and they act on the wavefunctions as the differential
operator−i~∂φ and as the multiplicative operator p, respectively. Explicit construction
is as follows.

Consider initial data, Ψ±(µ, φ0), with the corresponding solution is denoted by,

Ψ(µ, φ) := ei
√

Θ̂(φ−φ0)Ψ+(µ, φ0) + e−i
√

Θ̂(φ−φ0)Ψ−(µ, φ0) .

Generate new initial data via the actions of p̂φ, ̂|µ|φ0 as,

̂|µ|φ0Ψ±(µ, φ0) := |µ|Ψ±(µ, φ0) , p̂φΨ±(µ, φ0) := ~
√

Θ̂Ψ±(µ, φ0) . (4.35)

Evolve these respectively, by e±i
√

Θ̂(φ−φ0). By construction, these are solutions of the
constraints, being of the form of (4.33). Explicitly,

p̂φΨ(µ, φ) := ei
√

Θ̂(φ−φ0)(~
√
Θ̂)Ψ+(µ, φ0) + e−i

√
Θ̂(φ−φ0)(−~

√
Θ̂)Ψ−(µ, φ0)

= −i~∂φΨ(µ, φ) , (4.36)

̂|µ|φ0Ψ(µ, φ) := ei
√

Θ̂(φ−φ0)|µ|Ψ+(µ, φ0) + e−i
√

Θ̂(φ−φ0)|µ|Ψ−(µ, φ0) (4.37)

Expectation values and uncertainties of these operators are used to track the quantum
‘evolution’.

4. Physical inner product:

It follows that the Dirac operators defined on the space of solutions are self-adjoint if
we define a physical inner product on the space of solutions as:

〈Ψ|Ψ′〉phys := “

∫

φ=φ0

dµB(µ)” Ψ̄(µ, φ)Ψ′(µ, φ) . (4.38)

Thus the eigenvalues of the inverse volume operator crucially enter the definition of the
physical inner product. For Schrodinger quantization, the integral is really an integral
while for LQC it is actually a sum over µ taking values in a lattice. The inner product
is independent of the choice of φ0.

A complete set of physical operators and physical inner product has now been specified
and physical questions can be phrased in terms of (physical) expectation values of
functions of these operators.

5. Semi-classical states:

To discuss semi-classical regime, typically one defines semi-classical states: physical
states such that a chosen set of self-adjoint operators have specified expectation values
with uncertainties bounded by specified tolerances. A natural choice of operators for
us are the two Dirac operators defined above.

To be definite, let us consider the Wheeler-De Witt quantization. An arbitrary wave-
function at some given φ0 is expressed as an integral over k of the eigenfunctions ek(µ)
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multiplied by some function of k and by a phase factor eiω(k)φ0 . The inner product
involves integral over µ. We can arrange to have a peak at some particular value |µ∗|
by introducing a factor of −

√
3/2κ|µ∗| so that for large k, the µ−integral will be dom-

inated by µ ∼ µ∗. A large value of k can be picked-up by choosing the function of k
to be a suitable Gaussian. This particular large value can be related to a desired p∗φ.
Here are the expressions:

Ψsemi(µ, φ0) :=

∫
dke−

(k−k∗)2

2σ2 ek(µ)e
iω(φ0−φ∗) (4.39)

k∗ = −
√

3/2κ~−1p∗φ , φ∗ = φ0 −
√
3/2κℓn|µ∗| . (4.40)

The Gaussian allows the integrand to be approximated by

ek∗(µ)e
iω(k∗)(φ0−φ∗) ∼ eiℓn|µ|k

∗+i(ω(k∗)
√

3/2κ)ℓn|µ∗| ∼ eik
∗ℓn|µ/µ∗|

where, in the last equality we used: k∗ is large and ω(k∗) ≃ −
√

2κ/3 k∗ (see the
footnote 10). The integral in the inner product will now pick-up contribution from
near µ ≃ µ∗. With these observations, it is easy to verify that the ‘initial’ semiclassical

wave function given above gives 〈p̂φ〉 = p∗φ and 〈̂|µ|φ0〉 = µ∗. The initial semiclassical
wavefunction evolves into Ψsemi(µ, φ) which is same as the initial wave function with
φ0 → φ 11.

For LQC, the ek(µ) functions are different [17] and the physical expectation values are
to be evaluated using the physical inner product defined in the LQC context.

6. Evolution of physical quantities:

We have now the physical wave function, evolved from Ψsemin. Since it retains the form
of the initial wavefunction, the k integral can be approximated as before and thus will

lead to same expectation value for p̂φ for all φ. For the expectation value of 〈̂|µ|φ0〉(φ),
the µ integral will be saturated by the new phase, φ− φ0 +

√
3/2κ ℓn|µ/µ∗| ≃ 0. And

this we recognize as precisely the solution (4.7).

Thus, in the WdW quantization, the classical relational evolution, p = p(φ) is repro-
duced by the expectation values of the Dirac observables.

Exercise: compute/estimate the uncertainties of the Dirac observables in the semiclas-
sical state given above..

7. Resolution of Big Bang Singularity:

A classical solution is obtained as a curve in (µ, φ) plane, different curves being labelled
by the points (µ∗, φ∗) in the plane. The curves are independent of the constant value
of p∗φ These curves are already given in (4.7).

Quantum mechanically, we first select a semi-classical solution, Ψsemi(p
∗
φ, µ

∗ : φ) in
which the expectation values of the Dirac operators, at φ = φ0, are p

∗
φ and µ∗ respec-

tively. These values serve as labels for the semi-classical solution. The former one

continues to be p∗φ for all φ whereas 〈̂|µ|φ0〉(φ) =: |µ|p∗φ,µ∗(φ), determines a curve in the

11In the above heuristic reasoning for the form of the semiclassical state, we have glossed over some
technical issues such as whether the states exhibited are in the domain of the Θ̂ operator which requires
carefully stipulating conditions on the function of k (which has been taken to be a Gaussian). These are too
technical to go into here and are not expected to affect the corresponding discussion for LQC. A discussion
of these issues may be seen in [18].
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(µ, φ) plane. (We determined this curve above, using stationarity of the phase for the
Schrodinger quantization). In general one expects this curve to be different from the
classical curve in the region of small µ (small volume). This is what happens for the
loop quantized theory.

The result of the computations is that Schrodinger quantization, the curve |µ|p∗
φ
,µ∗(φ),

does approach the µ = 0 axis asymptotically. However for LQC, the curve bounces away
from the µ = 0 axis. In this sense – and now inferred in terms of physical quantities
– the Big Bang singularity is resolved in LQC. It also turns out that for large enough
values of p∗φ, the quantum trajectories constructed by the above procedure are well
approximated by the trajectories by the effective Hamiltonian. All these statements
are for semi-classical solutions which are peaked at large µ∗ at late times.

Two further features are noteworthy as they corroborate the suggestions from the effective
Hamiltonian analysis.

First one is revealed by computing expectation value of the matter density operator, ρmatter :=
1
2

̂(p∗φ)
2|p|−3, at the bounce value of |p|. It turns out that this value is sensitive to the value

of p∗φ and can be made arbitrarily small by choosing p∗φ to be large. Physically this is
unsatisfactory as quantum effects are not expected to be significant for matter density very
small compared to the Planck density. This is traced to the quantization of the gravitational
Hamiltonian, in particular to the step which introduces the ambiguity parameter µ0. A novel
solution proposed in the “improved quantization”, removes this undesirable feature.

The second one refers to the role of quantum modifications in the gravitational Hamiltonian
compared to those in the matter Hamiltonian (the inverse volume modification or B(µ)).
The former is much more significant than the latter. So much so, that even if one uses the
B(µ) from the Schrodinger quantization (i.e. switch-off the inverse volume modifications),
one still obtains the bounce. So bounce is seen as the consequence of Θ̂ being different and
as far as qualitative singularity resolution is concerned, the inverse volume modifications are
un-important. As the effective picture (for symmetric constraint) showed, the bounce occurs
in the classical region (for j = 1/2) where the inverse volume corrections can be neglected.
For an exact model which seeks to understand why the bounces are seen, please see [19].

Improved Quantization: The undesirable features of the bounce coming from the classical
region, can be seen readily using the effective Hamiltonian, as remarked earlier. To see the
effects of modifications from the gravitational Hamiltonian, choose j = 1/2 and consider the
Friedmann equation derived from the effective Hamiltonian leading to the effective energy
density (4.26), with matter Hamiltonian given by Hmatter = 1

2
p2φ|p|−3/2. The positivity of

the effective density implies that p ≥ p∗ with p∗ determined by vanishing of the effective

energy density: ρ∗ := ρcl(p∗) = (
8πGµ2

0γ
2

3
p∗)

−1. This leads to |p∗| =

√
4πGµ2

0γ
2

3
|pφ| and

ρ∗ =
√
2(

8πGµ2
0γ

2

3
)−3/2|pφ|−1. One sees that for large |pφ|, the bounce scale |p∗| can be large

and the maximum density – density at bounce – could be small. Thus, within the model,
there exist a possibility of seeing quantum effects (bounce) even when neither the energy
density nor the bounce scale are comparable to the corresponding Planck quantities and this
is an undesirable feature of the model. This feature is independent of factor ordering as long
as the bounce occurs in the classical regime.

One may notice that if we replace µ0 → µ̄(p) :=
√
∆/|p| where ∆ is a constant, then the

effective density vanishes when ρcl equals the critical value ρcrit := (8πG∆γ2

3
)−1, which is
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independent of matter Hamiltonian. The bounce scale p∗ is determined by ρ∗ = ρcrit which

gives |p∗| = (
p2φ

2ρcrit
)1/3. Now although the bounce scale can again be large depending upon pφ,

the density at bounce is always the universal value determined by ∆. This is a rather nice
feature in that quantum geometry effects are revealed when matter density (which couples
to gravity) reaches a universal, critical value regardless of the dynamical variables describing
matter. For a suitable choice of ∆ one can ensure that a bounce always happens when the
energy density becomes comparable to the Planck density. In this manner, one can retain
the good feature (bounce) even for j = 1/2 thus “effectively fixing” an ambiguity parameter
and also trade another ambiguity parameter µ0 for ∆. This is precisely what is achieved by
the “improved quantization” of the gravitational Hamiltonian [20].

The place where the quantization procedure is modified is when one expresses the curvature
in terms of the holonomies along a loop around a “plaquette”. One shrinks the plaquette
in the limiting procedure. One now makes an important departure: the plaquette should
be shrunk only till the physical area (as distinct from a fiducial one) reaches its minimum
possible value which is given by the area gap in the known spectrum of area operator in
quantum geometry: ∆ = 2

√
3πγG~. Since the plaquette is a square of fiducial length µ0, its

physical area is µ2
0|p| and this should set be to ∆. Since |p| is a dynamical variable, µ0 cannot

be a constant and is to be thought of a function on the phase space, µ̄(p) :=
√

∆/|p|. Thus
we need to define an operator corresponding to the classical expression: hf := exp(i1

2
f(p)c),

we have taken a general function f(p). This is little non-trivial since there is no ĉ operator
and c, p are conjugate variables.

Observe that the usual holonomy operator effects a shift in the argument of eigenstates of
the triad operator and formally the operator looks like exp(ν d

dµ
) i.e. it effects the action of

a finite diffeomorphism generated by a vector field on the wavefunction. We will take this
as a guiding principle.

Let Φf denote a diffeomorphism effecting a unit parameter shift along the integral curve

of the vector field f(µ) d
dµ

and Φ∗
f , the corresponding pull-back map. We define ĥfΨ(µ) :=

[Φ∗
f (Ψ)] := Ψ(Φf (µ)). As argued above, for a constant function, this reduces to the usual

action (4.9). It can be checked directly that this action is also unitary in the kinematical
Hilbert space: (Φ,Ψ) =

∑
µΦ

∗(µ)Ψ(µ) where the sum is over a countable set (this follows

from |Ψ〉 :=∑µ∈countable subset⊂R Ψ(µ)|µ〉)12.
To compute a unit parameter shift due to the diffeomorphism generated by f(µ), solve the
equation ∫ µ′

µ

dx

f(x)
=

∫ v+1

v

dv = 1 (4.41)

This will give µ′ := Φf (µ).

For the specific choice of f(p) := µ̄(p) :=
√
∆|p|−1/2, ∆ := γ

√
3ℓ2P/4, p(µ) = γℓ2Pµ/6, one

gets,
√

∆

|p| =

√
3
√
3

2
|µ|−1/2 =: f(µ) ⇒

sgn(µ′)|µ′|3/2 = sgn(µ)|µ|3/2 +K−1 K :=
2

3

√
2

3
√
3

(4.42)

12For a comparison in Schrodinger quantization, see remarks in [17].
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[
̂
ef(µ)

d
dµΨ

]
(µ) := Ψ(µ′).

It is evident from the above that if we define v := Ksgn(µ)|µ|3/2, then the middle eqn reads:
v′ = v + 1. This suggests that we use |v〉 as a basis instead of |µ〉. Apart from the constant
K, and the sgn, v is related to the eigenvalue of the volume operator |p|3/2. Note that v
as a function of µ is one-to-one and on-to. Using the hµ̄ operator and a basis labelled by
volume eigenvalues, the Hamiltonian constraint is defined and difference equation is obtained
as before. The relevant expressions are:

v := Ksgn(µ)|µ|3/2 ; (4.43)

V̂ |v〉 =
(γ
6

)3/2 ℓ3P
K

|v| |v〉 , (4.44)

̂
eik

µ̄
2
cΨ(v) := Ψ(v + k) , (4.45)

|̂p|−1/2

∣∣∣
j=1/2,l=3/4

Ψ(v) =
3

2

(
γℓ2P
6

)−1/2

K1/3|v|1/3
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣Ψ(v)(4.46)

B(v) =

(
3

2

)3/2

K|v|
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣3 (4.47)

Θ̂ImprovedΨ(v, φ) = −[B(v)]−1
{
C+(v)Ψ(v + 4, φ) + C0(v)Ψ(v, φ)+

C−(v)Ψ(v − 4, φ)
}
, (4.48)

C+(v) :=
3πKG

8
|v + 2| | |v + 1| − |v + 3|| , (4.49)

C−(v) := C+(v − 4) , C0(v) := − C+(v)− C−(v) . (4.50)

Thus the main changes in the quantization of the Hamiltonian constraint are: (1) replace
µ0 → µ̄ :=

√
∆/|p| in the holonomies; (2) choose symmetric ordering for the gravitational

constraint; and (3) choose j = 1/2 in both gravitational Hamiltonian and the matter Hamil-
tonian (in the definition of inverse powers of triad operator). The “improvement” refers
to the first point. This model is singularity free at the level of the fundamental constraint
equation (even though the leading coefficients of the difference equation do vanish, because
the parity symmetry again saves the day); the densities continue to be bounded above –
and now with a bound independent of matter parameters; the effective picture continues to
be singularity free and with undesirable features removed and the classical Big Bang being
replaced by a quantum bounce is established in terms of physical quantities.

There is yet another spin on the story of singularity resolution!

4.2.1 Madhavan Quantization [18]:

The improved quantization scheme works primarily through the holonomy corrections, so
much so that even if the inverse volume corrections in the matter are turned-off by hand,
the singularity resolution continues. Madhavan works within the same kinematical Hilbert
space of LQC but treats the Hamiltonian constraint differently, exploiting its specific, simple
form for the massless scalar matter. In his quantization of the Hamiltonian constraint, it is
the inverse volume corrections that are responsible for singularity resolution (also in terms
of physical quantities) and holonomy corrections are by-passed completely.
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He observes that the classical Hamiltonian constraint (4.27), is quadratic in c and is of the
form of difference of two squares. It can therefore be written as a product,

Ctot = −C+C− , C± := −
√

6

γ
c|p|1/4 ±√

κ
pφ

|p|3/4

The C± are linear in c. Since to define physical Hilbert space, a general procedure is to
average over the group generated by the constraint, and this involves exponentiation of the
constraint, one can directly define these operators which involve factors of the same form as
the hf operators of the improved quantization!

The key differences in Madhavan quantization are: (1) The Hamiltonian constraint is reg-
ulated differently from the analogue of LQG and as a consequence, there are no holonomy
corrections (sin2(c)). However, the inverse triad corrections can be incorporated in the defi-
nition of Ĉ± through the p̂φ term. One again uses the volume eigenvalues basis for the inverse
triad definition; (2) the physical states are constructed directly by group averaging using the

well-defined unitary operators, eiαĈ± , consequently there is no difference/differential equation
to be solved; (3) One of the Dirac observables, pφ is the same but another one is somewhat
different. Nevertheless, classical solutions can be derived from their expectation values; (4)
The issue of independence from the fiducial cell (discussed in the next subsection) is also
addressed differently.

The results are: (i) without inverse triad modifications, the classical (singular) solution is
recovered; (ii) with inverse triad modifications, there is extension of the solution past the
classical singularity with the energy density remaining bounded all through, making the
extension non-singular. There is no bounce, but a regular extension!

Although Madhavan’s procedure of bypassing the holonomy corrections completely, is tied
to the particular form of the constraint of the isotropic model (and hence may not ex-
tend to other models), it does demonstrate the possibility that there are inequivalent ways
of constructing physical Hilbert space and observables starting from the same kinematical
structures. Secondly, singularity resolution need not be seen only as a classical/quantum
bounce, a regular extension is also a distinct possibility.

More details should be seen in [18].

4.2.2 Role of the Fiducial cell in spatially flat models

Recall that in the description of spatially homogeneous and isotropic models one begins with
a metric of the form (4.1). The spatial metric is a metric with spatially constant (but possibly
time dependent) curvature. This is conveniently taken to be a time dependent scaling of
a fixed co-moving metric with corresponding co-moving coordinates. Although not strictly
necessary, let us assign length dimension to the co-moving coordinates and take the scale
factor to be dimensionless. For non-flat models the co-moving metric can be normalized to
have the Ricci scalar to be±1 in appropriate units (Ricci scalar has dimensions of (length)−2).
Note that this is a local condition, and by homogeneity, holds everywhere on the spatial
manifold. It is independent of the size of the spatial manifold. For flat models, such a
normalization of the co-moving metric is not possible. In this case, there is an arbitrariness
in the definition of the scale factor. Clearly, by focusing only on those quantities which are
invariant under constant scaling of the scale factor, eg ȧ/a, ä/a, the energy density etc we
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can obviate the need for choosing a co-moving metric/coordinates. The equations of motion
- the Friedmann equation and the Raychaudhuri/continuity equation - reflect this feature.

However, spatial flatness, homogeneity and isotropy also implies existence of (global) Carte-
sian coordinates with a metric g0ij = δij with the coordinate differences giving distances in the
chosen unit of length. This unit is arbitrary, but also determines the unit of time by putting
speed of light to be one. Change in this unit results in an overall scaling of the space-time
metric but does not affect the scale factor. The scale factor is now unambiguously identified
and co-moving coordinates and metric are also fixed.

Construction of a quantum theory of the scale factor degree of freedom (and matter homo-
geneous degrees of freedom) begins with a four dimensional action principle restricted to
homogeneous modes of the fields. The action contains a spatial integration which is diver-
gent for spatially flat models, thanks to homogeneity. To have a well defined phase space
formulation, we need to regulate this divergence. This is done by introducing an arbitrarily
chosen fiducial cell, specified by finite ranges of the co-moving coordinates (thus having a
finite co-moving volume V0) and restricting the integrations to this cell. Note that this need
and the freedom in the choice of the fiducial cell arises strictly due to the need for an action
formulation for the full theory and the assumption of spatial homogeneity13. All subsequent
computations will carry a dependence on this cell, either explicitly or implicitly. In the end,
this dependence is to be removed by taking a suitable limit V0 → ∞14. Precisely at what
stage and how should one take the limit?

In the canonical formulation of the full theory, the fiducial volume, V0, appears in the sym-
plectic structure. This can however be absorbed away by redefining the canonical coordinates
(c̃, p̃ → c, p). This makes the canonical coordinate p to have dimensions of (length)2. Note
that the physical volume of the cell is a3(t)× V0 is now directly given by |p|3/2. Apparently,
there is no reference to the fiducial cell any more in the model. However this is not so.
The |p|3/2 is the physical volume of the fiducial cell. All subsequent computations, whether
classical or quantum, done using the (c, p) variables15 have no explicit reference to the cell.
For example, the classical solution obtained in terms of phase space trajectory, (eqn. 4.7),
does not depend on V0.

As discussed above, the subsequent steps in the quantization, do not introduce any further
dependence on the fiducial cell. It is no where in sight even in the computation of the phase
space trajectory (expectation values of the Dirac observables). These trajectories of course
differ from the corresponding classical trajectories. The problem of Big Bang singularity is
however phrased in the framework of space-time geometry, specifically, in terms of backward
evolution of the scale factor. So we need to transcribe the phase space trajectories (computed
in terms of expectation values of Dirac observables) into evolution of the space-time geometry
i.e. the scale factor. At this stage, a scale factor (and an explicit reference to the fiducial
cell) is re-introduced via the triad variable as, a := ξ

√
p where ξ has dimensions of (length)−1

and can be identified with the fiducial volume: ξ−1 = V
1/3
0 (since p3/2 is the physical volume

of the fiducial cell). The phase space evolution then gives a(t). The scale factor evolution

13The action formulation (Lagrangian or Hamiltonian) in turn is required for a quantum theory. The
classical theory needs only equations of motion which are independent of any cell.

14The limit V0 → ∞ can be viewed as a convenient way to pick-out V0−independent terms and/or could
also be heuristically motivated by noting that the definition of homogeneity identifies the spatial manifold
with the group manifold and this group manifold is R3 for the present case.

15During the process of loop quantization, fiducial scales could appear again eg through the holonomies
along edges. However as explained in the footnote 3, the V0 disappear.
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so deduced could have some dependence on ξ. After taking the limit ξ → 0 (V0 → ∞),
the evolution that survives, is the prediction of the quantum theory, Whether or not this
evolution is singularity free (i.e. all physical quantities remain bounded through out the
evolution) is the central question of interest. Since the phase space curves are inferred from
the expectation values, the states in which these are computed are also important to specify.
These are expected to be computed in physical states peaked on large volume p ≫ ℓ2P and
small energy density (say), corresponding to a classical regime. The singularity free evolution
is required to hold for all such states.

The classical evolution given in eqn (4.7) provides an example of this transcription. We see
that ξ−2 cancels out from both p and p∗ and the classical evolution of the scale factor is
independent of the fiducial cell as it should be. The LQC computed solution for p, always
shows a bounce, is not very explicitly expressed and also contains an implicit dependence on
the fiducial cell. It matches pretty closely with the classical solution in the large p regime
and therefore could be expected to be V0 independent in these regimes. This removes the
cell dependence in the initial condition and the question boils down to whether the bounce
feature and value of p at the bounce, is independent of V0.

The APS investigations[10, 17] found that, in the µ0−scheme, a bounce can occur even for
low values of energy density something which is not exhibited by the observed isotropic
universe. Furthermore, the energy density at the bounce - which is a physical observable -
has a V0−dependence. So the quantization scheme has some problems. What exactly does
this mean?

Note that this does not necessarily mean that there is any mathematical inconsistency in
the process of quantization. However, the constructed quantum theory should agree with
GR for low energy densities (i.e. have acceptable infra-red behaviour) and hopefully also
imply a non-singular evolution. It is possible that it may fail this expectation. APS analysis
concludes that the µ0−scheme with symmetric ordering fails this test.

In retrospect, this failure could have been inferred in the following way. The earlier methods
of analysis were based on WKB approximation and effective Hamiltonians[12] derived from
it. This allowed us to encode quantum modifications in terms of effective density and effective
pressure, defined by computing the left hand sides of the Friedmann and the Raychaudhuri
equations using the effective Hamiltonian. In these papers, the scale factor was introduced
by setting p := a2/4 (dimensionful) and therefore still refers (implicitly) to fiducial cell. To
make the fiducial cell explicit, replace this scale factor as a → aξ−1. The expressions for
the energy density (say) can be transcribed in terms of the (dimensionless) scale factor and
ξ. As explained above, prediction of the quantum theory for the scale factor evolution is
obtained by taking the limit V0 → ∞(ξ → 0). Note that this is now done at the level of
equations as opposed to at the level of individual curves which need initial conditions to be
chosen (which we have argued to be independent of V0).

Recall the effective density given in eqn.[4.26],

ρeff =

(
Hmatter

p3/2

)[
1− 2κµ2

0γ
2

3
p

(
Hmatter

p3/2

)]
, where

Hmatter =
1

2
p2φ

{
(2jp0)

−3/2 (Fℓ(q))
3

2(1−ℓ)

}
, q :=

p

2jp0
(4.51)
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The square bracket contains the modification implied by holonomy corrections16. The inverse
volume corrections are contained in the matter Hamiltonian (see eqns.(4.12, 4.13)).

Consider first the inverse volume corrections. Observe that with p→ a2ξ−2/4 , q ∼ a2ξ−2 ≫
1 in the limit ξ → 0. The limiting form of Fℓ then implies that p−3/2Hmatter ∼ p2φξ

6a−6. For
massless scalar matter, the classical equation of state has P/ρ = 1 and hence the classical
density behaves as ∼ a−6. Thus p2φξ

6 must be a constant for any particular solution. For
the leading term to give the classical evolution, we have to take the limit ξ → 0 along with
pφ → ∞ keeping pφξ

3 a constant specifying a particular initial condition. This understood,
the p−3/2Hmatter factors go over to the cell independent classical density plus corrections down
by q−2 → 0 in the limit. Thus, inverse volume corrections, simply vanish when V0 → ∞ is
imposed.

Now consider the holonomy corrections. By the same logic as above, the holonomy correc-
tions, second term in the square bracket in the effective density expression, goes as ξ−2 → ∞!.
This is clearly unacceptable. Thus, in the µ0 scheme of quantization, the inverse volume mod-
ifications do not survive the limit while the holonomy modifications give an inconsistency
and neither shed any light on the singularity resolution issue.

True as these features are, they are not immediately conclusive to look for alternative quan-
tizations because the fault may be with the WKB approximation and the corresponding
effective Hamiltonians. For instance if one took the effective density from the first paper
of [12], the holonomy corrections would also be down by inverse powers of q and would
vanish which is okay for the classical limit but the extrapolation to the quantum regime is
unreliable since WKB is unreliable at turning points. Perhaps, physical level computations
would clarify the issue. This is indeed the case. With the physical level computations, APS
results show the unacceptability of the µ0−scheme while in Madhavan’s approach, with no
holonomy corrections, the inverse volume corrections would simply vanish by the argument
given above. Both APS and Madhavan have also suggested ways out.

The APS analysis discussed above shows that the µ0 → µ̄(p) =
√
∆ℓP/

√
p substitution in

the holonomies used in replacing the c variable, suffices to obtain a non-singular evolution
with good infra-red behaviour. It implies that the deviations from classical evolution (eg
close to the bounce) occur when the energy density reaches a universal, maximal value.
This substitution also renders the inverse triad correction from the matter sector highly
suppressed17.

Madhavan suggests that along with the APS suggested substitution, one should also intro-
duce a multiplicative parameter λ as µ0 → λµ̄(p). Since only corrections that drive the quan-
tum modifications are the inverse volume correction and these go as (λ/v1)

2 ∼ (λξ3ℓ3P/a
3)2

(see eqn 5.45), ξ independence is achieved by choosing λ ∼ (ξ̄/ξ)3 where the new dimen-
sionful parameter ξ̄ is supposed to reflect a scale provided by an underlying LQG state
supporting the homogeneity approximation. For details, please see [18].

To summarize: For the spatially flat, isotropic models, let us choose the Cartesian coordinates
with the standard Euclidean metric for the spatial slice and choose proper time as the time
coordinate so that the space-time metric takes the form (4.1). The scale factor is now
specified unambiguously. For constructing a quantum theory, we need to choose a regulator

16In the first paper of [12], the effective density contained only the leading terms of the holonomy corrections
which have been summed up in the second paper.

17From eqn. 5.45, with λ = 1, one sees that the corrections go as v−2
1 ∼ ℓ6Pp

−3 ∼ ℓ6P(ξ)
6a−6 → 0 as ξ → 0.
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cell with volume V0. While the cell dependence can be hidden by choosing scaled variables,
it manifests again because quantum computed evolution must be transcribed in terms of
the scale factor evolution. This is necessary because the classical Big Bang singularity is
understood as a singular evolution of the scale factor so its resolution lies in making the
evolution non-singular.

The scale factor evolution can be cast in the form of the Friedmann equation with possible
deviations from classical evolution, encoded in the effective density. A prediction of the
quantum theory is the surviving correction terms after taking the limit V0 → ∞. A quan-
tum theory could be understood to have resolved the Big Bang singularity if the surviving
evolution is non-singular. Cell independence of quantum corrections automatically implies
that non-trivial limit exists. Not every quantization scheme passes this test.

There are two types of corrections - the holonomy corrections and the inverse triad correc-
tions. These have different properties in the limit. The APS quantization with µ0−scheme
implies that holonomy corrections dominate and lead to unphysical implications. These are
cured by the µ̄−scheme. The Madhavan quantization scheme, even with the µ̄ substitution
in the inverse volume definition, these corrections again vanish unless additional λ param-
eter is introduced. In either case, extra ingredients (scales) have to be ‘imported’ to get
non-trivial results. Both the schemes have ingredients (role played by the area operator in
the APS scheme18 and the specific form of constraint in the Madhavan scheme) which do
not have counterparts in the full theory as it is understood at present.

So far the discussion has been within the context of full theory being classically reduced
directly to a homogeneous and isotropic model. In the next subsection, we briefly discuss how
homogeneity and isotropy can be viewed from within a particular quantized inhomogeneous
model.

4.2.3 A View from Inhomogeneity

To keep the flow of the in focus, basic details of the inhomogeneous model are given in the
appendix 5.4.

The fundamental change in the way homogeneity is viewed, is that it is a property exhibited
by a state of an inherently (spatially) inhomogeneous model. For definiteness, a lattice model
with a lattice spacing ℓ0 is taken. This allows for states of the model which can be considered
as homogeneous on a certain scale, eg ℓ0N

1/3. This also allows the fields to be restricted to
be periodic on this scale. Thus what is fundamental is the lattice spacing ℓ0 below which it
makes no sense to consider inhomogeneity (or inhomogeneities are not probed) and a scale
N1/3ℓ0 provided by a state of the model. Let us call the former as the micro-scale and the
latter as the macro-scale. The fundamentally isotropic model refers to the macro-scale. The
fiducial cell of the isotropic model is determined by these two scales with fiducial volume
given by, V0 := Nℓ30. Notice that in this view, V0 (or N) is a property of a quantum state
and there is no reason to contemplate a limit V0 → ∞.

Now all quantum effects due to inverse volume and holonomies, arise at the micro-scale.
To see how these translate or correspond to the quantum effects seen in the fundamentally

18The logic used to motivate the role of area operator, is also extended to other Bianchi models such that
when isotropy is imposed, the µ̄-scheme of isotropic model is recovered back[21].
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isotropic model, let us begin by identifying variables.

In the lattice model, isotropic connection is defined by k̃(x) = c̃, ∀ x, I. Identifying this
constant value with c̃iso and comparing the basic link holonomies with the holonomies of the
isotropic model implies,

ciso := V
1/3
0 c̃iso = V

1/3
0 k̃I := V

1/3
0 ℓ−1

0 clat = N1/3clat (4.52)

The first equality is the definition from the isotropic model, the second one identifies the
isotropic connection with the lattice connection k̃, the third one defines clat and forth equality
gives the final relation between the ‘c’ variables of the isotropic and the lattice models.

The state exhibiting isotropy on the macro-scale, may be characterised by stipulating that
the p̃I(~v) values are all mutually equal, and equal to p̃lat, for the vertices comprising the
fiducial cell and that this value is identified with the isotropic variable, p̃iso. Recall that the
isotropic operator is obtained by an averaging of the lattice operators. The stipulation says
that the average value is realized at each of the lattice vertices. This leads to,

piso := V
2/3
0 p̃iso = V

2/3
0 p̃lat = V

2/3
0 platℓ

−2
0 = platN

2/3 (4.53)

These identification give a relation between isotropic variables and a state of lattice model
with a scale parameter N . A dynamically evolving isotropic universe may be thought of as a
family of lattice states with the scale N being a function of the volume eg larger number of
elementary cells get ‘homogeneised/isotropised’. As an example, if N ∝ p

3/2
iso , then plat will

be a constant! The expressions seen in the context of isotropic models with fiducial cell of
size V0 are now to be applied to the elementary cell of size ℓ30.

In view of these identifications, let us consider the two specific corrections seen in the isotropic
model, namely the the inverse volume corrections and the holonomy corrections. In the
lattice model, these corrections arise in the same manner as in the isotropic model, but
from the micro-cell. The inverse volume corrections are in powers of p∗/p = p∗/plat =

(p∗/piso)N
2/3. ForN ∝ p

3/2
iso , these are independent of piso. (ii) With the holonomy corrections

included, the effective density (4.51), is of the form ρ(1 − ρ/ρcrit) with ρ−1
crit ∼ κγ2plat =

κγ2pisoN
−2/3. Again for N ∝ p

3/2
iso , ρcrit is independent of piso. For a different dependence of

N on piso, the corrections will have non-trivial dependence on piso and therefore on V0, but V0
is no longer a purely mathematical artifact but is dictated by the underlying inhomogeneous
state.

In effect, a perspective from an underlying inhomogeneous model suggests that the fiducial
cell of a homogeneous model is selected by a state of the inhomogeneous model and a
dependence on the V0 := ℓ30N is not necessarily unphysical. For a more detailed discussion
of ramifications of these ideas, please see [16].

52



Chapter 5

Appendix

5.1 Symmetric connections

We assume that we have a manifold M on which are defined connection Aa
µ(z) with a taking

values in the Lie algebra G of a gauge group G. Assume further that there is an action of
a symmetry group S on M under which we want to have appropriate notion of invariance.
The infinitesimal action of the symmetry group is generated by a set of vector fields ξµm∂µ
which represent the Lie algebra of S: [ξm, ξn] = f p

mnXp. The Lie algebra of G is generated
by matrices Ta satisfying: [Tb, Tc] = Ca

bcTc.

When we have an ordinary tensor field, T , on a manifold, it is defined to be invariant under
(or symmetric w.r.t.) the action of an infinitesimal diffeomorphism generated by a vector
field ξ if its Lie derivative with respect to ξ vanishes: LξT = 0. When the tensor fields also
transform under the action of a gauge group, then the invariance condition allows the Lie
derivative to be an infinitesimal gauge transform of the tensor field: LξT = δW (ξ)T , where
W (ξ) is valued in the Lie algebra G. Notice that this associates a gauge transformation with
a diffeomorphism.

This association has to satisfy two conditions: (a) If we took a gauge transform of the tensor
field and then applied the diffeomorphism, the defining condition must be gauge covariant:
Lξ(T

g) = δW g(ξ)T , where W
g(ξ) = g−1W (ξ)g + g−1Lξ(g), and (b) The Lie derivatives repre-

sent the Lie algebra of the symmetry group: [Lξm , Lξn ]T = L[ξm,ξn]T = f p
mnLξpT and theWm

must obey the consequent conditions. The task is to find those tensor fields which satisfy
the invariance conditions subject to the allowed gauge transformations.

This is aided by another consequence of the symmetry action. The action of the the symmetry
group S onM implies thatM can be expressed as a collection of orbits of S. We will assume
the simpler case where all orbits are mutually diffeomorphic and are given by S/F where F
is the stability subgroup of the S−action. Thus we obtain M ∼ B + S/F . Here S/F is an
orbit which is necessarily a coset space while B is a manifold whose points label the orbits.
Note that a non-trivial subgroup F of S means that a subset of vector fields ξm vanish at
some point. Corresponding to this structure of M , its tangent and cotangent spaces are also
decomposed.

The solutions of the invariance conditions are constructed by using the available structure
on the group manifold S and projecting these onto S/F . Here are some details for the gauge

53



connection1 [22].

Let A := Aa
µTadx

µ denote the G valued connection 1-form (the gauge potential). Un-
der a gauge transformation it transforms as: Ag := g−1Ag + g−1dg and infinitesimally,
g = 1+ ǫW , δǫWA = ǫD(W ) := ǫ(dW + [A,W ]), W := W aTa. Under an infinitesimal diffeo-
morphism, x

′µ := xµ + ǫξµ, it transforms as δǫξA := −ǫLξA = −ǫ(∂µξνAν + ξν∂νAµ)dx
µ =

−{iξdA+ d(iξA)}.
The invariance conditions, when there are many symmetries, are:

LξmA = D(A) Wm := dWm + [A,Wm] ⇔ ∂µξ
νAν + ξν∂νAµ = ∂µWm + [Aµ,Wm] . (5.1)

Here, Wm are some G valued scalars on the manifold M associated with ξm. We induce a
gauge transformation on theWm by demanding that the above condition be gauge covariant:

LξmA
g := D(Ag) W g

m ⇔ W g
m := g−1Wmg + g−1Lξmg , Lξm g := ξµm ∂µ g (5.2)

The Lie algebra of the vector fields, ξm, implies that the Wm’s must satisfy:

[Lξm , Lξn ]A = L[ξm,ξn]A = f p
mnLξpA ⇒

D(Wmn) = f p
mnD(Wp) , Wmn := LξmWn − LξnWm + [Wm,Wn] , or

0 = D(Wmn − f p
mnWp) (5.3)

where [Wm,Wn] is the bracket in the Lie algebra, G.

Exercise: For the field strength F a
µνTa, verify that LξmF = [F,Wm].

Exercise: Let E be a vector field valued inG which transforms as Eg = g−1Eg. The condition
for symmetric E would be LξmE = [E,Wm]. Show that the Wm transforms as before and
the symmetry Lie algebra implies [E,Wmn − f p

mnWp] = 0.

Suppose that χmn := Wmn − f p
mnWp 6= 0. Then the above equations imply conditions on

symmetric field strength (and indeed on all symmetric quantities). For example, Dχmn = 0
implies that [F, χmn] = 02. This would mean that the field strengths must commute with
the χmn’s. We will assume that there does not exist any χ valued in G such that Dχ = 0.
This implies that χmn = 0 i.e.

LξmWn − LξnWm + [Wm,Wn]− f p
mnWp = 0 . (5.4)

Note that this is a condition involving only theWn’s and the symmetry generators ξm’s. Also
observe that for vector fields corresponding to the stability subgroup F , the (5.4) reduces to
[Wm,Wn] = f p

mnWp at the points where these vector fields vanish.

The task is to characterise the symmetric connections satisfying eqn. (5.1) withWn satisfying
eqn. (5.4) modulo gauge transformations (5.2) on a manifold M ∼ B × S/F . The strategy
is to show that the gauge freedom allows Wn to be taken in appropriate form and then
determine the form of symmetric connections in the same gauge.

1In the context of Kaluza-Klein approach to unification, the analysis of invariant quantities was carried
out to construct suitable ansatz. There, the space-time is taken to be of the product form M4 × B with B
a compact manifold. The isometry groups of the compact manifold played the role of symmetries and the
forms of the fields on the space-times were obtained.

2Note that Dχ = 0 follows only for the symmetric connections. If it were to hold for all connections, then
[F, χ] = 0 would hold for all field strengths and this would correspond to a reduction of the gauge group to
the little group of χmn. This is analogous to the non-trivial Higgs vacua situation.
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Consider first the case where F = {e} so that S/F = S itself. Introduce local coordinates
(xi, yα) on B × S. Without loss of generality, we can take the symmetry generators to
be functions of y and with zero components along B. Noting that the vector fields ξm on
S are independent, it follows that the matrices ξ α

m (y) are invertible and therefore we can
define new G valued 1-forms as: Wm(x, y) := ξ α

mWα(x, y). It is easy to see that (i) Wα

transform exactly as a G−connection and (ii) the condition (5.4) is just the statement that
this connection is flat. Therefore, locally it is always possible to choose Wα(x, y) = 0 and
hence Wm(x, y) = 0. Having chosen Wm’s to be zero, the gauge transformation freedom
is restricted to Lξm(g) = ξ α

m ∂αg = 0 i.e. the gauge functions must depend only on the x
coordinates.

In this gauge, the invariance conditions can be written separately for µ = i and for µ = α
as:

ξ α
m ∂αAi = 0 and (LξmA)α = 0

The first implies that Ai depends only on x and so do the gauge transformations. Hence Ai

is a G−connection on B. The solution for Aα is obtained as follows.

On a group manifold, there are left and right actions of the group onto itself which commute.
Consequently, these generate left(right) invariant vector fields and 1-forms (the Maurer-
Cartan forms). Apply these to the group manifold S. Assume that ξm generate left action
on the group manifold and use the left invariant 1-forms eg the unique, S−valued Maurer-
Cartan form ΘMC

3. It is immediate that LξmΘMC = 0. To obtain a G−connection, we need
a map Λ : S → G. Given such a map, we can define A := Λ(ΘMC) ↔ Aa

α := Φa
m(ΘMC)

m
α .

Now LξmA = 0 = Lξm(Φ)ΘMC + 0 implies that the “Higgs” fields, Φm are constants on S
i.e. are functions only of xi.

Thus, for the case where the S−action is free (F is trivial), the symmetric connections can
be written as A = Ai(x)dx

i +Φm(x)ω
m
α(y)dy

α where A is an arbitrary G−connection on B
and Φm(x) are “Higgs” scalars valued in G.

When the S−action is not free, the vector fields ξ α
m are tangent to S/F and the above steps

do not go through immediately. Nevertheless we can still find invariant, S−valued 1-forms
on S/F and a suitable map Λ to construct invariant connections. To see this, note that
there is the natural projection map π : S → S/F . Choose an embedding i : S/F → S. As
discussed above, on S we have vector fields ξ̄m generating left action and the corresponding
Maurer-Cartan form ΘMC . Using π∗ we push-forward the vector field on to S/F and using i∗

we pull-back ΘMC on to S/F . The projected vector fields match with the ξm (by definition
of the symmetry action). Thus we get,

ξn := π∗(ξ̄n) , ω := i∗(ΘMC) ; Lξ̄nΘMC = 0 ⇒ Lξnω = 0 .

As before, ω is valued in S since ΘMC is. Introduce Φa
n as before and define Aa

α := Φa
nω

n
α.

Using these definitions let us rewrite the defining equations as:

Invariance condition :
(
ξαnω

k
α

)
(LξmΦk − [Φk,Wm]) = LξnWm ; (5.5)

Lie Algebra condition : LξmWn − LξnWm − [Wm,Wn] = f p
mnWp ; (5.6)

Gauge transformations : W g
m = g−1Wmg + g−1Lξmg ; (5.7)

:
(
ξαnω

k
α

) (
Φg

k − g−1Φkg
)

= g−1Lξng (5.8)

3For classical matrix groups, these are given by g−1dg and dgg−1 and are left and right invariant respec-
tively.
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In writing the first equation we have used Lξmω
n = 0 and also multiplied by ξαn .

The last equation implies that Φn’s transform as the adjoint representation of G iff the
gauge transformations are constant over S/F . We can take Φn to transform by the adjoint
representation of G, thereby restricting the gauge transformation to be constant over S/F .
In such a case, Wn’s also transform the same way. For trivial F , we can transform away Wn

to zero and recover the previous case. For non-trivial F , this is not the case.

For non-trivial F , there exist a point, y0 say, in S/F at which the vector fields ξm, m =
1, · · · , dim(F ) vanish. Then Lξm terms drop out. Consider the equation (5.6) for m,n.

Then, at y0, we must have [Wm,Wm] = f
p
mnWp. Since F is a subgroup, the sum on the

right hand side is restricted to p. If there is a non-trivial homomorphism λ : F → G, it will
induce a corresponding homomorphism Λ : F → G on the Lie algebras and we can choose
the Wm(y

0) to represent it.

Next, at y0, consider the (5.5,5.6) for m. Eliminating LξnWm, and noting that Φk alone
depends on x, we must have (a) [Wm,Wn] = f p

mnWp and (b) [Φn,Wm] = 0. Note that this
implies that the residual gauge group is reduced to those elements of G which commute with
Wm i.e. to the centralizer of λ(F ) ⊂ G. The gauge transformations are already restricted to
be functions of x alone.

Considering the Jacobi identity for Φk,Φl,Wm it follows that [Φk,Φl] = dmknΦm must hold
for some d’s. This has the same form as the condition (a) on the W ’s. Hence dmkl = fm

kl is
obviously a solution.

In fact, it is a result that S−invariant connections, when they exist, are in on-to-one cor-
respondence with homomorphisms of the groups λ : S → G and can be expressed as
A(x, y) = Aidx

i + Φ(x)ni
∗(ΘMC)

n(y) where A is a connection on B with the gauge group
reduced to the centralizer of λ(F ) in G (i.e. group of all elements of G which commute with
the image of F in G under the homomorphism λ). Furthermore the Higgs fields have to
satisfy the constraints: [Φm,Φn] = f p

mnΦp
4.

What about other invariant fields, such as vector fields in the adjoint of the gauge group (eg
the triad fields)? Now the invariance condition (5.5) will change and also the corresponding
gauge transformations of the field. For Eµ

a ∂µ, we will have LξmE = [E,Wm], E
g = g−1Eg.

Now use the projections Xm of the left invariant vector fields X̄m on S (these generate the
right action and are dual to the ΘMC) and write: Eα

a := Ψn
aX

α
n , LξmXn = 0. The invariance

condition then becomes (ωk
αX

α
n )(LξmΨ

n − [Ψn,Wm]) = 0 and (ωk
αX

α
n )((Ψ

n)g − g−1Ψng) = 0.
The gauge transformations imply Ψn transforms by the adjoint representation and for m =
m, the invariance condition implies: [Ψn,Wm] = 0. Exactly as before, the Ψn must satisfy
constraints analogous to the Φn’s. Similar logic will hold for other tensor fields.

As a very simple illustration, consider the case of static magnetic field in three dimensions
invariant under translations along the z-axix. We want to obtain the form of the vector
potential Ai. In this case, the gauge group G = U(1) and the symmetry group S = R
which acts on R3 by translations. This action is free and therefore F = {e}. We have
R3 ∼ R2×R. The Maurer-Cartan form on R is just dz. The map from R → U(1) is given by

a single ‘Higgs’ scalar, Φ(x, y). The symmetric connection is then given by Ai(x, y, z)dx
i =

4The classification of connections invariant under some group of automorphisms of appropriate bundles is
given by generalised Wang theorem. There are many mathematical fine prints in the above discussion which
should be seen in the references in [23].
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Ax(x, y)dx + Ay(x, y)dy + φ(x, y)dz. This just says that all the three components of the
vector potential depend only on (x, y). Note that this is a statement in the gauge where
“W” has been set to zero. This implies that the magnetic field is also independent of z.
Note that since Az := φ(x, y) 6= 0, the magnetic field could be along any fixed direction.

Exercise: Work out spherically symmetric Yang-Mills fields in three dimensions. Now G =
SU(2), S = SO(3), F = U(1), R3 ∼ R+ × S2.

Further examples may be seen in [23].

5.2 Schrodinger and Polymer Quantization

We illustrate inequivalent quantization as well as the GNS procedure in a simple example.

5.2.1 The Weyl-Heisenberg C*-Algebra

Consider the usual Schrodinger quantization of a single degree of freedom. We have the
usual Hilbert space L2(R, dx), on which are defined the self-adjoint operators x, p, satisfying
the canonical commutation relations: [x, p] = i~.

Define the corresponding unitary operators:

U(α) := eiαx , V (β) := ei~
−1βp , α, β ∈ R (5.9)

U †(α) = e−iαx = U(−α) = U(α)−1 , V †(β) = e−i~−1βp = V (−β) = V (β)−1

Using the BCH formula,

eA · eB = eA+B+
1
2
[A,B]+

1
12

[A,[A,B]]− 1
12

[B,[A,B]]+···

it follows,

U(α)U(α′) = U(α + α′) , V (β)V (β ′) = V (β + β ′) , U(α)V (β) = e−iαβV (β)U)(α)
(5.10)

Define, for z := (α + iβ)/
√
2 ∈ C, the unitary operator,

W (z) := ei
αβ
2 U(α)V (β) = ei(αx+~−1βp)

= exp

[
i

{
z + z̄√

2
x− i

z − z̄√
2

p

~

}]
= exp

[
i

{
z
x− ip/~√

2
+ z̄

x+ ip/~√
2

}]

= ei(za
†+z̄a) = e−

|z|2

2 eiza
†

eiz̄a where, (5.11)

a :=
1√
2

(
x+ i

p

~

)
⇒ [a, a†] = 1 . (5.12)

It follows,

W (z1)W (z2) = e−
i
2
(α1β2−α2β1)W (z1 + z2)

= e
1
2
(z1z̄2−z2z̄1)W (z1 + z2)

= e
1
2
Im(z1z̄2)W (z1 + z2) and, (5.13)

W (z)† = W (−z) = W (z)−1 . (5.14)
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Taking finite linear combinations of products of the unitary operators W (z), we get an
algebra called theWeyl-Heisenberg algebra,W. This is *-algebra due to the Hermitian dagger
defined for the operators. The unitary operatorsW (z) are bounded and so are polynomials in
them. With respect to the operator norm (which satisfies ||A†|| = ||A||, ||A†A|| = ||A||2), The
Weyl-Heisenberg algebra is a C*-algebra. Notice that the W C*-algebra is non-commutative
and has two commutative sub-algebras, namely those generated by the elements, W (α+i0√

2
)

and W (0+iβ√
2
) respectively.

Thus at this stage we have constructed a C*-algebra of bounded operators on the specific
Hilbert space. We will now define a positive linear functional on the C* algebra, W, con-
struct a unitary representation of the algebra and show its equivalence to that provided by
the Schrodinger quantization. The same procedure will then be used to construct another
representation, the Polymer Representation, of the same algebra.

5.2.2 Re-construction of the Schrodinger Representation

In the Hilbert space, consider the wavefunction, 〈x|0〉 := ψ0(x) := π−1/4e−x2/2 so that
〈0|0〉 :=

∫
dx|ψ0(x)|2 = 1. Following results hold:

a|0〉 =
1√
2

(
x− d

dx

)
ψ0(x) = 0 (5.15)

[W (z)ψ0] (x) = e
i
2
αβ [U(α)V (β)ψ0] (x) = e

i
2
αβeiα [V (β)ψ0] (x)

= e
i
2
αβeiαxψ0(x+ β) (5.16)

= 〈x|W (z)|0〉 = e−
|z|2

2 〈x|eiza† |0〉 := 〈x|z〉 (5.17)

∴

∫
dxψ∗

0(x) [W (z)ψ0] (x) = π−1/2

∫
dx e−

x2

2 eiαx−
(x+β)2

2

= e−
|z|2
2 := 〈0|W (z)|0〉 = 〈0|z〉 (5.18)

Define a linear functional ΩSch, on the Weyl-Heisenberg algebra

ΩSch

(∑

i

ciW (zi)

)
:=

∑

i

ciΩSch(W (zi)) :=
∑

i

ci〈0|W (zi)|0〉 :=
∑

i

cie
−|zi|2/2 .

The first definition ensures linearity and the third one completes the definition. The sec-
ond definition (notational) makes it obvious that ΩSch is a positive linear functional since
ΩSch(A

∗A) = 〈0|A†A|0〉 = ||A|0〉||2 ≥ 0, ∀ A := ciW (zi) ∈ the C*-algebra. The equality
holds only if A|0〉 = ci|zi〉 = 0. Since |zi〉 states are linearly independent, there are no
non-trivial states in the Hilbert space which satisfy A|0〉 = 0. The positive linear functional
then defines an inner product on the algebra by,

〈W (z),W (z′)〉 := ΩSch(W (z)†W (z′)) = 〈0|W (−z)W (z′)|0〉 = e−
Im(zz̄′)

2 〈0|z′ − z〉 .

and extended by linearity to the algebra. This turns the algebra into a Hilbert space (distinct
from the original Hilbert space).
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Next, define operators, Ŵ (z) acting on the algebra, by,

Ŵ (z)[W (z′)] := W (z)W (z′) = e
Im(zz̄′)

2 W (z + z′)

and extended to the algebra by linearity. Similarly, one defines an operator for each element
of the algebra, in an obvious manner.

Exercise: Show that (Ŵ (z))† = Ŵ (−z).

This implies that Ŵ (z) are unitary operators.

That W (z) → Ŵ (z) provides a homomorphism of the W algebra is obvious from the action
of the operators. Thus the algebra with the inner product defined, carries a representation
of itself in which the W (z) are represented unitarily.

Consider general matrix elements of the operators Ŵ (z):

〈
W (z1), Ŵ (z) [W (z2)]

〉
= 〈0|W (−z1)W (z)W (z2)|0〉

= e
1
2
(zz̄2−z1z̄−z1z̄2) 〈0|W (z + z2 − z1|0〉

= e
(zz̄2−z1 z̄−z1 z̄2)

2 e−
|z+z2−z1|

2

2 (5.19)

Observe that for z = α or z = iβ, the above matrix elements are continuous in α, β respec-
tively. General matrix elements are obtained from finite combinations of these and hence the
Ŵ (α) and Ŵ (iβ) are both weakly continuous families of unitary operators. Actually, these
are also strongly continuous families i.e. w.r.t. vector space norm. The strong continuity
can be checked by evaluating the norm ||(Ŵ (z)− Ŵ (0))[W (z′)]|| and checking the limits for
z = α/

√
2 and z = iβ/

√
2.

This allows us to define two self-adjoint operators (on the algebra) as,

X̂ := lim
α→0

Ŵ (α/
√
2)− I

iα
, P̂ := ~ lim

β→0

Ŵ (iβ/
√
2)− I

iβ
(5.20)

=⇒
[
X̂, P̂

]
= i~I (5.21)

The commutator can be evaluated directly using the definitions for α, β 6= 0 and using the
existence of the limits guaranteed by strong continuity.

5.2.3 Another positive linear functional and the Polymer repre-
sentation:

Now view the Weyl-Heisenberg algebra defined above as an abstract structure i.e. an algebra
generated by elements W (z), z ∈ C, obeying the relations (5.13,5.14) with a norm defined
by ||W (z)|| = 1 ∀ z ∈ C and extended by linearity. Define a linear functional by,

ΩPoly(W (z)) :=

{
1 if Im(z) = 0
0 otherwise

(5.22)
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This is positive because

ΩPloy

(∑

i

{CiW (zi)}†
∑

j

{CjW (zj)}
)

=
∑

ij

C∗
i Cje

− 1
2
Im(ziz̄j)ΩPloy(W (zj − zi))

=
∑

i

|Ci|2 +
∑

i 6=j

C∗
i Cje

i
2
βi(αj−αi)δβi,βj

(5.23)

In the sum, only those pairs (i, j) which have the same β, contribute. Group together all
the terms whose βi are equal (eg {z1, z2, . . . , zm}, {zm+1, . . . zm+n} . . .), and consider one such
group at a time. In each such group, the phases in the second term can be absorbed in the
Ci’s (since the β is common) and then combining with the first term gives |∑i{Cie

iβαi/2}|2
which is non-negative. This completes the proof. Note that positive linear functional must
evaluate to 1 on the identity element of the algebra (namely, I := W (0)) and therefore we
cannot interchange β ↔ α in the defining condition in (5.22).

The ΩPoly defines a degenerate inner product on the algebra,

〈W (z′),W (z)〉 := ΩPoly(W (z′)†W (z)) = e−
Im(z′z̄)

2 ΩPoly(W (z − z′))

and extended by linearity. The elements whose norm w.r.t. this degenerate inner product
is zero, forms a closed subspace N , of the algebra and consists of elements of the form
χ :=

∑
iCiW (αi+iβ√

2
), β ∈ R such that

∑
iCie

−iβαi/2 = 0. Elements of N also satisfy the

property: ΩPoly(Aχ) = 0 ∀ A ∈ W, which is useful in the exercise below. The quotient
space, W/N , is an inner product space and its Cauchy completion defines a Hilbert space
of the Polymer Representation.

Exercise: Let A denote a general element of the algebra and χ an element of N . Define
[A] := {B ∈ W/B = A + χ}. Define 〈[A], [B]〉 := 〈A,B〉 and Ŵ (z){[A]} := [Ŵ{A}].
Show that these definition are well defined and conclude that W/N provides a unitary
representation of the quotient algebra. From now on, we refer to the quotient representation
without being explicit about it.

Observe that ΩPoly is continuous in α and discontinuous in β. This directly implies that

Ŵ (iβ/
√
2) cannot be weakly continuous and therefore we cannot define the analogue of P̂ .

This follows by noting that 〈W (z′), Ŵ (iβ/
√
2){W (z′)}〉 ∼ ΩPoly(W (iβ/

√
2 + z′ − z′)). The

weak continuity (actually also strong continuity) in α however allows the definition of X̂
self-adjoint operator. It remains to make the representation explicit.

In both the cases above, with the Schrodinger and the polymer functionals, we constructed a
representation of the W in which the W (z) are represented by unitary operators. This is the
Gelfand-Naimark-Segal (GNS) construction. In the Schrodinger case, we obtained the X̂, P̂
operators satisfying the canonical commutation relations. In the Polymer case we obtained
only X̂ . In both cases we get the following relations, directly by applying the definitions:

Ŵ †
(
iβ/

√
2
)
X̂ Ŵ

(
iβ/

√
2
)

= X̂ − βI ⇒ (5.24)

X̂Ŵ
(
iβ/

√
2
)
− Ŵ

(
iβ/

√
2
)
X̂ = −βŴ

(
iβ/

√
2
)

(5.25)

From these relations follow an important result. Note that X̂ is a self adjoint operator and
therefore its spectrum is real. What can one say about its eigenvectors? The above relation
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implies that if |x〉 is an eigenvector of X̂ with eigenvalues x, then Ŵ (iβ/
√
2)|x〉 is also an

eigenvector with eigenvalues (x + β). Hence, either every real number is an eigenvalue or
none is.

Suppose every x is an eigenvalue. Then we have the orthogonality relation 〈x|x′〉 = δx,x′

- the Kronecker δ. Taking expectation value of the second equation above, it follows that
βf(x, β) = 0, ∀ x, β ∈ R, where f(x, β) := 〈x|Ŵ (iβ/

√
2)|x〉. This implies that f(x, β) is zero

for β 6= 0 and f(x, 0) = 1 directly from the definition. Thus f(x, β) cannot be continuous at
β = 0, for any x. This means Ŵ (iβ/

√
2) cannot be weakly continuous at β = 0.

This also means that if Ŵ (iβ/
√
2) is weakly continuous (as for the Schrodinger represen-

tation), then X̂ cannot have any eigenvector. Each x ∈ R is a generalised eigenvalue and
hence, in the formal notation, 〈x|x′〉 = δ(x− x′) - the Dirac δ-function.

Thus, in the Schrodinger representation, X̂ necessarily has only generalised eigenvalues, while
in the polymer representation, it could have proper eigenvalues, but generalized eigenvalues
is not ruled out.

However, in the polymer representation, we note:
〈
W (iβ/

√
2), W (iβ ′/

√
2)
〉

= ΩPoly

(
W (−iβ/

√
2)W (iβ ′/

√
2)
)

= δβ,β′ ; (5.26)
〈
W (iβ/

√
2), X̂

{
W (iβ ′/

√
2)
}〉

= −βδβ,β′ (5.27)

∥∥∥(X̂ − λI)[W (iβ/
√
2)
∥∥∥ = lim

α→0

∥∥∥∥
1

iα

[
W (α+iβ√

2
)− (1 + iαλ)

]
W (iβ/

√
2)

∥∥∥∥
= 0 for λ = −β . (5.28)

which show explicitly that W (−iβ/
√
2) is a normalized eigenvector of X̂ with eigenvalue β,

for every β ∈ R. This means that the Polymer Hilbert space is non-separable.

This concludes the illustration of the GNS construction of representations of C* algebras.
In the next sub-section we see the analogue of the spin network construction.

5.2.4 Polymer representation via ‘spin networks’

We begin by introducing ‘graphs’ in a ‘0-dimensional manifold’, define ‘holonomies’ and ‘spin
network functions’, define an inner product and densely defined operators. More details may
be seen in [24].

1. Graphs, holonomies, cylindrical functions: Any countable set of real numbers, {xi}
represents a graph and is denoted by γ5. Note that the ‘points’ xj on the real line
correspond to edges. Associated to each edge, xj , we define a point holonomy, eikxj ,
k ∈ R plays the role of a connection. For each graph γ, define complex valued functions,
fγ(k) :=

∑
j fje

ikxj . Let Cylγ denote the vector space of fγ(k). Elements of this vector
space are said to be functions cylindrical with respect to the graph γ. Let Cyl :=

∑
⊕

Cylγ , where the sum is over all possible graphs.

Thus a general element of Cyl is a function of k expressible as a countable linear
combination of the elementary functions fxj

(k) := eikxj ’s.

5For precise technical conditions, please refer to [24]
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2. Inner Product on Cyl: Define

〈f, g〉Poly := lim
L→∞

1

2L

∫ L

−L

dkf ∗(k)g(k)

which for elementary functions fxj
(k), fxl

(k) gives δxj ,xl
. Introducing the notation,

|xj〉 ↔ eikxj this is expressed as 〈xj , xl〉 := δxj ,xl
, ∀ xj , xl ∈ R. Cauchy completion of

Cyl with respect to this inner product defines a Hilbert space, HPoly.

3. Action of W: Define operators Ŵ (z) on Cyl by,

Ŵ
(

α+iβ√
2

)
f(k) := e−iαβ/2eiβkf(k − α) , ∀ f ∈ Cyl, ∀ α, β ∈ R

These are densely defined and can be extended to bounded unitary operators on HPoly.
It is easily verified that this provides a representation of the abstract algebra defined
in (5.13).

Exercise: Show that the 1-parameter families of unitary operators, Ŵ (α/
√
2) and

Ŵ (iβ/
√
2) are weakly continuous at α = 0 and weakly discontinuous at β = 0 respec-

tively. This implies that while X̂ can be defined from the Ŵ (α/
√
2) family, there is

no corresponding operator from the second family. Thus the holonomies - hxj
(k) are

well defined but not the connection - k itself.

5.2.5 Harmonic Oscillator in the polymer representation

So we see two distinct representations of the same abstract algebra with the polymer rep-
resentation being similar to the LQG representation. Are there observable quantities which
would reveal which representation occurs in nature?

An obvious candidate is to consider the dynamics of the Harmonic oscillator, with the clas-
sical Hamiltonian, H(x, p) := p2/(2m) +mω2x2/2, {x, p} = 1. In the quantum theory, the
x, p are expected to be replaced by the corresponding operators. However, in the polymer
representation, there is no p̂! So in proposing the quantum Hamiltonian we need to intro-
duce a scale, µ0 and define p̂2 := {2− Ŵ (iµ0/

√
2) + Ŵ (−iµ0/

√
2)}/µ2

0. We could of course
define p̂ first and then take its square. This is a quantization ambiguity not too important
for our purposes here [24]. In the Schrodinger representation, we could use exactly the same
definition, work out quantities of interest eg spectrum and then take the limit µ0 → 0. In
the polymer representation, we cannot take this limit.

Consider the eigenvalue equation for the Hamiltonian: Ĥ|ψ〉 = E|ψ〉. Writing |ψ〉 :=∑
x ∈ countable set ψ(x)|x〉, and noting that the unitary operators in p̂2 shift the |x〉 → |x±µ0〉,

the eigenvalue equation becomes a difference equation, involving ψ(x), ψ(x±µ0). This means
that ψ(x) with x in a lattice Lx0 := {x = x0+µ0N,N ∈ Z} constitute a solution while those
belonging to different lattices are unrelated. Span of the vectors in any lattice form a sep-
arable subspace of the polymer Hilbert space. The spectrum can be determined for each
lattice independentally. This is analyzed in detail in [24]. Suffice it to say that the spectrum
differs from that in the Schrodinger representation by terms down by powers of µ0/d. Here,
d :=

√
~/mω is the length scale defined by the system while µ0 is the length scale introduced

by the approximation for the momentum operator. For the physical systems modelled well
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by an oscillator (eg for vibrational spectra of molecules), µ0/d is extremely small and so
Schrodinger vs polymer representation cannot be resolved by observations.

Additional comments may be seen in [24].

5.3 Inverse Triad Operator(s)

As noted before, the discrete nature of the spectrum of the triad operator implies that its
inverse is not densely defined. Consequently the counterpart of the classical function p−1

needs to be defined indirectly, by a suitable prescription. Being a prescription, it introduces
quantization ambiguities. We will consider a prescription which is sufficiently general.

We aim to define an operator ̂sgn(p)|p|−1. Introduce the following notation: ni is a unit,
3-dimensional vector and τi are anti-hermitian generators of SU(2) in the J th representation,
satisfying

[τi, τj ] = ǫijkτk , TrJ(τiτj) = −1

3
J(J + 1)(2J + 1)δij := −NJδij

For fα(p) := µα|p|−α/2, and define gα(p) :=
∫ p
f−1
α (x)dx = µ−1

α sgn(p)|p|1+α/2(1 + α/2)−1.
For α = 0 we have f0 = µ0 while for α = 1 we have f1 = µ1|p|−1/2 and we choose µ1 :=

ℓP

√
γ
√
3/4. These recover the µ0 and the µ̄ schemes. We will suppress the α label. Define

hf := eλn
iτif(α,p)c. This is matrix of order (2J + 1). Classically, the following is true.

hf{h−1
f , |g|l(p)} = −κγ

3

(
λniτi

)
l|g|l−1sgn(p) where we used f

d|g|
dp

= sgn(p). (5.29)

|p|(l−1)(1+α/2) = sgn(p)

[
3

κγlλ
(µα(1 + α/2))l−1N−1

J

]

×
[
TrJ

(
(niτi)hf{h−1

f , |g|l}
)]

(5.30)

= sgn(p)

[
κγlλ

3
(µα(1 + α/2))NJ

]−1

×
[
TrJ

(
(niτi)hf{h−1

f , |p|l(1+α/2)}
)]

(5.31)

Thus we have a classical expression for |p|(l−1)(1+α/2) which has four ambiguity parameters:
α, J, l, λ. J is a positive half integer, 0 < l < 1, α > −2. The special cases would be:
(a) µ0−scheme: α = 0, λ = 1; (b) improved scheme: α = 1, λ = 1, j = 1/2 and some
special values of l explored; (c) Madhavan scheme: similar to the improved scheme except
λ is correlated with the fiducial volume V0 (more on this later). We could choose l − 1 =
(1 + α/2)−1 to define inverse triad, but we will postpone such choices.

The corresponding quantum operator is obtained by replacing the Poisson bracket by −i~−1

times the commutator. The −i is combined with n · τ to make the generators Hermitian and

the ~−1 combines with κ to replace κ by ℓ2P. The commutator is expanded as: ĥf [ĥ
−1
f , |̂g|

l
] =

I.|̂g|
l
− ĥf |̂g|

l
ĥ−1
f .

Observe that n · (−iτ) can be diagonalised with diagonal elements being −J,−J +1, . . . J −
1, J . So the hf becomes the diagonal matrix e(iλfαc)(J,J−1, ,,, −J+1,−J). So the commutator
terms are diagonal matrices.
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The computations simplify if we label the basis states by 6

vα :=

(
1

6
γℓ2P

)α/2(
1

µα(1 + α/2)

)
sgn(µ)|µ|1+α/2 , ĝα|vα〉 =

γℓ2P
6
vα|vα〉 (5.32)

So that the hf shifts the vα labels simply as,

êiλkfαc|vα〉 = |vα + 2kλ〉 ∵ eifc/2|v〉 = |v + 1〉 .

With these, acting on a basis state |vα〉, the TrJ evaluates to,

[TrJ{· · ·}] =

(
γℓ2P
6

)l J∑

k=−J

k
{
|vα|l − |vα − 2kλ|l

}

=

(
γℓ2P
6

)l J∑

k=−J

k|vα + 2kλ|l and defining vα := 2Jλqα ,

=

(
γℓ2P λ

6

)l

2l
J∑

k=−J

k|Jqα + k|l :=

(
γℓ2Pλ

3

)l

sgn(qα)GJ,l(qα) (5.33)

GJ,l(qα) := sgn(qα)

J∑

k=−J

k|Jqα + k|l (5.34)

The eigenvalues of ̂|p|(l−1)(1+α/2) are then given by

̂|p|(l−1)(1+α/2)|vα〉 := sgn(vα)ΛJ,l,α(vα)|vα〉 (5.35)

ΛJ,l,α(vα) =

(
µαγℓ

2
Pλ

3

)l−1
(1 + α/2)l−1

l
N−1

J [GJ,l(qα)]

The first bracket takes care of the dimensions and the remaining factors are dimensionless.
It remains to calculate the last square bracket which is a λ, α independent, universal function
of its argument and depends only on J, l.

From its definition, it is easy to see that GJ,l(0) = 0 and GJ,l(−qα) = GJ,l(qα), the sgn(qα)
factor is crucial for this. Thus it suffices to consider only qα > 0.

Gj,l(qα > 0) =
J∑

k=−J

k|k + Jqα|l

=

J∑

k=−J

{
(k + Jqα)|k + Jqα|l − Jqα|k + Jqα|l

}

=

J(qα+1)∑

k=J(qα−1)

{
sgn(k)|k|l+1 − Jqα|k|l

}
(5.36)

Gj,l(qα ≥ 1) =

J(qα+1)∑

k=J(qα−1)

{
|k|l+1 − Jqα|k|l

}
(5.37)

Gj,l(0 < qα < 1) = −
0−∑

k=J(qα−1)

{
|k|l+1 + Jqα|k|l

}
+

k=J(qα+1)∑

0+

{
|k|l+1 − Jqα|k|l

}
(5.38)

6The functions fα(p) are taken to be dimensionless. This makes the µα to have dimensions of ℓαP and
gα(p) to have dimensions of ℓ2P. The vα is defined to be dimensionless.
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In the second step, we have shifted k → k − Jqα. k is no longer integral but still changes
in steps of 1. Clearly, for qα ≥ 1, k is positive and the sgn as well as the absolute value are
redundant (the k = 0 term for qα = 1 gives zero and hence the sum is confined to positive k
only), as in (5.37). For qα < 1, the sum splits in two groups as in (5.38), and the 0± denote
the respective limits on the values of k which must match with the other limits and shift in
steps of 1.

We will not simplify/approximate this further but consider the special cases (i) α = 0, λ = 1
and (ii) α = 1, J = 1/2, l = 2/3.

(i) α = 0, λ = 1: (eigenvalues of |p|l−1)

f0(p) = µ0 , g0(p) = µ−1
0 sgn(p)|p| , V0 = µ−1

0 sgn(µ)|µ| (5.39)

ΛJ,l,0(V0) =

(
µ0γℓ

2
P

3

)l−1

(lNJ)
−1GJ,l(|µ|/(2Jµ0)) (5.40)

Λ1
2
,
1
2
,0
(V0) =

(
γℓ2P
6

)−1/2
1√
µ0

(∣∣∣∣
µ

µ0
+ 1

∣∣∣∣
1/2

−
∣∣∣∣
µ

µ0
− 1

∣∣∣∣
1/2
)

(5.41)

(ii) α = 1, J = 1/2: (eigenvalues of |p|
3
2
(l−1))

f1(p) = µ1|µ|−1/2 , µ1 :=

√
γℓ2P
6

3
√
3

2
, g0(p) = µ−1

1 sgn(p)|p|3/2(3/2)−1 , (5.42)

v1 =

(
γℓ2P
6

)1/2

µ−1
1 (3/2)−1sgn(µ)|µ|3/2 = Ksgn(µ)|µ|3/2 (5.43)

Λ1
2
,l,1

(v1) =

(
µ1γℓ

2
P

3

3

2
λ

)l−1

(lN1
2
)−1G1/2,l(|v1|/(21

2
λ)) (5.44)

The G can be computed directly from the (5.34), for v1 > 0, as

G1
2
,l
(v1/λ) =

(
1

2

)l+1(∣∣∣v1
λ

+ 1
∣∣∣
l

−
∣∣∣v1
λ

− 1
∣∣∣
l
)

(5.45)

For l = 2/3 the operator becomes |p|−1/2 and the eigenvalue becomes,

Λ1
2
,
2
3
,1
(v1) =

(
γℓ2P
6

)−1/2
3

4

(
K

λ

) 1
3
[∣∣∣v1
λ

+ 1
∣∣∣
2
3 −

∣∣∣v1
λ

− 1
∣∣∣
2
3

]
(5.46)

For large v1 and λ = 1, this matches with the eigenvalue given by [20]7. The difference arises
because the APS prescription takes the α = 0 expression and replaces µ0 by µ̄ in equation
(5.31).

For large J the sum can be approximated using,

∫ 1

0

dxxr =
1

r + 1
≈

N∑

i=1

(
i

N

)r
1

N
⇒

N∑

i=1

ir ≈ N r+1

(r + 1)

and applying it to the sums in the definition of the GJ,l.

7Actually, for large volume, the leading term is independent of λ. The sub-leading (correction) terms, do
depend on λ.
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5.4 Inhomogeneous Lattice Models

In the main body, we focused on quantization of symmetry reduced models which are based
on a homogeneous and isotropic background. From a perspective of the full theory, this
background presumably corresponds to a state of full theory. Generic states of the full
theory would be inhomogeneous. One way in which symmetric states of the full theory have
been understood in the LQC context is that the symmetric states are those distributions
in Cyl∗ of the full theory which have support on the invariant connections [23]. In the
same spirit, we may stipulate certain kinds of inhomogeneous states as those distributions
which have support on certain form of ‘inhomogeneous connections’. Specific models can
be then constructed using similar strategies as used in LQC constructions. Such models
can shed some light on how homogeneous and isotropic models could be viewed from an
inhomogeneous perspective. These so-called lattices models are briefly summarised below.
Details should be seen in [16].

For definiteness, let us continue to work with homogeneous (not necessarily isotropic), spa-
tially flat, diagonalised model with a fiducial cell of co-moving volume V0 as before. The
spatial isometries provide directions (of the Killing vectors) and the fiducial metric provides
coordinates as background structures which are to be kept fixed. Using these background
structures, Bojowald constructs another model as follows.

Choose a cubical lattice (say) aligned with the isometry directions and with a spacing ℓ0 :=
(V0/N)1/3. Let the vertices of the lattices be denoted by ~v and the three oriented links be
denoted by ~eI,~v(t) := ~v + têI , t ∈ [0, ℓ0] and êI is the unit vector in the Ith direction. For
future reference, let SI,~v denote the elementary surface perpendicular to the elementary link
~eI,~v and passing through its mid-point.

Restrict the connections and triad variables to be of the form,

Ai
a(x) := k̃I(x)δ

i
(I)δ

I
a , Ea

i (x) := p̃I(x)δ
(I)
i δaI . (5.47)

These are the local versions of the diagonalised homogeneous models. The diagonal form of
the connections implies that the holonomies - path ordered exponentials - become ordinary
exponentials of line integrals.

The k̃I , p̃
I are further taken to be spatially periodic with period V

1/3
0 ,

k̃I(x) =
∑

~m

k̃I(~m)ei~m·~x , p̃I(x) =
∑

~m

p̃I(~m)ei~m·~x , ~m = 2πV
−1/3
0 ~n, ~n ∈ Z3 . (5.48)

The Poisson brackets between the connection and the triad lead to,

{k̃I(x), p̃J(y)} = κγδJI δ
3(x, y) . ⇒ {k̃I(~m), p̃J( ~m′)} = κγV −1

0 δJI δ
3(~m,− ~m′) . (5.49)

In loop quantization, basic variables of the model will be holonomies of the lattice connection
along the three elementary links at each vertex and the three fluxes of the lattice triad
variables along the elementary surfaces through the mid-points of the elementary links and
perpendicular to the link. As noted above, these holonomies will be ordinary exponentials
thanks to the diagonal form of the connection.
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The line integrals of the connection along elementary links of the lattice are given by,

II,~v :=

∫

~eI,~v

dt k̃I(~eI(t)) =

∫

~eI,~v

dt
∑

~m

k̃I(~m)ei~m·~eI,~v(t) =
∑

~m

k̃I(~m)ei~m·~v
∫ ℓ0

0

dteit~m·êI

=
∑

~m

k̃I(~m)

{
2 ei~m·~veimI ℓ0/2

(
sin(mIℓ0/2)

mI

)}
where, mI := ~m · êI . (5.50)

≈ k̃I(~v)ℓ0 ∵ mIℓ0 ≪ 1 dominates the sum.

hI,~v := e
i
2
II,~v ≈ e

i
2
k̃I(~v)ℓ0 := e

i
2
kI(~v) (elementary holonomies) (5.51)

Likewise, the fluxes of the lattice triad along elementary surfaces are given by,

FJ
~v :=

∫

SJ,~v

∑

~m

p̃J(~m)e~m·~y =
∑

~m

p̃J(~m)e~m·~veimJ ℓ0/2

∫ ℓ0/2

−ℓ0/2

eitmKdt

∫ ℓ0/2

−ℓ0/2

eitmLdt

=
∑

~m

p̃J(~m)

{
4ei~m·~veimJ ℓ0/2

(
sin(mKℓ0/2)sin(mLℓ0/2)

mKmL

)}
(5.52)

≈ p̃I(~v)ℓ
2
0 (elementary fluxes) (5.53)

The J,K, L indices are chosen such that ǫJKL = 1. This takes care of the orientations. There
are no smearing functions above because the p̃I variables are (U(1)) gauge invariant thanks
to diagonalised form.

These variables satisfy the Poisson brackets,

{II,~v,FJ
~v′} = κγδJI

[
8V −1

0

∑

~m

ei~m·(~v−~v′) sin(mIℓ0/2)sin(mKℓ0/2)sin(mLℓ0/2)

mImKmL

]

= κγδJI [χℓ0(~v − ~v′)] = κγδJI δ~v,~v′ (5.54)

The square brackets above is the characteristic function of width ℓ0 and centered at (~v−~v′)
which is just the Kronecker delta.

The kinematical Hilbert space is then described in terms of the flux representation as:

F̂ I
~v | . . . , µI,~v , . . .〉 =

(
γℓ2P
2
µI,~v

)
| . . . , µI,~v , . . .〉 , µI,~v ∈ Z (5.55)

ĥI,~v| . . . , µI,~v , . . .〉 = | . . . , µI,~v + 1 , . . .〉 (5.56)

The flux eigenvalues are in integer steps of γℓ2P/2 because the elementary holonomies suffice
to separate the lattice connections (periodic) and thus only their integer powers appear.

Subsequent steps are similar to what is done in the homogeneous models. In particular, the
volume corresponding to the cell with N3 lattice sites, can be expressed as

V =

∫
d3x
√

|p̃1p̃2p̃3| ≈
∑

~v

ℓ30
√

|p̃1(~v)p̃2(~v)p̃3(~v)| =
∑

~v

√
|p1(~v)p2(~v)p3(~v)|

≈
∑

~v

√
|F1

~vF2
~vF3

~v | (5.57)

leading to the corresponding operator expression.
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There is no diffeomorphism constraint since the background coordinates are fixed in defin-
ing the lattice, the SU(2) gauge invariance is first reduced to the U(1)3 due to restriction
to diagonal connection and triad and by the form of these variables, the k̃I , p̃

I are gauge
invariant variables. Hamiltonian constraint remains as in the case of homogeneous models.
In essence, we have N3 ‘homogeneous models’ (labelled by the Fourier label ~m) at the level
of basic variables and the kinematical Hilbert space. The role that V0 played in the homo-
geneous model is now played by ℓ0. The inhomogeneity is reflected by basis states having
different values of µI,~v variables.

How do we relate this set-up to the isotropic one discussed before?

Observe that a generic basis state in the lattice model will be,

ψ{µI,~v}[hI,~v] =
∏

I,~v

(hI,~v)
µI,~v := 〈kJ(x)| . . . , µI,~v , . . .〉 , kJ(x) := k̃J(x)ℓ0 . (5.58)

If we choose k̃(x) := c̃ := V
−1/3
0 c ∀ x, I, then the basis function becomes a function of a

single variable c (which is independent of x), and is of the form:

ψµ(c) = eiµc/2 , µ := N−1/3
∑

I,~v

µI,~v ∈ Q ; (5.59)

which can be viewed as a basis element of Cylisotropic. Thus we can define a map π :
Cyllattice → Cylisotropic,

π : | . . . , µI,~v , . . .〉 → |µ〉 ⇔ 〈c|µ〉 := 〈kJ(x)| . . . , µI,~v , . . .〉 |k̃(x)=c̃

with µ := N−1/3
∑

I,~v

µI,~v (5.60)

Note that the image of π-map is a separable subspace of Cylisotropic, spanned by |µ〉, µ ∈ Q.

Clearly we cannot uniquely identify a cylindrical state of the lattice model, given a cylindrical
state of the isotropic model. However, we can define a map σ : Cylisotropic → Cyl∗lattice ,
σ : |µ〉 → (µ|, µ ∈ R, such that,

(µ| . . . , νI,~v , . . .〉 = 〈µ|π (| . . . , νI,~v , . . .〉) = δµ,ν , ν := N−1/3
∑

I,~v

νI,~v . (5.61)

In the second equality, we have used the inner product of the isotropic model. This map
embeds cylindrical states of the isotropic model into the distributional states of the lattice
model8.

Now, we have Operators A∗ acting on Cyl∗lattice corresponding to operators A acting on the
Cyllattice, defined in the usual manner. Those of these operators which act invariantly on the
image of σ in Cyl∗lattice, can be identified with operators of the isotropic model. For these
operators, we can define Aisotropic via the equation: σ(Aisotropic|µ〉) := (σ|µ〉)A∗

lattice. Since
we have embedded isotropic states in the distributions of the lattice model and also have
correspondence between operators, matrix elements computed in the isotropic model can be
understood as actions of lattice distributions on lattice cylindrical states.

8Notice that µ, ν defined above are rationals with a common denominator N1/3. Therefore the distribu-
tions (µ| are non-trivial only for µ ∈ Q with the same denominator.
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Consider an operator Alattice on Cyllattice. This defines an operator A∗
lattice on Cyl∗lattice:

(A∗
latticeφ| . . . , νI,~v , . . .〉 := (φ| {Alattice| . . . , νI,~v , . . .〉}. If, for every distribution (φ| =

(µ| =: σ(|µ〉), the operator A∗
lattice gives another distribution (µ′| =: σ|µ′〉, then we get an

operator on Cylisotropic : Aisotropic|µ〉 := |µ′〉.
It is easy to see that the multiplicative operators on Cyllattice, give multiplicative operators
on Cylisotropic. For example, taking Alattice = hJ,~v′, the lattice state | . . . , νI,~v , . . .〉 will have
the νJ,~v′ incremented by 1. The action of the (µ| will give δµ,ν+1. This can be understood as
the action of (µ − 1| on the original lattice state. Thus (A∗

latticeµ| = (µ − 1| which implies
the a multiplicative action Aisotropic|µ〉 := |µ− 1〉.

For elementary flux operators, little more work is needed. For example, action of F̂ I
~v on a

basis state, | . . . , νJ,~v′ , . . .〉 is zero unless νJ,~v′ 6= 0 for some J = I and at some ~v′ = ~v i.e.

F̂ I
~v |νJ,~v′〉 = 1

2
γℓ2PνJ,~v′δ

I
Jδ~v,~v′|νJ,~v′〉 or

(µ|F̂ I
~v |νJ,~v′〉 =

[
1

2
γℓ2PνJ,~v′

]
δIJδ~v,~v′δµ,ν , ν := N−1/3νJ,~v′ However, (5.62)

(µ′|νI,~v′〉 = (µ′|νI,~v′′〉 ∀ (µ′|, ~v′, ~v′′ . (5.63)

Thus (F̂ I
~v )

∗ cannot act invariantly on the image of σ in Cyl∗lattice. It is clear though that if
we sum the elementary flux operators (with the directional index I) over all the lattice sites
(this is a finite sum due to the cell), then the sum will act invariantly. By averaging over
the directions as well, we can construct an operator corresponding to a ‘flux’ operator on
Cylisotropic. In equations,

p̂Ilattice := N−1/3
∑

~v

F̂ I
~v , p̂lattice :=

1

3

∑

I

p̂Ilattice ⇒ (5.64)

(µ| {p̂lattice| . . . , νJ,~v′ , . . .〉} =
1

6
γℓ2PN

−1/3
∑

J,~v

νJ,~v(µ| . . . , νJ,~v′ , . . .〉

=
1

6
γℓ2P ν δµ,ν , ν := N−1/3

∑

I,~v

νJ,~v (5.65)

The last expression is exactly the matrix element of the p̂ operator defined in the isotropic
model. As noted in the footnote, the identification of the matrix elements is restricted to
µ, ν ∈ Q.

This completes our summary of the lattice model and how isotropic model is ‘embedded’ in
the lattice model. This ‘embedding’ refers to embedding of the particular separable subspace
of Cylisotropic.
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