
ar
X

iv
:1

00
3.

56
52

v1
  [

gr
-q

c]
  2

9 
M

ar
 2

01
0

Spin foams with timelike surfaces

Florian Conrady∗

Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Spin foams of 4d gravity were recently extended from complexes with purely space-

like surfaces to complexes that also contain timelike surfaces. In this article, we

express the associated partition function in terms of vertex amplitudes and integrals

over coherent states. The coherent states are characterized by unit 3–vectors which

represent normals to surfaces and lie either in the 2–sphere or the 2d hyperboloids. In

the case of timelike surfaces, a new type of coherent state is used and the associated

completeness relation is derived.

It is also shown that the quantum simplicity constraints can be deduced by three

different methods: by weak imposition of the constraints, by restriction of coherent

state bases and by the master constraint.

I. INTRODUCTION

The theory of spin foams rests on the idea that quantum spacetime is a process of tran-
sitions between quanta of geometry. In a sense, one can think of a spin foam as a Feynman
diagram [1–4]. Each vertex of this diagram corresponds to a quantum 4–simplex and an edge
describes the propagation of a tetrahedron in one 4–simplex to a tetrahedron of another 4–
simplex. The end of an edge carries a quantum label that denotes a quantum state of a
tetrahedron—similar to a Fock state in quantum field theory. These labels are, in turn, made
up of quantum numbers for triangles that form the tetrahedron. Typically, the quantum
numbers are spins, hence the name spin foam [5]. This covariant picture is complemented
by the canonical framework of loop quantum gravity, which provides an operator formalism
for quantum tetrahedra and more general 3–geometries [3, 6].

In recent years, considerable progress was made in defining spin foams and their dynamics.
The so–called simplicity constraints play a key role in these developments. They have the
purpose of constraining states of a topological theory (BF theory) to states of 4d quantum
gravity (where the B field is replaced by tetrads). In the same way that QCD has different
lattice actions, the resulting quantum gravity has different variants: originally the BC model
[7] and more recently the EPRL [8] and FK model [9–11].

The EPRL model comes in two versions, one for Riemannian geometries and one for
Lorentzian signature. The Lorentzian model is subject to the restriction that tetrahedra and
triangles are spacelike. As a result, these spin foams correspond to a relatively special class
of Lorentzian triangulations. In particular, boundary hypersurfaces are always spacelike.
In a recent paper by the author and J. Hnybida this theory was extended to include also
tetrahedra with Lorentzian signature and hence timelike triangles [12]. Like for spacelike
surfaces, the spectrum of timelike areas turns out to be discrete.

This extension is certainly natural from a covariant perspective. If one can implement

∗Electronic address: fconrady@perimeterinstitute.ca

http://arxiv.org/abs/1003.5652v1
mailto:fconrady@perimeterinstitute.ca


2

Lorentzian tetrahedra, there is a priori no reason to forbid them. The inclusion of such
tetrahedra has the advantage of permitting timelike boundaries, which is not possible oth-
erwise. By using general triangualations one might also avoid artifacts or distortions that
could arise when the triangulations are restricted1.

Is the restriction to Euclidean tetrahedra required or favored from a Hamiltonian point of
view? In the examples we know of, the transition from space to spacetime leads to 4d lattices
that include timelike or null edges. This is the case in causal dynamical triangulations [14],
for instance, and in evolution algorithms for classical Lorentzian Regge calculus [15]. It may
be possible to evolve on triangulations with purely spacelike edges, but we are not aware of
any examples for this. The Hamiltonian approach to Lorentzian spin foams [16, 17] results
in sequences of 3d spatial lattices, so this cannot (yet) be directly compared with the 4d
triangulations discussed here.

In the present article, we address some of the points that were left open in ref. [12].
Firstly, we express the spin foam theory in terms of vertex amplitudes that have coherent
states as boundary data. For this we derive completeness relations for a new type of coherent
state needed to describe timelike triangles. Secondly, we show that the quantum simplicity
constraints can be obtained in three different ways: 1. by weak imposition of the constraints,
2. by restriction of a coherent state basis (a more formal version of the argument given
in [12]), and 3. by the master constraint. The consistency of these methods provides an
additional check on the correctness of the constraints.

The paper is organized as follows. In section II we briefly recall some facts about repre-
sentation theory of SL(2,C), SU(2) and SU(1,1) that we need in the remainder of the text.
In sec. III we state the known completeness relations for SU(2) and the discrete series of
SU(1,1), and we derive the one for the new coherent state introduced in [12]. The three
derivations of the quantum simplicity constraints are described in sec. IV. Finally, the com-
pleteness relations are used to write the spin foam model as a multiple integral over vertex
amplitudes (sec. V).

II. SU(2) AND SU(1,1) REDUCTION OF SL(2,C) REPRESENTATIONS

This section summarizes a number of facts about irreducible representations of SL(2,C),
SU(2) and SU(1,1) that are essential for the definition of the spin foam model. SL(2,C) has
the generators

J i = σi/2 , Ki = iσi/2 , i = 1, 2, 3 , (1)

and the subgroups SU(2) and SU(1,1) are generated by J1, J2, J3 and J3, K1, K2 respectively.
Unitary irreps of SL(2,C) are labelled by pairs (ρ, n), where ρ ∈ R and n ∈ Z+. The
associated Hilbert space and representation matrices are denoted by H(ρ,n) and D(ρ,n)(g),
g ∈ SL(2,C), respectively. There are two Casimirs, given by

C1 = 2
(

~J2 − ~K2
)

=
1

2
(n2 − ρ2 − 4) , (2)

C2 = −4 ~J · ~K = nρ . (3)

1 Compare this with the issue of “fatness” and convergence in Riemannian Regge calculus [13].
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Both the SU(2) and SU(1,1) irreps are built from eigenstates |j m〉 of J3:

〈j m|j m′〉 = δmm′ , J3 |j m〉 = m|j m〉 . (4)

In the case of SU(2), the irreps are labelled by the Casimir ~J2:

~J2 |j m〉 = j(j + 1)|j m〉 , where j = 0, 1
2
, 1, 3

2
, . . . (5)

Dj stands for the Hilbert space of spin j. Unitary irreps of SU(1,1) have the Casimir
Q = (J3)2 − (K1)2 − (K2)2 and split into two classes, the discrete series and the continuous
series. For the discrete series, one has

Q |j m〉 = j(j − 1)|j m〉 , where j = 1
2
, 1, 3

2
, . . . (6)

and the eigenvalues of J3 assume the values

m = j, j + 1, j + 2, . . . or m = −j, −j − 1, −j − 2, . . . (7)

We denote the irrep consisting of states |j m〉 with m ≷ 0 by D±
j .

In the case of the continuous series, the Casimir takes on continuous values:

Q |j m〉 = j(j + 1)|j m〉 , where j = −1
2
+ is, 0 < s <∞, (8)

and

m = 0, ±1, ±2, . . . or m = ±1

2
, ±3

2
, . . . (9)

Irreps of this series are denoted by Cǫs. The label ǫ = 0, 1
2
designates the irreps with integer

m and half–integer m respectively.
Clearly, every unitary irrep of SL(2,C) defines a representation of its subgroups SU(2)

and SU(1,1). However, these representations are reducible. As a result, the Hilbert space
H(ρ,n) splits into a direct sum of irreps of SU(2), or a direct sum of irreps of SU(1,1). The
SU(2) decomposition is given by the following isomorphism and completeness relation:

H(ρ,n) ≃
∞
⊕

j=n/2

Dj , 1(ρ,n) =
∞
∑

j=n/2

j
∑

m=−j

|Ψj m〉 〈Ψj m| . (10)

The states |Ψj m〉 form the so–called canonical basis of H(ρ,n). For fixed spin j and m =
−j, . . . , j, they span a subspace of H(ρ,n) that is isomorphic to Dj . The SU(1,1) reduction
can be formally written as

H(ρ,n) ≃





n/2
⊕

j>0

D+
j ⊕

∞ ⊕
∫

0

ds Cǫs



⊕





n/2
⊕

j>0

D−
j ⊕

∞ ⊕
∫

0

ds Cǫs



 . (11)

The precise meaning of this statement is encoded in the completeness relation1(ρ,n) =

n/2
∑

j>0

∞
∑

m=j

∣

∣Ψ+
j m

〉 〈

Ψ+
j m

∣

∣+

n/2
∑

j>0

∞
∑

−m=j

∣

∣Ψ−
j m

〉 〈

Ψ−
j m

∣

∣+
∑

α=1,2

∞
∫

0

ds µǫ(s)

∞
∑

±m=ǫ

∣

∣Ψ(α)
sm

〉 〈

Ψ(α)
sm

∣

∣ .

(12)
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Here, |Ψ±
j m〉 and |Ψ(α)

sm〉 are states that correspond to states of the discrete and continu-
ous series respectively. The sum over j extends over values such that j − n/2 is integral.
Moreover, ǫ has a value such that ǫ− n/2 is an integer. The measure factors are

µǫ(s) =















2s tanh(πs) , ǫ = 0 ,

2s coth(πs) , ǫ = 1/2 .

(13)

When SL(2,C) is restricted to SU(1,1), the states
∣

∣Ψ±
j m

〉

furnish irreducible representations
that are isomorphic to those of the discrete series:

〈

Ψ±
j m′

∣

∣Ψ±
j m

〉

= δm′m , (14)

〈

Ψ±
j m′

∣

∣D(ρ,n)(g)
∣

∣Ψ±
j m

〉

= 〈j m′|Dj(g)|j m〉 for g ∈ SU(1, 1). (15)

With regard to the continuous series, the situation is more subtle. Firstly, the continuous

series states
∣

∣

∣
Ψ

(α)
sm

〉

appear twice, which is indicated by the index α = 1, 2. Moreover, these

states are not normalizable:

〈

Ψ
(α′)
s′m′

∣

∣Ψ(α)
sm

〉

=
δ(s′ − s)

µǫ(s)
δα′α δm′m (16)

Thus, the analog of eq. (15) requires an integration over s:

∞
∫

0

ds′ µǫ(s
′)
〈

Ψ
(α)
s′m′

∣

∣D(ρ,n)(g)
∣

∣Ψ(α)
sm

〉

= 〈j m′|Dj(g)|j m〉 for g ∈ SU(1, 1). (17)

The expansions (10) and (12) follow from the the Plancherel decomposition of functions on
SU(2) and SU(1,1) respectively (see chapter 3 and 7 in [18] and sec. 12 and 13 in [19]). In
the case of SU(1,1), the orthogonality relations of matrix elements take the form

∫

SU(1,1)

dg Dj′∗
m′

1m
′
2
(g)Dj

m1m2
(g) =

1

2j − 1
δj′j δm′

1m1
δm′

2m2
(18)

for the discrete series, and for the continuous series

∫

SU(1,1)

dg

∞
∫

0

ds′ ψ′∗(s′)

∞
∫

0

ds ψ(s) Dj′∗
m′

1m
′
2
(g)Dj

m1m2
(g)

=





∞
∫

0

ds
1

µǫ(s)
ψ′∗(s)ψ(s)



 δm′
1m1

δm′
2m2

, (19)

where ψ and ψ′ are square–integrable functions of s.
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III. COMPLETENESS RELATIONS OF SU(1,1) COHERENT STATES

The quantization of the simplicity constraint leads altogether to three types of constraints
that reflect three different possibilities at the classical level: 1. a spacelike triangle in a
tetrahedron with a timelike normal U , 2. a spacelike triangle in a tetrahedron with a spacelike
normal U , and 3. a timelike triangle in a tetrahedron with a spacelike normal U . The spin
foam model in [12] covers all three cases and represents, in this sense, a quantization of
general Lorentzian geometries. Its partition function is defined by means of projectors that
project onto those irreps permitted by the three kinds of constraints.

Ref. [12] provided also a definition of the coherent state vertex amplitude. The coherent
states encode the boundary geometry of a 4–simplex dual to the vertex. They are labelled
by 3–vectors ~N that represent the unit normals of triangles within the 3d boundary of the
4–simplex. In [12] the vertex amplitude was not yet used for defining the partition function.
In order to do so one has to express the aforementioned projectors in terms of coherent
states. That is, one needs completeness relations that resolve the identity on a given irrep
as an integral over coherent states.

For SU(2) and the discrete series of SU(1,1) such completeness relations are already
known [20]. However, in the case of the continuous series, we employ a new class of coherent
states whose completeness has not been proven so far. In this section, we will deliver this
proof by using orthogonality relations of SU(1,1) matrix elements. Since the states are not
normalizable, a smearing procedure is necessary. In section V, this result will be applied to
express the spin foam sum of [12] as a multiple integral over vertex amplitudes.

A. SU(2) and discrete series of SU(1,1)

Before coming to the continuous series, we recall the completeness relations for SU(2)
and the discrete series of SU(1,1) [20] and state them in a form suitable for this paper. For
SU(2) one has the completeness relation1j = (2j + 1)

∫

SU(2)

dg |j g〉〈j g| = (2j + 1)

∫

S2

d2N |j ~N〉 (20)

where |j g〉 and |j ~N〉 are the well–known coherent states of SU(2). The SU(2) measure is the
normalized Haar measure and d2N denotes the normalized measure of the 2–sphere. When
translated to the canonical basis of H(ρ,n), these formulae read

Pj = (2j + 1)

∫

SU(2)

dg |Ψj g〉 〈Ψj g| = (2j + 1)

∫

S2

d2N
∣

∣

∣
Ψj ~N

〉〈

Ψj ~N

∣

∣

∣
. (21)

Pj is the projector from H(ρ,n) to the subspace isomorphic to Dj .
In the case of the discrete series, SU(1,1) is suitably parametrized by

g = e−iϕJ3

e−iuK1

eiψJ
3

, −π < ϕ ≤ π , 0 ≤ u <∞ , −2π < ψ ≤ 2π . (22)

For the SU(1,1) measure, we adopt the same normalization as in ref. [19]. In terms of the
coordinates (22), this gives

dg =
1

(4π)2
sinh u dϕ du dψ . (23)
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The components H± = { ~N | ~N2 = 1 , N0 ≷ 0} of the timelike two–sheeted hyperboloid
H+ ∪H− are isomorphic to the quotient SU(1, 1)/U(1) and can be parametrized by

~N = ±(cosh u, sinϕ sinh u, cosϕ sinh u) , −π < ϕ ≤ π , 0 ≤ u <∞ , (24)

with the measure

d2N =
1

4π
sinh u dϕ du . (25)

For the irreps D±
j , the coherent states are defined by

|j g〉± ≡ Dj(g)|j ±j〉 , g ∈ SU(1, 1) , (26)

|j ~N〉 ≡ Dj(g( ~N))|j ±j〉 , ~N ∈ H± , (27)

where g( ~N) is the SU(1,1) element determined by

g = e−iϕJ3

e−iuK1

. (28)

Then, the completeness relation for D±
j can be written as1±

j = (2j − 1)

∫

SU(1,1)

dg |j g〉±〈j g|± = (2j − 1)

∫

H±

d2N |j ~N〉〈j ~N | . (29)

It can be derived from the orthogonality relation (18) between matrix elements of SU(1,1)
[19]. At the level of the SL(2,C) irrep H(ρ,n), the coherent states correspond to

∣

∣Ψ±
j g

〉

≡ D(ρ,n)(g)
∣

∣Ψ±
j±j

〉

, g ∈ SU(1, 1) , (30)

∣

∣

∣
Ψj ~N

〉

≡ D(ρ,n)(g( ~N))
∣

∣Ψ±
j±j

〉

, ~N ∈ H± , (31)

and the completeness relation becomes

P±
j = (2j − 1)

∫

SU(1,1)

dg
∣

∣Ψ±
j g

〉 〈

Ψ±
j g

∣

∣ = (2j − 1)

∫

H±

d2N
∣

∣

∣
Ψj ~N

〉〈

Ψj ~N

∣

∣

∣
. (32)

Here, P±
j is the projector from H(ρ,n) onto the subspace isomorphic to D±

j .

B. Continuous series

In the case of the continuous series, we build coherent states from eigenstates of K1 [12].
For this reason, it is practical to parametrize SU(1,1) by

g = e−iϕJ3

e−itK2

eiuK
1

, −2π < ϕ ≤ 2π , −∞ < t, u <∞ , (33)

where the right–most factor is generated by K1 [21]. In these coordinates, the measure (23)
reads

dg =
1

(4π)2
cosh t dϕ dt du . (34)
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The relevant hyperboloid is now the spacelike single–sheeted hyperboloid Hsp = { ~N | ~N2 =
−1}. It is isomorphic to the quotient SU(1, 1)/(G1 ⊗ Z2), where G1 is the one–parameter
subgroup generated by K1. We coordinatize Hsp by

~N = (− sinh t, cosϕ cosh t, sinϕ cosh t) , −π < ϕ ≤ π , −∞ < t <∞ , (35)

and fix the measure to be

d2N =
1

4π
cosh t dϕ dt . (36)

In the irrep Cǫ
s, eigenstates of K

1 with eigenvalue λ are denoted by |j λ σ〉. The spectrum of
K1 is the real line and it is two–fold degenerate, so there is an additional label σ = ± (see
[22] for more details). Like momentum eigenstates, these states are not normalizable:

〈j λ′ σ′|j λ σ〉 = δ(λ′ − λ)δσ′σ (37)

Our coherent states result from SU(1,1) transformations of the reference state |j s+〉 with
eigenvalue λ = s:

|j g〉sp ≡ Dj(g)|j s+〉 , g ∈ SU(1, 1) , (38)

|j ~N〉 ≡ Dj(g( ~N))|j s+〉 . (39)

g( ~N) is the SU(1,1) element determined by

g = e−iϕJ3

e−itK2

. (40)

Like for SU(2) and the discrete series of SU(1,1), the completeness relation can be derived
from the orthogonality of matrix elements (see eq. (18) and (19)). In the case of the con-
tinuous series, these matrix elements are not normalizable and a smearing in s is required.
For this reason, we do not resolve the identity on a single irrep Cǫ

s. Instead we consider

a projector from H(ρ,n) to states |Ψ(α)
sm〉 which permits a range of values of s, defined by a

suitable wavefunction. Furthermore, eigenstates of K1 are not normalizable, so we also need
a smearing over eigenvalues λ.

For the smearing, we choose the function

fδ(x) =















1 , |x| ≤ δ/2 ,

0 , |x| > δ/2 .

(41)

The smeared projector is specified by

P ǫ
s (δ) =

∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds′ µǫ(s
′) fδ(s

′ − s)
∣

∣

∣
Ψ

(α)
s′m

〉〈

Ψ
(α)
s′m

∣

∣

∣
(42)

It projectsH(ρ,n) onto the subspace of wavefunctions with support on the interval [s−δ/2, s+
δ/2]. Note that this is slightly different from the projector chosen in [12].
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The smeared coherent states are defined by

∣

∣

∣Ψ
(α)
s g δ

〉

≡
∞
∫

0

ds′ µǫ(s
′) fδ(s

′−s)
∞
∫

−∞

dλ
1√
δ
fδ(λ−s)D(ρ,n)(g)

∣

∣

∣Ψ
(α)
s′ λ+

〉

, g ∈ SU(1, 1) . (43)

With these states, the projector (42) can be expressed as

P ǫ
s (δ) =

∑

α=1,2

∫

SU(1,1)

dg
∣

∣

∣
Ψ

(α)
s g δ

〉〈

Ψ
(α)
s g δ

∣

∣

∣
. (44)

The same may be also written as an integral over ~N . However, due to the smearing, the
corresponding states carry additional indices. If we define the smeared coherent states by

∣

∣

∣
Ψ

(α)

j ~Nλδ

〉

≡
∞
∫

0

ds′ µǫ(s
′) fδ(s

′ − s)D(ρ,n)(g( ~N))
∣

∣

∣
Ψ

(α)
s′ λ+

〉

, ~N ∈ Hsp , (45)

the completeness relation becomes

P ǫ
s (δ) =

∑

α=1,2

∫

Hsp

d2N

∞
∫

−∞

dλ
1

δ
fδ(λ− s)

∣

∣

∣
Ψ

(α)

j ~Nλδ

〉〈

Ψ
(α)

j ~Nλδ

∣

∣

∣
. (46)

Both eq. (44) and (46) are proven in appendix A. Together eqns. (32) and (44) yield the
following completeness relation for the entire SL(2,C) representation space H(ρ,n):1(ρ,n) =

n/2
∑

j>0

(2j − 1)

∫

SU(1,1)

dg
(∣

∣Ψ+
j g

〉 〈

Ψ+
j g

∣

∣+
∣

∣Ψ−
j g

〉 〈

Ψ−
j g

∣

∣

)

+
1

δ

∞
∫

0

ds

∫

SU(1,1)

dg
∑

α=1,2

∣

∣

∣
Ψ

(α)
s g δ

〉〈

Ψ
(α)
s g δ

∣

∣

∣
(47)

IV. THREE WAYS TO SIMPLICITY

The quantum simplicity constraint in ref. [12] were derived from the requirement that
there exist semiclassical states with simple expectation values and small uncertainties. In
this section, we formalize this derivation and describe it as a projection from the kinematic to
the physical Hilbert space. We demonstrate furthermore that the same simplicity constraints
can be obtained from two other techniques; from the weak imposition of the constraints via
matrix elements and from the master constraint. The three types of derivations will be first
exemplified in a simple system (which was already mentioned in [23]), and then we will move
on to the simplicity constraints themselves.

In contrast to the gauge and diffeomorphism constraint of gravity, the simplicity con-
straints are second–class and they require a different treatment for quantization. The par-
ticular features of second–class constraints are best explained by the following basic example.
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Consider a system of two particles whose positions and momenta are constrained to be iden-
tical. The phase space variables are given by coordinates (qi, pi), i = 1, 2, with Poisson
bracket {qi, pi} = δij , and the constraints are

q1 − q2 = 0 , p1 − p2 = 0 . (48)

One can make a change of coordinates and use equivalently

q± =
1

2
(q1 ± q2) , p± =

1

2
(p1 ± p2) (49)

or complex variables

a± =
1√
2
(p± − iq±) , (50)

in which case the constraints take the form

q− = p− = 0 , or a− = 0 . (51)

Upon quantization, the kinematic Hilbert space H is given by the Fock space spanned by
states

|n+〉 ⊗ |n−〉 = (a†+)
n+ |0〉 ⊗ (a†−)

n−|0〉 (52)

where n+, n− ∈ N0. Clearly, the physical Hilbert space Hphys should be isomorphic to the
Fock space of a single degree of freedom, and there are different ways to arrive at this
conclusion mathematically.

One strategy is to impose the constraints weakly [23, 24], which is related to the Gupta–
Bleuler method in QED and string theory. If one imposed q−|ψ〉 = p−|ψ〉 = 0 strongly, there
would be no non–trivial solution, so one requires instead only a−|ψ〉 = 0. It then follows
that the full constraint holds weakly in the sense that

〈ϕ|a−|ψ〉 = 〈ϕ|a†−|ψ〉 = 0 ∀ |ϕ〉, |ψ〉 ∈ Hphys , (53)

and Hphys is spanned by the states |n+〉 ⊗ |0〉, n+ ∈ N0.
Another possibility is to start from an overcomplete basis of coherent states for the full

Hilbert space H and to restrict this basis, so that only states in Hphys remain. In the
present case, the kinematic Hilbert space is spanned by coherent states |α+〉 ⊗ |α−〉, where
a±|α±〉 = α±|α±〉, with the completeness relation1H =

1

π2

∫

dα+

∫

dα− |α+〉〈α+| ⊗ |α−〉〈α−| . (54)

The projector on Hphys is obtained by restricting the integral to coherent states whose
expectation values satisfy the constraint. That is, (〈α+| ⊗ 〈α−|) a− (|α+〉 ⊗ |α−〉) = α− = 0
and hence

Pphys ≡
1

π

∫

dα+ |α+〉〈α+| ⊗ |0〉〈0| . (55)

The normalization is adjusted to ensure that the constrained integral is a projector.
A third method is based on the so–called master constraint2. The master constraint is

the sum of the squares of the constraints, here M = p2− + q2− = 0. Up to factor ordering,
this constraint becomes

M = a†−a− =
1

2

(

p2− + q2−
)

+
1

2
(56)

2 For the general idea, see e.g. sec. 2 in [25].
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in the quantum theory. The physical Hilbert space is defined as the subspace of states with
minimal eigenvalue w.r.t. M , which consists, as before, of the states |n+〉 ⊗ |0〉, n+ ∈ N0.

Below we will translate these three methods to the simplicity constraints of spin foams3.
Classically, the variables are given by SO(1,3) bivectors B that are constrained to be simple.
On a simplicial complex, these bivectors are associated to triangles and represent the area
bivectors of the triangles. Simplicity is encoded by assigning a normal 4–vector U to each
tetrahedron and by requiring that

U · ⋆B = 0 (57)

for all four area bivectors of the tetrahedron. At the classical level, the bivectors are related
to bivectors J = (JIJ) by

B =
γ2

γ2 + 1

(

J − 1

γ
⋆ J

)

. (58)

The latter correspond to the generators of the Lorentz group in the quantum theory. γ is
the Immirzi parameter and we assume that γ > 0.

The tetrahedral normal U is assumed to be timelike or spacelike, and after gauge–fixing
these two possibilities are represented by the values U = (1, 0, 0, 0) and U = (0, 0, 0, 1).
Using the relation (58) the simplicity constraint (57) is then expressed in terms of SL(2,C)
generators, namely

~C = ~J +
1

γ
~K = 0 and ~C = ~F +

1

γ
~G = 0 (59)

for U = (1, 0, 0, 0) and U = (0, 0, 0, 1) respectively, where

~F =











J3

K1

K2











and ~G =











K3

−J1

−J2











. (60)

This is the form of the constraints that are quantized. In addition, we also use the diagonal
constraint B · ⋆B = BIJ(⋆B)IJ = 0, since it is implied by the simplicity constraint (57).
The former is first–class and easily implemented, as it can be expressed in terms of SL(2,C)
Casimirs. It leads to the condition

(ρ− γn)

(

ρ+
n

γ

)

= 0 , (61)

on irreps of SL(2,C), and hence to ρ = γn or ρ = −n/γ. Thus, we permit only irreps H(γn,n)

or H(−n/γ,n).
The constraints (59), on the other hand, are second–class, and their quantization is more

involved. They lead to the condition 4γC3 = C2 on irreps, where C3 is the Casimir of the
little group defined by U . This constraint can be derived in three different ways, following
the three methods in the toy example above.

3 For a more detailed explanation of simplicity constraints, see e.g. [9] or sec. II in [12].
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A. Weak imposition of constraints

Let us first consider the case U = (1, 0, 0, 0). The choice of gauge reduces the symmetry
group from SL(2,C) to SU(2), so we use the SU(2) decomposition (10) of the kinematic
Hilbert space H(ρ,n). Suppose the physical Hilbert space is given by a subspace

Hphys =
⊕

j∈J

Dj , (62)

where J is a subset of the total set of spins {j|j ≥ n/2}. We then require that

〈ϕ| ~C|ψ〉 = 0 ∀ |ϕ〉, |ψ〉 ∈ Hphys. (63)

Unless Hphys is trivial, this implies, in particular, that for some j ≥ n/2,

〈ϕ| ~C|ψ〉 = 0 ∀ |ϕ〉, |ψ〉 ∈ Dj. (64)

Therefore, one has
〈

j m′

∣

∣

∣

∣

J3 +
1

γ
K3

∣

∣

∣

∣

j m

〉

=

〈

j m′

∣

∣

∣

∣

J+ +
1

γ
K+

∣

∣

∣

∣

j m

〉

=

〈

j m′

∣

∣

∣

∣

J− +
1

γ
K−

∣

∣

∣

∣

j m

〉

= 0 (65)

for all admissible m, m′, with ladder operators given by

J± = J1 ± iJ2 and K± = K1 ± iK2 . (66)

To analyze this, we use the action of K3 on the canonical basis [26]

K3|j m〉 = (. . .)|j + 1m〉 −mAj |j m〉+ (. . .)|j − 1m〉 , Aj =
ρ n

4j(j + 1)
, (67)

and the commutation relationK± = ±[K3, J±]. It is then easy to see that all three equations
imply Aj = γ, which is equivalent to the aforementioned condition 4γC3 = C2. In conjunc-
tion with the constraint B · ⋆B = 0, this gives 4j(j +1) = n2 if ρ = γn and 4j(j +1) = −ρ2
if n = −γρ. The first case can be solved approximatively by j = n/2, while the second
possibility gives a contradiction. Therefore, one obtains that Hphys is only non–trivial when
ρ = γn and then Hphys = Dn/2.

Next we come to the case U = (0, 0, 0, 1). We impose again eq. (63), but this time with

the constraint ~C = ~F + 1
γ
~G and with regard to the SU(1,1) decomposition (11). Suppose

first that the constraint holds for some irrep D±
j of the discrete series. That is,

〈

j m′

∣

∣

∣

∣

F 0 +
1

γ
G0

∣

∣

∣

∣

j m

〉

=

〈

j m′

∣

∣

∣

∣

F+ +
1

γ
G+

∣

∣

∣

∣

j m

〉

=

〈

j m′

∣

∣

∣

∣

F− +
1

γ
G−

∣

∣

∣

∣

j m

〉

= 0 . (68)

Here,
F± = F 2 ∓ iF 1 , G± = G2 ∓ iG1 , (69)

and F± are the ladder operators of SU(1,1) [22]4:

F±|j m〉 =
√

(m∓ j ± 1)(m± j)|j m± 1〉 . (70)

4 Note that Lindblad and Nagel use different symbols for the generators, and in the discrete series their

sign convention for j is opposite to ours [22].
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According to Mukunda5 the action of K3 on SU(1,1) states is given by

K3|j m〉 = (. . .)|j + 1m〉 −mÃj |jm〉+ (. . .)|j − 1m〉 , Ãj =
ρ n

4j(j − 1)
. (71)

Knowing that G± = ±[G0, F±] we find, similarly as before, that the three equations (68)
imply Ãj = γ and hence 4γC3 = C2. The solution is again ρ = γn and j = n/2.

Assume finally that eq. (68) holds for some irrep Cǫs of the continuous series. Then, we
have the same equations except that Ãj is replaced by

Aj =
ρ n

4j(j + 1)
= − ρ n

4(s2 + 1/4)
. (72)

A solution exists only when ρ = −n/γ < −1 and then

s2 + 1/4 =
ρ2

4
=

n2

4γ2
. (73)

The overall result for U = (0, 0, 0, 1) is that Hphys is only non–trivial when ρ = γn or
ρ = −n/γ < −1 and in these cases

Hphys = D+
n/2 ⊕D−

n/2 and Hphys = Cǫ
1
2

√
n2/γ2−1

⊕ Cǫ
1
2

√
n2/γ2−1

(74)

respectively. In the continuous series, a subtlety arises from the fact that the states |Ψ(α)
sm〉

are not normalizable. If one wants to avoid singular inner products, a smearing w.r.t. s is
required.

B. Restriction of coherent state basis

The derivation from coherent states is essentially the one given in ref. [12], but it is put
more clearly in context with other methods by using the notion of a projector from the
kinematic to the physical Hilbert space.

When U = (1, 0, 0, 0), we resolve the identity on H(ρ,n) in terms of SU(2) coherent states:1(ρ,n) =

∞
∑

j=n/2

(2j + 1)

∫

S2

d2N
∣

∣

∣
Ψj ~N

〉〈

Ψj ~N

∣

∣

∣
. (75)

The physical Hilbert space Hphys results from restricting the coherent state basis to states
whose expectation values are simple6, i.e. to states for which

〈

Ψj ~N

∣

∣

∣

~C
∣

∣

∣
Ψj ~N

〉

= 0 . (76)

5 See eq. (3.19) in [27] and also [28].
6 The same method applies also to the first–class gauge constraint. The projector on the gauge–invariant

Hilbert space is equal to an integral over coherent states whose classical labels (or expectation values)

satisfy the closure constraint [29].
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As shown in [12], this implies γ = Aj. With regard to the condition (61), we have two
options. One can obtain (61) either from the requirement that the coherent state should

have minimal uncertainty in ~K (as done in [12]), or alternatively one can impose B · ⋆B = 0

as a separate constraint. The variance in ~K equals

(∆K)2 = 〈 ~K2〉 − 〈 ~K〉2 = 〈 ~J2〉 − 1

2
C1 − 〈 ~K〉2 . (77)

From γ = Aj it follows that

〈 ~J2〉 = 1

γ2
〈 ~K〉2 +O(| ~J|) and 〈 ~J2〉 = −1

γ
〈 ~J · ~K〉 , (78)

where 〈 〉 indicates expectation values w.r.t. coherent states and | ~J | ≡
√

|〈 ~J〉|. By inserting

the last two equations in (77) we arrive at

(∆K)2 = −1

γ
(1− γ2) ~J · ~K − 1

2
C1 +O(| ~J|) (79)

= −γ
4

[(

1− 1

γ2

)

C2 +
2

γ
C1

]

+O(| ~J|) (80)

= −γ
4
B · ⋆B +O(| ~J|) , (81)

which leads us back to the diagonal constraint.
Either way the solution is ρ = γn and j = n/2, so for ρ = γn the projector on the

physical Hilbert space becomes

Pphys = (n + 1)

∫

S2

d2N
∣

∣

∣
Ψn/2 ~N

〉〈

Ψn/2 ~N

∣

∣

∣
. (82)

For U = (0, 0, 0, 1), the little group is SU(1,1) and the relevant completeness relation is given
by eq. (47). Again, Hphys is defined by restricting to states whose expectation values are
simple, i.e.

〈

Ψ±
j g

∣

∣ ~C
∣

∣Ψ±
j g

〉

= 0 and lim
δ→0

〈

Ψ
(α)
s g δ

∣

∣

∣

~C
∣

∣

∣
Ψ

(α)
s g δ

〉

= 0 . (83)

This implies γ = Ãj and γ = Aj respectively, and the projector on the physical Hilbert
space takes the form

P δ
phys =







































(n− 1)

∫

SU(1,1)

dg
(∣

∣

∣
Ψ+
n/2 g

〉〈

Ψ+
n/2 g

∣

∣

∣
+
∣

∣

∣
Ψ−
n/2 g

〉〈

Ψ−
n/2 g

∣

∣

∣

)

, if ρ = γn ,

∫

SU(1,1)

dg
∑

α=1,2

∣

∣

∣

∣

Ψ
(α)
1
2

√
n2/γ2−1 g δ

〉〈

Ψ
(α)
1
2

√
n2/γ2−1 g δ

∣

∣

∣

∣

, if ρ = −n/γ < −1 .
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C. Master constraint

The master constraint is the original method by which the simplicity constraints of the
EPRL model were derived [8]. However, the same technique can be also applied to determine
simplicity constraints for a spacelike normal U .

The master constraint is given by the sum of the squares of the components of the
simplicity constraint. For U = (1, 0, 0, 0), this yields

M =

(

1 +
1

γ2

)

~J2 − 1

2γ2
C1 −

1

2γ
C2 = 0 . (84)

The diagonal constraint B · ⋆B = 0, on the other hand, is equivalent to

(

1− 1

γ2

)

C2 +
2

γ
C1 = 0 . (85)

By combining the diagonal and master constraint, one arrives at the desired second condition

4γ ~J2 = 4γC3 = C2 . (86)

Similarly, simplicity for U = (0, 0, 0, 1) results in the master constraint

M =

(

1 +
1

γ2

)

~F 2 − 1

2γ2
C1 −

1

2γ
C2 = 0 . (87)

After combination with (85), one has 4γ ~F 2 = 4γC3 = C2. Therefore, one obtains the same
overall solution as with the previous two techniques.

A point of concern could be the fact that in the SU(1,1) case the master constraint is not
positive definite. For SU(2) the master constraint is always positive and hence the vanishing
of M implies that each individual constraint vanishes classically. This reasoning does not
apply to the SU(1,1) case, so one might worry that additional conditions are needed when
using the master constraint. In the previous two subsections, however, exactly the same
constraints followed from considerations that involved each individual simplicity constraint.
This suggests that the master and diagonal constraint are sufficient and that the indefinite
sign does not cause any problems.

V. SPIN FOAM SUM AS AN INTEGRAL OVER COHERENT STATES

With the completeness relations of sec. III at hand, we are ready to describe the spin foam
model [12] in terms of integrals over coherent states. For this purpose, it is convenient to use
a uniform notation for each of the different cases occurring in the quantization. We have to
distinguish between the two different possibilities U = (1, 0, 0, 0) and U = (0, 0, 0, 1) for the
normals of tetrahedra, and furthermore between spacelike and timelike triangles within such
tetrahedra. The choice between spacelike and timelike triangles is indicated by the variable
ζ = ±1.

For U = (1, 0, 0, 0) the tetrahedral space is Euclidean and triangles can be only spacelike.
Such triangles correspond to coherent states in SU(2) irreps. When U = (0, 0, 0, 1), the
tetrahedron resides in a 3d Minkowski space and triangles are spacelike or timelike; these



15

triangles are represented by coherent states in the discrete or continuous series of SU(1,1)
respectively. The coherent states are parametrized by elements of SU(2) or SU(1,1), or

alternatively by unit 3–vectors ~N that lie in the 2–sphere or the 2d hyperboloids. Geomet-
rically, the vector ~N has the meaning of a normal vector to a triangle. In a Minkowskian
tetrahedron, ~N is timelike when the triangle is spacelike, and spacelike when the triangle is
timelike.

The different choices of the little group are subsumed in the formula

H(ζ, U) ≡



























SU(2) , if ζ = 1 , U = (1, 0, 0, 0) ,

SU(1, 1) , if ζ = ±1 , U = (0, 0, 0, 1) ,

∅ , if ζ = −1 , U = (1, 0, 0, 0) .

(88)

Moreover, coherent states are uniformly written as |Ψ(α)
j h δ〉, where h ∈ H(ζ, U). In the SU(2)

case, α can assume only one value and the state is equal to an SU(2) coherent state, i.e.

|Ψ(α)
j h δ〉 ≡ |Ψj h〉 and h ∈ SU(2). In the second case of eq. (88), the state is a coherent state of

the discrete series, |Ψ(α)
j h δ〉 ≡ |Ψα

j h〉, and α can be + or −. In the third case, it is a coherent
state of the continuous series and α = 1, 2.

The spin j is subject to the simplicity constraints

j =



























n/2 , if ζ = 1 , U = (1, 0, 0, 0) ,

n/2 , if ζ = 1 , U = (0, 0, 0, 1) ,

−1
2
+ i

2

√

n2/γ2 − 1 , if ζ = −1 , U = (0, 0, 0, 1) .

(89)

The corresponding area spectra for triangles (see [12]) are given by

A =



























γ
√

j(j + 1) , if ζ = 1 , U = (1, 0, 0, 0) ,

γ
√

j(j − 1) , if ζ = 1 , U = (0, 0, 0, 1) ,

γ
√

s2 + 1/4 = n/2 , if ζ = −1 , U = (0, 0, 0, 1) .

(90)

The right–hand side of the completeness relations (21), (32) and (44) may now be cast in
the form

dj(ζ, U)
∑

α

∫

H(ζ,U)

dh
∣

∣

∣
Ψ

(α)
j h δ

〉〈

Ψ
(α)
j h δ

∣

∣

∣
, (91)
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where

dj(ζ, U) =











































2j + 1 , if ζ = 1 , U = (1, 0, 0, 0) ,

2j − 1 , if ζ = 1 , U = (0, 0, 0, 1) ,

1 , if ζ = −1 , U = (0, 0, 0, 1) ,

0 , if ζ = −1 , U = (1, 0, 0, 0) .

(92)

The partition function of spin foams is defined on a 4–dimensional simplicial complex ∆ and
its dual complex ∆∗. We denote edges, triangles, tetrahedra and 4–simplices of ∆ by l, t,
τ and σ respectively. For dual vertices, edges and faces we use v, e and f . Note that dual
edges e and faces f stand in one–to–one correspondence with tetrahedra τ and triangles t
of the original complex.

Configurations are specified by the following data. To each face f one assigns a positive
integer nf which determines ρf and the SL(2,C) irrep (ρf , nf ) via the simplicity constraints.
For each face and edge, there are labels ζf and Ue that specify the signature of the cor-
responding triangle and tetrahedron. To each edge e and adjacent face f , we attribute a

coherent state |Ψ(αef )
jefhef δ

〉. This state is labelled by a spin jef and an element hef of the little

group H(Ue, ζf), where The state represents the quantum state of the triangle dual to e in
the tetrahedron dual to f . SU(1,1) coherent states have the additional label αef . Equiv-

alently, one can use states that are parametrized by unit 3–vectors ~N in the 2–sphere S2

and the hyperboloids H± and Hsp. (Below we adopt the labeling with group elements, since
relation (44) requires less notation than (46).) Furthermore, there are connection variables
gev ∈ SL(2,C) assigned to half–edges of ∆∗, going from the vertex v to the center of the
edge e.

The completeness relations are associated to edges e. When the amplitude is organized
in terms of vertices v, the completeness relations are split in halves in the sense that the ket
state goes to one end of the edge and the bra state goes to the other end. The result are
vertex amplitudes of the form

Av((ρf , nf); hef , αef , δ) =

∫

SL(2,C)

∏

e

dgev
∏

f

〈

Ψ
(αef )

jefhef δ

∣

∣

∣
D(ρf ,nf )(gevgve′)

∣

∣

∣
Ψ

(αe′f )

je′fhe′f δ

〉

. (93)

Each face (adjacent to the vertex) contributes a factor that results from the inner product of
two coherent states belonging to the edges e and e′ adjacent to the face f . The vertex am-
plitude is obtained by integrating the product of these factors over the connection variables
gev on half–edges.

The partition function is given by a multiple integral over vertex amplitudes:

Z =
∑

nf

∑

ζf=±1

∑

Ue

∑

αef

∫

H(Ue,ζf )

djf (Ue, ζf) dhef
∏

f

(1+γ2ζf )n2
f lim
δ→0

∏

v

Av
(

(ζfγ
ζfnf , nf ); hef , αef , δ

)

(94)
First of all, there is a sum over the various discrete labels nf , ζf , Ue and αef . For each edge
e and adjacent face f , one has an integral over the subgroup H(Ue, ζf) whose elements hef
parametrize the coherent states. This part can be equivalently formulated by integrals over
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normal vectors ~N by using the second equality in eqns. (21) and (32) and the completeness
relation (46). Each face comes with a measure factor that descends from the original measure
in the unconstrained BF theory. Finally, there is a limit δ → 0 on the product of all vertex
amplitudes. Physically, the parameter δ has the meaning of an uncertainty in area for
timelike triangles, and it is introduced to avoid singular inner products between states of
the continuous series. Once the inner products are computed, this parameter is sent to zero.

It should be remarked that the simplicity constraint permit only certain combinations of
states around faces. If a triangle is timelike, it carries only continuous series states in the
adjacent tetrahedra. In contrast, spacelike triangles admit both SU(2) states and SU(1,1)
states of the discrete series.

VI. DISCUSSION

Let us summarize our results. We dealt with the spin foam theory of ref. [12]—an ex-
tension of the EPRL model to triangulations that contain both Euclidean and Lorentzian
tetrahedra (and hence both spacelike and timelike triangles). We expressed its partition
function as a multiple integral over vertex amplitudes that have coherent states as bound-
ary data. Each coherent state is interpreted as a quantum state of a triangle and it is
characterized by a spin and a unit 3–vector. This vector is the normal of the triangle
and lies either in the 2–sphere or the 2d hyperboloids, depending on the signature of the
tetrahedral space. In order to write the partition function in terms of vertex amplitudes,
we required completeness relations for coherent states in each of the irreps of SU(2) and
SU(1,1). In the case of the continuous series, a new type of coherent state was employed
and a corresponding completeness relation was established.

We demonstrated furthermore that the physical Hilbert space of the simplicity constraints
can be derived by three different methods: by the weak imposition of constraints, by the
master constraint (as advocated in the EPR and EPRL papers [8, 23, 30]), and by the
restriction of coherent state bases (inspired by the FK model [9, 11]). The agreement of
these three techniques supports the idea that the result is correct. However, quantization
rules are just rules of thumb and the true test comes when the physical behavior of the
system is investigated.

One way to check this is to determine the large spin asymptotics of vertex amplitudes.
This was already done for the Riemannian and Lorentzian EPRL model [32–36], and it
may be possible to extend the same analysis to the present form of the theory. This may
require some technical effort, as we have to deal with the SU(1,1) reduction of SL(2,C)
representations, which is less explored than the canonical SU(2) decomposition. There will
appear, in particular, inner products between SU(2) states and SU(1,1) states of the discrete
series. It would be interesting to understand the relation between these two kind of states,
since they represent the same type of triangle in tetrahedra of different signature.

The most interesting aspect of the model is the fact that it admits timelike boundaries.
One may now consider finite regions with spacelike and timelike boundaries, as envisioned
in papers by Rovelli et al. [37] and Oeckl [38, 39]. Connected to this, there is the question
of whether one can have some form of canonical loop quantum gravity for states on timelike
boundaries (see [40] for earlier work on this). A well–known problem in this regard is the
absence of the trivial representation in non–compact gauge groups, which makes it difficult
to relate Hilbert spaces of different graphs. As long as one uses a single graph, however, this
may not be a major obstacle.
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Appendix A: Proof of completeness relations

Below we prove the completeness relations (44) and (46) for coherent states in the con-
tinuous series. A general state in the continuous series subspace of H(ρ,n) can be written
as

|u〉 =
∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds
√

µǫ(s)u
(α)
m (s)

∣

∣

∣
Ψ

(α)
s′m

〉

. (A1)

Here, u
(α)
m (s) plays the role of a wavefunction. The inner product of two such states |u〉 and

|v〉 yields

〈u|v〉 =
∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds u(α)∗m (s)v(α)m (s) . (A2)

When the projector (42) is sandwiched between |u〉 and |v〉, we obtain

〈u|P ǫ
s (δ)|v〉 =

∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds′ u(α)∗m (s′)fδ(s
′ − s)v(α)m (s′) . (A3)

We would like to show that the coherent state integral on the right–hand side of (44) produces
the same after sandwiching between |u〉 and |v〉. When all smearing integrals are written
explicitly, this contraction gives

∑

α=1,2

∫

SU(1,1)

dg
〈

u
∣

∣

∣
Ψ

(α)
s g δ

〉 〈

Ψ
(α)
s g δ

∣

∣

∣
v
〉

=
∑

α1=1,2

∑

±m1=ǫ

∞
∫

0

ds1
√

µǫ(s1)u
(α)∗
m (s1)

∑

α2=1,2

∑

±m2=ǫ

∞
∫

0

ds2
√

µǫ(s2) v
(α)
m (s2)

×
∞
∫

0

ds′1 µǫ(s
′
1) fδ(s

′
1 − s)

∞
∫

−∞

dλ1
1√
δ
fδ(λ1 − s)

∞
∫

0

ds′2 µǫ(s
′
2) fδ(s

′
2 − s)

∞
∫

−∞

dλ2
1√
δ
fδ(λ2 − s)

×
∑

α=1,2

∫

SU(1,1)

dg
〈

Ψ(α1)
s1m1

∣

∣D(ρ,n)(g)
∣

∣

∣
Ψ

(α)

s′1 λ1

〉〈

Ψ
(α)

s′2 λ2

∣

∣

∣
D(ρ,n)(g−1)

∣

∣Ψ(α2)
s2m2

〉

. (A4)
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Because of the isomorphism (17) with states in Cǫs this reduces to
∑

α=1,2

∫

SU(1,1)

dg
〈

u
∣

∣

∣
Ψ

(α)
s g δ

〉 〈

Ψ
(α)
s g δ

∣

∣

∣
v
〉

=
∑

α=1,2

∑

±m1=ǫ

∞
∫

0

ds1
√

µǫ(s1)u
(α)∗
m (s1)fδ(s1 − s)

∞
∫

−∞

dλ1
1√
δ
fδ(λ1 − s)

×
∑

±m2=ǫ

∞
∫

0

ds2
√

µǫ(s2) v
(α)
m (s2)fδ(s2 − s)

∞
∫

−∞

dλ2
1√
δ
fδ(λ2 − s)

×
∫

SU(1,1)

dg 〈j1m1|Dj1(g)|j1 λ1〉〈j2 λ2|Dj2(g−1)|j2m2〉 , (A5)

where j1 = −1
2
+is1 and j2 = −1

2
+is2. By applying the orthogonality relation (19) between

matrix elements of SU(1,1), we arrive finally at

∑

α=1,2

∫

SU(1,1)

dg
〈

u
∣

∣

∣
Ψ

(α)
s g δ

〉 〈

Ψ
(α)
s g δ

∣

∣

∣
v
〉

=
∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds′ u(α)∗m (s′)f 2
δ (s

′ − s)v(α)m (s′)

∞
∫

−∞

dλ
1

δ
f 2
δ (λ− s)

=
∑

α=1,2

∑

±m=ǫ

∞
∫

0

ds′ u(α)∗m (s′)fδ(s
′ − s)v(α)m (s′) . (A6)

This proves the completeness relation (44).
For the transition from SU(1,1) to the hyperboloid Hsp, the smearing in s does not play

any role, so we indicate the associated integrals only by
∫

ds . . .. Starting from

P ǫ
s (δ) =

∑

α=1,2

∫

SU(1,1)

dg
∣

∣

∣
Ψ

(α)
s g δ

〉〈

Ψ
(α)
s g δ

∣

∣

∣
(A7)
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we use the parametrization (33) and get

P ǫ
s (δ) =

∑

α=1,2

∞
∫

0

ds1 . . .

∞
∫

−∞

dλ1
1√
δ
fδ(λ1 − s)

∞
∫

0

ds2 . . .

∞
∫

−∞

dλ2
1√
δ
fδ(λ2 − s)

× 1

(4π)2

2π
∫

−2π

dϕ

∞
∫

−∞

dt

∞
∫

−∞

du cosh t eiu(λ1−λ2)Dj1(g(ϕ, t, 0))
∣

∣

∣
Ψ

(α)
s1 λ1 +

〉〈

Ψ
(α)
s2 λ2 +

∣

∣

∣
Dj2(g−1(ϕ, t, 0))

=
∑

α=1,2

4π

(4π)2

π
∫

−π

dϕ

∞
∫

−∞

dt cosh t

∞
∫

0

ds1 . . .

∞
∫

0

ds2 . . .

∞
∫

−∞

dλ
1

δ
fδ(λ− s)

×Dj1(g(ϕ, t, 0))
∣

∣

∣
Ψ

(α)
s1 λ+

〉〈

Ψ
(α)
s2 λ+

∣

∣

∣
Dj2(g−1(ϕ, t, 0)) (A8)

=
∑

α=1,2

∫

Hsp

d2N

∞
∫

−∞

dλ
1

δ
fδ(λ− s)

∣

∣

∣
Ψ

(α)

j ~Nλδ

〉〈

Ψ
(α)

j ~Nλδ

∣

∣

∣
. (A9)

Since e2πiJ
3

produces the same sign factor for bra and ket, we were able to restrict ϕ to
(−π, π] and compensate by a factor of 2. This corresponds to the division by Z2 in the
quotient SU(1, 1)/(G1 ⊗ Z2) ≃ Hsp.
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